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Abstract
Let 𝑝 > 3 be a prime number and let 𝑟 be an integer with 1 < 𝑟 < 𝑝 − 1. For each
𝑟, letmoreover𝐺𝑟 denote the unique quotient of themaximal class pro-𝑝 group of
size𝑝𝑟+1.We show that themod-𝑝 cohomology ring of𝐺𝑟 has depth one and that,
in turn, it satisfies the equalities in Carlson’s depth conjecture [2]. This is the first
family of finite 𝑝-groups for which Carlson’s depth conjecture has been verified
besides 𝑝-groups of abelian type mod-𝑝 cohomology or extraspecial 𝑝-groups.
Moreover, this computation is possible without first describing the structure of
the cohomology ring.
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1 INTRODUCTION

Let 𝑝 be a prime number, let 𝐺 be a finite 𝑝-group and let 𝔽𝑝 denote the finite field of 𝑝 elements with trivial 𝐺-action.
Then, the mod-𝑝 cohomology ring H∗(𝐺; 𝔽𝑝) is a finitely generated, graded-commutative 𝔽𝑝-algebra (see [6, Corollary
7.4.6]), and so many ring-theoretic notions can be defined; Krull dimension, associated primes and depth, among
others. Some of the aforementioned concepts have a group-theoretic interpretation; for instance, the Krull dimension
dimH∗(𝐺; 𝔽𝑝) ofH∗(𝐺; 𝔽𝑝) equals the𝑝-rank rk𝑝 𝐺 of𝐺, i.e., the largest integer 𝑠 ≥ 1 such that𝐺 contains an elementary
abelian subgroup of rank 𝑠. However, the depth of H∗(𝐺; 𝔽𝑝), written as depthH∗(𝐺; 𝔽𝑝), is the length of the longest
regular sequence inH∗(𝐺; 𝔽𝑝), and it seems to be far more difficult to compute. There are, nevertheless, lower and upper
bounds for this number. For instance, Duflot [5] proved that the depth of H∗(𝐺; 𝔽𝑝) is at least as big as the 𝑝-rank of the
centre 𝑍(𝐺) of 𝐺, i.e., depthH∗(𝐺; 𝔽𝑝) ≥ rk𝑝 𝑍(𝐺), and Notbohm [20] proved that for every elementary abelian subgroup
𝐸 of 𝐺 with centralizer 𝐶𝐺(𝐸) in 𝐺, the inequality depthH∗(𝐺; 𝔽𝑝) ≤ depthH∗(𝐶𝐺(𝐸); 𝔽𝑝) holds. In [2], Carlson
provided further upper bounds for the depth (see Theorem 2.3) and stated a conjecture that still remains open (see
Conjecture 2.4).
The aim of the present work is to compute the depth of the mod-𝑝 cohomology rings of certain quotients of the

maximal class pro-𝑝 group that moreover satisfy the equalities in the aforementioned conjecture. Let 𝑝 be an odd prime
number, let ℤ𝑝 denote the ring of 𝑝-adic integers and let 𝜁 be a primitive 𝑝-th root of unity. Consider the cyclotomic
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extensionℤ𝑝[𝜁] of degree 𝑝 − 1 and note that its additive group is isomorphic toℤ𝑝−1
𝑝 . The cyclic group 𝐶𝑝 = ⟨𝜎⟩ acts on

ℤ𝑝[𝜁] via multiplication by 𝜁, i.e., for any 𝑥 ∈ ℤ𝑝[𝜁], the action is given as 𝑥𝜎 = 𝜁𝑥. Using the ordered basis 1, 𝜁, … , 𝜁𝑝−2

in ℤ𝑝[𝜁] ≅ ℤ
𝑝−1
𝑝 , this action is given by the matrix

⎛⎜⎜⎜⎜⎜⎝

0 1 0 … 0

0 0 1 … 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … 1

−1 −1 −1 … −1

⎞⎟⎟⎟⎟⎟⎠
.

We form the semidirect product 𝑆 = 𝐶𝑝 ⋉ ℤ
𝑝−1
𝑝 , which is the unique pro-𝑝 group of maximal nilpotency class. Note that

this is the analogue of the infinite dihedral pro-2 group for the 𝑝 odd case. Moreover, 𝑆 is a uniserial 𝑝-adic space group
with cyclic point group 𝐶𝑝 (compare [16, Section 7.4]). We write

[
𝑥,𝑘 𝜎

]
=
[
𝑥, 𝜎, 𝑘… , 𝜎

]
for the iterated group commutator.

Set 𝑇0 = ℤ𝑝[𝜁] and define, for each integer 𝑖 ≥ 1,

𝑇𝑖 = (𝜁 − 1)𝑖ℤ𝑝[𝜁] =
[
𝑇0,𝑖 𝜎

]
= 𝛾𝑖+1(𝑆).

These subgroups are all the 𝐶𝑝-invariant subgroups of 𝑇0, and the successive quotients satisfy

𝑇𝑖∕𝑇𝑖+1 ≅ ℤ𝑝[𝜁]∕(𝜁 − 1)ℤ𝑝[𝜁] ≅ 𝐶𝑝.

Hence, |𝑇0 ∶ 𝑇𝑖| = 𝑝𝑖 for every 𝑖 ≥ 0. For each integer 𝑟 > 0, consider the quotient 𝑇0∕𝑇𝑟 = ℤ𝑝[𝜁]∕(𝜁 − 1)𝑟ℤ𝑝[𝜁]. Since
the subgroups 𝑇𝑟 are 𝐶𝑝-invariant, we can form the semidirect product

𝐺𝑟 = 𝐶𝑝 ⋉ 𝑇0∕𝑇𝑟. (1.1)

The finite 𝑝-groups 𝐺𝑟 have size 𝑝𝑟+1.
For each integer 𝑟 with 1 < 𝑟 < 𝑝 − 1, we can choose a minimal generating set for 𝑇0∕𝑇𝑟 as follows,

𝑎1 = 1 + 𝑇𝑟, 𝑎2 = (𝜁 − 1) + 𝑇𝑟, … , 𝑎𝑟 = (𝜁 − 1)𝑟−1 + 𝑇𝑟.

