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Summary

� Climate change and pathogen outbreaks are the two major causes of decline in Mediter-

ranean holm oak trees (Quercus ilex L. subsp. ballota (Desf.) Samp.). Crown-level changes in

response to these stressful conditions have been widely documented but the responses of the

root systems remain unexplored. The effects of environmental stress over roots and its poten-

tial role during the declining process need to be evaluated.
� We aimed to study how key morphological and architectural root parameters and nonstruc-

tural carbohydrates of roots are affected along a holm oak health gradient (i.e. within healthy,

susceptible and declining trees).
� Holm oaks with different health statuses had different soil resource-uptake strategies. While

healthy and susceptible trees showed a conservative resource-uptake strategy independently

of soil nutrient availability, declining trees optimized soil resource acquisition by increasing the

phenotypic plasticity of their fine root system.
� This increase in fine root phenotypic plasticity in declining holm oaks represents an energy-

consuming strategy promoted to cope with the stress and at the expense of foliage mainte-

nance. Our study describes a potential feedback loop resulting from strong unprecedented

belowground stress that ultimately may lead to poor adaptation and tree death in the Spanish

dehesa.

Introduction

Tree root systems are key components maintaining the function-
ing and services of forests (Faucon et al., 2017; Freschet &
Roumet, 2017). On the one hand, they play an important role in
biogeochemical cycling by providing biomass input and mineral
nutrients to the soil, through root tissue turnover (Ruess et al.,
2003; Brunner & Godbold, 2007; McCormack et al., 2012), and
by determining soil structure and stability (Bardgett et al., 2014).
On the other hand, roots are also essential for plant fitness and
functioning as they are responsible for foraging and transporting
water and nutrients (Poorter & Ryser, 2015), providing physical
support and storing carbohydrates (Freschet et al., 2021b). How-
ever, biotic and abiotic factors determine how roots influence
plant and ecosystem functioning (Langley et al., 2006; Berendsen
et al., 2012; Bardgett et al., 2014). Investigating the potential
risks to which the tree root systems are subjected is thus funda-
mental for understanding overall ecosystem functioning and sta-
bility. In this regard, associations between root traits and

environmental factors make it possible to link root characteristics
to a particular process, determine the function of the trait, and
evaluate the impact of climate change over plant and ecosystem
functioning (Beidler et al., 2015; Faucon et al., 2017; Mara~n�on
et al., 2020).

Many biotic factors determine root functioning and functional
traits. For instance, mycorrhizal fungi or infection by pathogens
may affect root structure (i.e. morphology, architecture) and dif-
ferent aspects of plant physiology (i.e. resource uptake kinetic
change, accumulation of phenolic compounds, exudates; Ru�ız-
G�omez et al., 2015; Freschet et al., 2021a) while plant–plant
competition for soil resources may also modify root characteris-
tics (Gea-Izquierdo et al., 2009; Gazol et al., 2021). Also, the soil
matrix may strongly affect root functional traits. Contrasting
physicochemical soil properties such as texture, water availability,
nutrients and/or other factors may modify the architecture, mor-
phology and physiology of the roots (Makita et al., 2011;
Alameda & Villar, 2012; Trubat et al., 2012). These modifica-
tions represent strategies to optimize the acquisition of resources
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when soil environmental conditions become challenging (Bard-
gett et al., 2014). For instance, root branching may increase in
response to soil nutrient hotspots (Mou et al., 2013; Eissenstat
et al., 2015; Freschet et al., 2021b), or root diameter and/or
length may be altered by soil compaction (Alameda & Villar,
2012) and water availability (Cubera et al., 2012; Brunner et al.,
2015). Thus, in response to spatiotemporal soil heterogeneity,
roots may exhibit phenotypic plasticity (i.e. different phenotypes)
by reflecting differences in their morphology, architecture and/or
physiological traits, which result from the interaction between
the genotype and the environment (Arnold et al., 2019). This
phenotypic plasticity allows roots to maintain their functioning
(i.e. resource acquisition) efficiently under challenging environ-
mental conditions. Given that soils are characterized by high spa-
tial heterogeneity, the characterization of the soil properties is
critical to capture the variability of intraspecific root functional
traits and their link to root functioning (Kumordzi et al., 2019).
Although an increasing number of studies have recently focused
on root ecophysiology (i.e. root functional traits, roots physiology
and soil interaction; Łakomy et al., 2019; Suseela et al., 2020;
Freschet et al., 2021b) many gaps remain in our understanding of
root functioning under field conditions.

The effects of climate on the functioning of the root systems
may have strong implications for plant fitness and ecosystem
functioning (Brunner et al., 2015; Freschet et al., 2021b). In
recent decades, large forested regions around the globe have
undergone drought- and heatwave-associated decline and mortal-
ity (Allen et al., 2010; Hartmann et al., 2018; Hammond et al.,
2022). In this regard, in the Mediterranean basin, even tree
species as holm oak (Quercus ilex L. subsp. ballota (Desf.) Samp.)
that are well adapted to the Mediterranean conditions have suf-
fered such increased decline (i.e. canopy defoliation; Brasier,
1996; Pe~nuelas et al., 2001; Carnicer et al., 2011) and mortality
since the 1980s. Holm oak decline is characterized by sudden tree
death or a gradual loss of foliage that affects the hole crown or
just some branches (Camilo-Alves et al., 2013). Furthermore,
holm oak decline has been associated with alterations in the phys-
iological (i.e. nonstructural carbohydrates) and structural traits of
roots (Villar-Salvador et al., 2004; Le�on et al., 2017). Identifying
root functional traits related to tree decline is crucial to define the
risk factors of tree mortality and understanding the mechanisms
underlying tree decline and death processes (Hartmann et al.,
2018).

