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ABSTRACT 

The combination of classical computational approaches with machine learning techniques 

(MLT) is gaining traction in academia and industry. MLTs are used in chemoinformatics 

processes to predict the activity of an unknown drug and thus discover new potential 

antibacterial drugs (ADs). This thesis focuses on the design of a methodology based on the 

application of perturbation theory (PT) combined with machine learning (ML) methods and 

information fusion to predict the antibacterial activity of drugs at the design stage from 

preclinical assay information, chemical structures, nanoparticles (NP), and variations of 

metabolic networks (MN) of multiple microorganisms. First, an exploration of the state of the 

art on bacterial resistance, targets and mechanisms of action, databases useful for computational 

modeling, MLT, and performance evaluation algorithms applied in the field of antibacterial 

drugs was performed. Subsequently, the study was continued with the creation of a 

computational model to study the connectivity (structure) of a metabolite in the MN reactions 

of a query organism. Once the main nodes (metabolites) were identified, MN of > 40 bacterial 

species were quantitatively related to chemical and preclinical data from the ChEMBL database. 

Next, a model was developed for the prediction of the biological activities of AD functionalized 

with NP systems. Finally, an analysis and mapping of DADNP (AD + NP) systems against MN 

of pathogenic bacterial species was performed using Network Invariance Information Fusion, 

Machine Learning with Perturbation Theory (NIFPTML =N+ IF + PT + ML) as an application 

of AI/ML methods in the search for AD that cope with the emergence of multidrug-resistant 

strains. The additive NIFPMTL strategy may become a useful tool to aid in the design and 

discovery of new DADNP systems. 
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LABURPENA 

Mundu akademikoan eta industrian ohiko konputazio ikuspegien eta Ikasketa Automatikozko 

Tekniken  (IAT, ingelesez MLT)) konbinazioak gero eta kide gehiago irabazten ari du. IATak 

kimioinformatikako prozesuetan erabiltzen dira farmako ezezagunen aktibitatea aurresateko eta 

bakterio-kontrako farmako berriak (BF, ingelesez AD) izan daitezkeenak aurkitzeko. 

Doktorego-tesi honetan ikasketa automatikozko metodoekin  (IA, ingelesez ML) eta informazio 

fusioarekin konbinatuta dagoen perturbazio teorian (PT) datzan metodologia garatu da. Hala, 

diseinu fasean dauden farmakoen bakterio-aurkako aktibitatea aurresan daiteke entsegu aurre 

klinikoetatik, egitura kimikoetatik, nano partikuletatik eta hainbat mikroorganismoen erreakzio 

metaboliko sareen aldaketetatik abiatuz.  

Lehenengo, bakterioen erresistentzia, ituak eta mekanismoak, konputazio-ereduetarako datu 

sorta egokiak, ikasketa automatikozko teknikak eta etekina ebaluatzeko algoritmoak aztertu 

ziren bakterio-aurkako arloan aplikatzeko. Ondoren, azterketarekin aurrera egiteko, konputazio 

eredua eraiki zen organismo batean metabolito batek erreakzio metabolikoetan duen 

konektagarritasuna (egitura) aztertzeko.  Nodo (metabolito) nagusienak eta 40 bakterio espezie 

baino gehiagoren erreakzio metabolikoak behin identifikatuta, ChEMBL datu-basean dauden 

datu kimikoekin eta aurre klinikoekin kuantitatiboki erlazionatu zuren.  

Jarraian, nano partikula sistemekin  funtzionalizatutako bakterio-kontrako aktibitate biologikoa 

duten farmakoak aurresateko eredua garatu zen. Azkenik, DBFNP (BF + NP), ingelesez 

DADNP (AD + NP), sistemen analisia eta mapaketa burutu zen MN bakterio espezie 

patogenoen kontra, sare inbariantzaren (SI, ingelesez, NI), Informazio Fusioz (IF) egindako 

Ikasketa Automatikoaren (IA, ingelesez ML) bidez eta Perturbazio Teoria erabiliz (PT) 

(SIFPTIA, ingelesez NIFPTML=N+IF+PT+ML). Hori, bakterio-kontrako farmakoen 

aurkikuntzan IA/ML metodoen aplikazio zuzena izango litzateke andui multirresistenteei aurre 

egiteko. SIFPTIA (ingelesez NIFPTML) batukortasun estrategia, DBFNP (ingelesez DADNP) 

sistema berriak diseinatzeko eta aurkitzeko erraminta erabilgarria bilaka daiteke.  
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RESUMEN 

La prevalencia de la resistencia a los antibióticos en los patógenos supera con creces nuestra 

capacidad para desarrollar nuevos fármacos antibacterianos (en inglés, antibacterial drugs, 

AD). Muchas corporaciones farmacéuticas evitan desarrollar sustancias antibacterianas 

innovadoras debido a la gran posibilidad de fracaso. Sin embargo, se necesitan con urgencia 

nuevos antibióticos, especialmente para las bacterias resistentes. Esto ha requerido que los 

científicos encuentren métodos rápidos, accesibles y económicos para descubrir nuevos 

fármacos y dianas moleculares contra los microorganismos infecciosos. Uno de los enfoques 

más empleados por las compañías farmacéuticas es el descubrimiento de fármacos asistidos por 

computadora. La combinación de enfoques computacionales clásicos con técnicas de 

aprendizaje automático (MLT, siglas en inglés de Machine Learning Technique) está ganando 

adeptos en el mundo académico y en la industria. Las MLT se utilizan en procesos de 

quimioinformática para predecir la actividad de un fármaco desconocido y descubrir así nuevos 

fármacos antibacterianos potenciales. 

Por otra parte, la literatura muestra que muchos sistemas de AD funcionalizados con 

nanopartículas (NP) recopilados muestran que tienen actividad de amplio espectro y pueden ser 

promisorios para el tratamiento de infecciones bacterianas. La inhibición de cepas de diversos 

microorganismos como S. aureus, P. aeruginosa, E. Faecium, E. Coli, E. faecalis, S. 

epidermidis, B. subtilis, A. Baumannii, S. enterica serovar Typhimurium, S. mutans, E. faecium, 

M. luteus y K. Pneumoniae (algunas son resistentes a fármacos, por ejemplo, MRSA, MDR y 

VRE) han sido estudiadas, lo que demuestra que los sistemas duales de AD+NP (DADNP) se 

han centrado en la búsqueda de inhibidores del crecimiento de patógenos de gran interés en el 

campo de las infecciones bacterianas.  

Los DADNP tienen la capacidad intrínseca de penetrar las barreras de la membrana celular 

bacteriana y llegar a sitios específicos con un mayor nivel de precisión y estabilidad que las 

moléculas de antibióticos libres. Muchas de estas combinaciones han ejercido efectos sinérgicos 

o aditivos en comparación con el uso de antibióticos en sus formas moleculares, que pueden 

contribuir a combatir muchas bacterias resistentes y apoyar tratamientos en infecciones clínicas. 

La mayoría de los estudios presentan efectos sinérgicos o aditivos, a diferencia del uso 

independiente de fármacos y nanopartículas. Esto significa que los sistemas DADNP pueden 

aumentar la eficacia y la velocidad de la muerte bacteriana. Otra ventaja de los sistemas DADNP 

es que tienen una alta ajustabilidad y una amplia gama de adaptabilidad para hacer frente a 

diversos escenarios, como células persistentes en macrófagos e infecciones de biopelículas, y 

esta integración podría ser una solución rentable. En ese sentido, el diseño integrado de sistemas 

de nanoantibióticos puede estar dotado de una variedad de funcionalidades, por ejemplo, 

capacidades de focalización, penetración y absorción mejoradas, modificación del 

microambiente infeccioso y combinación con otras técnicas de tratamiento. En consecuencia, 

existe un gran potencial para que los nanomateriales demuestren su capacidad para mejorar la 

eficacia terapéutica de los antibióticos.  

Por otro lado, los ADs solos, las NPs o el sistema DADNP tienen que interactuar con el 

microorganismo. En este sentido, la comprensión del metabolismo de los patógenos juega un 

papel importante. Las redes metabólicas (en inglés, metabolic network, MN) están representadas 

por el conjunto de rutas metabólicas, que a su vez son una serie de reacciones bioquímicas en 

las que el producto (salida) de una reacción sirve como sustrato (entrada) para otra reacción. En 

este sentido, algunos estudios de Barabási han demostrado la influencia de los cambios en las 

MNs en la supervivencia de diferentes microorganismos. 

Estos DADNP podrían considerarse como sistemas complejos para el análisis desde la 

perspectiva del modelado computacional. La incorporación de varios sistemas con diferentes 
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condiciones puede analizarse como un problema de ML en el descubrimiento de nuevos ADs, 

con aplicaciones de NP y de rutas metabólicas al mismo tiempo. La existencia de bases de datos 

públicas como ChEMBL con miles de informes de ensayos preclínicos de posibles ADs, un 

número creciente de informes experimentales de NP con acción antibacteriana y un informe 

previo de consenso de MN para múltiples bacterias patógenas hace muy interesante su estudio, 

pero la mayoría de los modelos de ML de fármacos antibacterianos y NP no tienen etiquetas 

múltiples. Esto forma un sistema complejo AD + NP + Agente de recubrimiento + Proteína + 

MN + etc, y se puede analizar como un todo o por partes (modelo aditivo de información de 

subsistemas). Estas partes se pueden agregar gradualmente para ver la solidez de la técnica 

(enfoque por bloques). Para realizar el análisis en su conjunto no hay suficientes datos. En el 

caso del análisis por partes, algunas partes tienen demasiados datos y otras muy pocos. Por tanto, 

como solución al problema, se pueden descomponer en partes o subsistemas. 

La solución al problema metodológico podría ser la estrategia basadas en los algoritmos 

NIFPTML (el acrónimo es: Invariantes de redes (NI) + Fusión de información (IF) + Teoría de 

perturbación (PT) + Aprendizaje automático (ML)). Estas técnica de aprendizaje automático 

puede abordar este tipo de desafío de múltiples etiquetas y códigos de entrada. En la primera 

fase del algoritmo NIFPTML se puede utilizar la teoría de redes complejas para estudiar 

sistemas biomoleculares (fármacos, proteínas, redes metabólicas, etc.). Las redes se pueden 

representar como gráficos a través de conjuntos de nodos y ejes. Un ejemplo es el gráfico 

molecular donde los nodos y ejes corresponden a los átomos y enlaces químicos de una molécula 

de fármaco. Otro ejemplo es la red de una proteína donde los nodos son aminoácidos y los ejes 

la secuencia y/o interacción/proximidad espacial entre los aminoácidos. Los parámetros 

numéricos llamados Network Invariants (NI) se pueden extraer de estas redes y se utilizan para 

cuantificar la estructura de estos sistemas. Estos parámetros o índices numéricos de redes o 

Redes (N) pueden ser correlacionados con las propiedades biológicas de dichos sistemas 

mediante técnicas de Inteligencia Artificial (AI) y/o Aprendizaje Automático (ML). 

Por otro lado, en muchos problemas de interés es necesario fusionar información sobre varios 

de estos sistemas al mismo tiempo. Las técnicas de Fusión de Información (IF) de diversas 

fuentes permiten obtener un conjunto de datos enriquecido. Los operadores de la Teoría de 

Perturbación (PT) permiten cuantificar las perturbaciones/desviaciones en las variables 

estructurales con respecto a los valores esperados para diferentes subconjuntos de variables 

categóricas. Finalmente, los métodos de IA/ML permiten encontrar modelos predictivos de las 

propiedades biológicas de los sistemas (fármacos, proteínas, etc.). Por lo tanto, en esta tesis 

proponemos utilizar la estrategia NIFPTML para estudiar problemas que involucran uno o más 

de estos sistemas al mismo tiempo. El enfoque aditivo NIFPTML es compatible con este tipo 

de análisis (AD + MN + NP + Agente de recubrimiento). Permite trabajar con múltiples salidas, 

se pueden tratar múltiples condiciones y se pueden realizar varios problemas o estudios parciales 

con el enfoque NIFPTML. En ese sentido, la información disponible calculada en estudios 

previos de sistemas de cepas mutantes de AD, NP y MN, para mejorar el descubrimiento de 

aplicaciones de vías metabólicas de AD, NP y MN, al mismo tiempo. Además, el enfoque 

NIFPTML puede probar la reutilización de fármacos conocidos como AD y/o coterapia con 

diferentes NP y simular la actividad de DADNP en diferentes bacterias (o MN). 

En el primer capítulo de esta tesis se presentó una introducción general. Esta incluyó una 

revisión exhaustiva de la aplicación del aprendizaje automático en el descubrimiento de nuevos 

fármacos antibacterianos. Este estado del arte se enfocó en los principales temas de este trabajo: 

resistencia bacteriana, principales antibióticos, dianas proteicas, mecanismos de acción, bases 

de datos de ensayos preclínicos y clínicos, y otras fuentes de información útiles para modelado 

computacional, técnicas de aprendizaje automático y algoritmos de métricas de evaluación del 

desempeño aplicados en el campo de los medicamentos antibacterianos. La primera sección 
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describió los antecedentes del descubrimiento y la resistencia a los antibióticos. Luego, se 

analizó el rol de las proteínas diana en los fármacos antibacterianos. En la tercera sección se 

recopilaron las bases de datos disponibles públicamente que se utilizan con frecuencia en la 

investigación de aprendizaje automático en el campo del descubrimiento de fármacos 

antibacterianos. Además, se proporcionó un breve análisis de ChEMBL antibacteriano 

preclínico. En la cuarta parte del capítulo se presentó un resumen de bases de datos públicas y 

privadas gratuitas que contienen información sobre ensayos clínicos antibacterianos. Además, 

se realiza un análisis de ClinicalTrials.gov" y de la Plataforma de Registro Internacional de 

Ensayos Clínicos. Además, se describieron las técnicas de aprendizaje automático y los estudios 

centrados en el campo de la investigación de fármacos antibacterianos, esbozando cómo se han 

utilizado con éxito varias MLT en los campos de descubrimiento de fármacos antibacterianos. 

Se incluyó información relativa a las redes neuronales, las máquinas de vectores de soporte, los 

árboles de decisión, los predictores de conjunto, los clasificadores bayesianos, el aprendizaje 

profundo, etc. Por último, se abordó acerca de los sistemas DADNP. En particular, se destacaron 

las vías futuras para los avances científicos y tecnológicos en el descubrimiento de fármacos 

antibacterianos, por lo que el ML podría utilizarse para predecir la actividad de compuestos 

desconocidos y descubrir nuevos agentes antibacterianos.  

En segundo capítulo de esta tesis se establecieron los antecedentes y objetivos de la 

investigación. En el caso del primero se presentó en dos secciones, una para exponer el problema 

práctico y la otra para el problema metodológico. Posteriormente, se expusieron cuáles pueden 

ser las potenciales soluciones al problema metodológico para otros sistemas biomoleculares 

complejos, y se realizó una retrospectiva de los Modelos NIFPTML=N+IF+PT+ML, como una 

aplicación de los métodos de IA/ML, anteriormente publicados para enfrentar problemas 

similares. Luego, se explicaron las causas de como los Modelos NIFPTML pueden resolver el 

problema de la investigación de este trabajo y se abordó el enfoque de esta tesis. En la segunda 

parte de este capítulo se presentaron los objetivos (metodológicos y prácticos), y se argumentó 

el desarrollo de cada uno de ellos en el documento. En el caso de los objetivos metodológicos 

fueron evaluar la viabilidad del modelo lineal aditivo de información del subsistema con el 

enfoque NIFPTML en este problema y evaluar la solidez de la metodología NIFPTML 

utilizando un enfoque de bloques de información de subsistemas para este problema. Por su 

parte, los objetivos prácticos trazados fueron: desarrollar un modelo computacional para 

analizar la conectividad (estructura) de un metabolito en las redes de reacción metabólicas de 

un organismo de consulta, desarrollar, con técnicas de aprendizaje automático lineales y no 

lineales, una metodología de "fusión de información y teoría de la perturbación (PT) basada en 

quimioinformática" que permita relacionar cuantitativamente datos químicos y preclínicos con 

datos de redes metabólicas y crear un modelo que prediga la actividad biológica de fármacos 

antibacterianos funcionalizados con sistemas de nanopartículas utilizando el método NIFPTML. 

Basado en la importancia de las redes metabólicas en la actividad biológica de los fármacos 

antibacterianos y la escasez de estudios de modelos computacionales de las mismas. El tercer 

capítulo de esta tesis trató la temática de la comprobación de la conectividad (estructura) de los 

complejos modelos de Redes de Reacción Metabólica propuestos para nuevos microorganismos 

con propiedades prometedoras que es un objetivo importante para la biología química. En 

principio, se realizó una comprobación manual (Manual Curation en inglés). Sin embargo, esta 

es una tarea difícil debido al elevado número de combinaciones de pares de nodos (posibles 

reacciones metabólicas). En capitulo se utilizaron técnicas de Combinatoria (C), Teoría de la 

Perturbación (PT) y Aprendizaje Automático (ML), para buscar un modelo CPTML y analizar 

el conjunto de datos de MN publicado por el grupo de Barabási, que incluyó el número de nodos 

(metabolitos), enlaces de entrada-salida (reacciones metabólicas), grado de nodo, índices 

topológicos y nombres completos y códigos de más de 40 especies bacterianas. En primer lugar, 
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se cuantificó la estructura local de un conjunto muy grande de nodos en cada MN utilizando una 

nueva clase de índice de nodos denominada índices lineales de Markov. A continuación, se 

calcularon los operadores CPT para 150000 combinaciones de nodos de consulta y referencia 

de las MN. Por último, se utilizaron estos operadores CPT como entradas de diferentes 

algoritmos ML. El modelo lineal CPTML obtenido mediante el algoritmo LDA fue capaz de 

discriminar los nodos (metabolitos) con asignación correcta de reacciones de los nodos no 

correctos con valores de precisión, especificidad y sensibilidad en el rango del 85-100% tanto 

en las series de datos de entrenamiento como de validación externa. Mientras tanto, los modelos 

CPTML basados en la red bayesiana, el árbol de decisión J48 y los algoritmos Random Forest 

fueron identificados como los tres mejores modelos no lineales con una precisión superior al 

97,5%.  

Los fármacos antibacterianos (AD) modifican el estado metabólico de las bacterias, 

contribuyendo a su muerte. Sin embargo, la resistencia a los antibióticos y la aparición de cepas 

bacterianas multirresistentes aumentan el interés por comprender las mutaciones de la red 

metabólica (MN) y la interacción de la AD vs. la MN. En el cuarto capítulo de la tesis, se 

propuso una metodología de "fusión de información y teoría de la perturbación basada en 

quimioinformática" para relacionar cuantitativamente los conjuntos de datos químicos y 

preclínicos con los datos de la red metabólica. Este análisis se realizó para comprender mejor la 

interacción de las redes metabólicas previamente analizadas con los ensayos preclínicos de 

fármacos antibacterianos. El análisis incluyó una etapa de preprocesamiento de datos preclínicos 

de actividad antibacteriana. Se analizó un gran conjunto de datos de la base de datos ChEMBL. 

Después de la curación de datos, se determinó que el conjunto de datos de actividad 

antibacteriana de ChEMBL contiene los valores de > 300 parámetros (MIC, IC50, etc.) para > 

165 000 ensayos biológicos de > 50 000 compuestos frente a > 25 especies de bacterias con > 

90 cepas. Posteriormente, se aplicó la Fusión de información de fármacos antibacterianos e 

información de redes metabólicas. Se obtuvieron valores de actividad para las diferentes 

propiedades biológicas de los dos subsistemas (AD y MN). Luego se preprocesaron todos los 

valores observados con diferentes unidades, escalas, grados de incertidumbre, etc. para obtener 

funciones adimensionales que caracterizan el sistema como un todo, los casos AD vs. MN. 

Finalmente, se realizó el modelado, se obtuvo un modelo NIFPTML de la fusión de varios 

métodos quimioinformáticos. Se utilizaron operadores de promedio móvil (MA) para expresar 

perturbaciones en los ensayos y operadores multiplicadores de PT (PTO) para realizar la fusión 

de datos y la reducción de dimensiones. Se construyeron modelos de Análisis Discriminante 

Lineal (LDA, siglas en ingles de Linear Discriminant Analysis) y 17 modelos ML basados en 

el índice lineal basado en átomos para predecir los compuestos antibacterianos. El modelo 

NIFPTML-LDA presentó los siguientes resultados para el subconjunto de entrenamiento: 

especificidad (Sp) = 76,1%, sensibilidad (Sn) = 72,3% y precisión (Ac) = 74,3%. Entre los 

modelos no lineales, el k Nearest Neighbors (KNN) mostró los mejores resultados con Sn 

=99,2%, Sp=95,5%, Acc=97,4% y AUROC=0,998 para los conjuntos de entrenamiento y 

validación. En general, los modelos lineales y no lineales del NIFPTML de la fármacos 

antibacterianos frente a las redes metabólicas presentaron buenos parámetros estadísticos, y 

podrían contribuir a encontrar nuevas mutaciones metabólicas en la resistencia a los antibióticos 

y a reducir el tiempo/costes en la investigación de fármacos antibacterianos.  

Por su parte, en el quinto capítulo de la tesis, se utilizó el modelo NIIFPTML por primera vez 

para estudiar un gran conjunto de datos de sistemas DADNP putativos compuestos por> 165000 

ensayos antibacterianos de la base de datos preclínicos de ChEMBL y 300 Ensayos de NP frente 

a múltiples especies de bacterias. Se entrenaron modelos alternativos con análisis discriminante 

lineal (LDA), redes neuronales artificiales (ANN), redes bayesianas (BNN), K-vecino más 

cercano (KNN) y otros algoritmos. El modelo NIFPTML-LDA fue más simple con valores de 
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Sp ≈ 90% y Sn ≈ 74% tanto en la serie de entrenamiento (>124K casos) como en la de validación 

(>41K casos). Los modelos IFPTML-ANN y KNN son notablemente más complicados aun 

cuando están más balanceados Sn ≈ Sp ≈ 88.5% - 99.0% y AUROC ≈ 0.94 - 0.99 en ambas 

series. También se realizó una simulación (con >1900 cálculos) del comportamiento esperado 

para DADNP putativos en 72 ensayos biológicos diferentes. Los supuestos DADNP estudiados 

están formados por 27 fármacos diferentes con múltiples clases de NP y tipos de cubiertas. 

Además, se probó la validez del modelo aditivo obtenido con 80 complejos DADNP sintetizados 

experimentalmente y probados biológicamente (informados en > 45 artículos). Todos estos 

DADNPs muestran valores de MIC < 50 µg·mL-1 (punto de corte utilizado) mejores que los 

MIC de AD y NP solos (efecto sinérgico o aditivo). Los ensayos involucran complejos DADNP 

con 10 tipos de NP, 6 materiales de recubrimiento, rango de tamaño de NP de 5 a 100 nm frente 

a 15 antibióticos diferentes y 12 especies de bacterias. El modelo NIFPTML-LDA clasificó 

correctamente el 100 % (80 de 80) de los complejos DADNP como biológicamente activos. La 

estrategia aditiva NIFPMTL puede convertirse en una herramienta útil para ayudar en el diseño 

de sistemas DADNP para la terapia antibacteriana teniendo en cuenta solo la información sobre 

los componentes AD y NP por separado.  

El sexto capítulo de esta tesis doctoral y, a diferencia de los trabajos anteriores se incorporaron 

tres subsistemas MN, AD y NP. Este estudio de la interacción entre AD (ChEMBL), NP y redes 

metabólicas intentó comprender los mecanismos potenciales de cepas multirresistentes (MDR) 

con redes metabólicas perturbadas (MN). Para mapear los sistemas DADNP (AD + NP) versus 

sistemas MN de especies bacterianas patógenas se utilizó un análisis NIFPTML. En 

consecuencia, se seleccionó el algoritmo NIFPTML para buscar modelos predictivos basados 

en un conjunto de datos ChEMBL de > 160 000 ensayos AD enriquecidos con 300 NP y > 25 

ensayos MN de diferentes especies bacterianas. NIFPTML usa el proceso IF para unir los tres 

conjuntos de datos, creando un modelo NIFPTML de análisis discriminante lineal (LDA) con 

Sp ≈ 90 % y Sn ≈ 80 % y el mejor modelo de red neuronal artificial (ANN) encontrado presentó 

buenos resultados, con Sp ≈ Sn ≈ 95 % en las series de entrenamiento y validación, por lo que 

podría ser útil para el descubrimiento de sistemas DADNP. También se realizaron simulaciones 

de > 140 000 puntos de sistemas DADNP putativos contra cepas bacterianas de tipo salvaje y 

knockout (KO) generadas computacionalmente. Los modelos NIFPTML lineales y aditivos 

fueron capaces de predecir 102 casos experimentales de DADNP complejos con un alto grado 

de variedad estructural y biológica. Esto podría contribuir con la vigilancia tecnológica (en la 

mejora de los fármacos antibacterianos) hacia la aparición de cepas resistentes a múltiples 

fármacos (MDR) con redes metabólicas perturbadas. 

Finalmente, el último capítulo agrupó las conclusiones y trabajos futuros sugeridos en el tema 

de investigación. En este capítulo 7, se expusieron los principales hallazgos del trabajo realizado 

durante esta tesis doctoral. Se destacaron las vías futuras para los avances científicos y 

tecnológicos en el descubrimiento de nuevos fármacos antibacterianos, y se concluyó que 

ML/AI podría usarse para predecir la actividad de compuestos desconocidos y descubrir nuevos 

agentes antibacterianos. Los enfoques de ML/AI están abriendo cada vez más nuevas regiones 

de espacio químico para la exploración. Además, se describen otros enfoques prometedores 

como la reutilización de fármacos y la combinación de sistemas de NP antibacterianos, aunque 

existen obstáculos entre ellos y el éxito. 
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1. ANTIBIOTICS 

Paul Ehrlich, a German immunologist, found in the late 1890s that some dyes inhibited parasite 

cell multiplication but had little or no effect on human cells. This discovery resulted in the 

invention of Salvarsan, a treatment for syphilis. Ehrlich coined the term ‘magic bullets’ for 

these compounds in 1906 due to their capacity to specifically target infected host cells.1 

Alexander Fleming found in 1928 that contaminated mold produced a substance that prevented 

the cultivation of Staphylococcus aureus.2 Protonsil, a sulfonamide prodrug having 

antibacterial action, was created by Bayer in the 1930s after extensive screening.3 

Selman Waksman began a systematic examination of bacteria as producers of antibiotic 

compounds in the late 1930s in response to the discovery of penicillin and tyrocidine. Waksman 

found filamentous actinomycetales (‘actinomycetes’) as a prolific producer of antibacterial 

compounds.4 Neomycin and Streptomycin, the first antibiotics developed to combat 

tuberculosis, were among his discoveries.4, 5 Figure 1.1 shows examples of approved antibiotic 

drugs (1930-1950). 

 

Figure 1.1. Examples of approved antibiotic drugs, 1930-1950 (1-5) 

Notes: 1. Sulfanilamide, 2. Penicillin, 3. Streptomycin, 4. Chloramphenicol, 5. Tetracycline 

The aminoglycosides, Streptomycin and Neomycin, were discovered in the 1940s, followed by 

rifampicin, nitrofurans (nitrofurantoin), and glycopeptides (Vancomycin) in the 1950s, 

quinolones and lincosamides in the 1960s, and mupirocin in the 1970s. The use of these drugs 

in clinical practice resulted in a decrease in morbidity and mortality associated with bacterial 

infections. Since the prevalence of antimicrobial resistance (AMR) has increased, the majority 

of these antibiotics are still in clinical use.6 The rapid and very low-cost discovery of multiple 

classes (and variants) of natural product antibiotics resulted in their misuse. Additionally, since 

the 1970s, the antibiotic discovery pipeline has been blocked, resulting in a dearth of novel 

antibiotics in clinical trials.5, 6 See Figure 1.2, examples of approved antibiotic drugs, 1950-

1980.  
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Figure 1.2. Examples of approved antibiotic drugs, 1950-1980 (6-15) 

Notes: 6. Erythromycin, 7. Rifampicin, 8. Vancomycin, 9. Ciprofloxacin, 10. Streptogramin 

B, 11. Methicillin, 12. Ampicillin, 13. Cephamycin, 14. Nalidixic acid, 15. Gentamicin 
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In the 1980s, the final antibacterial classes were discovered.7 Due to the fact that the majority 

of new antibiotics belong to well-established classes, they are less effective in combating 

rapidly increasing resistant bacteria.8 Figure 1.3 shows examples of approved antibiotic drugs, 

1980-2000. 

 

 

 

Figure 1.3. Examples of approved antibiotic drugs, 1980-2000 (16-20) 

Notes: 16. Meropenem, 17. Ceftazidime, 18. Aztreonam, 19. Linezolid, 20. Bedaquiline 

Parallel to the drop in the discovery of antibacterial drugs (~1970s), multidrug resistance in 

bacteria was immediately recognized. Inadequate use of these drugs facilitated the 

development of resistance. For instance, penicillin was introduced in 1946 and streptomycin 

was released in 1959; however, both were commercially available in 1943.9 (See Table 1.1)  
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Table 1.1. Timeline of antibiotics, resistance, and key characteristics. 

No Family Antibiotic 

Example 

Year  CROa Mechanism of 

Action 

Activity or target 

species 

Ref. 

1 Sulfonami

des 

Sulfanilamide 1932 1942  Inhibition of 

dihydropteroate 

synthetase 

Gram-positive 

bacteria 

9 

2 β-actams Penicillin 1943 1946 Inhibition of cell 

wall biosynthesis 

Broad-spectrum 

activity 

9 

3 Aminogly

cosides 

Streptomycin 1943 1959 Binding of 30S 

ribosomal subunit  

Broad-spectrum 

activity 

9 

4 Amphenic

ols 

Chloramphenic

ol  

1947  1959 Binding of 50S 

ribosomal subunit  

Broad- spectrum 

activity  

9 

5 Tetracycli

nes 

Tetracycline 1948  1953 Binding of 30S 

ribosomal subunit  

Broad-spectrum 

activity 

9- 

6 Macrolide

s 

Erythromycin  1951 1988 Binding of 50S 

ribosomal subunit  

Broad-spectrum 

activity 

9 

7 Rifamycin

s 

Rifampicin 1958  1962 Binding of RNA 

polymerase β-

subunit  

Gram-positive 

bacteria 

10 

8 Glycopept

ides 

Vancomycin  1956 1988 Inhibition of cell 

wall biosynthesis 

(D-Ala-D-Ala 

termini of lipid II) 

Gram-positive 

bacteria 

9 

9 (Fluoro)q

uinolones  

Ciprofloxacin 1968 1968 Inhibition of DNA 

synthesis (DNA 

gyrase, and 

topoisomerase IV) 

Broad-spectrum 

activity 

10 

10 Streptogra

mins 

Streptogramin 

B 

1963  1964 Binding of 50S 

ribosomal subunit  

Gram-positive 

bacteria 

10 

11 β-lactams Methicillin  1960  1961 Inhibition of cell 

wall biosynthesis  

Gram-positive 

bacteria  

9 
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12 β-actams Ampicillin  1961  1973 Inhibition of cell 

wall biosynthesis 

Broad-spectrum 

activity 

9 

13 Cephalosp

orin 

Cephamycin  1964 1964 Inhibition of cell 

wall biosynthesis 

Gram-positive 

aerobic bacteria 

9 

14 Quinolone

s 

Nalidixic acid  1962  1962 Inhibition of DNA 

synthesis (DNA 

gyrase) 

Gram-negative 

bacteria  

11 

15 Aminogly

cosides 

Gentamicin  1963 1971 Binding of 30S 

ribosomal subunit 

Broad-spectrum 

activity 

12 

16 Carbapen

ems 

Meropenem 1985 1991 Cell wall synthesis: 

penicillin-binding 

proteins 

Broad-spectrum 

activity 

5 

17 Cephalosp

orins 

Ceftazidime  1981 1986 Inhibition of cell 

wall biosynthesis 

Broad-spectrum 

activity 

13 

18 Monobact

ams 

Aztreonam 1986 1988 Cell wall synthesis: 

penicillin-binding 

proteins 

Gram negative 

bacteria. 

14 

19 Oxazolidi

nones 

Linezolid  2000  2001 Protein synthesis: 

50S ribosomal 

subunit  

Gram-positive 

bacteria 

15 

20 Diarylqui

nolines  

Bedaquilineb 1997 2006 Inhibition of F1 

FO-ATPase  

Narrow-

spectrum 

activity 

(Mycobacterium 

tuberculosis) 

10, 16 

21 Lipopepti

des 

Daptomycin  2003 2003 Depolarization of 

cell membrane 

Gram-positive 

bacteria 

17 

22 Pleuromut

ilins 

Retapamulin c 2007  2007 Protein synthesis: 

50S ribosomal 

subunit 

Broad-spectrum 

activity 

18 

23 Macrolide

s 

Fidaxomicin 2011 2011 Inhibition of RNA 

polymerase 

Gram-positive 

bacteria 

(Clostridium 

difficile) 

19 

24 Cephalosp

orins 

Ceftaroline d 2011  2011 Inhibition of cell 

wall biosynthesis 

Broad-spectrum 

activity 

20 

25 Antimyco

bacterials 

Pretomanid e 2019 ?  Inhibition of cell 

wall biosynthesis 

Mycobacterium 

tuberculosis 

21 

Notes: a CRO = Clinical resistance observed, b Bedaquiline was approved to combined therapy 

for MDR-TB treatment; c Retapamulin (topical use only) resistance was observed in clinical 
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isolates of S. aureus without previous exposure to pleuromutilins; d Resistance due to mutations 

to the mutated PBP2a; e Pretomanid was recently released to MDR-TB treatment. This table 

was modified from 22 and from the original report of 9.  

 

Unfortunately, the development of new antibiotics has become more challenging. 

Dereplication is a problem in natural product discovery, where the same molecules are 

identified repeatedly,23 and since the “golden age”, only three new classes of antibiotics active 

against Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), 

were discovered and approved: oxazolidinones (Linezolid in 2001 and Tedizolid in 2014), 

Daptomycin in 2006 (a cyclic lipopeptide) and Fidaxomicin in 2011 (a macrocycle drug for C. 

difficile). However, a high number of analogs of existing classes and antibiotic combinations 

have reached the market.24 Figure 1.4 shows examples of more recent antibiotics. 

 

Figure 1.4. Examples of more recent antibiotics (21-25) 

Notes: 21. Daptomycin, 22. Retapamulin, 23. Fidaxomicin, 24. Ceftaroline, 25. Pretomanid. 
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2. TARGET PROTEIN FOR ANTIBIOTICS AND ANTI-BACTERIAL DRUGS 

 

Cell wall biosynthesis: The majority of bacteria rely on the development and maintenance of 

their cell walls to survive changes in osmotic pressure, which would otherwise cause the cells 

to lyse. Cell wall formation takes place in two stages: intracellular and extracellular. Penicillin 

and cephalosporin, as well as the glycopeptide antibiotic Vancomycin (VAN), all interfere with 

extracellular cross-linking steps, reducing the mechanical strength of the peptidoglycan 

layer.25,26 The mycobacterial cell wall has been recognized as a target for anti-TB drugs due to 

the critical significance of cell wall formation and assembly.27 

Cell membrane integrity: A basic requirement for bacterial cells is the integrity of the cell 

membrane as a barrier to uncontrolled ion and small molecule leaks into and out of cells. The 

lipopeptide antibiotic daptomycin (DAP) appears to work by affecting membrane integrity.26 

Furthermore, lanthionine-containing peptides like nisin, which are used as food preservatives 

to kill bacteria and inhibit spore outgrowth from spore-forming bacteria like clostridia, can 

form transient membrane pores during the membrane phase of peptidoglycan assembly by 

complexing with a peptide-glycolipid intermediate.28, 29 

Protein biosynthesis: Bacteria produce thousands of proteins during each cell generation, 

which perform a wide range of functions such as survival, growth, and division. Antibiotics 

can interfere with hundreds of stages, including the selection and activation of amino acid 

building blocks, the chaperoning of aminoacyl-tRNAs to the ribosome, peptide bond 

condensation, and chain elongation and termination steps on the ribosome. Bacterial cell death 

is caused by a disruption in protein production. The most well-known antibiotics that inhibit 

bacterial protein synthesis target either the small ribosomal subunit (tetracyclines and 

aminoglycosides) or the large subunit (tetracyclines and aminoglycosides) (Erythromycins, 

Streptogramins, and Lincosamide).26  

Many antibiotics interfere with protein synthesis, which is carried out by a macromolecular 

process known as the ribosome. The ribosome is composed of two ribonucleoprotein subunits: 

30S and 50S. Translation has four stages: start, elongation, termination, and ribosome 

recycling.30 Antibiotics (aminoglycosides like Streptomycin and Kanamycin) impede ribosome 

assembly by binding to the 30S or 50S subunits (chloramphenicol). Macrolides like 

Erythromycin stop nascent chain elongation, while peptidyl-transferase inhibitors like 

puromycin stop protein synthesis.31 For example, peptide translocation is inhibited by fusidic 

acid.32 Antibiotics commonly target the bacterial ribosome, with most clinically used 

antibiotics targeting either the decoding site on the small ribosomal subunit (30S subunit) or 

the peptidyl-transferase center on the large subunit (50S subunit).33 

Most antibiotics that target the 30S subunit decrease protein synthesis by either blocking tRNA 

binding to the ribosome or preventing tRNA transport across the ribosome during translocation. 

The majority of antibiotics that target the 50S subunit inhibit protein synthesis by either 

interfering with the binding of aminoacylated-tRNAs at the A- or P-sites or by preventing the 

nascent polypeptide chain from passing through the ribosomal tunnel. Bacterial antibiotic 

resistance mechanisms include efflux, decreased influx, drug modification and degradation, as 

well as mutation, alteration, or overexpression of the target. The bulk of ribosome-targeting 

antibiotics in clinical trials are semi-synthetic versions of naturally occurring chemicals, but 

more research will be needed to generate antibiotics that target unique ribosome locations.26 

DNA and RNA metabolism: The selective suppression of information transfer in bacterial cells’ 

macromolecular metabolism can go beyond protein production inhibition. Interfering with one 
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or more of the several processes in DNA replication or RNA transcription should also be 

bactericidal. The synthetic antibacterial fluoroquinolones, which have long been the most often 

prescribed antibiotic class, target a deconcatenation phase at the conclusion of DNA 

replication, which is carried out by the enzyme DNA gyrase. The rifamycin class of natural 

compounds bind to bacterial RNA polymerase at the active site and so prevent DNA 

transcription into RNA.34, 35 

Folate biosynthesis: Unlike the previous four examples, the fifth historically important set of 

targets for clinically useful antibiotics is not directly involved in cellular macromolecule 

biosynthesis, but is rather a pathway for constructing and recycling the coenzyme form of the 

vitamin folic acid. The tetrahydro oxidation state of folate’s pteridine ring is essential for the 

conversion of the uracil moiety in 20-dUMP to the 5-methyl (thymidine) moiety in dTMP, one 

of the four building blocks for DNA formation.26 The sulfonamide antibiotics, in continuous 

use for the past 80 years, act as competitive inhibitors for para-aminobenzoate in the maturation 

of the folate scaffold. In addition, an enzyme that functions in a crucial readjustment of the 

folate oxidation state, from dihydro to tetrahydro, is selectively inhibited by trimethoprim. For 

decades, the combination of trimethoprim and a sulfonamide was commonly used to inhibit 

bacterial DNA production. Members of each of these antibiotic groups have found application 

in certain therapeutic niches. Anderson et al.36 discuss them, as well as pharmacokinetic and 

pharmacodynamic characteristics, side effects, and limiting toxicities. 

Although good antibacterial targets are scarce in number, they are virtually uniformly 

implicated in macromolecular production pathways. The majority of them are directed at 

ribosomal RNA, stages in cell wall formation, or membranes. Only β-lactams and 

fluoroquinolones target enzymes, and each of these drugs targets at least two enzymes.37 ADs 

have targets with important bacterial functions that cannot be met by feeding them 

intermediates. Only a handful of the key antibiotic classes used in systemic monotherapy target 

important enzymes. The majority of them are directed at ribosomal RNA, stages in cell wall 

formation, or membranes. Table 1.2 shows antibacterial classes, target, and the resistance 

mechanism (including examples of clinically important resistance to antibacterial). 
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Table 1.2. Antibacterial classes, target, and resistance mechanism. 

Drug 

class 
Target 

Resistance 

type 
Resistance mechanism 

Examples clinical 

resistance 
Ref. 

β-

Lactams 

Multiple 

PBPs 

Altered PBP.  PBP 2a 
mecA en S. aureus, S. 

pneumoniae, 
33 

Enzymatic 

degradation 

Penicillinase per ambler 

class 
Gram Negative 33 

Glycopep

tides 
Lipid II 

Altered 

target 

D-alanyl D-alanine is 

changed to D-alanyl D-

lactate 

VRE (faecium and 

faecalis) 
33 

Macrolid

es 
50S RNA 

Altered 

target 

Methylation of ribosome 

active site with reduced 

binding 

erm encodes 

methylases in S. 

aureus, S. 

pneumoniae, S. 

pyogenes 

33 

Efflux 

pumps 
Mef type pumps 

S.pneumoniae, S. 

pyogenes 
33 

Oxazolid

inones 
50S RNA 

Altered 

target 

Mutation leading to 

reduced binding to active 

site 

E. faecium and S. 

aureus 
33,38 

Chloram

phenicol 
50S RNA 

Antibiotic 

inactivation/ 

Chloramphenicol acetyl 

transferase 

CAT in S. 

pneumoniae 
33,39 

Efflux 

pumps 

New membranes 

transporters 

cml A gene and flo 

gene efflux in E. coli 
33 

Streptogr

amins 
50S RNA 

Altered 

target 
ribosome methylation, HGT MLSB  40 

Lincomy

cins 
50S RNA efflux, modification HGT MLSB 40 

Tetracycl

ines 
30S RNA 

Efflux 
New membranes 

transporters 

ten gene encoding 

efflux protein in 

Gram positive, Gram 

negative 

33, 41 

Altered 

target 

Production of protein that 

bing to the ribosome and 

alter the conformation of 

the active site 

tet(M) or tet (O) in in 

Gram positive, Gram 

negative  

33, 41 

Aminogl

ycosides 
30S RNA 

Decrease 

uptake. 

Change in outer membrane 

AGE´s 

Pseudomonas, Gram 

negative 
33, 41 
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Drug 

class 
Target 

Resistance 

type 
Resistance mechanism 

Examples clinical 

resistance 
Ref. 

