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Abstract: Bisphosphonates are widely used in medicine and related areas, mainly for the treatment
of bone diseases, such as osteoporosis. However, their synthesis is usually performed under harsh
reaction conditions. In order to overcome this limitation, the present work illustrates a new synthetic
route to access the title α-aminobisphosphonate in milder reaction conditions using α-phosphorylated
imines as key intermediates.
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1. Introduction

Phosphonate-containing organic molecules such as aminophosphonate and bisphos-
phonate derivatives are well-known for their biological activities [1–5]. Consequently, many
routes have been reported for their synthesis [6–10]. In particular, bisphosphonates have
shown high potential as enzyme inhibitors [11–13], anti-inflammatory agents [14] or cancer
treatments [15–17]. In particular, zoledronic acid, considered an essential medicine by the
World Health Organization [18,19], and other bisphosphonate analogues, are broadly used
for the treatment of osteoporosis and other bone diseases (Figure 1).
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1. Introduction 
Phosphonate-containing organic molecules such as aminophosphonate and bisphos-

phonate derivatives are well-known for their biological activities [1–5]. Consequently, 
many routes have been reported for their synthesis [6–10]. In particular, bisphosphonates 
have shown high potential as enzyme inhibitors [11–13], anti-inflammatory agents [14] or 
cancer treatments [15–17]. In particular, zoledronic acid, considered an essential medicine 
by the World Health Organization [18,19], and other bisphosphonate analogues, are 
broadly used for the treatment of osteoporosis and other bone diseases (Figure 1). 
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Figure 1. Bisphosphonate drugs. 

Concerning the synthetic routes to α-hydroxy and α-aminobisphosphonates, the 
most widely used methods make use of carboxylic acids, amides or amines as starting 
materials (Scheme 1) [6,8]. However, these methodologies often require harsh reaction 
conditions or high temperatures. 
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Figure 1. Bisphosphonate drugs.

Concerning the synthetic routes to α-hydroxy and α-aminobisphosphonates, the most
widely used methods make use of carboxylic acids, amides or amines as starting materials
(Scheme 1) [6,8]. However, these methodologies often require harsh reaction conditions or
high temperatures.

In this context, α-iminophosphonates have emerged as promising substrates to access
α-aminophosphonate derivatives [20,21] that allow phosphorylated imine intermediates
and make them suitable for subsequent transformations [22–24]. It should be noted that all
those methodologies require milder reaction conditions when compared with the previously
known strategies (Scheme 1B,C). Over the last decade, our group has been working on
the synthesis of organophosphorus compounds [22,25–30]. Based on Steglich’s [31] and
Kobayashi’s reports [32–34], as well as our previous experience with nucleophilic additions
to imines [22,26,28,35,36], in this case, we propose the synthesis of chiral diethyl (benzami-
do (diisopropoxyphosphoryl) methyl) phosphonate through a Pudovik reaction using α-
bromo aminophosphonates as the starting material of the corresponding imine (Scheme 2).
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Scheme 1. Main synthetic routes to bisphosphonates. (A) Synthesi of α hydroxy bisphosphonates 
from car-boxylic acids; (B) Synthesis of α aminobisphosphonates from amides; (C) Synthesis of α 
amino bisphosphonates from amines. 
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2. Results 
The proposed synthesis requires two base-catalyzed steps. For this reason, we ini-

tially tested the direct addition of diethyl phosphite 2 to α-bromo aminophosphonate 1 in 
presence of an excess of triethylamine, which is known to promote the elimination of hy-
drobromic acid as well as to act as a catalyst in the Pudovik reaction. In order to demon-
strate the formation of the α-iminophosphonate intermediate 4, the reaction was moni-
tored by 31P NMR (31P NMR of α-iminophosphonate 4 (δ = 1.7 ppm)). The addition of the 
phosphite 2 with 0.1 equivalents of trimethylamine afforded the bisphosphonate product 
3. However, the low stability of α-iminophosphonates makes this two-step procedure less 
efficient. Therefore, the synthesis of 3 was performed using a single-step procedure, af-
fording the bisphosphonate 3 in 76% yield after purification (Scheme 3). 

Scheme 1. Main synthetic routes to bisphosphonates. (A) Synthesi of α hydroxy bisphosphonates
from car-boxylic acids; (B) Synthesis of α aminobisphosphonates from amides; (C) Synthesis of α
amino bisphosphonates from amines.
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Scheme 2. Our proposal to access amino bisphosphonates.

