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Abstract. In this work we study the effect of several covariates X on a censored
response variable 7" with unknown probability distribution. A semiparametric model is
proposed to consider situations where the functional form of the effect of one or more
covariates is unknown. We provide its estimation procedure and, in addition, a bootstrap
technique to make inference on the parameters. An application with a real dataset is
presented, as well as some simulation results, to demonstrate the good behavior of the
proposed estimation process and to analyze the effect of the censorship. This new model

has an important application field in reliability, survival or lifetime data analysis.
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1. Introduction: Traditional Methodologies

In survival, duration or reliability studies, it is of interest to analyze the length of time
spent until some particular event happens (e. g. death or failure). This type of studies
is very common in fields such as Medicine, Engineering or Economics. The analysis of

duration data involves working with data with some special characteristics:

(i) Censorship, since at the end of the study the complete duration of some of the obser-

vations is unknown.

(ii) Asymmetric distributions, usually presenting a positive asymmetry, which implies that
the assumption of a normal distribution is not adequate. Thus, we have to consider
other more appropriate distributions such as, for example, the Weibull, exponential

or Gamma distributions.

As a result, the traditional methods applied in standard problems in Statistics cannot
be used. In order to solve this issue and taking into account the special characteristics
of this kind of data, several specific methodologies, suitable for these data, have been
developed.

Let T be a random variable measuring the time until some event happens, that is,
the duration variable, and let X represent the relevant covariates considered to explain 7.
There are two big classes of regression models that analyze the dependence between X and
T. The proportional hazards models (Cox, 1972) and the accelerated failure time models
(see, e.g., Lawless, 1982).

In the Cox model, we have the following specification for the hazard function

Aty z) = Xo(t)h(x, B),
where h(x, 3) is usually considered as exp(xz3) and Ag(t) is known as the baseline hazard
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function. Thus, the effect of the covariates in this model is multiplicative on the baseline
hazard. The advantage of this model, and the main reason for its extensive use, is the pos-
sibility to estimate the parameters of interest without any assumption on the distribution
of the duration variable. That is, there are no parametric restrictions on the functional
form of the baseline hazard function. However, the assumption of a proportional hazard
function for the different individuals is very restrictive, and, in some cases, this propor-
tionality is not verified by the data. Therefore, for these cases, this model should not be
used. The estimation of this model can be carried out using the partial likelihood function
(Cox, 1975).

The other important class of models is the accelerated failure time models. In these

models, the hazard function is modelled as
At,z) = Xo(t - h(z, B))h(z, B).

Here, we have the multiplicative effect on the baseline hazard and a direct effect on
the duration accelerating or decelerating the pass to another stage (e.g., failure or death).
In addition, if we take h(x, 3) = exp(—z[3), we can rewrite the model considering a direct

relation between the duration and the covariates. That is,
log(T) =z + e.

Usually, the estimation of this model is carried out assuming a distribution for the
duration and maximizing the corresponding likelihood function, where the contribution
of a censored observation is given by the survival function and the contribution of an
uncensored one given by the density function.

Only two parametric models, the Weibull regression model and, as a particular case,
the exponential regression model, can be considered within these two classes of traditional

duration regression models.



The rest of the paper is outlined as follows. In Section 2, we present a flexible alternative
for the traditional methodology. An illustration of this method is given in Section 3. In
Section 4, we propose a new model, a censored partial regression model, more flexible
than the one presented in Section 2 and provide the details for its estimation procedure.
Section 5 contains a new proposal to make inference in the censored partial regression
model. In Section 6, the new methodology is illustrated with an application to a real
dataset. Section 7 provides some simulation results to demonstrate the good behavior of
the proposed estimation process and Section 8 presents some discussion about the methods

proposed here.

2. A Flexible Alternative Methodology

Stute (1993) presents a new methodology for regression with censored data which re-
quires very general hypotheses and where the estimators can be obtained using weighted
least squares.