Enzymatic 

modification 

Fluoroqu

inolones 

Gyrase, 

Topo IV 

Altered 

targets 

Mutations leading to 

reduce binding to active 

site. Stepwise two or more 

than two target mutations, 

efflux 

Mutation in gyr A in 

enteric Gram 

Negative. bacteria 

and S. aureus 

33, 41 

Efflux Membrane’s transporters 

Mutation in gyr A and 

par C in S. 

pneumoniae. Nor-A 

in S. aureus 

33 

Polymyxi

ns 

Membrane

s 
Modification 

Modification of the lipid A 

or Kdo with 

aminoarabinose 

Gram negative 

(Salmonella enterica, 

Klebsiella 

pneumoniae, etc) 

29,42 

Sulfadru

gs 
 

Altered 

target 

Mutations of genes 

encoding DHPS 

E.coli, S.aureus, S. 

pneumoniae 
33 

Rifampic

in 

RNA 

polymeras

e 

Changes in 

rpoB at many 

sites 

Change in the β subunit of 

bacterial RNA polymerase 

Mutation β, E. coli, 

Mycobacterium 

tuberculosis 

29 

Notes: PBPs, Penicillin binding proteins; HGT, horizontal gene transfer; LPS, lipopolysaccharide. 

DHFR, Dihydrofolate reductase; DHPS, dihydropteroate synthase; HGT, horizontal gene transfer, 

AGE´s=Aminoglycosides modifying enzymes, CAT= Chloramphenicol acetyl transferase, 

MLSB=Macrolide-Lincosamide-Streptogramin B group, Kdo= 3-deoxy-D-manno-oct-2-ulosonic 

acid. Mef MFS-type transporters that confer macrolide resistance in Streptococcus pneumoniae. 

Mef and Mel in the novel efflux-mediated macrolide resistance system in S. pneumoniae and other 

gram-positive bacteria.The Cfr rRNA Methyltransferase Confers Resistance to Phenicols, 

Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A Antibiotics.40 

Tool for drug target identification and resistance mechanism prediction 

Table 1.3 shows some tools for drug target identification and the prediction of antibacterial 

resistance mechanisms. One of the main tools is the Basic Local Alignment Search Tool 

(BLAST). This tool finds local similarities between sequences, compares nucleotide or protein 

sequences to databases, and calculates statistical significance. BLAST can help you find gene 

families and infer functional and evolutionary relationships between sequences. The tool 

includes information, denoted by the letters nt for nucleotides and np for proteins. For example, 

BLASTp (protein-protein BLAST) is a protein sequence similarity search tool, which can be 

very useful in determining the structure and biological function of proteins of interest in 

antibacterial discovery.43 Another NIH tool is Genbank, which, unlike BLAST, employs record 

references rather than a similarity algorithm. This is an annotated collection of all publicly 

available DNA sequences.44 
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On the other hand, the research of the predictive genotype-to-phenotype studies based on the 

identification of AMR genes in genomes can employ various web servers such as ResFinder, 

Resfams, ARDB, or CARD. ARDB is a consolidated database of antibiotic resistance data, and 

it has proposed the idea of standardizing resistance annotation in freshly sequenced organisms 

to help find and characterize novel genes.45 ResFinder identifies acquired genes and/or finds 

chromosomal mutations mediating antimicrobial resistance in the whole or part of the DNA 

sequence of bacteria.46 Resfams is a curated database of protein families and associated profile 

hidden Markov models, confirmed for antibiotic resistance function and organized by 

ontology.47 It also analyzes the antibiotic resistance gene composition of over 6000 sequenced 

microbial genomes.  

Another database is UniProt (released in 2020), which contains over 189 million sequence 

records with >292,000 proteomes of different organisms. It includes completely sequenced 

viral, bacterial, archaeal, and eukaryotic genomes. It is available through the UniProtKB 

Proteomes portal (https://www.uniprot.org/proteomes/).48 Finally, the Comprehensive 

Antibiotic Resistance Database (CARD) (https://card.mcmaster.ca) is a curated resource 

providing reference DNA, protein sequences, detection models, and bioinformatics tools on 

the molecular basis of bacterial antimicrobial resistance (AMR). It comprises 263 significant 

pathogens in terms of computer-generated resistome predictions. Sequence variants not 

previously described in the scientific literature are included, as are prevalence figures for AMR 

genes in infections, genomes, and plasmids. The CARD also includes bioinformatic tools for 

identifying antibiotic resistance genes in whole- or partial-genome sequence data, including 

unannotated raw sequence assembly contigs. The end result is a rigorously curated database in 

a user-friendly style that assembles over 1,600 known antibiotic resistance genes, allowing 

sophisticated antibiotic resistance analysis and query in a way that will benefit the broader 

biomedical research community.49 

From previous knowledge of biological mechanisms in these databases, antibiotic resistance 

genes could be identified. Some studies have included approaches for genotyping resistance 

characteristics, including whole genome sequence building,50 as well as BLAST and genomic 

assembly51. Bradley et al.52 incorporated classification models for species identification, 

phylogenetic branch, and resistance profiling from sequence files into the Mykrobe prediction 

software tool for well-known pathogens such as M. TB and S.aureus,50,52 although they were 

not effective for novel resistance mechanisms. 
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Table 1.3. Free tools about antibiotic resistance. 

Tool Name 
a 

Type of 

tool 

Organization/Country Link Ref. 

BLAST Software/

Database 

National Center for 

Biotechnology 

Information, USA 

https://blast.ncbi.nlm.nih.g

ov/Blast.cgi 

43 

CARD Database McMaster University, 

Ontario, Canada 

https://card.mcmaster.ca/ 49 

ARDB Database Center for 

Bioinformatics and 

Computational Biology 

University of Maryland 

College Park, USA 

http://ardb.cbcb.umd.edu/ 45 

Protein 

database 

Database National Center for 

Biotechnology 

Information, USA 

https://www.ncbi.nlm.nih.g

ov/protein/ 

43 

Uniprotkb Database UniProt consortium, EU https://www.uniprot.org/he

lp/uniprotkb 

48 

ResFinder Database Center for Genomic 

Epidemiology, National 

Food Institute, 

Technical University of 

Denmark 

https://cge.cbs.dtu.dk/servi

ces/ResFinder/ 

46 

Resfams Database Dantas Lab, 

Washington University  

http://www.dantaslab.org/r

esfams 

47 

Notes: a Database. ARDB=Antibiotic Resistance Genes Database, BLAST=Basic Local Alignment 

Search Tool, CARD= Comprehensive Antibiotic Resistance Database. 

 

3. PRECLINICAL AND CLINICAL DATABASES OF ANTIBACTERIAL 

DRUGS  

3.1 General public datasets of Preclinical assays 

The construction of MLT-based models involves a training set of known compounds and a 

validation set of compounds with activity values for a specified endpoint prediction. In this 

way, research organizations typically start with a previously reported sequence of compounds 

in order to develop a model that may be used to discover new hit compounds. Publicly available 

data sets are also frequently used in MLT investigations, and various useful sources might be 

cited as examples. Table 1.4 shows a number of available compounds in each repository and 

their usefulness. ChEMBL and BindingDB are the two most popular of these datasets. 

ChEMBL is a manually curated library of bioactive molecules that contains roughly 2.1 million 

compounds with over 14,000 reported targets of action (ranging from enzymatic assays to cell 
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lines and microorganisms).53 BindingDB is a supplementary database that reports on the 

binding affinities of 1.01 million chemicals against 8,600 protein targets.54 Another intriguing 

database is AntibioticDB,55 which contains approximately 1,100 compounds currently in pre-

clinical development, clinical trials in phases I-III, clinical trials in phase 4 either awaiting 

approval or recently approved, and compounds that have been discontinued. Additionally, 

Drug Repurposing Hub is a curated and annotated collection of FDA-approved medications, 

clinical trial medications, and pre-clinical tool compounds, as well as a companion information 

resource. Finally, Zinc15 is a free virtual screening library of commercially available 

chemicals. Zinc15 has about 750 million chemicals that are commercially available (230 

million purchasable compounds in ready-to-dock and 3D formats).56  

Table 1.4. Public data sets containing information about substances and their biological 

activity are useful for training machine learning models. 

Database Compound 

Number a 

Usage Link Ref 

PubChem  111 M  Computational 

Chemistry 

https://pubchem.ncbi.nlm. 

nih.gov/  

57 

ChEMBL 2.1 M  Drug Discovery https://www.ebi.ac.uk/chembl/ 53 

BindingDB 1.01 M  Drug Discovery https://www.bindingdb.org/ 54 

DrugBank 13 K Drug Discovery https://www.drugbank.ca/ 58 

AntibioticDB 1.1 K Computational 

Chemistry 

https://www.antibioticdb.com/ 55 

Drug 

Repurposing 

Hub 

6.8 K  Drug Discovery https://clue.io/repurposing 59 

ZINC 750 M Virtual Screening https://zinc.docking.org/ 56. 

Notes: a (Reported numbers were obtained in September 2021). 

3.2 Clinical assays of antibacterial drugs. General clinical trial 

Over the last decade, a number of clinical trial (CT) registries have been established. Trial 

registration is governed by European and United States federal legislation, as well as 

international agreements (WHO).60, 61 All interventional CTs must be registered in the 

European Union (EU) and the United States (US), as required by an international consortium 

of medical journal editors.62  

Unlike scientific publications, which indicate scientific interest in a given technology, the 

number of CTs indicates how many attempts have been made to move the technology from the 

bench to the clinical phase.63 However, a comprehensive database analysis of clinical studies 

in bacterial infections has not been performed, and published information is limited. Therefore, 

we have focused on performing a brief analysis of CTs on bacterial infections to generate an 

overview of the actual number and content involving potential ADs (Section 3.2). Several 

research studies have focused on trends in CTs, including bacterial infections; nevertheless, 

findings are scarce. For example, Bliziotis et al. reviewed the clinical evidence of rifampicin 

as adjuvant therapy in treating Gram-positive infections.64 Another work associated with 

Gram-negative bacterial infections was performed by Long et al.65 They analyzed the current 

status of investigational cephalosporins in early CTs (phase I and phase II development) to 

treat these bacterial infections.65 An evaluation of CTs involving individuals with acute 

bacterial infections of the skin and skin structure was conducted to determine the efficacy and 

safety of these novel antibiotics.66, 67 On the other hand, Shepshelovich et al.68 sought to analyze 
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the consistency of reporting in systemic antibiotic therapy trials to resolve discrepancies 

between ClinicalTrials.gov entries and matched articles previously described in general 

medicine.68 Table 1.5 present a summary of free public and private databases that contain 

information about CTs. 

 

Table 1.5. Free Databases offering information about CT. 

Database a Compou

nd 

Numberb 

Country Link Re

f. 

ClinicalTrials.go

v  

>396 K USA http://clinicaltrials.gov 69 

ICTRP ~19.5 K WHO http://apps.who.int/trialsearch/D

efault.aspx/ 

70 

EudraCT >41 K European Union https://www.clinicaltrialsregiste

r.eu/ 

71 

ISRCTN >21 K UK https://www.isrctn.com/search?

q=  

72 

ANZCTR >16 K Australia/New 

Zealand 

https://www.anzctr.org.au/ 73 

JMACTR ~0.44 K Japan https://dbcentre3.jmacct.med.or.

jp/jmactr/Default_Eng.aspx/ 

74 

Notes: a Database. ICTRP= International Clinical Trials Registry Platform, 

EudraCT=European Union Drug Regulating Authorities Clinical Trials Database, ISRCTN= 

International Standard Randomised Controlled Trials Number, ANZCTR= Australia, New 

Zealand Clinical Trials Registry, JMACTR=Japan Medical Association Clinical Trials 

Register. b Compound Number. (Reported numbers were obtained in November 2021). 

 

Of the numerous databases on CTs (Table 1.5), the ClinicalTrials.gov database stands out as 

the largest one. It is provided by the US National Library of Medicine and is represented in 

more than 220 countries around the world.69 Another database of note is the WHO International 

Clinical Trials Registry Platform (ICTRP), which aggregates CT information from various 

databases and implements a uniform access mechanism to the CT data stored in them.70 In 

doing so, it attempts to address one of the difficulties of the various sources, which is the 

absence of a single comprehensive international registry of CTs. 

 

3.2.1 “ClinicalTrials.gov” and the International Clinical Trials Registry Platform” (ICTRP) 

analysis 

The comprehensive analysis of CTs involving ADs was carried out in November 2021 using 

ClinicalTrials.gov and the International Clinical Trials Registry Platform (ICTRP). They can 

be combined to provide a better picture of clinical studies employing ADs.70 The systematic 

analysis of these databases focused on the date, research type (observational versus 

interventional), the number of patients enrolled, etc. In the case of ClinicalTrials.gov, the terms 

“antibacterial” OR “anti-bacterial” were used in the search and 6,469 studies were found.  

http://clinicaltrials.gov/
http://apps.who.int/trialsearch/Default.aspx/
http://apps.who.int/trialsearch/Default.aspx/
https://www.clinicaltrialsregister.eu/
https://www.clinicaltrialsregister.eu/
https://www.isrctn.com/search?q=
https://www.isrctn.com/search?q=
https://www.anzctr.org.au/
https://dbcentre3.jmacct.med.or.jp/jmactr/Default_Eng.aspx/
https://dbcentre3.jmacct.med.or.jp/jmactr/Default_Eng.aspx/
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In parallel, a search was conducted on the International Clinical Trials Registry Platform 

(ICTRP) using the same terms. This database incorporates information from numerous national 

and international databases. The ICTRP portal site added 250 additional CTs to the final 

analysis after excluding 106 duplicated search results obtained from ClinicalTrials.gov.  

 

4. 4. AI/ML MODELS FOR ANTIBIOTIC DISCOVERY 

4.1 Background of AI/ML models. 

Antibiotic resistance in pathogens is surpassing our ability to generate new antibiotics.75 

Because of the high risk of failure, many pharmaceutical companies avoid researching novel 

antibacterial agents. Nonetheless, new medicines are desperately needed, particularly for 

resistant microorganisms.76 To cope, antibiotic discovery needs to be accelerated while 

reducing the associated costs. Computer-assisted drug discovery methods have gained ground 

in this regard. The identification of new structural classes of antibiotics by algorithmic 

prediction of molecular properties with machine learning can be a solution for the 

aforementioned difficulties.77 In this way, early in silico drug discovery can be achieved by 

exploring vast chemical spaces that are beyond the reach of current experimental approaches. 

Combining classical computational approaches with machine learning techniques is gaining 

traction in academia and industry. MLTs such as Artificial neural networks (ANNs), Support 

vector machines (SVMs), Decision trees (DTs), Ensemble predictors, and Bayesian classifiers 

could be used in cheminformatic pipelines to predict unknown drug activity and thus uncover 

new potential antibacterial drugs.78 

 

 

4.2 Machine learning techniques (MLT) 

Machine learning algorithms include classification, regression, and clustering. They can 

forecast a compound’s biological response based on its chemical description.79, 80 MLTs’ non-

linear nature enables them to identify hidden patterns in massive amounts of data that would 

otherwise go unreported. In the field of antibiotic discovery, diverse classification MLTs such 

as ANNs, DTs, Random forests (RFs), SVMs, k-nearest neighbors (kNNs), and Linear 

discriminant analysis (LDA) have been used. Figure 1.5 shows ML tools and their antibacterial 

drug discovery applications. 
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Figure 1.5. Machine learning tools and their antibacterial drug discovery applications. 

4.2.1 Artificial neural networks (ANNs) and deep learning (DL) 

ANN and DL can provide resilient solutions to difficult real-world problems without making 

any prior statistical assumptions about the probability distribution of the input data. An ANN 

is a machine learning approach that is inspired by the way biological nervous systems process 
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information, in which highly linked neurons work together to learn from incoming signals. 

ANNs are made up of an input layer of neurons connected to one or more hidden layers of 

neurons, which are then connected to an output layer.22 ANNs have the ability to generalize, 

i.e. correctly predict future (unseen) cases based on what they have previously predicted. An 

ANN’s fault tolerance allows it to handle noisy or uncertain data as well as possibly incomplete 

data. Also, neural networks are self-adaptive, meaning they can adjust to changes in data. 

Multilayer Perceptrons (MLPs) are a well-known example of a learning technique based on 

gradient descent optimization,81 MLPs are organized into three different types of layers: input, 

hidden, and output.82, 83 

This algorithm has been widely applied in antibacterial studies. For instance, Cronin et al.84 

analyzed the structure-based classification of antibacterial activity, Chersakov et al.85 applied 

inductive QSAR descriptors to distinguish compounds with antibacterial activity, and Speck-

Planche et al.86 developed an in silico model for virtual screening of potent and safe anti-

pseudomonas agents. Durrant et al.87 used ANN techniques to predict how certain antibiotics 

work against bacteria and to predict ligand-based and receptor-based binding. A neural network 

(NN) that essentially reconstructs the brain’s cellular architecture made these predictions. Then 

they used the NN to predict the activity of other possible ligands not included in the training 

set. These strategies allowed NNs to anticipate how certain antibiotics worked against bacteria, 

decreasing the need for human and animal testing, thereby lowering research costs. 

DL models are NNs that can represent progressively more complex functions by layering and 

unit layering. A network’s depth increases as the number of layers increases.88, 89 Feedforward 

neural networks with two or three layers are considered traditional (or shallow), whereas deep 

neural networks feature hundreds of layers. The primary motivation for developing deep-

learning approaches was the inability of conventional machine learning algorithms to analyze 

unstructured natural input. To discover patterns in the input, feature extractors were developed 

to convert the raw data to a suitable internal representation. Each layer of a deep-learning neural 

network improves its ability to abstractly represent incoming input. As a result, a multi-level 

abstraction was created that can be used to construct high-level concepts.90 

Deep learning is also commonly employed in drug discovery. This field has seen a lot of deep-

learning research. For example, Gawehn et al. 91 detailed current machine learning methods 

used to calculate QSAR models. These models are “shallow” because they only have one layer 

of feature modifications. The article explained a deep neural network and presented a brief 

history of deep learning. Recently, Stokes et al. 92 applied a feed-forward deep neural network 

using Morgan fingerprints as the molecular representation for Predicting New Antibiotic 

Candidates. 

 

4.2.2 Decision trees 

A decision tree is constructed based on the recurrent partitioning principle in which the function 

space is partitioned into areas that include data with comparable answer values.93 The model 

displays a flowchart-like tree structure where each internal node represents a test on a selected 

variable, branch denotes test outcomes, and each terminal (leaf) node assigns a class label. The 

differences are in the tree structure, the splitting criteria, the pruning method, and the way 

missing values are handled.94, 95 The popularity of DTs is largely due to their outcomes being 

easy to interpret, beginning with the fact that the tree structure can be quickly translated into a 

collection of ‘ifthen’ rules.93 For instance, Durant and Amaro87 remarked that the DT is an 

important MLT applied to antibacterial drug discovery. In Xue et al.’s study,96 the DT 

presented results of 94% accuracy in classifying antibacterial compounds. 
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Recently, El Zahed et al.97 reported two decision tree-based machine learning models to 

investigate molecular descriptors (MDs) governing Gram-negative permeation and efflux 

evasion. This study screened 4,500 small compounds in efflux-compromised E. coli to find 

novel Gram-negative antibiotics. This method indicated that only efflux-compromised E. coli 

may use hydrophobic and planar small compounds with low molecular stability. Similarly, 

Suay-García et al.98 employed a tree-based classification system to predict antibiotic efficacy 

against E. coli. The model is a hierarchical decision tree where a discrete index is used to 

organize compounds based on their index values. The model screened the DrugBank database 

and identified 134 antimicrobial candidates. This study indicated that DT techniques could be 

a viable alternative to standard ways for obtaining prediction models, and the use of DTs 

provides exciting novel drug candidates for further investigation as repurposed antibacterial 

treatments. 

4.2.3 Ensemble methods 

Ensemble approaches integrate numerous individual (base) predictive models to get a more 

accurate model. These base predictors are often produced by running the same algorithm with 

multiple training conditions. Different approaches can be used to combine multiple individual 

decisions, such as average values or voting procedures.99 Using an ensemble model instead of 

a single model offers many advantages. A single predictor is less accurate and less robust. 

Second, ensembles can break down a difficult task into smaller, more manageable chunks. 

Ensemble methods can also be used to analyse big datasets because the data can be divided 

into smaller subsets that are used to train different models and then blended. Furthermore, since 

an ensemble deals with multiple hypotheses at once, it reduces the danger of selecting a bad 

model.100 In drug discovery research, different ensemble methods have been employed. Among 

them are meta-algorithms that aim to combine the abilities of weak learners, such as bagging, 

boosting, voting, and stacking.  

Bagging: Bagging methods are used to reduce the variance of a base estimator (e.g., the 

decision tree) before building an ensemble from it. They are a fast and simple technique for 

improving a single model without changing the fundamental base algorithm.101 It can be 

applied with a CART implementation (SimpleCart) based on classifier trees, etc.102  

Boosting: Boosting algorithms are able to transform weak learners into strong ones. Intuitively, 

a weak learner yields little more than a random guess, while a strong learner yields almost 

perfection.101 Adaboost, LogitBoost, and MultiBoosting are three representative algorithms of 

this family of algorithms.103 These models can be built together with entropy-based classifier 

trees (DecisionStump).  

Random forests (RFs): These are a well-known ensemble technique frequently used in drug 

development.93 Each node is divided according to the best of a randomly chosen set of 

descriptors in each bootstrap sample, with each unpruned tree growing to its greatest extent. 

The prediction is made in RF regression by averaging the predictions of individual trees. An 

excellent description of RF theory can be found in the literature.104  

Gradient boosting: The basic idea behind boosting techniques is to combine several learning 

models with low predictive power to create a model with very high predictive power. Freund 

and Schapire 105 and Friedman 106 proposed the gradient descent boosting technique, which 

interprets boosting as a function estimation problem. Unlike random forests, gradient descent 

boosting creates an ensemble (usually formed of DTs) by greedily minimizing an objective 

(loss) function using gradient descent.106 Recently, Khaledian and Broschat 107 designed a good 

ensemble gradient boosting model to predict more than 6,000 putative antibacterial peptides 

(area under the curve ~0.98). 
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4.2.4 Other machine learning techniques 

Support Vector Machine (SVM): One of the most powerful supervised learning systems, the 

SVM is widely used in drug development.108 The theoretical basis of SVMs was described in 

statistical learning theory and consists of transforming a nonlinear feature space into a linear 

one by mapping the input data onto a high-dimensional feature space and fitting a linear model 

in the feature space.109 This method derives an optimal separating hyperplane from a training 

data set of n points (xi, yi), where yi belongs to class y. The SVM objective function is given by 

Eq. 1.110 

The previous model comprises the error function minimization by modifying the C parameter 

in order to increase or decrease the penalty for classification errors.111 In the last decade, the 

use of SVMs in drug discovery has been increasing. For instance, Niehaus et al.75 used SVMs 

to better predict tuberculosis antibiotic resistance. The model developed has a classification 

accuracy of 93% for predicting resistance to isoniazid, a critical first-line antibiotic for M. TB. 

Bayesian classifiers: Bayesian classifiers are MLTs that make use of probability and statistical 

information based on Bayes’ theorem. This theorem is also widely applied in the field of drug 

development.112 Specifically, a Bayesian Network (BN) is a probabilistic network that 

graphically represents variables and their conditional dependencies via a directed acyclic graph 

G=(X, P). The joint distribution probability function for a BN is given by Eq. 2 

                                                                                (2) 

where, P(xi|Y) is the empirical conditional probability of the value of variable xi in the current 

data instance given that the instance belongs to class Y. 

In Naive Bayes, a probabilistic classifier, the features (variables) representing the data are 

statistically independent.113 Its learning phase involves estimating prior and class condition 

probabilities from training data. However, if the count of a feature given a class is 0, then the 

class cannot be predicted. The generalized Laplace correction114 substitutes the zero probability 

with a tiny constant. The main advantage of Naive Bayes is its computational efficiency, as it 

simplifies the estimation problem by requiring only the probability of each attribute given the 

class, independently of the rest. This approach also performed well despite a possible breach 

of its conditional independence requirement.114 The Naive Bayesian algorithm has been used 

to determine new treatments for tuberculosis with dose-response data for both whole-cell 

antitubercular activity and Vero cell cytotoxicity.115  

Bayesian classifiers have a number of significant advantages over alternative techniques. To 

begin with, they can easily deal with missing values by averaging the values accessible for the 

corresponding feature in the training set. Second, Bayesian approaches enable the classification 

to be built by integrating prior knowledge about the domain with knowledge from other sources 

(e.g., different training data). Singh et al.Singh, Chaudhury, Liu, AbdulHameed, Tawa and 

Wallqvist 116 constructed a Bayesian classification model using structural fingerprints and 

physicochemical property descriptors. They achieved an accuracy of 84% and precision of 86% 

on an independent test set in identifying antibacterial compounds. 
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Rule-based classifiers: Different methods have been applied in the field of antibacterial drug 

discovery.117 Two examples are the PART algorithm, a decision list that builds a partial C4.5 

decision tree at each iteration and transforms the best leaf into a rule,118 and the Ripple-Down 

Rule (Ridor) learner that generates a default rule and then the exceptions to the default with the 

lowest (weighted) error rate. The exceptions are a set of rules that predict classes other than 

those chosen by the default,119 and the Fuzzy Unordered Rules Induction Algorithm (FURIA) 

is a novel fuzzy rule-based classification method introduced by Hühn and Hüllermeier.120 

Binary Logistic Regression (BLR): Also called a logit model, this is a simple classification 

method typically used to predict the probability of a dichotomous sample.121 The probability 

(P) that an observation falls into one of two categories of a dichotomous dependent variable Y 

is based on one or more independent variables {X=X1, X2, …, Xn} that can be either continuous 

or categorical. The logistic regression model has the form given in Eq. 3, where LR is the logit 

or linear predictor function that assigns the value Y=1 (active) if P(X)>0.5, or Y=0 (inactive) 

otherwise.122  

𝑃(𝑋) =
1

1+𝑒(𝐿𝑅(𝑋))                              (3) 

Applications of these approaches can be extensively found in the prediction of antibacterial 

compounds.123 

K-Nearest Neighbors (kNNs): An instance-based learning classifier was developed using the 

Euclidean distance function. This algorithm is based on estimating the probability densities by 

finding k vectors that are closest to an unclassified vector according to a distance measure.124 

Therefore, the unlabelled vector is predicted as the modal class of the retrieved training 

vectors.125 This method has been applied to the prediction of antibacterial compounds. Xue et 

al.96 and Ding et al.126 developed a similarity-based algorithm akin to Nearest Neighbors to 

learn and predict new targets (proteins), drugs, and target-drug interactions. First, drug and 

target spaces were projected onto two low-dimensional regions. Then, we estimated the drug–

target interactions in low-dimensional spaces. This was inefficient because it used three 

matrices with random values. 

4.3 Model validation metrics and applications  

Internal validation: The main procedures include 5- or 10-fold cross-validation. 

10-fold cross-validation: The original data set is randomly split into 10 equally sized subsets 

(folds); each subset contains approximately the correct proportion of the class values. 

Afterward, 9 out of 10 subsets are used to train the given model, whereas the remaining subset 

(left out) is used for testing. This process is repeated 10 times until each subset is left out once. 

The 10 evaluation results are then averaged to produce a single classification quality outcome. 

5-fold cross-validation: Repeat the same procedure for a total of just 5 times. 

External validations: The classification quality of models overtraining and test data sets were 

assessed through statistical parameters from Medicinal Chemistry literature, such as Accuracy 

(Acc), Matthews’ correlation coefficient (MCC), Sensitivity (Sn), Specificity (Sp), negative 

predictive value (also called sensitivity of negatives), the false positive rate (or false alarm 

rate), and Area Under the Curve (AUC).121, 127 Table 1.6 shows the computational metrics that 

are widely used in the literature to assess the accuracy of classification studies. 

Table 1.6. Classification performance evaluation in the case of 2×2 confusion matrix. 

Metric Formula Reference 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 121, 128 
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MCC 
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 ∗ 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)
 121, 128 

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 121, 128 

Sensitivity 

(Recall) 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 128, 129 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 121, 129 

F1 Score 
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
 

130, 131 

AUC The area under the ROC curve 130, 131 

Notes: TP: True positive, TN: True negative, FP: False positive, FN: False negative 

 

5. ANTIBACTERIAL DRUG DISCOVERY USING MACHINE LEARNING  

5.1 A brief background of ML in AD research 

Several overviews of ML in the antibacterial field have been published as a result of the rapid 

expansion of ML applications in medicinal chemistry. Macesic et al.132 examined the current 

literature on machine learning for exploring antimicrobial resistance (AMR). ML has been 

utilized to predict antimicrobial susceptibility genotypes/phenotypes, design AMR clinical DT, 

uncover novel antimicrobial agents, and optimize antimicrobial therapy. Nourani et al.133 

evaluated computational approaches for predicting pathogen-host protein-protein interactions 

in molecular biology topics. Computational approaches generally make use of sequence data, 

protein structure, and known interactions. When there are enough known interactions to use as 

training data, classic IA/ML approaches are used. It is a text that adds information on the usage 

of various ML methods to predict pathogen-host protein-protein interactions. The problem of 

drug discovery, on the other hand, has was addressed in the paper entitled “Machine-learning 

techniques applied to antibacterial drug discovery”, where Durrant et al.87 proposed that 

computer-aided drug discovery could uncover novel antibiotics more quickly and cheaply, 

resulting in higher hit rates and faster preclinical and clinical testing times. They demonstrated 

how NNs and DTs have been used to identify antibiotics that have been tested in laboratories.87 

Most of the overviews concerning ML are based on its applications and explore it from a 

cheminformatic, medical, or biological perspective.  

Recently, Serafim et al.22 suggested that ANNs, DTs, and RFs are more commonly utilized in 

predictive model creation than traditional classification and regression methods. These MLTs 

can use whole-genome sequencing data to explore and discover new resistance mechanisms in 

bacteria populations, ultimately assisting in the prioritization and discovery of molecular 

targets.22 As a result, Ivanenkov et al.134 emphasized the urgent need for novel antibiotics, 

particularly for resistant microorganisms. They created an in silico model capable of 

identifying several compounds that can exert antibacterial activity on E. coli among 140,000 

chemicals.134 Stokes et al. 92 used a trained deep neural network to predict antibiotic efficacy 

in molecules that are structurally different from known antibiotics, such as Halicin, which is 

effective in mice against broad-spectrum bacterial infections.92 

5.2 Examples of the application of ML in antibacterial studies 
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ML has been used in the development of antibacterial active drugs in a variety of research 

projects published during the last decade. Below are a few significant examples. Table 1.7 

summarizes ML approaches to modelling antibacterial activity from the literature. 

One of the first examples of the use of ML or statistical modelling to predict antimicrobial 

activity was published by Garcia-Domenech et al.135. These researchers realized a study of 

pattern recognition to detect microbiological activity in a group of heterogeneous compounds. 

The structural descriptors utilized were topological connectivity indexes, while the 

methodologies were linear discriminant analysis and artificial neural networks (nonlinear 

analysis). Although both methods can distinguish between active and inactive chemicals, the 

artificial neural network outperformed the linear discriminant analysis, with a prediction 

success rate of 98% vs. 92%. To distinguish between active and inactive compounds in 

antibacterial drugs, Tomas-Vert et al. suggested a new topological technique. This method uses 

neural networks with training algorithms and several artificial intelligence concepts and 

methods with topological descriptors. After the training, the network’s data can be interpreted 

using QSAR.136 

At a similar time, Mishra et al.137 reported the use of discriminant functions of antibacterial 

activity based on physicochemical and topological parameters. They tried to find a discriminant 

function for antibacterial activity by combining semiempirical (quantum chemical) 

computations and topological indices. It appears that one of the maxima and minima vibrational 

frequencies is involved in antibacterial action.137 Subsequently, Cronin et al. 84 devised a simple 

QSAR for antibacterial activity classification and prediction. In this study, 661 compounds 

were classified using linear discriminant and binary logistic regression. In the same group, 3D 

Molecular Descriptors (MD) were used to classify antibacterial and nonantibacterial activity.123 

A set of 661 organic molecules was modelled by utilizing hydrophobicity (log Kow) and AM1-

level MD expressing geometric, electrostatic, nucleophilic, and electrophilic properties. LDA 

and BLR achieved an overall categorization rate of roughly 90%. 

Mut-Ronda et al.138 used molecular topology to classify antibacterial chemicals (quinolones). 

They employed high-accuracy connection functions and discriminant equations (>90%). In the 

same year, topological approaches were used to classify 972 antibacterial and non-antibacterial 

medicines and identify new prospective antibacterial agents.139 They use pharmacological 

distribution diagrams to visualize the selection of new antibacterial drugs. This group also 

added an MLP or ANN model and pharmacological distribution diagrams.140 The results 

validated the topological descriptors’ discriminative capacity. The application of LDA and 

MLP in a guided search and selection of novel antibacterial structures was highly successful in 

in vitro activity and toxicity testing. 

Molina et al.141 reported on the application of Topological Substructural Molecular Design 

(TOPS-MODE) to classify antibacterial drugs using computer-aided molecular design. The 

LDA model obtained a 91% global classification of ‘good’. Another approach to the discovery 

of antibacterials was proposed by González-Díaz et al.142. They included the Markovian 

chemical in silico design (MARCH-INSIDE) descriptors (2.5D indices). A basic stochastic 

approach to the idea of electronegativity equalization (Sanderson’s principle) was employed to 

train the classification model. In training sets, the 2.5D-QSAR model correctly distinguished 

between antibacterial and non-antibacterial chemicals (accuracy ~93%). The antibacterial 

activity of the novel compound 2-bromo-3-(furan-2-yl)-3-oxo-propionamide against 

Pseudomonas aeruginosa ATCC 27853 and E. coli ATCC 27853 was discovered.142 Similarly, 

Marrero-Ponce et al.143 introduced the Topological Molecular Computer Design 

(TOMOCOMD-CARDD) for the classification and design of antibacterial drugs using 

computer-aided molecular design. This study employed a complete data set of 1,006 
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antibacterial drugs to simulate antibacterial activity. The models (non-stochastic and stochastic 

indices) accurately categorized over 90% of 1525 compounds in the training sets. In external 

test sets, these models correctly classified 92.8% and 89.3% of 505 compounds, respectively. 

In general, these approaches have become a useful tool for the in silico discovery of 

antibacterial agents.143 

Chersakov et al.85 described linear and non-linear modelling inductive descriptors for 

antibacterial chemicals. No linear models were created using ANNs. Non-linear ML algorithms 

separate substances with and without antibacterial activity 93% of the time (in a set of 657 

structurally heterogeneous compounds including 249 antibiotics and 408 general drugs). 144 

used kNNs to classify compounds, comparing them using the Minkowski distance L (p). The 

data collection contained 4,346 chemicals (including 520 antibiotics, 562 bacterial metabolites, 

958 drugs, 1,202 drug-like compounds, and an additional 1,104 human metabolites). They 

found that kNN ML outperformed linear models (LDA, MLR) and was comparable to the ANN 

methods. Xue et al.96 reported SVM, k-NN, and C4.5 DT algorithms to predict antibiotic 

chemicals (230 antibacterial and 381 nonantibacterial compounds). SVM had the highest 

prediction accuracy for ADs at 96.66%, 98.15%, and 99.50%, 98.02% for nonantibacterial 

compounds, respectively. 

From the work of Speck-Planche et al.145 comes the application of multispecies models in the 

antibacterial field. These models have emerged recently; however, some of them predict 

biological activity only for the same genus or within a subgroup of bacteria (21-25 and 27-34 

models). The unified multitasking (Mtk) QSAR model was used to predict both anti-

streptococci action and toxicity in biological models such as Mus musculus and Rattus 

norvegicus. With over 11,500 instances in the database, the Mtk-QSAR ANN model is a 

promising method for virtually screening strong and safe anti-streptococci drugs. The same 

researchers presented a multitasking model (Mtk-QSBER) for the simultaneous prediction of 

anti-tuberculosis activity and toxicological profiles of medicines.146 The Mtk-QSBER LDA 

model classified more than 90% of the cases in the total database (almost 12,000 cases), making 

it an extremely powerful tool for computer-assisted drug screening. Additionally, it was 

utilized to determine the ADMET (absorption, distribution, metabolism, elimination, and 

toxicity) properties of pharmaceuticals and/or chemicals under a variety of experimental 

conditions.147 The LDA model, which was developed using about 37,800 samples of data, 

achieved an overall accuracy of more than 95% in both the training and prediction (validation) 

sets. The Mtk-QSBER model was used to predict avarofloxacin (AVX) properties under 260 

different experimental conditions. The results confirmed AVX’s extraordinary anti-E. coli 

activity and safety. According to these studies, the Mtk-QSBER model is a viable 

computational technique for the virtual screening of anti-bacterial drugs that might be extended 

to safer pharmaceuticals with defined pharmacological activity. 

Wang et al.148 suggested using in silico ML models to discover new agents active against 

methicillin-resistant S. aureus (MRSA) based on 5,451 cell-based anti-MRSA assay data. They 

developed four machine learning methods (Naïve Bayesian, SVM, Recursive Partitioning 

(RP), and k-NN). The overall predictive accuracies of models exceeded 80% for both training 

and test sets. The best model was used for virtual MRSA screening, confirming 12 new anti-

MRSA agents (MIC values ranging from 4 to 64 mg L-1). However, no evidence was shown 

concerning cytotoxicity to eukaryotic cells. 

Speck-Planche et al.86 developed an Mtk-QSBER model to predict anti-Pseudomonas and 

ADMET properties of organic compounds. The Mtk-QSBER model, which was created using 

a large and diverse dataset (around 54,000 cases), achieved greater than 90% accuracy in both 

the training and prediction sets. The researchers demonstrated the applicability of the Mtk-
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QSBER model using the experimental drug delafloxacin. The predictions for numerous 

biological effects of this drug were extremely similar to the experimental results. In another 

work, Speck-Planche et al. 86 developed an Mtk-QSBER model to forecast antibacterial activity 

and ADMET properties against microorganisms associated with neglected diseases, 

specifically noma. The Mtk-QSBER model was developed by utilizing a large and diverse 

chemical dataset (30,181 pairs) and has an Acc of more than 90% in both the training and 

prediction sets. The experimental results for the antibacterial medicine delafloxacin converged 

with the model’s various features. This was the first model that emphasized the search for 

virtual anti-noma agents. Castillo-Garit et al.149 presented a classification study of 2,230 drugs 

(1,006 with antibacterial activity) based on TOMOCOMD-CARDD descriptors. The non-

stochastic and stochastic bilinear indices were 86.3% and 83.6%, respectively. 

Antimicrobial Peptide discovery and virtual screening were conducted using the Mtk approach. 

Kleandrova et al.150 focused on the simultaneous prediction of antibacterial and cytotoxic 

peptides. This work classified/predicted peptides using 3,592 examples and achieved 96% 

accuracy in both the training and prediction (test) sets. The alanine scanning method was used 

to calculate the quantitative contributions of amino acids to the biological effects of a specific 

peptide (at their respective sequence positions). They used the Mtk-computational model to 

generate a small library of ten peptides. All of the peptides were anticipated to possess a broad 

range of antibacterial and anti-cytotoxic activities.150 Moreover, Speck-Planche et al.151 

discussed studies on antibacterial peptides. They developed a multitarget chemo-bioinformatic 

model for predicting peptide antibacterial activity against a variety of Gram-positive bacterial 

strains. The model was constructed by comparing 2,488 AMP sequences to 50 Gram-positive 

bacterial strains. Both the training and prediction (test) sets of this mt-chemo-bioinformatic 

model correctly classified over 90% of the samples.151 

Masalha, et al.152 composed a study with the goal of indexing natural products in order to 

facilitate the discovery of less expensive antibacterial therapeutic drugs. They made use of the 

iterative stochastic elimination algorithm to build a model of the 628 antibacterial drugs and 

2,892 natural products. The AUC was 0.957, demonstrating a discriminative and robust 

prediction model. To achieve this 72% enrichment factor, the study used a virtual screening 

method that included both active and inactive compounds. The proposed indexing 

methodology identified ten natural compounds as promising antibacterial medication 

candidates. According to PubMed searches, two of the ten compounds (caffeine and ricinine) 

have antibacterial action. The other eight phytochemicals are still being tested. The proposed 

prediction model’s efficiency and speed could be used to virtually screen vast chemical 

databases for AD candidates.152 

Recently, a remarkable usage of ML in antibacterial activity against E. coli was published by 
Ivanenkov et al.134 They used an in silico approach to locate compounds with antibacterial 

activity in a large dataset of over 140,000 molecules. They also tested six in silico approaches, 

including kNN, SVM, and RF. The Kohonen Self-Organizing Maps (SOM) showed the 

strongest prediction power (~75.5%). Experiments with selected chemicals have shown high 

effectiveness against E. coli. Additionally, the CC50 values against eukaryotic cell lines were 

calculated in order to estimate the selectivity index for the most promising drugs.134 

Nocedo-Mena et al. 153 developed the first NIFPTML model for antibacterial activity modeling 

by combining perturbation theory, machine learning, and information fusion approaches. They 

employed preclinical antimicrobial activity assays from the ChEMBL database and Metabolic 

Networks (MNs) developed by the Barabási’s group. The training set comprised 83,605 

instances of more than 25 different bacterial species. In training/validation series, the best linear 

model obtained had an Sp of ~90.3% and an Sn of ~88.1%.153 
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Table 1.7. Chemoinformatic approaches for the development of novel antibacterial 

compounds. 

ma Cmpd. 

Typea 
nb nAct. 

Var.
b 

Tech.c 
Acc 

(%) d 

MultiSpe

ciese 

Drug 

Famil

yf 

MOg 
Val

.h 

Ref

. 

