
Bachelor Degree in Computer Engineering
Software Engineering

Thesis

SocialBook
A social network for sharing books built with

Flutter and Firebase

Author
Veselin Radoslavov Solenkov

Director
Mikel Larrea Alava

Contents

1. Introduction 5

2. Project Management Plan 7

2.1. Project’s aim . 7

2.2. Scope . 8

2.3. Planification . 10

2.4. Requirements .. 11

3. Architecture and design 13

3.1. Architecture . 13

3.2. Design . 21

4. Technologies 27

4.1. State of the art . 27

4.2. Flutter . 30

4.3. Firebase . 33

5. Implementation 35

5.1. Application setup . 35

5.2. Code development . 39

6. Testing 47

6.1. Users feedback . 47

6.2. Testing screens . 49

1

7. Monitoring and control 55

7.1. Scope management . 55

7.2. Time management . 55

8. Conclusions 57

8.1. Lessons learned . 57

8.2. Personal evaluation . 57

8.3. Future work . 58

Bibliography 59

2

List of Figures

Figures

1. Work Breakdown Structure of the project 9
2. System Architecture Diagram 13
3. Use Case Diagram 15
4. Sequence Diagram 17
5. Firestore Database collections diagram 20
6. Signup screen 21
7. Login screen 21
8. Profile screen 22
9. Feed screen 23
10. Search book screen 23
11. Create a post screen 24
12. Posting screen 24
13. Book/Post screen 25
14. Comments update screen 25
15. Flutter architecture 31
16. Flutter components 32
17. SocialBook Cloud Firestore Database 34
18. Realtime Database example 34
19. Flutter installation command 35
20. Flutter installation command -v 35
21. Flutter new project creation 36
22. SocialBook files 36
23. Location for build.gradle 37
24. Project package dependencies 38

3

List of Tables

Tables

1. Initial hour estimation table for each task 10
2. User Data Document 18
3. Book/Posts Data Document 19
4. Update Data Document 19
5. Login screen 49
6. Registration screen 50
7. Profile screen 51
8. Feed screen 52
9. Search book screen 52
10. Create a post screen 53
11. Book detail screen 54
12. Comment update screen 54
13. Estimation actual and deviation table for each task 56

List of Code Fragments

Code fragments

1. main.dart main() 39
2. main.dart class MyApp 40
3. login_screen.dart class LoginScreen 41
4. login_screen.dart widget BuildContext 42
5. signup_screen.dart Authmethods() 43
6. profile_screen.dart BoxDecoration() 43
7. feed_screen.dart MediaQuery 43
8. search_book_screen.dart SnackBar 44
9. add_post_screen.dart SimpleDialogOption 45

4

Chapter 1 - Introduction

To begin with, in this first chapter I’m going to explain the source of my motivation behind
the creation of SocialBook, the general idea of the project, and a brief introduction to the
technologies used for its development. The whereabouts concerning this particular project
are thoroughly explained in the following chapters.

The idea for the creation of this mobile app has its origins in the reprography area of the
Faculty of Informatics of EHU/UPV. As I was, there having some copies done, I heard how a
student in front of me was asking for a particular book on a subject I had already taken. Since
I had that particular book in my possession and did not give it much use after the end of the
subject, I spoke with him and we agreed that I will lend him the book for the rest of the
semester. He needed a copy of the book as soon as possible, thus he was very pleased with
the outcome because he wouldn't have to wait for its arrival. In order to return the favor he
asked if I needed any book that he had and fortunately, he did have one book that I really
wanted to read, so we made a trade that in the end benefited both of us.

That little experience made me think of how it would be possible for us to end up
interchanging books if it wasn’t for that accidental encounter. That is when the idea of
creating SocialBook came to my mind. A small social network dedicated to students that
study in the same area, with the goal of having a profile with books they have read and are
willing to lend to others or exchange for another one. Also, as a passionate reader, the idea
of being able to obtain more books in such a convenient manner and speak with other
students about them seemed a very positive practice.

To create an app capable of connecting many students, I opted for using two key relatively
new technologies: Firebase and Flutter. Google Firebase is a Google-backed application
development software that enables developers to develop iOS, Android and Web apps. It
provides a cloud-hosted NoSQL database that lets you store and sync between your users in
realtime, it is designed specifically with app scaling in mind, providing the users with security
and privacy and ensuring network resiliency.

Flutter is an open-source UI software development kit also developed by Google. Its first
stable launch was released on December 4, 2018 and since has been actively improved and
maintained. By allowing to create a native mobile application with only one codebase by
using just one programming language, called Dart, it fits perfectly the needs of the project.
An advantage that Flutter has is that it is built directly into the machine code, which
eliminates any performance bugs in the interpretation process, contrary to the approach of
most cross-platform frameworks.

