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a b s t r a c t

Magnetic resonance imaging (MRI) is an important non-invasive clinical tool that can produce high-
resolution and reproducible images. However, a long scanning time is required for high-quality MR
images, which leads to exhaustion and discomfort of patients, inducing more artefacts due to voluntary
movements of the patients and involuntary physiological movements. To accelerate the scanning process,
methods by k-space undersampling and deep learning based reconstruction have been popularised. This
work introduced SwinMR, a novel Swin transformer based method for fast MRI reconstruction. The whole
network consisted of an input module (IM), a feature extraction module (FEM) and an output module
(OM). The IM and OM were 2D convolutional layers and the FEM was composed of a cascaded of residual
Swin transformer blocks (RSTBs) and 2D convolutional layers. The RSTB consisted of a series of Swin
transformer layers (STLs). The shifted windows multi-head self-attention (W-MSA/SW-MSA) of STL
was performed in shifted windows rather than the multi-head self-attention (MSA) of the original trans-
former in the whole image space. A novel multi-channel loss was proposed by using the sensitivity maps,
which was proved to reserve more textures and details. We performed a series of comparative studies
and ablation studies in the Calgary-Campinas public brain MR dataset and conducted a downstream seg-
mentation experiment in the Multi-modal Brain Tumour Segmentation Challenge 2017 dataset. The
results demonstrate our SwinMR achieved high-quality reconstruction compared with other benchmark
methods, and it shows great robustness with different undersampling masks, under noise interruption
and on different datasets. The code is publicly available at https://github.com/ayanglab/SwinMR.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Magnetic resonance imaging (MRI) is an important non-
invasive imaging technique, which enables excellent assessments
of structural and functional conditions with no radiation in a
reproducible manner. Basically, MRI is aimed to reconstruct the
images from the observed signals whose degradation process can
be formulated as follows:

y ¼Fxþ n; ð1Þ
where x; y 2 CN are the vectors denoting the latent image to recon-
struct in the image domain and the observed measurements in k-
space,F 2 CN�N is the two-dimensional (2D) discrete Fourier trans-
form (DFT) and n is the noise inevitably appearing in the signal
acquisition process.

However, acquiring the full measurements of y to construct a
high-quality MR image x is highly time-consuming. Moreover,
the long scanning time will bring about the artefacts arising from
the voluntary movements of the patients and involuntary physio-
logical movements [1]. In order to mitigate the long acquisition
time of MRI as well as alleviate the aliasing artefacts, a range of
methods has been developed for accelerating MRI to obtain accu-
rate reconstructions. Traditionally, gradient refocusing [2] and
multiple-radio frequency mediated [3] approaches were proposed.
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Under constraints of the Nyquist-Shannon sampling theorem, they
did reduce the scanning time although by only a limited factor.
With the development of the parallel imaging (PI) and the com-
pressed sensing (CS), the fast MRI based on these two theories
attracted much research and advancements.

Parallel imaging was introduced to take advantage of spatial
sensitivity distribution derived from an array of carefully dis-
tributed receiver surface coils, to reduce the measurement from
each coil, alleviating the need of enhancing gradient performance
and hence reducing the acquisition time [4]. The undersampled
k-space signal using PI-MRI can be represented by a general model
as:

yq ¼FuðSq � xÞ þ nq; q ¼ 1; . . . S; ð2Þ
where Sq and nq are the sensitivity map and inevitable noise of the
qth coil (S coils in total). � denotes the pixel-wise multiplication.
Fu 2 CM�N is the undersampled 2D DFT matrix with M � N to
reduce the measurements of each yq. With S coils applied parallelly,
one can obtain y1; . . . ; yS simultaneously to reconstruct the latent
image x. To reconstruct these PI acquired images, great progress
in developing PI reconstruction techniques has taken place, propos-
ing popular methods such as the simultaneous acquisition of spatial
Fig. 1. Overview of the proposed SwinMR. (A) and (B) are the schematic diagrams of th
shifted windows based multi-head self-attention (W-MSA/SW-MSA). Conv2D is locally s
MSA have larger receptive fields. MSA is performed in the whole image space, while W-M
shifted windows. (Red box: the receptive field of the operation; green box: the pixel; b
results of the proposed SwinMR compared with GT, ZF and another method DAGAN [37].
ZF: undersampled zero-filled MR images; Recon: reconstructed MR images; Multi-Chann
images; Mask: the undersampling mask; SM: sensitivity maps.).
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harmonic (SMASH) [5], sensitivity encoding (SENSE) [6] and gener-
alized auto-calibrating partially parallel acquisition (GRAPPA) [7].

The invention of CS theory [8] further advanced the sampling
efficiency of MRI. The CS-MRI utilises the non-linear methodology
and sparse transformation to reconstruct the latent image from
only a small portion of k-space measurement under a much smal-
ler downsampling rate than the Nyquist rate. The general problem
of MRI using the CS-MRI is to find the minimiser image to the fol-
lowing problem:

argmin
x
jjUxjj1; s:t: y ¼Fux; ð3Þ

where U is the sparsifying transformation, Fu 2 CM�N is undersam-
pled 2D DFT with M � N, and y 2 CM is the observed undersampled
measurements in k-space. A range of non-linear reconstruction
methods has demonstrated success in resolving this, including
some fixed sparsifying methods such as total variation [9], curvelets
[10] and double-density complex wavelet [11], and a few adaptive
sparsifying models taking the advantage of dictionary learning
[12]. While both CS-MRI and PI-MRI can significantly reduce the
required number of measurements in k-space, the iterative algo-
rithms are required to derive the image however prolong the recon-
e receptive field for 2D convolution (Conv2D), multi-head self-attention (MSA) and
ensitive and lacks long-range dependency. Compared with Conv2D, MSA and (S)W-
SA and SW-MSA are alternatingly used in Swin transformer [36], and performed in

lue box: the patch in self-attention.) (C) is the overview of SwinMR. (D) shows the
(IM: the input module; FEM: the feature extraction module; OM: the output module.
el GT: multi-channel ground truth MR images; GT: single-channel ground truth MR
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struction time and hence cause concerns when transferred for
actual clinical uses.

As a modern popular method for general image analysis, deep
learning has been very successful by exploiting the non-linear
and complex natures of the network with supervised or unsuper-
vised learning, and widely applied in medical image research
[13–17]. Convolutional neural networks (CNNs) as a special type
of deep learning networks enable enhanced latent feature extrac-
tion by their very deep hierarchical structure. CNN has demon-
strated its superiority in multiple tasks, including detection [18],
classification [19], segmentation [20] and super-resolution [21].
Wang et al. [22] became the pioneer to take advantage of CNNs
by extracting latent correlations between undersampled and fully
sampled k-space data for MRI reconstruction. Yang et al. [23] fur-
ther improved the network structures by re-applying the alternat-
ing direction method of multipliers (ADMM), which was originally
used for CS-MRI reconstruction methods. A cascaded structure was
developed by Schlemper et al. [24] for the more targeted recon-
struction of dynamic sequences in cardiac MRI. To enable further
latent mapping in the reconstruction model, Zhu et al. [25] devel-
oped a novel framework to provide more dense mapping through
domains via its proposed automated transform by manifold
approximation.

For a long time, CNNs have had a dominant position in the field
of computer vision (CV) since convolutions are effective feature
extractors. Most deep learning-based MRI reconstruction methods
are based on CNNs, including the GAN-based model. As Fig. 1(A)
shows, the feature extraction of CNNs is based on convolution,
which is locally sensitive and lacks long-range dependency. The
receptive field of CNNs is limited by the convolutional kernel and
the network depth. Oversized convolutional kernel brings huge
computational cost, and overly-deep network depth can cause gra-
dient vanishing.