1 HSC 111 60 7 LDA 94.0 No 3 No i 135 

2 HSC 111 60 7 ANN 89.0 No 3 No i 135 

3 HSC 664 249 62 ANN 94.8 No 8 No i 136 

4 HSC 59 24 17 LDA 85 No 3 No i 137 

5 HSC 661 249 6 LDA 92.6 No 8 No ii 84 

6 HSC 661 249 6 BLR 94.7 No 8 No ii 84 

7 HSC 661 249 62 ANN - No 8 No iii 84 

8 HSC 661 249 3 LDA 90.1 No 8 No ii 123 

9 HSC 661 249 3 BLR 92.1 No 8 No ii 123 

10 HSC 294  8 LDA > 90 No - No i 138 

11 HSC 972 241 8 LDA 86.8 No > 5 No i 139 

12 HSC 433 217 2 LDA ~ 85 No - No i 140 

13 HSC 351 213 7 LDA 91.0 No 9 No i 141 

14 HSC 657 249 34 ANN 92.9 No 8 No i 85 

15 HSC 667 363 7 LDA 92.9 No 8 No i 142 

16 HSC 2030 1006 8 LDA 90.4 No 8 No i 143 

17 HSC 4346 520 62 kNN 95 No 8 No i 144 

18 HSC 611 230 36 SVM 100 No 8 No i 96 

19 HSC 611 230 36 kNN 97.7 No 8 No i 96 

20 HSC 611 230 36 DT 98.6 No 8 No i 96 

21 HSC 
1157

6 
4208 4 ANN 97.0 St >10 Yes i 145 

22 ATD 
1209

6 
5437 4 LDA 90.0 Myc >10 Yes i 146 

23 HSC 7517 2066 21 kNN 99.3 MRSA >10 Yes i 148 

24 HSC 7517 2066 21 SVM 92.9 MRSA >10 Yes i 148 

25 HSC 
3783

4 
13203 5 LDA 95.0 No >10 Yes i 147 

26 HSC 2230 1051 3 LDA 
86.3

1 
No >10 No i 149 

27 HSC 
3018

1 
12474 6 LDA 90.0 FN/PI >10 Yes i 86 

28 HSC 
5468

2 
19912 6 ANN 90.0 PA >10 Yes i 86 

29 
Peptid

e 
3592 1404 4 LDA 96.0 MBS >10 Yes i 150 

30 
Peptid

e 
2488 922 6 LDA 90.0 G+ >10 Yes i 151 

31 HSC 3500 628 4 ISE 94.6 MBS >10 Yes i 152 

32 HSC 
7456

7 
8724 6 SOM 75.5 EC >10 Yes i 134 

33 HSC 
8360

5 
10030 6 LDA 88.6 MBS >10 Yes i 153 

34 HSC 2335 1760 - MPNN 89.6 E. coli >10 Yes i 92 

Notes. a Cmpd Type: Compound type. HSC = Heterogeneous Series of compounds, anti-TB drug = 

antituberculosis drugs. b n: Total number of cases in training and/or validation series, nAct: active cases 

and Var. = Variables in the model. c Technique: LDA = Linear discriminant analysis, ANN= artificial 
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neural network, BLR=Binary logistic regression, BN=Bayesian Network, DT=Decision tree, 

ISE=Iterative stochastic elimination, SOM=Self-organizing map (Kohonen), MPNN=Message Passing 

Neural Network, RF=Random Forest., KNN=K-Nearest-Neighbor. d Acc(%): Accuracy of training 

series. e Multi Species: Multiple bacterial strain (MBS), St=Streptococcus spp, Myc=Mycobacterium 

spp, EC=Escherichia coli, FN=Fusobacterium necrophorum, PI=Prevotella intermedia, 

PA=Pseudomonas aeruginosa, MRSA=Methicillin-resistant Staphylococcus aureus. G+=Gram + 

bacteria. f Drug Family: Only largely represented families were considered. gMO = Multi Output: multi-

output models are those able to predict more than one type of biological activity (MIC, IC50, MBC, etc.). 
h Val. =Validation methods: i) external validation series, ii) leave-30%-out cross validation, and iii) 100-

times-averaged re-substitution technique. Furthermore, note that methods ii and iii are cross-validation 

methods. 

Deep-learning algorithms are revolutionizing fields such as antibiotic discovery. As stated 

previously, deep neural networks are beneficial for automatically generating higher-order 

functions for ML models. Given the issues with microbial resistance and the limitations in 

antibacterial biological activity research, it is surprising that they have not yet been widely used 

for modeling antibacterial activity. Nonetheless, Stokes et al. 92 discovered one drug (Halicin) 

with bactericidal efficacy against a broad phylogenetic spectrum of pathogens, including M. 

TB and Carbapenem-resistant Enterobacteriaceae. The drug also treated C. difficile and A. 

baumannii infections in mice. Indeed, it is the first antibiotic found by AI. This study shows 

how DL may be used to discover new ADs with specific structural features. 

Finally, we can recognize that the application of MLTs may be effective for dealing with 

nonlinear data, perceiving patterns, and providing predictions that traditional classification or 

regression algorithms are unable to. MLT could, in some situations, perform better than other 

methods or adopt a new strategy for exploring other spaces in comparison with conventional 

methods. 

In summary, of the techniques applied, LDA stands out; it was used by 17 out of 24 studies of 

those reported in Table 1.7. Among the non-linear techniques, ANN stands out and appears in 

Models 2,135 3,136 7,84 14,85 21,145 and 28.86 These were the most popular ML methods used for 

antibacterial activity prediction. In contrast, few studies successfully implemented other in 

silico techniques, for example BLR,84, 123 SVM,96, 148 kNN,96, 144, 148 DT,96 and Iterative 

Stochastic Elimination (ISE).152 Meanwhile, powerful and high-performance MLTs that had 

not been applied to antibacterial before were introduced: Kohonen-based SOM134 and Message 

Passing Neural Network (MPNN),92 respectively. 
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1. BACKGROUND 

 

1.1 Practical problem 

In the last decade, the overuse of broad-spectrum antibiotics has greatly increased bacterial 

resistance to conventional antibiotics.1 This has required scientists to find rapid, accessible, and 

inexpensive methods to discover new drugs and molecular targets against infectious 

microorganisms. Literature reports published from 2002 to date on NP-functionalized AD 

systems collected show that among the types of nanoparticles used, metallic ones (Au, Ag, Zn 

and Cu) stand out. Other NPs, such as metal oxides (CuO, ZnO, and Fe3O4), salts (AgNO3 and 

MoS2), and other materials (Bi2Te3), are also shown. AgNPs are the most frequent in the studies 

consulted and the spherical shape is the most common, and the size of the NP ranges from 

1.86-180 nm. The antibacterial drugs used are from several families, where β-lactams, and 

aminoglycosides, respectively, stand out. These families of antibiotics have broad-spectrum 

activity and are very frequent in the treatment of bacterial infections. The case of the former 

includes three subclasses: carbapenems (Imipenem and Meropenem), cephalosporins 

(Ceftazidime, Cefotaxime, and Cefuroxime), and penicillins (Ampicillin). In the latter, 

aminoglycosides (Gentamicin, Kanamycin, and Tobramycin) are those used for DADNP, 

which are also widely used antibiotics. Other families are fluoroquinolones (Ofloxacin and 

Ciprofloxacin), antimycobacterials (Rifampicin), amphenicols (Chloramphenicol), 

glycopeptides (Vancomycin), polypeptides (Polymyxin B), and tetracycline (Tetracycline and 

Tigecycline). Different strains of various microorganisms were used, such as S. aureus, P. 

Aeruginosa, E. Faecium, E. Coli, E. faecalis, S. epidermidis, B. subtilis, A. Baumannii, S. 

enterica serovar Typhimurium, S. mutans, E. faecium, M. luteus, and K. pneumoniae. Many of 

the strains are drug-resistant, e.g., MRSA, MDR and VRE, which shows that DADNP systems 

have been focused on the search for growth inhibitors of pathogens of great interest in the field 

of bacterial infections. Some researchers have shown that the potentiating effect is higher in 

antibiotic-resistant strains than in antibiotic-sensitive strains,2, 3 which makes DADNPs able to 

positively influence multi-resistant strains. This is because NPs can affect cell-membrane and 

cell-wall integrity, favoring antibiotic action and leading to a “restored” susceptibility for some 

antibiotic-resistant strains. 

Dual Nanoparticles and antibacterial drugs or NP-functionalized drugs have the intrinsic ability 

to penetrate bacterial cell membrane barriers and reach specific sites with a higher level of 

precision and stability than free antibiotic molecules.4 Many of these combinations have 

exerted synergistic or additive effects compared to the use of antibiotics in their molecular 

forms, which may contribute to tackling many resistant bacteria and supporting treatments in 

clinical infections.5 Most studies present synergistic or additive effects, as opposed to drug and 

nanoparticle used independently. This means that DADNP systems can increase the efficacy 

and speed of bacterial death.5 As mentioned by Zaidi et al.6, NP-conjugated ADs deliver 

antibiotics to specific areas through a variety of antibacterial mechanisms. For example, the 

interaction between AgNPs and different antibiotics promotes an increase in the release of Ag 

ions, which concomitantly enhances bacterial growth inhibition.7 On the other hand, some 

nanoparticles in combination treatments can depolarize the cell membrane, affecting 

permeability and allowing the antibiotics (e.g., KAN and CLO) to reach the ribosomes inside 

the cell and increase their antibacterial activity, which generates a synergistic or additive effect, 

compared to the drug and NP alone.2, 8 Another advantage of DADNP systems is that they have 

high adjustability and a wide range of adaptability to cope with various scenarios, such as 

persister cells in macrophages and biofilm infections, and this integration could be a cost-

effective solution. In that sense, the integrated design of nanoantibiotic systems can be 
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endowed with a variety of functionalities, for instance targeting capabilities, enhanced 

penetration and uptake, modification of the infectious microenvironment, and combination 

with other treatment techniques. Consequently, there is great potential for nanomaterials to 

demonstrate their ability to improve the therapeutic efficacy of antibiotics.9 When it comes to 

treating drug-resistant bacteria that produce numerous antibacterial mechanisms, NPs 

outperform the effects of single or multiple medications. 

An improvement in antibacterial activity due to NP-AD combinations is expected which would 

allow the use of antibiotics that have fallen into disuse due to bacterial resistance problems, 

thus providing additional treatment possibilities in the healthcare, veterinary and agricultural 

sectors. Therefore, nanoantibiotics have a potential impact on social and economic issues, as 

they can help mitigate the current crisis due to antibiotic resistance. In another hand, all the AD 

alone, the NP, or the DADNP system have to interact with the microorganism. In this regard, 

understanding the metabolism of pathogens plays an important role. Metabolic networks are 

represented by the set of metabolic pathways, which in turn are a series of biochemical 

reactions in which the product (output) of one reaction serves as a substrate (input) for another 

reaction.10 In this sense, some studies by Barabási's group have demonstrated the influence of 

changes in Metabolic Networks (MNs) on the survivability of different microorganisms.11 

 

1.2 The methodological problem 

The DADNP could be considered as complex systems. The study of complex systems in chemo 

informatics has been addressed by Herrera et al.12, which developed a methodology to analyze 

a complex system that included chemical and pre-clinical data with epidemiological data, to 

carry out "pharmaco-epidemiological" predictions of AIDS prevalence in US counties, taking 

into account the social determinants and structure-activity relationship of anti-HIV compounds 

in pre-clinical trials. Another example is Santana et al.13 In this work, a working dataset of 

preclinical trials of vitamin release and cancer cotherapy drugs that included anticancer 

compounds and vitamins, or vitamin derivatives was analyzed. The trials considered multiple 

continuous variables (descriptors) and categorical variables (assay conditions for drugs, 

vitamins, and NPs) with varied assay cell organisms and other conditions.  

From the perspective of computational modeling, the case study addressed by this thesis can 

be analyzed as a complex system. The incorporation of several systems with different 

conditions can be analyzed as an ML problem in discovering new ADs, with NP and MN 

applications of metabolic pathways at the same time. There are public databases such as 

ChEMBL with thousands of reports of preclinical assays of potential ADs.14-18, a growing 

number of experimental reports of NPs with antibacterial action, and a previous report of 

consensus MNs for multiple pathogenic bacteria by Jeong et al. 11, but most of the AD 19-23and 

NP.24-30 ML models are not multi-labeled. This forms a complex system AD + NP + COAT + 

PROT + MN + EPIDEMIOL NET. It could be analyzed as a whole or in parts (subsystem 

information additive model). These parts can be added gradually to see the robustness of the 

technique (block-wise approach). To perform the analysis as a whole there is not enough data. 

In the case of piecewise analysis, some parts have too much data and others too little. Therefore, 

as a solution to the problem, they can be decomposed into parts or sub-systems. 

1.3 The solution to the methodological problem for other complex biomolecular systems 
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In order to solve this problem González-Díaz et al. created the NIFPTML strategy. NIFPTML 

is a multi-output, input-coded multi-label machine learning technique, to address this type of 

challenge. Networks Invariants (NI) + Information Fusion (IF) + Perturbation Theory (PT) + 

Machine Learning (ML) is the acronym for the NIFPTML algorithm. In the first phase of the 

NIFPTML algorithm we can use Complex network theory to study of biomolecular systems 

(drugs, protein, metabolic networks, etc.). Networks can be represented as graphs through sets 

of nodes and axes. An example is the molecular graph where the nodes and axes correspond to 

the atoms and chemical bonds of a drug molecule. Another example is the network of a protein 

where the nodes are amino acids and the axes the sequence and/or interaction/spatial proximity 

between the amino acids. Numerical parameters called Network Invariants (NI) can be 

extracted from these networks are used to quantify the structure of these systems. These 

parameters or numerical indices of networks or Networks (N) can be correlated with the 

biological properties of said systems by means of Artificial Intelligence (AI) and/or Automatic 

Learning or Machine Learning (ML) techniques.  

On the other hand, in many problems of interest it is necessary to merge information about 

several of these systems at the same time. Techniques for Information Fusion (IF) from various 

sources allow obtaining an enriched data set. The Perturbation Theory (PT) operators allow to 

quantify the disturbances/deviations in the structural variables with respect to the expected 

values for different subsets of categorical variables. Finally, AI/ML methods make it possible 

to find predictive models for the biological properties of systems (drugs, proteins, etc.). 

Therefore, in this thesis we propose to use the NIFPTML strategy to study problems that 

involve one or more than one of these systems at the same time. This NIFPTML strategy 

combines all the phases mentioned above (NI + IF + PT + AI/ML). The first phase uses 

complex networks numerical parameters of networks or networks (N) to quantify the structure 

of the systems, the IF phase merges data from multiple systems from different sources, the PT 

phase processes the information, and the AI/ ML finds the predictive model. In the thesis we 

apply the NIFPTML strategy to several complex problems with different systems (drug, 

protein, metabolic network, nanoparticles, coating agents).  

The additive NIFPTML approach is compatible with this type of analysis (AD + MN + NP + 

COAT). It allows working with multiple outputs, multi-conditions can be treated, and several 

problems or partial studies can be performed with the NIFPTML approach. In that sense, the 

available information calculated in previous studies of AD, NP, and MN mutant strain systems, 

to enhance the discovery of AD, NP, and MN applications of metabolic pathways, at the same 

time. In addition, the NIFPTML approach can test the reuse of known drugs as AD and/or co-

therapy with different NPs and simulate DADNP activity on different bacteria (or MN).  

 

1.4 Previous NIFPTML models for similar problems 

Previously have been reported many works including different steps of the NIFPTML strategy. 

Da Costa et al.31, for example, used the NIFPTML method to predict drug-protein interactions 

(DPIs) for dopamine pathway target proteins, including only the PT + ML phases. They used 

the linear and models trained with multiple nonlinear methods (artificial neural networks 

(ANN), Random Forest, Deep Learning, etc.). Munteanu developed multiple models using the 

NIPTML strategy including the NI + PT + ML but the IF phase is missing (Ph.D. Cristian 

Robert Munteanu, UDC, 2013).  for drug and molecular target discovery using computer 

engineering classification techniques and artificial intelligence.32 Similarly, new dual-function 
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multi-QSAR models have been generated for the prediction of drugs and their molecular targets 

from Topological Indices, for the search of new neuroprotective drugs useful in the treatment 

of Parkinson's and Alzheimer's diseases and/or new molecular targets for drugs (Ph.D. Manuel 

Quintín Escobar Cubiella, USC, 2012).33 

In another example, the doctoral thesis (Ph.D. Diana Herrera Ibatá, UDC, 2015) developed 

models with NIFPTML strategy including all the phases NI + IF + PT + ML. These NIFPTML 

models employed various Artificial Intelligence (AI) techniques to study the HIV problem, 

which allowed quantitatively relating chemical and pre-clinical data with epidemiological data, 

to carry out "pharmaco-epidemiological" predictions.12 For instance, Santana et al. used a 

NIFPTML strategy including only the IFPTML phases, but the NI phase is not present. He 

analyzed >970,000 cases with the data of preclinical assays of new cancer cotherapy drug-

vitamin release nanosystems, vitamins, and anticancer compounds from the ChEMBL 

database.13  

 

1.5 Previous NIFPTML models for the present problem 

Some NIFPTML computational approaches have been applied in the field of antibacterial drug 

studies. For example, Nocedo et al. 34 obtained a NIFPTML model that analyzed AD + MN. 

Ortega et al. 35considered NP + MN subsystems in the NIFPTML model. Speck-Planche et 

al.36 included an IFPTML model to analyze only NP vs NP pairs without considering NI. The 

green boxes in Figure 2.1 show the different parts that included the mentioned works. These 

studies are some examples of the application of NIFPTML to develop cheminformatics studies. 

However, no NIFPTML computational study capable of quantitatively relating and fusing 

information from chemical and pre-clinical (ChEMBL) data to the mechanisms of metabolic 

reaction networks and nanoparticles with antibacterial activity has been reported. In the field 

of antibacterial drugs, it is of interest to understand the interactions between preclinical assays 

of AD activity, MN, and complex DADNP systems. This study represents an initial exploration 

of the drugs involved in reaction networks in Barabási's group. Next, the interplay of MNs and 

preclinical ChEMBL assays is explored with the aim of creating new models to predict new 

antibacterial compounds. Subsequently, nanoparticles with antibacterial activity fused with 

antibacterial compounds from the ChEMBL preclinical assay database are screened. Finally, 

we study metal/metal oxide nanosystems with antibacterial compounds, considering variations 

in the MN of the involved microorganisms to predict the biological activity of new antibacterial 

and new DADNP systems. 
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Figure 2.1. Relationship between the database, chapter, and other published works. 

 

1.6 The focus of this thesis 

There are no reports of NIFPTML models with AD, NP, and MN data, which, coupled with 

the fact that many reports of experimental data are inaccurate, and that AD activity, NP, and 

MN activity partially but not exactly match all biological activity parameters, parameter units, 

bacterial strains, etc. In addition, there is a very low number of experimental case reports of 

DADNP studies that are useful for model training and even fewer experimental case reports of 

MN changes in MDR bacterial strains due to AD and/or NP action. On the other hand, some 

risks include underestimating the synergies between subsystems using an additive approach 

and limiting the search to DADNP systems of known ADs, which remains a very large space 

for chemical exploration. Moreover, considering the additive nature of the present approach, 

limiting our search to known ADs is possibly less risky. However, in clinical trials, the 

application of ML is still limited, even though there are varied sources of information that can 

generate absolute and methodological data to support decision making and the deduction of 

risk failures in drug discovery. These approaches may hold promise in the face of the 

limitations of potential new antibiotic discoveries and the global threat posed by antibiotic 

resistant bacteria. For the time being, additive NIFPTML models may become a pragmatic 

solution for the time being when taking into account the increased abundance of experimental 

evidence for DADNP components in ADs and NPs alone. 

2.OBJECTIVES 
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This thesis has two main objectives, one methodological and one practical.  

2.1 Methodological objectives 

1. Evaluating the feasibility of the subsystem information additive linear model with NIFPTML 

approach in this problem 

2. Evaluating the robustness of the NIFPTML methodology using a subsystems information 

block-wise approach for this problem. 

 

2.2 Practical objectives 

1. To develop a computational model for analyzing a metabolite's connectivity (structure) in a 

query organism's metabolic reaction networks. 

2. To develop, with linear and non-linear machine learning techniques, a "chemo-informatics-

based perturbation theory (PT) and information fusion" methodology allows one to relate 

chemical and preclinical data with metabolic network data quantitatively. 

3. To create a model that predicts the biological activity of antibacterial drugs functionalized 

with nanoparticle systems using the NIFPTML method. 

 

2.3 Objective’s development  

The first task of this doctoral thesis was to research the state of the art on the main topics of 

this work: bacterial resistance, main antibiotics, protein targets, mechanisms of action, 

databases of preclinical and clinical trials, and other sources of information useful for 

computational modeling, machine learning techniques, and performance evaluation metrics 

algorithms applied in the field of antibacterial drugs. A summary description and the link 

between them are given in Chapter 1. Additionally, a paper (Paper 1, in Publication Listing, 

next section) was submitted to the Chemical Reviews Journal, which included the above topics 

and delved into a comprehensive review of the application of AI/ML in new antibacterial drug 

(AD) discovery, from classical drugs to dual antibacterial drug-nanoparticle systems 

(DADNP). This work also reviewed studies focused on nanoparticles used to target bacteria as 

an alternative to antibacterial drugs, dual antibiotic-loaded nanoparticle systems, and ML 

studies on nanoparticles and drugs for antibacterial activity. Figure 2.1 shows the relationship 

between the database, chapter, and other published works. 

Based on the importance of metabolic networks in the biological activity of antibacterial drugs 

and the scarcity of studies of computational models of the same. It was decided to study the 

connectivity (structure) of a metabolite in the metabolic reaction networks of a query organism 

(Objective 1). The MN dataset published by Barabási's group was analyzed, which included 

the number of nodes (metabolites), input-output links (metabolic reactions), node degree, 

topological indices, and full names and codes of > 40 bacterial species. The results were 

published in a research paper. The objectives achieved in this section are presented in Chapter 

3. 

In order to better understand the interaction of previously analyzed metabolic networks with 

preclinical antibacterial drug assays, a "chemo-informatics-based perturbation theory (PT) and 

information fusion" methodology was proposed to relate chemical and preclinical datasets to 

metabolic network data quantitatively. 

Preprocessing of preclinical ChEMBL antibacterial activity data. The literature is used to 

obtain data for the biological activity assays. We only searched the ChEMBL database for 

biological activity assays of AD against organisms present in the MN dataset. After data 
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curation, it was determined that the ChEMBL AD activity dataset contains the values of > 300 

parameters (MIC, IC50, etc.) for > 155000 biological assays of > 50000 compounds vs. > 25 

bacteria species with > 90 strains. 

Fusion of antibacterial drug information and metabolic network information. Activity values 

were obtained for the different biological properties of the two subsystems (AD and MN). We 

then preprocessed all the observed values with different units, scales, degrees of uncertainty, 

etc. to obtain dimensionless functions characterizing the system as a whole, the AD vs. MN 

cases. 

PTML model. In this case, the model allows us to predict the scoring function for the 

antibacterial drug and the values of the metabolic networks in the combinatorial assay 

conditions, taking into account the assay conditions. The NIFPTML model was obtained from 

the fusion of several cheminformatics methods. Initially, we proposed a linear PTML model to 

predict biological activity and/or classify (AD-MN) pairs as desirable or undesirable and 

subsequently evaluated them in several nonlinear ML techniques. We used moving average 

(MA) operators to express perturbations in the assays and PT multiplier operators (PTO) to 

perform data fusion and dimension reduction. Finally, we applied linear discriminant analysis 

(LDA) and nonlinear ML algorithms to find the best NIFPTML predictive model. This work 

was submitted/published in Paper III and is developed in Chapter 4. 

Having analyzed the interactions between preclinical antibacterial drug assays and metabolic 

networks and considering the recent advances in nanomedicine, we developed the first 

IFPTML model to design of DADNP (Dual Antibacterial Drugs Nanoparticle) systems, 

including AD and NP components at the same time. We trained alternative models with Linear 

Discriminant Analysis (LDA), Artificial Neural Networks (ANN), Bayesian Networks (BNN), 

K-Nearest Neighbor (KNN), and other algorithms. We also ran a simulation of the expected 

behavior of putative DADNPs in 72 different biological assays (> 1900 computations). The 

studied putative DADNPs consist of 27 different drugs with multiple NP classes and coat types. 

In addition, we tested the validity of our additive model with 80 experimentally synthesized 

and biologically tested DADNP complexes (reported in>45 articles). All these DADNPs show 

MIC values<50 µg - mL-1 (cutoff used) better than the MIC of AD and NP alone (synergistic 

or additive effect). The assays involve DADNP complexes with 10 NP types, 6 coating 

materials, and a NP size range of 5-100 nm against 15 different antibiotics and 12 bacterial 

species. The IFPTML-LDA model correctly classified 100% (80 out of 80) of the DADNP 

complexes as biologically active. The IFPMTL additive strategy may become a useful tool to 

aid in designing DADNP systems for antibacterial therapy, taking into account only 

information about the AD and NP components separately. The work developed was collected 

in paper IV, and all these results are summarized in Chapter 5. 

Once the interaction between AD (ChEMBL) and NP were analyzed, metabolic networks were 

incorporated to understand the potential mechanisms of multidrug resistant (MDR) strains with 

perturbed metabolic networks (MN). This work used an NIFPTML analysis for mapping 

DADNP (AD + NP) versus MN systems of pathogenic bacterial species as a new application 

of AI/ML methods. Accordingly, the NIFPTML algorithm was selected to search for predictive 

models based on a ChEMBL dataset of > 160000 AD assays enriched with 300 NP and > 25 

MN assays of different bacterial species. NIFPTML uses the IF process to join the three 

datasets, creating an NIFPTML linear discriminant analysis (LDA) model with Sp ≈ 90% and 

Sn ≈ 80% and the best artificial neural network (ANN) model found with Sp ≈ Sn ≈ 95% in 

training/validation. The series presented good results. This type of model could be useful for 

the discovery of DADNP systems. We also performed simulations of > 140000 points of 

putative DADNP systems against computationally generated wild-type and knockout (KO) 
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bacterial strains. The linear and additive NIFPTML models were able to predict 102 

experimental cases of complex DADNPs with a high degree of structural and biological 

variety. This led us to introduce the concept of MDR computational surveillance that could 

help detect new strains of MDR bacteria. This work was published in the journal Env Sc: Nano 

described in Chapter 6. 
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Checking the connectivity (structure) of complex Metabolic Reaction Networks (MRNs) 

models proposed for new microorganisms with promising properties is an important goal for 

chemical biology. In principle, we can perform a hand-on checking (Manual Curation). 

However, this is a hard task due to the high number of combinations of pairs of nodes 

(possible metabolic reactions). In this work, we used Combinatorial, Perturbation Theory, 

and Machine Learning, techniques to seek a CPTML model for MRNs >40 organisms 

compiled by Barabásis’ group. First, we quantified the local structure of a very large set of 

nodes in each MRN using a new class of node index called Markov linear indices fk. Next, 

we calculated CPT operators for 150000 combinations of query and reference nodes of 

MRNs. Last, we used these CPT operators as inputs of different ML algorithms. The CPTML 

linear model obtained using LDA algorithm is able to discriminate nodes (metabolites) with 

correct assignation of reactions from not correct nodes with values of accuracy, specificity, 

and sensitivity in the range of 85-100% in both training and external validation data series. 

Meanwhile, PTML models based on Bayesian network, J48-Decision Tree and Random 

Forest algorithms were identified as the three best non-linear models with accuracy greater 

than 97.5%. The present work opens a door to the study of MRNs of multiple organisms using 

PTML models. 

 

1. INTRODUCTION 

The application of computational tools in Chemical Biology is a challenging goal; which 

becomes notably difficult if we consider the study of very large and complex biological 

networks.2 In this context, Metabolic Reaction Networks (MRNs) of organisms are among 

the more important systems to be studied by Chemical Biology.3-6 MRNs are complex 

networks formed by combinations of thousands of chemical reactions or transformations 

(links) of metabolites (nodes) in a living organism. Computational chemists have excellent 

tools to manage single chemical reactions, but difficulties emerge when one must consider 

complex MRNs. Despite the similarity in metabolic pathways (conservation), the structure of 

MRNs is often very different in organisms of differing species and researchers have to 

propose specific MRNs models for each organism.7 The construction of MRNs for different 

organisms use different experimental techniques and many times also rely upon sequence 

alignment computational techniques. It means that we can use computational techniques to 

find an enzyme in a query organism (o) with high sequence similarity to another enzyme 

present in the Metabolome of another organism of a different species (s). Then, we can 

presuppose that the metabolic reaction catalyzed by this enzyme exists on both organisms. 

This combination of different experimental and alignment-based computational techniques 

leads to a vast amount of information. After that, researchers use the different method to 

process all this information and propose consensus MRNs models for the new organisms.8, 9 

In this context, it is straightforward to realize that we need to carry out a checking of the 

connectivity (structure) of the alternative complex MRNs models proposed for new 

microorganisms. In principle, we can perform a hand-on checking (Manual Curation) but this 

is a hard task due to the high number of combinations of pairs of nodes (possible metabolic 

reactions). 

In fact, the numerous challenges that arise on the assembly of complex network models are 

not unique to MRNs. Complex network analysis provides an effective approach to diverse 
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problems in the bio-molecular, technological, and social sciences.10-13 In all these cases, the 

search for models able to predict and/or evaluate the structure or properties of the networks 

proposed is an exciting field within the complex network sciences. For instance, one of the 

simplest models is a linear equation which predicts the lethality of proteins in yeast, based on 

simple structural parameters like the node degree of the protein within the interaction 

network.14 However, in order to solve more complex problems, we eventually need to search 

for not so simple structural parameters and/or rely on more complicated multivariate models.  

Specifically, the verification or checking (curation) of new models of MRN for new 

organisms with promising properties is useful for the biotechnology industry. In principle, 

we can calculate numerical parameters of the connectivity of alternative MRNs and use them 

as input for a Machine Learning (ML) algorithm able to discriminate viable from unviable 

MRNs. On the other hand, Perturbation Theory (PT) models allow us to predict the solutions 

to a query problem (q) based on a previously known solution for a similar problem or problem 

of reference (r). Specifically, we classify a model as Combinatorial PT (CPT) model when 

we can use it to study all possible combinations of q and r pairs. In a recent work, we outlined 

a new type of ML method called CPTML = CPT + ML which leverages ideas from both PT 

and ML models.15 The CPTML method uses a different kind of CPT operators to predict the 

properties of one system based on the properties of a system of reference. For instance, 

Moving Average (MA) operators used in Box-Jenkins’s ARIMA models in time series 

analysis.16 The MA operators of structural descriptors are useful to quantify variations in 

network interconnection patterns due to multiple conditions or parameters (e.g. date of an 

assay in a time-course experiment) in models of complex datasets in Organic Chemistry, 

Medicinal Chemistry, Nanotechnology, etc.17-22 Very recently, Speck-Planche and 

Cordeiro23-26 have used this kind of models in chemical combinatorial sciences. Recently,27 

we applied CPTML ideas to predict the effect of inter-species perturbations in combinations 

of nodes in MRNs using Markov Chain (MC) indices. However, there are no other reports of 

CPTML models of inter-species perturbations in MRNs, to the best of our knowledge. 

Therefore, the search for novel numerical descriptors useful in the development of CPTML 

models of complex networks in general, and MRNs, in particular, is an area of increasing 

interest. The structure of a network-like system is a function of the system components 

(nodes) and the relationships between them (interactions). Therefore, most network structure 

descriptors are Topological Indices (TIs) that codify information about the connectivity 

(topology) of the network. Specifically, MC theory has been applied in a number of studies 

of complex networks to calculate network invariants.27-33  On the other hand, the atom-based 

linear indices, developed by Marrero et al.,34, 35 have been successfully applied to studies of 

small molecules. However, there is no previous work extending these indices to the study of 

complex networks. Here, we describe the conceptual extension of these linear indices to 

create novel descriptors of MRN topological structure. We go on to demonstrate the 

effectiveness of these new descriptors in the task of recognizing MRN structure against a null 

model derived from randomized networks. 

We can fit a PTML model using different types of ML algorithms (linear or non-linear). 

For example, Bediaga et al.36 use non-linear Artificial Neural Network (ANN) algorithms to 

fit PTML models with a ChEMBL dataset of preclinical assays of anti-cancer compounds. 

Also, González-Durruthy et al.37 used ANN algorithms to find PTML models of the potential 

ability of carbon nanotubes to induce mitochondrial toxicity-based inhibition of the 

mitochondrial H-F0F1-ATPase from in vitro assays. On the other hand, Ferreira da Costa et 

al.38 have compared linear and non-linear ML methods like ANN, Random Forest, and Deep 

Learning algorithms, in the search of PTML models supporting the organic synthesis, 
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chemical characterization, and pharmacological assay of a new series of PLG Peptide-

mimetic compounds. 

In the present study, we report a new model for the prediction of the connectivity (local 

structure) of a query metabolite (node q) in the MRN of a query organism (o). We attack this 

problem considering that with know the local structure of a similar metabolite of reference 

(node r) in the MRN of another species (s). Firstly, we quantify the local structure of the 

nodes in the MRNs with a new class of node index called Markov linear indices fk of order k. 

These indices are a generalization of linear indices of molecular graphs,34, 35 here adapted for 

complex networks. Next, we calculate the values of different perturbation theory operators 

Δfk(q, r), Δfk(q, o), Δfk(r, s), and ΔΔfk(q, o, r, s). These operators are able to quantify the 

deviations (perturbations) on the local structure of one node in the MRN with respect to the 

structure of a similar node and/or all nodes in the MRN of a potentially differing species. We 

calculated these perturbation operators for 150 000 pairs of query and reference nodes from 

the MRNs of >40 organisms compiled by Barabási’s group.7 Last, we use these PT operators 

as inputs of the linear and no linear ML methods. The PTML linear and no linear models 

obtained achieves high values of accuracy, specificity, and sensitivity in both training and 

validation series, and compared with previous reports.27 This model may become a useful 

tool to predict the interconnections for newly characterized metabolites in the MRNs of 

engineered organisms. This proposed approach could help to recognize which metabolites 

are the most determinant within novel MRNs. Besides, this type of characterization helps to 

identify if the specific metabolite composition of the new synthetic biology systems remains 

robust to variation of internal and external conditions (resistance to pathogens, etc.). In 

Figure 3.1, we show the workflow used in this work to develop the new CPTML model for 

MRNs checking.  
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Figure 3.1. Workflow of the PTML method applied to MRNs checking. 

2. METHODS 

2.1 Dataset of complex networks.  

We obtained the data of the MRNs from Barabási’s group website. In these data, a unique 

number identifies each substrate in the metabolite network for each organism. The data are 

formatted as directed links: from → to. The data were originally compiled in,7 taken from the 

‘intermediate metabolism and bioenergetics’ portions of the WIT database, and were 

previously used to understand the large-scale organization of metabolic networks.7 Table 3.1 

shows the number of metabolites and metabolic reactions for all organisms studied in this work. 
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Table 3.1. Details of the metabolic networks of >40 organisms. 

Organism Name Symbol Na Lin
 b Lout 

b Organism Name Symbol Na Lin
 b Lout 

b 

Aeropyrum pernix AP 204 588 575 Chlorobium tepidum CL 389 1097 1062 

Archaeoglobus fulgidus  AG 496 1527 1484 Rhodobacter capsulatus RC 670 2174 2122 

Methanobacterium 

thermoautotrophicum  
TH 430 1374 1331 Rickettsia prowazekii RP 214 510 504 

Methanococcus 

jannaschii  
MJ 424 1317 1272 Neisseria gonorrhoeae  NG 406 1298 1270 

Pyrococcus furiosus  PF 316 901 867 Neisseria meningitidis NM 381 1212 1181 

Pyrococcus horikoshii  PH 323 914 882 Campylobacter jejuni  CJ 380 1142 1115 

Aquifex aeolicus  AA 419 1278 1249 Helicobacter pylori  HP 375 1181 1144 

Chlamydia pneumoniae CQ 194 401 391 Escherichia coli  EC 778 2904 2859 

Chlamydia trachomatis CT 215 479 462 Salmonella typhi TY 819 3008 2951 

Synechocystis sp.  CY 546 1782 1156 
Actinobacillus 

actinomycetemcomitans 
AB 395 1202 1166 

Porphyromonas 

gingivalis 
PG 424 1192 1221 Haemophilus influenzae  HI 526 1773 1746 

Mycobacterium bovis MB 429 1247 1244 
Pseudomonas 

aeruginosa  
PA 734 2453 2398 

Mycobacterium leprae ML 422 1271 1823 Treponema pallidum  TP 207 562 555 

Mycobacterium 

tuberculosis  
MT 587 1862 2741 Borrelia burgdorferi  BB 187 442 438 

Bacillus subtilis  BS 785 2794 1218 Thermotoga maritima TM 338 1004 976 

Enterococcus faecalis EF 386 1244 1578 
Deinococcus 

radiodurans  
DR 815 2870 2811 

Clostridium 

acetobutylicum  
CA 494 1624 525 Emericella nidulans EN 383 1095 1081 

Mycoplasma genitalium MG 209 535 466 
Saccharomyces 

cerevisiae  
SC 561 1934 1889 

Mycoplasma 

pneumoniae  
MP 178 470 1298 Caenorhabditis elegans  CE 462 1446 1418 

Streptococcus 

pneumoniae  
PN 416 1331 1277 Oryza sativa OS 292 763 751 

Streptococcus pyogenes ST 403 1300  Arabidopsis thaliana AT 302 804 789 

 Notes. a N = number of nodes (metabolites), b L = input-output links (metabolic reactions), according 

to Jeong et al. 7 

2.2 Markov linear indices for complex networks.  

The linear indices (fk) proposed by Marrero et al.34, 35 are interesting due to their efficient 

encoding of molecular structure in QSAR studies. Previous application of these indices 

include the prediction of antiprotozoal inhibitory activity for novel quinoxalinones,39 

classification models for tyrosinase inhibitory activity discrimination,40 etc. Nevertheless, the 

majority of models developed until now only predict outputs for one target, including those 

based on classic linear indices. In a recent work,41 we developed a multi-output model for 

inhibitors of the ubiquitin-proteasome pathway with potential anti-cancer applications.42 
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These classic atom-based linear indices measure the connectivity between pairs of atoms 

(nodes) placed at different atom-atom topological distances (dij) in a chemical graph.34 Using 

Markov chain theory, higher-order analogues, Mk, of classic atom-based linear indices are 

calculated. In so doing, the more general concept of node is applied, such that the indices may 

be used for networks of any node type, with different levels of matter complexity (i.e. atoms, 

drugs, proteins, organisms, etc.). Here, we present for the first time the generalization of 

atom-based linear indices of molecular graphs to the study of complex networks using 

Markov chain theory. We combine the concept behind Marrero’s molecular descriptors, 

specifically the atom-based linear indices,43 and the MARCH-INSIDE (MI) software 

algorithm of González-Díaz et al.44-47 This generalization was done with the aim to extend 

the atom-based linear indices for the study of different types of complex networks.  

The MRN comprises n nodes which represent metabolites (vector of ℜn). In this 

sense, the adjacency matrix M (which represents the deterministic bonding and atom 

connectivity) is modified by the stochastic Markov matrix or order k, kΠ, which 

indicates the probability, kpij, of metabolite transformation (i.e. that a directed edge is 

traversed between two nodes). The kth order Markov linear index fk is defined as: 

𝒇𝒌(𝒊) = ∑ 𝒑𝒌
ij

𝒏

𝒋=𝟏

⋅ 𝜹𝒊 (𝟏) 

 Where,  𝑝𝑘
𝑖𝑗 = 𝑝𝑘

𝑗𝑖 (
kΠ is an asymmetric square matrix), n is the number of metabolites in 

the network, and 𝛿𝑖 is the degree of node (metabolite) i.  In addition to the MRN data from 

Barabási’s group, we also generated MRN with incorrect random patterns using the software 

CentiBin.48 Specifically, we created the Erdos Renyi Random Network ERRN (1000, 0.1) and 

the Kleinsberg Small World Network KSWN (1000). Both random networks have 1000 nodes 

each. These random networks are denoted in the tables as ER and SK, respectively. We used 

the software MI-NODES to calculate the Markov linear indices fk with order k = [0, 5] for all 

the true and random MRNs.27-33 

2.3 PT operators for MRNs of different organisms.   

A new methodology that uses PT in  multiple-condition QSPR/QSAR problems was 

introduced by Gonzalez-Díaz et al.49 In the present report, the prediction of the effect of 

perturbations in the connectivity of MRN is studied based on an adaptation of this theory. In a 

metabolic network, each metabolite may act (in principle) as substrate or product of a metabolic 

reaction. This means that we may have a series of chemical reactions (a metabolic pathway) 

that leads to the production of this metabolite and/or to the consumption of this metabolite. We 

can represent the sub-network (local metabolic pathway) of all the reactions that lead to the 

production or consumption of the metabolite q inside an organism o as a sub-graph of M. This 

sub-graph, denoted as Lqo, is rooted on the metabolite q within organism o. Lqo may contain 

many links (chemical reactions) inside the network. This is the sub-graph of immediate 

incoming/outgoing edges with respect to node q. Consequently, this sub-graph has a diameter 

d = 2 (longest topological distance between one substrate of the reactions with the metabolite 

q); give that there is a sub-graph (local metabolic pathway) centered on q. These sub-graphs 

are star graphs centered on q. Simple visual inspection of these sub-graphs allows us to detect 

specific connectivity patterns for each metabolite. This local connectivity pattern clearly 

changes when we compare pattern Lqo of one metabolite, q, with Lro of another metabolite, r, 

in the same organism. More importantly, the local metabolic patterns also have variations or 

perturbations when we compare the local metabolic pathway Lqo of metabolite, q, in the 

organism, o, with the pattern Lqs of the same metabolite q in another organism from another 

species s.27   
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In this sense, we require a new CPTML model able to predict the connectivity pattern (Lqo) 

of a metabolite, q, in the MRN of the organism, o, given that we already know the 

connectivity Lrs for a metabolite of reference, r, in the MRN of another organism of species, 

s. Our model takes into consideration perturbations in the local connectivity (metabolite 

connectivity) or global connectivity (full organism metabolic changes) in the new MRN with 

respect to the MRN of reference. We can measure these perturbations numerically using the 

following functions of linear indices.49  

𝛥𝑓𝑘(𝑞, 𝑟) = 𝑓𝑘(𝑞) − 𝑓𝑘(𝑟) (2) 

𝛥𝑓𝑘(𝑞, 𝑜) = 𝑓𝑘(𝑞) − 𝑓𝑘(𝑜)𝑎𝑣𝑔 (3) 

𝛥𝑓𝑘(𝑟, 𝑠) = 𝑓𝑘(𝑟) − 𝑓𝑘(𝑠)𝑎𝑣𝑔 (4) 

𝛥𝛥𝑓𝑘(𝑞, 𝑜, 𝑟, 𝑠) = [𝑓𝑘(𝑞) − 𝑓𝑘(𝑜)]  − [𝑓𝑘(𝑟) − 𝑓𝑘(𝑠)] (5) 

Here, fk(q) is the kth order descriptor of the sub-graph centered on node q, while fk(o)avg is the 

average of the kth order descriptor computed for each node in the MRN for organism o. The 

perturbation operators Δf k and ΔΔfk, are inspired by the idea of MA operators used in Box-

Jenkins models in time series analysis.16, 42 We explored four types of operators in our study. 

The first type of operator, Δfk(q,r) = fk(q) - fk(r), is the difference between the local linear indices 

of the new metabolite q and the reference metabolite r. We designed this operator to measure 

the changes in the local connectivity of the new node (metabolite) with respect to the metabolite 

of reference. The second type of operator Δfk(q,o) = fk(q) - fk(o)avg and Δfk(r,s) = fk(r) - fk(s)avg 

was created to measure the deviation in the connectivity of a given metabolite (q or r) with 

respect to all the metabolites within the same organism (o or s). We constructed this operator 

to measure perturbations in the reactions of one metabolite with respect to the overall 

metabolism of the entire organism. The last type of operator ΔΔfk(q,o,r,s) = [fk(q) - fk(o)avg] – 

[fk(r) - fk(s)avg] combines both local and overall metabolic perturbations. It is important to note 

that the terms fk(o)avg and fk(s)avg cancel out when the query organism, o, and the organism of 

reference, s, are the same.  

2.4 PTML linear model for MRNs of different organisms.  

Within this framework, it is possible to propose and test different relationship between 

perturbations of input/output conditions with Lqo. This is a discrete-value function (Boolean) 

ideal for classification techniques. The following equation is a general form of the model that 

includes only additive perturbations of linear functions. 