We now briefly describe this methodology. Let us assume that Ti,...,7T, are inde-
pendent observations from some unknown distribution function F' and, because of the
censoring, not all of the T’s are available. That is, rather than observing T}, we observe

Y; = HllH(Ti, Cz)a 52 = {0’ 1f TZ > Cz ’

where C1,...,C, are the values for the censoring variable ', which is independent of
the duration variable 7', and ¢; is the indicator for the censoring variable. In addition,
X; represents the k-dimensional vector of covariates for the ¢-th individual. The relation

between the covariates and the duration is then given by

T; = X;B+¢ with E[62|Xz] = 0. (1)



The estimator of 3 can be obtained by minimizing
Z VVM[Y—(Z) - Xi/B]Qa

where Y is the 2-th ordered value of the observed response variable Y and W;, are the

Kaplan-Meier weights. These weights can be calculated using the expression

_ . 55
) . n—j b

where F), is a Kaplan-Meier estimator (Kaplan and Meier, 1958) of the distribution function
F. These weights can also be calculated using the redistribute to the right algorithm
presented by Efron (1967). This algorithm can be described in the following steps: (i) put
in order the observed duration variable; (ii) give the same weight to all observations; (iii)
take the smallest observation and, if it is a censored observation, assign a zero weight to it
and distribute its weight among the rest of larger observations. However, if the observation
is not censored, it keeps the weight it had been assigned. Finally, step (iv) indicates to
repeat this process to all observations starting with the smallest one and ending with the
largest one.

In this way, the estimator for 3 is given by
B=XTWwXx)"'xTwy,

where Y = (Y, ..., Y(n))T, W is a diagonal matrix with the Kaplan-Meier weights on its
main diagonal and X = [XI, X7, ... XT]T is the design matrix or matrix of covariates.
Stute (1993) studies the consistency of this estimator, and Stute (1996a) its asymptotic
normal distribution.

Model (1) can be considered within the class of accelerated failure time models. How-

ever, it allows the estimation without assuming any distribution for the duration and, in
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addition, it does not require the assumption of proportional hazard functions. Therefore,

this model is an interesting alternative to the previous ones.

3. Application: A First Approach to Study the Survival Time for AIDS

Patients

As an illustration of the methodology described above, we use a dataset that contains
information giving the survival time for AIDS diagnosed patients who lived in the Basque
Autonomous Community and the Autonomous Community of Navarra in Spain. We have
a sample of 461 patients diagnosed with AIDS from 1984 until December 31, 1990. The
duration variable under study measures the survival time for the patient from the illness
diagnosis time up to death or up to the end of the study (censored observations). Unlike
most of the research done in this area, which is centered on the study of the duration for
the incubation period, we are interested in the study of the duration of the last stage of
the illness. The evolution of the HIV virus has three stages. The first one is known as the
“pre-antibody” stage and it is the shortest one with a duration of only several months (ap-
proximately 50% of the patients generate antibodies two months after the infection date).
This stage goes from the infection date to the development of antibodies or seroconversion
point. During this period the patient is classified as seronegative. The second stage, the
“incubation” stage, is the largest one (approximately half of the infected people develop
the illness before 10 years). This period starts with the seroconversion and goes until the
diagnosis of AIDS. Along this period, the individual is classified as seropositive. Finally,
the third stage gives the survival time from the AIDS diagnosis time up to death or up to
the end of the study. This period starts when the individual develops some of the illnesses
classified into the ones related to AIDS.

As of December 31, 1992, there were 447 patients that had died and 14 patients that



had survived. Therefore, we have 14 censored observations.