The integration of these two tools, as both are property of Google and are meant to be used
in cooperation, is seamless and very convenient. The documentation available for them is
quite extensive, making it accessible for programmers to peek up and learn at a relatively
fast pace. Further explanations about the technologies and the development process can be
found in the chapters: Architecture and design (see chapter 3), Technologies (see chapter 4)
and Implementation (see chapter 5).

5

6

Chapter 2 - Project Management Plan

This chapter’s focus is on the project's aim, general and specific objectives, along with the
scope, as well as the organizational structure for the project (WBS), the minimum
requirements and the respective exclusions.

2.1 Project’s aim

Currently, there are some applications that offer users an environment in which they can
search for books and interact with others. The most well-known one is “Goodreads” , an
American social cataloguing website that allows individuals to search its large database of
books. Other examples are “The story graph” and “Booktrib” . However, none of them focus
on book trading in a specific area.

As it was mentioned in the previous chapter, the project intends to provide a tool to the
students that will permit them to share and find books that can be interchanged with each
other. To obtain such an application a couple of essential objectives have been priorly
established and in case that it is possible some additional ones have been also added. All
these objectives are listed as follows:

● Main objective:

○ Create a scalable social network native application for sharing books.

○ Obtain fast and smooth performance.

● Specific objectives:

○ Incorporate Firebase as a cloud-hosted NoSQL Database.

○ Document all the code written.

● Additional objectives:

○ Design a simple and pleasant user experience.

○ During development obtain feedback from university students and implement

additional features based on the recommendations.

● Optional objectives:

○ Upload application to play store.

○ Translate user interface in more languages.

7

2.2 Scope

The scope of this project is to meet the project’s main, specific and additional objectives.
Therefore, here are indicated all the specific tasks that need to be performed in order to
achieve the proper development of the project. These tasks are included in the Work
Breakdown Structure (see figure 1) and their description is as follows:

1. Management: this section refers to the essential tasks that need to be carried out for
the project to be properly executed, monitored and controlled.

1.1. Scope statement: outlines the entire project.
1.2. Planification: defines an estimation of the hours needed to complete each

task (see table 1).
1.3. Monitoring and control: tracks the project’s development and tasks

completion.
1.4. Requirements: identifies the requirements and possible future additions of

the project.

2. Product: all the tasks involved in development of the application.

2.1. Research: a study of the stare of the art and decisions around the overall
objective of the project.

2.2. Technologies: deciding on the technologies to be used and learning to
manage them.

2.2.1. Flutter.
2.2.2. Firebase.

2.3. Architecture:
2.3.1. Database: development of the database.
2.3.2. Design: define the components and communications between them.

2.4. Implementation:
2.4.1. Set up: first steps in creating the application.
2.4.2. Interfaces: explanation of the implementation of various components.

2.5. Testing:
2.5.1. User experience: Obtain feedback from users and implement changes.
2.5.2. Use cases: Test every use cases’ correct functionality.

3. Documentation: includes the development of this thesis and later the defence of the
project in front of the tribunal.
3.1. Thesis
3.2. Defence

8

Figure 1: Work Breakdown Structure of the project

9

2.3 Planification

Table 1: Initial hour estimation table for each task

10

2.4 Requirements

The requirements for the scope of the application are the following:

- Must run properly in iOS and Android.

- Must be integrated with Firebase.

- Code must be commented and well maintained.

- Performance must be very good, no errors or lag.

- Users must be able to at least:

- Create an account.

- Publish a book/post.

- Search for books.

- Leave a comment on books.

- Follow and unfollow users.

- See if books are available or not.

- See the format and theme of the books.

- Delete books/posts.

Due to the scope and time limitations the following aspects will be excluded from this
iteration of the project, but are to be taken into account for future iterations :

- Publish the application in iOS and Android shops.

- File management system for PDF book sharing.

- Addition of an administrator and professor/teacher roles.

- Translation to other languages.

11

12

Chapter 3 - Architecture and design

This chapter revolves around the user experience of the app and the sequence of actions a
user can experience, it also describes the architecture behind SocialBook and the data
models.

3.1 Architecture

Figure 2: System Architecture Diagram

The front end is visible to the users of the application (see figure 2). Users interact with the
interface and the requested data is sent to the database to be processed and given as a
response to the users on their screen, after getting data to the users queries from backend
(Firebase). SocialBook stores the user data that is created while logging in to the system,
creating book/post, adding comments and responses. Firebase helps in storing information,
can retrieve and display it to user, also involves authentication, storing files and
communication between users of the platform with the help of comments.