Using the multiplicative notation, we obtain

𝑇0∕𝑇𝑟 = ⟨𝑎1, … , 𝑎𝑟⟩ ≅ 𝐶𝑝 ×
𝑟
⋯ × 𝐶𝑝,

and thus,

𝐺𝑟 = 𝐶𝑝 ⋉ 𝑇0∕𝑇𝑟 ≅ 𝐶𝑝 ⋉
(
𝐶𝑝 ×

𝑟
⋯ × 𝐶𝑝

)
.

The finite 𝑝-groups 𝐺𝑟 have size 𝑝𝑟+1 and exponent 𝑝. Note that in particular, 𝐺2 is the extraspecial group of size 𝑝3 and
exponent 𝑝. We state the main result.

Theorem 1.1 (Main Theorem). Let 𝑝 > 3 be a prime number, let 𝑟 be an integer with 1 < 𝑟 < 𝑝 − 1 and let 𝐺𝑟 be given as
in (1.1). Then, depthH∗(𝐺𝑟; 𝔽𝑝

)
= 𝜔𝑑(𝐺𝑟) = 1.

For each prime 𝑝, if 𝑟 = 𝑝 − 1, then 𝐺𝑟 has size 𝑝𝑟+1, has exponent 𝑝 and is of maximal nilpotency class; while if
𝑟 > 𝑝 − 1, then 𝐺𝑟 has size 𝑝𝑟+1 and exponent bigger than 𝑝. By Proposition 4.1, we in particular obtain that, for 𝑝 ≥ 3

and 𝑟 ≥ 𝑝 − 1, the inequality depthH∗(𝐺𝑟; 𝔽𝑝
)
≤ 2 holds. We observed that if we mimic the construction of the mod-𝑝

cohomology class 𝜃𝑟 in Section 5.1 for such 𝑝-groups, it is no longer true that its restriction to the mod-𝑝 cohomology of
the centralizer of all elementary abelian subgroups of 𝐺𝑟 of rank 2 vanishes. Moreover, for the 𝑝 = 3 and 𝑟 = 2 case, 𝐺2

is the extraspecial 3-group of order 27 and exponent 3, and it is known that the depth of its mod-3 cohomology ring is 2
(compare [15] and [18]). We believe that this phenomena will occur with more generality and we propose the following
conjecture.
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Conjecture 1.2. Let 𝑝 be an odd prime, let 𝑟 ≥ 𝑝 − 1 be an integer, and let

𝐺𝑟 = 𝐶𝑝 ⋉ 𝑇0∕𝑇𝑟

be as in (1.1). ThenH∗(𝐺𝑟; 𝔽𝑝
)
has depth 2.

The above conjecture is known to be true for the particular cases where 𝑝 = 3 and 𝑟 = 2 or 𝑟 = 3. In these two cases
the mod-𝑝 cohomology rings have been calculated using computational tools (see [12]). Another argument supporting
the conjecture is that for a fixed prime 𝑝 and 𝑟 ≥ 𝑝 − 1, the groups 𝐺𝑟 have isomorphic mod-𝑝 cohomology groups; not
as rings, but as 𝔽𝑝-modules (see [7]). This last isomorphism comes from a universal object described in the category of
cochain complexes together with a quasi-isomorphism that induces an isomorphism at the level of spectral sequences.

Notation. Throughout, let 𝑝 be an odd prime number and let 𝐺 denote a finite 𝑝-group. A 𝐺-module 𝐴 will be a right
𝔽𝑝𝐺-module. For such 𝐺-modules, we shall use additive notation in Sections 2 and 3, and multiplicative notation in
Section 5, for our convenience. Moreover, if 𝑎 ∈ 𝐴 and 𝑔 ∈ 𝐺, we write 𝑎𝑔 to denote the action of 𝑔 on 𝑎.
Let 𝐴 be a 𝐺-module and let 𝑃∗ ⟶ 𝔽𝑝 be a projective resolution of the trivial 𝐺-module 𝔽𝑝, then for every 𝑛 ≥ 0, the

𝑛-th cohomology group H𝑛(𝐺;𝐴) is defined as Ext𝑛
(
𝔽𝑝,𝐴

)
= H𝑛(Hom𝐺(𝑃∗, 𝐴)

)
. Let 𝐾 ≤ 𝐺 be a subgroup of 𝐺 and let

𝜄 ∶ 𝐾 ⟶ 𝐺 denote an inclusionmap. Thismap induces the restrictionmap res𝐺𝐾 ∶ H∗(𝐺;𝐴) ⟶ H∗(𝐾;𝐴) in cohomology.
Group commutators are given as [𝑔, ℎ] = 𝑔−1ℎ−1𝑔ℎ = 𝑔−1𝑔ℎ and for every 𝑘 ≥ 1, iterated commutators are written as[

𝑥, 𝑦, 𝑘… , 𝑦
]
=
[
𝑥,𝑘 𝑦

]
, where we use left normed group commutators, i.e., [𝑥, 𝑦, 𝑧] = [[𝑥, 𝑦], 𝑧]. Also, the 𝑘-th term of the

lower central series of 𝐺 is denoted by 𝛾𝑘(𝐺) =
[
𝐺, 𝑘… , 𝐺

]
.