𝜆(𝐿𝑞𝑜)
new

= 𝑎 ⋅ 𝜆(𝐿𝑟𝑠)ref

+ ∑ 𝑏𝑘 · 𝛥𝑓𝑘(𝑞, 𝑜) + ∑ 𝑐𝑘 · 𝛥𝑓𝑘(𝑟, 𝑠)

𝑘=5

𝑘=0

+ ∑ 𝑑𝑘 · 𝛥𝛥𝑓𝑘(𝑞, 𝑜, 𝑟, 𝑠)

𝑘=5

𝑘=0

+ 𝑒0

𝑘=5

𝑘=0

 (6) 

The first input term is the scoring function λ(Lrs)ref for the connectivity pattern of the MRN 

of reference r. In this work, we used the identity function, λ= I, for λ(Lrs)ref. Consequently, 

λ(Lrs)ref = Lrs the connectivity pattern of the metabolite of reference r. The values of the sum 

operators run from k = 0 to k = 5 as we calculated only the first terms of the family of linear 

indices with k = 0 to 5. In this work, we are going to use the LDA module of implemented on 

the software STATISTICA to seek the model. Then, the output λ(Lqo)new is one scoring function 

λ (get real values) for the connectivity pattern Lqo of metabolite q in the MRN of the organism 

o (output). Linear forward stepwise strategy for variable selection is going to be used to select 

the input variables on the classification equation. Fisher ratio test determines which attributes 

(variables) enter the model. Chi-square (χ2) and error level p < 0.01 is used to detect significant 

separation between the two classes (Lqo = 1 / Lqo = 0). The canonical correlation coefficient 

(Rcan) is going tobe used to measure the strength of the linear relationship.  
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This model uses the operators of linear indices, fk, of MRN to predict the effects of inter-

species variations in metabolic connectivity patterns Lqo. In general, the connectivity to be 

predicted (output of the model) λ(Lqo)new > 0 => Lqo = 1 when both metabolites q and r have all 

the correct connections on the MRNs their respective organisms o and s. Conversely, Lqo = 0 

when q is another metabolite different from r or has an incorrect connectivity pattern (the 

metabolic reactions assigned are not correct for this metabolite). Correct here means that the 

connections coincide with those determined experimentally are accepted to be correct 

according to the dataset of Barabási’s group. In addition, the connectivity of reference (input 

of the model) Lrs = 1 when the metabolite of reference r has all the correct connections 

(metabolic reactions) on the MRN of reference r. On the other hand, Lrs = 0 when r is a 

metabolite with incorrect connectivity patterns.  

2.5 PTML non-linear models.  

The PTML non-linear models were developed using Waikato Environment for Knowledge 

Analysis (WEKA), version 3.8.0. Five classification algorithms were applied: Bayesian 

network (BN), multinomial logistic ridge regression (LRR), J48 decision tree (J48), Multilayer 

perceptron (MLP), and Random Forest (RF). 

Bayesian Network (BN). A Bayesian network is a Directed Acyclic Graph (DAG) 𝐺 = (𝑋; 𝐴), 

where each node 𝑋𝑖 ∈ 𝑋 represents a random variable in a domain, and each arc 𝑎𝑖,𝑗 ∈ 𝐴 

describes a direct dependence relationship between two variables 𝑋𝑖 and 𝑋𝑗 . Associated with 

each node 𝑋𝑖, there is a conditional probability distribution represented by 𝜃𝑖 = 𝑃(𝑋𝑖|Π(𝑋𝑖)), 

which quantifies how much the node 𝑋𝑖 depends on its parents Π(𝑋𝑖). 𝑉𝑎𝑙(𝑋1, … , 𝑋𝑛) is the 

set of possible values of variables (𝑋1, … , 𝑋𝑛). As the graph structure G qualitatively 

characterizes the independence relationship among random variables, the conditional 

probability distribution quantifies the strength of dependencies between a node and its parent 

nodes. It can be proved that a Bayesian network (𝑋; 𝐴) uniquely encodes the joint probability 

distribution of the domain variables 𝑋 = (𝑋1, … , 𝑋𝑛)50 

𝑃(𝑋) = ∏ 𝜃𝑖

𝑛

𝑖=0

 (7) 

Multi-Layer Perceptron (MLP). A network consists of interconnected nodes that form 
three kinds of layers: input, hidden and output. There can be more than one hidden layer. In the 
case of the "hidden" layer, a single layer of hidden units was used for the classification models. 
The activation function for this ANN model was the sigmoidal function.51  

Binary Logistic Regression (BLR). A binomial logistic regression (often referred to 
simply as logistic regression), predicts the probability 𝑃 that an observation falls into one of 
two categories of a dichotomous 𝑌 = dependent variable based on one or more independent 
variables 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑛} that can be either continuous or categorical. The regression 
logistic model is described by equation (8), where 𝐿𝑅(𝑋) = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑛𝑋𝑛 represent 
the classification function with 𝛽𝑖 coefficients. The value of dependent variable Y is 1, if 
𝑃(𝑋) > 0.5 and in other case Y is 0.50  

𝑃(𝑋) =
1

1 + 𝑒(𝐿𝑅(𝑋))
 (8) 

Random Forest (RF). RF, is a very sophisticated algorithm to handle a large number of 

classification problems, where numerous decision trees are assembled by voting mechanism.52 

For each tree, a different training set is generated by randomly re-sampling the data set with 
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replacement resulting in a training set (bootstrap learning set) that contains approximately two-

thirds of the samples in the data set original. 

J48 decision tree (J48). The C 4.5 is an algorithm developed by Ross Quinlan53 that employ 

the basic methodology of divide-and-conquer described in CART.54 The model displays a 

flowchart-like tree structure where each internal node represents a test on selected variable, 

branch denote test outcomes, and each terminal (leaf) node assigns a class label. The 

differences are in the tree structure, the splitting criteria, the pruning method, and the way 

missing values are handled.53, 55 

3. RESULTS AND DISCUSSION 

3.1 PTML linear models.  

In this study, we constructed a new classification model to predict the local connectivity 

pattern Lqo for the query metabolites q in the MRN of the new organism (o) using as reference 

local connectivity Lrs of other metabolites (r) on MRNs of different species (s). Firstly, we 

calculated the values of the Markov linear indices fk(q) and their perturbation operators Δf k 

and ΔΔfk for all the metabolites (nodes) in the MRN of 40 organisms. In Table 3.2, we depict 

some of the average values of the linear indices for many organisms. We also created a 

supplementary material with the full list of 155 000 perturbations predicted (material provided 

as online supplementary material). In the next step, we calculate the values of the PT operators 

for 155000 combinations of query vs. reference metabolites selected the correct MRNs and 

randomized models of MRNs networks (examples of incorrect connectivity). For doing this, 

our database has 109 979 combinations of nodes with correct patterns and 45 021 combinations 

of nodes with incorrect patterns. After that, the dataset was randomly divided in training and 

prediction subsets in a 3:1 rate, respectively. The training set remains with 116 052 cases and 

the test set have 38 948 cases.   
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Table 3.2. Average values of fk for the metabolic networks of >40 organisms. 

Org.a Node degrees b Markov Linear Indices c 

 
δ δin δout f0 f1 f2 f3 f4 f5 

AA 0.10 0.10 0.10 0.10 -0.65 -0.59 -0.60 -0.52 -0.50 

AB 0.04 0.04 0.04 0.04 0.20 0.08 0.09 0.03 -0.01 

AG -0.05 -0.05 -0.05 -0.05 -0.66 -0.68 -0.69 -0.67 -0.65 

AP -0.06 -0.06 -0.06 -0.06 0.15 0.04 0.12 0.03 0.03 

AT -0.79 -0.79 -0.79 -0.79 -0.64 -0.72 -0.74 -0.80 -0.82 

BB -2.13 -2.13 -2.13 -2.13 -0.51 -0.64 -0.65 -0.71 -0.71 

BS 1.09 1.09 1.09 1.09 3.23 3.03 2.83 2.70 2.55 

CA 0.69 0.69 0.69 0.69 -0.60 -0.42 -0.42 -0.27 -0.24 

CE 0.58 0.58 0.58 0.58 -0.53 -0.46 -0.51 -0.45 -0.43 

CJ 0.06 0.06 0.06 0.06 -0.47 -0.35 -0.40 -0.32 -0.31 

CL -0.26 -0.26 -0.26 -0.26 0.85 0.95 1.13 1.14 1.12 

CQ -3.11 -3.11 -3.11 -3.11 0.25 0.25 0.17 0.06 -0.01 

CT -2.56 -2.56 -2.56 -2.56 -0.69 -0.98 -1.00 -1.17 -1.18 

CY 0.81 0.81 0.81 0.81 1.06 1.08 1.23 1.15 1.18 

DR 1.04 1.04 1.04 1.04 0.44 0.29 0.47 0.37 0.39 

EC 1.43 1.43 1.43 1.43 0.57 0.78 0.78 0.94 0.94 

EF 0.67 0.67 0.67 0.67 -0.64 -0.49 -0.47 -0.32 -0.27 

EN -0.04 -0.04 -0.04 -0.04 -0.51 -0.59 -0.63 -0.70 -0.72 

HI 0.85 0.85 0.85 0.85 1.29 0.96 0.98 0.81 0.78 

HP 0.65 0.65 0.65 0.65 0.24 0.50 0.60 0.82 0.84 

MB -0.13 -0.13 -0.13 -0.13 -0.63 -0.80 -0.82 -0.90 -0.91 

MG -1.29 -1.29 -1.29 -1.29 -0.66 -0.90 -0.93 -1.08 -1.10 

MJ 0.12 0.12 0.12 0.12 -0.65 -0.62 -0.63 -0.58 -0.57 

ML 0.04 0.04 0.04 0.04 -0.56 -0.70 -0.75 -0.83 -0.85 

MP -0.96 -0.96 -0.96 -0.96 -0.59 -0.86 -0.92 -1.10 -1.14 

MT 0.41 0.41 0.41 0.41 1.22 1.24 1.38 1.39 1.43 

NG 0.51 0.51 0.51 0.51 -0.58 -0.46 -0.49 -0.41 -0.41 

NM 0.55 0.55 0.55 0.55 -0.56 -0.24 -0.22 0.04 0.10 

OS -0.96 -0.96 -0.96 -0.96 -0.64 -0.69 -0.69 -0.69 -0.68 

PA 0.76 0.76 0.76 0.76 3.51 3.42 2.97 2.78 2.73 

PF -0.24 -0.24 -0.24 -0.24 -0.67 -0.88 -0.90 -1.02 -1.05 

PG -0.51 -0.51 -0.51 -0.51 -0.66 -0.47 -0.44 -0.25 -0.20 

PH -0.36 -0.36 -0.36 -0.36 -0.60 -0.70 -0.75 -0.80 -0.81 

PN 0.57 0.57 0.57 0.57 -0.63 -0.41 -0.39 -0.20 -0.15 

RC 0.54 0.54 0.54 0.54 1.97 1.93 2.43 2.37 2.51 

RP -1.46 -1.46 -1.46 -1.46 -0.60 -0.86 -0.89 -1.05 -1.07 

SC 1.46 1.46 1.46 1.46 0.16 0.38 0.40 0.51 0.57 
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ST 0.67 0.67 0.67 0.67 -0.34 -0.38 -0.38 -0.38 -0.37 

TH 0.49 0.49 0.49 0.49 -0.62 -0.46 -0.47 -0.36 -0.35 

TM 0.05 0.05 0.05 0.05 -0.51 -0.47 -0.49 -0.46 -0.47 

TP -0.72 -0.72 -0.72 -0.72 -0.27 -0.42 -0.47 -0.58 -0.59 

TY 1.34 1.34 1.34 1.34 0.52 0.56 0.39 0.31 0.28 

YP 0.07 0.07 0.07 0.07 -0.00 0.76 0.75 1.16 1.14 

Notes. a Org = organism, Organisms names are in two letters code and metabolite names in 

numeric code,  according to Jeong et al.7  b Average node degrees, δ. c All indices have been 

standardized to z-scaled values to avoid scale errors in visual comparison. 

As can be observed in Table 3.3, the obtained PTML model classified correctly the 90.5% 

of the cases in the training set, with only 11 079 misclassified cases out of 116 052 cases. In 

the case of the prediction set, the same behavior was observed with an accuracy (Ac) value of 

89.8%, and only 3 967 misclassified cases. Both series have specificity (Sp) values of 100%, 

this means that none of the negative cases (incorrect patterns) is misclassify. An adequate value 

of sensitivity (Sn) is observed for the training and prediction series with an 86.5% and 85.7%, 

respectively. In general, the PTML model has a good performance for describing the 

correct/incorrect connectivity pattern as showed in the performance of the statistical parameters 

of the current classification equation. The following equation (7) was the best PTML model 

found includes only additive perturbations of linear functions: 

𝜆(𝐿𝑞𝑜)
new

= −0.33127 ⋅ 𝜆(𝐿𝑟𝑠)ref − 0.73350·ΔΔf0(𝑞, 𝑜, 𝑟, 𝑠) + 0.12583·ΔΔf1(𝑞, 𝑜, 𝑟, 𝑠) −

0.18410·ΔΔf2(𝑞, 𝑜, 𝑟, 𝑠) − 1.96212 (7) 

𝑁 = 116052, 𝑅𝑐 = 0.83, 𝜒2 = 135844.3, 𝑝 < 0.01 

The output λ(Lqo)new is the scoring function λ for the connectivity pattern Lqo of metabolite q 

in the MRN the organism o (output). The first input term is the scoring function λ(Lrs)ref for the 

connectivity pattern of the MRN of reference. In this work, we used the identity function, λ= 

I, for λ(Lrs)ref. Consequently, λ(Lrs)ref = Lrs the connectivity pattern of the metabolite of 

reference r, see details on the previous section. Notably, the only one type of operator in the 

final CPTML model is ΔΔfk (q, o, r, s), which reflects both local and global effects. This 

coincides with the excellent results obtained with Box-Jenkins MA operators56-59 and 

perturbation models49 for related problems.   

 

Table 3.3. Results of CPTML model for metabolic networks of >40 organisms. 

Data Stat. Pred. Predicted MRN perturbations 

sub-set Param. % Lqo = 1 Lqo = 0 

Lqo = 1 Sp 100 71207 11079 

Lqo = 0 Sn 86.5 0 33766 

Train total Ac 90.5   

Lqo = 1 Sp 100 23726 3967 

Lqo = 0 Sn 85.7 0 11255 

Validation total Ac 89.8   

 

3.2 PTML non-linear models.  
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Finally, a comparative study of our linear model with non-linear models obtained using ML 

classification algorithms was carried out. The ML methods implemented Waikato Environment 

for Knowledge Analysis (WEKA) was used to process our dataset, results are shown in Table 

3.4. All PTML non-linear models displayed better performance than PTML linear model, 

especially for the training set with a global Accuracy of 91.25– 99%. Analysing each model in 

particular, one can reveal that ANN algorithm of type MLP, and ensemble decision trees (RF) 

are the most powerful learning algorithms (Ac~97.5%). However, the best Accurracy results 

are from Bayesian network (BN) (global Ac of 99% for training, 98.78% test and 98.96% for 

cross-validation).  

Table 3.4. Results of CPTML-non lineal models for metabolic networks of >40 organisms. 

ML Model Parameters a 

Data set Ac(%) Sn(%) Sp(%) MCC 

BN Training 99.00 99.16  97.45 0.98 

Test 98.92 99.16  97.16 0.97 

CV 98.98 99.12  97.42 0.98 

MLP Training 92.99 97.04  82.13 0.85 

Test 92.69 97.01  81.29 0.84 

CV 91.02 91.91  80.14 0.8 

BLR Training 91.25 97.31  78.04 0.81 

Test 91.04 99.12  76.69 0.81 

CV 91.25 97.31  78.05 0.81 

RF Training 98.59 98.98  96.28 0.97 

Test 98.46 98.89  95.90 0.96 

CV 98.55 99.18  95.97 0.97 

J48 Training 98.99 99.18  97.39 0.98 

Test 97.89 95.52  97.13 0.95 

CV 98.97 99.16  97.35 0.98 

a Parameters, Ac(%) = Accuracy, Sn(%) = Sensitivity,  

Sp(%) = Specificity, and MCC = Mathew’s Correlation Coefficient 

 

In Figure 3.2, we summarized the results obtained graphically. While BLR model only 

presents a similar-to-lower goodness-of-fit in comparison with the PTML linear model and 

most other models. In conclusion, BN, J48 and RF were identified as the three best PTML non-

linear models based on the consensus analysis of MCC, and overall accuracy. However, the 

improvement from PTML linear models to PTML non-linear models was not cost-benefit 

efficiently. It means, PTML non-linear models obtained are notably more complicated with a 

high number of parameters as compared to PTML linear model.  
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Figure 3.2. PTML non-linear model performance for metabolic networks of >40 organisms. 

4. CONCLUSIONS 

The results showed that the extension and generalization of atom-based linear indices to the 

Markov linear indices of complex networks is straightforward to realize. We also demonstrated 

that these indices are very useful to predict the effect of structural and inter-species variations 

(perturbations) in MRNs. Regarding the methodological objectives, the linear model only 

included one subsystem (metabolic networks of different microorganisms) and showed a good 

fit (Sp=100%, Sn=86.5% and Ac=90.5%). In this chapter other subsystem information blocks 

were not considered to analyze the problem presented in the thesis. 

Regarding the practical objectives, the CPTML model obtained shows promising results with 

an accuracy (Ac), specificity (Sp), and sensitivity (Sn) between 85-100% for perturbations in 

a total of 155000 combinations of nodes in MRN of >40 organisms, overcoming previous 

studies in the same issue. Meanwhile, the performance of models was found to be improved by 

including different non-linear models. Leading to models with excellent internal accuracy and 

predictively on external data to classify correctly structural and inter-species variations 

(perturbations) in MRNs. The ΔΔfk(q,o,r,s) are probably the most important (with respect to is 

ΔΔfk(q,o) and is ΔΔfk(r,s)) because they quantify local (node connectivity) and global 

(organism) information at the same time. The new CPTML may become a useful tool to check 

out the structure of MRN of new organisms in biotechnology.  
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Antibacterial drugs (AD) change the metabolic status of bacteria, contributing to bacterial 

death. However, antibiotic resistance and the emergence of Multi-drug-resistant bacterial 

strains increase interest in understanding metabolic network (MN) mutations and the 

interaction of AD vs. MN. In this work, we used the IFPTML = Information Fusion (IF) + 

Perturbation-Theory (PT) + Machine Learning (ML) algorithm for the study of a large dataset 

of ChEMBL database that contains >165 000 AD assays vs. > 40 MNs of multiple bacteria 

species. We built a Linear Discriminant Analysis (LDA) and 17 ML models based on the 

linear index based on atoms to predict antibacterial compounds. IFPTML-LDA model 

presented the following results for the training subset: specificity (Sp) = 76.1%, sensitivity 

(Sn) = 72.3%, and Accuracy (Acc) = 74.3%. Among IFPTML-non-Linear, the k Nearest 

Neighbors (KNN) show the best results with Sn =99.2%, Sp=95.5%, Acc=97.4% and 

AUROC=0.998 in training sets. IFPTML linear and non-linear models of the AD vs. MN 

have good statistical parameters, and they could contribute to finding new metabolic 

mutations in antibiotic resistance and reducing time/costs in antibacterial drug research.  

 

1. INTRODUCTION 

 Antibiotics have become the foundation of modern medicine. However, at the beginning of 

2017, the World Health Organization published a list of global priorities on antibiotic-resistant 

bacteria.1 Continued efficacy is threatened by the global dissemination of antibiotic-resistance 

determinants, driven in large part by improper use of antibiotics in clinical, community, and 

agricultural settings.2 To develop effective next-generation antibacterial therapies, we must 

better understand how bacteria respond to antibiotics.3 Molecular screens have identified 

compounds that limit bacterial growth in vitro. Despite the abundance of bioactive chemicals, 

only a few biological functions are targeted.4 Antibiotics that disrupt these energy-consuming 

pathways disrupt the metabolic balance. 

 In previous decades, Levy et al.5 argued about the limited period of clinical- utility that 

antibiotics have before being compensated for the inevitable emergence of resistance. 

Meanwhile, new antibiotics are desperately needed to combat bacterial resistance.6 An 

alternative chemical space for the abundant compounds of affected antibiotics has not yet been 

identified. In addition, the development of antibiotics has a low yield on the multiple diseases 

caused by microbes, and the antibiotic line has been operating at an alarmingly slow pace in 

recent decades.7 Most recently approved antibiotics are chemically modified derivatives of the 

existing drug classes; many are naturally occurring.8, 9 Therefore, resistant strains may readily 

mutate to resist these analogs if their existing resistance mechanisms do not already exhibit 

partial cross-effectiveness.10 

 Furthermore, this bacterial resistance to conventional antibiotics has also been attributed to 

excessive broad-spectrum antibiotics,11 which requires scientists to find fast, accessible, and 

cheap methods to discover new drugs and target molecules against infectious microorganisms. 

In this sense, understanding the metabolism of pathogens plays an important role. Metabolic 
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networks (MN) are represented by the set of metabolic pathways that are a series of 

biochemical reactions in which the product (output) of a reaction serves as a substrate (input) 

to another reaction.12 Novel applications of MN reconstructions of human pathogens have 

recently been described. These studies have focused on elucidating resistance metabolic 

dependencies and identifying potential drug targets and antibacterials.13-15 The influence of the 

changes in MNs over the capacity for survival of different microorganisms has been 

demonstrated by Barabási´s group and other authors.16 

 On the other hand, the importance of metabolic mutations in antibiotic resistance is frequently 

underestimated.17 Recently, Lopatkin et al.18 demonstrated that metabolic mutations arise in 

clinically relevant bacteria in response to antibiotic therapy. They are using a variety of in vitro 

evolution procedures and comprehensive sequencing data analysis. E. coli as a model pathogen 

provided proof that metabolic mutations can develop in response to antibiotic treatment.18 This 

research has provided a new perspective on the development of antibiotic resistance by 

shedding light on the complexities of metabolic alterations.3 Their findings may assist in 

explaining the prevalence of (multi-) drug-resistant bacterial strains isolated in areas with little 

or no antibiotic exposure, as well as the documented increase in antibiotic resistance following 

extensive herbicide or other environmentally hazardous material application.18 Antibacterial 

drugs (AD) change the metabolic status of bacteria, contributing to bacterial death, e.g., via 

oxidative damage or stasis through translation inhibition, resulting in lower cellular 

respiration.3 The metabolic state of bacteria influences antibiotic sensitivity; hence, modifying 

the metabolic state of bacteria can improve antibiotic efficacy.3, 17 In this sense, the interaction 

of AD and MN can contribute to finding new metabolic mutations in antibiotic resistance, 

mainly toward (multi-) drug-resistant bacterial strains. 

On the other hand, prediction from computer models has been widely used as an important 

alternative to obtain experimental evidence and save resources and research time in drug 

discovery and development.19 These methods allow establishing relationships between many 

datasets and structural molecular information that contributes to biological activity. to solve 

complex problems.20 Additionally, machine learning (ML) allows us to process information as 

molecular descriptors. However, traditional techniques to extract metadata from complex 

preclinical assay databases are inadequate. This is the case for the ChEMBL database, which 

contains large datasets from various heterogeneous and autonomous sources that attempt to 

explore complex and evolving relationships between data)21 from preclinical trials.22 

Numerous applications of cheminformatics and other computational approaches have been 

developed to aid in discovering AD against various bacteria. However, they are limited to 

predicting their biological activity in a certain strain under specified conditions.23 González-

Díaz et al. created IFPTML, a multi-output, input-coded multi-label machine learning 

technique, to address this type of challenge. Perturbation Theory (PT) + Machine Learning 

(ML) + Information Fusion (IF) is the acronym for the IFPTML algorithm.24 The scoring 

function f(sij) calc is produced by the IFPTML model. IFPTML has been applied to complicated 

data analysis jobs in molecular sciences,24, 25 infectious disease,26 nanotechnology,27, 28 etc. 
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These problems have different drugs, drug cocktails, proteins, vaccines, MN, epidemiological 

networks, etc. 25, 29-33 

In the present work, we propose the combination of the fundamentals of Information Fusion 

(IF) Perturbation Theory (PT) and Machine Learning (ML) methods to build an IFPTML 

(PTML + IF) model as a solution for this type of data.27, 34-36 This model is especially suitable 

for databases with similar large data features and combinatorial information. This paper 

analyzed a large dataset (>155000 preclinical assays) against different bacterial strains 

downloaded from the ChEMBL database. We merged this dataset with structural information 

for >40 MNs from different microorganisms reported by Barabási's group.16 In all these cases, 

those without biological values, measurements, or assay conditions were removed.37 For this 

purpose, we used Moving Average (MAs) operators to express the perturbations in the assays 

and PT Multiplier Operators (PTOs) to perform data fusion and dimension reduction. Last, we 

applied linear discriminant analysis (LDA) and non-linear ML algorithms to find the best 

IFPTML predictive model. The general workflow used for the IFPTML model for AD vs. MN 

is shown in Fig 4.1. 

 

Figure 4.1. IFPTML model for AD vs. MN development workflow. 

2. MATERIALS AND METHODS 

2.1 ChEMBL data set of antibacterial compounds 

We downloaded a large dataset of preclinical assays of ADs from the ChEMBL database. The 

dataset was created through a data fusion process between the ChEMBL dataset and Barabási’s 

group MNs released by Jeong et al..16 In this sense, we only searched in the ChEMBL database 

biological activity assays of ADs against organisms present in the MNs dataset. The steps 

carried out were the following: 
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In the ChEMBL, the different organisms were searched by targets and assays and saved in an 

Excel file. Subsequently, we merge the datasets obtained with each keyword into a single file. 

Later, we performed the data curation, eliminating all duplicate cases and reporting no 

biological activity value. The data of the organisms Methanococcus jannaschii and Treponema 

pallidum are excluded since the two compounds reported in the ChEMBL have no biological 

activity measured by what they are not considered. After data curation, were tained that the 

ChEMBL AD activity dataset contains the values of >300 parameters (MIC, IC50, etc.) for 

>155000 biological assays of >50000 compounds vs. >25 bacteria species with >90 strains.  

2.2 IFPTML analysis steps 

IFPTML analysis has different steps that can be separated into three phases (IF + PT + ML). 

Fig. 4.2 depicts the IFPTML method workflow for AD vs. MN analysis, including the general 

procedures described in this paper. The first step of the IF phase is to obtain values vi, and vj 

for the different biological properties cd0 and cs0 of the two subsystems (AD and MN). Next, 

we need preprocess all the observed values with different units, scales, degrees of uncertainty, 

etc. to obtain dimensionless functions characterizing the system as a whole, AD vs. MN cases. 

Barabási’s group released the MN dataset as gzipped ASCII files.16 The numbers of nodes 

(metabolites), input-output links (metabolic reactions), node degree, topological indices, full 

names, and codes of >40 bacteria species studied here appear in Table S02 (Supporting 

Information S00). In the IF approach, the chemical compounds' structures of ADs (fk(Di) 

values) were fused with structural information included in the MNs datasets of the various 

species. 

The output f(vij)calc was calculated as a linear combination of scores for various ci. cj is a generic 

term that refers to a variety of multi-output assay circumstances, such as targets, assays, 

organisms, strains, and MN. In this sense, c0 is the biological activity vij Minimal Inhibitory 

Concentration (MIC (μg·mL-1)) or Minimal Bactericide Concentration (MBC (μg·mL-1)), etc, 

c1 is the specific protein (ChEMBL database), c2 is the assay organism in experiment, c3 is the 

specific strain of assay organism, c4 is MN microorganism specie, c5 is the target type, and c7 

is mappings to the ChEMBL targets. Then, the parameters fk,, Δfi
k(cq), and ΔΔfi

k(cq) are the 

independent input variables and f(vij)= 1 is the input dependent variable. The molecular 

descriptors Dik, of linear indexes based on atoms, include fq (N, M, w) g, for each chemical qth. 

Eq. 1 shows the general definition of linear indexes based on atoms (Eq. 1). 

𝑓𝑞𝑘(𝐺, 𝑁1, 𝑀, 𝑤)𝑔 =  𝑓𝑞𝑘( 𝑤)𝑔 = ∑|𝑓𝑖|𝑔

𝑛𝑔

𝑖=1

  (1) 

Where N1 is the selected matrix norm (Manhattan distance), M is the graphic-theoretical 

electronic density matrix. While (w) is physicochemical weight used. In this case, Ghose-

Crippen LogP, electronegativity and volume of van der Waals. Finally, the different groups 

of atoms calculated for the compounds were: H (A) bond acceptors, C atoms in the aliphatic 

chain (C), donors of the H link (D), C atoms in the aromatic portion (P) and heteroatoms (X).38 

Next, we must define and obtain/calculate the values of all vectors corresponding to the 

structural descriptors Ddk and Dsk for the two subsystems. Additionally, we must define and 

obtain/calculate the vector elements cdj and csj with all AD and MN bacteria labels/assay 
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conditions. Following that, we transformed the estimated molecular descriptors Ddk and Dsk 

to Box–Jenkins MA operators. The PTOs estimated in this work include the chemical 

structure and/or physicochemical properties of the AD subsystem Δf(Ddk), as well as structural 

information about the bacteria's MN ΔΔf(Dsk). They were written in the form of deviation 

terms for each subsystem f(Ddk) and f(Dsk) with respect to the average value for the respective 

subsystems of reference <f(Ddk)cdj> and <f(Dsk)csj>. As a result, the initial terms f(Ddk) and 

f(Dsk) in these formulas denote the subsystem, while the averages denote the assay. The 

following equations were utilized (Eq. 2-3) 

𝛥𝑓(Ddk) = 𝑓(Ddk) − 〈𝑓(Ddk)〉𝐜dj
 (2) 

𝛥𝛥𝑓(Dsk) = 𝑓(Dsk) − 〈𝑓(Dsk)〉𝐜sj
          (3) 

2.3 IFPTML linear model 

The IFPTML model was obtained from the merger of several cheminformatics methods.  The 

output of the IFPTML model is the scoring function values f(vij)calc for the biological activity 

of the ith compound assayed in the jth preclinical assay with conditions cj= (c0, c1…. c7) against 

the sth bacteria species with MNs. The model starts with a value of reference f(vij)ref and adds 

the effect of perturbations (PT operators) in the conditions of assay, or the bacteria strain used, 

etc. The PT operators Δfk based on Box−Jenkins moving average (MA) operators has been used 

in previous works to solve different problems.32, 39, 40 The linear classification models were 

developed using Linear Discriminant Analysis (LDA). Eq.4 shows the general form of the 

IFPTML linear models. 

𝑓(𝑣ij)calc = 𝑎 + 𝑏 ⋅ 𝑓(𝑣ij)𝑟𝑒𝑓 + ∑ 𝑐𝑘 · 𝛥𝑓(Ddk) + ∑ 𝑑𝑘 · 𝛥𝛥𝑓(Dsk)

𝑘=5

𝑘=0

𝑘=5

𝑘=0

(4) 

The following statistical parameters were utilized to validate the model: the number of 

training examples (N), and the overall values of Model quality was determined using 

parameters such as Sensitivity (Sn), Specificity (Sp), Chi-square (χ2), and the p-level. LDA 

algorithms was run using the STATISTICA 6.0 program 41 Fig, 4.2. shows the IFPTML 

information processing detailed workflow. 
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Figure 4.2. IFPTML information processing detailed workflow. 

2.4 IFPTML non-linear models 

Next, we decided to run several non-linear ML algorithms developed using the Waikato 

Environment for Knowledge Analysis (WEKA) software package, version 3.8.5.42 In total, we 

used 17 ML algorithms to build these alternative non-linear IFPTML classification models 

from the present dataset. These included classifiers such as Bayesian networks, decision trees, 

ensemble methods, rule-based classifiers, neural networks, and functions. Each technique 

adopts a learning algorithm to identify the model that best fits the relationship between the 

input data set and the class. The Bayesian Network K2/B (BN) and Nave Bayes (NBN) 

classifiers were based on Bayes' theorem. The classification trees applied were the pruned or 

unpruned C4.5 decision tree (J48) developed by Ross Quinlan43 and the Random Forest (RF) 

classifier.44 This technique is an extension of Bagging, with the addition of randomized feature 

selection. RF first selects a subset of features at random, then performs the traditional split 

selection technique inside the selected feature subset.45 

Different ensemble methods were used. They include meta-algorithms that aim at combining 

weak learners' skills such as bagging, boosting, voting, and stacking. In the first case, bagging 

methods are used to lower the variance of a base estimator (e.g., decision tree) before 

constructing an ensemble from it. They are a quick and easy technique to improve a single 

model without changing the fundamental base algorithm.45 An implementation of CART 

(SimpleCart) was applied based on classifiers trees in the Weka package.46 The second group 

is the boosting algorithms that are capable of transforming weak learners into strong ones. 

Intuitively, a weak learner does little better than a random guess, whereas a strong learner 

performs quite near to perfect.45 In this work, we used Adaboost, LogitBoost, and 

MultiBoosting, which are three representative algorithms of this family of algorithms.47 These 

models were built in conjunction with classifiers trees based on entropy (DecisionStump). 

Voting is a straightforward ensemble procedure that generates two or more sub-models. Each 
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sub-model provides predictions that are merged in some way, such as by taking the mean or 

the mode of the predictions, allowing each sub-model to vote on what the outcome should be.48 

The last, Stacking is a general method considered as a simple extension to voting ensembles, 

where an individual learner is combined. Individuals are considered first-level learners, while 

combiners are called second-level or meta-learners.45 In this work, the meta classifier ZeroR 

was used as the base model. 

Artificial neural network (ANN) is a non-linear classification approach inspired by biological 

neural networks. Objects (compounds) are represented by feature vectors. Each feature is sent 

to an input neuron with a weight. Input is routed to the output layer via hidden layers based on 

these weights.49 The output layer mixes these signals (e.g., activity or class prediction). 

Weights are initially set at random. The weights are changed as the network is fed data, so that 

the overall output approximates the observed endpoint values for the chemicals.50 In our work 

the “hidden” layer was proved from 2-13 ranging in1-unit steps (a single layer of hidden) to 

predict of the antibacterial compounds. 

Other functions such as Support vector machine (SVM), k Nearest Neighbors (KNN), and 

Binary Logistic Regression (BLR) were implemented. SVM is a method that works well with 

noisy data.51 Identifying a stiff choice hyperplane that leads to the greatest possible margins 

across activity classes leads to models. For non-linear data, use kernels to transpose the original 

feature space to higher dimensions. In this work, we used the polynomial kernel function. KNN 

is a lazy learning classification method, that allocates new compounds to the most prevalent 

class of known compounds in their near neighborhood.52 Several combinations of parameters 

were proven. One of them, the number of nearest neighbors (k), was varied from 1-20 (in 1-

unit step). In addition, we employed the four distances (Chebyshev, Edit, Euclidean and 

Manhattan) of the LinearNNSearch in a feature space. Finally, BLR is an algorithm that can 

be used for predicting a categorical variable (e.g., Yes/No, Pass/Fail) using a set of independent 

variables (s).53, 54  

In the case of the Rule-based classifiers, three methods were applied. PART is a decision list 

that builds a partial C4.5 decision tree in each iteration and transforms the best leaf into a rule,55 

RIpple-DOwn Rule (Ridor) learner generates a default rule and then the exceptions to the 

default with the least (weighted) error rate. The exceptions are a set of rules that predict classes 

other than those chosen by the default,56 and the Fuzzy Unordered Rules Induction Algorithm 

(FURIA) is a novel fuzzy rule-based classification method introduced by Hühn and 

Hüllermeier.57 

The performance metrics used were Area Under Receiver Operating Characteristic (AUROC), 

Accuracy (Acc), Sn, Sp, Precision, and F1 score.  

Domain of Applicability (DoA). Producing reliable forecasts necessitates an understanding of 

the model's limitations and applicability. The Domain of Applicability (DoA) can be defined 

either using similarity measures based on Euclidean distances between all training and test 

composites or with the leverage approach.58, 59 We employ the leveraging technique. After 

calculating the hat matrix for the structural domain, the residuals and LOO residuals of the 
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response variables were plotted against the leverages (the diagonal values of the hat matrix (h) 

in order to visually define the DoA. (Williams plot).60 Chemicals that exceeded specified 

threshold values were identified as outliers in terms of reactivity and leverage. Three residuals 

were used as response thresholds. Leverage was set to the critical hat value (h* = 3(p+1)/n, 

where p denotes the number of model descriptors and n is the number of training compounds. 
60 Gramatica 61, classified (h > h) as a structurally significant chemical. In addition to test 

series, the DoA was performed for an external series composed of 224719 compounds (without 

antibacterial activity). 

 

3. RESULTS AND DISCUSSION 

3.1 IFPTML linear model. 

The IFPTML model projected is the combination of PTML modeling and Information Fusion 

(IF) procedures. The model starts with the expected value of biological activity and 

incorporates the effect of different perturbations in the system. The model has two input 

variables: the expected-value function f(vij)ref and the Δf, ΔΔf PT operators. In Table 4.1, we 

show selected variables of the IFPTML-LDA model for the different conditions used in the 

model. The criteria selected are those expected to be more relevant in biological activity (AD 

vs. MR) terms. 

Table 4.1. IFPTML workflow variables model. 

Phase Step Name Symbol  Information Formula / Description 

IF 

0 Value vij 
Biological 

Activity 

Value vij (MIC, MBC, etc.) of the 

parameter (labeled c0) determined for the 

ith compound under assay conditions cj = 

[c0, c1, c2 … cmax] 

1 
Objective 

function 
f(vij)obs 

Biological 

Activity 

f(vij)obs = 1 IF (vij > cutoffj AND d(c0) = 1) 

OR (vij < cutoffj AND d(c0) = -1) ELSE 

f(vij)obs = 0 

Boolean variable obtained from the 

original biological activity value vij 

2 
Reference 

Function 
f(vij)ref 

Drugs 

Chemical 

Structure 

f14q 

Expected value of Linear indices (C atoms 

in aliphatic chain/Non-Stochastic Matrix 

Order 2) 

PT 3 

 

Δf1 

Drug 

structure vs. 

Protein 

accession 

[d14q - <d14q(c1q)>]  

 

Account for variability on Linear indices 

(C atoms in aliphatic chain/Non-

Stochastic Matrix Order 2) of the Drug 

structure of metabolite q in the MN, 

under same conditions c1 (specific 

protein of the ChEMBL database) 
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 Δf2 

Drug 

structure vs. 

MN 

Microorgan

ism 

[d14q - <d14q(c4q)>] 

Account for variability on Linear indices 

(C atoms in aliphatic chain/Non-

Stochastic Matrix Order 2) of the Drug 

structure of metabolite q in the MN, 

concerning MN Microorganism (c4) 

 Δf3 

Drug 

structure vs. 

Target 

mapping 

ChEMBL 

[d15q - <d15q(c7q)>] 

Account for variability on Linear indices 

(C atoms in aliphatic chain/Non-

Stochastic Matrix Order 3) of the Drug 

structure of metabolite q in the MN, under 

conditions c7 (Mappings to ChEMBL 

targets). It included different Target 

Mapping ChEMBL such as Non-

molecular, Protein Unassigned, 

Homologous protein, Multiple proteins, 

Multiple homologous proteins, 

Homologous protein complex, Molecular 

(non-protein), Protein complex. 

 Δf4 

Drug 

structure vs. 

Target type 

[d14q - <d14q(c5q)>] 

Account for variability on Linear indices 

(C atoms in aliphatic chain/Non-

Stochastic Matrix Order 2) of the Drug 

structure of metabolite q in the MN, under 

conditions c5 (Different target types). It 

included different types of ChEMBL 

targets as Organism, Single protein, 

Unchecked, Cell-line, Nucleic-Acid, 

Protein complex, ADMET, Protein 

family, No target, Tissue, Protein complex 

group, Protein-protein interaction. 

 Δf5 

Drug 

structure vs. 

Protein 

accession 

[d15q - <d15q(c1q)>] 

Account for variability on Linear indices 

(C atoms in aliphatic chain/Non-

Stochastic Matrix Order 3) of the Drug 

structure of metabolite q in the MN, 

respect to a specific protein in a ChEMBL 

database (c1). 

 Δf6 [d15q - <d15q(c5q)>] 
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Drug 

structure vs. 

Target type 

Account for variability on Linear indices 

(C atoms in aliphatic chain/Non-

Stochastic Matrix Order 3) of the Drug 

structure of metabolite q in the MN, under 

same conditions c5 (Different target 

types). 

4 

 ΔΔf1 

Metabolic 

Network 

structure vs. 

Protein 

Accession 

[d01o - <d01o(c1o)>] - [d01s - <d01s(c5s)>] 

Account for variability on Linear indices 

(Global indices /Non-Stochastic Matrix 

Order 1) of the query organism o and the 

organism of reference s in the MN, for the 

same specific protein in a ChEMBL 

database (c1). 

 ΔΔf2 

Metabolic 

Network 

structure vs. 

Assay 

Strain 

[d00o - <d00o(c3o)>] - [d00s - <d00s(c3s)>] 

Account for variability on Linear indices 

(Global indices /Non-Stochastic Matrix 

Order 0) of the query organism o and the 

organism of reference s in the MN, with 

respect to the structure of the drugs 

assayed against the same strain of assay 

organism (c3). 

 ΔΔf3 

Metabolic 

Network 

structure vs. 

MN 

Microorgan

ism 

[d02o - <d02o(c4o)>] - [d02s - <d02s(c4s)>] 

Account for variability on Linear indices 

(Global indices /Non-Stochastic Matrix 

Order 2) of the query organism o and the 

organism of reference s in the MN, with 

respect to the same MN Microorganism 

(c4) 

 ΔΔf4 

Metabolic 

Network vs. 

MN 

Microorgan

ism 

[d03o - <d03o (c4o)>] - [d03s - <d03s(c4s)>] 

Account for variability on Linear indices 

(Global indices /Non-Stochastic Matrix 

Order 3) of the query organism o and the 

organism of reference s in the MN, with 

respect to same MN Microorganism (c4) 

 ΔΔf5 

Metabolic 

Network 

structure vs. 

Target Type 

[d03o - <d03o(c5o)>] - [d03s  - <d03s (c5s)>] 

Account for variability on Linear indices 

(Global indices /Non-Stochastic Matrix 

Order 3) of the query organism o and the 

organism of reference s in the MN, with 

the same types of ChEMBL targets. 
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The probabilities used a priori to fit the model were set π0 (f(vij= 0)) = π1(f(vij= 1)) = 0.5. The 

molecular descriptors were transformed to Box−Jenkins moving averages. Two Duplex Linear 

Indices Atom based Level descriptors were used (with C atoms in aliphatic chain and Total 

(Global)indices). In the first, Non-Stochastic Matrix Order 2 and 3 were included in the model. 