A novel structure, transformer, taking advantage of even deeper
mapping, sequence-to-sequence model design [26] and adaptive
self-attention setting [27–30] with expanding receptive fields
(Fig. 1(A)) [31,32] has been proposed recently and been popu-
larised in natural language processing (NLP) initially [33]. Then it
Fig. 2. The dataflow of proposed SwinMR. Root sum square (RSS) is applied to combin
ground truth MR images (GT). Undersampling and noise interruption are performed in k-
convert the GT to undersampled zero-filled MR images (ZF) as the input of our prop
calculated by the pixel-wise multiplication of single-channel reconstructed MR images (
are estimated by ESPIRiT from the Multi-Channel GT.
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has been applied to object detection [34], image recognition [35]
and extended to super-resolution [31] for general image analysis.

With its superior ability in image reconstruction and synthesis
as demonstrated in natural images, we could see transformers
applied in MRI in many different ways. For synthesis, it has greatly
enhanced cross-modality image synthesis (PET-to-MR by direc-
tional encoder [38], T1-to-T2 by a pyramid structure [39], and
MR-to-CT and T1/T2/PD by a novel aggregated residual trans-
former block [40]). Variants of the transformer also enabled
improved performance in reconstruction and super-resolution
tasks. It was first applied on the reconstruction of brain MR imag-
ing [41]. Korkmaz et al. [42] developed an unsupervised adversar-
ial method to alleviate the scarce training sample populations. To
further improve the quality of imaging, Feng et al. [43] enabled
an end-to-end joint reconstruction and super-resolution. Feng
et al. [44] further advanced the model for these dual tasks by incor-
porating the model with task-specific novel cross-attention
modules.

However, the shift from NLP tasks to CV tasks leads to chal-
lenges: (1) Difference in scale: visual elements (e.g., pixels) in CV
tasks tend to vary substantially in scale unlike language elements
(e.g., word tokens) in NLP tasks. (2) Higher resolution: the resolu-
tion of pixels in images (or frames) tend to be much higher than
words in sentences. [36] Therefore, it is a trade-off for less compu-
tational complexity to limit the scale of self-attention in a local
window, as Fig. 1(A) and (B) shows. Shifted windows (Swin) trans-
former [36] replaced the traditional multi-head self-attention
(MSA) by the shifted windows based multi-head self-attention
(W-MSA/SW-MSA). W-MSA and SW-MSA were alternatingly used
in consecutive transformer layers, since if all attention operations
are conducted in fixed windows, the cross-window relationship
may be ignored. Based on the Swin transformer module, Liang
et al. [45] proposed SwinIR for image restoration tasks.

In this work, we introduced the SwinMR, a novel parallel imag-
ing coupled Swin transformer based model for fast CS-MRI recon-
struction, as Fig. 1(C) shows. The main contributions can be
summarised as follows:
e the multi-channel ground truth MR images (Muti-Channel GT) to single-channel
space using fast Fourier transform (FFT) and inverse fast Fourier transform (iFFT) to
osed SwinMR. Multi-channel reconstructed MR images (Muti-Channel Recon) are
Recon), which are the output of the proposed SwinMR, and sensitivity maps, which
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� A novel parallel imaging coupled Swin transformer-based
model for fast MRI reconstruction was proposed, as Fig. 1(C)
shows.
� A novel multi-channel loss was proposed by using the sensitiv-
ity maps, which was proved to preserve more textures and
details in the reconstruction results.
� A series of ablation studies and comparison experiments were
conducted. Experimental studies using different undersampling
trajectories with various noises were performed to validate the
robustness of our proposed SwinMR.
� A downstream task experiment using a segmentation network
was conducted. A pre-trained segmentation network was
applied to test the segmentation score for reconstructed images.
Fig. 3. The structure of proposed SwinMR. (A) shows the overall structure of SwinMR. In
cascade of RSTBs and a Conv2D with a residual connection are placed between the two
operator, Q cascaded STLs, a patch unembedding operator, a Conv2D, and a residual conne
an LN and an MLP, with two residual connections. (RSTB: the residual Swin transformer b
layer normalisation layer; MLP: the multi-layer perceptron; (S)W-MSA: the (shifted) w
consecutive STLs.)
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2. Method

2.1. Classic model-based CS-MRI reconstruction

To recover better spatial information with less artefacts from
the undersampled k-space data, traditional CS-MRI methods usu-
ally consider solving the following optimisation problem:

min
x

1
2
jjFux� yjj22 þ kRðUxÞ; ð4Þ

where U is the sparsifying transform, e.g., discrete wavelet trans-
form [46], gradient operator [9,47] and dictionary-based transform
[48]. Rð�Þ is the regularisation function imposed on the sparsity, e.g,
l1-norm and l0-norm, and k is the weight parameter to balance the
SwinMR architecture, two Conv2Ds are placed at the beginning and the ending. A
Conv2Ds. (B) shows the structure of RSTB. The RSTB consists of a patch embedding
ction between the input and output of RSTB. An STL consists of an LN, an (S)W-MSA,
lock; STL: the Swin transformer layer; Conv2D: the 2D convolutional layer; LN: the
indows multi-head self-attention. W-MSA and SW-MSA are altinatively used in
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two terms. The solution of the above problem can be derived by the
non-linear optimisation solvers such as gradient-based algorithms
[49] and variable splitting methods [50,51]. Depending on the man-
ually designed regularisation, some models may suffer from a long
reconstruction time for better reconstruction quality. Additionally,
the manually selected sparsifying transform U could also introduce
undesirable artefacts, e.g., total variation based regularisation
which is well-known for removing the noise and preserving the
sharp edges can introduce staircase artefacts [10] and the tight
wavelet frame transform increases the reconstruction efficiency
but may lead to the blocky artefacts [52].

2.2. CNN-based fast MRI reconstruction

To relieve the artefacts brought by the hand-crafting regularisa-
tion and the long reconstruction time of classic models, the deep
CNNs which are well-known as the powerful features extractors,
were firstly applied in the CS-MRI in [22]. In this work, a deep
CNN was applied to learn the mapping from down-sampled recon-
struction images to fully sampled reconstruction images directly.
Following that, several networks have been proposed to further
improve the reconstruction quality.

Some works attempted to bridge the classic models with deep
CNNs by mimicking the iterative algorithm in their network archi-
tectures. Deep ADMM Net [23] was firstly trained by unfolding the
Table 1
Quantitative results of the comparison experiment with other methods using Gaussian 1D 3
t-Test). �: p < 0:05; ��: p < 0:01 (compared with SwinMR (nPI) by paired t-Test). q: #PARAM
to-noise ratio; SSIM: Structural similarity index; FID: Fréchet inception distance; Inference T
RTX 3090 GPU; #PARAMs: The parameters number of models; MACs: Multiply-Accumula

Methods PSNR SSIM FID

ZF 27.81 (0.83)yy�� 0.884 (0.012)yy�� 156.39
Deep ADMM Net 29.24 (0.99)yy�� 0.922 (0.012)yy�� 54.56

U-Net 31.48 (0.86)yy�� 0.939 (0.009)yy�� 46.90
DAGAN 30.41 (0.83)yy�� 0.924 (0.010)yy�� 56.05
PIDDGAN 31.23 (0.93)yy�� 0.936 (0.010)yy�� 17.55

SwinMR (nPI) 33.06 (1.09)yy 0.956 (0.009)yy 21.03
SwinMR (PI) 32.07 (1.02)�� 0.945 (0.010)�� 8.70

Fig. 4. Samples of the comparison experiment with ground truth images (GT), undersam
ZF and reconstructed images by different methods; Row 2: Edge information extracted by
reconstructed (or ZF) images and GT images (10�).
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optimisation algorithm ADMM to derive the solution to the general
model Eq. (4) by network blocks. In [24], the reconstruction of the
deep CNN from lower-quality images was adopted as the prior
information to approximate in a classic CS-model as follows:

min
x

1
2
jjy�Fuxjj22 þ kjjx� f CNNðxujhÞjj22; ð5Þ

where the solution of the above function was further adopted into
the network architecture iteratively to improve the reconstruction
result of f CNN which takes the zero-filled reconstruction xu as the
input.