2 PRELIMINARIES

2.1 Depth

In this section we give background on the depth of mod-𝑝 cohomology rings of finite 𝑝-groups and we also state one of
the key results for the proof of Theorem 1.1.
Let 𝑛 ≥ 1 be an integer and let 𝑥1, … , 𝑥𝑛 ∈ H∗(𝐺; 𝔽𝑝). We say that the sequence 𝑥1, … , 𝑥𝑛 is regular if 𝑥1 is not a zero

divisor inH∗(𝐺; 𝔽𝑝) and, for every 𝑖 = 2, … , 𝑛, the element 𝑥𝑖 is not a zero divisor in the quotientH
∗(𝐺; 𝔽𝑝)∕(𝑥1, … , 𝑥𝑖−1

)
,

where
(
𝑥1, … , 𝑥𝑖−1

)
denotes the ideal generated by the elements 𝑥1, … , 𝑥𝑖−1 in H

∗(𝐺; 𝔽𝑝).
Definition 2.1. The depth of H∗(𝐺; 𝔽𝑝), denoted by depthH∗(𝐺; 𝔽𝑝), is the maximal length of a regular sequence in
H∗(𝐺; 𝔽𝑝).
Recall that a prime ideal 𝔭 ⊆ H∗(𝐺; 𝔽𝑝) is an associated prime ofH∗(𝐺; 𝔽𝑝) if, for some 𝜑 ∈ H∗(𝐺; 𝔽𝑝), it is of the form

𝔭 =
{
𝜓 ∈ H∗(𝐺; 𝔽𝑝) ∣ 𝜑 ∪ 𝜓 = 0

}
.

The set of all associated primes of H∗(𝐺; 𝔽𝑝) is denoted by AssH∗(𝐺; 𝔽𝑝). It is known that for every 𝔭 ∈ AssH∗(𝐺; 𝔽𝑝),
the following inequality, depthH∗(𝐺; 𝔽𝑝) ≤ dimH∗(𝐺; 𝔽𝑝)∕𝔭 holds ([3, Proposition 12.2.5]). In particular, we have

depthH∗(𝐺; 𝔽𝑝) ≤ dimH∗(𝐺; 𝔽𝑝). (2.1)

When the two values coincide, the mod-𝑝 cohomology ring is said to be Cohen–Macaulay. We recall the lower bound for
the depth of H∗(𝐺; 𝔽𝑝) by Duflot [5],

1 ≤ rk𝑝 𝑍(𝐺) ≤ depthH∗(𝐺; 𝔽𝑝). (2.2)

Before stating the crucial result for our construction, we introduce the concept of detection in cohomology.



GARAIALDE OCAÑA et al. 1177

Definition 2.2. Let 𝐺 be a finite 𝑝-group and let  be a collection of subgroups of 𝐺. We say that H∗(𝐺; 𝔽𝑝) is detected
by if

⋂
𝐻∈

Ker res𝐺𝐻 = 0.

Given a finite 𝑝-group 𝐺 and a subgroup 𝐸 ≤ 𝐺, let 𝐶𝐺(𝐸) denote the centralizer of 𝐸 in 𝐺. For 𝑠 ≥ 1, define:

𝑠(𝐺) =
{
𝐶𝐺(𝐸) ∣ 𝐸 is an elementary abelian subgroup of 𝐺, rk𝑝 𝐸 = 𝑠

}
,

𝜔𝑎(𝐺) = min
{
dimH∗(𝐺; 𝔽𝑝)∕𝔭 ∣ 𝔭 ∈ AssH∗(𝐺; 𝔽𝑝)},

𝜔𝑑(𝐺) = max
{
𝑠 ≥ 1 ∣ H∗(𝐺; 𝔽𝑝) is detected by𝑠(𝐺)

}
.

Theorem 2.3 ([2]). Let 𝐺 be a finite 𝑝-group. Then, the following inequalities hold:

depthH∗(𝐺; 𝔽𝑝) ≤ 𝜔𝑎(𝐺) ≤ 𝜔𝑑(𝐺).

In fact, in the same article, Carlson conjectured that the previous inequalities are actual equalities.

Conjecture 2.4 (Carlson). Let 𝐺 be a finite 𝑝-group. Then,

depthH∗(𝐺; 𝔽𝑝) = 𝜔𝑎(𝐺) = 𝜔𝑑(𝐺).

A particular case of the above conjecture was proven by Green in [8, Theorem 0.1] and Theorem 2.3 was generalized in
the context of compact Lie groups (see [14, Theorem 2.30] and [13, Theorem 2.13]) and saturated fusion systems (see [9,
Theorem 4.16]).

2.2 Yoneda and crossed extensions

Let 𝐺 be a finite 𝑝-group. We describe the mod-𝑝 cohomology ring H∗(𝐺; 𝔽𝑝) first in terms of Yoneda extensions, and
then in terms of crossed extensions. For a more detailed account of these topics, we refer to [17, Chapter III] and [19]; and
[10], [11] and [19], respectively.

Definition 2.5. Let 𝐴 and 𝐵 be 𝐺-modules. For every integer 𝑛 ≥ 1, a Yoneda 𝑛-fold extension 𝜑 of 𝐵 by 𝐴 is an exact
sequence of 𝐺-modules of the form

𝜑 ∶ 0⟶ 𝐴 ⟶𝑀𝑛 ⟶⋯ ⟶𝑀1 ⟶ 𝐵 ⟶ 0.

We can define an equivalence relation on the set of all 𝑛-fold Yoneda extensions of 𝐵 by 𝐴, and denote by YExt𝑛(𝐵, 𝐴)
the set of all such extensions up to equivalence. Then, YExt𝑛(𝐵, 𝐴) with the Baer sum is an abelian group.
Given 𝜑 ∈ YExt𝑛(𝐵, 𝐴), we denote by 𝛼∗𝜑 ∈ YExt𝑛(𝐵, 𝐴′) the pushout of 𝜑 via a 𝐺-module homomorphism

𝛼 ∶ 𝐴 → 𝐴′, and by 𝛽∗𝜑 ∈ YExt𝑛(𝐵′, 𝐴) the pullback via 𝛽 ∶ 𝐵′ → 𝐵.
We will now move on to crossed extensions.