Warmer and drier conditions are climate change-related fac-
tors with potential effects on root functional traits (Brunner et al.,
2015). Additionally, the presence of soil-borne pathogens such as
Phytophthora cinammonni Rands. exacerbates the impact of
drought events (Ruiz-G�omez et al., 2019). This pathogen is pre-
sent worldwide (Scott et al., 2013) and is responsible for fine root
rot in holm oak (Corcobado et al., 2013a,b, 2017; Ru�ız-G�omez
et al., 2015) and thus for diminishing the capacity of the trees to
uptake and transport water and essential nutrients to the crown
(J€onsson, 2006; Ruiz-G�omez et al., 2019). Once tree physiologi-
cal damage surpasses a threshold, tree death occurs (Anderegg &
Anderegg, 2013). However, before physiological damage is irre-
versible, trees trigger different strategies, simultaneously (i.e.

anatomical, physiological, chemical, biochemical and molecular),
to mitigate such environmental belowground stress. These adjust-
ments occur at the expense of changes in carbon (C) allocation to
belowground compartments (i.e. by increasing the root-to-shoot
ratio; Brunner & Godbold, 2007; Moser et al., 2015) and by
extending the taproots to the deep water level (Barbeta & Pe~nue-
las, 2017), mechanisms that will further affect the morphology
and physiology in the fine root system (Zadworny et al., 2021).
Such responses occur at the expense of different metabolic sub-
strates such as carbohydrates (Ritchie & Dunlap, 1980; Camis�on
et al., 2020). Nonetheless, water deprivation may lead to photo-
synthesis limitation and predispose the tree to car depletion and
deficiency (McDowell et al., 2008; Gessler et al., 2018) affecting
the availability of carbohydrates and consequently leaf flush
(Freschet et al., 2021b) and root growth (Ritchie & Dunlap,
1980; Willaume & Pag�es, 2006, 2011), and restricting the use of
carbohydrates to respiration and osmoregulation processes (Hart-
mann et al., 2013). Additionally, the availability of carbohy-
drates, critical for the development of the root systems, does not
depend solely on environmental conditions (i.e. drought) but also
on phenological events (i.e. the developmental stage of the tree
tissues; leaf flush, flowering or root growth; Willaume & Pag�es,
2006; Angay et al., 2014). An alternation between root and shoot
development has been observed for different Quercus species
(Reich et al., 1980; Willaume & Pag�es, 2006; Angay et al., 2014),
where maximum leaf expansion usually coincides with minimum
root growth and vice versa (Reich et al., 1980; Willaume &
Pag�es, 2006, 2011). In this context, it is essential to better under-
stand the energy costs associated with increased phenotypic plas-
ticity of the tree root system under high-stress conditions and its
implications for defoliation.

In this study, we focused on holm oak trees growing in Spanish
dehesas. The dehesas are human-shaped savannah-like ecosys-
tems, considered to be among the most threatened ecosystems in
Spain (Pulido et al., 2001; Herguido-Sevillano et al., 2017) as a
consequence of the interaction between pathogen outbreaks (i.e.
Phytophthora spp., Brasier, 1996; Solla et al., 2009; Mart�ın-
Garc�ıa et al., 2015; Corcobado et al., 2017), climate change-
related extreme events (i.e. drought and high temperatures; Allen
et al., 2015) and an intensive human management in recent
decades due to the abandonment of traditional uses of the dehesa.
Specifically, our study focused on investigating the fine root phe-
notypical plasticity and the potential trade-offs that may occur
between the aboveground (i.e. tree defoliation) and belowground
(i.e. roots) compartments of holm oaks. The morphology and
architecture of roots are determined by genetic factors, soil
physicochemical properties (Alameda & Villar, 2012; Giehl &
von Wir�en, 2014), biotic interactions (Chen et al., 2016), and
the availability and distribution patterns of carbohydrates
(Ritchie & Dunlap, 1980). The hypotheses of this study are:
stress caused by summer drought and Phytophthora on the below-
ground tree compartment leads to potential changes in the
resource uptake strategy of fine roots in holm oak trees through
alterations in their morphology and architecture; and changes in
the resource-uptake capacity of fine roots imply shifts in non-
structural carbohydrate resource allocation (i.e. NSC). In other
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words, the improvement of soil resource acquisition may be at
the expense of maintaining the photosynthetic capacity of the tree
and may lead to crown defoliation.

Materials and Methods

Study sites and experimental design

The study was performed in nine dehesas, characterized by a low
tree canopy cover (10–25%). These dehesas are situated in south-
west Spain (Supporting Information Fig. S1) and were selected
based on a previous study (Corcobado, 2013) in which the inter-
action between drought and P. cinnamomi was identified as the
main cause of holm oak decline. Further details on the criteria
that were used to select the dehesas may be found in Encinas-
Valero et al. (2022). The selected dehesas are traditionally used
for livestock rearing and grazing, the estimated density of cattle
being of 0.4 units ha�1 yr�1. The pH of the soil varies from 4 to
7.7. The climate is Mediterranean, being characterized by hot
and dry summers and mild winters. Mean monthly temperatures
vary from 6.9� 0.6°C (January) to 25.0� 0.6°C (August),
while mean monthly precipitation varies from 29.8� 1.2 mm
(January) to 10.4� 2.1 mm (August) (CRU TS v.4; Harris et al.,
2020; reference period 2019).

In the nine dehesas, we selected 162 holm oak trees with a
mean diameter at breast height of 51.3� 1.0 cm and a mean
height of 8.4� 0.1 m, located in two sampling sites close to each
other: a healthy site, where only healthy (i.e. with no apparent
crown defoliation) holm oak trees (n = 6 per dehesa) were pre-
sent; and an unhealthy site, where nondefoliated (n = 6) and
defoliated (n = 6) trees were present (Fig. 1). These sampling sites
respond to the natural pattern of holm oak decline in dehesas
where healthy and unhealthy sites are spatially separated (Brasier,
1992). The a priori visual classification of the health status was
later examined by using a three-step protocol. Step 1: crown
defoliation of each holm oak was estimated considering the per-
centage of the total area occupied by the defoliated branches
(without leaves) relative to the total crown area of the tree. We
used images taken 20 m from the trunks and 1.65 m above the
ground that were then analysed using the IMAGEJ software (1.52p;
Ferreira & Rasband, 2019; http://rsbweb.nih.gov/ij/). Step 2: to
further characterize the health status of each holm oak, we