In order to describe the survival time, we have several covariates which contain the
characteristics of the individuals: sex (Sex), age at diagnosis (Age), transmission category,
disease at AIDS diagnosis and the period of diagnosis (Period). The transmission category
is coded using five dummy variables: T-Sex, T-Drug, T-Blood, T-Moth-child and T-
Others, taking value one if the transmission via is the indicated, and zero otherwise.
The disease at AIDS diagnosis is coded using three dummy variables: Diseasel, takes
value one if the patient has been diagnosed with AIDS through an opportunistic infection;
Disease2, takes value one if the AIDS diagnosis is produced by a Kaposi’s sarkoma or some
lymphoma; and Disease3, takes value one if the patient has been diagnosed through an
HIV encephalopathy or a HIV wasting syndrome. Finally, the period of diagnosis (Period)
takes value one if the diagnosis took place after 1987. The last variable is used to capture
the effect of the introduction of the AZT treatment (that started its administration in the
middle of 1987) on the survival of the patients.

We want to study the effect of these explanatory variables on the survival time from the
moment of diagnosis, without assuming any distribution for the duration. In order to do
this, we have decided to use the flexible model in (1) with the logarithmic transformation of
the duration. Table 1 summarizes the most relevant results obtained for our dataset. The
standard deviations of the estimated coefficient (SDEV) are calculated using a jackknife
estimator. Stute (1996b) shows the consistency of this jackknife estimator for the variance.

Note that the age of the patient has a significant negative effect on the survival time of
the patient. That is, the older the patient is at the moment of diagnosis, the shorter the
length of his survival time is. Other relevant variable is the period of diagnosis. We find
out that patients whose diagnosis is posterior to 1987 have larger survival times. Thus,

this can be an indicator of a beneficial effect of the AZT treatment to lengthen the survival



time of the patients. The rest of the covariates are not significant to explain the survival
time of the patient. In addition we point out that the application of this methodology
gives us the same results obtained in a previous study (Orbe et al., 1996), where we used
the traditional methodologies described in Section 1. These same conclusions have been

obtained by other authors as reflected in a synthesis of results presented by Brookmeyer

and Gail (1993).

Table 1: Estimates of 3 for the parametric model

VARIABLE COEF SDEV

Constant 1.2574  0.4306
Sex 0.0579 0.1360
Period 0.2435 0.1226
Diseasel -0.0774  0.2266
Disease?2 -0.2002 0.2995
T-Sex -0.0554 0.2701
T-Drug 0.0106 0.2337
T-Blood 0.0816 0.3015
T-Moth-child 0.6459 0.5085
Age -0.0160 0.0069

In this model, we have tried to capture the effect of the introduction of the AZT
treatment using a dummy variable, which divides the period of study into two parts, after
and before 1987. We consider that this specification is quite restrictive and not very
flexible. It seems more logical to assume that this effect would be more gradual than the
one specified using a dummy variable. As a result of this, we propose to model this effect
nonparametrically; that is, without specifying any functional form for the relationship
between the period of diagnosis variable and the duration variable. In addition, this new
proposal allows us to study the total evolution of the diagnosis period effect on the duration

variable. The need to have a more flexible specification leads us to propose a new model,



the censored partial regression model, which will be described in the next section.

4. The Censored Partial Regression Model

This model generalizes model (1). Thus, our proposal extends considerably the appli-
cation field of the previous model without assuming any probability distribution for the
duration, without requiring proportionality of the hazard functions and modelling the di-
rect effect of the covariates on the duration. It allows us to model situations where we
do not know the functional form of the effect of one covariate on the response variable, or
situations where the assumption of a lineal dependence, or any other different one between
some covariate and the duration variable, is a restrictive assumption, or, even, it does not
make any sense. The proposed model is a semiparametric one; that is, it is a model where
the effect of the covariates can be separated in two components: a parametric one, as in
model (1), and a nonparametric one, where we do not specify a specific functional form
for the effect of the covariate on the duration. Taking this into account, we introduce a
smooth function A(-) to model the effect of some covariate R on the duration. Thus, the

censored partial regression model proposed can be written as

In TZ = XZ,B + h(T,) + €, (3)

where, again because of the censorship, we do not observe all the values of T, but instead
we observe the minimum variable (between the duration variable and the censoring one)
Y. This model is very general because we do not assume any distribution for the duration
or proportionality between the hazard functions.