Definition 2.6. Let 𝑀1 and 𝑀2 be groups with 𝑀1 acting on 𝑀2. A crossed module is a group homomorphism
𝜌 ∶ 𝑀2 → 𝑀1 satisfying the following properties:

(i) 𝑦
𝜌(𝑦′

2
)

2 = 𝑦
𝑦′
2

2 for all 𝑦2, 𝑦′2 ∈ 𝑀2, and
(ii) 𝜌

(
𝑦
𝑦1
2

)
= 𝜌

(
𝑦2
)𝑦1 for all 𝑦1 ∈ 𝑀1 and 𝑦2 ∈ 𝑀2.
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Definition 2.7. Let 𝑛 ≥ 1 be an integer and let 𝐴 be a 𝐺-module. A crossed 𝑛-fold extension 𝜓 of 𝐺 by 𝐴 is an exact
sequence of groups of the form

satisfying the following conditions:

(i) 𝜌1 ∶ 𝑀2 ⟶𝑀1 is a crossed module,
(ii) 𝑀𝑖 is a 𝐺-module for every 𝑖 = 3, … , 𝑛, and
(iii) 𝜌𝑖 is a 𝐺-module homomorphism for every 𝑖 = 2, … , 𝑛.

We can define an equivalence relation on crossed 𝑛-fold extensions of 𝐺 by 𝐴 as for Yoneda extensions. We will denote
by XExt𝑛(𝐺,𝐴) the set of all crossed 𝑛-fold extensions of 𝐺 by 𝐴 up to equivalence, which is an abelian group endowed
with the Baer sum of crossed extensions.
For the 𝑛 = 2 case, we can use the following characterization of equivalent crossed extensions.

Proposition 2.8 ([10, Lemma 2.5]). Let 𝐺 be a finite 𝑝-group and let 𝐴 be a 𝐺-module. Then, two crossed 2-fold extensions
of 𝐺 by 𝐴

are equivalent if and only if there exist a group 𝑋 and a commutative diagram

(2.3)

satisfying the following properties:

(a) −𝜏2 ∶ 𝐴 ⟶ 𝑁2 is given by
(
− 𝜏2

)
(𝑎) = 𝜏2(−𝑎) for 𝑎 ∈ 𝐴,

(b) the diagonals are short exact sequences,
(c) 𝜇1◦𝜌2(𝐴) = 𝜇1(𝑀2) ∩ 𝜇2(𝑁2), and
(d) conjugation in 𝑋 coincides with the actions of both𝑀1 on𝑀2 and𝑁1 on𝑁2.

Analogous to Yoneda extensions, for an integer 𝑛 ≥ 1, given an 𝑛-crossed extension 𝜑 ∈ XExt𝑛(𝐺,𝐴) and a 𝐺-module
homomorphism 𝛼 ∶ 𝐴 ⟶ 𝐴′, we denote by 𝛼∗𝜑 ∈ XExt𝑛(𝐺,𝐴′) the pushout of 𝜑 via 𝛼, and given a group homomor-
phism 𝛽 ∶ 𝐺′ ⟶ 𝐺 we denote by 𝛽∗𝜑 ∈ XExt𝑛(𝐺′, 𝐴) the pullback of 𝜑 via 𝛽 (see [10, Proposition 4.1]).

Theorem 2.9 ([17, Theorem 6.4], [10, Theorem 4.5]). Let 𝐺 be a finite 𝑝-group. For every 𝐺-module 𝐴 and every integer
𝑛 ≥ 1, there are group isomorphisms

H𝑛+1(𝐺;𝐴) ≅ YExt𝑛+1
(
𝔽𝑝,𝐴

)
≅ XExt𝑛(𝐺,𝐴)

that are natural in both 𝐺 and 𝐴.
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3 PRODUCT BETWEEN EXTENSIONS

3.1 Product of Yoneda extensions and crossed extensions

It is well known that, given two Yoneda extensions 𝜑 ∈ YExt𝑛(𝐵, 𝐴) and 𝜑′ ∈ YExt𝑚(𝐶, 𝐵), we can define their Yoneda
product 𝜑 ∪ 𝜑′ ∈ YExt𝑛+𝑚(𝐶,𝐴) by splicing them together. InH∗(𝐺; 𝔽𝑝), this product coincides with the usual cup prod-
uct of cohomology classes.
We proceed now to define the analogous Yoneda product of a Yoneda extension and a crossed extension.

Definition 3.1. Let 𝐺 be a finite 𝑝-group, let 𝐴 and 𝐵 be 𝐺-modules and let 𝑛,𝑚 ≥ 1 be integers. Given a Yoneda 𝑛-fold
extension class 𝜑 ∈ YExt𝑛(𝐴, 𝐵) represented by

0⟶ 𝐵 ⟶𝑁𝑛 ⟶⋯ ⟶𝑁1 ⟶𝐴 ⟶ 0,

and a crossed𝑚-fold extension class 𝜓 ∈ XExt𝑚(𝐺,𝐴) represented by

0⟶ 𝐴 ⟶𝑀𝑚 ⟶⋯ ⟶𝑀1 ⟶𝐺 ⟶ 1,

we define their Yoneda product 𝜑 ∪ 𝜓 as the extension

0⟶ 𝐵 ⟶𝑁𝑛 ⟶⋯⟶𝑁1 ⟶𝑀𝑚 ⟶⋯⟶𝑀1 ⟶𝐺 ⟶ 1.

Remark 3.2. It can be readily checked that

YExt𝑛(𝐴, 𝐵) ⊗ XExt𝑚(𝐺,𝐴) ⟶XExt𝑛+𝑚(𝐺, 𝐵)

given by (𝜑, 𝜓) ↦ 𝜑 ∪ 𝜓 is a well defined bilinear pairing by following the analogous proofs for the Yoneda product of two
Yoneda extensions, see [17, Section III.5].