On top of the CNNs, conditional generative adversarial networks
(cGANs) exploited the advantages of deep learning further and
proved to enhance the quality of the MR image reconstruction to
a large extent [53,54]. Such a competitive network introduced a
two-player generator-discriminator training mechanism to com-
petitively improve reconstruction performance by alternatingly
optimising hG and hD of the generator G and the discriminator D,
in a general form as:

min
hG

max
hD

Ex�pgt logDhD ðxÞ
� �þ Exu�pu log 1� DhD GhGðxuÞ

� �� �� �
; ð6Þ

where GhG and DhD denote the generator and the discriminator with
parameters hG and hD, respectively. x and xu denote the ground truth
MR images and undersampled zero-filled MR images with aliasing
0% mask (mean (std)). y: p < 0:05; yy: p < 0:01 (compared with SwinMR (PI) by paired
s for only the generator/for both the generator and discriminator. PSNR: Peak signal-
ime: The average time for one inference in an Intel Core i9-10980XE CPU or an NVIDIA
te Operations.

Inference Time #PARAMs MACs

CPU (s) GPU (s) (M) (G)

– – – –
0.459 (0.052) – – –
0.166 (0.007) 0.006 (0.000) 32.31 56.44
0.089 (0.003) 0.003 (0.000) 98.59/127.18q 33.97
0.166 (0.007) 0.006 (0.000) 32.31/89.50q 56.44

19.310 (0.115) 0.041 (0.001) 11.40 800.73
19.310 (0.115) 0.041 (0.001) 11.40 800.73

pled zero-filled images (ZF) and reconstructed images by other methods. Row 1: GT,
Sobel operator; Row 3: Gaussian 1D 30%mask and the absolute differences between



Table 2
Fréchet inception distance (FID) of the experiment on different masks. Five
undersampling masks including Gaussian 1D 10% (G1D10%), Gaussian 1D 30%
(G1D30%), Gaussian 1D 50% (G1D50%), radial 10% (R10%) and spiral 10% (S10%) were
applied in this experiment.

Mask SwinMR (PI) DAGAN ZF

G1D10% 28.27 169.83 326.00
G1D30% 8.70 56.05 156.38
G1D50% 5.11 19.26 86.25
R10% 34.19 132.58 319.45
S10% 28.97 115.98 333.40
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artefacts. After the training, the generator can yield the correspond-
ing reconstruction from xu to reconstructed images GhG ðxuÞ.

Variants of generators and discriminators have been developed
to cope with multiple flaws in the original architecture of GAN –
for improved generator [55], improved discriminator [56], loss
functions [57], regularisation [58], training stability by Wasser-
stein GAN [59,60] and attention mechanism [61]. DAGAN [37], by
substituting the residual networks with a modified U-Net [62],
combined the advantage of U-Net in latent information extraction
with competitive training and pre-trained VGG based transfer
learning. Furthermore, PIDDGAN [56] considered edge information
into their model and further enhance the edge information in the
reconstruction, which are clinically important when interpreting
MR images. The utilisation of transfer learning improved the gen-
eralisability of a network trained with a small dataset [63].
Fig. 5. Peak signal-to-noise ratio (PSNR) and Structural similarity index (SSIM) of the exp
10% (G1D10%), Gaussian 1D 30% (G1D30%), Gaussian 1D 50% (G1D50%), radial 10% (R10
range; �:1% and 99% confidence interval; �: maximum and minimum; �: mean; j: medi
with significantly higher PSNR, SSIM (p < 0:05 by paired t-Test).
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CNN-based MR reconstruction methods showed their superior-
ity both on reconstruction quality and efficiency compared to clas-
sical MR reconstruction methods. However, the performance of
eriment on different masks. Five undersampling trajectories including Gaussian 1D
%) and spiral 10% (S10%) were applied in this experiment. (Box range: interquartile
an.) The SwinMR (PI) outperforms the DAGAN using different undersampling masks
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those CNN-based methods was limited by the local sensitivity of
the convolutional operation. Motivated by this limitation, we pro-
posed a Swin transformer based MR reconstruction method
SwinMR.
2.3. SwinMR: Swin transformer for MRI reconstruction

2.3.1. Overall architecture
The overall architecture is shown in Fig. 1(C) and the data flow

of SwinMR is shown in Fig. 2. Root sum square (RSS) is applied to
combine the multi-channel ground truth MR images xq to single-
channel ground truth MR images x (q denotes the qth coil). Sensitiv-
ity maps Sq are estimated by ESPIRiT [64] from multi-channel
Fig. 6. Samples of the experiment on different masks. Five undersampling trajectories i
(G1D50%), radial 10% (R10%) and spiral 10% (S10%) were applied in this experiment. Row
truth MR images (GT); Row 3: Reconstructed MR images by DAGAN; Row 4: Reconstruc
noise ratio (PSNR) and Structural similarity index (SSIM) of reconstructed and ZF image
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ground truth MR images xq. Undersampling and noise interruption
are performed in k-space using fast Fourier transform (FFT) and
inverse fast Fourier transform (iFFT) (Gaussian noise is added in
the noise experiments), which converts single-channel ground
truth MR images x to undersampled zero-filled MR images xu.

The proposed SwinMR model can produce reconstructed MR
images x̂u from undersampled zero-filled MR images xu, where
the residual connection is applied to accelerate the convergence
and stable the training processing. It can be expressed by
x̂u ¼ SwinMRðxujhÞ þ xu; ð7Þ
where the SwinMR network is parameterised by h.
ncluding Gaussian 1D 10% (G1D10%), Gaussian 1D 30% (G1D30%), Gaussian 1D 50%
1: Undersampled zero-filled MR images (ZF) using different masks; Row 2: Ground
ted MR images by SwinMR (PI); Row 5: Undersampling masks. The Peak signal-to-
s are shown in the top-left corner.
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Fig. 3(A) shows the structure of SwinMR, which is composed of
an input module (IM), a feature extraction module (FEM) and an
output module (OM). The IM and OM are at the beginning and
the end of the whole structure, and the FEM is placed between
the IM and OM with a residual connection. The structure can be
expressed by

F IM ¼ HIMðxuÞ; ð8Þ
FFEM ¼ HFEMðF IMÞ; ð9Þ
FOM ¼ HOMðFFEM þ F IMÞ; ð10Þ

where the HIMð�Þ, HFEMð�Þ and HOMð�Þ denote the IM, FEM and OM
respectively. F IM; FFEM and FOM denote the output of the IM, FEM
and OM respectively.
2.3.2. Input module and output module
The IM is used for early visual processing and mapping from the

input image space to higher dimensional feature space for the fol-
Fig. 7. Edge information of the experiment on different masks. Five undersampling traje
1D 50% (G1D50%), radial 10% (R10%) and spiral 10% (S10%) were applied in this experi
different masks; Row 2: Edge information of ground truth MR images (GT); Row 3: Edg
reconstructed MR images by SwinMR (PI). The edge information was extracted by the S
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lowing FEM. The IM applies a 2D convolutional layer (Conv2D)
mapping xu 2 RH�W�1 to FIM 2 RH�W�C . In contrast, the OM is used
to map the higher dimensional feature space to the output image
space by a Conv2D mapping FFEM 2 RH�W�C to FOM 2 RH�W�1.

In the training stage, the input image is randomly cropped to a
fixed size H �W (H ¼W). In the inference stage, H;W denote the
height and weight of the input image. Here we define H (or W)
as the patch number and C as the channel number for the self-
attention processing.