In order to estimate model (3), we have to consider two main issues. On the one hand,
the goodness of the fit and, on the other hand, the smoothness of the proposed function

to model the effect of the covariate included in the nonparametric component. As for the



goodness of the fit, this is controlled through the sum of the weighted squared residuals
using the Kaplan-Meier weights, calculated as in (2). Thus, using these weights, we take
into account the existence of censored observations in the sample. As for the smoothness,
we measure it in the usual way using the integral of the square of second derivatives. This
can be handled by minimizing the following penalized weighted least squares expression

Zﬁ%&mnﬂ—Xﬁ—h@m2+a/h

=1

’ (7“)] L dr

The degree of smoothness is determined by «, the smoothing parameter. Large values
of a produce smoother curves, while smaller values produce more wiggly curves. When
a is close to zero, the penalty term becomes not relevant and the solution tends to an
interpolating one. However, when « is large enough, the penalty term dominates and,
thus, we obtain the weighted least squares solution.

Given a, the solution to the minimization problem described above is a smoothing cubic
spline function and, using some properties of these functions, the previous expression can

be rewritten as
(InY = X3 = Nh)"W(nY — X3 — Nh) + ah" Kb,

where h is the vector of values h; = h(r;) for j = 1,...,d, where d is the number of distinct
values of the covariate R, X is the design matrix, N is the incidence matrix which assigns
the respective value of the covariate R to each individual, W is a diagonal matrix with the
Kaplan-Meier weights on its main diagonal, InY = (InY(y),...,In Y(n))T and K is a matrix
obtained using the properties of the cubic spline function (for more details on splines see,
e.g., Green and Silverman, 1994).

Taking derivatives in the expression above with respect to 3 and h, and reordering the

terms leads us to obtain the next pair of simultaneous matrix equations
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XTWXB = XTW(lnY — Nk)  (a)

4
(NTWN +aK)h = NTW(nY — X3)  (b) (4)

The estimations of 5 and h can be obtained iterating between equations 4(a) and 4(b),
solving repeatedly for 8 and h, respectively, until convergence is achieved (i.e., using the
backfitting algorithm).

The complete estimation process can be described by the following steps:

Previous steps

e Step 1: Separate the repeated values of the response variable

e Step 2: Calculate the Kaplan-Meier estimator F, for the distribution function F
e Step 3: Calculate the Kaplan-Meier weights W,

e Step 4: Put the observed response variable Y in increasing order

e Step 5: Put in adequate order, with the ordered Y, the covariates on the parametric

component of the model (X) and the covariate of the nonparametric component (R)

e Step 6: Build the incidence matrix N
Backfitting

e Step 7: Obtain the initial estimated value of h (;LO) by applying ordinary least

squares between InY and N

o Step 8: Substitute A by iLo in 4(a) and obtain BO by weighted least squares using
the Kaplan-Meier weights

e Step 9: Substitute 3 by f in 4(b) and obtain the new estimation of h (}Azl) applying

a natural cubic spline smoother to the difference (InY — X 3)
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e Step 10: Go back to step 7 and continue until convergence is achieved

5. Inference Using Bootstrap Techniques

Once the estimation procedure is finished, we are interested in doing inference. In
this paper, we carry out this analysis using computational methods, to be more precise,
bootstrap resampling techniques. In order to do this, we have proposed a new procedure
to generate the bootstrap resamples for the case of random censorship and a heterogeneous
model. The bootstrap is relevant and its importance can be seen in the fact that it allows
us to study the properties of the estimators even for small samples.

If we review the literature on the bootstrap with censored observation, we can basically
find two different possibilities to obtain the bootstrap samples: proposed by Reid (1981)
and Efron (1981), respectively.