3.2 Yoneda and cup products coincide

In order to show that the Yoneda product of Yoneda extensions with crossed extensions coincides with the usual cup
product, we will follow a construction by Conrad [4], giving an explicit correspondence between crossed extensions and
Yoneda extensions.
Let 𝐺 be a finite 𝑝-group and let 𝐴 be a 𝐺-module. Let 𝜓 ∈ XExt𝑛(𝐺,𝐴) be a class represented by a crossed 𝑛-fold

extension

with𝑀2 abelian (see [10, Proposition 2.7] for the existence of such a representative). Consider the 𝐺-module Im𝜌1 ≤ 𝑀1.
Then, we have an extension 𝜓0 ∈ XExt1

(
𝐺, Im𝜌1

)
of the form

𝜓0 ∶ 0⟶ Im𝜌1 ⟶𝑀1 ⟶ 𝐺 ⟶ 1.

Now, we can embed Im𝜌1 into an injective 𝐺-module 𝐼. As 𝐼 is injective, we have that XExt
1(𝐺, 𝐼) ≅ H2(𝐺, 𝐼) = 0, and so

the pushout of 𝜓0 via the embedding of Im𝜌1 into 𝐼 splits, i.e., there is a group homomorphism Φ ∶ 𝑀1 ⟶ 𝐺 ⋉ 𝐼 such
that the following diagram commutes:

.
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We can find a group homomorphism 𝜈 ∶ 𝑀1 ⟶ 𝐺 and a map 𝜒 ∶ 𝑀1 ⟶ 𝐼 that for every 𝑥, 𝑦 ∈ 𝑀1 satisfies

𝜒(𝑥𝑦) = 𝜒(𝑥)𝜈(𝑦)𝜒(𝑦), (3.1)

such that, for every 𝑥 ∈ 𝑀1, we can write

Φ(𝑥) =
(
𝜈(𝑥), 𝜒(𝑥)

)
.

Moreover, if we denote by 𝜋 ∶ 𝐼 ⟶ 𝐼∕ Im𝜌1 the canonical projection, there is a unique map 𝜏 ∶ 𝐺 ⟶ 𝐼∕ Im𝜌1 such
that 𝜏◦𝜈 = 𝜋◦𝜒. Furthermore, because 𝜒 satisfies (3.1) and 𝜈 = 𝜌0 is surjective, we have that for every 𝑔, ℎ ∈ 𝐺,

𝜏(𝑔ℎ) = 𝜏(𝑔)ℎ + 𝜏(ℎ),

and so 𝜏 is a 1-cocycle. Hence, 𝜏 can be represented as a cohomology class inH1(𝐺, 𝐼∕ Im𝜌1
)
≅ YExt1

(
𝔽𝑝, 𝐼∕ Im𝜌1

)
by a

Yoneda extension of the form

0 ⟶ 𝐼∕ Im𝜌1 ⟶ 𝐸𝜏 ⟶ 𝔽𝑝 ⟶ 0.

Remark 3.3. The choices of the 𝐺-module 𝐼 and the cocycle 𝜏, and consequently 𝐸𝜏, only depend on Im𝜌1 ≤ 𝑀1.

Finally, we can construct the element Υ(𝜓) ∈ YExt𝑛+1
(
𝔽𝑝,𝐴

)
given by the Yoneda extension

0 ⟶ 𝐴 ⟶𝑀𝑛 ⟶⋯⟶𝑀2 ⟶ 𝐼 ⟶ 𝐸𝜏 ⟶ 𝔽𝑝 ⟶ 0. (3.2)

This construction gives rise to a group isomorphism

Υ ∶ XExt𝑛(𝐺,𝐴) ⟶ YExt𝑛+1
(
𝔽𝑝,𝐴

)
.

Proposition 3.4. Let 𝐺 be a finite 𝑝-group and let 𝑛,𝑚 ≥ 1 be integers. Then, the Yoneda product

YExt𝑛(𝐴, 𝐵) ⊗ XExt𝑚(𝐺,𝐴)⟶ XExt𝑛+𝑚(𝐺, 𝐵)

coincides with the Yoneda product

YExt𝑛(𝐴, 𝐵) ⊗ YExt𝑚+1(𝔽𝑝,𝐴) ⟶YExt𝑛+𝑚+1(𝔽𝑝, 𝐵).
In particular, if 𝐴 = 𝐵 = 𝔽𝑝, the above product coincides with the cup product

∪ ∶ H𝑛(𝐺; 𝔽𝑝)⊗H𝑚+1(𝐺; 𝔽𝑝) ⟶H𝑛+𝑚+1(𝐺; 𝔽𝑝).
Proof. Let 𝜑 ∈ YExt𝑛(𝐴, 𝐵) be a class represented by an extension

0⟶ 𝐵 ⟶𝑁𝑛 ⟶⋯ ⟶𝑁1

𝜇0
⟶𝐴 ⟶ 0,

and let 𝜓 ∈ XExt𝑚(𝐺,𝐴) be a class represented by an extension

0 ⟶ 𝐴
𝜌𝑚
⟶𝑀𝑚 ⟶⋯⟶𝑀2

𝜌1
⟶𝑀1 ⟶ 𝐺 ⟶ 1,

with𝑀2 abelian. We need to prove that Υ(𝜑 ∪ 𝜓) = 𝜑 ∪ Υ(𝜓).
For𝑚 = 1, we have that 𝜓 ∈ XExt1(𝐺,𝐴) is represented by a crossed 1-fold extension of the form

0 ⟶ 𝐴
𝜌1
⟶𝑀1 ⟶ 𝐺 ⟶ 1.
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Then, 𝜑 ∪ 𝜓 is given by the crossed (𝑛 + 1)-fold extension

0⟶ 𝐵 ⟶𝑁𝑛 ⟶⋯⟶𝑁1

𝛾1
⟶𝑀1 ⟶ 𝐺 ⟶ 1,

where 𝛾1 = 𝜌1◦𝜇0. Now, we have that Im 𝛾1 = Im𝜌1, and so we can once again use the same 𝐼 and 𝜏 in the construction
of both Υ(𝜓) and Υ(𝜑 ∪ 𝜓). Therefore, both 𝜑 ∪ Υ(𝜓) and Υ(𝜑 ∪ 𝜓) are given by the same extension

0⟶ 𝐵 ⟶𝑁𝑛 ⟶⋯⟶𝑁1 ⟶ 𝐼 ⟶ 𝐸𝜏 ⟶ 𝔽𝑝 ⟶ 0.