2. Results

The proposed synthesis requires two base-catalyzed steps. For this reason, we ini-
tially tested the direct addition of diethyl phosphite 2 to α-bromo aminophosphonate 1 in
presence of an excess of triethylamine, which is known to promote the elimination of hydro-
bromic acid as well as to act as a catalyst in the Pudovik reaction. In order to demonstrate
the formation of the α-iminophosphonate intermediate 4, the reaction was monitored by
31P NMR (31P NMR of α-iminophosphonate 4 (δ = 1.7 ppm)). The addition of the phosphite
2 with 0.1 equivalents of trimethylamine afforded the bisphosphonate product 3. However,
the low stability of α-iminophosphonates makes this two-step procedure less efficient.
Therefore, the synthesis of 3 was performed using a single-step procedure, affording the
bisphosphonate 3 in 76% yield after purification (Scheme 3).
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Aminobisphosphonate 3 was extensively characterized by 1H, 13C{1H] NMR, DEPT,
31P NMR, 2D-COSY NMR {1H-1H}, 2D-HSQC NMR {1H-13C}, 2D-HMBC NMR {1H-13C},
FTIR spectra and HRMS experiments (Supplementary Materials).

The most relevant signal of compound 3 in the 1H NMR spectrum (CDCl3) is the
proton corresponding to the P-CH-P moiety, which is seen as a representative triplet
doublet at δH = 5.19 ppm (2JPH = 21.5 Hz and 3JHH = 10.2 Hz), the result of the coupling
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between CH and the NH of the amide moiety and the coupling of CH with each of
the contiguous phosphonates. In addition, due to the low interchange ratio of the NH
belonging to the amide group, a doublet is observed at 6.54 ppm, showing coupling only
with the neighboring CH moiety (3JHH = 10.2 Hz). Likewise, in the 13C NMR spectrum of
phosphorylated derivative 3, the two doublets corresponding to the two diastereotopic CH
carbons of the iso-propyl moiety appear at δC = 72.8 ppm (2JCP = 17.4 Hz) and δC = 72.7 ppm
(2JCP = 17.7 Hz). The methylene carbons corresponding to the two ethoxy groups can be
also detected as two doublets with chemical shifts at δC = 63.7 ppm (d, 2JCP = 29.3 Hz)
and δC = 63.6 ppm (d, 2JCP = 29.7 Hz). A very characteristic signal corresponding to the
CH carbon appears as a double doublet at δC = 44.9 ppm with strong coupling with the
two adjacent phosphorus atoms (1JCP = 148.4 Hz and 1JCP = 146.6 Hz). Finally, due to
the presence of a chiral center in the structure, the two carbons corresponding to the four
methyl groups at the isopropyl moieties appear as two doublets at 24.7 ppm (3JCP = 3.3 Hz)
and 23.9 ppm (3JCP = 5.4 Hz) for isopropyl groups. However, both methyl groups of the
ethoxy group appear overlapped as one doublet at 16.5 ppm (3JCP = 6.0 Hz). As expected,
the 31P NMR spectrum of substrate 3 shows two doublets at δP = 16.5 and 14.3 ppm
(2JPP = 31.3 Hz).

The FTIR spectrum of compound 3 shows a stretching vibration around ν = 3218 cm−1,
which is typical for N-H moiety. In addition, several absorptions within the interval
ν = 3056–2986 cm−1 correspond to the stretching vibration of aromatic and aliphatic C-H
bonds. One of the most relevant absorption signals observed in the IR spectrum corre-
sponds to the stretching vibration of the amide C=O bond at ν = 1657 cm−1. The vibration of
the P=O bonds corresponding to the ethyl and isopropyl phosphonates results in moderate
absorption bands at ν = 1258 cm−1 and ν = 1163 cm−1. Due to the presence of the phospho-
rylated groups, the IR spectrum shows two signals at ν = 1144 cm−1 and ν = 1109 cm−1

which correspond to the P-O-C stretching bonds of both phosphonate moieties.
The high-resolution mass spectrometry (HRMS (ESI-TOF) m/z) experiment shows

a peak corresponding to the molecular ion with an exact mass of 436.1642 (M + H)+ that
fits with the predicted mass ((M + H)+ = 436.1654) of the calculated molecular formula
(C18H32NO7P2) far within the standard tolerated deviation.