The procedure proposed by Efron (1981) consists in estimating, by Kaplan-Meier, the
distribution functions for the duration variable and for the censoring one, F, and G,,. Then,
using these estimated distribution functions, we generate one sample for the duration

*

variable, t7,...,t*, and another one for the censoring variable, ¢j,...,¢:. Finally, we

consider the following bootstrap resample:

1, iftr<e

y: = min{t:. ¢’ 6’.‘:{ L
yz {27 2}7 7 0’ lftz

On the other hand, the procedure proposed by Reid (1981) consists in estimating the
Kaplan-Meier estimator for the distribution function of the duration variable F, and, using
this, generate the bootstrap resample. Akritas (1986) showed that the procedure proposed
by Efron is better than the one considered by Reid.

However, these two resample generating methods were proposed to be applied in ho-

mogeneous models, that is, for models without covariates. In our case, we have covariates
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because we want to estimate the effect of these covariates on the duration. Thus, the
proposed resample procedures are not adequate for our case. However, the procedure of
Efron can still be valid if we assume that the censoring variable follows the same regression
model as the duration one. But, this assumption is very restrictive. In order to solve
this problem, we propose a new procedure to generate the bootstrap samples for this sort
of models. This procedure is very flexible because it does not assume any model for the
relationship between the censoring variable and the covariates.

The complete procedure to obtain the bootstrap estimations can be described as follows:
e Step 1: Estimate model (3) following the proposal described in Section 4

e Step 2: Obtain the residuals of the previously estimated model:

A

& =InYy — X:6— (Nh(r)); for i=1,...,n
o Step 3: Center the residuals

e Step 4: Obtain the bootstrap resample for the centered residuals €], ... €

n

e Step 5: Generate the bootstrap sample for the variable of interest doing model-based
boots-

trap
InT = X3+ (N]Az(r))z +e; for i=1,...,n,
e Step 6: Generate a vector of Bernoulli variables 6* where
P =1InT =Int:, X; =2;) =1 -=G(Int:"), for i=1,...,n,

and obtain the bootstrap indicator of censoring.
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e Step 7: Estimate model (3), for the bootstrap sample, using the same estimation
procedure as in Step 1. That is:
miny " W lIn Yy — X8 = h(r) +a [ ()] db.
=1
e Step 8: Go back to Step 4 and repeat the process M times (i.e., M bootstrap

samples are obtained).

In Step 6, we should have obtained the bootstrap resample for the censoring variable
and, then, comparing it with the bootstrap resample for the duration variable, obtain the
minimum variable and the bootstrap censoring indicator. However, for the estimation pro-
cess we only need the indicator of censoring and not the value of the censoring variable.
Therefore, using Step 6 we can obtain the bootstrap indicator of censoring without assum-
ing any relation between C' and X, which is less restrictive than the proposal of Efron.
In this step G denotes the distribution function of the censoring variable and, since it is
unknown, we use its Kaplan-Meier estimator, G,. In Step 7, and for each bootstrap repli-
cation, we have to obtain the estimates using the procedure presented in Section 4. The
value of M, in Step 8, depends on the objective of the study. If we want to estimate the
distribution of the estimators or to obtain confidence intervals, we need a large value, at
least M = 1000. However, if we are just interested in their standard deviations, far lower

values are sufficient. For more details about bootstrap procedures see, e.g., Davison and

Hinkley (1997) or Efron and Tibshirani (1993).

6. Application: A Flexible Model for Modelling the Survival Time in ATDS

Patients

In this section, we present the application of the new methodology proposed to the data

presented in Section 3. We estimate model (3) introducing in the parametric specification
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all of the covariates except the period of diagnosis, which is introduced in a nonparametric
term. Thus, we want to model the effect of this variable in a flexible way, to capture the
effect of the AZT treatment and, maybe, some other effects.

In order to do this, we build a new variable which indicates the period of diagnosis of
the illness for each patient. Thus, for patients diagnosed in the second quarter of 1984 this
variable takes value one and, for patients diagnosed in the last quarter of 1990, it takes
value twenty seven.