In this architecture, the app only consists of static content and assets, and all your dynamic
content and user data is stored and retrieved from Firebase with Cloud Firestore Realtime, a
cloud hosted NoSQL database. It manages realtime data in the database. So, it easily and
quickly exchanges the data to and from the database.

13

A use case diagram is used to identify and organise the requirements of the system. The use
case diagram below (see figure 3) describes the functional requirements of this application
from an end user’s view. It consists of the interactions between the user and system and
includes the main flow. The system boundary is defined around the use cases so that the
developer avoids scope creep. The diagram of the SocialBook application consists of:

- Actor: the user, an actor, can interact with the system to perform tasks. This user can
be either a registered on or an anonymous one.

- System Boundary: system boundary present around the use cases, represents the
entire system.

- Use case: these are the system functions with which users interact to perform
certain activities.

- Extend relation: this relation includes the optional behaviour or functionality of the
system.

- Invariant : a condition that must always be true throughout the use case in order to
be executed.

14

Figure 3: Use Case Diagram

15

A sequence diagram is an interaction diagram of how the operations are being carried out. It
models the high level of interactions between user and the system. The objects that are
involved are listed from the left side to the right (see figure 4). The messages are exchanged
between the diagrams to show the interaction among objects. It involves:

- An actor: the entity that interacts with the objects by sending messages to them.

- Lifeline: it presents the actor's participation during interaction. It activates when an

actor is performing an operation.

- Message: It is a message from the user of the system towards the system that invokes

certain functions to process their data and respond to them.

- Return Message: This is the response of the system in return to the message sent by

the user.

- The object: It represents the class or an object and how it will behave in the context

of a system.

The sequence diagram below describes the detailed user interaction with the system for
various use flows. One possible scenario of a sequence in which the data jumps from layer
to layer would be the following:

1. User A attempts to log in into the system with his email and password.

2. A call is made to firebase, which will verify whether the that is being served is stored

in the database.

3. Once the data is verified, the user A will be able to land on the profile page.

4. The user A searches for a specific book by its name.

5. Firebase retrieves the specific book and displays it to the user.

6. The user A can check the availability of the book.

7. The user A writes a comment on the book.

8. The message is stored in firebase and sent to the owner of the book, which is user B.

9. User B receives the messages in his updates page and replies to it.

10. User A and user B communicate via comments on the book and user B decides to

give the book to user A.

11. User B changes the availability status of the book to “taken”, which is all stored in

Firebase.

16

Figure 4: Sequence Diagram

17

All the information that user generates is stored in the Firebase Firestore Database, from
there the data is retrieved and displayed on screens. Data dictionary includes metadata,
which is data about data. It represents the name or the collection of the attributes being
used, their types and what are they used for, i.e. the description of attributes. Below are the
data dictionaries for collections present in Firestore (see table 2,3 and 4).

Field Type Description

User_uid Int Unique id given to each account holder

Bio String Description about the user

Username String Name of the account holder

Email String Email to log in to the account

Password String Password to log in to the account

Photo URL Pictorial representation of added data

Follower_uid String Unique id of follower followed user account

Table 2: User Data Document

18

Field Type Description

Description String Description about added book

Theme String Book belongs to which domain or category

Book Availability Boolean Book can be reserved by user or not

Post_id Int Unique id given to each posted book

Title String Title of book

Photo URL Cover of book

Date Published Date Date of creation of post

Comment String Comment on book by users

Table 3: Book/Posts Data Document

Field Type Description

CommentId Int Unique given to comments posted

Text String Comment on the post

Title String Username of user posted comment

Post_id Int Unique id given to each posted book

Date Published Date Date of posting of comment

postUser_Uid Int User id of user who comments

Table 4: Update Data Document

19

Firebase is a NoSQL database which is document-oriented. Thus, there are no tables and
rows or specified relations among them. The data store is in the form of documents, which
are then organized into collections. Each document in a collection has a unique random IDs
associated with it. If a document of a collection does not exist, then Firestore creates it. The
data reside inside the document is in the Jason format. The document includes the attributes
of their types in it.

The representation below (see figure 5) describes the SocialBook application data that
resides in Firestore and the collections with the name Users, Posts, and Update. User
collection all profile and login details in the document. Posts contain the book posted details
and the user who posted the books. While update collection contains all the chat and
comment data exchange among different users. Also, it contains the UIDs of the users that
chatted along with the dates on which the users commented on book posts.