measured Chla fluorescence induction, pigments and photopro-
tective compounds (i.e. chlorophylls, carotenoids and toco-
pherols, up to now ‘leaf traits’) on fully expanded leaves
randomly collected at c. 3 m height. The leaf traits used are early
stress markers (Esteban et al., 2015; Fenollosa & Munn�e-Bosch,
2018) that indicate damage at the leaf physiological level and pre-
cede the defoliation process. Further details of step 2 may be
found in Encinas-Valero et al. (2022). Step 3: redundancy analy-
ses (RDA; Fig. S2) using the leaf traits from step 2 were run.
Based on RDA of leaf stress markers, we classified the selected
holm oak trees into the three health statuses (Fig. 1): healthy,
nondefoliated holm oak trees growing in healthy sites and that
were characterized by a lower rate of early stress markers in their
leaf traits in comparison to the trees from the unhealthy sites (i.e.
both nondefoliated and defoliated); susceptible, holm oak trees
growing in the unhealthy sites characterized by low defoliation
rates (< 10% crown defoliation) and a higher rate of early stress
markers in comparison to healthy trees; and declining, holm oak
trees growing in unhealthy sites characterized by > 10% crown
defoliation and a higher rate of early stress markers in comparison
to healthy trees.

Root and soil sampling

Our target was to collect the shallowest roots of each of the 162
holm oaks. We found a high variability regarding the depth
where we could actually collect the roots. This is because the
roots of holm oaks in dehesas are found below the roots of the
herbaceous compartment, which reach very variable depths
(Moreno et al., 2005). We hence defined a sampling protocol
that consisted of digging until we were able to collect a represen-
tative number of roots sufficient to conduct all our proposed
analyses (including nondestructive and destructive analyses, such
as NSC). The average sampling depth was 15 cm and generally
did not exceed 30 cm depth (most holm oak fine roots, responsi-
ble for nutrient uptake, are found in the first 30 cm; Canadell
et al., 1992). No significant differences in sample collection depth
were found among the health statuses (P = 0.7, data not shown).
To account for the spatial heterogeneity, the roots were sampled
from three random points around the trunks and at a distance of
1 m from them. The three subsamples were then pooled into a
single composite sample per each holm oak tree. Soil samples

Fig. 1 Depiction of the health statuses of the
holm oak trees and soil nutrient content in
each site (i.e. healthy and unhealthy). In
detail, the health status is represented by the
crown defoliation (blue circle) and the leaf
physiology (red circles) (obtained by RDA1,
Supporting Information Fig. S2) of the trees.
The size of each circle is proportional to the
mean crown defoliation and the physiological
stress of leaves (group centroid position in
RDA1). The soil nutrient content is
represented by horizons, in accordance with
Table 1, and a thicker soil horizon indicates
higher nutrient content.
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from the vicinity of the sampled roots were collected following
the same protocol. Both roots and soil samples were immediately
stored in a portable fridge and maintained at 4°C until they were
transported to the laboratory. In the laboratory, soil and root
samples were separated into different subsamples to perform dif-
ferent analyses. Soil samples were dried at room temperature (c.
20°C), sieved using a 2 mm mesh size and stored in darkness for
further analyses. Root samples were gently washed using deion-
ized water to remove the attached residual soil particles and dried,
using filter paper. Five to 15 sampled root fragments from each
holm oak were then photographed, at a constant distance of
30 cm using a DSLR camera in automatic mode (Eos 1200D;
Canon, Amstelveen, the Netherlands), to further characterize
their morphology and architecture. Finally, we separated these
roots into fine (< 2 mm) and coarse (≥ 2 mm), using a digital
caliper. Then, we oven-dried all these roots at 60°C for 48 h and
subsequently ground them, using a ball mill (MM400; Retsch,
D€usseldorf, Germany), until we obtained a fine powder. To
avoid rehydration, all ground samples were stored at low humid-
ity conditions (i.e. with silica gel in hermetic bags) until further
analyses.

Assessment of soil nutrient variables

The soil organic carbon (i.e. org. C) content was determined
using the dichromate oxidation method described by Walkley &
Black (1934) and modified by Yeomans & Bremner (1988). The
nitrogen (i.e. tot. N) and phosphorus (i.e. tot. P) contents were
determined based on the Kjeldahl digestion method (Radojevic
et al., 1999). Results were expressed as mg of org. C, tot. N or
tot. P per 100 mg of soil (%). Ammonium determination was
performed based on the modified Berthelot reaction (Krom,
1980; Searle, 1984), while the nitrate and nitrite contents were
determined following the cadmium reduction method (Navone,
1964; Walinga et al., 1989). The phosphate soil content was
determined following the ammonium-heptamolybdate and
potassium antimony oxide tartrate reaction in an acidic medium,
using a phosphate solution to form the antimony-phospho-
molybdate complex (Boltz & Mellon, 1948), while the potassium
soil content was determined at 776 nm by aspirating the sample
within a flame (Richards, 1954). Ammonium, nitrate, nitrite,
phosphate and potassium results were expressed as lg per g of
soil. Finally, the pH of the soil samples was measured through
the saturated soil paste method (Kalra, 1995).