We estimate the model and, using the bootstrap techniques, calculate standard devi-
ations (SDEV) and confidence intervals (lower limit, LL, and upper limit, UL). We can
summarize the most relevant results obtained for our dataset: In Table 2, the results for
the parametric component of the model and, in Figure 1, the ones for the nonparametric

component.

Table 2: Estimates of § and 95% confidence intervals (Censored Partial Regression Model)

VARIABLE COEF SDEV LL UL

Constant 0.5266 0.4312 -0.3611 1.3357
Sex 0.0348 0.1425 -0.2501 0.3106
Diseasel -0.0154 0.2730 -0.5672 0.5080
Disease2 -0.0508 0.3339 -0.6882 0.6272
T-Sex -0.1201  0.2520 -0.6020 0.3610
T-Drug -0.0430 0.2174 -0.4722 0.3779
T-Blood 0.0702 0.2954 -0.4866 0.6971
T-Moth-child 0.3877 0.5577 -0.6330 1.5835
Age -0.0177 0.0067 -0.0313 -0.0052

With regard to the covariates introduced in the parametric component, as in the pre-
vious analysis shown in Section 3, the age of the patient has a negative significant effect
on his/her survival time. The rest of the covariates in the parametric component are not

significant to explain the survival time of the patient.
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As for the estimation of the nonparametric component, using this model, we have the
possibility of concluding that the effect of the period of diagnosis is not significant at the
beginning of the illness and, as time goes by, it has a significant and positive effect with
a clear acceleration, several quarters before the beginning of the administration of AZT
(the administration of this treatment started in the middle of 1987, i.e. r = 13). This
makes sense because patients whose diagnosis time was several quarters before starting the
administration of AZT also receive this treatment. Therefore, we can say that the introduc-
tion of AZT has a positive effect on the survival, increasing the survival time of patients.
This result agrees with the ones obtained in different works mentioned in Brookmeyer and
Gail (1993) as, for example, Lemp et al. (1990). As a main conclusion, we can say that

with this procedure we are able to detect the gradual effect of the administration of AZT.

Figure 1: Estimation and 95% confidence intervals for the function A
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Clearly, a dummy specification would not be adequate because the real effect changes pro-
gressively with time, and this cannot be captured using a dummy variable specification.
In addition, with this model, we can evaluate the survival time for patients diagnosed in
different periods and, thus, we can see the evolution of his/her survival time. In the first
quarters, the effect of the period of diagnosis on the survival time is small and, as time goes
by, this effect increases. This can be explained by the fact that AIDS was quite unknown
at the beginning and, then, became widely known in our society. As a result, the disease
was diagnosed earlier (i.e. as soon as it was developed by the patient). Then, we observe
a strong acceleration, increasing the survival time because of the introduction of AZT, as
pointed out above. Finally, we want to mention that the slight final drop is caused by the
data, because the distance from the last quarters to the end of 1992 (when we finish the
follow up of the patients) is not big enough to observe the complete durations in all the
cases and, therefore, the maximum reachable duration is smaller when we are approximat-
ing the last quarters available in the sample. If we had extended the follow up period of

the patients, this final drop would have not occurred.

7. Simulation Studies

The objective of this section is twofold. On the one hand, we want to verify the ability of
the proposed estimation process in the censored partial regression model. On the other, we
would like to analyze the effect of the censorship level on the estimation of the parametric
and nonparametric components. In order to do this, the study has been carried out using
different levels of censorship and different sample sizes.

We have generated a duration variable with log-normal probability distribution, follow-

ing the model
InT =2+ 1X; +3X, + ™% 4 ¢, with ee N(0,0 =0.5),
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where X; € UJ[0,3] and X, € U[0,1] are the explanatory variables, which after being
generated, are considered fixed. For the nonparametric component, we use the function

esinX 3

, a function with two peaks and one valley, where X3 has been obtained randomly
generating equally likely integer values, between 0 and 10. We have chosen this complicated
function to analyze the goodness of the fit of the proposed estimation process. For the
censoring variable, we have considered a variable, independent from the duration and from
the explanatory variables, and distributed as a uniform random variable (the interval for
this uniform variable changes with the required level of censorship). We consider three
levels of censorship, 10%, 20% and 33%, two different sample sizes, n = 100 and n = 200
and, for each combination, we generate 1000 samples.