3. Materials and Methods
3.1. General Experimental Information

Solvents used for extraction and chromatography were technical grade. All the sol-
vents used in reactions were freshly distilled from appropriate drying agents before use.
All other reagents were recrystallized or distilled as necessary. All reactions were per-
formed under an atmosphere of dry nitrogen. Analytical TLC was performed with silica
gel 60 F254 plates. Visualization was accomplished by UV light. 1H and 13C-NMR spectra
were recorded on a Varian Unity Plus (Varian Inc., NMR Systems, Palo Alto, Santa Clara,
CA, USA) (at 300 MHz, 75 MHz, 120 MHz and 282 MHz) and on a Bruker Avance 400
(Bruker BioSpin GmbH, Rheinstetten, Germany) (at 400 MHz for 1H and 100 MHz for 13C).
Chemical shifts (δ) were reported in ppm relative to residual CHCl3 (δ = 7.26 ppm for 1H
and δ = 77.16 ppm for 13C NMR). Coupling constants (J) were reported in Hertz. Data
for 1H NMR spectra were reported as follows: chemical shift, multiplicity, coupling con-
stant and integration. Multiplicity abbreviations were as follows: s = singlet, d = doublet,
t = triplet, q = quartet and m = multiplet. 13C-NMR peak assignments were supported by
distortionless enhanced polarization transfer (DEPT). High resolution mass spectra (HRMS)
were obtained by positive-ion electrospray ionization (ESI). Data were reported in the form
m/z (intensity relative to base = 100). Infrared spectra (IR) were taken in a Nicolet iS10
Thermo Scientific spectrometer (Thermo Scientific Inc., Waltham, MA, USA) as neat solids.
Peaks were reported in cm−1.
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3.2. Experimental Procedures and Characterization Data for Aminobisphosphonate 3

Synthetic procedure: To a solution of 1 (2 mmol, 756 mg, 1.0 equiv.) in dry CH2Cl2
(3 mL) under N2 atmosphere, triethylamine (2.2 mmol, 307 µL, 1.1 equiv.) and diethyl
phosphite 2 (2 mmol, 260 µL, 1 equiv.) were sequentially added. Then, the reaction was
stirred at room temperature for 16 h, concentrated under vacuum and purified by column
chromatography (hexane/EtOAc) to afford 662 mg (76%) of 3 as a white solid.

1H-NMR (400 MHz, CDCl3) δ 7.78 (d, 3JHH = 7.2 Hz, 2H, 2 × CHAr), 7.54 (t, 3JHH = 7.4 Hz,
H, CHAr), 7.46 (t, 3JHH = 7.4 Hz, 2H, 2 × CHAr), 6.54 (d, 3JPH = 10.2 Hz, 1H, NH), 5.19 (td,
2JPH = 21.5 Hz, 3JHH = 10.2 Hz, 1H, CH), 4.87–4.74 (m, 2H, 2 × CH OiPr), 4.35–4.11 (m, 4H,
2 × CH2 OEt), 1.65–0.97 (m, 18H, 2 × CH3 OEt + 4 × CH3 OiPr) ppm.

13C-NMR {1H} (101 MHz, CDCl3) δ 166.5 (t, 3JCP = 4.0 Hz, C = O), 133.7 (Cquat), 132.2
(CHAr), 128.9 (2 × CHAr), 127.2 (2 × CHAr), 72.8 (d, 2JCP = 17.4 Hz, CH OiPr), 72.7 (d,
2JCP = 17.7 Hz, CH OiPr), 63.7 (d, 2JCP = 29.3 Hz, CH2 OEt), 63.6 (d, 2JCP = 29.7 Hz, CH2
OEt), 44.9 (dd, 1JCP = 148.4 Hz, 1JCP = 146.6 Hz, CH), 24.7 (d, 3JCP = 3.3 Hz, 2 × CH3 OiPr),
23.9 (d, 3JCP = 5.4 Hz, 2 × CH3 OiPr), 16.5 (d, 3JCP = 6.0 Hz, 2 × CH3 OEt) ppm.

31P-NMR (162 MHz, CDCl3) δ 16.5 (d, 2JPP = 31.3 Hz), 14.3 (d, 2JPP = 31.3 Hz) ppm.
M.p. (Et2O) = 153–155 ◦C.
FTIR (neat) νmax: 3218 (NH), 3056 (=CH), 2987 (C-H), 1657 (C=O), 1258 (P=O),

1163 (P=O), 1144 (P-O-C), 1109 (P-O-C) cm−1.
HRMS (ESI-TOF) m/z: [M + H] + calcd for C18H32NO7P2 436.1654, Found 436.1642.

4. Conclusions

The synthesis of bisphosphonate derivative 3 was accomplished by the direct addition
of diethyl phosphite 2 to a solution of α-bromo aminophosphonate 1 under the presence of
an excess of triethylamine. 1H, 13C, 31P and 2D-NMR, and FTIR and HRMS experiments
unequivocally confirm the structure of the obtained compound.

Supplementary Materials: The following are available online, 1H, 13C, 31P and 2D-NMR, and FTIR,
HRMS and UV spectra copies of compound 3.
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