Fine root morphological and architectural assessment

All root images were analysed using the image analysis software
SMARTROOT (Lobet et al., 2015), a freeware based on IMAGEJ
(Ferreira & Rasband, 2019). Specifically, each sampled root frag-
ment was measured using the semiautomatic mode of the
SMARTROOT software. The length, surface, volume, diameter and
insertion angle of each component of the sampled root fragments
were measured. In total, 11 757 root components were measured.
These roots were categorized using the following diameter-based
classification: fine roots, including roots < 0.5 mm in diameter

(class 1), roots 0.5–1 mm in diameter (class 2), roots 1–1.5 mm
in diameter (class 3) and roots 1.5–2 mm in diameter (class 4);
and coarse roots (≥ 2 mm in diameter). To finally assess the root
morphology and architecture of each of the 162 holm oak trees,
five parameters were obtained: fine root percentage (FR, %), cal-
culated as the sum of the lengths of the first four classes relative
to the sum of the lengths of all the root components (including
fine and coarse roots) from the same sample; fine root branching
ratio (FRB), calculated as the average of the sum of the ratios
between consecutive diameter classes; class 1 : class 2 (ratio
I) + class 2 : class 3 (ratio II) + class 3 : class 4 (ratio III) (Chen
et al., 2016). This allowed us to estimate the abundance of fine
root components relative to thicker fine root components. As our
purpose was to obtain a value that summarizes as much as possi-
ble the structure of the fine roots, we averaged the three ratios
explained above as in Altaf et al. (2013). Insertion angle (IA,
degrees) was calculated as the mean insertion angle of each of the
root components; fine root diameter (FRD, cm) (L�opez et al.,
2001) was calculated as the mean diameter of the first four diam-
eter classes; and fine root length (FRL, cm) was quantified as the
mean length of the first four diameter classes.

Nonstructural carbohydrate measurements

For all fine (< 2 mm) and coarse (≥ 2 mm) sampled roots, non-
structural carbohydrate pools (i.e. glucose, fructose, sucrose and
starch) were quantified as described in Mariem et al. (2020).
Briefly, 25 mg of ground root samples was treated with 0.5 ml of
100% ethanol and 0.5 ml of 80% ethanol. These samples were
heated in a thermomixer (70°C, 90 min, 1100 rpm) and then
centrifuged. The resulting supernatant fractions were used to
determine soluble sugars (i.e. sucrose, glucose, fructose), using
an ion chromatography system (ICS-3000 Dionex; Thermo
Scientific, Waltham, MA, USA), after previous sample dilution
with water. The starch content was determined in the pellet by
adding KOH (0.2M) and adjusting the pH with acetic acid.
The extractions were performed by using a kit that contained
amyloglucosidase (R-Biopharm AG, Darmstadt, Germany).
The absorbance was measured at 340 nm using a spectropho-
tometer. The different NSC forms were expressed as mg g�1

per dry weight (DW).

Data processing and statistical analyses

To obtain an integrated view of the soil conditions, we performed
RDAs using a matrix of data of soil variables including: org. C,
tot. N, tot. P, ammonium, nitrate, nitrite, phosphate, potassium
and pH (Fig. S3). This matrix was used as the response variable,
while the health status of the holm oak (i.e. healthy, susceptible
and declining) and the ‘dehesa’ (condition) were used as explana-
tory variables. For these analyses, we used the ‘rda’ function from
the VEGAN R package (Oksanen et al., 2020).

To define a single variable, we performed principal component
analysis (PCA) using all the analysed soil variables logarithmically
transformed. For this, we used the ‘prcomp’ function available in
the R base learning functions. Based on the obtained results
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(Fig. 2), axis 1 accounted for 48.4% of the variance and was thus
used in further analyses as the soil nutrient availability variable.

To test our two hypotheses, we performed two different sets of
linear mixed-effects models (LMEs) using the ‘lme’ function
available from the NLME R package (Pinheiro et al., 2020): LMEs
that included the health status (explanatory variable), and LMEs
that included an interaction between a continuous variable and
the health status (explanatory variables). The fixed effects of the
two sets of LMEs included the response and the explanatory vari-
ables, while for the random effect, we used ‘site’ (i.e. healthy and
unhealthy) nested within ‘dehesa’ to overcome the experimental
design limitation of the two separated sites. To calculate the coef-
ficients of the two sets of LMEs and thus to estimate the effects of
each explanatory variable, we ran an ANOVA type III test (avail-
able from the CAR R package; Fox & Weisberg, 2019) to deal
with the unbalanced design. When significant differences among
health statuses of trees were found, we ran a least-square means
test based on Tukey HSD, using the EMMEANS R package (Lenth,
2020). All reported LME coefficients were estimated based on
the restricted maximum likelihood method (REML). The residu-
als of the two sets of LMEs were checked for normality using the
quantile–quantile plot and the Kolmogorov–Smirnov test. The
overall fit of the LMEs was estimated using the pseudo-R2 (R2p;
Nakagawa et al., 2017) whose values represent the coefficient of
determination based on the likelihood-ratio test (‘r.squaredLR’
function from the MUMIN R package; Barton, 2020).

For our first hypothesis we used the first set of LMEs to look
for differences between the health statuses of trees in soil variables
(i.e. org. C, tot. N, tot. P, ammonium, nitrate, nitrite, phosphate,
potassium and pH, Table 1) and in the morphology and architec-
ture of roots (i.e. FR, FRB, IA, FRD, FRL). Additionally, a sec-
ond set of LMEs was used to test for the effects of soil nutrient

availability (i.e. axis 1 of the PCA), health status and their inter-
action with root morphology and architecture (Table 2; Fig. 3).
For each of the morphological and architectural root parameters
that responded significantly to the interaction, a phenotypic plas-
ticity index that ranged from zero to one was calculated (Fig. 3).
Specifically, we extracted the regression coefficients of the models
(Arnold et al., 2019) and used them to predict values at both ends
of the soil nutrient availability gradient (n = 1000). For that, we
considered the confidence intervals calculated by the LME to pre-
dict minimum and maximum values. We finally determined this
phenotypic plasticity index by calculating the difference between
the minimum and maximum values and dividing the obtained
result by the maximum value (Valladares et al., 2006). We then
performed one-way ANOVAs (i.e. using the ‘t1way’ function
from the WRS2 package; Mair & Wilcox, 2018), using the
trimmed means, to test for significant differences in terms of phe-
notypic plasticity index among health statuses. When we found
significant differences between health statuses, we performed
post-hoc tests using the ‘lincon’ function from the WRS2 package
(Mair & Wilcox, 2018). Finally, to represent them graphically,
we calculated a mean phenotypic plasticity index for each health
status.