In the second, the Non-Stochastic Matrix Order varied from 0 to 3. The output of the model vij 

is a scoring function of the biological activity value of the ith drug in the different combinations 

of conditions of assay csj and cdj. The classification of one compound as active in this work is 

based on the desirability d(c0) of the biological property vij(c0) and the predefined value of 

cutoff. The threshold value of the biological activity vij (c0) (MIC) to consider one compound 

as active or not was set as less than 4213 μg.mL-1 or less than the average for properties non 

measured. The drugs were considered to be active (f(vij)obs=1) when vij > cutoff and priori 

desirability function d(c0) =1; then f(vij)obs=1. Furthermore, if vij<cutoff and d(c0) =−1 then 

f(vij)obs=1; otherwise, f(vij)obs=0.When we want to maximize the value of biological activity 

sij(c0), for example, inhibition (%), the desirability d(c0) =1. On the contrary, d(c0) =−1 when 

we want to minimize the value of biological activity vij(c0); for example, potency (nM), IC50 

(nM), Ki(nM), or EC50 (nM). Otherwise, when the necessity of maximizing or minimizing vij(c0) 

is unclear, the value of desirability was assumed to be d(c0) =0. In any case, the values of d(c0) 

for the same property may be customized (switched) for a specific situation.62 

Eq 5 show detailed explanation about all the input variables analyze, and the equation of the 

best model found is the following: 

𝑓(𝑣𝑖𝑗) = −5.475 + 0.023 ⋅ 𝑓(𝑣𝑖𝑗)𝑟𝑒𝑓 − 0.047 ⋅ 𝛥𝑓1 − 0.008 ⋅ 𝛥𝑓2 − 0.002 ⋅ 𝛥𝑓3 + 0.030 ⋅

𝛥𝑓4 + 0.014 ⋅ 𝛥𝑓5 − 0.011 ⋅ 𝛥𝑓6 + 0.829 ⋅ 𝛥𝛥𝑓1 − 0.178 ⋅ 𝛥𝛥𝑓2 − 3.349 ⋅ 𝛥𝛥𝑓3 + 2.229 ⋅

𝛥𝛥𝑓4 + 0.498 ⋅ 𝛥𝛥𝑓5 (5) 

 

N=115662, χ2=25774.24, p<0.01 

Statistical parameters of the model are N is the number of cases applied to train the model, χ2 

is the Chi-square statistics, and p is the p-level. 

As shown in Eq. 9, the parameters Δf1, Δf2, Δf3, Δf6, ΔΔf2, and ΔΔf3 all have a negative effect 

on the numerical score of the biological activity; these parameters correspond to the boundary 

conditions for the measure, target, and data curation, respectively. On the other hand, the 

ML 

5 
Output 

Function 
f(vij)calc 

Score of 

Biological 

Activity 

f(vij)calc= a + bk f(vij)ref + ck·Δf(Ddk) + 

dk·ΔΔf(Dsk) 

Real valued output of the model 

6 
Predicted 

Probability 

p(f(vij)obs 

= 1) 

Score of 

Biological 

Activity 

p(f(vij)obs = 1) = 1/(1 – (π0)/(π1))·exp(- 

f(vij)calc)) 

Predicted probability of f(vij)obs = 1 

7 
Predicted 

Class 
f(vij)obs 

Predicted 

Class 

f(vij)obs = 1 IF p(f(vij)obs = 1) > 0.5 ELSE 

f(vij)obs = 0 

Predicted Biological Activity Class 
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variables f(vij)ref, Δf4, Δf5, ΔΔf1, ΔΔf4, and ΔΔf5 (protein, MN organism, and target type) all 

influence the activity positively. Additionally, we may obtain the parameters that contribute 

the most to the activity using this equation. In the instance of ΔΔf4, the coefficient is 2.229, 

which is a very realistic value considering that the most significant variations in activity, even 

among identical compounds, are explained by the diverse techniques employed to assess the 

activity. The same holds true for the ΔΔf3 parameter, which has a coefficient of 3.349 in the 

equation and contributes significantly negatively to activity. 

Table 4.2 shows the classification matrices and summarizes the results in terms of Sn = 

sensitivity (%), Sp = specificity (%), and Acc = accuracy (%) for training and validation series. 

The IFPTML-LDA model presented very high-performance parameters in both training and 

validation series. The cases in training and validation series were selected with a random, 

stratified, and representative sampling. The obtained IFPTML model classified correctly the 

~74.3% of the cases in the training and validation set. Both series have adequate values of 

sensitivity (Sn) and specificity (Sp) ~76%, and 72%, respectively. In general, the IFPTML 

model has a good performance for describing the correct/incorrect connectivity pattern as 

showed in the performance of the statistical parameters of the current classification equation. 

Table 4.2. IFPTML linear model results for ChEMBL AD vs.MNs. 

Series 

Set 

Stat. 

Parama 

% f(vij)pred =0 f(vij)pred =1 

Training f(vij)pred=0 Sp 76.1 45254 14227 

 f(vij)pred=1 Sn 72.3 15548 40633 

 Total Acc 74.3   

Validation f(vij)pred=0 Sp 76.2 15107 4719 

 f(vij)pred=1 Sn 72.1 5219 13507 

 Total Acc 74.2   

Screening f(vij)pred=0 Sp - 0 0 

 f(sij)pred=1 Sn 72.3 62243 162476 

 Total Acc 72.3   

aSn=sensitivity (%), Sp=specificity (%), and Acc= accuracy (%). The positive (1) and negative control 

cases (0) were assigned as follows: if a priori desirability function d (c0) =−1, then f(vij)obs=1 when 

sij<cutoff. In addition, if d(c0) =1, 0, then f(vij)obs=1 when vij > cutoff; otherwise, f(vij)obs=0. 

3.2 IFPTML Non-Linear models. 

We also trained another type of IFPTML model using a different class of ML algorithms. 

Specifically, we used 17 ML classifiers. The performance of these models is summarized in 

Table 4.3, and the graphical representation of the results can be visualized in Figures 4.3 and 

4.4. 

Table 4.3. IFPTML-Non-linear AD vs. MN systems models. 

Modelsa Sub-set b Stat.c Val. (%) 
Class Observed AURO

Cd 
Pred. 1 0 

KNN t Sn 99.18 1 58991 2549 0.998 
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Sp 95.46 0 490 53632 

v 
Sn 91.92 1 18224 2446 

0.924 
Sp 86.94 0 1602 16280 

RF 

t 
Sn 98.63 1 58669 2229 

0.953 
Sp 96.03 0 812 53952 

v 
Sn 93.96 1 18628 2430 

0.945 
Sp 87.02 0 1198 16296 

Bagging 

t 
Sn 97.46 1 57969 6722 

0.982 
Sp 88.04 0 1512 49459 

v 
Sn 95.86 1 19005 2823 

0.96 
Sp 84.92 0 821 15903 

BN 

t  
Sn 95.48 1 56791 7870 

0.964 
Sp 85.99 0 2690 48311 

v 
Sn 93.91 1 18619 2970 

0.947 
Sp 84.14 0 1207 15756 

J48-DT 

t 
Sn 93.90 1 27684 8160 

0.958 
Sp 85.48 0 1797 48021 

v 
Sn 96.00 1 2976 22009 

0.944 
Sp 84.11 0 15750 16543 

Part 

t 
Sn 93.06 1 55352 8508 

0.955 
Sp 84.86 0 4129 47673 

v 
Sn 92.41 1 18321 2972 

0.946 
Sp 84.13 0 1505 15754 

MLP 

t 
Sn 92.10 1 54783 12241 

0.888 
Sp 78.21 0 4698 43940 

v 
Sn 92.02 1 18243 4138 

0.885 
Sp 77.90 0 1583 14588 

FURIA 

t 
Sn 91.31 1 54315 11705 

0.871 
Sp 79.17 0 5166 44476 

v 
Sn 91.45 1 18131 3967 

0.869 
Sp 78.82 0 1695 14759 

Ridor 

t 
Sn 98.67 1 58687 13452 

0.874 
Sp 76.06 0 794 42729 

v 
Sn 98.31 1 19490 4615 

0.868 
Sp 75.36 0 336 14111 
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LogitBoost 

t 
Sn 79.87 1 47506 12025 

0.819 
Sp 78.60 0 11975 44156 

v 
Sn 79.84 1 15830 4078 

0.817  
Sp 78.22 0 3996 14648 

AdaBoost 

t 
Sn 86.14 1 51234 22219 

0.783  
Sp 60.45 0 8247 33962 

v 
Sn 85.98 1 17047 7527 

0.782  
Sp 59.80 0 2779 11199 

BLR 

t 
Sn 77.91 1 46343 17405 

0.722  
Sp 69.02 0 13138 38776 

v 
Sn 77.99 1 15463 5867 

0.769  
Sp 68.67 0 4363 12859 

SVM 

t 
Sn 76.09 1 45257 17959 

0.721  
Sp 68.03 0 14224 38222 

v 
Sn 76.02 1 15072 6050 

0.719  
Sp 67.69 0 4754 12676 

MultiBoostA

B 

t 
Sn 89.56 1 53274 40450 

0.623  
Sp 28.00 0 6207 15731 

v 
Sn 89.57 1 17759 13482 

0.622  
Sp 28.00 0 2067 5244 

NBN 

t  
Sn 84.04 1 49988 38683 

0.628  
Sp 31.15 0 9493 17498 

v 
Sn 84.02 1 16657 12900 

0.629  
Sp 31.11 0 3169 5826 

Stacking 

(ZeroR) 

t 
Sn 100.00 1 59481 56181 

0.5  
Sp 0.00 0 0 0 

v 
Sn 100.00 1 19826 18726 

0.5  
Sp 0.00 0 0 0 

Vote 

t 
Sn 100.00 1 59481 56181 

0.5  
Sp 0.00 0 0 0 

v 
Sn 100.00 1 19826 18726 

0.5  
Sp 0.00 0 0 0 

a ML-Classification Models. kNN= k Nearest Neighbors, RF= Random Forest, Bagging, BN= Bayes 

network, J48-DT=J48 decision tree, Part, MLP= Multi-Layer Perceptron. FURIA= Fuzzy Unordered 

Rules Induction Algorithm, Ridor= RIpple-DOwn Rule, LogitBoost, AdaBoost, BLR= Binary 

Logistic Regression, SVM= Support Vector Machines, MultiBoostAB, NBN= Naïve Bayes, 

Stacking (ZeroR), and Vote. b Sub-set. t=: Training set, v= Validation set. c Stat. Statistical 

performance.  Sn=Sensibility, Sp= Specificity. dAUROC: Area under ROC value. 
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 As expected, almost 10 of the 17 ML models displayed better Sn and Sp values than the 

IFPTML-LDA model. They are KNN, RF, Bagging, BN, J48-DT, Part, MLP, FURIA, Ridor, 

andLogitBoost. However, AdaBoost, BLR, SVM, MultiBoostAB, NBN, Stacking (ZeroR), 

and Vote show a lower values of Sp than the IFPTML-LDA model. In the case of the Stacking 

(ZeroR), and Vote (Sn=0%) and AUROC=0.5, it indicates that classification is no better than 

random guessing. Thus, these techniques are not suitable for AD vs.MN data processing. In 

terms of accuracy, the first ten algorithms mentioned also presented good performance, with a 

global Ac= 80 – 97.4%, suggesting that this dataset herein is predominated by non-linear 

classification.  

 

 

Figure. 4.3. Detailed score for the Training Set considering 17 ML techniques applied. 

Sn: Sensibility, Sp: Specificity, Prec.: Precision, F1_sc.: F1 score, Acc.: Accuracy, and AUROC: Area 

under ROC value. 

 

Otherwise, in the validation set, the same algorithms KNN, RF, Bagging, BN, J48-DT, Part, 

MLP, FURIA, Ridor, LogitBoost are superior to the IFPTML-LDA model. In addition, these 

techniques display adequate goodness-of-fit and goodness-of-prediction. They are consistently 

performing well on both the training and test sets (see Table 4.3). In particular, the Sn rates for 

active and inactive classes are >91%, suggesting high discriminant ability for further virtual 

screening applications. 
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Figure. 4.4. Detailed score for the Test Set considering 17 ML technique applied. 

Sn: Sensibility, Sp: Specificity, Prec.: Precision, F1_sc.: F1 score, Acc.: Accuracy, and AUROC: Area 

under ROC value. 

 

In the training/validation set, the KNN, Bagging, BN, J48, PART, and RF show AUROC>0.95. 

The ROC curve is created by plotting the true positive rate against the false-positive rate at 

different thresholds. Values close to 1 indicate that classification is almost perfect across all 

thresholds; thus, these six techniques are considered good classifiers for a dataset. They are the 

most accurate models as determined by a consensus examination of their overall accuracy and 

AUROC parameters. However, the improvement from LDA to ML models was not 

considerable and selecting a model suitable for virtual screening assays is challenging. 

Domain of Applicability (DoA). 

The DoA of the IFPTML-LDA model is illustrated in Figure 4.5, as a double ordinate plot of 

residuals test sets (first ordinate) and plot of residuals external validation (second ordinate) vs. 

leverages (abscissa) (William Plot). Within the domain, the examples fall within a rectangular 

area defined by a band of two residuals and a leverage threshold of h = 0.00033.19, 63, 64 As can 

be observed, the majority of test and validation examples fall inside this range. There are, 

however, a significant number of examples with leverage greater than the threshold but with 

LOO and standard residuals under the limits. In these instances, where the leverage value is 

greater than h*, the prediction should be regarded as untrustworthy. Greater than warning 

leverage (h*) indicates that the composite's expected reaction can be extrapolated from the 

model, and hence the predicted value should be used with extreme caution. As a result, there 

are no instances in either the training or prediction series where the residual values are greater 
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than the range defined for residuals and residual LOO. As a result, there are no outliers 

reported. As a result, our model is capable of accurately predicting new chemicals in this DoA.  

 

Figure 4.5. William´s plot of residuals versus leverages for AD vs MN in the test and 

external validation sets. 

3.3 Comparison with other heterogeneous series of compounds approaches 

The linear and non-linear IFPTML of the AD vs. MN were compared with other reports based 

on a heterogeneous series of compounds previously described in the literature of discovering 

antibacterial compounds. Table 4.4 shows a comparison between the present model and some 

of these models is shown (Heterogeneous Series of compounds, Drug family >10). An analysis 

of Table 4.4 reveals that current work has the greatest dataset (very complex and notably larger 

data set in the number of compounds). Only six previous models have more than 10000 

compounds. The model presented in this report has a large number of parameters (12) when 

compared with other models that have 6-8 as the number of parameters. However, models 3, 

5, and 6 show a greater number of variables 62 65 and 21 66, respectively. 

The LDA predominates among the techniques used to realize the models (6 of the 13). Two 

model include KNN (Model 3 and 5)65, 66 and ANN (Model 4 and 10),23, 67 even though SVM 

is analyzed in one model (Model 6),66 the Iterative stochastic elimination (ISE),68 and Self-

organizing map (SOM) (Kohonen).69 In the case of accuracy, it should be noted that all 

compared models have precision values higher than 75 %. However, the accuracy values of the 

RF and KNN techniques in this study (97.4%) are higher than those of other studies carried out 
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with similar data sets, such as Nocedo et al.70 (88.6%). The predominant validation technique 

was the external predicting series used in 12 out of 13 models, including this one. This shows 

that we used a proven validation technique. As shown in Table 4.4 (Model 1-3, 7, and 8), the 

models are notable to predict multiple species, they only predict a single type of 

microorganism. 

Table 4.4. Chemoinformatic approaches for the development of novel antibacterial 

compounds (Heterogeneous Series of compounds, Drug family >10).  

Modela nb Act. b Var.b Tech.c 
Acc 

(%) 
Vald 

Multi 

Speciese 
MOf Netg Ref.h 

1 667 363 7 LDA 92.9 i No No No 71 

2 2030 1006 8 LDA 90.4 i No No No 72 

3 4346 520 62 kNN 95 ii No No No 65 

4 11576 4208 4 ANN 97 i ST Yes No 23 

5 7517 2066 21 kNN 99.3 i MRSA Yes No 66 

6 7517 2066 21 SVM 92.9 i MRSA Yes No 66 

7 37834 13203 5 LDA 95 i No Yes No 73 

8 2230 1051 3 LDA 86.3 i No  No 74 

9 30181 12474 6 LDA 90 i FN/PI Yes No 67 

10 54682 19912 6 ANN 90 i PS Yes No 67 

11 3500 628 4 ISE 94.6 i MBS Yes No 68 

12 74567 8724 6 SOM 75.5 i EC Yes No 69 

13 83605 10030 6 LDA 88.6 i MBS Yes Yes 70 

14 115662 42209 12 LDA 74.3 i MBS Yes Yes 
This 

work 

15 115662 42209 12 kNN 97.4 i MBS Yes Yes  

16 115662 42209 12 RF 97.4 i MBS Yes Yes  

a Number of the Model. b n=Total number of cases in training and/or validation series, Act=Active drugs, 

and Vars. = Variables in the model. c Technique: LDA = Linear discriminant analysis, ANN= artificial 

neural network, BLR=binary logistic regression, BN=Bayesian Network, DT=decision tree, 

ISE=Iterative stochastic elimination, SOM=self-organizing map (Kohonen), RF=Random Forest., 

KNN=K-Nearest-Neighbor. d Val: Validation Methods. (i) external predicting series, test set, (ii) 100-

times-averaged resubstitution technique. e Multi Species: MBS=Multiple bacterial strain, MRSA= 
Methicillin-resistant Staphylococcus aureus, FN=Fusobacterium necrophorum, PI=Prevotella 

intermedia, EC=Escherichia coli, PS=Pseudomonas spp, SS=Streptococcus spp. f MO = Multi Output: 

multi-output models can predict more than one type of biological activity (MIC, IC50, MBC, etc.). g Net. 

=MNs: Models able to account for changes in the MNs of different microorganisms. h Reference. 

Recently, multispecies models have been developed; some of them predict biological 

activity exclusively for members of the same genus or subgroup of bacteria (Models 4 to 13). 

The current IFPTML model can predict any compound's antibacterial activity against a various 

bacteria strain, including their MNs. This makes it possible to vary a certain reaction inside a 

bacterium and identify the changes in its metabolic pathway. As a result, binding sites that the 
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drug's activity can target are revealed. Furthermore, the drug search is handled. The model's 

adoption can reduce the number of candidates, resulting in time and resource savings.  

 

4. CONCLUSIONS 

Bacterial resistance to conventional antibiotics has been attributed to the use of broad-

spectrum antibiotics. Understanding the metabolism of pathogens plays an important role in 

discovering new drugs and targets for antibacterial treatment. The influence of changes in 

metabolic networks on the capacity for survival of different microorganisms has been 

demonstrated. In this chapter, we developed an NIFPTML-LDA model for predicting the 

antibacterial activity, taking into account the structure of MN. Regarding the methodological 

objectives, the linear model included two subsystems (preclinical antibacterial drugs and 

metabolic networks of different microorganisms) and showed a good fit. The information 

from the two subsystems did not significantly influence the robustness of the models to 

analyze the problem presented in the thesis. 

Regarding the practical objectives, NIFPTML-LDA models allowed us to predict the 

antibacterial activity and suitability of >160 000 biological assays of >50000 compounds vs. 

>25 different types of bacteria species with >90 strains. The model showed good predictive 

power (Sn, Sp, and Acc = 74%) compared to other ML linear and non-linear models (e.g., 

SOM models) reported in this work and from literature. Among the 17 ML algorithms used 

to create non-linear IFPTML classification models, the KNN, Bagging, BN, J48, PART, and 

RF models show the highest AUROC, Accuracy, F1 score, Sn, and Sp values (>85% in 

training/validation sets). We can conclude that the IFPTML model reported could be a simple, 

useful, and adaptable instrument, reducing time and costs in antibacterial drug research. 
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Artificial Intelligence/Machine Learning (AI/ML) algorithms may speed up the design of 

DADNP systems formed by Antibacterial Drugs (AD) and Nanoparticles (NP). In this work, 

we used IFPTML = Information Fusion (IF) + Perturbation-Theory (PT) + Machine Learning 

(ML) algorithm for the first time to study of a large dataset of putative DADNP systems 

composed by >165000 ChEMBL AD assays and 300 NP assays vs. multiple bacteria species. 

We trained alternative models with Linear Discriminant Analysis (LDA), Artificial Neural 

Networks (ANN), Bayesian Networks (BNN), K-Nearest Neighbor (KNN) and other 

algorithms.  IFPTML-LDA model was simpler with values of Sp ≈ 90% and Sn ≈ 74% in both 

training (>124K cases) and validation (>41K cases) series. IFPTML-ANN and KNN models 

are notably more complicated even when they are more balanced Sn ≈ Sp ≈ 88.5% - 99.0% and 

AUROC ≈ 0.94 - 0.99 in both series. We also carried out a simulation (>1900 calculations) of 

the expected behavior for putative DADNPs in 72 different biological assays. The putative 

DADNPs studied are formed by 27 different drugs with multiple classes of NP and types of 

coats. In addition, we tested the validity of our additive model with 80 DADNP complexes 

experimentally synthetized and biologically tested (reported in >45 papers). All these DADNPs 

show values of MIC < 50 µg·mL-1 (cutoff used) better that MIC of AD and NP alone 

(synergistic or additive effect). The assays involve DADNP complexes with 10 types of NP, 6 

coating materials, NP size range 5-100 nm vs. 15 different antibiotics, and 12 bacteria species. 

The IFPTML-LDA model classified correctly 100% (80 out of 80) DADNP complexes as 

biologically active. IFPMTL additive strategy may become a useful tool to assist the design of 

DADNP systems for antibacterial therapy taking into consideration only information about AD 

and NP components by separate. 

 

1. INTRODUCTION 

  The emergence of multidrug-resistant (MDR) strains, the high cost of Antibacterial Drug 

(AD) development, and other factors push researchers to look for alternatives to traditional 

antibiotic treatments.2, 3 On the other hand, Nanoparticles (NP) are gaining importance as drug 

delivery systems in treating different infectious diseases.4-6 NP could also be modified in 

different ways to act as alternatives to antibiotics. For instance, NP may be coated with an 

extracellular vesicle membrane and loaded with AD compounds.7 These NP delivery systems 

are very interesting, but one classic AD is still the only active agent in the system. Alternatively, 

NP may be loaded with more than one active agent. For instance, a NP loaded with curcumine 

and miltefosine has synergistic anti-leishmanial antimicrobial activity.8 NP loaded with 

Ciprofloxacin (AD), papain (mucolytic), and dextran sulfate (polyelectrolyte) has shown to be 

promising for bronchiectasis therapy.9 In addition, the NP of Ag, Cu, Zn ions, and zinc and 

copper oxides have demonstrated antibacterial activity per se.10 For example, nanoscale gold 

particles have antibacterial properties against Gram-positive and Gram-negative bacteria.11 

Compared to standard antibiotics, they do not efficiently produce drug resistance because they 

target various molecules (DNA and protein) in bacteria, making it difficult for bacteria to 

establish a system that can defend against all damage.10 Antibacterial mechanisms primarily 

involve damaging the cytoderm and biofilms, producing reactive oxygen species, and releasing 

metal ions that cause bacterial cell damage12.  
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 Interestingly, some drug-free NP may also present an antibacterial activity per se.13, 14 This 

opens an area designing new NP systems with dual antibacterial functionalities.  For simplicity, 

we are going to call them Dual Antibacterial Drug-Nanoparticles (DADNP) systems. Then, 

DADNPs are systems with dual AD activity due to AD and the NP core per se. DADNP has 

two or more active AD agents being one of them the NP core. For instance, Shahbandeh et al. 

designed a DADNP of AgNO3NP loaded with Imipenem and demonstrated the antibacterial 

activity against MDR P. aeruginosa isolates of the DADANP and the free components (AD 

and NP) by separate.15 Unfortunately, DADNP discovery may be time and resources 

consuming due to the very high number of AD and NP candidates to be tested and the high 

number of boundary conditions cj to be defined for the experiments.  

In this context, we should consider that Artificial Intelligence (AI) and/or Machine Learning 

(ML) algorithms have been used in nanoscience’s to reduce time and costs. For instance, Mu 

et al. present a model that investigates the link between 26 physicochemical parameters of 51 

Metal oxide Nanoparticles (MeONPs) and cytotoxicity in E. coli.16 The parameters of enthalpy 

of gaseous cation production (4H) and polarization force (Z/r) were shown to be important in 

the poisonous effect of these MeONPs. The model also suggested that MeONPs and their 

released metal ions could jointly promote DNA damage and cell death in E. coli. Previous 

nanoparticles cytotoxicity models were developed to provide a scientific basis for creating safe 

nanomaterials. Puzyn et al., developed a model to describe the cytotoxicity of 17 different types 

of MeONPs to E. coli.17 Pan et al., identified the major factors responsible for MeONP 

cytotoxicity in various mechanisms of E. coli bacteria and HaCaT cells 18. Fjodorova et al. used 

artificial neural network models to associate NP cytotoxicity with metal cation charge, metal 

electronegativity, and oxide metal atom count.19 Zhou et al. used MLR and SVM to predict NP 

cytotoxicity in E. coli using DFT-derived (B3LYP technique) quantum-chemical descriptors.20 

Kaweeteerawat et al. modeled cytotoxicity using a different dataset of 24 MeONPs and a 

classification-based support SVM. The conduction band energy and hydration enthalpy were 

revealed to be relevant factors to predict E. coli toxicity.21 Recently, Kar et al. analyzed a 

diverse dataset of  25 MeONP using ML classification methods for understanding the 

mechanisms of E. coli nanotoxicity.22  

In fact, AI/ML models have been used to solve different problems in the interface of chemistry 

and infectious diseases research.23-26  Consequently, AI/ML are expected to be useful also for 

selecting NP and AD candidates for experimental testing of DADNP systems.27 However, a 

critical drawback for using AI/ML methods to design new DADNP is the insufficient number 

of DADNP systems that have been experimentally tested to date. According to Gajewicz et al. 

this factor may be affecting the development of AI/ML models in all NP research areas.28 A 

temporal solution may be the selection of the components (AD and NP) of the new DADNP 

based on the individual properties of each component. In general, we can call this the additive 

approach to the design of NP drug delivery systems. This approach has been used to predict 

NP-Anticancer drugs and NP-Antimalarial drugs delivery systems before. The main weakness 

of the additive approach is that it may underscore positive synergies. It could predict a positive 

DADNP with a lower (but still high) probability than expected. However, the main advantage 

is the critical reduction of time, resources, and use of laboratory animals.29, 30 One crucial 

opportunity for applying the additive approach is the very high number of AD already tested. 



Chapter 5 

104 
 

For instance, the public database ChEMBL has thousands of preclinical assays of candidates 

to AD hits.31-35 According to the additive approach, the more active ChEMBL compounds may 

be good AD candidates for DANP systems. In addition, there are no public databases of 

antibacterial NP, but an increasing number of examples have been reported in scientific 

literature.36-53  

Another important drawback of developing DADNP systems with AI/ML methods is the 

high complexity of the data to be analyzed. Vectors of experimental conditions may represent 

the AD preclinical assays cdj different from those of the NP experiments cnj. It includes, on one 

side different cd0 = AD activity parameters to be measured (IC50, MIC, etc.), cd1 = bacteria 

species, cd2 = bacteria strains for AD assays. On the other side, we have multiple cn0 = NP 

activity parameters to be measured (IC50, MIC, etc.), cn1 = bacteria species, cn2 = NP shape, cn3 

= coating agents, etc. Consequently, DADNP discovery by the additive method needs an 

AI/ML technique to carry out multi-output and multi-label classification.54-57 The AI/ML 

method used also includes a pre-processing stage to carry out Information Fusion (IF) of the 

two datasets (AD and NP). Unfortunately, almost all AI/ML models reported using only the 

structural/molecular descriptors of the AD or NP system as an input. Consequently, they omit 

all other non-structural variables, experimental conditions, or AD or NP labels, respectively.58-

62 As a result, they are not multi-output models and/or do not predict outputs for multiple labels, 

different organisms, cell lines.17, 63-74 Sizochenko et al. published one of the few methods to 

predict NP toxicity for multiple species.75 Predicting NP toxicity and not the antibacterial 

activity is also the main goal of many of these studies.17 76 

In order to solve this kind of problem, González-Díaz et al. developed IFPTML, a multi-

output, and input-coded multi-label ML technique. IFPTML acronym is self-explanatory and 

stands for Perturbation-Theory (PT) + Machine Learning (ML) + Information Fusion (IF) 

algorithm.77 IFPTML model output is the scoring function f(vij)calc. IFPTML has been used in 

molecular sciences and also infectious disease research to complex data analysis tasks. It 

includes mapping drug, target protein, or parasite vaccine epitopes vs. information about cell 

lines, assay organisms, host organisms, bacteria metabolic networks, parasite spreading 

networks, or even the social network of HIV/AIDS epidemiology in the USA at the county 

level.78-85 IFPTML has also been applied to NP systems considering NP structure and coating 

agents, NP synthesis conditions, loaded drug structure, co-therapy loaded drugs, assay 

conditions, etc.29, 30, 86-88 Accordingly, in this work, we developed the first IFPTML model for 

DADNP systems design, including AD and NP components at the same time.  

2. MATERIALS AND METHODS  

2.1 IFPTML DADNP data analysis phases  

Firstly, we obtained the outcomes of many preclinical assays of NP and AD from two datasets 

already published.89, 90 This involved getting for each NP and AD the vectors Dnk and Ddk of 

molecular descriptors. We also obtained the respective vectors cnj and cdj of labels/assay 

conditions. Next, we transformed all the elements of the vectors Ddk and Dnk into the values 

Sh(Ddk) and Sh(Dnk) of Shannon’s information measures. After that, we calculated the values 

ΔSh(Ddk)cdj and ΔSh(Dnk)cnj of the respective  PTOs. Subsequently, we performed an IF 

procedure with the NP and AD data to obtain the DADNP working dataset. Last, we 

trained/validated alternative IFPTML models using different ML techniques. In Figure 5.1, 
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we depict graphically the general workflow used to obtain the IFPTML DADNP predictive 

model.  

 
Figure 5.1. IFPTML algorithm workflow for DADNP systems.  

Step 1 Data collection. Step 2. Data pre-processing. Step 3. Information Fusion (NP and AD 

assay). Step 4. Shannon-entropy scaling and PTO calculation. Step 5. Models’ construction 

and evaluation. Step 6. DADNP systems prediction.  

 

2.2 ChEMBL and NP datasets 

The ChEMBL dataset use here includes >160 000 outcomes of AD preclinical assays for 55 

931 compounds. Each compound has the outcome of at least 1 out of >300 biological activity 

parameters (MIC, IC50, etc.). Each compound was assayed against at least 1 out of >90 bacteria 

strains of >25 bacterial species. The chemical structure of each AD candidate compound was 

encoded into a vector of molecular descriptors Ddk = [Dd1, Dd2, Dd3]. The elements of this vector 

are the molecular descriptors of the ith compound: Dd1 = Logarithm of the n-Octanol/Water 

Partition coefficient (LOGPi), Dd2 = Topological Polar Surface Area (PSAi), Dd3 = Number of 

Violations of Lipinski’s Rule (NVLRi). The specific labels or conditions of each assay were 

encoded into the vectors cdj = [cd0, cd1, cd2]. The elements of these vectors are cd0 = name of the 

biological parameter (MIC, IC50, etc.), cd1 = name of the bacteria species, cd2 = label or code of 

the bacteria strain. Please do not confuse the numeric value f the biological activity parameter 

vij(cd0) with the name of the biological activity parameter cd0. This dataset was obtained from 

a previous dataset reported before by our group after a new verification and pre-processing.90 

We also used a previously reported dataset with the outcomes of Nn = 300 preclinical assays 

of metal, metal salt, and metal oxide NPs against different bacteria species (s).89 The NPs have 

a core made of metal, metal oxide, or metal salt. The NP assays have multiple experimental 
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variables conditioning the nature of the assay cnj. We listed all the specific conditions of one 

assay as a vector cnj = [cn1, cn2, cn3 ….. cnmax].  It includes the report of 1 out of 4 possible NP 

action parameters for 34 possible bacteria/strains. The data also contains NP shapes, NP 

physicochemical properties, NP coating agents, and time of assay.89 

2.3 IF step for observed biological parameters 

The first step to obtaining the IFPTML model for DADNP systems was defining and 

obtaining the values of the objective function. The objective function is the function we want 

to fit with a ML model using the vectors of descriptors for each case Dk. The objective function 

is often obtained after a mathematical transformation of the original theoretical or observed 

property of the system under study. 91-93 In the present IFPTML model, we have two sets of 

observed values (vij(cd0) and vnj(cn0)) and two sets of input vectors (Ddk and Dnk) for the AD 

and NP subsystems (Sd and Sn), respectively. In addition, we found many different biological 

parameters cd0 and cn0. For instance, we find properties like Minimal Inhibitory Concentration 

(MIC (μg·mL-1)) or Minimal Bactericide Concentration (MBC (μg·mL-1)), etc. Do not help to 

solve the problem that the vij(cd0) and vnj(cn0) values compiled are not exact numbers in many 

cases. Many reports in both datasets are of the type of MIC (μg·mL-1) < 100. In addition, we 

have to consider that to obtain optimal DADNP systems; we want to maximize some properties 

and minimize others. We conceptualize this fact with the parameter desirability. 

The parameter desirability was set d(cd0) = 1 or d(cn0) = 1 when we want to maximize the 

value vij(cd0) or vnj(cn0) respectively. Remember, the different AD and NP parameter have 

names or labels cd0 and cn0, respectively. Examples of biological activity parameters (cd0) with 

d(cd0) = 1 are the Selectivity ratio, Inhibition (%), etc. Conversely, negative desirability d(cd0) 

= -1 parameters are for instance MIC(μg·mL-1), IC50(μg·mL-1), etc. These facts increase the 

uncertainty of the data and make it difficult to develop a regression model. To summarize, it is 

a common practice in drug discovery to use a cutoff value to split AD or even NP assays into 

promising and not promising. Consequently, to obtain our final objective function, we must 

pre-process all observed vij(cd0) and vnj(cn0) values to eliminate or minimize inaccuracies. In 

addition, we need to re-scale vij(cd0) and vnj(cn0) values to obtain a dimensionless variable not 

affected by scales. Last, the IF processing step for both parameters vij(cd0) and vnj(cn0) allows 

obtaining an objective function of the putative DADNP system. In Figure 5.2, we depict a 

workflow summarizing all the steps of information flow (variable scaling, fusion, processing, 

etc.) of the IFPTML algorithm used here.  
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Figure 5.2. IFPTML detailed information processing workflow. 

Firstly, we re-scaled the original parameters vij(cd0) and vnj(cn0) to obtain the corresponding 

Boolean (dummy) functions f(vij(cd0)) obs and f(vnj(cn0))obs. The scaling of vij(cd0) was as follow: 

f(vij(cd0)) obs = 1 when vij(cd0) > cutoff and d(cd0) = 1 or vij(cd0) < cutoff and desirability d(cd0) = 

-1, f(vij(cd0)) = 0 otherwise. By analogy, vnj(cn0) scaling was:  f(vnj(cn0))obs = 1 when vnj(cn0)  > 

cutoff and d(cn0) = 1 or vnj(cn0) < cutoff and d(cn0) = -1, f(vij(cd0), vnj(cn0)) = 0 otherwise. The 

values f(vij(cd0))obs = 1 and  f(vnj(cn0))obs = 1  points to an strong desired effect of both the AD 

and the NP over the target bacteria.10 Accordingly, the objective function was defined as follow 

f(vij(cd0), vnj(cn0))obs = f(vij(cd0))obs· f(vnj(cn0))obs. Then as result of the IF-scaling f(vij(cd0), 

vnj(cn0)) obs depends on the ith AD compound, the nth NP system, the cth CA used as coat, the sth 

specie of assay, and the jth sets of assay conditions. Otherwise, f(vij(cd0), vnj(cn0))obs = 0, meaning 

that at least one of the previous conditions fail. 

2.4 IF step for function of reference 

Once we defined the objective function, we must define the input variables of the IFPTML 

model. The first and unique of his kind input variable of this model is the function of reference 

f(vij(cd0), vnj(cn0))ref. In IFPTML models f(vij(cd0), vnj(cn0)) ref place an special role because this 

function represent the expected probability f(vij(cd0), vnj(cn0))ref = p(f(vij(cd0), vnj(cn0))ref = 1) of 

obtaining the desired level of activity for a property obtained from already known systems. The 

model starts with the value this function for an already known system or sub-set of systems 

used as reference. Later the IFPTML model adds the effect of deviations (perturbations) of the 

query system from the systems of reference (PT ideas, see next section). Consequently, 

f(vij(cd0), vnj(cn0))ref is also a function based on observed (not predicted) outcomes. In this work, 

the reference function for putative DADNP systems was obtained by IF-scaling of the original 

f(vij, vnj)obs = f(vij)obs ·f(vnj)obs
   

   
IFPTML
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vij(cd0) and vnj(cn0) values as well. In the previous section, we explained how to transform these 

values into the f(vij(cd0))obs and f(vnj(cn0))obs functions. Once we get the values of these functions 

for all cases on the AD and NP datasets, we are in the position to count the number of positive 

outcomes n(f(vij(cd0)) = 1) and n(f(vnj(cn0)) = 1). Next, we can divide these values by the total 

number of cases obtaining the functions of reference (expected probabilities) for the AD and 

NP systems alone. These values are f(vij(cd0))ref = p(f(vij(cd0))ref = 1) = n(f(vij(cd0))ref = 1)/n(cn0)j 

and f(vnj(cn0))ref = p(f(vnj(cn0))ref = 1) = n(f(vnj(cn0))ref = 1)/n(cn0)j. From this, the calculation of 

the function of reference is straightforward to realize as the product of the probabilities for each 

subsystem f(vij(cd0), vnj(cn0))ref = p(f(vij(cd0), vnj(cn0))ref = 1) = p(f(vij(cd0))ref = 1)·p(f(vnj(cn0))ref = 

1). The function of reference used here is then another expression of the IF step (union) of both 

AD and NP datasets.  

2.5 Shannon-entropy scaling of physicochemical information 

This IFPTML analysis considers the vectors Ddk and Dnk having as components the 

physicochemical parameters or molecular descriptors of the AD and NP. The vector Dnk also 

includes the descriptors Dc1k and Dc2k of the two possible NP coat agents. They are very diverse 

but almost are physicochemical properties. The AD vector lists the elements: Ddk = [Dd1, Dd2, 

Dd3, Dd4]. These elements are the AD descriptors Dd1 = Logarithm of the n-Octanol/Water 

Partition coefficients (LOGPi), Dd2 = Topological Polar Surface Area (PSAi), Dd3 = Number of 

Violations to Lipinski’s Rule (NVLRi), and Dd4 = Molecular Weight (Mwi). The NP vector 

lists the elements: Dnk = [Dn1, Dn2, Dn3, Dn4, Dn5, Dn6, Dn7, Dn8]. They are: Dn1 = NP Molar 

Volume (AMV), Dn2 = Average Atomic Electronegativity (AAE), Dn3 = Average Atomic 

Polarizability (AAP), and Dn4 = Average Particle Size (APS) of the NP core in nanometers 

(nm). In addition, the vector includes the elements: Dn5 = LOGPca1, Dn6 = PSAca1, Dn5 = 

LOGPca2 and Dn6 = PSAca2 of the first (ca1) and second (ca2) NP coating agents (ca). They have 

different units and scales, making it necessary to the re-scaling and/or standardization of all the 

information into the same scale towards the subsequent IF and ML processing. As one IF 

process is involved, we selected Shannon’s entropy information measure as the scaling 

transformation. All the AD, NP, and NP coat variables have been transformed using the 

following equations. 

p(Dk) =
1

(1+Exp (−Dk /1000)
   (1) 

 

 Sh(Dk) = −p(Dk) · log⁡(p(Dk)) (2)  
2.6 PT data preprocessing 

In addition to Ddk and Dnk vectors, this IFPTML analysis also considers the vectors cdj and 

cnj as components of the non-numerical experimental conditions and/or labels for AD and NP 

assays. Using the Sh(Ddk) and Sh(Dnk) values explained before, we can calculate the PTOs of 

the AD and NP assays to account for this additional information. We used here two kinds of 

PTOs. The first is the AD and NP MA PTOs (Equation 3 and Equation 4). They are used to 

account for AD and NP structural and assay information. The PTOs ΔSh(Ddk) and ΔSh(Dnk) 

codify AD and NP structural and/or physicochemical information on the parameters Sh(Ddk) 

and ΔSh(Dnk), respectively. The PTOs ΔSh(Ddk) and ΔSh(Dnk) codify AD and NP biological 

assay information with the parameter <Sh(Ddk)cdj> and <Sh(Dnk)cnj>, respectively. They are the 
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values of the are average operator < > for Sh(Ddk) and ΔSh(Dnk) running overall cases with the 

same sub-set of experimental conditions cdj and cnj, respectively. Consequently, they should 

give specific values for each assay with at least one different element (experimental condition) 

of the vector cdj or cnj.  In consequence, they can be used to indicate which assay we are using.29, 

30, 86-88 Please, see values of <Sh(Ddk)cdj> and <Sh(Dnk)cnj> values in Table S1 of Supporting 

Information file SI00.doc. The second type of PTOs used is the AD-NP coat MA Balance 

(MAB) PTO ΔΔSh(Dca1, Dca2, Ddk) (Equation 5). The MAB PTO accounts for the similarities 

in the information of AD vs. the NP coating agent. PTOs based directly on MA and/or linear 

and non-linear transformations of MA have been used for AD and NP discovery before.30, 88, 94 

However, the MAB is reported here for the first time (see Results and Discussion). The MAS 

is another expression of the combined IF+PT additive processing of both AD and NP datasets. 

ΔSh(Ddk) = ΔSh(Ddk) − 〈Sh(Ddk)𝐜dj
〉        (3) 

ΔSh(Dnk) = ΔSh(Dnk) − 〈Sh(Dnk)𝐜nj
〉        (4) 

ΔΔSh(Dca1, Dca2, Ddk) = ΔSh(Ddk) − [ΔSh(Dca1) + ΔSh( Dca2)]        (5) 

2.7 IF step and design of training and validation subsets 

The dataset cases should be assigned to the training (set = t) or validation (set = v) series. The 

procedure of cases sampling used should be random, representative, and stratified.95 As an 

additional condition, our sampling should take into consideration the IF-scaling process. 