For𝑚 > 1, by (3.2), the extension Υ(𝜓) ∈ YExt𝑚+1(𝔽𝑝,𝐴) is of the form
0⟶ 𝐴 ⟶𝑀𝑚 ⟶⋯ ⟶𝑀2 ⟶ 𝐼 ⟶ 𝐸𝜏 ⟶ 𝔽𝑝 ⟶ 0,

and 𝜑 ∪ 𝜓 ∈ XExt𝑛+𝑚(𝐺,𝐴) is represented by the crossed (𝑛 + 𝑚)-fold extension

0⟶ 𝐵 ⟶𝑁𝑛 ⟶⋯⟶𝑁1 ⟶𝑀𝑚 ⟶⋯⟶𝑀1 ⟶𝐺 ⟶ 1.

By Remark 3.3, we can use the same 𝐼 and 𝜏 in the construction of Υ(𝜓). Therefore, Υ(𝜑 ∪ 𝜓) ∈ YExt𝑛+𝑚+1(𝐺,𝐴) is
represented by

0⟶ 𝐵 ⟶𝑁𝑛 ⟶⋯⟶𝑁1 ⟶𝑀𝑚 ⟶⋯⟶𝑀2 ⟶ 𝐼 ⟶ 𝐸𝜏 ⟶ 𝔽𝑝 ⟶ 0,

which coincides with 𝜑 ∪ Υ(𝜓).
Finally, if 𝐴 = 𝐵 = 𝔽𝑝 then the Yoneda product of Yoneda extensions coincides with the cup product of cohomology

classes. □

4 FINITE 𝒑-GROUPS OFMOD-𝒑 COHOMOLOGY DEPTH ATMOST 2

Until the end of Section 4, we assume that 𝑝 is an odd prime number and that, for each integer 𝑟 > 1, 𝐺𝑟 denotes the
finite 𝑝-group described in (1.1). If we write 𝑟 = (𝑝 − 1) ⋅ 𝑛 + 𝑚 with 𝑛,𝑚 ≥ 0 integers such that 𝑚 < 𝑝 − 1, then 𝐺𝑟 can
be described as a semidirect product

𝐺𝑟 = 𝐶𝑝 ⋉
(
𝐶𝑝𝑛+1 ×

𝑚… × 𝐶𝑝𝑛+1 × 𝐶𝑝𝑛 ×
𝑝−𝑚−1… × 𝐶𝑝𝑛

)
= 𝐶𝑝 ⋉ 𝑇0∕𝑇𝑟,

where 𝑇0∕𝑇𝑟 is the maximal abelian 𝑝-subgroup of 𝐺𝑟. In particular, for 𝑟 < 𝑝 − 1, the group 𝐺𝑟 can be described as the
semidirect product (1.1),

𝐺𝑟 = 𝐶𝑝 ⋉
(
𝐶𝑝 ×

𝑟
⋯ × 𝐶𝑝

)
= 𝐶𝑝 ⋉ 𝑇0∕𝑇𝑟,

where 𝑇0∕𝑇𝑟 is the maximal elementary abelian 𝑝-subgroup of 𝐺𝑟.

Proposition 4.1. For every integer 𝑟 > 1, the following inequalities hold:

1 ≤ depthH∗(𝐺𝑟; 𝔽𝑝
)
≤ 2.

Proof. The inequality 1 ≤ depthH∗(𝐺𝑟; 𝔽𝑝
)
holds by (2.2). Suppose that 𝑝 = 3. Then, for every 𝑟 > 1, we have that

rk𝑝(𝐺𝑟) = 2 = dimH∗(𝐺𝑟; 𝔽𝑝
)
,

and by (2.1), we conclude that depthH∗(𝐺𝑟; 𝔽𝑝
)
≤ 2.
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Now, suppose that 𝑝 ≥ 5. It can be readily checked that, for any 𝑟 > 1, every elementary abelian 𝑝-subgroup 𝐸 of
𝐺𝑟 with rk𝑝(𝐸) = 3 satisfies that 𝐸 ≤ 𝑇0∕𝑇𝑟, and the centralizer is 𝐶𝐺𝑟(𝐸) = 𝑇0∕𝑇𝑟. Therefore, for every 𝐸 as above,
its centralizer in 𝐺𝑟 is contained in the proper subgroup 𝑇0∕𝑇𝑟 of 𝐺𝑟. Hence, by [2, Corollary 2.4], we conclude that
depthH∗(𝐺𝑟; 𝔽𝑝

)
<3. □

5 FINITE 𝒑-GROUPS OF DEPTH ONEMOD-𝒑 COHOMOLOGY

Until the end of Section 5, we assume that 𝑝 > 3 is a prime number, that 𝑟 is an arbitrary but fixed integer satisfying
1 < 𝑟 < 𝑝 − 1 and that𝐺𝑟 denotes the finite 𝑝-group described in (1.1). This group is generated by the elements 𝜎, 𝑎1, … , 𝑎𝑟
satisfying the following relations:

∙ 𝜎𝑝 = 𝑎
𝑝

𝑖
=
[
𝑎𝑖, 𝑎𝑗

]
=
[
𝑎𝑟, 𝜎

]
= 1, for 𝑖 = 1, … , 𝑟 and 𝑗 = 1,… , 𝑟 − 1,

∙
[
𝑎𝑗, 𝜎

]
= 𝑎𝑗+1 for 𝑗 = 1,… , 𝑟 − 1.