For our second hypothesis, a first set of LMEs was used to look
for differences in NSC fractions among the health statuses
(Fig. 4). Additionally, a second set of LMEs was used to test for
the effect of the NSC fractions (i.e. NSC, starch and soluble sug-
ars), health status and their interaction with the parameters of
root morphology and architecture (Table S1; Fig. 5). Finally, to
evaluate a possible above–belowground trade-off, the tree foliage
(the inverse of tree defoliation, see ‘Study sites and experimental
design’ in the Materials and Methods section) was divided by
FRB, FRD and FRL, separately. We performed LMEs using the

Fig. 2 Results of the principal component
analysis (PCAs) run to reduce the number of
soil variables and define a single variable (i.e.
soil nutrient availability). The soil variables
considered were org. C, tot. N., tot. P,
ammonium, nitrate, nitrite, phosphate,
potassium and pH. Holm oak trees are
marked in blue (healthy trees), yellow
(susceptible trees) and red (declining trees).
Arrows indicate the contribution of the soil
variables on each axis.
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three different foliage : root parameter ratios (response variable)
and soil nutrient availability, health status and its interaction (ex-
planatory variables) (Table S2; Fig. 6), and LMEs using the
foliage : root parameter ratios (response variable) and health sta-
tus (explanatory variable) (Fig. 6b,e).

All statistical analyses were performed in R (v.4.0.0; R Core
Team, 2020).

Results

Are root parameters affected by soil nutrient availability
and the health status of the holm oak trees?

Soil nutrients (i.e. nitrate, ammonium, phosphate, potassium)
and organic carbon content were affected by the health status of
trees (Table 1). In healthy sites, the soil under healthy trees
showed significantly higher values of nitrate (P < 0.01),

ammonium (P < 0.01), phosphate (P < 0.001), potassium
(P < 0.001) and org. C content (P < 0.05) compared to the soil
under susceptible and declining trees (Table 1; Fig. 1). The
results of this analysis were complemented by those obtained
from RDA, which showed a significant effect of the health status
of the trees (R2 = 0.03; P < 0.001) on the linear combination of
the soil variables (i.e. org. C, tot. N, tot. P, nitrite, nitrate,
ammonium, potassium, phosphate and pH). The explanatory
variables ‘dehesa’ and ‘health status’ explained 40% and 4% of
the total variation, respectively. On axis 1, nitrate had the highest
loading factor (�0.67). On axis 2, nitrate and potassium
explained most of the variation; these two variables had the high-
est (0.11) and the lowest (�0.16) loading factors on this axis,
respectively (Fig. S3).

On axis 1 of the PCA, created to integrate soil nutrient avail-
ability (i.e. the defined soil nutrient availability variable), tot. N
was the variable that had the highest loading factor (�0.39)

Table 1 Results of the linear mixed-effects models (LMEs) that tested our first hypothesis: soil pH, nutrients and stoichiometry as a function of the health
status (i.e. healthy, susceptible and declining) of holm oak trees.

Variable

Health status

P-valueHealthy Susceptible Declining

Soil pH 5.56� 0.09a 5.53� 0.06a 5.49� 0.07a ns
Soil nutrient
Nitrate (lg g�1) 6.11� 1.33a 1.81� 0.30b 1.62� 0.25b **
Nitrite (lg g�1) 0.12� 0.04a 0.06� 0.01a 0.05� 0.01a ns
Ammonium (lg g�1) 3.97� 0.81a 2.09� 0.20b 2.11� 0.23b **
Phosphate (lg g�1) 5.92� 1.2a 3.15� 0.72b 2.69� 0.60b ***
Potassium (lg g�1) 84.36� 9.31a 57.45� 7.65b 52.27� 4.38b ***
org. C (%) 2.60� 0.16a 2.13� 0.16b 2.36� 0.16b *
tot. N (%) 0.16� 0.01a 0.13� 0.01a 0.14� 0.01a ns
tot. P (%) 0.05� 0.004a 0.05� 0.007a 0.05� 0.005a ns
Soil stoichiometry
org. C. : tot. N 16.51� 0.66a 16.92� 0.61a 16.81� 0.69a ns
org. C. : tot. P 65.12� 5.02a 59.96� 3.68a 60.71� 4.84a ns
tot. N : tot. P 3.95� 0.22a 3.51� 0.19a 3.58� 0.22a ns

Mean� SE values (n = 49–59) are given for each analysed soil variable. Different letters indicate statistically significant differences (i.e. least-square means
based on Tukey HSD tests) between the different health status (healthy, susceptible and declining) of the holm oak trees. Asterisks indicate statistically sig-
nificant differences: *, P < 0.05; **, P < 0.01; ***, P < 0.001. Bold letters indicates significant differences among the health statuses. Abbreviations for root
functional parameters: org. C (%), soil organic carbon; tot. N, total nitrogen; tot. P, total phosphorus. ns, nonsignificant relationships.

Table 2 Effects of soil nutrient availability, health status (healthy, susceptible and declining) and their interaction on the morphology and architecture of the
parameters of the holm oak root.

Source of variation

FR (%) FRB IA (degrees) FRD (cm) FRL (cm)

df v2
P-
value df v2

P-
value df v2

P-
value df v2

P-
value df v2

P-
value

Intercept 1 248.7 0.000 1 1.991 0.158 1 3316 0.000 1 423.8 0.000 1 153.9 0.000
Soil nutrient availability 1 0.565 0.451 1 3.618 0.057 1 2.002 0.157 1 1.862 0.172 1 1.868 0.171
Health status 2 0.276 0.871 2 1.061 0.588 2 2.548 0.279 2 2.725 0.255 2 2.882 0.236
Soil nutrient availability9 Health
status

2 0.430 0.806 2 10.27 0.006 2 2.067 0.355 2 9.218 0.009 2 12.41 0.002

Abbreviations for roots functional parameters: FR (%), fine root percentage; FRB, fine root branching; IA (degrees), insertion angle; FRD (cm), fine root
diameter; FRL (cm), fine root length. df, degrees of freedom; v2, chi-square statistic. Values in bold indicate significant relationships based on ANOVA type
III tests performed along with the linear mixed-effects models (LMEs).
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(Fig. 2). On axis 2, org. C (loading factor = 0.43) and pH (load-
ing factor =�0.63) were the two soil variables that contributed
most. Hence, we used this axis to test our first hypothesis (i.e.
effects of soil nutrient availability and health status on the root

parameters). The results of the LME that tested our first hypothe-
sis indicated that the interaction between soil nutrient availability
and health status affected the morphology and architecture of the
fine roots (i.e. FRB, FRD, FRL) of holm oak trees (Table 2;