Firstly, we downloaded the AD activity dataset from ChEMBL, which has random uploads 

from many sources worldwide and randomly selected journal papers dealing with NP 

antibacterial activity. Next, we organized all the cases based on the following labels cd0, cd1, 

cd2, cn0, cn1, and cn2. All cases were ordered by sorting the labels from A to Z (remember, these 

are non-numeric variables in nature). The order of priority of the labels on the process of 

ordering was cd0 => cn0 => cd1 => cn1 => cd2 => cn2. It means that first, we ordered the cases by 

cd0, next by cn0, and so on. This priority order takes into account the IF process by alternating 

labels from both AD and NP datasets. After that, 3 out of each 4 cases were assigned to set = t 

and 1 out of 4 sets = v from top to down of the list. This increases the probability that almost 

all the levels of each label are represented in set = t and set = v (stratified sampling). This also 

increases the probability that almost all levels of each label are in a proportion 3/4 in set = t 

and 1/3 in set = v (representative sampling). The 75% vs. 25% proportion between set = t and 

set = v is not the only but is very commonly used. 95 

2.8 IFPTML additive cross-over linear model 

IFPTML DADNP model uses as input the PTOs described above to encode information of 

the putative DADNP system and the respective subsystems AD and NP. Joint objective 

function f(vij, vnj)obs, reference function f(vij, vnj)ref, post IF PTOs ΔΔSh(D1c, D2c, Ddk), and 

resulting output function f(vij, vnj)calc performs dataset cross-over codification of AD and NP 

information. IFPTML linear models tested for this system have the following general equation: 
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𝑓(vij , vnj )𝑐𝑎𝑙𝑐
= a0 + a1 · 𝑓(vij , vnj )𝑟𝑒𝑓

      

+ ∑ a𝑘 ,𝑗 · ∆Sh

𝑘=𝑘𝑚𝑎𝑥 ,𝑗 =𝑗𝑚𝑎𝑥

𝑘=1,𝑗 =1

(𝐷𝑘𝑖 )cd j
       (6) 

 

 

  + ∑ a𝑘 ,𝑗 · ∆Sh

𝑘=𝑘𝑚𝑎𝑥 ,𝑗 =𝑗𝑚𝑎𝑥

𝑘=1,𝑗 =1

(𝐷𝑘𝑛 )cn j
  + ∑ a𝑘 ,𝑗 · Δ∆Sh

𝑘=𝑘𝑚𝑎𝑥 ,𝑗 =𝑗𝑚𝑎𝑥

𝑘=1,𝑗 =1

(𝐷𝑘𝑖 , 𝐷𝑘𝑛 )cdj ,cn j
 

                                                         
2.9 IFPTML models training and validation 

The LDA algorithm was used to find the preliminary model in the first instance. We used 

Forward Step-Wise (FSW) procedure as a variable selection strategy to select the input features 

automatically. The program used was STATISTICA 6.0.95

 

After that, an Expert-Guided 

Selection (EGS) heuristic was used to retrain the LDA model with the more important features 

selected by FSW and other missing features. The quality of all the IFPTML models found was 

assed calculating Sensitivity (Sn), Specificity (Sp), Accuracy (Ac), Chi-square (χ2), and the p-

level.96, 97 

 

3. RESULTS AND DISCUSSION 

3.1 IFPTML DADNP additive linear model 

As we mentioned in the introduction, ML techniques are being applied to solve multiple 

practical problems in Nanotechnology.98-103 In this work, we focused on using the IFPTML 

algorithm to map AD vs. NP preclinical assays. Very recently, Speck-Planche et al. reported 

many IFPTML models of the toxicity and antimicrobial activity of NPs vs. multiple species in 

different conditions but did not consider the AD as part of the system.87, 89, 104 Curiously, 

Nocedo et al., published an IFPTML model that predicts AD activity vs. multiple species, 

conditions of the assay, etc. but does not consider NP as part of the system.90 Consequently, 

both models fail to consider both components of the DADNP system (AD and NP) altogether. 

Accordingly, in this work, we developed the first IFPTML model for DADNP systems design, 

including AD and NP components at the same time. Consequently, it has multiple AD assay 

conditions, assay strains, and biological properties but NP types, coating agents, etc. In so 

doing, as part of the IF-scaling process, we created the objective function f(vij, vnj)obs = f(vij)obs· 

f(vnj)obs. These functions minimize the effect of uncertainty and eliminate the heterogeneity of 

scales. After calculating the PTOs (input variables), we used the ML techniques to fit the f(vij, 

vnj)obs function an obtain the IFPTML models. The best IFPTML-LDA model obtained for the 

design of DADNP systems was the following. 
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𝑓(vij , vnj )𝑐𝑎𝑙𝑐
= 71.148 + 4.353 · 𝑓(vij , vnj )𝑟𝑒𝑓

 − 1351.098 · ∆Sh(𝐿𝑂𝐺𝑃𝑖)cd j
      (7) 

+440.516 · ∆Sh(𝐴𝑀𝑉𝑛 )cn j
− 36.049 · ∆Sh(𝐴𝑃𝑛 )cn j

 

+120.600 · ∆Sh(𝐴𝑃𝑆𝑛 )cn j
+ 1562.732 · ∆Sh(𝑡)cn j

 

+31.828 · ∆∆Sh(𝑃𝑆𝐴𝑐𝑎1, 𝑃𝑆𝐴𝑐𝑎2, 𝑃𝑆𝐴𝑖 )cd j ,cn j
 

 

Ntrain = 124318   χ2 = 30385.73     p − level < 0.05  
 The output function f(vij, vnj)calc is the real-valued numeric function that may be used to scoring 

DADNP systems. The f(vij, vnj)calc function was obtained by fitting the objective function 

f(vij(cd0), vnj(cn0))obs with the ML algorithm using the PTOs as input variables. The quality of 

all the IFPTML models found was assessed by calculating Sn, Sp, Ac, χ2, and the p-level.95 

The Sn, Sp, and Ac are >75%; in fact, they are in the range of 79-92% overall (including 

training and validation series). These parameters were in the correct ranges reported in the 

literature for ML classification techniques (see Table 5.1). 96, 97 This model includes all the 

essential variables AD structure and assay conditions, NP properties, CA structure, NP assay 

conditions, etc.  

Table 5.1. IFPTML DADNP model results summary. 

f(vij, vnj)obs Stat. (%) f(vij, vnj)pred 

Train  
 

1 0 

0 Sp 90.6 104394 10891 

1 Sn 74.3 2331 6742 

Total Ac 89.4   

Validation Stat. (%) 0 1 

0 Sp 90.5 34792 3637 

1 Sn 73.5 802 2222 

Total Ac 89.3   

 

 Notably, the MA PTOs were not able to account for all the relevant information. In the 

particular case of CA structure, the FSW was unable to include the simple MA PTOs ΔSh(Dca1) 

and ΔSh(Dca2). The failure of FSW to get ΔSh(Dca1) and ΔSh(Dca2) of the CAs is due to the low 

variance of these parameters and the low variability of the experimental data reported. 

However, based on Occam’s principle, we should use the minimum necessary features to solve 

the problem (no more, no less).105 Consequently, as part of the IF-scaling process, we calculated 

the PTO input variables of the type MABs represented by ΔΔSh(Dca1, Dca2, Di). MABs account 

for the similarities/dissimilarities (perturbations) on the information of AD vs. the CA used as 

NP coating. PTOs based directly on MA and/or linear and non-linear transformations of MA 

have been used for AD and NP discovery before.30, 88, 94 However, the MAB is reported here 

for the first time. The MA PTOs used here to account for information of the NP or AD datasets. 

They have been calculated previous to the IF process and run over one single dataset. 

Consequently, they cannot account for information on the AD-NP pairs that are candidates to 

form the DADNP. Conversely, MAB is a post-IF PTOs accounting for information on both the 

AD and the NP. More precisely, MABs quantify the physicochemical information of AD and 

the NP coating system using the Sh(Ddk) and Sh(Dnk) descriptors. MABs also quantify the 
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experimental conditions and/or non-numerical labels cdj and cnj of the AD and NP assays 

through the parameters <Sh(Ddk)cdj> and <Sh(Dnk)cnj>, see Equation 8.  

ΔΔSh(Dca1, Dca2, Ddk) = ΔSh(Ddk) − [ΔSh(Dca1) + ΔSh( Dca2)]        (8) 

ΔΔSh(Dca1, Dca2, Ddk) = [Sh(Ddk) − 〈Sh(Ddk)𝐜dj
〉] − 

{[Sh(Dca1k) − 〈Sh(Dca1k)𝐜nj
〉] − [Sh(Dca2k) − 〈Sh(Dca2k)𝐜nj

〉]} 

 In this sense, MABs belong to an essentially new class of crossover operators involving 

information of more than one data set simultaneously. It is important to note that the MABs 

are linear PTOs. Consequently, in this work, we can only calculate homogeneous MABs with 

all the parameters Ddk and Dnk of the exact nature (same property and units). Specifically, in 

this work, we tested only the MAB PTOs ΔΔSh(LOGP1c, LOGP2c, LOGPi) and ΔΔSh(PSAca1, 

PSAca2, PSAi) based on the LOGP (LOGPca1, LOGPca2, LOGPi) and PSA (PSAca1, PSAca2, 

PSAi) values of the ith AD and the first and second CAs respectively. In any case, Shannon’s 

entropy eliminates the original units transforming all the parameters to the same scale. It opens 

the door to the use of heterogeneous MABs based on descriptors with different scales and units.  

3.2 IFPTML-ANN linear vs. non-linear models 

 We also used ANN to test the linear hypothesis validity and propose alternative non-linear 

models. ANN linear models or Linear Neural Networks (LNN) are similar to LDA models 

because both are linear equations. Consequently, we used the IFPTML-LNN model to test the 

strength of the linear additive relationship among PTOs and the DADNP objective function. 

IFPTML-LNN models reported here presented high Sn and Sp ≈ 79 – 80% values in the 

training and validation series, see Table 5.2. Similar to the IFPTML-LDA model, the Sp and 

Sn values are slightly unbalanced concerning each other but near to constant if we compare 

training vs. validation series. The Area Under Receiver Operating Characteristic (AUROC)95 

curve values are 0.86-0.87 for these models´ training and validation series. Specifically, 

AUROC values of IFPTML-LNN models are significantly different from random (RND) 

behavior with AUROC = 0.5,95 see Figure 5.3.  

All this confirms the strength of the linear hypothesis used here. However, the values of Sn and 

Sp obtained still have a margin from improvement. Consequently, we increased the number of 

variables in the IFPTML-LNN models from 9 to 10 and 11. In this study, no significant change 

was detected. As a result, we also considered the non-linear hypothesis here to increase Sp and 

Sn values. The IFPTML-MLP 9:9-8-1:1 model with nine neurons in the input layer (input 

variables) and eight neurons in the hided layer showed more balanced SN and Sp ≈ 88% values. 

See the summary of results in Table 5.2. See detailed results for all cases in Supporting 

Information file SI01.xlsx. More complicated IFPTML-MLP2 models with two hidden layers 

do not show significant improvement.  
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Table 5.2. IFPTML-ANN DADNP systems models. 

 

IFPTML-ANN Sub Stat. Val. f(vij(cd0), vnj(cn0))  Observed AUROC 

Modelsa set  (%) Predicted 1 0  

MLP 6:6-8-8-1:1 

 
BP100,CG20,CG1b 

t Sn 88.7 1 8049 12216 
0.94 

 Sp 89.4 0 1024 103070 
 

v Sn 88.0 1 2662 4015 
0.95 

 Sp 89.6 0 362 34413 
 

MLP 7:7-10-8-1:1 

 
BP100,CG20,CG1b 

t Sn 86.8 1 7872 15450 
0.93 

 Sp 86.6 0 1201 99836 
 

v Sn 86.0 1 2602 5090 0.92 

 Sp 86.8 0 422 33338 
 

MLP 9:9-8-1:1 

 
BP100,CG20,CG1b 

t Sn 88.5 1 8030 13413 0.94 

 Sp 88.4 0 1043 101873 
 

v Sn 88.5 1 2676 4460 
0.94 

 Sp 88.4 0 348 33968 
 

LNN 9:9-1:1 

 
PI 

t Sn 80.3 1 7282 23035 
0.87 

 Sp 80.0 0 1791 92251  

v Sn 79.7 1 2411 7723 0.86 

 Sp 79.9 0 613 30705  

LNN 10:10-1:1 t Sn 80.3 1 7285 23052 
0.87 
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PI 

 Sp 80.0 0 1788 92234  

v Sn 79.8 1 2412 7726 0.86 

 Sp 79.9 0 612 30702 

 

LNN 11:11-1:1 

 
PI 

t Sn 80.4 1 7294 22849 

0.87 

 Sp 80.2 0 1779 92437  

v Sn 79.7 1 2410 7664 
0.86 

 Sp 80.1 0 614 30764  

Considering all the previous factors, we were pivoting between IFPTML-LDA or IFPTML-

LNN model and the IFPTML-MLP model. A critical point in favor of the IFPTML-MLP model 

is his notably higher value of AUROC = 0.94 and the notably better behavior (shape) of the 

ROC curve concerning the IFPTML-LNN linear models and RND classifier behavior, see 

Figure 5.3. Once again, Occam’s razor comes to the rescue herein by checking if minimal 

necessary features (no more, no less) are being considered.105 We carried out a feature 

sensitivity analysis on the input variables. 

 
Figure 5.3. AUROC analysis of IFPTML-MLP and IFPTML-LNN models. 
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In Figure 5.4, we can see that the IFPMTL-LNN models include important parameters from 

the EGS point of view. Almost all parameters have a significant contribution with a Sensitivity 

≥ 1.95 However, in most cases, it is only marginally higher with a Sensitivity ≈ 1.00 – 1.08. On 

the other hand, the IFPTML-MLP model also includes the important parameters according to 

the EGS criteria, but they have notably higher sensitivity values ≈ 1.00 – 2.52. MLP2 has even 

higher values of feature Sensitivity ≈ 1.00 – 3.31. However, as we mentioned before, there is 

no gain on Sp and Sn values to justify the notably higher complexity of the model, see Figure 

5.4. 

 
Figure 5.4. IFPTML-ANN model input variable sensitivity analysis for AD&NP, AD, and 

NP subsystems.  

3.3 IFPTML-WEKA Non-Linear models 

 Next, we decided to run several non-linear ML algorithms implemented on other software. 

They can be seen as an alternative to the algorithms implemented in STATISTICA. In total, 

we used six ML algorithms to build these alternative non-linear IFPTML classification models 

from the present dataset. These models were developed using the Waikato Environment for 

Knowledge Analysis (WEKA) software package, version 3.8.0. 106. These included decision 

tree classifiers, rule-based classifiers, neural networks, Bayesian networks, and functions. Each 

technique adopts a learning algorithm to identify the model that best fits the relationship 

between the input data set and the class. The classification algorithms applied were: Bayesian 

Network of K2 and B (BN), and Naïve Bayes (NBN) classifiers based on Bayes' theorem, J48 

decision tree, developed by Ross Quinlan 107 (J48), and Random Forest (RF) 108, k Nearest 

Neighbors (KNN) 109, Support Vector Machine (SVM),  Binary Logistic Regression (BLR) and 

Rule-based classifiers as PART 110, JRip 111 and Furia-C. 112 

Table 5.3 shows the typical statistical values of the IFPTML models based on these 

algorithms. The analysis of the values of all the IFPTML models (Training/Validation Series) 

present good performances (Accuracy global 88.8-98.3%), and five of them showed a better 

performance than the PTML DADNP model (89.4%) (except BN with 88.8%). Similarly, 

AUROC values are high (92-99%) in most cases. SVM and Jrip show low values (0.5 and 0.7, 

respectively). In the analysis and comparison of the ten algorithms used, RF and KNN stand 

Subsystem Variables t v t v t v t v t v t v

AD & NP f(cd0,cn0)ref 1.01 1.01 1.01 1.01 1.01 1.01 1.04 1.04 1.17 1.16 0 0

AD DSh(ALOGPi)cj 0 0 0 0 1.00 1.00 1.00 1.00 0 0 0 0

DSh(PSAi)cj 0 0 1.00 1.00 1.00 1.00 0 0 0 0 0 0

DSh(NVLRi)cj 1.00 1.00 1.00 1.00 1.00 1.00 1.03 1.03 1.02 1.02 1.01 0.99

NP DSh(AMVn)cn 1.01 1.01 1.01 1.01 1.01 1.01 1.43 1.42 1.54 1.53 1.96 1.94

DSh(AAEn)cn 1.00 1.00 1.00 1.00 1.00 1.00 2.52 2.49 2.35 2.30 3.31 3.25

DSh(AAPn)cn 1.01 1.01 1.01 1.01 1.01 1.00 2.10 2.16 0 0 3.01 3.04

DSh(APSn)cn 1.08 1.08 1.08 1.08 1.08 1.08 1.94 1.98 2.70 2.62 2.93 2.95

DSh(tn)cn 1.01 1.01 1.01 1.01 1.01 1.01 1.91 1.94 1.21 1.18 2.51 2.47

AD & NP DDSh(LOGPi, LOGPca1, LOGPca2) 1.00 1.00 1.00 1.00 1.00 1.00 0 0 0 0 1.20 1.22

DDSh(PSAi, PSAca1, PSAca2) 1.00 1.00 1.00 1.00 1.00 1.00 1.20 1.23 0 0 0 0

MLP2LNN MLP
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out as having the highest precision, sensitivity, specificity, and AUROC, good binary 

classification models for those data under study. On the other hand, RF, KNN, BN, and NBN 

models have high Sn and Sp values, and their differences are slight. They can be considered 

models with an excellent predictive capacity for positive and negative data. However, SVM, 

J48, PART, JRip, and BLR have very low Sn results, Sn (0-41.6%) and differ from Sp (~98%), 

which denotes that they are not good techniques to classify this data set. 

Table 5.3. IFPTML- WEKA Non-Linear models. 

Modelsa 
Sub Stat. Val. Class Observed AUROC 

set  (%) Pred. 1 0  

RF 

t 
Sn 77.9 1 7070 1424 

0.99 
Sp 98.8 0 2003 113862 

v 
Sn 85.7 1 2591 293 

0.99 
Sp 93 0 433 38135 

KNN 

t 
Sn 84.8 1 7694 2047 

0.99 
Sp 98.2 0 1379 113239 

v 
Sn 92.2 1 2788 490 

0.99 
Sp 98.7 0 236 37938 

BLR 

t 
Sn 19 1 1721 2525 

0.94 
Sp 98 0 7352 112761 

v 
Sn 19.6 1 592 827 

0.94 
Sp 98 0 2432 37601 

BN 

t 
Sn 89.2 1 8091 12999 

0.95 
Sp 89 0 982 102287 

v 
Sn 88.6 1 2678 4326 

0.95 
Sp 89 0 346 34102 

NBN 

t 
Sn 81.7 1 7413 11145 

0.92 
Sp 90 0 1660 104141 

v 
Sn 80.9 1 2446 3701 

0.92 
Sp 90 0 578 34727 

J48-DT 

t 
Sn 39.1 1 3547 1664 

0.96 
Sp 98.6 0 5526 113622 

v 
Sn 38 1 1148 598 

0.95 
Sp 98.4 0 1876 37830 

SVM t 
Sn 0.0 1 0 0 

0.5 
Sp 100 0 9073 115286 
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v 
Sn 0 1 0 0 

0.5 
Sp 100 0 3024 38428 

PART 

t 
Sn 35.7 1 3235 1511 

0.97 
Sp 98.7 0 5838 113775 

v 
Sn 35.1 1 1061 509 

0.96 
Sp 98.7 0 1963 37919 

JRip 

t 
Sn 41.6 1 3777 1973 

0.7 
Sp 98.3 0 5296 113313 

v 
Sn 41.4 1 1251 661 

0.7 
Sp 98.3 0 1773 37767 

Furia-C 

t 
Sn 63 1 5715 3358 

0.94 
Sp 94.3 0 6575 108711 

v 
Sn 62.5 1 1889 1135 

0.93 
Sp 94.3 0 2175 36253 

 

3.4 Comparison to previous models 

 Other works published previously study different problems involving NPs and/or AD 

components. In fact, most of these works study the antimicrobial activity of NPs or AD activity 

vs. multiple species using IFPTML models. However, none of these models studied both the 

biological activity of both NP and AD at the same time or the possibility of forming DADNP 

systems. For instance, Concu et al. developed a PTML-ANN model for jointly predicting 

multiple toxicological profiles of NPs under diverse experimental conditions.104 The model is 

derived from 54,371 NP-NP pair cases generated by applying the perturbation theory to a set 

of 260 unique NPs. However, this model of Concu et al. does not consider the information 

about AD biological activity. In the case of Luan et al., the model contains 1681 cases (NP–

NP pairs) derived from a raw dataset of 41 nanoparticles. 87 In other hand, Speck-Planche et 

al. created the model from 69,231 nanoparticle-nanoparticle (NP-NP) pairs built from the 

dataset of 300 NPs with varying chemical compositions, sizes, shapes, and surface coatings. 89 

On the other hand, Nocedo-Mena et al. developed a IFPTML model for antibacterial compound 

prediction that considers the structure of the compound, assay conditions (different activity 

parameters or bacterial strains), and variations in the MRN of the bacteria. 90 

In terms of the use of AI/ML algorithms in our work, we used several techniques such as 

LDA and ANN that have been used in previous works, as well as alternative non-linear 

IFPTML models (BN, RF,... etc) that increase the variability of processing algorithms that can 

be used to predict the output values of new data in AD-NP. The IFPTML-LDA and IFPTML-

ANN models’ values are adequate Sp ≈ 88.5-90% and Sn ≈ 74-88.5% training (>124K cases) 

and validation (>41K cases) series. Furthermore, the IFPTML-KNN model shows Sn and Sp 

≈ 85-99%, and AUROC = 0.99 in training/validation series outperformed. These findings are 

consistent with previous research. The IFPTML-LDA linear model in 90 presented values of Sp 

= 90.31/90.40 and Sn = 88.14/88.07 in training/validation series. On the other hand, 87 and 104  
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obtained 93% and ≈98% sensitivity values for the LDA and ANN perturbation models, 

respectively. In any case, the statistical comparison of our present model and the previous one 

is not very informative because they deal with different problems. In conclusion, the present 

model seems to be the first reported in the literature to predict DADNP systems by selecting 

both AD and NP components using AI/ML models. 

3.5 IFPTML DADNP simulation experiment 

We used the IFPTML model to simulate the values of probability of several DADNP. The 

linear IFPTML-LDA model was selected for its simplicity, and the value of probability 

p(DADNPin)cdj,cnj was calculated with which the DADNPin system formed by the ith ADi and 

the nth NPn is expected to have the desired level of biological activity on the assay conditions 

cdj and cnj. The study included NAD = 27 compounds with AD activity, approved by the FDA 

and/or demonstrated active in various assays. We also included NNP = 72 assays of NP vs. 

different bacteria species in the study, including multiple MDR strains. We carried out a total 

Ntot = NAD·NNP = 27·72 = 1944 calculations of the probability of success of the putative 

DADNP in the assays selected. The model identified some DADNP systems as promising for 

further assays. Only the 1% of the DADNP calculated were predicted with very high 

p(DADNPin)cdj,cnj > 0.9. Please see details on Supporting Information file S00.doc. In Figure 

5.5, we can see a selection of DADNP assays predicted.  

 

 
Figure 5.5. IFPTML-LDA DADNP systems simulation (selected results). 

The predicted DADNP assays contain ten classes of AD, including cephalosporins (CEF), 

quinolones (QUIN), tetracyclines (TETRA), macrolides (MACRO), Penicillin (PEN), 

Triazoles (TRIAZ), Imidazole’s (IMIDAZOL), etc. Among the results, the DADNP systems 

formed by Ciprofloxacin and Au NP coated with PDT/CQ, PDT/Mel, or PDT/Ach seem to be 

promising for further assays vs. MDR P. aeruginosa strains (p=0.809-0.838). However, the 

DADNP systems formed by Ciprofloxacin and Au NP coated with PDT/DMB could not halt 

the infection of the same strain. Slightly lower results on MDR P. aeruginosa strains can be 

obtained with DADNP systems formed by the same NP (Au) y coated (PDT/CQ, PDT/Mel, or 

PDT/Ach) but with Minocycline as AD (p=0.796-0.823). Other DADNP systems formed by 
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Ciprofloxacin and Au NP coated with PDT/CQ y PDT/CPB also show good results against 

MDR K. pneumoniae (p=0.809-0.853), although lower with PDT (p=0.651). However, this is 

only a punctual example, and all predictions made with this method should be taken with 

caution and corroborated experimentally. The great advantage of this IFPTML method is not 

the possibility of making a good prediction with a few tests. The actual use of the IFPTML 

model is to make fast and inexpensive preliminary in silico screening of large numbers of 

DADNP systems. After that, we can shortlist the more promising DADNP systems for 

experimental assay, taking into account p(DADNPin)cdj,cnj values and expert opinion, similar 

cases from the literature if any, etc. This could be a valuable tool to direct the experimental 

search instead of costly and slow trial and error tests. 

3.6 DADNP experimental cases simulation 

 In addition, we used the IFPTML model to predict the values of probability of several DADNP 

experimentally synthesized, biologically tested, and reported in the literature previously. The 

inclusion criteria for the study were the following. We included cases reporting 1) AD 

antibacterial activity, 2) NP antibacterial activity, and 3) the DADNP complex antibacterial 

activity. We included cases with both additive and synergistic activity of the DADNP. The 

cases selected have at least one report of one biological activity parameter. The revision 

included 45 papers in total finding positive DADNP cases in a total of 15 papers.113-127 From 

these papers, we extracted 80 reports of tests of DADNP complexes with at least one positive 

experimental outcome. The NP used to assemble the DADNP complexes have a size range 

from 5 nm to 100 nm. Some DADNP constructed after addition of the coat and the AD may 

present a size >100 nm. The AD used to assemble the DADNPs have also a wide range of 

hydrophobicity ranging from hydrophilic drugs (LOGP < 0) to lipophilic drugs (LOGP > 0).  

In all cases, the parameter determined experimentally for the AD, NP, and DADNP complex 

was the MIC(μg.mL-1). In all cases, MIC(μg.mL-1) < 50 (cutoff used in the model) for the 

DADNP complexes. The assay times reported were within the range 12 to 24 hours. Note that 

the design of the DADNP involve the use of coating agents that may help to increase the 

stability and/or bioavailability of the complexes over time.113-127 

In the Figure 5.6, we depict the surface scatterplot of experimental MIC(μg·mL-1) values vs. 

distribution histograms of NP size and AD hydrophobicity. The types of NP present were 

metallic NP (Ag, Au, and Zn), double metal NP (ZnCu), metal oxide NP (Fe3O4, CuO, ZnO, 

etc.), and metal salt (MoS2). The coating material used were mainly polymers as Triethylene 

Glycol (TEG), Polyethylene glycol (PEG), Thioglycolic acid (TGA), Polydopamine (PDA), 

Alginate and Chitosan. The cases cover a wide range of microorganisms including different 

strains of S. aureus, P. Aeruginosa, E. Faecium, E. Coli, E. faecalis, S. epidermidis, B. subtilis, 

A. Baumannii, S. enterica, S. mutans, E. faecium, M. luteus, and K. pneumoniae. Several strains 

of these microorganisms are Multi-Drug Resistant (MDR) strains; e.g., P. aeruginosa strains. 

Anyhow, the DADNP complexes found included a diverse group of AD such as QUIN 

(Ofloxacin, Ciprofloxacin,), TETRA (Tetracycline), MACRO (Gentamicin, Vancomycin, 

Rifampicin), PEN (Ampicillin, Meropenem), Lipopeptide (Daptomycin), Aminoglycoside 

(Tobramycin, Kanamycin, Streptomycin), Polypeptide (Polymyxin B), Glycylcycline 

(Tigecycline), and Amphenicols (Chloramphenicol). 113-127 
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Figure 5.6. MIC(μg·mL-1) Surface scatterplot vs. Histograms of NP size and AD 

Hydrophobicity distribution. 

 We can conclude that this experimental set of preclinical assays of DADNP complexes has 

a high structural and biological diversity. Intentionally, our original set of AD assays and NP 

assays use to assemble putative DADNP complexes a train our model has also a very high 

structural and biological diversity. It could help our additive model to learning how to 

discriminate active form non-active DADNP complexes from an additive approach. In fact, 

our IFPTML model was able to predict as positive all the cases (80 out of 80) with a high 

probability p(DADNPin)cdj,cnj > 0.99 in all cases (see Table 5.4). The result is very interesting 

because it supports the idea that our IFPTML additive model is able to identify properly 

DADNP complexes experimentally studied with high structural and biological diversity 

including both additive and synergic cases. Please see details on Supporting Information file 

S02.xlsx. 

 

 

 

 

 

 

 

Table 5.4. IFPTML study of experimentally tested DANP complexes. 
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Drug NP 

APSn  

cd1 = Specie 

MI

C 
Class. 

Obs.a 

Cla

ss. 

Pre

d.b 

p c t(h) 
d 

R

ef 

e (nm) 

(μg·

mL-

1) 

 Metal / Shape n.d. 

Vancomycin Au 5 E. faecium  4 1 1 0.99 12 119 

Vancomycin Au 5 E. coli 8 1 1 0.99 12 119 

Daptomycin  Au 50 S. aureus 2 1 1 0.99 24 123 

Gentamicin Au 16 E. coli 7.4 1 1 0.99 24 114 

Ampicillin Au 13.54 E. coli 45 1 1 0.99 24 125 

Streptomycin Au 13.54 E. coli 7 1 1 0.99 24 125 

Kanamycin Au 13.54 E. coli 12 1 1 0.99 24 125 

Ampicillin Au 13.54 M. luteus 0.45 1 1 0.99 24 125 

Streptomycin Au 13.54 M. luteus 17 1 1 0.99 24 125 

Kanamycin Au 13.54 M. luteus 23 1 1 0.99 24 125 

Ampicillin Au 13.54 S. aureus 0.37 1 1 0.99 24 125 

Kanamycin Au 13.54 S. aureus 5.8 1 1 0.99 24 125 

 Metal / Quasi-spherical 

Tetracycline Au 25 E. coli 6 1 1 0.99 20 115 

Tetracycline Au 25 S. aureus 16 1 1 0.99 20 115 

Tetracycline Ag 15 E. coli 16 1 1 0.99 20 115 

Tetracycline Ag 15 E. coli 25 1 1 0.99 20 115 

Tetracycline Ag 15 S. aureus 16 1 1 0.99 20 115 

Tetracycline Ag 15 E. coli 32 1 1 0.99 20 115 

Tetracycline Ag 15 S. aureus 32 1 1 0.99 20 115 

 Metal/ Spherical 

Meropenem CuZn 21 P. aeruginosa  25.2 1 1 0.99 24 116 

Ciprofloxacin CuZn 21 P. aeruginosa  3.2 1 1 0.99 24 116 

Vancomycin Ag 20.5 S. aureus 0.1 1 1 0.99 24 118 

Vancomycin Ag 20.5 E. faecalis 0.1 1 1 0.99 24 118 

Vancomycin Ag 20.5 S. epidermitis 0.02 1 1 0.99 24 118 

Polymyxin B Ag 8.4 A. baumannii 
0.00

4 
1 1 0.99 18 127 

Rifampicin Ag 8.4 A. baumannii 0.5 1 1 0.99 18 127 

Tigecycline Ag 8.4 A. baumannii 1 1 1 0.99 18 127 

Chloramphenicol Ag 35 E. coli 10.1 1 1 0.99 24 126 

Chloramphenicol Ag 35 S. enterica  10.5 1 1 0.99 24 126 

Chloramphenicol Ag 35 S. aureus 17.5 1 1 0.99 24 126 

Kanamycin Ag 35 E. coli 22 1 1 0.99 24 126 

Kanamycin Ag 35 S. enterica  21.8 1 1 0.99 24 126 

Ampicillin Ag 3 E. faecium 0.02 1 1 0.99 24 121 

Ampicillin Ag 3 S. aureus 0.2 1 1 0.99 24 121 

Ampicillin Ag 3 E. coli 0.4 1 1 0.99 24 121 

Ampicillin Ag 3 E. coli 0.2 1 1 0.99 24 121 

Ampicillin Ag 3 P aeruginosa 0.6 1 1 0.99 24 121 

Ampicillin Ag 3 S. mutans  0.2 1 1 0.99 24 121 

Chloramphenicol Ag 3 E. faecium 0.1 1 1 0.99 24 121 

Chloramphenicol Ag 3 S. aureus 0.3 1 1 0.99 24 121 

Chloramphenicol Ag 3 E. coli 0.7 1 1 0.99 24 121 

Chloramphenicol Ag 3 E. coli 0.2 1 1 0.99 24 121 

Chloramphenicol Ag 3 S. epidermitis 0.7 1 1 0.99 24 121 

Chloramphenicol Ag 3 S. mutans  0.1 1 1 0.99 24 121 

Kanamycin Ag 3 E. faecium 0.2 1 1 0.99 24 121 
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Kanamycin Ag 3 S. aureus 0.2 1 1 0.99 24 121 

Kanamycin Ag 3 E. coli 0.5 1 1 0.99 24 121 

Kanamycin Ag 3 E. coli 0.2 1 1 0.99 24 121 

Kanamycin Ag 3 P. aeruginosa  0.5 1 1 0.99 24 121 

Kanamycin Ag 3 S. mutans  0.15 1 1 0.99 24 121 

Vancomycin Au 8.4 S. aureus 8 1 1 0.99 14 122 

Vancomycin Au 8.4 E. coli 8 1 1 0.99 14 122 

Vancomycin Au 8.4 A. baumannii 8 1 1 0.99 14 122 

Vancomycin Au 8.4 E. faecalis 16 1 1 0.99 14 122 

Vancomycin Au 8.4 E. faecium 16 1 1 0.99 14 122 

Vancomycin Au 8.4 P. aeruginosa  8 1 1 0.99 14 122 

Vancomycin Au 8.4 E. faecalis 16 1 1 0.99 14 122 

Vancomycin Au 8.4 E. faecium 32 1 1 0.99 14 122 

Gentamicin Ag 40 S. aureus 1.1 1 1 0.99 14 124 

Gentamicin Ag 40 K. pneumoniae 0.4 1 1 0.99 14 124 

Gentamicin Ag 40 P. aeruginosa  0.9 1 1 0.99 14 124 

Gentamicin Zn 60 S. aureus 1.1 1 1 0.99 14 124 

 Metal Oxide / Spherical 

Tobramycin Fe3O4 16 P aeruginosa 0.2 1 1 0.99 24 113 

Tobramycin Fe3O4 230 P aeruginosa 0.2 1 1 0.99 24 113 

Tobramycin Fe3O4 232 P aeruginosa 0.2 1 1 0.99 24 113 

Meropenen CuO 15 P aeruginosa 13.9 1 1 0.99 24 116 

Ciprofloxacin CuO 15 P aeruginosa 4.8 1 1 0.99 24 116 

Meropenen ZnO 35 P aeruginosa 34.7 1 1 0.99 24 116 

Ciprofloxacin ZnO 35 P aeruginosa 4 1 1 0.99 24 116 

Vancomycin 
Mn2F

e2O4 
25 S. epidermitis 0.6 1 1 0.99 24 117 

Vancomycin 
Mn2F

e2O4 
25 S. aureus 0.8 1 1 0.99 24 117 

Vancomycin 
Mn2F

e2O4 
25 B. subtilis 0.8 1 1 0.99 24 117 

Vancomycin 
Mn2F

e2O4 
25 S. aureus 1 1 1 0.99 24 117 

Vancomycin 
Mn2F

e2O4 
25 E. coli 39.1 1 1 0.99 24 117 

 Metal Salt / Nanoflakes 

Ofloxacin MoS2 175 S. aureus 25 1 1 0.99 24 120 
a Class. Obs: f(vij, vnj) robs, 

b Class. Pred:  f(vij, vnj)pred, 
c p: probability, calculated as p 

(DADNPin/cdj, cnj)pred = 1/(1+Exp(-f(vij), vnj))calc), d t(h): Time of assay, e Ref: Reference. 

 

4. CONCLUSIONS 

DADNP systems are a promising alternative to classic AD therapy in the current context of 

MDR bacteria emergencies. DADNP systems discovery is difficult due to the high number of 

AD and NP systems combinations and conditions to be tested. ML models may help, but the 

low number of real DADNP experimentally characterized complex applications. Additive 

IFPTML models may become a pragmatic solution, for the moment, by taking into 

consideration the higher abundance of experimental tests for DADNP components AD and NP 

alone. Regarding the methodological objectives, the linear model included two subsystems 

(preclinical antibacterial drugs and nanoparticles) and showed a good fit (Sn=74.3%, Sp= 

90.6%, and Ac=89.4%). The information from the two subsystems did not significantly 

influence the robustness of the models to analyze the problem presented in the thesis. 
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Regarding the practical objectives, the IFPTML-LDA and IFPTML-ANN models’ values are 

adequate Sp ≈ 88.5-90% and Sn ≈ 74-88.5% in training (>124K cases) and validation (>41K 

cases) series. In addition, IFPTML-LDA and IFPTML-LNN models are more straightforward 

and still accurate options to predict putative DADNP systems. IFPTML-ANN non-linear 

models of type IFPTML-MLP and other ML algorithms are more complicated but have better 

statistical parameters (Sn and Sp ≈ 85-99%, and AUROC = 0.99 in training/validation series 

outperformed). The IFPTML DADNP simulation experiment shows that the DADNP systems 

formed by Ciprofloxacin and Au NP coated with PDT/CQ, PDT/Mel, or PDT/Ach seem to be 

promising for further assays vs. MDR P. aeruginosa strains (p=0.809-0.838). The IFPTML 

linear and additive model was able to predict 80 experimental cases of DADNPs complexes 

reported in the literature with high structural and biological diversity. In conclusion, the 

IFPTML models in general may offer a fast and inexpensive solution to the pre-screening of 

putative DADNP systems in order to reduce costs and time in posterior experimental screening. 
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Appearance of Multidrug-Resistant (MDR) strains with perturbed Metabolic Networks (MN) 

push researcher to improve Antibacterial Drugs (AD). Some Nanoparticles (NP) may present 

antibacterial activity apart from acting as delivery systems. Then, developing Dual 

Antibacterial Drug-Nanoparticles (DADNP) systems becomes an option. However, testing 

DADNP vs. strains with different MN is a hard and costly task. Artificial Intelligence (AI) or 

Machine Learning (ML) could accelerate it by predicting bacteria sensibility. In this work, we 

used a Perturbation‐Theory Machine Learning Information Fusion (IFPTML) analysis and 

mapping of DADNP (AD + NP) systems vs. MN of pathogenic bacteria species as a new 

application of AI/ML methods. Furthermore, most existing AI/ML models do not use as input 

vectors for cj of experimental conditions of assays (i.e., bacteria specie, strain, NP shape, etc.). 

A working solution may be the use of an AI/ML method with an Information Fusion (IF) 

additive approach. Additive IF use as input the sets of vectors Ddk, Dnk, Dmk and cdk, cnk, csk 

with information about AD, NP, and MN structure and assays by separate. Accordingly, the 

IFPTML algorithm was selected to seek predictive models based on a ChEMBL dataset of 

>160000 AD assays enriched with300 NP assays and >25 MN of different bacteria species. 

IFPTML use IF process to join the three datasets, PT Operators (PTOs) to codify Ddk, Dnk, Dsk 

and cdk, cnk, csk vectors information, and ML algorithms to train the model. IFPTML Linear 

Discriminant Analysis (LDA) model with Sp ≈ 90% and Sn ≈ 80% and best Artificial Neural 

Networks (ANN) model found with Sp ≈ Sn ≈ 95% in training/validation series presented good 

results. This kind of model could be useful for DADNP systems discovery. We also run a 

simulation >140000 points of putative DADNP systems vs. wild type and Knockout (KO) 

computationally-generated bacteria strains. The linear and additive IFPTML model was able 

to predict 102 experimental cases of complex DADNPs with a high degree of structural and 

biological variety. This led us to introduce the concept of MDR computational surveillance 

that could help to detect new strains of MDR bacteria. 

 

 

1. INTRODUCTION 

Eroom’s law is an empirical observation stating that drug discovery processes are getting 

slower and costly every year consuming high amounts of time and resources with the 

subsequent environmental impact. In this sense, Eroom’s law (Moore's law backwards) is the 

dark-side sister in chemistry of Moores’s law of computational sciences. In fact, failure rates 

in drug clinical trials have scaled up to 90% after model organisms testing with costs rising to 

$2.6 billion per drug. In this context, Artificial Intelligence (AI) and/or Machine Learning (ML) 

algorithms may help to speed up this process.1 In fact, AI/ML methods have been used to solve 

different problems in pharmaceutical industry and nanotechnology.2-4 In the specific field of 

Antibacterial Drugs (AD) discovery the situation is not different. Multidrug-resistant (MDR) 

bacteria strains present mutations in specific gen due to environmental stressing conditions 

(antibiotic abuse, temperature variation, etc.) decreasing AD capability to halt bacterial 

infections.5 This in turn may trigger a domino effect promoting changes on their metabolism 

equivalent to rearrangements on the topological structure of their Metabolic Networks (MNs).6, 

7 
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Several authors have treated the human health and environmental risk assessment of 

engineered nanomaterials (ENM). For instance, Mikolajczyk, et al. developed nano-QSAR 

models for describing the cytotoxicity of 34 TiO2-based NPs modified by (poly)metallic 

clusters (Au, Ag, Pt) to the Chinese hamster ovary cell line.8 On the other hand, Sizochenko et 

al. analyzed the genotoxicity of NPs (silicon and metal oxide).9 NPs could also affect 

community health, and how increased trophic complexity affects the interactions between 

organisms and nanomaterials. For instance, Wu et al. investigated the effect of exposures to 

AgNPs on simple microcosms (algae and bacteria) and increasingly complex microcosms 

containing predatory invertebrates and developing vertebrates.10 Thus, studies including multi-

species scenarios could be more realistic and like natural conditions. 

Nanosafety is the assessment of the dangers to human health and the environment posed by 

the use of ENMs, as well as their toxicity.11 The rapid growth in the number of nanomaterials 

has raised concerns about possible toxic effects on human health and the environment.12 The 

greatest concerns stem from contact with biological systems and those that are part of the 

constituents of medical devices, as well as pharmaceutical and cosmetic products.13 The results 

of AD-NP vs MN interactions can contribute to extending the scope of the faithful use of 

nanomaterials for contemporary pharmaceutical design based on nanobiotechnology to fight 

infections and other diseases.14 The safety of nanosystems has been recently treated by das 

Neves et al. They reviewed the key nanomaterial properties that govern the interplay between 

NP–mucosa interactions, and the importance of mathematical and computational models to 

characterize these interactions in nanomedicine and nanotoxicology.15 

Rational Nanomaterial design could reduce cost and environmental impact. For instance, the 

design of DADNP systems is the understanding of the interaction of physical properties of NPs 

and ADs in different biological phenotypes that could allow the future rational design of these 

systems with desirable pharmacological properties. Analysis of property-distribution 

relationships is essential to inform the design of NPs with optimal pharmacokinetics and 

improved drug distribution.16 This picture points to the importance of MNs of pathogenic 

bacteria to research on new AD design.  

In this context, we can use AI/ML models to simulate DADNP activity over bacteria with 

different MN for example. MNs, can be represented as graphs composed by sets of nodes (gene, 

protein, enzymes, metabolites, etc.) linked by arrows (metabolic reactions, transport process, 

signaling, etc.).17 Consequently, we can quantify their structure with numerical parameters 

useful as input of AI/ML algorithms. The public databases ChEMBL contains thousands of 

reports of preclinical assays of potential AD hits that it may be used to design new DADNP 

systems.18, 19 In addition, there is a growing number of experimental reports of NP with 

antibacterial action; see references in Supporting Information (SI) file SI00.doc. and the 

previous report of consensus MNs for multiple pathogen bacteria by Jeong et al.17 is a useful 

tool to understand the interrelationship of substrate-metabolism of diverse microorganisms. In 

another hand, the DADNP discovery with ML analysis is the very low number of 

experimentally cases of study useful to train the models. Gajewicz et al. analyzed this difficulty 

in a previous report.20 Finally, this additive approach has the risk of neglecting the possibility 

of emergency of synergies among the subsystems.21, 22 
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This work could contribute open an important window of opportunity for DADNP discovery.  