The aim of this section is to prove Theorem 1.1. To show the result, we construct a non-trivialmod-𝑝 cohomology class in
H∗(𝐺𝑟; 𝔽𝑝

)
that restricts trivially to themod-𝑝 cohomologies of the centralizers of all rank 2 elementary abelian subgroups

of 𝐺𝑟. Then, 𝜔𝑑
(
𝐺𝑟

)
= 1 and Theorem 2.3 yields that depthH∗(𝐺𝑟; 𝔽𝑝

)
= 1.

5.1 Construction

We follow the assumptions in the Notation. In this section, we construct a cohomology class 𝜃𝑟 ∈ H3(𝐺𝑟; 𝔽𝑝
)
that is a cup

product of a Yoneda 1-fold extension and a crossed 1-fold extension.
We start by defining a cohomology class 𝜎∗ ∈ H1(𝐺𝑟; 𝔽𝑝

)
= Hom

(
𝐺𝑟, 𝔽𝑝

)
. To that aim, consider the homomorphism

𝜎∗ ∶ 𝐺𝑟 ⟶ 𝔽𝑝 satisfying

𝜎∗(𝜎) = 1, 𝜎∗
(
𝑎1
)
= ⋯ = 𝜎∗

(
𝑎𝑟
)
= 0. (5.1)

The class 𝜎∗ can be represented by the Yoneda extension

1 ⟶ 𝐶𝑝 = ⟨𝑎𝑟+2⟩ ⟶𝐶𝑝 × 𝐶𝑝 ⟶ 𝐶𝑝 = ⟨𝑎𝑟+1⟩ ⟶1,

where the action of 𝐺𝑟 on 𝐶𝑝 × 𝐶𝑝 = ⟨𝑎𝑟+1, 𝑎𝑟+2⟩ is described by
for 𝑔 ∈ 𝐺𝑟, set 𝑎

𝑔
𝑟+1 = 𝑎𝑟+1𝑎

𝜎∗(𝑔)
𝑟+2 , 𝑎

𝑔
𝑟+2 = 𝑎𝑟+2.

We continue by defining a crossed 1-fold extension 𝜂𝑟 ∈ H2(𝐺𝑟; 𝔽𝑝
)
as follows. Let

𝜆𝑟 ∶ 𝑇0∕𝑇𝑟+1 × 𝑇0∕𝑇𝑟+1 ⟶ 𝑇0∕𝑇𝑟+1

be the alternating bilinear map satisfying

𝜆𝑟
(
𝑎𝑟−1, 𝑎𝑟

)
= 𝑎𝑟+1 and 𝜆𝑟

(
𝑎𝑖, 𝑎𝑗

)
= 0, for all 𝑖 < 𝑗 with (𝑖, 𝑗) ≠ (𝑟 − 1, 𝑟).

Now, define
(
𝑇0∕𝑇𝑟+1

)
𝜆𝑟
to be the group with underlying set 𝑇0∕𝑇𝑟+1 and with group operation given by

for 𝑥, 𝑦 ∈ 𝑇0∕𝑇𝑟+1 we define 𝑥 ⋅𝜆𝑟 𝑦 = 𝑥𝑦𝜆𝑟(𝑥, 𝑦)
1∕2.

Finally, define the 𝑝-group 𝐺𝑟 = 𝐶𝑝 ⋉
(
𝑇0∕𝑇𝑟+1

)
𝜆𝑟
of size ||𝐺𝑟

|| = 𝑝𝑟+2 and exponent 𝑝.
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Let 𝜂𝑟 ∈ H2(𝐺𝑟, 𝔽𝑝
)
be the cohomology class represented by the crossed 1-fold extension

1⟶ 𝐶𝑝 = ⟨𝑎𝑟+1⟩ ⟶𝐺𝑟 ⟶ 𝐺𝑟 ⟶ 1. (5.2)

Then, we define the cohomology class 𝜃𝑟 = 𝜎∗ ∪ 𝜂𝑟 ∈ H3(𝐺𝑟; 𝔽𝑝
)
, which is represented by the crossed 2-fold extension

1 ⟶ 𝐶𝑝 ⟶ 𝐶𝑝 × 𝐶𝑝 ⟶ 𝐺𝑟 ⟶ 𝐺𝑟 ⟶ 1. (5.3)

5.2 Non-triviality

In the present section we prove the following result.

Proposition 5.1. The cohomology class 𝜃𝑟 constructed in (5.3) is non-trivial.

Proof. Assumeby contradiction that 𝜃𝑟 = 0. Then, by Proposition 2.8 there exists a group𝑋 such that the following diagram
commutes:

.

We have that 𝑋 = ⟨�̄�, �̄�1, … , �̄�𝑟+2⟩ with elements �̄�, �̄�1, … , �̄�𝑟+1, �̄�𝑟+2 ∈ 𝑋 that satisfy

�̄�𝑟+2 = 𝜇
(
𝑎𝑟+2

)
, 𝜈(�̄�) = 𝜎 and 𝜈

(
�̄�𝑖
)
= 𝑎𝑖 for all 𝑖 = 1, … , 𝑟 + 1,

and we have 𝑍(𝑋) = ⟨�̄�𝑟+2⟩ and 𝛾𝑟(𝑋) = ⟨�̄�𝑟, �̄�𝑟+1, �̄�𝑟+2⟩. Consider the normal subgroup
𝑌 = ⟨�̄�𝑟−1, �̄�𝑟, �̄�𝑟+1, �̄�𝑟+2⟩ ⊴ 𝑋,

which fits into the following commutative diagram:

.
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Then, we have that 𝑍(𝑌) = ⟨�̄�𝑟+1, �̄�𝑟+2⟩, and moreover,
[
�̄�, 𝑌, 𝛾𝑟(𝑋)

]
=
[
𝛾𝑟(𝑋), 𝛾𝑟(𝑋)

]
= 1 and

[
𝛾𝑟(𝑋), �̄�, 𝑌

]
=
[
𝑍(𝑌), 𝑌

]
= 1.