(a)

(b) (c)

(d)

(e) (f)

(g) (h)

Fig. 3 Results of linear mixed-effects models
showing, on the one hand, how the fine root
parameters of the holm oak trees respond as
a function of soil nutrient availability, health
status and their interaction (a, b, d, e, g) and,
on the other, how the phenotypic plasticity
index varies across health statuses (i.e. when
significant effects of the health status are
found) (c, f, h). FR (%), fine root percentage;
FRB, fine root branching; IA (degrees),
insertion angle; FRD (cm), fine root diameter;
FRL (cm), fine root length. The soil nutrient
availability variable was derived from axis 1
of the PCA (Fig. 2). This component was
multiplied by �1 to facilitate comprehension.
Solid lines represent the trends of each root
parameter along the gradient of soil nutrient
availability (i.e. fitted LME values) as a
function of health status. The shaded areas
represent the 95% confidence intervals. The
Rp

2 or fraction of variation explained by the
model was calculated according to
Nakagawa et al. (2017). The phenotypic
plasticity, calculated for each health status as
described in ‘Data processing and statistical
analyses’ in the Materials and Methods
section, is represented by bar plots
(mean� SE). Different letters indicate
significant differences (P < 0.05) according to
the multiple pairwise comparisons test.
Colourless figures (a, d) show nonsignificant
LME results.
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Fig. 3b,e,g). Specifically, declining trees showed lower FRB values
at low soil nutrient availability and higher FRB values at high soil
nutrient availability than susceptible and healthy trees (Fig. 3b).
Regarding FRD, declining trees showed higher FRD values

under conditions of lower soil nutrient availability and lower
FRD values under conditions of higher soil nutrient availability
in comparison to susceptible and healthy trees (Fig. 3e). Finally,
regarding FRL, declining trees presented longer fine roots under

(a) (b) (c)

(d) (e) (f)

Fig. 4 Total nonstructural carbohydrates (NSC), starch and soluble sugars for fine and coarse roots as a function of health status (healthy, susceptible and
declining holm oak trees): that is, total NSC (sum of starch and soluble sugars; a, d), starch (b, e) and soluble sugars (sum of sucrose, fructose and glucose,
marked from darker to brighter colours; c, f). Each bar indicates the mean� SE of each health status (healthy, n = 54–33; susceptible, n = 59–38; declining
n = 49–26). Different uppercase letters indicate statistically significant differences between health statuses of the holm oaks, while different lowercase
letters indicate statistically significant differences between the different fractions of the soluble sugars (least-square means based on Tukey HSD tests).
Closed points beside the letters indicate marginally significant differences.

(a) (b) (c)

Fig. 5 Linear mixed-effects models of the fine root branching ratio (FRB) as a function of nonstructural carbohydrate fractions, health status and their inter-
action. FRB was logarithmically transformed to account for normality as a function of NSC (a; mg g�1 DW), starch (b; mg g�1 DW) and soluble sugars (c;
mg g�1 DW) of fine roots. Different colours indicate different health statuses of the holm oak trees: that is, blue (healthy trees), yellow (susceptible trees)
and red (declining trees). Shaded areas represent the 95% confidence interval. The pseudo-R2 (Rp

2; i.e. the fraction of variation explained by the model)
was calculated according to Nakagawa et al. (2017).
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conditions of low soil nutrient availability and shorter fine roots
under conditions of high soil nutrient availability than suscepti-
ble and healthy trees (Fig. 3g). Additionally, FRB, FRD and FRL
showed a higher phenotypic plasticity in declining than in sus-
ceptible and healthy trees (Fig. 3c,f,h).

Does FRB response to tree resource allocation depend on
the trees’ health status?

NSC fractions did not differ as a function of health status, either
for fine or for coarse roots (Fig. 4a,c,d,e) except for fine root
starch and coarse root fructose contents (Fig. 4b,f). Specifically,
susceptible trees showed marginally higher fine root starch values
(28.4� 2.2) than declining trees (21.2� 1.7) (P < 0.1). Coarse
roots showed a significantly higher (P < 0.001) fructose content
in healthy (11.4� 2.0) and declining (11.5� 1.7) holm oaks
than in susceptible ones (5.3� 0.6) (Fig. 4f). These differences
were also reflected in the total soluble sugar content of the coarse
roots, which was significantly higher (P < 0.001) in healthy
(21.6� 2.6) and declining (20.4� 2.0) holm oaks than in sus-
ceptible ones (13.9� 0.9) (Fig. 4f).

The results of the LMEs that tested our second hypothesis
showed that FRB responded significantly to the interaction

between NSC, starch or soluble sugars and health status (Fig. 5;
Table S1). Specifically, we found that, at higher content of NSC
and soluble sugars, FRB in declining trees tended to increase in
contrast to healthy trees (Fig. 5a,c). Additionally, at higher con-
tent of starch, FRB of trees from the healthy site tended to
decrease in contrast to the trees from the unhealthy site (Fig. 5b).

Is there a trade-off in terms of foliage : root ratio
considering soil nutrient availability gradient and health
status?