2.3.3. Feature extraction module
The FEM is composed of a cascade of residual Swin transformer

blocks (RSTBs) and a Conv2D at the end. It can be expressed as

F0 ¼ F IM; ð11Þ
Fi ¼ HRSTBi ðFi�1Þ; i ¼ 1;2; . . . ; P; ð12Þ
FFEM ¼ HCONVðFPÞ; ð13Þ
ctories including Gaussian 1D 10% (G1D10%), Gaussian 1D 30% (G1D30%), Gaussian
ment. Row 1: Edge information of undersampled zero-filled MR images (ZF) using
e information of reconstructed MR images by DAGAN; Row 4: Edge information of
obel operator.
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where F IM and FFEM are the input and output of the FEM. HRSTBi ð�Þ
denotes the ith RSTB (P RSTBs in total) in the FEM. HCONVð�Þ denotes
the Conv2D after a series of RSTBs.

Fig. 3(B) shows the structure of the RSTB. An RSTB consists of Q
Swin transformer layers (STLs) and a Conv2D, and a residual con-
nection is linked between the input and output of the RSTB. It
can be expressed as

Fi;0 ¼ HEmbi ðFi�1Þ; ð14Þ
Fi;j ¼ HSTLi;j ðFi;j�1Þ; j ¼ 1;2; . . . ;Q ; ð15Þ
Fi ¼ HCONVi

ðHUnembi ðFi;Q Þ þ Fi�1Þ; ð16Þ
where HEmbi ð�Þ is the patch embedding from Fi�1 2 RH�W�C to

Fi;0 2 RHW�C , and HUnembi ð�Þ is the patch unembedding from

Fi;Q 2 RHW�C to RH�W�C .

HSTLi;j ð�Þ and HCONVi
ð�Þ denote the jth STL and the Conv2D in the ith

RSTB, respectively.

2.3.4. Swin transformer layer
The whole process of the STL can be expressed as

X0 ¼ HðSÞW�MSAðHLNðXÞÞ þ X; ð17Þ
X00 ¼ HMLPðHLNðX0ÞÞ þ X0; ð18Þ
where X and X00 are the input and output of the STL. HMLPð�Þ and
HLNð�Þ denote the multilayer perceptron and the layer normalisation
layer. Windows multi-head self-attention (W-MSA) and shifted
windows multi-head self-attention (SW-MSA) HðSÞW�MSAð�Þ are alter-
natingly applied in consecutive STLs.

Spatial constraints are added in the Swin transformer layer
compared to the original transformers. Fig. 3(B) shows the W-
MSA and the SW-MSA compared with the original MSA. Original
MSA performs self-attention in the whole image space. Although
Fig. 8. Absolute differences of standardised pixel intensities (10�) of the experiment
(G1D10%), Gaussian 1D 30% (G1D30%), Gaussian 1D 50% (G1D50%), radial 10% (R10%) a
between undersampled zero-filled MR images (ZF) using different masks and ground tru
by DAGAN and GT; Row 3: Absolute differences between reconstructed MR images by S
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the information of the entire picture is involved in each attention
calculation, it aggravates computational costs and redundant con-
nections. The computational complexity for the original MSA is as
follows:

XðHMSAÞ ¼ 4HWC2 þ 2ðHWÞ2C: ð19Þ
In Swin transformer layers, a RH�W�C feature map are divided

into HW
M2 non-overlapped windows with the size of M2 � C. (S)W-

MSA is calculated in each window, instead of the whole image
space. The computational complexity for (S)W-MSA is as follows:

XðHðSÞW�MSAÞ ¼ 4HWC2 þ 2M2HWC; ð20Þ

which is significantly reduced compared to the original MSA. How-
ever, if the separation of windows is fixed between STLs, the net-
work will lose the link between different windows. Normal
windows and shifted windows are alternatingly utilised in consec-
utive STLs to enable information communication from different
windows.

(S)W-MSA for each non-overlap window X can be expressed by

Q ¼ XPQ ; K ¼ XPK ; V ¼ XPV ; ð21Þ

where the PQ ; PK ; PV are shared projection matrices over all the win-
dows. The query Q, key K, value V and learnable relative position

encoding B (RM2�d) are used in the calculation of the self-attention
mechanism in a local window, which can be expressed by

AttentionðQ ;K;VÞ ¼ SoftMax QKT=
ffiffiffi
d
p
þ B

� �
V : ð22Þ

Such self-attention mechanism calculations are performed for h
times and concatenated for (S)W-MSA. The pseudo-code of STL and
(S)W-MSA are shown in Algorithm 1 and Algorithm 2.
on different masks. Five undersampling trajectories including Gaussian 1D 10%
nd spiral 10% (S10%) were applied in this experiment. Row 1: Absolute differences
th MR images (GT); Row 2: Absolute differences between reconstructed MR images
winMR (PI) and GT.
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Algorithm1: Swin transformer layer (STL).

Input: X; j;Ws;Nh

# X: Feature maps;
# X.shape: (C, H, W); C: embedding channel; H: height; W:
width;
# j: index of STL (from 0); Ws: size of window; Nh: number
of heads.

Nw ¼ HW=W2
s # Calculate the number of windows.

Xtmp  X # For residual connection.
X  LNðXÞ # Layer normalisation 1.

# Shifting operation used in even STL.
if j%2– 0 then
X  cyclic shiftðXÞ
end if
# Split feature maps into non-overlapping windows.
Xwin  window partitionðXÞ # Xwin.shape: (NwNh, C=Nh,
g. 9. Peak signal-to-noise ratio (PSNR) and Structural similarity index (SSIM) of the ex
30%, NL50%, NL70% and NL80%) were tested in this experiment. (Box range: interquarti
edian.) The SwinMR (PI) outperforms the DAGAN under different noise levels with sig
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Ws, Ws)
# Multi-head self-attention
Xwin  MSAðXwinÞ # Xwin.shape: (NwNh, C=Nh, Ws, Ws)
# Recover feature maps from windows
X  reverse windowðXwinÞ # X.shape: (C, H, W)
# Corresponding shifting reversing operation used in even
STL.
if j%2– 0 then
X  reverse shiftðXÞ
end if
X  X þ Xtmp # Residual connection 1.

Xtmp  X # For residual connection.
X  LNðXÞ # Layer normalisation 2.
X  MLPðXÞ # Multi-layer perceptron.
X  X þ Xtmp # Residual connection 2.

Output: X
periment on different noise using Gaussian 1D 30% mask. Five noise levels (NL20%,
le range; �:1% and 99% confidence interval;�: maximum and minimum;�: mean; j:
nificantly higher PSNR, SSIM (p < 0:05 by paired t-Test).



Table 3
Fréchet inception distance (FID) of the experiment on different noise using Gaussian
1D 30% mask. Five noise levels (NL20%, NL30%, NL50%, NL70% and NL80%) were
applied in this experiment.

Noise Level SwinMR (PI) DAGAN ZF

NL20% 16.07 66.60 156.77
NL30% 16.44 71.50 168.61

NL80% 33.79 80.97 282.40

Fi
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Algorithm2: (Shifted) windows multi-head self-attention.

Input: X
# X: windows for multi-head self-attention operation;
# X.shape: (NwNh, C=Nh, Ws, Ws);
# Nw: number of windows; Nh: number of heads;
# C: embedding channel; Ws: size of window.

