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Whether Drp1 is self-sufficient for mitochondrial fission
remains disputed (1, 2). Roy and Pucadyil (3) assert that a
lethal combination of Drp1 oxidation and phototoxicity led
to failed membrane fission in our assay system (1). While
we acknowledge that unresolved differences in our in vitro
assays could explain the discrepancy, we rule out Drp1 oxi-
dation and phototoxicity as relevant issues. Here, we argue
that alterations in Drp1 behavior and the reaction micro-
environment may be the cause.

1) Dithiothreitol (DTT) was present in our Drp1 buffers as
stated (1, 4, 5). Cys oxidation, therefore, is unlikely.

2) Under the same conditions, even in the presence of an oxy-
gen scavenger (OS), the fission efficiency was zero for our
N-terminally tagged Drp1 (N-Drp1), while being 82 ± 12% for
a C-terminally tagged Drp1 construct (Drp1-C) comparable
to Kamerkar et al.’s (2) (Fig. 1). Susceptibility to photooxida-
tion should remain the same for both constructs. Photo-
toxicity hence cannot explain the observed functional
differences.

3) We demonstrate robust membrane constriction with
N-Drp1 both with (Fig. 1) and without OS (1), indicating
that neither Drp1 helical self-assembly nor GTPase activity
is affected. By contrast, Roy and Pucadyil (3) do not detect
comparable membrane constriction using our Drp1 con-
struct under our purported conditions. Furthermore, in
Kamerkar et al. (2), a GTPase-inactive K38A Drp1 mutant
incapable of fission in vivo mediates residual fission
in vitro. Thus, we believe that the assay system used by
Pucadyil et al. (2, 3) may be biased toward fission.

4) We summarize other methodological differences that
warrant further investigation to resolve this controversy
and better understand Drp1 physiology:

i) Effect of OS agents: We use n-propyl gallate (nPG),
specific for peroxyl radical scavenging on lipid surfa-
ces (6, 7) (Fig. 1), whereas Roy and Pucadyil (3) use the
enzymatic glucose oxidase/catalase system. The level of
photoprotection afforded by these two disparate OS sys-
tems at membranes remains to be assessed. Besides,
the potential effect of these OS mixture enzymes and
reagents on Drp1 and membrane properties should be
considered (8–10). Crucially, under our conditions (1)
(Fig. 1), we observe robust GTP-dependent membrane
constriction irrespective of the presence of nPG, indicat-
ing no effect on Drp1 self-assembly.

Fig. 1. Gain of function by Drp1-C. (A) Relative cardiolipin (CL)-stimulated GTPase activities of 0.5 μM N-Drp1 and Drp1-C on 25 mol % CL-containing
liposomes as performed in our published study (1). (B) Time sequence of GTP-dependent remodeling of freely suspended lipid nanotubes (NT) upon addi-
tion of 0.5 μM unlabeled N-Drp1 or Drp1-C as performed in our published study (1). Assay buffer contained 1 mM DTT and 0.5 mM nPG final. Membrane
composition was 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), bovine heart CL, and 1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (RhPE) at 39.5:35:25:0.5 mol % (similar results were obtained with a DOPC:CL:RhPE
74.5:25:0.5 mol % mixture). Tube radii ranged from 5 to 35 nm. White arrows point to sites of NT scission. RhPE fluorescence is observed. Pseudocolor is used
for clarity.
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ii) Effect of protein tag: Kamerkar et al. (2) found
that a widely used N-terminally green fluorescent
protein–tagged Drp1 construct fully capable of sup-
porting mitochondrial fission in vivo was incapable
of mediating membrane fission in vitro. In contrast, a
C-terminally tagged Drp1 construct with drastically
reduced GTPase activity was found to disrupt mem-
branes (2). We observe a similar effect of tag position
on Drp1 activity (Fig. 1). Whether this fission reaction
reflects Drp1 function in vivo (potentially mimicking
C terminus targeted effectors) or is simply an in vitro
artifact remains to be determined.

iii) Other factors: Other differences include Pucadyil and
coworkers’ use of polyethylene glycol, a known protein
crowder (11), to support membrane nanotubes and
assay our N-Drp1. While Roy and Pucadyil claim to uti-
lize “free-standing” tubes to assay their Drp1 construct,
the environment of these templates was not described,
precluding any meaningful comparison to ours.
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