The foliage : FRB and foliage : FRL ratios responded significantly
to the interaction between health status and soil nutrient avail-
ability, while the foliage : FRD ratio showed no response in this
regard (Fig. 6; Table S2). Specifically, the foliage : FRB ratio
decreased significantly, along the soil nutrient availability gradi-
ent, in declining holm oaks compared with healthy ones. Also,
susceptible holm oaks exhibited no response at all to the soil
nutrient availability gradient (Fig. 6a). In contrast to the
foliage : FRB ratio, the foliage : FRL ratio showed lower values at
low soil nutrient availability and higher values at high soil nutri-
ent availability in declining trees (Fig. 6d). Finally, regarding the
response of the foliage : FRB and foliage : FRL ratios to health

Fig. 6 Linear mixed-effects models of the
foliage : fine root parameter ratio as a
function of nutrient availability, health status
and its interaction. The fine root parameters
represented are fine root branching ratio
(FRB, a), fine root diameter (FRD, b) and fine
root length (FRL, c). Ratios were
logarithmically transformed to fulfil
assumptions. Soil nutrient availability is
derived from the principal component
analysis (PC1; Fig. 2) and multiplied by �1 to
facilitate comprehension. The health status of
the holm oak trees is marked in blue
(healthy), yellow (susceptible) and red
(declining) colours. Solid lines represent the
trend of each health status along soil nutrient
gradient (fitted values). The shaded area
represents the 95% confidence interval. Rp

2

(fraction of variation explained by the model)
was calculated according to Nakagawa et al.
(2017). The colourless interaction model
represents nonsignificant interactions. Note
that the foliage : root parameter ratios are
also represented by boxplots (b, e; only for
significant interactions). Box represents 50%
of the data (n = 43–53 trees per health
status) distribution between the first and the
third quartile; the central line represents the
median; and the upper and lower whiskers
cover the 1.5 interquartile range. Different
letters indicate significant differences
(P < 0.05) between the different health
statuses on a Tukey multiple pairwise
comparisons test.
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status, we found that declining holm oak trees showed signifi-
cantly lower values than healthy and susceptible holm oak trees
(P < 0.05, Fig. 6b,e ).

Discussion

Declining holm oak trees showed higher phenotypic
plasticity to soil nutrient availability in fine root parameters
than susceptible and healthy trees

The results support our first hypothesis that the stress level of the
tree (i.e. health status) determined soil resource uptake strategies
(Fig. 3) reflected in root morphological and architectural changes.
The weak response or absence of response in morphological and
architectural fine root parameters of healthy and susceptible holm
oak trees along the soil nutrient availability indicated a constant
conservative resource uptake strategy. By contrast, when soil
nutrient availability was high, declining holm oaks presented
more branched fine roots (FRB, Fig. 3b) and consequently a
higher number of fine root tips along with thinner (FRD, Fig. 3e)
and shorter fine roots (FRL, Fig. 3g) in comparison to healthy
and susceptible holm oaks. The responses observed in declining
trees may represent an acquisitive strategy (Jia et al., 2013) that
would enhance the effective absorbing local root surface and
favour soil resource acquisition (Pregitzer, 2008; Beidler et al.,
2015; Liese et al., 2017; Yahara et al., 2019; Wambsganss et al.,
2021) to counteract the potentially negative effects of drought,
defoliation (Gessler et al., 2017) and other indirect factors that
reduce soil nutrient uptake, such as the loss of ectomycorrhizal
fungi (Corcobado et al., 2015). By contrast, in declining trees
under low soil resource availability, few root branches and the
presence of thicker and longer fine roots (Fig. 3b,e,g) may favour
the exploration of a large volume of soil when resources are lim-
ited (Belsky, 1994; Beidler et al., 2015; Eissenstat et al., 2015;
Montagnoli et al., 2018). These characteristics are associated with
a more conservative resource uptake strategy (Liese et al., 2017;
Li et al., 2020).

Overall, three out of the five morphological and architectural
fine root parameters analysed here (i.e. FRB, FRD and FRL) were
found to be significantly affected by the interaction between soil
nutrient availability gradient and the health status of the trees.
The large changes in the fine root architecture and morphology
in declining trees along the soil nutrient availability revealed a
higher fine root phenotypic plasticity in comparison to suscepti-
ble and healthy trees (Fig. 3c,f,h). This high phenotypic plasticity
suggests that declining holm oaks develop their root systems to
cope with the stress to which they are subjected (i.e. drought and
root-rot by pathogens such as Phytophthora; Corcobado et al.,
2013a; Ruiz-G�omez et al., 2019). However, Mediterranean ever-
green holm oaks have been reported to exhibit low phenotypic
plasticity (Valladares et al., 2000, 2007; Baquedano et al., 2008).
Thus, we speculate that the phenotypic plasticity associated with
declining trees may not constitute an adaptive advantage (Stotz
et al., 2021) or an increase in fitness (Bonser, 2021) in the context
of the Spanish dehesas. While holm oak trees are well adapted to
the harsh environmental conditions where they have evolved

(Moreno & Cubera, 2008; Garc�ıa-Angulo et al., 2020), Spanish
dehesas are susceptible when subject to a sequence of different
stochastic disturbances, including unusually or extreme long
drought, clearing, ploughing, grazing and other anthropic land
use-related disturbances that expose holm oak to unpredictable
changes in water and nutrient availability (Plieninger, 2006). All
these factors may favour lower phenotypic plasticity and thus a
conservative resource-use strategy, such as the one we observed in
healthy and susceptible holm oak trees (Fig. 3c,f,h), even when
the resources are temporarily abundant, to avoid the development
of plant structures, too costly to maintain once conditions deteri-
orate (Baquedano et al., 2008). In addition, conservative root
growth in oaks has been reported to be more resilient to pathogen
infections and subsequent drought than a more acquisitive and
extensive root system (Biocca et al., 1993; Haavik et al., 2015).