# Calculate the query, key and value.
Q  LinearqðXÞ
K  LinearkðXÞ
V  LinearvðXÞ
# Calculate the relative position bias.
B get relative positionðXÞ
# Calculate the attention result.
attn map dotðQ ;K:transposeÞ=

ffiffiffi
C
p

attn map SoftMaxðattn mapþ BÞ
attn dotðattn map;VÞ
attn LinearðattnÞ

Output: attn
g. 10. Samples of the experiment on different noise using Gaussian 1D 30%mask. Five nois
Undersampled zero-filled MR images (ZF) with different noise levels; Row 2: Ground truth
R images by SwinMR (PI). The Peak signal-to-noise ratio (PSNR) and Structural similarity
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NL50% 24.29 75.32 203.39
NL70% 30.65 85.32 251.15
2.3.5. Loss function
A novel multi-channel loss using the sensitivity maps was intro-

duced for better reconstruction quality and more textures and
details. Charbonnier loss [65] was utilised for the pixel-wise loss
and the frequency loss since it is more robust and able to handle
the outliers better. The total loss LTOTALðhÞ consists of the pixel-
wise Charbonnier loss LpixelðhÞ, the frequency Charbonnier loss
LfreqðhÞ and perceptual loss LVGGðhÞ. The pixel-wise Charbonnier
loss can be expressed by
e levels (NL20%, NL30%, NL50%, NL70% and NL80%) were tested in this experiment. Row
MR images (GT); Row 3: Reconstructed MR images by DAGAN; Row 4: Reconstructed
index (SSIM) of reconstructed and ZF images are shown in the top-left corner.



Fig. 11. Edge information of the experiment on different noise using Gaussian 1D 30% mask. Five noise levels (NL20%, NL30%, NL50%, NL70% and NL80%) were tested in this
experiment. Row 1: Edge information of undersampled zero-filled MR images (ZF) with different noise levels; Row 2: Edge information of ground truth images (GT); Row 3:
Edge information of reconstructed MR images by DAGAN; Row 4: Edge information of reconstructed MR images by SwinMR (PI). The edge information was extracted by the
Sobel operator.

1 https://sites.google.com/view/calgary-campinas-dataset/mr-reconstruction-
challenge.
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min
h

LpixelðhÞ ¼ 1
S

XS

q¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjxq �Sqx

^

ujj22 þ �2
q

; ð23Þ

where � is a constant which is set to 10�9 empirically and Sq is the
sensitivity map of qth coil (S colis in total). The frequency Charbon-
nier loss can be expressed by

min
h

LfreqðhÞ ¼ 1
S

XS

q¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjyq �FSqx

^

ujj22 þ �2
q

: ð24Þ

The perceptual VGG loss can be expressed by

min
h

LVGGðhÞ ¼ jjf VGGðxÞ � f VGGðx
^

uÞjj1; ð25Þ

where f VGGð�Þ denotes the VGG network, and jj � jj1 denotes the l1
norm. The utilisation of LVGG is able to optimise the perceptual
quality of reconstructed results.

The total loss can be expressed by

LTOTALðhÞ ¼ aLpixelðhÞ þ bLfreqðhÞ þ cLVGGðhÞ; ð26Þ
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where a; b and c are coefficients controlling the balance of each
term in the loss function.
3. Experiments and results

3.1. Datasets

In this work, the Calgary Campinas multi-channel (CC) dataset1

[66] and the Multi-modal Brain Tumour Segmentation Challenge
2017 (BraTS17)2 [67–69] dataset were used for the experiment
sections.

The available data of the CC dataset contains 67 cases of three-
dimensional (3D), 12-channel (117 scans), T1-weighted, gradient-
recalled echo, 1 mm isotropic sagittal acquisitions. Acquisition
parameters were TR/TE/TI = 6.3 ms/2.6 ms/650 ms (93 scans)
https://www.med.upenn.edu/sbia/brats2017/data.html.

https://sites.google.com/view/calgary-campinas-dataset/mr-reconstruction-challenge
https://sites.google.com/view/calgary-campinas-dataset/mr-reconstruction-challenge
https://www.med.upenn.edu/sbia/brats2017/data.html
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and TR/TE/TI = 7.4 ms/3.1 ms/400 ms (74 scans), with 170 to 180
contiguous 1.0-mm slices and a field of view of 256 mm �
218 mm. The original CC dataset provides a hybrid ðx; ky; kz;CÞ
structure (x: read-out direction; y: phase-encoding direction; z:
slice-encoding direction; C: channels), where inverse Fourier trans-
form is performed in the read-out direction. These 3D hybrid data
were uniformly zero-filled in the phase-encoding direction to
256� 256, and turned into 3D image space volumes by 2D iFFT
on the ky � kz plane. We randomly chose 40 cases for training, 7
cases for validation and 20 cases for testing, according to the ratio
of 6:1:3 approximately. In each case, we chose 100 2D slices near
the centre along the read-out direction (sagittal view).

For the BraTS17 dataset, we applied the brain data with refer-
ence segmentation results (280 3D volumes in BraTS17 official
training dataset), including both higher and lower grade glioma.
These multi-modal scans contain native T1-weighted (T1), T1-
contrast enhanced (T1CE), T2-weighted (T2), and T2 Fluid Attenu-
ated Inversion Recovery (FLAIR) data. These 280 3D brain data
were divided into training, validation and testing set (235, 20,
and 30 cases respectively), and cropped to 152� 192� 144 vol-
umes (slice, height and width, respectively). For each case, we used
100 slices near the centre in the training stage to avoid invalid
data, i.e., slices that are totally dark or with little information, for
training.

3.2. Implementation detail

The proposed SwinMR was implemented using PyTorch, trained
on two NVIDIA RTX 3090 GPUs with 24 GB GPU memory, and
tested on an NVIDIA RTX 3090 GPU or an Intel Core i9-10980XE
CPU. We set the RSTB number, the STL number, the window size
number and the attention head number to 6, 6, 8 and 6 respec-
Fig. 12. Absolute differences of standardised pixel intensities (10�) of the experiment
NL50%, NL70% and NL80%) were tested in this experiment. Row 1: Absolute differences
ground truth MR images (GT); Row 2: Absolute differences between reconstructed MR
images by SwinMR (PI) and GT.
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tively, which are the default setting in the original SwinIR [45].
The patch number and channel number were empirically set to
96 and 180, according to our ablation studies. For the parameter
in the loss function, a; b; cwere set to 15, 0.1 and 0.0025 to balance
each term, according to our ablation studies. Our proposed
SwinMR was trained for 100,000 steps using Adam optimiser.
The initial learning rate was set to 2� 10�4 and decayed by 0.5
every 10,000 steps from the 50,000th step. Random flip and rota-
tion were applied for data augmentation.

We used SwinMR (PI) to denote the proposed model trained
with multi-channel data and sensitivity maps, and SwinMR (nPI)
to indicate the proposed model trained with single-channel data
without sensitivity maps.

3.3. Evaluation methods

Structural similarity index (SSIM), Peak signal-to-noise ratio
(PSNR) and Fréchet inception distance (FID) [70] were utilised for
evaluation. SSIM quantifies the structural similarity between two
images based on luminance, contrast, and structures. PSNR is the
ratio between maximum signal power and noise power, which
measures the fidelity of the representation. Both metrics are based
on simple and shallow functions, and direct comparisons between
images, which are not necessary for the visual quality for human
observers [71]. FID is calculated by computing the Fréchet distance
between two multivariate Gaussians, which measures the similar-
ity between two sets of images. FID correlates well with visual
quality for human observers, and a lower FID indicates more per-
ceptual results.

Both Intersection over Union (IoU) and Dice scores were applied
to measure the segmentation quality in the brain tumour segmen-
tation experiment.
on different using Gaussian 1D 30% mask noise. Five noise levels (NL20%, NL30%,
between undersampled zero-filled MR images (ZF) with different noise levels and
images by DAGAN and GT; Row 3: Absolute differences between reconstructed MR
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The number of parameters (#PARAMs) and Multiply-
Accumulate Operations (MACs) were applied to measure the
model size and the computational cost. MACs were calculated
using a 1� 1� 256� 256 array as input (Batch � Channel �
Height � Width).