Therefore, the three subgroup lemma (see [21, 5.1.10]) leads us to the conclusion that
[
𝑌, 𝛾𝑟(𝑋), �̄�

]
= 1. Nevertheless, a

direct computation shows that

[
𝑌, 𝛾𝑟(𝑋), �̄�

]
=
[
𝑍(𝑌), �̄�

]
= 𝑍(𝑋) ≠ 1,

which gives a contradiction. Hence, 𝜃𝑟 ≠ 0. □

5.3 Trivial restriction

In this section we show that for every elementary abelian subgroup 𝐸 of 𝐺𝑟 of 𝑝-rank rk𝑝 𝐸 = 2, the image of 𝜃𝑟 via the
restriction map,

res
𝐺𝑟
𝐶𝐺𝑟 (𝐸)

∶ H3(𝐺𝑟; 𝔽𝑝
)
⟶H3(𝐶𝐺𝑟(𝐸); 𝔽𝑝),

is trivial, i.e., res𝐺𝑟
𝐶𝐺𝑟 (𝐸)

𝜃𝑟 = 0. This will imply that the cohomology class 𝜃𝑟 is not detected by2

(
𝐺𝑟

)
.

Proposition 5.2. Let 𝐸 ≤ 𝐺𝑟 be an elementary abelian subgroup with rk𝑝 𝐸 = 2. Then, res𝐺𝑟
𝐶𝐺(𝐸)

𝜃𝑟 = 0. Consequently,
𝜔𝑑(𝐺) = 1.

Proof. There are two types of elementary abelian subgroups 𝐸 ≤ 𝐺𝑟, either 𝐸 ≤ ⟨𝑎1, … , 𝑎𝑟⟩ or 𝐸 ≰ ⟨𝑎1, … , 𝑎𝑟⟩. Assume
first that 𝐸 ≤ ⟨𝑎1, … , 𝑎𝑟⟩. Then, 𝐶𝐺𝑟(𝐸) = ⟨𝑎1, … , 𝑎𝑟⟩ and we have that res𝐺𝑟𝐶𝐺𝑟 (𝐸) 𝜎∗ = 0. Therefore,

res
𝐺𝑟
𝐶𝐺𝑟 (𝐸)

𝜃𝑟 =
(
res

𝐺𝑟
𝐶𝑟(𝐸)

𝜎∗
)
∪
(
res

𝐺𝑟
𝐶𝐺𝑟 (𝐸)

𝜂𝑟

)
= 0.

Assume now that 𝐸 ≰ ⟨𝑎1, … , 𝑎𝑟⟩. Then, 𝐸 = ⟨𝑏, 𝑎𝑟⟩ with 𝑏 = 𝜎𝑥 for some 𝑥 ∈ ⟨𝑎1, … , 𝑎𝑟−1⟩, and 𝐶𝐺𝑟(𝐸) = 𝐸. More-
over, res𝐺𝑟

𝐶𝐺(𝐸)
𝜂𝑟 is represented by the extension that is obtained by taking the pullback of 𝜂𝑟 via the inclusion 𝐸 ⟶ 𝐺𝑟,

as illustrated in the following diagram:

Observe that 𝐸 ≅ 𝐶𝑝 ⋉
(
𝐶𝑝 × 𝐶𝑝

)
is the extraspecial group of order 𝑝3 and exponent 𝑝. Hence, res𝐺𝑟

𝐶𝐺𝑟 (𝐸)
𝜂𝑟 is represented

by the extension

1⟶ 𝐶𝑝 = ⟨𝑎𝑟+1⟩ ⟶𝐸 = 𝐶𝑝 ⋉
(
𝐶𝑝 × 𝐶𝑝

)
⟶𝐶𝑝 × 𝐶𝑝 = ⟨𝑏, 𝑎𝑟⟩ ⟶1. (5.4)

Define, similar to (5.1), 𝑎∗𝑟 , 𝑏∗ ∈ Hom
(
𝐺𝑟, 𝔽𝑝

)
. It can be readily checked (following the construction in [1, Section IV.3])

that the extension class of (5.4) coincides with the cup-product 𝑏∗ ∪ 𝑎∗𝑟 , and so res
𝐺𝑟
𝐶𝐺𝑟 (𝐸)

𝜂𝑟 = 𝑏∗ ∪ 𝑎∗𝑟 . Consequently,

res
𝐺𝑟
𝐶𝐺𝑟 (𝐸)

𝜃𝑟 =
(
res

𝐺𝑟
𝐶𝐺𝑟 (𝐸)

𝜎∗
)
∪ 𝑏∗ ∪ 𝑎∗𝑟 = 0,
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as the product of any three elements of degree one is trivial inH3(𝐸; 𝔽𝑝). In particular, this means thatH∗(𝐺𝑟; 𝔽𝑝
)
is not

detected by2

(
𝐺𝑟

)
and 𝜔𝑑

(
𝐺𝑟

)
= 1. □

Proof of Theorem 1.1. By (2.2), we know that 1 ≤ depthH∗(𝐺𝑟; 𝔽𝑝
)
, and Proposition 5.2 yields that 𝜔𝑑(𝐺) = 1. Then, by

Theorem 2.3, we conclude that depthH∗(𝐺𝑟; 𝔽𝑝
)
= 𝜔𝑑

(
𝐺𝑟

)
= 1. □
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