Changes in the resource acquisition strategy of the fine
roots of declining trees imply a carbon cost

Our results indicated no carbon depletion during the onset of
holm oak decline, that is no changes in the overall NSC content
as a function of health status (Fig. 4a,d). This implies that carbon
availability was not affected by the health status of the holm oak
trees and fine roots were not subjected to potential carbon depri-
vation from photosynthesis limitation (Sanz-P�erez et al., 2009;
Zang et al., 2014) and/or from the belowground stressful condi-
tions imposed by root rot pathogens (P. cinnamomi ) and drought
(Corcobado et al., 2013a). Nonetheless, the higher values that we
found regarding the fructose content in the coarse roots of the
declining trees in comparison to susceptible trees (Fig. 4f) may
indicate an osmotic response to enhance water uptake (Dietze
et al., 2014; Brunner et al., 2015) or higher respiratory demands
(Hartmann & Trumbore, 2016). This is because NSCs are
involved in a wide variety of functions such as energy
metabolism, growth, osmoregulation, transport, storage, defences
and symbiotic interactions (Hartmann & Trumbore, 2016). In
addition, the marginally significant decrease of the starch content
in the fine roots of the declining holm oak trees in comparison
with the fine roots of the susceptible ones (Fig. 4b) may be caused
by the decrease of canopy carbon uptake, which in turn may be
caused by a decrease in foliage cover and hence in the capacity of
the trees to properly photosynthesize (Willaume & Pag�es, 2006,
2011; Peguero-Pina et al., 2018).

By analysing the FRB responses to the total NSC, starch and
soluble sugar contents (Fig. 5), we found that the total NSC and
soluble sugar contents may play an important role in increasing
the acquisitive capacity of the fine roots of the declining holm
oak trees, which partially confirms our second hypothesis. Specif-
ically, we found a positive relationship between FRB and total
NSC and between FRB and the soluble sugar content in declin-
ing holm oak trees in contrast to healthy and susceptible
trees (Fig. 5a,c). These results highlight the importance of overall
NSC and soluble sugars in development of the fine roots under
stressful conditions (Ritchie & Dunlap, 1980). This suggests that
under scenarios of severe drought stress induced by a pathogen,
root branching (FRB) in declining trees may come at the expense
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of a high energetic demand (i.e. NSC and soluble sugars) (Ritchie
& Dunlap, 1980; Zadworny et al., 2021) to optimize resource
acquisition (Dewar et al., 1994; Montagnoli et al., 2018). How-
ever, we cannot rule out the possibility that this positive relation-
ship between FRB and overall NSC or soluble sugars may also be
explained by the increase in carbon cost associated with the
mechanisms of defence against Phytophthora (J€onsson, 2006). It
has been reported that the severity of Phytophthora may increase
at high soil nutrient availability (mainly organic matter and
nitrate; Broadbent & Baker, 1974; J€onsson, 2006; Corcobado
et al., 2013b). Moreover, high values of overall NSC and soluble
sugars in secondary fine roots as a result of an acquisitive strategy
(declining trees, Fig. 5) have been associated with the success of
Phytophthora spp. infection in oak roots (Angay et al., 2014).

Trade-offs between foliage maintenance and root
exploration strategies as drivers of health status

It has been reported that the maintenance costs of leaves and
roots increase under soil stressful conditions (Laureano et al.,
2013, 2016). Under these adverse environmental conditions, we
observed that declining trees presented a high percentage of
crown defoliation (Fig. 1; Encinas-Valero et al., 2022). The
observed trade-off between NSC investment in fine root branch-
ing associated with defoliation (Fig. 6) further confirms our sec-
ond hypothesis. Hence, we speculate that in such a demanding
environment, where roots are affected by drought and pathogen
infection, a shift in holm oak allocation of carbohydrates takes
place to maintain a root system architecture and morphology that
enhance tree resource acquisition capacity. These changes occur
at the expense of maintaining foliage, which results in tree defoli-
ation (Fig. 6a,d). While our results are more qualitative than
quantitative (neither fine root nor leaf biomass were measured),
they are consistent with previous studies which showed that a
greater root investment at the expense of leaf biomass takes place
under drought conditions (Dewar et al., 1994; Jacobs et al., 2009;
Moser et al., 2015; Ru�ız-G�omez et al., 2018), during dry seasons
(Montagnoli et al., 2018) and when an infestation of soil-borne
pathogens occurs (Le�on et al., 2017; Łakomy et al., 2019; Vivas
et al., 2021). Hence, an alternative explanation of phenotypic
plasticity could be a potential feedback loop ultimately resulting
in tree death that may consist of shifts in the allocation of carbo-
hydrates towards maintaining root functioning at the expense of
foliage to cope with stressful conditions (i.e. drought and root rot
pathogens). This response is expressed in declining trees, whereas
healthy and susceptible trees, not affected by root pathogens (i.e.
absent or less virulent), might not suffer enough stress to trigger
this root response and negative feedback loop. This would addi-
tionally explain why healthy and susceptible trees exhibited low
phenotypic plasticity.

Final remarks and conclusions

Our study provides new insights into the mechanisms that
underlie decline in holm oak trees growing under conditions of
drought and root rot. Our findings suggest that belowground

stress and substantial reduction in the ability of trees to access
soil resources determine the architecture and morphology of the
root system. To cope with these stressful conditions, a shift in
tree NSC allocation is expected to occur to enhance the ability
of the radical system to acquire key soil resources at the expense
of foliage maintenance, and this ultimately leads to tree death.
Hence, climate change, land use, soil resource variability and
root rot by pathogens in Spanish dehesas revealed the lack of
adaptation of holm oaks in these representative ecosystems of
southern Europe. The study further points to the roots as
essential elements to define holm oak health, and how roots
adapt or not to a changing and harsh environment, and deter-
mine holm oak survival in these representative Mediterranean
systems. Since dehesas represent a sustainable model of exten-
sive livestock farming, further and urgent research is needed
with a focus on how unpredictable environmental conditions
can elicit adaptive responses in holm oak roots. A long-term
monitoring study that assesses survival rates of trees (i.e. mainly
trees with the highest and lowest root phenotypic plasticity)
may elucidate whether root responses increase survival chances
or lead to tree death. Identification of the resilient phenotypes
may lead to the implementation of local breeding programmes
with the objetive of propagating those individuals capable of
coping with the current climatic and biotic environmental chal-
lenges faced by dehesa ecosystems. Furthermore, a parallel
quantitative assessment of the differences in microbial commu-
nity structure and functions associated with tree health may
help to understand which plant–soil interaction mechanisms are
involved in the resistance/vulnerability of holm oak to the envi-
ronmental stressors under study.
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