3.4. Comparisons with other methods

In this experimental study, we compared our proposed SwinMR
(nPI and PI) with other benchmarked MR reconstruction methods,
including Deep ADMMNet [23], U-Net [62], DAGAN [37], PIDDGAN
[56], as well as ground truth MR images (GT) and undersampled
zero-filled MR images (ZF) using Gaussian 1D 30% mask. Among
them, PIDDGAN and SwinMR (PI) were parallel imaging-coupled,
i.e., trained with multi-channel MR images. This experiment was
conducted using the CC dataset.

The quantitative result of comparisons is shown in Table 1. Our
proposed SwinMR (nPI) achieved the highest SSIM and PSNR, and
SwinMR (PI) achieved the best FID score. The inference time in
Table 1 indicates the average time for one inference measured by
ten times inferences in average in an Intel Core i9-10980XE CPU
or an NVIDIA RTX 3090 GPU. The computational cost of SwinMR
was higher than other CNN-based models. SwinMR has a larger
computational cost (MACs) than other CNN-based and GAN-
based methods, but with a smaller model size (#PARAMs).
Fig. 13. Structural similarity index (SSIM), Peak signal-to-noise ratio (PSNR), Fréchet inc
and channel number. (A), (C) and (E) are the SSIM/PSNR, FID and training loss of the abl
training loss of the ablation experiment of the channel number.
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Fig. 4 shows the reconstructed MR images, edge information
extracted by Sobel operator and absolute differences of standard-
ised pixel intensities (10�) between reconstructed MR images
and GT MR images from top to button respectively. The proposed
SwinMR shows superiority to other methods in terms of overall
reconstruction quality and edge information.
3.5. Experiments on masks

This experimental study aimed to evaluate the performance of
SwinMR using different undersampling trajectories. Three 1D
Cartesian undersampling trajectories including Gaussian 1D 10%
(G1D10%), Gaussian 1D 30% (G1D30%) and Gaussian 1D 50%
(G1D50%), as well as two 2D non-Cartesian undersampling trajec-
tories including radial 10% (R10%) and spiral 10% (S10%) were
applied in this experiment. This experiment compared the SSIM,
PSNR and FID of SwinMR (PI), DAGAN and ZF, and was conducted
using the CC dataset.

The quantitative results of the experiment on masks are shown
in Fig. 5 and Table 2. The sample of reconstructed images, edge
information and absolute differences of standardised pixel intensi-
ties (10�) between reconstructed images and GT images are
shown in Figs. 6–8 respectively. According to the results, the pro-
posed SwinMR achieved a higher reconstruction quality compared
eption distance (FID) and training loss of ablation experiments of the patch number
ation experiment of the patch number. (B), (D) and (F) are the SSIM/PSNR, FID and
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to DAGAN using different undersampling trajectories, especially
when the mask of low undersampling rate (10%) was applied.

3.6. Experiments on noise

This experimental study aimed to evaluate the robustness of
SwinMR under the influence of noise. The noise in MRI is imposed
on the k-space and that could follow a Gaussian distribution [72].
In our experiments, different noise levels (NL20%, NL30%, NL50%,
NL70% and NL80%) were tested after undersampling (Gaussian
1D 30% mask) in k-space. The noise level is defined as:

NL ¼ N0

S0 þ N0
; ð27Þ

where N0 and S0 denote the power of noise and signal, respectively.
This experiment compared the SSIM, PSNR and FID of SwinMR (PI),
DAGAN and ZF, and was conducted using the CC dataset.

The quantitative results of the noise experiments are shown in
Fig. 9 and Table 3. The sample of reconstructed images, edge infor-
mation and absolute differences of standardised pixel intensities
(10�) between reconstructed images and GT images are shown
in Figs. 10–12, respectively.

According to the results, under the interruption of noise,
SwinMR maintains better reconstruction quality compared to
DAGAN. The quality improvement becomes more clear when
under a high noise level.

3.7. Ablation experiments on the patch number and channel number

The patch number H (or W) and the channel number C decide
the input size of STL in the SwinMR. Ablation studies for different
patch numbers and channel numbers were conducted to study the
impression of them on the reconstruction results.
Fig. 14. Samples of the ablation experiment on the patch number using Gaussian 1D 3
numbers and zero-filled MR images (ZF); Row 2: Absolute differences (10�) between r
absolute differences (10�) between ZF and GT; Row 3: Reconstructed MR images by Swin
between reconstructed MR images by SwinMR (PI) and GT, and the Gaussian 1D 30% m

295
Figs. 13 (A) and 13 (C) show the SSIM, PSNR and FID of SwinMR
with different patch numbers. Fig. 13 (E) shows the loss function of
SwinMR in the training process. Fig. 14 displays the sample of
reconstructed images of SwinMR with different patch numbers.

Figs. 13 (B) and 13 (D) show the SSIM, PSNR and FID of SwinMR
with different channel numbers. Fig. 13 (F) shows the loss function
of SwinMR in the training process. Fig. 15 displays the sample of
reconstructed images of SwinMR with the different channel
numbers.

For the patch number, from Figs. 13 (A) and 13 (C), the results
demonstrate that reconstruction quality becomes better as the
patch number grows. According to Fig. 13 (E), the training loss con-
verges faster and lower as the patch number grows. However, the
growing patch number aggravates the computational cost. Empir-
ically, we applied patch number 96 for training.

For the channel number, from Figs. 13 (B) and 13 (D), the results
did not resemble the trend presented in the ablation experiment
on patch number. There were no significant differences for the
three metrics (SSIM, PSNR and FID) as the channel number chan-
ged. According to Fig. 13 (F), the training loss converges faster
and lower as the channel number grows. Empirically, we applied
a channel number of 180 for training.

For the comparison of multi-channel data (PI) and single-
channel data (nPI), SwinMR (PI) tend to have a better (lower)
FID, but worse (lower) SSIM/PSNR than SwinMR (nPI).
3.8. Ablation experiments on the loss function

This ablation study aimed to discover the effect of each term in
the loss function. According to Eq. (26), the loss function of
SwinMR consists of pixel-wise loss, frequency loss and perceptual
loss. Four experiments were performed in this ablation study: (1)
PFP: Pixel-wise, Frequency and Perceptual loss; (2) PP: Pixel-
0% mask. Row 1: Reconstructed MR images by SwinMR (nPI) with different patch
econstructed MR images by SwinMR (nPI) and ground truth MR images (GT), and
MR (PI) with the different patch number and GT; Row 4: Absolute differences (10�)
ask.



Fig. 15. Samples of the ablation experiment on the channel number using Gaussian 1D 30% mask. Row 1: Reconstructed MR images by SwinMR (nPI) with the different
channel numbers and zero-filled MR images (ZF); Row 2: Absolute differences (10�) between reconstructed MR images by SwinMR (nPI) and ground truth MR images (GT),
and absolute differences (10�) between ZF and GT; Row 3: Reconstructed MR images by SwinMR (PI) with the different channel number and GT; Row 4: Absolute differences
(10�) between reconstructed MR images by SwinMR (PI) and GT, and the Gaussian 1D 30% mask.

Fig. 16. Structural similarity index (SSIM), Peak signal-to-noise ratio (PSNR) and Fréchet inception distance (FID) of the ablation experiment on the loss function using
Gaussian 1D 30% mask. PFP: pixel-wise, frequency and perceptual loss; PP: pixel-wise and perceptual loss; PF: pixel-wise and frequency loss; P: only pixel-wise loss.

3 https://github.com/Mehrdad-Noori/Brain-Tumor-Segmentation.
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wise and Perceptual loss; (3) PF: Pixel-wise and Frequency loss;
(4) P: only Pixel-wise loss.

Fig. 16 shows the SSIM, PSNR and FID of SwinMR trained with
different loss functions. Fig. 17 displays the samples of recon-
structed images of SwinMR trained with different loss functions.