Figure 5: Firestore Database collections diagram

20

3.2 Design

Figure 6: Signup screen Figure 7: Login screen

The signup screen built in SocialBook is simple in its visual aspects (see figure 6). The screen
holds a bright logo of the app. Then there is a circle avatar with image icon, to add user’s
profile image. There are four text fields below the circle avatar. The first one is for the user to
type username he pleases, afterwards is the email to be registered with in the app. A
password in the password text field and then at the end, filled up the text field of bio with
their experience or background. There is a button “Sign up”, below these text fields that the
user will click on upon entering all the required details necessary to create an account. If
user already have an account, then can click on the text button “Login” at the bottom of the
screen.

On the Login screen (see figure 7), firstly, there is once more the logo of the app including
also the app name “SOCIALBOOK”. After that, there are two text fields visible on the screen.
One for email and other for password. Users filled them with their credentials. Then, a

21

button is being placed below these text fields so that after entering correct and verified
credentials, the user will click on it to log in to the system. If a user is not registered into the
app, then will be able to sign up, into the app by clicking on the “Sign up” button at the
bottom of the screen.

Figure 8: Profile screen

Once logged in, the Profile screen is displayed (see figure 8). On the top the username is
being placed, after which below there is a circle avatar having a user profile picture shown
along with “number of books”, “followers” and “following” text and number is placed in
parallel. Below the profile picture, there is the bio of the user. Next there is a container in
which an image of all the users books/posts are being shown, upon clicking will reveal book
details. The images of the books are being blinked with the corner edges red and green. If
book is reserved or in use, then it won’t be available and the corner frame on the image will
turn red else green if book is available as shown in the image of profile screen.

At the bottom of the app, there is an app navigation bar. By clicking on each icon on the bar,
it will navigate the user to the different screens, it is also possible to navigate there through a
swipe gesture to the left and right.

22

Figure 9: Feed screen Figure 10: Search book screen

The feed screen (see figure 9) is accessed by click on the search icon in the button bar. This
screen contains a search bar on top where one can search other users. A book icon placed
parallel to the search bar, on clicking by the user, can lead to the book search page (see
figure 10). After that, picture containers are displayed. These are the primary image for the
book cover images posts, representing the books uploaded by different users. These book
images are clickable to view details of that particular book. Again, there is this navigation app
bar at the bottom of every page.

In the search book screen there is a “back arrow” to return to feed page, a text representing
name of the page as “Book search” and on top right corner of the page there is a profile icon.
In the centre of the page, a text box is placed to enter the desired book name to search and
then select the theme of the book by scrolling through the categories provided in the
drop-down. After that, click on the “search button” below to search for the book.

23

Figure 11: Create a post screen Figure 12: Posting screen

After clicking on the “plus icon” on the bottom navigation app bar, it will open into another
screen where a modal pop-up to show 3 clickable text options (see figure 11). In order to
create a post, one can, take a picture by using their camera or can click on “Choose from
Gallery”. If a user does not want to post a book, can choose “cancel” to discard their actions.

The head of create post screen (see figure 12) contains “back arrow” to return to feed page,
a text “Post to” and on top right corner of the page there is a text button named as “Post”. In
the centre of the page, a text box is placed to enter the title of the book to be posted, then a
text with a drop-down is displayed to select the format of the book. After that select from
drop down, about whether the book is currently available or not and then select the theme
of the book i.e., in which category that book lies in. After entering and selecting all the
relevant detail, the user can click on the post button in the top right corner so that the book
will be available to other users on the feed page and by the search functions.

24

Figure 13: Book/Post screen Figure 14: Comments update screen

After clicking on any book post on the feed page, it will direct the user to the detailed view
page of that selected book post (see figure 13). In the top left corner, a back arrow along
with text “Name of the book” is displayed. Then the image and name of the user who posted
it and a three dots menu in parallel on the right corner is placed. In case if, a user is viewing
his/her own book then the menu will show two options, a “delete” button and other is
“toggle to available or reserved” to show the availability of book but if other users view book
details the “three dots menu is not there” on the screen. Below the image, a chat icon is
placed so that a user can click to post a comment on the book. After that, book title
description and other details are written in text format. Comments can be viewed by clicking
on the text “view comments”. The day of posting is displayed at the end of the book
description.

The comments page includes the text “Comments Update” on the top of the page (see
figure 14). After which the comments details are visible on screen that include the book
title, the comment text, and the last update. These are the comments posted by a user
against different books he viewed and then commented upon. The user can click on them
and open the thread of that message and reply if wanted.

25

26

Chapter 4 - Technologies

In this chapter, four types of mobile app development technologies are described and
compared. Afterwards, Flutter and Firebase are more thoroughly explained.