In addition, it could imply an important reduction of costs and time by using AI/ML and 

Networks analysis techniques. We propose a combination of the fundamentals of Information 

Fusion (IF), Perturbation Theory (PT), and Machine Learning (ML) methods to build an 

IFPTML (PT + ML + IF) model as a solution for this type of data. This model is especially 

suitable for databases with similar large data features and combinatorial information. IFPTML 

approach to the present allow us to treat the initial information about each sub-system (AD, 

NP, and MN) by separated. We can call this as the additive approach to the study of complex 

Bio-molecular Systems and/or Synthetic Biology systems. In this analysis we can see that the 

additive approach has some difficulty per se. One to be considered is the high complexity of 

the Data Analysis challenge posed by this problem. The system being analyzed (Si) has three 

complex subsystems. These subsystems are: S1 = ith AD hit, S2 = nth NP system, and S3 = MN 

of the sth bacteria specie. Each one of these subsystems can be quantitatively described using 

three sets of vectors Ddk, Dnk, and Dmk. The elements of these vectors are descriptors of the 

chemical structure of each sub-system Ddk, Dnk, and Dmk. In addition, we can assign vectors of 

non-numeric labels or experimental conditions for each subsystem cdj, cnj, and csj. Be aware 

that AD assays have multiple conditions cdj not necessarily identical to NP experiments cnj. 

Examples of these conditions arecd0 = AD assay outcome (MIC, etc.), cd1 = AD assay bacteria 

species, cd2 = AD assays strains, cn0 = NP assay outcome (IC50, etc.), cn1 = bacteria species, cn2 

= NP shape, etc. The MN has also a vector of labels for the bacteria specie csj with labels like 

cs1 =Pathogenicity, cs2 = Gram staining, etc.  

Regarding the present problem, IFPTML have been applied to closed related problems. 

IFPTML has been used to predict NP alone or NP-Drug systems as well considering multiple 

conditions of assay.21-25 Speck-Planche et al. developed IFPTML models of AD and NP 

antibacterial activity by separate, but never considered them together.24, 26, 27 Nocedo et al., 

carried out an IFPTML mapping of AD activity vs. MN of multiple species, but not included 

NP as part of the equation.28 In addition, Duardo et al., Fernández-Riera et al., and others 

reported IFPTML models of MN but not included AD or NP components.29-31 Consequently, 

IFPTML have been used before to solve parts of the present problem. However, there are no 

reports of IFPTML models including the three components AD, NP, and MN of this problem 

at the same time. In view of that, this work reports the first IFPTML analysis and mapping of 

DADNP systems vs. MN of pathogenic bacteria species. The work has three main parts. Firstly, 

the paper develops the IFPMTL models for DADNPvs.MN mapping using alternative ML 

techniques. Next, the work shows the result of the IFPTML simulation of the effect of DADNP 

systems over real and computationally generated KO strains with changes on their MN 

topological structure. Then, the IFPTML model was used to predict the values of probability 

of several DADNP experimentally synthesized, biologically tested, and reported in the 

literature previously. At the end, IFPTML models were used to compared with other previous 

ML models that involving AD assays, NP antibacterial assays, and/or MN of bacteria. 

 

2. MATERIALS AND METHODS 

2.1 IFPTML analysis steps 
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. IFPTML analysis has different steps that can be separated into three phases (IF + PT + ML). 

The first step of IF phase is to obtain values vij, vnj, and vsj for the different biological properties 

cd0, cn0, and cs0 of the three subsystems AD, NP, and MN. We obtained them from datasets 

already published.27, 28 Next, we need preprocess all the observed values with different units, 

scales, degrees of uncertainty, etc. to obtain dimensionless functions characterizing the system 

as a whole DADNP vs. MN cases. The two main functions obtained in one IFPTML analysis 

are the objective function f(vij, vnj, vsj)obs and the function of reference f(vij, vnj, vsj)ref. Next, we 

need to define and get/calculate the values of all vectors of structural descriptors Ddk,Dnk, and 

Dsk for the three subsystems. We also need to define and get/calculate the elements of the 

vectors cdj, cnj, and csj with all AD assay, NP assay, and MN bateria labels/assay conditions. 

After that, we scaled all the elements of the vectors Ddk,Dnk, and Dsk into Shannon’s information 

measures Sh(Ddk), Sh(Dnk), and Sh(Dsk). At this point, we enter into the PT phase of the 

analysis. In PT phase we zip all structural/labeling information into PTOs of each subsystem: 

ΔSh(Ddk)cdj, ΔSh(Dnk)cnj, and ΔSh(Dsk)csj. Last, we enter the ML phase. In the first step of ML 

phase one can proceed to training/validating alternative IFPTML models using different ML 

techniques. In last step we use the selected IFPTML models to run simulations and carry out 

predictions. The following paragraphs offer a more detailed explanation of these phases. In 

Figure 6.1 we show IFPTML algorithm workflow for DADNP vs. MN mapping and analysis, 

including the general steps given on the present work. 

 
 

Figure 6.1. IFPTML workflow for DADNP vs. MNs mapping. 

 

IF-Step 1, ChEMBL AD, NP, and MN datasets. The ChEMBL AD activity dataset contains 

the values of >300 parameters (MIC, IC50, etc.) for >160 000 biological assays of >50000 

compounds vs. >25 bacteria species with >90 strains. The NP dataset includes 1 out of 4 

parameters of activity for 300 pre-clinical assays of NP vs. 34 bacteria species/strains (s).27The 

MN dataset released by by Jeong et al.17 have the MN of >20 bacteria species. We encoded 

information about the structure of AD compounds, NP cores and coat, and MN structure into 
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vectors Ddk = [Dd1, Dd2, Dd3, … Ddmax], Dnk = [Dn1, Dn2, Dn3, … Dnmax], and Dsk = [Ds1, Ds2, Ds3, 

… Dsmax], respectively. We used the vectors cdj = [cd0, cd1, cd2,…cdmax], cnj = [cn0, cn1, cn2,… cnmax], 

and cmj = [cs0, cs1, cs2,… csmax] to codify information about the AD, NP, and MN conditions of 

assay or labels. See detailed information about the three datasets on File SI00.doc. 27 

IF-Step 2, objective and reference functions. Firstly, we re-scaled the experimental values 

vij and vnj of biological activity of AD and NP to obtain binary functions f(vij)obs and f(vnj)obs. 

The values f(vij)obs = 1 and  f(vnj)obs = 1  points to an strong desired effect of both the AD and 

the NP over the target bacteria.10Otherwise, f(vij) = f(vnj)obs = 0. By definition, the biological 

activity of the sth bacteria specie with MNs is also a binary function f(vnj)obs. The function 

f(vnj)obs = 1 when the bacteria is pathogenic or f(vnj)obs = 0 otherwise. The IF additive approach 

presupposes the best option is a system made by the best subsystems. The IF also tries to ensure 

the higher coherence possible among the information about the subsystems. Consequently, the 

objective function f(vij, vnj, vsj)obswas defined as follows, see Figure 6.2. 

f(vij, vnj, vsj)obs =  f(vij)obs · f(vnj)obs · f(vsj)obs · f(vjsn)obs    (1) 

 
Figure 6.2. IFPTML information processing detailed workflow. 

 

This function f(vij, vnj, vsj)obs = 1 when all the subsystems have the desired levels of their 

own properties. It means that, f(vij, vnj, vsj)obs = 1 if all AD, NP, and MN has individually the 

desired level of the biological property (f(vij)obs = 1, f(vnj)obs = 1, and f(vsj)obs = 1).In 

order to decide whether AD has the desired level of biological property or not we used the 

following expression. When (vij>cutoffj AND dj(c0) = 1) OR (vij<cutoffj AND dj(c0) = -1) then 

f(vij) = 1, else f(vij) = 0. The parameters cutoffj and cutoffnj are the threshold values (cutoff) 
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used to decide if the AD or NP biological effects are strong or weak. The values of cutoff 

depend on the nature of the biological parameter c0 measured under conditions cj for the AD 

or the parameter cn0under conditions cnj for the NP. The desirability functions dj(c0) and dnj(c0) 

indicate if we desire to maximize (dj(c0) = 1 or dnj(c0) = 1) or minimize (dj(c0) = -1 or dnj(c0) = 

-1) the values vij or vnj of these biological parameters cj0 and cn0. In the case of f(vsj) = 1 if the 

sth bacteria specie is pathogenic for humans or f(vsj) = 0 otherwise. Please, see the steps in 

Figure 6.2 and values of cutoff, desirability, etc. in the file SI01.xlsx. The same rule applies to 

NP. The following equations define more clearly these conditional functions. 

f(vij)obs = {

= 1 IF  vij > cutoffj AND d(c0) = 1 OR  

 = 1 IF  vij < cutoffj AND d(c0) = −1 OR

= 0                   Otherwise

    (2) 

 

f(vij)obs = {

= 1 IF  vnj > cutoffnj AND d(cn0) = 1 OR  

 = 1 IF  vnj < cutoffnj AND d(cn0) = −1 OR

= 0                   Otherwise    

    (3) 

 

After obtaining the objective function we should define the input variables of the IFPTML 

model. The first input variable is the function of reference f(vij,vnj,vsj)ref. In this work, the 

function of reference is the probability f(vij,vnj,vsj)ref = p(f(vij,vnj,vsj)ref = 1). This is the 

probability with which the systems of reference have a desired level of activity f(vij,vnj,vsj)ref = 

1 for the same parameters of activity. As this is an additive approach, we obtained this 

probability as the product of each individual probability with which all the subsystems have a 

desired level of activity by separate. Each individual probability p(f(vij)ref = 1) = n(f(vij)obs = 

1)/nc0 and p(f(vnj)ref = 1) = n(f(vnj)obs = 1)/nc0, are equal to the number of positive subsystems 

n(f(vij)obs = 1) or n(f(vnj)obs = 1) between the total number of subsystems nc0 ornc0 with the same 

biological parameter. The term p(f(vsj)ref = 1) = 1 by definition for all pathogenic bacteria. 

f(vij, vnj, vsj)ref
=  f(vij)ref

· f(vnj)ref
· f(vsj)ref

(4) 

f(vij, vnj, vsj)ref =  p(f(vij)ref = 1) · p(f(vnj)ref = 1) · p(f(vsj)ref = 1)    (5) 

 

IF-Step 3, Shannon’s information s aling of input variables. This IFPTML model 

considers that the system under study (S) is composed of various subsystems (S = Sd + Sn + Ss) 

with Sd = AD, Sn = NP, Ss = MN. The structure of each subsystem is encoded with the vectors 

of molecular/structural descriptors Ddk, Dnk, and Dsk, respectively. The vectors of the subsystem 

Sd have the elements Ddk = [Dd1, Dd2, Dd3, Dd4]. These elements are the descriptors the ithAD. 

Last, the vectors of the subsystem Ss have the elements: Dsk = [Ds1, Ds2, Ds3,]. All the Ddk, Dnk, 

and Dsk values have different scales/units. Consequently, we used Shannon’s entropy 

information measure to quantify all the information in the same scale.32 Please, see the values 

of Sh(Dnk) and Sh(Dsk) for different NP and MN in Table S1 and Table S2 of file SI00.doc. 

The same transformation was used for all Ddk, Dnk, and Dsk variables. 

p(Dk) =
1

(1+Exp(−Dk/1000)
(6) 

 Sh(Dk) = −p(Dk) · log (p(Dk)) (7) 
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IF-Step 4, data fusion vs. subset sampling. We assigned all cases to either training (subset 

= t) or validation (subset = v) series. Sampling is desired to random, representative, and 

stratified, as much as possible.33 Additionally, in this work sampling should take into 

consideration the AD, NP, and MN, IF process. We selected the original data from the three 

datasets randomly to create triads. These triads are formed by one AD, one NP, and one MN 

cases (representing putative DADNP vs. MN interactions). However, we need to impose some 

constrains in some labels due to the IF process. The cases forming one triad have the same 

value of the labels c0d and c0n (same biological property) of AD and NP whenever it was 

possible. The cases of the triads have also the same cd1, cn1, and cs1 (bacteria specie) whenever 

it was possible. All triads have been ordered according to these main labels (stratified 

sampling). Subsequently, cases were assigned to set = t and set = v (representative sampling) 

in a proportion 75% vs. 25%.33 See details in File SI00.doc 

PT-Step 1, PTO additive calculation. As we mentioned before in the PT phase, we zip all 

structural/labeling information into PTOs of each subsystem, see Figure 2. The additive PTOs 

calculated in this work are: ΔSh(Ddk), ΔSh(Dnk), and ΔSh(Dsk). The PTOs of type ΔSh(Ddk) and 

ΔSh(Dnk) codify chemical structure and/or physicochemical properties of AD and NP 

subsystems. The PTOs of type ΔSh(Dsk) quantify structural information of the MN of the 

bacteria. We calculate the PTOs as the deviation of the information of the subsystems Sh(Ddk), 

Sh(Dnk), and Sh(Dsk) with respect to the average value for the respective subsystems of 

reference<Sh(Ddk)cdj>, <Sh(Dnk)cnj>, and <Sh(Dsk)csj>.The average is calculated for all cases 

with the same vectors of labels/conditions cdj, cnj, csj, respectively. Consequently, in these 

expressions the first terms Sh(Ddk), Sh(Dnk), and Sh(Dsk) identify the subsystem and the 

averages identify the assay. Please, see values in SI00.doc. The equations used are the 

following. 

ΔSh(Ddk) = ΔSh(Ddk) − 〈Sh(Ddk)〉𝐜dj
        (8) 

ΔSh(Dnk) = ΔSh(Dnk) − 〈Sh(Dnk)〉𝐜nj
        (9) 

ΔSh(Dsk) = ΔSh(Dsk) − 〈Sh(Dsk)〉𝐜sj
          (10) 

PT-Step 2, PTO cross-over calculation. The previous PTOs have been calculated previous 

to the IF process. This is because they codify information for one specific subsystem. We also 

calculated PTOs posterior to the IF process. We call them cross-over PTOs because they 

quantify information of two or more subsystems at time. The cross-over PTOs calculated here 

quantify the difference of the information about the AD from the information about the NP 

coating system and their particular assay conditions. In these operators ΔSh(Ddk) represent the 

AD and the drug assay conditions. The operators of the type ΔSh(Dca1k) and ΔSh(Dca2k) 

represent the first (ca1) and second (ca2) coating agents of the NP and the NP assay conditions 

cnj. They have the following formula. 

ΔSh(Ddk, Dnk) = ΔSh(Ddk) + [ΔSh(Dca1k) + ΔSh(Dca2k)]          (11) 

ML-Step 1, additive cross-over linear model. IFPTML DADNP proposed here is, in first 

instance, a linear model. The output is the scoring function f(vij, vnj, vsj)calc used to calculate the 

posterior probabilities which the DADNP is short listed for experimental biological assay, see 

Figure 2. We can obtain the model by using a ML to fit the objective function f(vij, vnj, vsj)obs. 

After, we obtain in first instance a linear IFPTML model. This model uses as input the function 

of reference f(vij, vnj, vsj)ref and the PTOs of type ΔSh(Ddk), ΔSh(Dnk), ΔSh(Dsk), and ΔΔSh(Dnk, 
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Ddk). The PTOs ΔSh(Ddk), ΔSh(Dnk), and ΔSh(Dsk) quantify information about the AD, NP, 

MN and the biological assays of the triad. The PTO ΔΔSh(D1c, D2c, Ddk) is a cross-over operator 

because it quantifies information about the AD and the NP coating agents. The operator also 

quantifies information about the AD and NP assays at the same time. This operator is another 

expression of the IF process. Firstly, we ran a Linear Discriminant Analysis (LDA) technique 

as a first approach. Forward Step-Wise (FSW) feature selection strategy allowed automatic 

selection of input variables. Next, Expert-Guided Selection (EGS) was used incorporated 

missing features. Parameters like Sensitivity (Sn), Specificity (Sp), Chi-square (χ2), and the p-

level were used to check model quality. STATISTICA 6.0 software was used to ran all the 

algorithms.33 The general form of the IFPTML-LDA linear models proposed is the following: 

𝑓(vij, vnj, vsj)𝑐𝑎𝑙𝑐

= a0 + a1 · 𝑓(vij, vnj, vsj)𝑟𝑒𝑓
      

+ ∑ a𝑘,𝑗 · ∆Sh

𝑘=𝑘𝑚𝑎𝑥,𝑗=𝑗𝑚𝑎𝑥

𝑘=1,𝑗=1

(𝐷𝑘𝑖)cdj
       (12) 

  + ∑ a𝑘,𝑗 · ∆Sh

𝑘=𝑘𝑚𝑎𝑥,𝑗=𝑗𝑚𝑎𝑥

𝑘=1,𝑗=1

(𝐷𝑘𝑛)cnj
 + ∑ a𝑘,𝑗 · ∆Sh

𝑘=𝑘𝑚𝑎𝑥,𝑗=𝑗𝑚𝑎𝑥

𝑘=1,𝑗=1

(𝐷𝑠𝑛)csj
 

+ ∑ a𝑘,𝑗 · Δ∆Sh

𝑘=𝑘𝑚𝑎𝑥,𝑗=𝑗𝑚𝑎𝑥

𝑘=1,𝑗=1

(𝐷𝑘𝑖, 𝐷𝑘𝑛)cdj,cnj
 

ML-Step 2, non-linear models. We also trained/validated various models using Artificial 

Neural Networks (ANN). Different ANN topologies/techniques were tested including Linear 

Neural Networks (LNN), Multi-Layer Perceptrons (MLP), and Radial Basis Functions (RBF). 

The training algorithms used to optimize the IFPTML-ANN models were Back Propagation 

(BP), Conjugated Gradient (CG), K-Means Center Assignment (KM), K-Nearest Neighbor 

Deviation Assignment (KN), and Pseudo-Invert Linear Least Squares Optimization (PI). 

Specifically, we used BP100 and CG20b for MLP, PI for LNN, and KM, KN, and PI for RBF. 

STATISTICA 6.0 software was used to ran all the algorithms.33 Area Under Receiver 

Operating Characteristic (AUROC) curve together with Sn, Sp, Matthew’s correlation 

coefficient (MCC),34(Eq13), F1 score (Eq14), χ2, and the p-level were used to check model 

quality. In addition, we applied the estimation metrics of the random correlation model of 

classification proposed by Lucic et al.35, 36. These parameters for the validation of the 

classification model quality difference are based on the Ac Real (Q2) and the corresponding 

random model (Q2, rnd)). See Equation 15-18. In addition, to test the robustness of the IFPTML-

LDA model, the Y-randomization test was performed.37, 38 The training set function was 

randomized at 5%, 10%, 15%, 20%, 25%, 30%, 35%, and 40% of the total training set (active 

and inactive).39, 40 

𝑀𝐶𝐶 =
𝑇𝑃 · 𝑇𝑁 − 𝐹𝑃 · 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) · (𝑇𝑃 + 𝐹𝑁) · (𝑇𝑁 + 𝐹𝑃) · (𝑇𝑁 + 𝐹𝑁)
 (13) 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 · 𝑇𝑃

2 · 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (14) 
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𝑄2 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (15) 

𝑄2,𝑟𝑛𝑑 =
(𝑇𝑃 + 𝐹𝑃) · (TP + FN) + (TN + FN) · (FN + FP)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)2
 (16) 

∆𝑄2 = 100 · (𝑄2 − 𝑄2,𝑟𝑛𝑑) (%) (17) 

𝑄2,𝑟𝑛𝑑−𝑏𝑎𝑙 =
(𝑇𝑃 + 𝐹𝑃)2 + (TN + FN)2

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)2
 (18) 

 

where: MCC: Matthew’s correlation coefficient, TP: true positive, TN: true negative, FP: false 

positive, and FN: false negative, Q2: Real accuracy, Q2, rnd: Random accuracy, ∆Q2: difference 

between the real model accuracy and the corresponding random accuracy, and Q2, rnd-bal: Most 

probable random accuracy for balanced model. 

Generating reliable predictions requires knowledge of model limitations and applicability. The 

Domain of Applicability (DoA) can be defined using similarity measures based on Euclidean 

distances between all training and test composites or by using leverage method.41, 42 We apply 

the leverage method. In this approach, after the calculation of the hat matrix for the structural 

domain, the residuals and LOO residuals of the response variables were mapped against the 

leverages (the diagonal values of the hat matrix (h) to visually characterize the DoA (Williams 

plot).43 Chemicals exceeding certain threshold values were identified as response and leverage 

outliers. Response threshold values were set at ± 2 residuals and LOO residuals. The leverage 

threshold was set to the critical hat value (h* = 3(p+1)/n, where p is the number of model 

descriptors and n is the number of training compounds.43 According to Gramatica 44, (h > h∗) 

was considered a structurally influential chemical.  

ML-Step 3, IFPTML mapping of DADNP vs. MN of strains. In this work we also used 

the IFPTML model created to study the possible susceptibility of new mutant bacteria to 

putative AD systems. In so doing, we simulated the new strains as mutants with changes 

(perturbations) on the parameters of their MN with respect to the existing wild type species. In 

particular, we focused on the parameters Lin(±δin) or Lout(±δout). These are the average values 

of in-degree and out-degree for all the nodes (metabolites) on the MN of the new strain. The 

parameters of the new mutant strain were calculated as follows: 

Lin(±δin) = Lin(0) ± δin · Lin(0)(19) 

Lout(±δout) = Lout(0) ± δout · Lout(0)            (20) 

These equations indicate that the parameters Lin(±δin%) and Lout(±δout) of the new MN 

are equal to the original values Lin(0) and  Lout(0) ± a certain fractionδin or δoutof the same 

original values. These fractions can be interpreted as the relative change with respect to the 

original value, by rearranging the previous equations. We can use a 100-scaling factor if we 

want to express the change in (%). 

δin(%) = 100 ·
[Lin(±δin) − Lin(0)]

Lin(0%)
= 100 ·

ΔLin(±δin)

Lin(0%)
           (21) 

δout(%) = 100 ·
[Lout(±δout) − Lout(0)]

Lout(0)
= 100 ·

ΔLout(±δout)

Lout(0)
       (22)         

For instance, let be a wild type of mutant with average Lin(0) = 10, we can obtain a new 

mutant withLin(±δin) = Lin(0) ± δin · Lin(0) = 10 + 1 · 10 = 20. It means that the new 
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mutant has a relative increment of δin(%) = 100 · (20 − 10)/10 = 100% in Lin with respect 

to the wild type. We have taken advantage of these equations to create a new code in order to 

easily identify all mutants in this work. From now on, we are going to label all mutants and 

wild type bacteria with the following code BB(±δin,±δout). In this code, BB is the two-letter 

code of the different bacteria species. As we mentioned before ±δin and ±δout are the relative 

changes of the mutant strain with respect to the original value. Then, in this notation, δin and 

δout indicate of magnitude of the changes (perturbation) and (±) indicates the sign of the change 

with respect to the wild type. For instance, EC(-0.1, +0.22) is the code for a mutant strain of 

Escherichia coli (EC) with δin= -0.1 and  δout = +0.2. This represents a decrease of δin(%) = 

-10% and one increase of δout% = +20% with respect to wild type EC. In turns, in could be 

interpreted as a decrease of δin(%) = -10% in Anabolism and one increase of  δout% = +20% 

in Catabolism with respect to wild type EC. Accordingly, the wild type EC is denoted by EC(0, 

0) and has δin = 0 and δin = 0. In general, we can scale the parameters Dks(±δk)  = Lin(±δin), 

Lout(±δout), etc. of the new MN using the same Shannon’s entropy procedure. See the equation 

of probability and entropy of the new MN as a function of the original parameter or wild type 

MN. The new parameters Sh(Dks(±δ)) can be substituted into the equation of one IFPTML 

model. This should allow us calculating the values of f(vij,vnj,vsj)calc and subsequently the values 

of probability p(f(vij, vnj) = 1)calc of activity for the AD systems with respect to the new mutant 

strains. 

p(Dk(±δk)) =
1

(1 + Exp(−Dk(±δk)/1000)
                                   (23) 

p(Dk(±δk)) =
1

(1 + Exp(−(Dks(0) ± δk · Dks(0))/1000)
 

 

 Sh(Dk(±δk)) = −p(Dk(±δk)) · log (Dk(±δk))                            (24) 

 

3. RESULTS AND DISCUSSION 

3.1 IFPTML DADNP additive linear model.  

AI/ML algorithms are gaining momentum with multiple applications in Nanotechnology.45-

50 However, there is still models fail to account for complex problems, that involve multiple 

subsystems at the same time. The present work introduces the first IFPTML models able to 

map putative DADNP (AD + NP) systems vs. MN of bacteria. The best IFPTML-LDA linear 

model found here was the following. 

𝑓(vij, vnj, vsj)𝑐𝑎𝑙𝑐
= 89.776 + 5.600 · 𝑓(vij, vnj, vsj)𝑟𝑒𝑓

− 85.466 · ∆Sh(𝐿𝑂𝐺𝑃𝑖)𝐜dj
 (25) 

−1126.814 · ∆Sh(𝐿𝑖𝑛𝑠)𝐜sj
+ 1074.061 · ∆Sh(𝐿𝑜𝑢𝑡𝑠)𝐜nj

+ 527.286 · ∆Sh(𝐴𝑀𝑉𝑛)𝐜nj
 

+131.830 · ∆Sh(𝐴𝑃𝑆𝑛)cnj
+ 1225.895 · ∆Sh(𝑡)cnj

 

+25.973 · ∆∆Sh(𝑃𝑆𝐴𝑐𝑎1, 𝑃𝑆𝐴𝑐𝑎2, 𝑃𝑆𝐴𝑖)𝐜dj,𝐜nj
 

Ntrain = 124366 χ2 =41396.82     p − level < 0.05 λ-Wilks =0.7168 

 

The performance of this IFPTML model was assessed with Sn, Sp, χ2, and the p-level.33 The 

value of the p-level < 0.05 for the χ2 test indicates that the model is able to separate both classes 
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significantly. In fact, Sn, Sp, and Ac are in the range ≈ 80-90% for both training and validation 

series, see Table 6.1. These values are very good for this kind of models, taking into 

consideration the high complexity of the data analyzed.51 This model includes all the important 

variables AD structure and assay conditions, NP properties, CA structure, NP assay conditions, 

MN structural parameters, etc. The output f(vij, vnj, vsj)calc variable is real but dimensionless 

numeric parameter without upper or bottom boundaries. This difficult its use for comparison 

with observed values or outputs of alternative models. Consequently, using a sigmoid function 

one can transform this output into a probability function. The resulting function is the 

probability p(f(vij, vnj, vsj) =1)calc given the prior probabilities π0 = 1 - π1 of both groups. This is 

the probability with which the DADNP introduced in the IFPTML model should be short listed 

for experimental assay vs. the bacteria with the MN used. The selected DADNP are those with 

p(f(vij, vnj, vsj) =1)calc> 0.5 which implies that f(vij, vnj, vsj)pred = 1, see Figure 6.2.33 The file 

SI01.xls contains the values of f(vij, vnj, vsj)obs, f(vij, vnj, vsj)pred, and p(f(vij, vnj, vsj) =1)calc for 

>160000 DADNP assays studied in training and validation. 

p(f(vij, vnj, vsj) = 1) =
1

1 + (
π0
π1

) · Exp (−f(vij, vnj, vsj)calc
)

     (26) 

 

Table 6.1. IFPTML DADNP vs. MN model results summary. 

Data Stat. (%) Classification f(vij, vnj, vij)pred 

Set  
 

f(vij, vnj, vij)obs 0 1 

Train Sp 90.5 0 104771 11045 

 Sn 80.2 1 1617 6933 

 Ac 89.8 Total   

Validation Sp 90.7 0 35045 3604 

 Sn 81.7 1 513 2283 

 Ac 90.1 Total   

. 

We confirmed our proposition to model DADNP activity vs. bacteria with known MN using 

ML techniques. IFPTML is a multi-output and input-coded multi-label ML technique 

developed precisely to target this kind of problems.52, 53 IFPTML use IF process to join the 

three datasets, PT Operators (PTOs) to codify Ddk, Dnk, Dmk and cdk, cnk, cmk vectors information, 

and ML algorithms to train the model. PTOs are functions of Moving Averages (MA) denoted 

by ΔV(Ddk)cj previously demonstrated to be useful in the study of NP systems.22, 25, 54 IFPTML 

has been employed to solve many multi-output and multi-label problems in Medicinal 

Chemistry, Epidemiology, Proteomics, Systems Biology, etc. These problems have different 

combinations of drugs, drug cocktails, proteins, vaccines, MN, PINs, US Epidemiological 

networks, etc.30, 55-58 

 

3.2 IFPTML-ANN linear vs. non-linear models.  

In first instance, we used ANN models to test the strength of our linear hypothesis. 

Interestingly, the Linear Neural Networks (LNN) presented high values of Sn ≈ Sp ≈ 87% and 

AUROC ≈ 0.94. This seems to confirm that the hypothesis of a linear relationship among the 



Chapter 6 

147 
 

PTOs and the output is not a random or chance finding, see Table 6.2 and Figure 6.3. However, 

there is still some margin to improve the performance of the linear models found. As a result, 

we used non-linear ANN algorithms to improve the performance of our IFPTML linear models. 

The IFPTML-RBF model with Sn ≈ Sp ≈ 75% showed a lower performance than the IFPTML-

LDA and IFPTML-LNN linear models. However, the IFPTML-MLP non-linear models reach 

significantly higher levels Sn ≈ Sp ≈ 93-95%, see Table 6.2. These models are the better 

alternative we found to IFPTML-LDA model. The model also presented very high AUROC ≈ 

0.97. It indicates that our IFPTML-ANN models differ significantly from a random (RND) 

classifier AUROC = 0.5,33 see Figure 6.3.These values are excellent for this kind of models 

according to literature.33 The relationship among the ANN topology and model performance 

was another question to answer. We found no significant improvement by increasing the 

number of hidden layer topologies having 7-10 neurons.  

 
Figure 6.3. IFPTML ROC curve analysis. 
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Table 6.2. IFPTML-ANN DADNP vs. MN models. 

IFPTML-ANN Data Stat.   f(i,j,s,n,c) Pred.   AUROC 

Model Set Par. (%) Obs. 1 0 

MLP 8:8-7-1:1  

 

t Sn 93.6 1 7999 551 

0.973 
 Sp 93.6 0 7448 108368 

v Sn 94 1 2628 168 
0.974 

 Sp 93.9 0 2373 36276 

MLP 8:8-9-1:1 

 

t Sn 94.1 1 8047 503 

0.978 
 Sp 94.2 0 6751 109065 

v Sn 94.7 1 2649 147 
0.979 

 Sp 94.2 0 2233 36416 

MLP 8:8-10-1:1 

 

t Sn 94.5 1 8083 467 

0.976  
 Sp 94.9 0 5930 109886 

v Sn 95.5 1 2670 126 

0.978 
 Sp 95.1 0 1913 36736 

RBF 8:8-1-1:1 

 

t Sn 75.1 1 6421 2129 0.804 

 Sp 74.5 0 29539 86277  

v Sn 74.8 1 2092 704 

0.806 

 Sp 74.9 0 9714 28935 

LNN8:8-1:1 

 

t Sn 86.7 1 7414 1136 

0.939  

 Sp 87.4 0 14582 101234 

v Sn 87.3 1 2441 355 

0.941 

 Sp 87.6 0 4775 33874 
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3.3 IFPTML-WEKA AI/ML models.  

Next, we decided to run several non-linear ML algorithms developed using the Waikato 

Environment for Knowledge Analysis (WEKA) software package, version 3.8.5.59 We 

employed twelve ML algorithms in total to create these different non-linear IFPTML 

classification models using the current dataset. These included decision tree classifiers, neural 

networks, Bayesian networks, boosting algorithms and deep learning. Each technique adopts a 

learning algorithm to identify the model that best fits the relationship between the input data 

set and the class. Two classification algorithms based on Bayes' theorem were applied, 

Bayesian Network (BN), and Naïve Bayes (NBN). The boosting algorithms used were 

Adaboost, LogitBoost, and MultiBoosting, which are three representative algorithms of this 

family of algorithms.60 They are well-known methods to build ensembles of classifiers with 

very good performance in medicinal chemistry.61 In the case of Deep Learning (DL), this 

technique was implemented with WekaDeeplearning4j (deep learning package for the Weka 

workbench). The DL Model was built with two Neural Network Layers architectures: 

DenseLayer and OutputLayer.62 Moreover, the J48 decision tree, developed by Ross Quinlan63 

(J48), and RF64 were applied as representations of DT classifiers. Other functions such as 

SVMs (Linear and Non-Linear Functions),65, 66 k Nearest Neighbors (KNN),67 and Binary 

Logistic Regression (BLR)68 were implemented. 

The typical statistical values of the IFPTML models based on these techniques are shown 

in Table 6.3. The values of all the IFPTML models (Training/Validation Series) demonstrate 

good results (Accuracy global 88.4-97.01 %), with 11 of them outperforming the IFPTML 

DADNP vs. MN model (89.8 %) (except NBN with 88.4 %). Similarly, AUROC scores are 

typically high (93-99 percent). SVMs (both linear and non-linear) have low values (0.5 and 

0.78, respectively). In the case of non-linear SVM, the kernel used was Radial Basis Function 

(RBF). RF and KNN stand out as having the greatest precision, Sn, Sp, and AUROC, good 

binary classification models for the data under consideration, in the analysis and comparison 

of the ten algorithms used. In the case of kNN, the number of nearest neighbors (k) was 1 and 

types of nearest neighbor search algorithm was LinearNNSearch with EuclideanDistance. On 

the other hand, the RF, KNN, BN, and NBN models all have high Sn and Sp values, with only 

a tiny difference. They can be considered models having a high capability for positive and 

negative data prediction. However, SVMs, BLR, DL, Multi Boost, and Adaboost show very 

low Sn values, Sn (0-59 %), which contrasts with Sp (>97 %), indicating that they are 

ineffective at classifying this data set. 
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Table 6.3. IFPTML-WEKA AI/ML models. 

Modelsa Setb Stat.c Val. (%) 
Class Observed 

AUROCd 

Pred. 1 0 

KNN 

t 
Sn 91.27 1 7804 2963 

0.991 
Sp 97.44 0 746 112853 

v 
Sn 85.62 1 2394 1156 

0.981 
Sp 97.01 0 402 37493 

BN 

t 
Sn 90.18 1 7710 5529 

0.98 
Sp 95.23 0 840 110287 

v 
Sn 90.56 1 2532 1839 

0.98 
Sp 95.24 0 264 36810 

RF 

t 
Sn 89.60 1 7661 2820 

0.99 
Sp 97.57 0 889 112996 

v 
Sn 84.87 1 2373 1090 

0.984 
Sp 97.18 0 423 37559 

NBN 

t 
Sn 85.78 1 7334 13226 

0.962 
Sp 88.58 0 1216 102590 

v 
Sn 86.70 1 2424 4389 

0.964 
Sp 88.64 0 372 34260 

J48-DT 

t 
Sn 84.91 1 7260 2976 

0.986 
Sp 97.43 0 1290 112840 

v 
Sn 84.12 1 2352 1027 

0.984 
Sp 97.34 0 444 37622 

Logit-

Boost 

t 
Sn 75.95 1 6494 2901 

0.976 
Sp 97.50 0 2056 112915 

v 
Sn 77.43 1 2165 979 

0.977 
Sp 97.47 0 631 37670 

DL 

t 
Sn 58.18 1 4974 2863 

0.956 
Sp 97.53 0 3576 112953 

v 
Sn 58.44 1 1634 904 

0.95  
Sp 97.66 0 1162 37745 

SVM 
t 

Sn 58.18 1 4974 2966 
0.778 

Sp 97.44 0 3576 112850 

v Sn 58.66 1 1640 932 0.781 
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Sp 97.59 0 1156 37717 

BLR 

t 
Sn 51.30 1 4386 2308 

0.959  
Sp 98.01 0 4164 113508 

v 
Sn 51.43 1 1438 717 

0.961 
Sp 98.14 0 1358 37932 

Ada-Boost 

t 
Sn 46.36 1 3964 1854 

0.967  
Sp 98.40 0 4586 113962 

v 
Sn 46.57 1 1302 597 

0.968 
Sp 98.46 0 1494 38052 

Multi-

BoostAB 

t 
Sn 0.00 1 0 0 

0.937 
Sp 100.00 0 8550 115816 

v 
Sn 0.00 1 0 0 

0.939 
Sp 100.00 0 2796 38649 

LibSVM 

t 
Sn 0.00 1 0 0 0.5 

Sp 100.00 0 8550 115816   

v 
Sn 0.00 1 0 0 

0.5 
Sp 100.00 0 2796 38649 

a ML-Classification Models. RF: Random Forest, kNN: k Nearest Neighbors, BLR: Binary Logistic 

Regression, BN: Bayes network, NBN: Naïve Bayes, J48-DT: J48 decision tree, Ada Boost, Logit 

Boost, Multi Boost, DL: Deep Learning, Lib SVM and SVM: Support Vector Machines. b Sub-set. 

T: Training set, v: Validation set.  c Stat. Statistical performance.  Sn: Sensibility, Sp: Specificity. d 

AUROC: Area under ROC value. 

 

The Matthew correlation coefficient (MCC) shows a very strong positive relationship for 

MLP, KNN, RF, BN J48, and LogitBoost (See Table 6.4). The remaining techniques 

(including LDA) show strong positive relationships except for MultiBoostAB, and LibSVM, 

which, as mentioned before, were not good classifiers for the case under study. On the other 

hand, the highest F1 score values are shown in KNN and RF (>80%). This metric, according 

to,36, 69 is the most convenient for estimating the quality of models on imbalanced sets. Real 

accuracies (Q2) ranged from 88.4% to 97.1%, and Q2, rnd ranged from 78.9 to 93.1. The value 

of the difference between the actual model accuracy and the corresponding random accuracy 

ranged from 5.7-11.4. This value, according to 35 is considered significantly lower in 

comparison with the maximal possible (i.e., ∆Q2= 50%), which can be obtained only for the 

most difficult two-state classification model. However, the analysis presented by the cited 

authors was for balanced data (50:50), and in our case, the data structure contains ~ 93% 

inactive vs. 7% active cases. Hence, the values of the MLP (8: 8-10-1: 1, 8: 8-9-1: 1, 8: 8-7-1: 

1), KNN, RF, BN, and J48 models are close to it and may have an adequate contribution to the 

actual accuracy of the estimation or prediction at the most likely random accuracy level. 
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Table 6.4. IFPTML DADNP vs. MN parameter for validation models (expressed in %). 

Modelsa Setb Q2, Acc F1scored MCCe Q2,rnd
f ΔQ2

g Q2,rnd-bal
 h 

MLP 8:8-10-1:1 
t 94.9 71.6 71.6 83.4 11.4 80.0 

v 95.1 72.4 72.4 83.7 11.4 80.3 

MLP 8:8-9-1:1 
t 94.2 68.9 69.0 82.9 11.3 79.0 

v 94.3 69.0 69.2 83.1 11.2 79.2 

MLP 8:8-7-1:1  
t 93.6 66.7 66.8 82.4 11.2 78.2 

v 93.9 67.4 67.6 82.8 11.1 78.8 

KNN 
t 97.0 80.8 79.8 85.7 11.4 84.2 

v 96.2 75.4 74.1 85.8 10.4 84.3 

RF 
t 97.0 80.5 79.4 85.9 11.2 84.6 

v 96.3 75.8 74.4 86.0 10.3 84.7 

BN 
t 94.9 70.8 70.1 83.9 10.9 81.0 

v 94.9 70.7 70.1 84.1 10.8 81.1 

J48 
t 96.6 77.3 75.8 86.0 10.5 84.9 

v 96.5 76.2 74.7 86.2 10.2 85.0 

NBN 
t 88.4 50.4 50.6 78.9 9.5 72.4 

v 88.5 50.5 51.0 79.0 9.5 72.5 

LogitBoost 
t 96.0 72.4 70.3 86.6 9.4 86.0 

v 96.1 72.9 71.0 86.7 9.4 86.0 

LDA 
t 89.8 52.3 51.5 80.6 9.2 75.3 

v 90.1 52.6 52.0 81.0 9.1 75.6 

DL 
t 94.8 60.7 58.0 87.7 7.1 88.8 

v 95.0 61.3 58.7 88.0 7.1 88.8 

SMO 
t 94.7 60.3 57.6 87.6 7.1 88.0 

v 95.0 61.1 58.5 87.9 7.1 88.4 

BLR 
t 94.8 57.5 55.3 88.5 6.3 89.8 

v 95.0 58.1 56.0 88.8 6.2 90.1 

AdaBoost 
t 94.8 55.2 53.6 89.1 5.7 91.1 

v 95.0 55.5 54.0 89.3 5.7 91.3 

MultiBoostAB 
t 93.1 - - 93.1 0.0 100.0 

v 93.3 - - 93.3 0.0 100.0 

LibSVM 
t 93.1 - - 93.1 0.0 100.0 

v 93.3 - - 93.3 0.0 100.0 

a ML-Classification Models. MLP: MultiLayer Perceptron, RF: Random Forest, kNN: k Nearest 

Neighbors, BLR: Binary Logistic Regression, BN: Bayes network, NBN: Naïve Bayes, J48-DT: J48 

decision tree, Ada Boost, Logit Boost, LDA: Linear discriminant analysis, Multi Boost, DL: Deep 

Learning, Lib SVM and SVM: Support Vector Machines. b Sub-set. T: Training set, v: Validation 

set. c Q2, Ac: Real accuracy, d F1 score, eMCC: Matthew’s correlation coefficient, f Q2, rnd: Random 



Chapter 6 

153 
 

accuracy, g∆Q2: difference between the real and random accuracy, hQ2, rnd-bal: Most probable random 

accuracy for balanced model. 

Figure 6.4 shows the values of Ac, Sn, and Sp obtained from randomization test Y (three 

randomizations of 5%, 10%, 15%, 20%, 25%, 30%, 35%, and 40% of the total training set 

(active and inactive). The figure reflects that the Ac values in percentage of randomized Y of 

these models were decreasing, from 89.8% to 39.5%, respectively. This result demonstrates 

that the overall good classification values were not due to chance correlations or structural 

redundancy in the training set. 

 
Figure 6.4. Values of the Accuracy in the Y-randomization test, from the different training 

data divisions. 