According to Fig. 16, for SwinMR (PI), the utilisation of fre-
quency loss tends to improve SSIM/PSNR and decreases the FID
(PFP vs PP; PF vs P). For SwinMR (nPI), the utilisation of frequency
loss leads to improvement only on SSIM and PSNR, but scarcely on
FID. In most cases, the utilisation of the frequency loss has a posi-
tive impact on reconstruction quality metrics – both SSIM/PSNR
and FID.

For SwinMR (PI), the utilisation of perceptual loss tends to
slightly decrease SSIM and PSNR, but substantially decreases the
FID (PFP vs PF; PP vs P). For SwinMR (nPI), the utilisation of percep-
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tual loss tends to achieve a better FID but scarcely change SSIM and
PSNR (PFP vs PF; PP vs P). In most cases, the utilisation of the per-
ceptual loss has a positive impact on FID, but a negative impact on
SSIM/PSNR when using multi-channel data.
3.9. Downstream task experiments: brain segmentation experiments
on BraTS17 dataset

In this experiment, we performed a downstream task using a
reconstructed MR image, in order to measure the reconstruction
quality. Specifically, we chose an open-access multi-modalities
brain tumour segmentation network3 [73] for the downstream task

https://github.com/Mehrdad-Noori/Brain-Tumor-Segmentation


Fig. 17. Samples of the ablation experiment on the loss function using Gaussian 1D 30% mask. PFP: pixel-wise, frequency and perceptual loss; PP: pixel-wise and perceptual
loss; PF: pixel-wise and frequency loss; P: only pixel-wise loss. Row 1: Reconstructed MR images by SwinMR (nPI) and zero-filled MR images (ZF); Row 2: Edge information of
reconstructed MR images by SwinMR (nPI) and edge information of ZF; Row 3: Absolute differences (10�) between reconstructed MR images by SwinMR (nPI) and ground
truth MR images (GT), and absolute differences (10�) between ZF and GT; Row 4: Reconstructed MR images by SwinMR (PI) and GT; Row 5: Edge information of
reconstructed MR images by SwinMR (PI) and edge information of GT; Row 6: Absolute differences (10�) between reconstructed MR images by SwinMR (PI) and GT, and the
Gaussian 1D 30% mask.
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experiments. This segmentation network adopted a U-Net [62] based
architecture with the utilisation of residual blocks and strided con-
volution downsampling compared to the vanilla U-Net. In addition,
this segmentation network also employed the Squeeze-and-
Excitation Block [74] on concatenated multi-level features for chan-
nel attention mechanism.
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The segmentation network was trained on the BraTS17 dataset
(four modalities are required including FLAIR, T1, T1CE and T2).
Then, we trained four SwinMR weights using BraTS17 FLAIR, T1,
T1CE and T2 data, respectively. After that, segmentation tasks were
conducted on GT MR images, SwinMR reconstructed MR images
and ZF MR images directly using the pre-trained segmentation net-



Table 4
Quantitative results of reconstructed images by SwinMR (Recon) and zero-filled images (ZF) on BraTS17 dataset (mean (std)). PSNR: Peak signal-to-noise ratio; SSIM: Structural
similarity index; FID: Fréchet inception distance. G1D10%: Gaussian 1D 10% mask; G1D30%: Gaussian 1D 30% mask.

Mask Metrics Recon

FLAIR T1 T1CE T2

G1D10% PSNR 30.07 (1.99) 33.80 (2.30) 33.80 (1.84) 32.20 (1.81)
SSIM 0.751 (0.043) 0.760 (0.046) 0.797 (0.049) 0.745 (0.039)
FID 38.02 32.97 31.46 21.84

G1D30% PSNR 37.97 (2.42) 41.08 (3.36) 42.29 (2.12) 38.37 (2.02)
SSIM 0.942 (0.013) 0.953 (0.012) 0.953 (0.015) 0.937 (0.016)
FID 5.94 4.80 4.39 8.95

Mask Metrics ZF

FLAIR T1 T1CE T2

G1D10% PSNR 23.87 (1.64) 25.92 (1.48) 25.92 (1.70) 23.92 (1.79)
SSIM 0.388 (0.070) 0.414 (0.061) 0.414 (0.068) 0.431 (0.057)
FID 225.70 234.52 227.51 219.09

G1D30% PSNR 28.74 (1.78) 28.82 (1.60) 30.60 (1.82) 29.46 (2.01)
SSIM 0.597 (0.046) 0.602 (0.051) 0.602 (0.051) 0.632 (0.038)
FID 91.18 100.98 106.28 85.49
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work. Ideally, the segmentation score of reconstructed images and
GT images should be as closer as possible.

Table 4 shows the result of SwinMR trained with BraTS17 FLAIR,
T1, T1CE and T2 respectively. Fig. 18 displays the samples of the
reconstruction of different modalities. Tables 5 and 6 show the
IoU and Dice score of the segmentation task. Fig. 19 displays the
sample of the segmentation task.

According to Tables 5 and 6, the IoU and Dice score of recon-
structed MR images are improved compared with ZF MR images
and much closer to the score of GT MR images. According to the
Mann–Whitney Test, the IoU and Dice score distributions of the
reconstructed MR images using the Gaussian 1D 30% mask are
not significantly different from the distributions of the GT MR
images (p > 0:05).

4. Discussion

In this work, a novel Swin transformer based model, i.e.,
SwinMR, for fast MRI reconstruction has been proposed. Most
existing deep learning based image restoration methods, including
MRI reconstruction approaches, are based on CNNs. The convolu-
tion is a very effective feature extractor but lacks long-range
dependency. The receptive field of CNNs is limited by the size of
the kernel and the depth of the network. To tackle this problem,
researchers have developed transformers based image restoration
methods that have been originally used for solving NLP tasks.
The core of the transformer is MSA, which has global sensitivity.
In MSA operation, each patch can link with any other patches in
the whole image space but also aggravates the computational
burden.

However, we have believed that in MRI reconstruction, the
MSA, which is operated in the whole image space, is redundant
and not necessary. It is not difficult to understand that in NLP tasks
the first and the last words may have a strong connection in a sen-
tence. However, this may not be applicable in CV tasks. Visual ele-
ments (e.g., pixels) in CV tasks can vary substantially in scale
unlike language elements (e.g., word tokens) in NLP tasks [36].
Since in most cases, for example, the top-left corner patch has no
relationship with the bottom-right corner patch within an image.
Moreover, for MRI reconstruction, the biggest difficulty is the
recovery of detailed information and texture information. Focusing
too much on global information and ignoring the detailed (local)
information may make the image smoother and lose more details.
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The utilisation of a Swin transformer can achieve a trade-off for CV
tasks. In Swin transformer, operations are conducted in shifted
windows instead of the whole images. It has a larger receptive field
compared to CNNs but is not overly concerned with global infor-
mation. This is the reason why we have developed a Swin trans-
former for MRI reconstruction.

To evaluate our proposed methods, several comparison experi-
ments and ablation studies have been conducted. In this study, we
have compared our proposed SwinMR with benchmark MRI recon-
struction methods. The results in Table 1 have demonstrated that
our SwinMR has achieved the highest SSIM/PSNR and lowest FID
compared to CNN-based and GAN-based models. From Fig. 4, we
have shown clearly that our SwinMR has obtained better recon-
struction quality, especially in the zoom-in area, where the details
of the cerebellum have been well-preserved.

In this study, we have also compared SwinMR (PI) that has been
trained with multi-channel brain data with SwinMR (nPI) that has
been trained with single-channel brain data. The results have led to
a similar conclusion in our previous study [56], where FID of the
model trained with multi-channel data has been better compared
to the model trained with single-channel data, and the SSIM/PSNR
has shown the opposite (i.e., SSIM/PSNR: nPI > PI; FID: PI < nPI).
This phenomenon can also be observed in the subsequent ablation
experiments. From Fig. 4, we can find that the reconstructed
images of SwinMR (PI) have shown more details and texture infor-
mation, but the reconstructed images of SwinMR (nPI) have shown
smoother.