The results for the parametric component are shown in Figures 2, 3, 4 and 5, presenting

the box-plots of 3 estimated coefficients.

Figure 2: Estimates for 3; (n = 100)
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Figure 4: Estimates for 8, (n = 100)
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Figure 5: Estimates for 83 (n = 200)
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Figures 2 and 3 show the box-plots of the 3 coefficient associated to the variable X,
for n = 100 and n = 200, respectively. In each figure, we have the results for the different
censorship levels considered, on the left box we have a 10% censoring level, on the middle
box, 20%, and on the right box, 33%. Figures 4 and 5 show the same information but for
the coefficient associated to the variable X5.

In order to do a better comparison, we present the estimated mean values and variances
for n = 100 (Table 3) and for n = 200 (Table 4).

To summarize the results for the estimation of the nonparametric component, we use

the following measurement error
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Table 3: 3; and 3, coefficients estimation (n=100)

P B2
Censoring level ~Mean Variance Mean Variance MSE (total)
10 % 0.9988 0.0039 2.9939 0.0393 0.0432
20 % 0.9977 0.0045 2.9935 0.0475 0.0521
33 % 0.9936 0.0061 2.9843 0.0625 0.0689

Table 4: 3, and 3; coefficients estimation (n=200)

2 B
Censoring level ~Mean Variance Mean Variance MSE (total)
10 % 0.9998 0.0018 3.0003 0.0171 0.0188
20 % 0.9998 0.0022  2.9989 0.0195 0.0217
33 % 0.9982 0.0030 2.9968 0.0262 0.0292

After calculating these mean errors we present them in the box-plots (one for each

censoring level) for n = 100 (Figure 6), and for n = 200 (Figure 7).

Figure 6: Mean errors for the nonparametric estimation (n=100)
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Figure 7: Mean errors for the nonparametric estimation (n=200)
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If we take a look at the information shown above, we can see that the proposed model
produces good estimates for both the parametric and nonparametric components.

As for the parametric component (Figures 2 to 5), we see that the median of the boxes
is located at the real value of the coefficient. The effect of the censoring, as expected, tends
to increase the variance of the estimations, reaching less precise estimates as the censoring
level increases. In addition and, also as expected, the estimation is better as the sample
size increases.

As for the nonparametric component the conclusions are similar when the censoring
level increases, the boxes are wider and they move up. Again, if we increase the sample

size the results improve substantially.
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8. Conclusions

In this paper we have proposed a new methodology to analyze a response variable and
the effect that some covariates have on it when we have censored samples. Our proposal is
based on a model that does not need to assume any distribution for the duration variable, or
the proportionality of the hazard functions for different individuals. In addition, we model
directly the effect of the covariates on the duration, instead of the conditional probability
to pass from one state (for example life) to a different one (for example death) at time t
conditioned on the event of having stayed in that state until t. It also allows us to model
situations where we do not know the functional form of the effect of one covariate on the
response variable.

We use bootstrap techniques to make inference on the estimators for the censored partial
regression model and, in order to do this, we have proposed a new bootstrap procedure
to obtain the bootstrap samples for heterogeneous models with random censorship. This
new procedure is a very general one because it does not assume any model for the relation
between the censoring mechanism and the covariates.

The simulation study indicates that the proposed procedure to estimate the censored
partial regression model produces good estimates for the parametric component and for
the nonparametric one, even in the case of a complicated function, as the one used in the
simulations.

We present an application of the proposed model with a real dataset where we analyze
the survival of AIDS diagnosed patients, concluding that the age of the patient and the
period of diagnosis are relevant factors to explain the survival time. We conclude indicating
that the partial censored regression model could be used to study duration data in a flexible

way in other different contexts such as, for example, Engineering or Economics.
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