 

The DoA of the IFPTML-LDA model is shown in Figure 6.5, the double ordinate plot of the 

residuals (first ordinate), and Leave-One-Out (LOO), (second ordinate) vs. the leverages 

(abscissa) (William Plot). The cases within the domain lie in the rectangular area within a band 

of ±2 for the residuals and a leverage threshold of h = 0.0002.39, 70 As can be seen, most of the 

cases used in training and validation fall within this zone. However, there are a large number 

of cases that have leverage higher than the threshold but show LOO residuals and standard 

residuals within the limits. In these cases, with a high leverage value (h > h*), the prediction 

should be considered unreliable. Leverage greater than warning leverage (h*) means that the 

predicted response of the composite can be extrapolated from the model, and therefore the 

predicted value should be used with great care. Consequently, there are no cases in either the 
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training or prediction series with residual values outside the range ±2 to that established for 

residuals and residual LOO. Therefore, no outliers are reported. Therefore, this model can be 

used with adequate accuracy for the prediction of new compounds in this DoA.40 

 

 

 

Figure 6.5. William´s plot of residuals versus leverages for DADNP vs MN in the training 

and test sets. 

3.4 IFPTML compared previous models.  

After the internal comparison of the IFPTML-LDA vs. IFPTML-ANN models we decided to 

go ahead with comparison to other models reported before. We performed a review of the 

literature to carry out a comparison with other ML models. Only models involving AD assays, 

NP antibacterial assays, and/or MN of bacteria were included. Models including other drugs, 

other NP activities, or MN of other organisms were not included. We selected a total of 26 ML 

models reported in the literature. Many ML models involving AD have been reported, only 

those with large heterogeneous series of AD compounds have been included. Notably, most of 

the ML models focus on the study of AD and related compounds ignoring other subsystems of 

the present problem; see Table 6.5. Main part of these models focus on predict the probability 

of presenting AD activity in general without specifying the target bacteria species.71-78 Only 

more recent models using PTML (PT + ML) methodology considers multiple biological 

parameters (multi-output) and multiple species.79-84 However, these PTML models also ignore 

the NP or MN components. One exception found was the PTML model by Speck-Planche et 

al. (includes NP but ignores MN and AD).27, 28 Another series of PTML models include MN 

but ignore NP and AD components. Nocedo et al. published the first IFPTML per se on this 

topic because they carried out the IF of the AD and MN datasets.28 However, this IFPTML 

model includes AD and MN but ignore NP subsystem. As result of this search, we can conclude 

the IFPTML models reported in this work are the only one considering the three subsystems at 

time AD, NP, and MD. On the other hand, Ortega et al.85 and Diéguez et al.86 also published 

IFPTML approaches to the present problem. Nevertheless, both models fail to account for one 

of the parts of the system. The first omit the AD component and the second omit the MN 
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component of the DADNP-MN interaction. An alternative to model developed in the present 

work is the combination some of the pairs of the previous models. For instance, if combine 

Speck-Planche et al. model (NP component) with Nocedo et al. model (AD + MN components) 

at the same time we can obtain a DADNP-MN interaction model. We can also combine Ortega 

et al. model (NP + MN) with Diéguez et al. model (AD + NP). In this last case, the NP 

introduced on both models have to be the same. However, all these combinations involve the 

use of two equations with different kind of parameters, errors, etc. Conversely, the model 

present here is a single linear and additive model involving all the components of the DADNP-

MN (AD, NP, and MN) at the same time.  

Table 6.5. ML models of AD compounds, MN of bacteria, and/or NP antibacterial systems. 

Model 

Type 

ma ADa NP 
b 

MN 
c 

MO 
d 

MSe MULe MLf n g Ac.h 

(%) 

Val.d Ref. 

IFPTML 1 Yes Yes Yes Yes Yes Yes RF >165K 97.0 i This work 

 2 Yes Yes Yes Yes Yes Yes ANN >165K 95.0 i Thiswork 

 3 Yes Yes Yes Yes Yes Yes LDA >165K 89.8 i Thiswork 

 4 No Yes Yes Yes Yes Yes LDA   i 85 

 5 Yes Yes No Yes Yes Yes LDA   i 86 

 6 Yes Yes No Yes Yes Yes KNN   i 86 

 7 Yes No Yes Yes Yes Yes LDA 83605 88.6 i 28 

PTML 8 No No Yes Yes Yes No LDA >100K 72.3 i 30 

 9 No No Yes Yes Yes No LDA >100K 78.0 i 29 

 10 No No Yes Yes Yes No LDA >300K 85.0 i 87 

 11 No Yes No Yes Yes Yes LDA 300 77.7 i 27 

 12 Yes No No Yes Yes Yes LDA 2488 90.0 i 84 

 13 Yes No No Yes Yes Yes LDA 30181 90.0 i 83 

 14 Yes No No Yes Yes Yes ANN 54000 90.0 i 83 

 15 Yes No No Yes Yes Yes LDA 3592 96.0 i 82 

 16 Yes No No Yes No Yes LDA 37800 95.0 i 81 

 17 Yes No No Yes Yes Yes ANN 11576 97.0 i 80 

 18 Yes No No Yes Yes Yes LDA 12000 90.0 i 79 

ML 19 Yes No No No No No LDA 667 92.9 i 78 

 20 Yes No No No No No LDA 661 92.6 ii 77 

 21 Yes No No No No No BLR 661 94.7 ii 77 

 22 Yes No No No No No ANN 661 - iii 77 

 23 Yes No No No No No LDA 352 91.0 i 76 

 24 Yes No No No No No LDA 111 94.0 i 75 

 25 Yes No No No No No ANN 111 89.0 i 75 

 26 Yes No No No No No LDA - > 

90 

i 74 

 27 Yes No No No No No LDA 972 86.8 i 73 

 28 Yes No No No No No LDA 458 ~ 

85 

i 72 

 29 Yes No No No No No LDA 433 ~ 

85 

i 71 
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a m = model number, AD = The model includes Antibacterial Drug (AD) compounds. b NP = The 

model includes Nanoparticles. c MN = The model includes metabolic network. d MO = Multi Output: 

multi-output models (MIC, IC50, MBC, etc.). e MUL/MS: MUL = Multi-label model include in the inputs 

multiple labels of experimental condition like organism, target protein, cell lines, if necessary; MS = 

Multi-species model (one special case of MUL model). f ML= ML Technique: LDA = Linear 

Discriminant Analysis, RF=Random Forest, ANN= Artificial Neural Network, BLR= Binary Logistic 

Regression. n =Total number of cases (AD compounds, MN links, and/or NP assays, etc.) in training 

and/or validation series. hAc(%) = Accuracy of the model. d Val. =Validation methods: i) external 

validation series, ii) leave-30%-out cross validation, and iii) 100-times-averaged re-substitution 

technique. Furthermore, note that methods ii and iii are cross-validation methods.  

3.5 IFPTML mapping of DADNP vs. MN of strains.  

In the introduction, we mentioned the importance of predicting which bacteria strains with 

different MN may lead to MDR strains.88 MDR strain surveillance is defined as the task of 

making a follow up of the new MDR strains as soon as them appear.89, 90 Once the IFPTML-

LDA model was trained we can use it to map perturbations on MN of mutant strains vs. 

DADNP systems. We can define this kind of simulation as a computer-based MDR 

surveillance experiment. In the real world, techniques like Knock Out (KO) may be used to 

experimentally generate new strains with modifications on gen and protein expression. KO 

strains may be useful to identify genome-proteome vs. phenotype relationships.91 In the present 

simulation we are going to use both MNs of real wild type bacteria and computationally-

generated MNs of KO strains. These KO mutant strains are mutants of the real bacterial (wild 

type) with a computationally perturbed metabolism. We call here a real bacteria those with the 

exact parameters of the MNs used training the model. Then, these mutant strains are not real 

but plausible synthetic organisms that have been computationally (in silico) generated. The 

simulation involved putative DADNP vs. real and computationally-generated synthetic 

bacteria strains in >20000 assays. These assays involve >3000 putative DADNP systems 

formed by >1600 compounds (mostly FDA approved drugs and some experimentally assayed 

compounds) with 16 NP and 17 CA options. The assays include different biological activity 

parameters (IC50, MIC, etc.) vs. 22 Bacteria species. For the sake of simplicity, we used the 

IFPTML-LDA model (linear model) to run the simulation. In so doing, we changed the 

ΔSh(Dsk) values of the MNs of each real bacteria by the values of ΔSh(Dsk) calculated for their 

artificial synthetic mutant strains. We created these strains by increasing/decreasing at random 

the Lin and/or Lout degrees of the nodes of their MNs in a 1%. In first instance, 1% was 

considered a degree of perturbation large enough to cause important changes in the output of 

the model but still keeping the main features of the original MN in certain extend. 

Consequently, we obtained six types of mutants according to their incremental/subtractive 

perturbations in Lin, Lout, or both. It makes a total of Nrun>Nassay·(1 + Nmutant) = 20000·(6 + 1) > 

140000 simulation runs. The number 1 accounts for the wild type bacteria species calculated 

for comparison purposes. Incremental perturbations imply increasing the number of chemical 

reactions (higher Lin and/or Lout) in the MN and consequently increasing overall metabolism. 

Conversely, subtractive perturbations imply decreasing the number of chemical reactions 

(lower Lin and/or Lout) in the MN and consequently decreasing overall metabolism. 

Specifically, changes in Lin imply changes on the number of substrates (educts) per product 
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(Anabolism unbalance with respect to wild type). Changes in Lout imply changes on the number 

of product (adducts) per substrate (Anabolism unbalance with respect to wild type).  

In this discussion we are going to focus mainly on strains with subtractive perturbations. This 

includes subtractive perturbations in both directions BB(-δin, -δout) of metabolism. The group 

also include mutants with subtractive perturbations in only one direction BB(-δin, δout) or 

BB(δin, -δout). These perturbations in the MN are realizable in synthetic biology by experimental 

Knockout (KO), silencing with siRNAs, etc., of the gene encoding for the respective 

enzymes.92 Firstly we focused on KO strains with code BB(0, -0.1). These are KO strains with 

unchanged Anabolism (δin(%) = 0%) and decreased Catabolism δout(%) = -10%. The 

computational generation of the MNs of these KO strains is not trivial. Very often the 

elimination of one protein (due KO of the gen) results in the domino-effect (- sign) elimination 

of one or more reactions (links) of the MN and/or neighbor nodes (metabolites) and/or changes 

in topology as well. Interestingly, KO of one gene may result in subtractive but also on 

incremental perturbations. In other cases, appear “silent mutants” with changes in topology of 

the MN but overall constant average Lin and Lout values, see Figure 6.6.  

 
Figure 6.6. Effect of KO of gene over MNs topology. 
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For instance, it is straightforward to realize that KO of Ea gene deletes Enzyme Ea from the 

MN of the wild mutant. This in turn leads to the disappearance of metabolite m1 and the reaction 

catalyzed by enzyme Eb due to lack of educts (substrates). As result we have the mutant BB(0, 

+0.25) with 25% decrease in Catabolism but not average changes in Anabolism as measured 

by Lin and Lout (average parameters). However, KO of gen Ec results in subtractive perturbation 

with reduction of both Lin and Lout creating mutants of type BB(-0.2, -0.2). Last but not least, 

KO of gene Ed or Ee results in silent mutants BB(0, 0) with important changes on MN topology 

which are undetected by average Lin and Lout values because a proportional elimination of 

nodes. Solution to silent mutants’ problem is easy by accounting for the perturbations (δk) on 

other MN topological descriptors. The simplest and meaningful alternatives are the number of 

nodes/metabolites (m) and/or number of links/reactions (r). Resulting in an extended notation 

of the mutants as follows BB(δin, δout, δm, δr). This notation clearly differentiates wild type 

mutant BB(0, 0, 0, 0) from KO Ed with extended notation BB(0, 0, -0.4, -0.4) and Ee mutants 

with notation BB(0, 0, -0.2, -0.2). We decided to continue using here BB(-δin, -δout) notation 

because they are the only MN variables in the IFPTML model and to keep it simple. 

After clarifying the notation we used the IFPTML-LDA model to predict the probabilities 

p(f(vij,vsj) = 1) with which all mutants generated are susceptible to AD. It means the 

probabilities with which f(vij,vsj)pred = 1  for this pair AD and MN. In order to adapt the notation 

to this specific simulation experiment from now own we symbolized this probabilities as 

p(f(vij,vsj) = 1) = p(BB(δin, δout))ij. The Table 6.6 summarizes the p(BB(δin, δout))ijn probability 

values predicted by the IFPTML-LDA model for different AD vs. KO strains with code BB(0, 

-0.1).  

IFPTML model predicts that many of these synthetic mutants could be susceptible to AD 

systems activity p(BB(δin, δout))ijn> 0.5 but other may become MDR strains with p(BB(δin, 

δout))ijn< 0.5. The drugs forming these AD areMOX = Moxifloxacin, IMI = Imipenem, AZT = 

Azithromycin, GAT = Gatifloxacin, CLT = Clarithromycin, TET = Tetracycline, AMP = 

Ampicillin, KAN = Kanamycin, CFT = Ceftriaxone, PEN = Penicillin. For instance, the first 

block of AD systems depicted correspond to the uncoated NP (Coat = N/A) complexes of Ag, 

Cu, CuI, CuO, Fe2O3, and ZnO with multiple drugs. The IFPTML predicts that the ASM of the 

strain BS (0, -0.1) should be susceptible to the AD systems of Ag, CuI, CuO, Fe2O3, and ZnO 

with p(BB(δin, δout))ijn> 0.7 for different drugs (Avg. = 0.7 – 0.9 range). These ASM strains 

should be less susceptible to AD formed by Cu NP (Avg. = 0.48). To cite few examples, the 

IFPTML also predicts that the ASM strain EC (0, -0.1) should be susceptible to the AD systems 

(Avg. = 0.6 – 1 range) but EF(0, -0.1) strains should be highly resistant (Avg. = 0.04 – 0.23 

range). Overall, all the strains studied should be MDR strains vs. AD systems of CFT with 

other NP (Avg. = 0.49).  
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Table 6.6. IFPMTL probabilities for AD vs. BB(0, -0.1) mutants (selected examples). 

Bact

.a 
 AD Dru

ga 

MO

X 

IM

I 

AZ

T 

GA

T 

CL

T 

TE

T 

AM

P 

KA

N 

CF

T 

PE

N MN

s 

NP Coat Avg

. 

0.65 0.6

2 

0.5

3 

0.6

6 

0.5

4 

0.4

6 

0.50 0.70 0.4

9 

0.5

6 BS Ag N/A 0.90  
0.9

3 
   

0.9

1 

0.88 0.86  
0.9

2 BS Cu N/A 0.48  
0.5

9 
 

0.1

8 
 

0.4

9 

0.50 0.45 0.4

8 

0.5

1 BS CuI N/A 0.90  
0.9

2 
   

0.9

2 

0.89 0.87  
0.9

0 BS CuO N/A 0.74   
0.7

6 
 

0.7

6 

0.3

4 

0.78 0.74 0.7

6 

0.7

8 BS Fe2O

3 

N/A 0.71      
0.7

6 

0.78 0.74 0.7

6 

0.5

3 BS ZnO N/A 0.75  
0.8

3 
 

0.7

8 
  0.78 0.74 0.7

6 

0.7

8 EC Ag N/A 0.92 0.96 0.9

6 
 

0.8

7 

0.9

0 
  0.95   

EC Au PDT/CQ 1.00 1.00 1.0

0 
 

1.0

0 
   1.00   

EC Cu N/A 0.69 0.76 0.7

6 
 

0.6

1 
   0.72   

EC CuI N/A 0.89 0.89 0.8

9 
 

0.8

8 
   0.86   

EC CuO N/A 0.83 0.76 0.8

9 
 

0.7

6 
   0.87   

EF Ag N/A 0.23  
0.2

1 

0.3

3 

0.3

2 

0.1

4 

0.2

1 

0.21 0.17   
EF Cu N/A 0.04  

0.0

5 

0.0

6 

0.0

4 

0.0

2 

0.0

5 

0.05 0.03   
EF CuI N/A 0.26 0.38 0.2

8 

0.2

4 

0.2

6 
 

0.2

0 

0.08 0.26 0.3

5 
 

EF CuO N/A 0.12 0.12 0.1

2 

0.1

3 

0.1

1 

0.1

1 

0.1

0 

0.12 0.09 0.1

1 

0.2

1 EF Fe2O

3 

N/A 0.11 0.12 0.1

2 
 

0.1

1 
 

0.1

0 

0.12 0.08 0.1

1 

0.1

5 EF ZnO N/A 0.11 0.12 0.1

1 
 

0.1

1 
 

0.1

0 

0.10  
0.1

1 
 

HI Ag N/A 0.86 0.85 0.8

6 

0.8

7 

0.9

3 

0.8

4 
 0.84  

0.8

4 

0.9

2 HI Cu N/A 0.46 0.43 0.4

2 

0.4

2 

0.6

5 

0.4

2 
 0.42  

0.4

0 
 

HI CuI N/A 0.86 0.86 0.8

6 

0.7

7 

0.9

2 

0.8

6 
 0.87  

0.8

5 

0.9

3 HI CuO N/A 0.68 0.77 0.7

1 

0.7

2 

0.7

4 

0.7

2 

0.4

1 

0.71  
0.7

2 

0.7

2 HI Fe2O

3 

N/A 0.71 0.77 0.7

4 

0.7

2 

0.7

4 

0.7

2 
 0.74  

0.7

2 

0.7

2 HI ZnO N/A 0.69 0.72 0.7

1 

0.5

8 

0.7

2 

0.7

2 
 0.74  

0.7

5 
 

MT Ag N/A 0.90 0.72   
0.9

6 
   0.91   

MT CuI N/A 0.83 0.82   
0.9

1 
   0.83   

MT CuO N/A 0.71 0.87   
0.6

1 

0.6

3 
  0.83   

NG Ag N/A 0.26 0.42  
0.2

9 
  

0.1

2 

0.29  
0.2

7 

0.1

3 NG CuI N/A 0.23 0.32  
0.1

3 
  

0.1

3 

0.39  
0.1

3 

0.1

5 NG CuO N/A 0.15   
0.1

5 

0.1

8 
 

0.0

6 

0.25  
0.1

5 

0.0

7 PA Au PDT/Me

l 

0.09 1.00 1.0

0 
 

1.0

0 
   1.00  

1.0

0 PA Au PDT/CQ 1.00 1.00 1.0

0 
 

1.0

0 
   1.00   

PA Au PDT/CP

B 

1.00 1.00 1.0

0 
 

1.0

0 
   1.00  

1.0

0 PA Au PDT/G 1.00 1.00 1.0

0 
     1.00   

PA Au PDT/AC

h 

1.00  
1.0

0 

1.0

0 

1.0

0 
   1.00   

PA Au PDT/D

MB 

1.00 1.00 1.0

0 
 

0.9

9 
   1.00   

PA Au PDT 1.00 0.99 0.9

9 
 

0.9

9 
   0.99  

0.9

6 PA CuO N/A 0.99 0.89 0.6

5 

0.8

4 

0.8

5 
   0.83  

0.8

5 a MOX = Moxifloxacin, IMI = Imipenem, AZT = Azithromycin, GAT = Gatifloxacin, CLT = 

Clarithromycin,  

TET = Tetracycline, AMP = Ampicillin, KAN = Kanamycin, CFT = Ceftriaxone, PEN = Penicillin. 
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In addition to BB (0, -0.1) mutants we also simulated the behavior of BB (-0.1,0). This 

second group includes KO mutants with a decreased Anabolism with respect to the wide type 

δout  0 and unaltered Catabolism δin = 0. The Figure 6.7 plots the probabilities predicted by the 

IFPTML model for both groups of KO mutants. It is interesting that we found three different 

series of results. These seem to be formed by assays of AD with the same AD and specific set 

of NP vs. different KO mutants. The linear series have predicted probabilities p(-0.1,0) ≈ p(0,-

0.1) for both classes of KO mutants BB(-0.1, 0) and BB(0, -0.1) of the same specie BB. The 

linear series presuppose a gradual linear change in the AD activity regardless the MN of mutant 

strains has a decrease of Anabolism or Catabolism. It may indicate that if a BB has this 

behavior, it could be a species with the certain resilience to mutations that deprived both 

directions of the metabolism. However, there are other series with clear non-linear convex or 

concave behaviors. The study of the behavior of series of assays could be interesting but a 

classification by quadrants could be more systematic. More precisely we can classify BB 

species in four different quadrants of this chart. BB within quadrant I are predicted to be 

susceptible to AD activity and then less dangerous. Species within quadrants II, III, and IV 

could generate MDR strains due to mutations. The KO mutants of species in quadrant II seem 

to become MDR strains only if they have mutations that deprive they Catabolism (δout< 0 =>p(-

0.1, 0) < 0.5).  

 
Figure 6.7. IFPTML mapping of KO mutants. 

Conversely, the KO mutants of species in quadrant III seem to become MDR strains only if 

they have mutations that deprive they Anabolism (δin< 0 =>p(-0.1, 0) < 0.5). Species in the 

quadrant IV are probably the more unstable because they KO mutants seem to become MDR 

strains irrespective of the kind of metabolism deprived. These species should be specially 

subjected to MDR surveillance. In the file S01.xlsx we show the results of all these simulation 
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runs. See average values in sheet SAVG and full simulation results in sheet SIMUL. This excel 

book is an interactive example with active cells (sheet SAVG) allowing the reader to change 

the values in order to run his own simulations (we set δin = δout for simplicity). The sheet SIMUL 

of the same book allows δin ≠ δout simulations as well. All in all, these studies should be taken 

with caution. All conclusions withdrawn from this kind of studies should be corroborated 

experimentally. The real utility expected from the model should be the fast and inexpensive 

calculation of very large series of AD vs. very large series of wild type and mutant strains. This 

could help to short list some AD and/or bacteria strains for experimental assays. Prediction of 

few examples to obtain 100% accurate experimental reproduction of the results is discarded 

due to the probabilistic nature of the model. 

 

3.6 DADNP experimental cases simulation.  

Furthermore, we utilized the IFPTML model to estimate the probability values of numerous 

DADNPs that have already been synthesized, biologically evaluated, and reported in the 

literature. The following were the study's inclusion criteria. We considered examples that 

reported 1) AD antibacterial activity, 2) NP antibacterial activity, 3) DADNP complex 

antibacterial activity, and 4) the microorganism's known metabolic network. We considered 

examples with DADNP activity that was both additive and synergistic. At least one report of 

one biological activity metric was found in the cases chosen. The revision includes a total of 

65 studies that found positive DADNP instances in a total of 21 papers. 93-113 We collected 102 

reports of DADNP complex tests with at least one favorable experimental outcome from these 

journals. The size of the NP used to build the DADNP complexes ranges from 5 nm to 100 nm. 

Some DADNP formed following the inclusion of the coat and the AD may have a size >100 

nm. Additionally, the AD utilized to build the DADNPs exhibit a wide range of 

hydrophobicity, from hydrophilic (LOGP  0) to lipophilic (LOGP> 0). The MIC (μg.mL-1) 

was determined experimentally for AD, NP, and DADNP complex. In all cases, MIC (μg.mL-

1) < 50 (cutoff used in the model) was used for the DADNP complexes simulation. The reported 

assay times ranged from 12 to 24 hours. The DADNP design incorporates coating agents that 

may aid boost the complexes' stability and/or bioavailability over time. 93-113 

The surface scatterplot of AD Hydrophobicity vs. the histograms of NP size and MN 

reactions number are shown in Figure 6.8. Most of the DADNP assays present values of 

metabolic networks between 2200-2450 reactions, LOGP, 0-2, and NP size less than 50 nm. 

Metallic nanoparticles (Ag, Au, and Zn), double metal nanoparticles (ZnCu), metal oxide 

nanoparticles (Fe3O4, CuO, ZnO, and others), and metal salts (MoS2 and AgNO3) were all 

detected. Polyvinylpyrrolidone (PVP), Polyethylene glycol (PEG), Thioglycolic acid (TGA), 

Polydopamine (PDA), Triethylene Glycol (TEG), Alginate, and Chitosan were the most 

frequently utilized coating materials. The cases involve a diverse array of bacteria, including 

several strains of P. Aeruginosa, E. Coli, S. aureus, E. faecalis, E. Faecium, S. epidermidis, B. 

subtilis, A. Baumannii, S. enterica, Y. pestis, and K. pneumoniae. In any case, the DADNP 

complexes discovered contained a wide set of ADs, including PEN (Ampicillin, Meropenem, 

Imepenem), TETRA (Tetracycline), MACRO (Gentamicin, Vancomycin, Rifampicin), QUIN 
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(Ofloxacin, Ciprofloxacin), Aminoglycoside (Tobramycin, Kanamycin, Kanamycin, 

Streptomycin) Amphenicols (Chloramphenicol), Lipopeptide (Daptomycin), and Polypeptide 

(Polymyxin B).34, 78-97 

 
Figure 6.8. AD Hydrophobicity Surface scatterplot vs. Histograms of NP size and MN 

Reactions distribution. 

We may infer that this experimental collection of DADNP complexes preclinical experiments 

contains a significant degree of structural and biological variety. Intentionally, our initial 

collection of AD and NP assays vs MN used to assemble putative DADNP complexes a train 

with a significant structural and biological variety. It may aid our additive model in learning 

how to differentiate between active and inactive DADNP complexes using an additive 

approach. Indeed, our IFPTML model was able to predict as positive all 102 cases 

(p(DADNPin)cdj,cnj> 0.99 in all cases. Table 6.7 summarizes selected IFPTML studies of 

experimentally validated DADNP complexes. The discovery is significant because it 

demonstrates that our IFPTML additive model is capable of correctly identifying 

experimentally tested DADNP complexes with a high degree of structural and biological 

diversity, including both additive and synergic examples. The study of the interaction of the 

physical properties of conjugated nanoparticles with antibacterial drugs vs. the various 

metabolic networks of microorganisms could have an impact on the reduction of costs and 

environmental impacts. The evaluation of these systems to obtain DADNP systems with 

desirable pharmacological properties (mainly towards MDR strains) is an area of great interest 

in nanomedicine and nanotoxicology.  Thus, these complex systems are important in the 

rational design of nanomaterials and Nanosafety computational surveillance. 
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Table 6.7. Examples of IFPTML study of experimentally tested DADNP complexes. 

NP 

Type 
DADNP a 

APSn(n

m) b 

Shape 

Obs. c 
Specied 

MIC(μ

gml-1) e 

p(vij, 

vnj,vsj)obs
f 

t(h

) g 

Re

f.h 

Doubl

e 

Metal 

MER-CuZnNP-

TEG 
21 Sph P. aeruginosa 25.197 0.999 24 

96 

CIP-CuZnNP-

TEG 
21 Sph P. aeruginosa 3.184 0.999 24 

96 

Metal 

AMP-AgNP 3 Sph P. aeruginosa 0.600 0.999 24 101 

KAN-AgNP 3 Sph P. aeruginosa 0.500 0.999 24 101 

VAN-AgNP-TGA 20.5 Sph S. epidermitis 0.020 0.999 24 98 

AMP-AgNP 3 Sph E. coli 0.375 0.999 24 101 

CHL-AgNP 3 Sph E. coli 0.667 0.999 24 101 

KAN-AgNP 3 Sph E. coli 0.500 0.999 24 101 

KAN-AuNP 20 Sph Y. pestis 1.700 0.999 24 113 

IMI-AgNP 24. Sph A. baumanii 2.000 0.999 24 108 

VAN-AgNP-TGA 20.5 Sph E. faecalis 0.100 0.999 24 98 

POL-AgNP 8.4 Sph A. baumanii 0.004 0.999 18 107 

RIF-AgNP 8.4 Sph A. baumanii 0.527 0.999 18 107 

TIG-AgNP 8.4 Sph A. baumanii 1.041 0.999 18 107 

AMP-AgNP 3 Sph E. coli 0.222 0.999 24 101 

CHL-AgNP 3 Sph E. coli 0.200 0.999 24 101 

KAN-AgNP 3 Sph E. coli 0.222 0.999 24 101 

GEN-AgNP 40 Sph 
K. 

pneumoniae 
0.375 0.999 14 

101 

AMP-AgNP 3 Sph E. faecium 0.021 0.999 24 101 

AMP-AgNP 3 Sph S. aureus 0.222 0.999 24 101 

CHL-AgNP 3 Sph E. faecium 0.088 0.999 24 101 

CHL-AgNP 3 Sph S. aureus 0.300 0.999 24 101 

KAN-AgNP 3 Sph S. aureus 0.167 0.999 24 101 

AMP-AuNP-PEG 1.86 Sph S. aureus 0.580 0.999 20 112 

VAN-AgNP-TGA 20.5 Sph S. aureus 0.050 0.999 24 98 

Metal 

Oxide 

CIP-CuONP-PEG 15 Sph P. aeruginosa 4.752 0.999 24 96 

CIP-ZnONP-PEG 35 Sph P. aeruginosa 3.960 0.999 24 96 

TOB-Fe3O4NP-

PEG/Alg 
16 Sph P. aeruginosa 0.220 0.999 24 93 

VAN-

Mn2Fe2O4NP-

PEG/Ch 

25 Sph B. subtilis 0.780 0.999 24 

97 

VAN-

Mn2Fe2O4NP-

PEG/Ch 

25 Sph S. epidermitis 0.610 0.999 24 

97 

IMI-AgNO3NP 25 Cil P. aeruginosa 4.000 0.999 24 111 
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Metal 

Salt 
OFL-MoS2NP-Ch 175 Nf S. aureus 25.000 0.999 24 100 

Notes: a DADNP: Dual Antibacterial Drug-Nanoparticles. (Include material coated). Antibacterial Drug. 

MER: Meropenem, CIP: Ciprofloxacin, AMP: Ampicillin, KAN: Kanamycin, VAN: Vancomycin, 

CHL: Chloramphenicol, IMI: Imipenem, RIF: Rifampicin, GEN: Gentamycin, POL: Polymyxin B, TIG: 

Tigecycline, TOB: Tobramycin, OFL: Ofloxacin. Coated material. TEG: Triethylene Glycol, TGA: 

Thioglycolic acid, PEG: Polyethylene glycol, Alg: Alginate, Ch: Chitosan. b: APSn(nm): Average of 

Size of Nanoparticle. c Shape Obs: Shape observed. Sph: Spherical, Cil: Cilindrical, Nf: Nanoflakes. d. 

Specie: Microorganism species and metabolic network. e MIC (μg ml-1): Minimum inhibitory 

concentration. f p(vij, vnj,vsj)obs : probability, calculated as p (DADNPin vs MN/cdj, cnj,, csj)pred = 1/(1+Exp(-

f(vij, vnj,, vsj)calc). g t(h) Time of assay. h Ref. Reference. 

 

4. CONCLUSIONS 

Developing Dual Antibacterial Drug-Nanoparticles (DADNP) systems may become a new 

weapon on the arsenal to fight AD resistant MDR strains with different MNs. However, testing 

DADNP vs. strains with different MN is a hard and costly task. ML models may help to speed 

up the process. The IFPTML algorithm with an additive approach may be a practical solution 

to the DADNP discovery. This approach may be useful until researchers can accumulate larger 

experimental datasets of DADNP systems. Regarding the methodological objectives, The 

linear model included three subsystems (preclinical antibacterial drugs, metabolic network and 

nanoparticles with coating agents) and showed a good fit (Sn= 80.2%, Sp= 90.5% and 

Ac=89.8%). The information from the three subsystems did not significantly influence the 

robustness of the models to analyze the problem presented in the thesis. 

Regarding the practical objectives, IFPTML-LDA was the simpler and still accurate model 

found. IFPTML-MLP models are more complicated but outperformed the linear models. 

Among the twelve ML algorithms used to create nonlinear IFPTML classification models, the 

RF, KNN, BN and NBN models had the highest Sn and Sp values. The IFPTML linear and 

additive model was able to predict 102 experimental cases of DADNPs complexes with a high 

degree of structural and biological variety reported in the literature. IFPTML models proposed 

could be useful for computational screening by short listing for experimental assays the more 

promising candidates. We introduce here the concept of MDR&Nanosafety computational 

surveillance. IFPTML models may be used also to run a large simulation of sensibility 

Knockout (KO) synthetic strains to DADNP systems in different assay conditions. These 

simulations may predict the answer to DADNP of bacteria with perturbations in MN structure. 

This in turn may help to detect new MDR bacteria strains.  
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1. CONCLUSIONS 

The main contribution of this doctoral thesis is the derivation of several predictive models of 

the antibacterial activity of drugs in the design phase by applying perturbation theory (PT) 

combined with machine learning methods (ML) and the fusion of information (IF) from 

preclinical assays, chemical structures, nanoparticles, and variations of metabolic reaction 

networks of multiple microorganisms. 

 

The main findings of the work performed during this PhD thesis are summarized as follows: 

• The state of the art on bacterial resistance, major antibiotics, protein targets, 

mechanisms of action, databases of preclinical, clinical trials, and other sources of 

information useful for computational modeling were explored. In this critical analysis, 

machine learning techniques and performance evaluation metrics algorithms applied 

in the field of antibacterial drugs were compiled.  

• A PTML computational model was built to study the connectivity (structure) of a 

metabolite in the metabolic reaction networks of a query organism. Analysis of the 

dataset included the number of nodes (metabolites), input-output links (metabolic 

reactions), node degree, topological indices, and the full names and codes of > 40 

bacterial species. 

• There is a low number of experimentally tested DADNP systems, but a high number 

of experimentally tested ADs and NPs, so additive IFPTML models may become a 

pragmatic solution for the time being when taking into account the greater abundance 

of experimental evidence for DADNP components in ADs and NPs alone. 

• A chemo-computational methodology based on machine learning techniques with 

perturbation theory and information fusion was proposed that quantitatively related 

chemical and preclinical data from the ChEMBL database to metabolic network data. 

The linear and nonlinear IFPTML models of AD versus MN presented good statistical 

parameters. The IFPTML-LDA model presented specificity (Sp) of 76.1%, sensitivity 

(Sn) of 72.3%, and accuracy (Ac) of 74.3%. Among the IFPTML-nonlinear, the k 

Nearest Neighbors (KNN) showed the best results, with Sn = 99.2%, Sp = 95.5%, Ac 

= 97.4%, and AUROC = 0.998 in the training sets.  

• The first predictive model of the biological activity of antibacterial drugs 

functionalized with nanoparticle systems was constructed using the IFPTML method. 

This model included information on assay conditions and molecular descriptors. 

Different algorithms, such as Linear Discriminant Analysis (LDA), Artificial Neural 

Networks (ANN), Bayesian Networks (BNN), K-Nearest Neighbor (KNN), etc., were 

applied to find the model with the highest sensitivity, specificity, and accuracy, taking 

into account the complexity. We performed a simulation of the expected behavior of 

putative DADNPs in 72 different biological assays (> 1900 calculations) and tested the 

validity of the additive model with 80 experimentally synthesized and biologically 

tested DADNP complexes (reported in the literature). The IFPTML-LDA model 

correctly classified 100% of the DADNP complexes as biologically active. The 

IFPMTL additive strategy may become a useful tool to aid in the design of DADNP 

systems for antibacterial therapy, taking into account only information about the AD 

and NP components separately. 

• An analysis and mapping of DADNP (AD + NP) systems against MN of pathogenic 

bacterial species was developed by Information Fusion Machine Learning with 

Perturbation Theory (IFPTML) as a new application of AI/ML methods in the search 

for antibacterial drugs (AD) coping with the emergence of multidrug-resistant strains. 
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The Linear Discriminant Analysis (LDA) model of IFPTML with Sp ≈ 90% and Sn ≈ 

80% and the best Artificial Neural Network (ANN) model found with Sp ≈ Sn ≈ 95% 

in the training and validation runs presented good results. This type of model could be 

useful for the discovery of new DADNP systems. 

 

2. FUTURE WORKS  

MLT contribute to drug discovery, are applied at different stages of development to 

accelerate the research process and reduce time and expenses. The various applications 

of ML in the antibacterial field can coordinate theoretical results such as chemical 

information, metabolic data of microorganisms and medical data to emerge as a tool 

for decision making. MLT (such as NN, SVM, DT, ensemble predictors, and Bayesian 

classifiers) could be used as predictive tools in chemoinformatic pipelines aimed at 

predicting the activity of unknown compounds and subsequently discovering new 

potential antibacterial agents. The predictive ability of models is determined by the 

inherent properties of each dataset, and the selection of the best MLT is related to its 

performance. ML approaches are increasingly opening new regions of chemical space 

for exploration. New techniques allow larger volumes of data to be processed and 

higher accuracy to be obtained. DL algorithms, RF and clustering methods have been 

gaining ground among ML techniques applied in AD discovery studies. However, in 

clinical trials, the application of ML is still limited even though there are varied sources 

of information that can generate absolute and methodological data to support decision 

making and deduction of risk failures in drug discovery. High numbers of antibacterial 

AD and NP experimentally tested are possibly the best opportunity at same time. In the 

face of the limitations of potential new antibiotic discovery and the global threat posed 

by antibiotic-resistant bacteria, strategies such as drug repurposing and combination 

antibacterial NP systems have emerged as promising approaches, although they present 

substantial obstacles to success. In the case of the former, to accelerate compounds in 

clinical studies, and in the latter, there remain many issues to be resolved in the safety 

of nanomaterials prior to clinical translation. Furthermore, in vivo toxicity and actual 

clinical effect must be attested at all times and with care. ML models may help, but the 

low number of real DADNP experimentally characterized complex applications. 

Additive IFPTML models may become a pragmatic solution, for the moment, by taking 

into consideration the higher abundance of experimental tests for DADNP components 

AD and NP alone. 

Clearly, the remaining obstacles to the application of ML in antibacterial drug 

discovery must be removed or reduced. It is required to enhance research in new drug 

discovery and development processes. Access to robust and freely available data and 

increased collaboration between researchers and institutions.  

Data availability, collaboration, and use of cloud-based web services: The prospects 

for ML-facilitated antibiotic discovery will depend in part on improved data. As 

broader data sources become publicly available, new ML questions can be raised and 

ongoing questions can be reviewed more rigorously. Although expanding public 

sources of experimental data will be crucial, collaboration between institutions can 

facilitate expansion of the empirical data set without private data sharing, as has been 

done in other areas of biomedical ML.1 Increased data sharing of successful and 
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unsuccessful projects in the pharmaceutical industry has also been proposed as a means 

to accelerate research and development.2 

The provision and sharing of data and models are being recognised as essential to 

improve the efficiency and transparency of research in various fields of drug discovery. 

Making them accessible using the FAIR (findable, accessible, interoperable, and 

reusable) principles is a cornerstone of open science.3 Making data and models 

available to all researchers increases the robustness of the science, enables model reuse, 

and expands the dataset of antibacterial drug data that can be used to train new models. 

One of the barriers to discovering new antibiotics is the lack of information sharing.4 

For instance, The Pew Charitable Trusts launched SPARK: the Shared Platform for 

Antibiotic Research and Knowledge (https://www.collaborativedrug.com/SPARK-

data-downloads/). SPARK is an online, publicly available, interactive database 

designed to help scientists build on previous research and generate new insights to 

advance the field’s understanding of Gram-negative permeability. This viewpoint 

details how data is selected and integrated into the platform, how scientists can use 

SPARK to share their data, and the ways the scientific community can access and use 

this data to develop hypotheses. 

Another case is the Global Antibiotic Research and Development Partnership 

(GARDP). It brings public and private partners together to speed the development and 

global availability of novel antibiotics to treat the most difficult drug-resistant bacterial 

diseases. GARDP's recently published strategy outlines its ambitious goal of delivering 

five novel medicines by 2025, focused on sexually transmitted infections, newborn 

sepsis, and infections in hospitalized adults and children.5 GARDP, in particular, has 

an outreach initiative called REVIVE (revive.gardp.org) to improve knowledge 

retention, and the antimicrobial R&D community is supported online to connect, share, 

and obtain information. Regular webinars, antimicrobial opinion pieces, and 

conference sessions are among REVIVE's initiatives.6 

Drug re-purposing: Existing data can also be exploited for new purposes, as 

demonstrated by resources such as the Drug Repurposing Hub.7 In that sense, these 

resources such as drug repurposing have emerged as a drug discovery strategy in the 

face of difficult processes to find new antibacterial drugs in recent years. The review 

by Ananda Kumar et al. 8 highlights the key role of drug repurposing in antibiotic 

development during 2016-2017 and addresses combination therapies with existing 

antibiotics. Additionally, they discuss the potential new implications of effectively 

combating multidrug-resistant (MDR) bacterial infections. A similar focus covers the 

review by Farha, et al.9 on repurposing existing drugs for antimicrobial purposes. In 

that paper, they discuss enabling screening platforms for antimicrobial discovery and 

present encouraging findings of new antimicrobial therapeutic strategies. The 

exploration of 10 with the use of DL methods to discover antibiotics from repurposing 

non-antibiotic pharmaceuticals was based on that approach. 

New advances in nanomedicine: Recent advances in nanomedicine promise to be 

effective for pathogen treatments by enhancing the bactericidal capacity of 

antibiotics.11 DADNP systems may be more cost-effective solutions due to their high 

tunability and broad adaptability to address different circumstances, including 

persistent cells in macrophages and biofilm infections.12 These systems have been 

https://www.collaborativedrug.com/SPARK-data-downloads/
https://www.collaborativedrug.com/SPARK-data-downloads/
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investigated under controlled conditions with various nanoparticle complexes, mainly 

metallic (Ag and Au), and have been shown to have synergistic or additive effects 

compared to stand-alone AD or NPs, which makes them potentially promising for the 

treatment of MDR strains. Compared to traditional antibiotics, DADNP systems may 

be endowed with many functions, such as enhanced penetration, targeting, and 

absorption capabilities, change of the infectious microenvironment, and combination 

with other therapeutic strategies. However, several critical issues remain to be 

addressed in the application of strategies based on these systems, such as in vivo 

stability and long-term safety effects (in vivo toxicity and actual clinical effects should 

be attested throughout), a lack of standards for formulation delivery, scale-up 

feasibility, etc.12 As a result, it will be necessary to increase long-term research and 

practice before large-scale application of nanoantibiotics for the treatment of resistant 

infections. It is expected that in the near future, nanoantibiotics will be able to fight 

resistant bacterial infections and save more lives. 

Integration of the various approaches: Regarding future directions of employing MLT 

in antibiotic discovery, there is an urgent need to integrate the various approaches 

discussed. The use of available and shared drug data and information, computer-aided 

drug design, advanced MLT such as DL methods and other areas will play an important 

role in accelerating the urgent task of new antibiotic discovery.In addition, medicinal 

chemistry can use MLT to develop new antibacterial agents for numerous 

reasons/opportunities: the opportunity to exploit the ever-increasing available data; the 

increasing complexity of those data sets; the constant increase in computational power; 

and the advancement in algorithms and combined predictive pipelines. A drug design 

pipeline's first step could come from a vast undiscovered chemical space and must meet 

many ideal requirements. Generally, science and technology are continually renewing 

themselves. Regarding the first opportunity, multi-task or multi-objective QSAR 

research already exists and can be simply applied utilizing MLT.13-15 Multi-objective 

QSAR techniques predict many endpoints with the same model and are useful in 

multitarget drug design.16, 17 
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