The experimental results have demonstrated that the three
metrics that compared PI and nPI gave different answers. We have
speculated that this might be due to the different principles of
these metrics. PSNR is a classic metric based on per-pixel compar-
isons, which are not able to reflect the structure information for
images. SSIM is a perceptual metric that measures structure simi-
larity. However, both of them are based on simple and shallow
functions and direct comparisons between images, which is insuf-
ficient to account for many nuances of human perception [71]. For
FID, the comparison is based on perception and performed on two
sets of images. Images are mapped to high-dimension representa-
tions by a pre-trained InceptionV3 network, which is well-related
to human visual perception. The SwinMR (PI) reconstructed images
have demonstrated more details and texture information. Even
though these details and texture information may not be so accu-
rate, they make the reconstructed images more visually similarwith



Fig. 18. Samples of reconstruction results for SwinMR on BraTS17 dataset including FLAIR, T1, T1CE and T2 MR images. Row 1: Ground truth MR images (GT); Row 2: Zero-
filled MR images (ZF) undersampled by Gaussian 1D 10% mask (G1D10%); Row 3: Reconstructed MR images undersampled by G1D10%; Row 4: ZF undersampled by Gaussian
1D 30% mask (G1D30%); Row 5: Reconstructed MR images undersampled by G1D30%.
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the ground truth images. However, the SwinMR (nPI) recon-
structed images have shown smoother in pixel-wise scale, at the
cost of less detail and texture information. Therefore, SwinMR
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(PI) have tended to have better FID and worse SSIM/PSNR com-
pared to SwinMR (nPI), due to the principle differences of the eval-
uation methods.



Table 5
Intersection over union (IoU) of the segmentation experiment (median/mean [Q1,Q3]). q: p < 0:05; qq: p < 0:01 (compared with GT by Mann–Whitney Test). GT: ground truth
MR images; Recon: reconstructed MR images by SwinMR; ZF: undersampled zero-filled MR images. G1D10%: Gaussian 1D 10% mask; G1D30%: Gaussian 1D 30% mask. WT:Whole
tumour; TC: Enhancing tumour; ET: Tumour core.

IoU GT Recon ZF

G1D10% WT 0.930/0.924 [0.900,0.954] 0.898/0.899 [0.868,0.940]qq 0.838/0.836 [0.795,0.881]qq

TC 0.821/0.771 [0.726,0.903] 0.758/0.722 [0.661,0.890]qq 0.617/0.539 [0.393,0.733]qq

ET 0.772/0.735 [0.625,0.889] 0.740/0.652 [0.471,0.846]qq 0.570/0.527 [0.336,0.694]qq

G1D30% WT 0.930/0.924 [0.900,0.954] 0.924/0.921 [0.895,0.953] 0.897/0.897 [0.862,0.945]qq

TC 0.821/0.771 [0.726,0.903] 0.811/0.766 [0.719,0.904] 0.763/0.728 [0.669,0.895]qq

ET 0.772/0.735 [0.625,0.889] 0.770/0.725 [0.616,0.883] 0.748/0.697 [0.573,0.859]qq

Table 6
Dice score of the segmentation experiment (median/mean [Q1,Q3]). q: p < 0:05; qq: p < 0:01 (compared with GT by Mann–Whitney Test). GT: ground truth MR images; Recon:
reconstructed MR images by SwinMR; ZF: undersampled zero-filled MR images. G1D10%: Gaussian 1D 10% mask; G1D30%: Gaussian 1D 30% mask. WT: Whole tumour; TC:
Enhancing tumour; ET: Tumour core.

Dice GT Recon ZF

G1D10% WT 0.968/0.965 [0.952,0.981] 0.950/0.950 [0.933,0.974]qq 0.916/0.914 [0.892,0.940]qq

TC 0.904/0.857 [0.845,0.951] 0.863/0.819 [0.800,0.944]qq 0.767/0.653 [0.566,0.847]qq

ET 0.874/0.835 [0.777,0.941] 0.852/0.766 [0.640,0.917]qq 0.725/0.665 [0.503,0.820]qq

G1D30% WT 0.968/0.965 [0.952,0.981] 0.964/0.963 [0.948,0.980] 0.949/0.949 [0.930,0.975]qq

TC 0.904/0.857 [0.845,0.951] 0.897/0.854 [0.838,0.951] 0.868/0.826 [0.803,0.947]qq

ET 0.874/0.835 [0.777,0.941] 0.871/0.827 [0.765,0.939] 0.857/0.808 [0.729,0.925]qq

Fig. 19. Samples of segmentation results for SwinMR on the BraTS17 dataset. Col 1: Segmentation reference; Col 2: Segmentation prediction using GT images; Col 3:
Segmentation prediction using zero-filled MR images (ZF) undersampled by Gaussian 1D 10% mask (G1D10%); Col 4: Segmentation prediction using reconstructed MR images
undersampled by G1D10%; Col 5: Segmentation prediction using ZF undersampled by Gaussian 1D 30% mask (G1D30%); Col 6: Segmentation prediction using reconstructed
MR images undersampled by G1D30%. Blue area: Whole tumour (WT); Red area: Enhancing tumour (ET); Green area: Tumour core (TC).
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From Table 1, we can find a common problem of transformer-
based methods, which is the higher computational cost compared
to other CNN-based and GAN-based methods. Eq. (20) have shown
that the computational complexity is proportional to the HW of the
input of (S)W-MSA. The time shown in Table 1 has been the infer-
ence time, where the original height and weight have been treated
as H andW (256� 256 here). For training, randomly cropping have
been applied to ease the long processing time.

Experiments using different undersampling masks with various
noise levels have demonstrated that our proposed method SwinMR
have shown superiority to DAGAN in all the tests. The evaluation
metrics change as expected when the condition changes (different
masks and noise levels).

Ablation studies on the patch number and the channel number
have demonstrated that reconstruction quality has been improved
as the patch number has been increased and has gradually been
saturated, according to Fig. 13(A) and (C). However, according to
Eq. (20), the computational complexity also has been increased
as the patch number has been increased. As a trade-off, we have
set the patch number to 96. Beyond our expectations, the changing
of channel number has not been positively correlated with the
evaluation metrics in this experiment, according to Fig. 13(B) and
(D). We have assumed that the evaluation metrics have saturated
in the range of channel number in this experiment. Empirically,
we have set the channel number to 180 according to the default
setting of SwinIR.

Ablation studies on different loss functions have been con-
ducted. As expected, the utilisation of the pixel-wise loss and the
frequency loss has mainly constrained the fidelity of reconstruc-
tion, and the utilisation of perceptual VGG loss has focused on per-
ception, which has been well-related to the human visual system.
Therefore, the utilisation of frequency loss has had a positive
impact on SSIM and PSNR, which has been more sensitive to the
fidelity of reconstruction. The utilisation of perceptual loss has
had a positive impact on FID, which has been based on perception.

There are still some limitations of our work. First, in the (S)W-
MSA operation, the size of windows is fixed. Inspired by Google-
Net, multi-scale windows could be incorporated and results from
different scales could be merged in the (S)W-MSA. Second, the
heavy computational cost is still an obstacle to the development
of transformers. The improvement that transformers bring is at
the sacrifice of increased computational cost. A lightweight trans-
former model could be a potential future research direction.
5. Conclusion

In this work, we have developed the SwinMR, a novel parallel
imaging coupled Swin transformer-based model for fast multi-
channel MRI reconstruction. The proposed method has outper-
formed other benchmark CNN-based and GAN-based MRI recon-
struction methods. It has also shown excellent robustness using
different undersampling trajectories with various noises.
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