4.1 State of the art

There are a number of different ways to build a mobile app and each one has a unique
approach and features. In order to choose the right one for creating this project four
different paths are analysed below.

4.1.1 Native apps

Applications that were made with one specific technology dedicated to a concrete platform
(Android or iOS) are called native apps. Each mobile operating system has its own languages
used for coding native apps. For Android mobile app development, the examples could be
Kotlin or Java. For iOS native mobile app solution would be Swift or Objective C.

Compared to other types of products, native apps offer more consistent performance and
are more reliable. Native apps allow for the use of the existing system resources provided by
the chosen platform in a very convenient manner.

Advantages:

● Very good functionality in an offline environment.
● UI components are custom to each platform, which boosts user experience.
● Has support for device APIs which means higher usability

Disadvantages:

● No reusable code, If a developer wants to create native apps both for Android and
iOS, he would have to develop two separate native apps which takes longer and is
more expensive to create than other methods.

● As users of different devices may be using different versions of the app, it makes it
difficult for the developers to maintain and offer support.

Some examples of native apps are the calculator, notes, camera and all the other built-in
applications that you get when you buy a device. Another example are the majority of
mobile games, since they all require very good performance and resource management.

27

4.1.2 Hybrid apps

Hybrid mobile app development is characterized by combining features of a native app and a
web app. That means we can build a hybrid mobile app using well-known languages and
frameworks, for example, JavaScript, HTML and CSS. Basically, it’s about mixing web and
mobile elements to quickly create a product available on different platforms.

The process of making hybrid apps consists of creating a backend codebase that will then be
covered with a native shell that allows them to be uploaded to Google Play or App Store.

Advantages:

● Maintenance is much easier because it’s based on web solutions – native ones are
much more complex when it comes to code.

● Lower development cost, especially when you make a hybrid app for many different
platforms.

● Adding new features to hybrid mobile apps is simple with one codebase.

Disadvantages:

● Complex apps won’t perform perfectly with this solution, more features slow it
down.

● Due to the fact that hybrid apps are essentially web-based, they don’t work without
the Internet connection.

Some of the most popular hybrid apps used nowadays are Instagram and Gmail.

4.1.3 Cross-platform apps

Might resemble hybrid development, but they are not the same. Cross-platform mobile
applications are using native elements to give the user great experience despite the device
they use. So they share the same codebase for all platforms, but they can have their own
respectful differences in UI.

A popular framework for this type of app is Flutter. Which utilises Dart programming
language and this gets compiled to ARM C/C++ library. Compiled apps provide better
performance than hybrid apps because the WebView wrapper is absent in this.

Advantages:

● Time and cost-effective thanks to developing both app versions at the same time.
● UI performance can be comparable to native apps because it is rendered with native

solutions.
● Reusability of code so we don’t have to create a separate base for each platform.

28

Disadvantages:

● Dependency on framework when it comes to hardware, operating system and UI
features.

● There’s a need to keep all the little differences between operating systems and the
hardware they run on, especially when it comes to implementing a complex interface
and features.

Three good examples of cross-platform apps are: Facebook, Skype and Slack.

4.1.4 Progressive web apps (PWA)

The main attribute of progressive web apps is running in a web browser, even though it gives
the user the native feeling. That means you can install the app on your device, you can use it
offline and it can send you push notifications. It can also use hardware features (camera,
GPS), but it is much easier on Android than on iOS.

Their progression is based on the user experience that is optimised for each platform. There
are no dedicated languages or frameworks for Progressive Web Apps. They can be done in
Angular or React. This type of app coding is most popular in e-commerce projects.

Advantages:

● They adapt to different screen sizes – great responsiveness.
● Interaction and navigation resembles native apps, so it is easy for the user to

understand how to use a PWA.
● No installation process needed.

Disadvantages:

● Limitations when it comes to hardware and operating system features.
● Usually battery consumption is higher.

Since consumption of visual content should be easy and available, Forbes uses this type of
technology for their main business news hub. Another example could be Uber.

4.1.5 Why Flutter

SocialBook is a social network and similarly to Facebook one of its objectives is to reach as
many users as possible and thus going with a framework that provides easy development for
all platforms is very efficient.

29

4.2 Flutter

Flutter was previously launched as a project named “Sky” and was only executable for
android. It came on Google’s radar and just a few months afterwards they bought it and
renamed it Flutter in 2015. They officially released the project to the public in may 2017 as
Flutter Alpha Release, which allowed users to create native applications for iOS and Android
platforms with only one code. Flutter uses Dart as a coding language, which is a very flexible
client-optimized language for developing fast apps.

The main focus of flutter are the following three main concepts:

1. Fast development.

Stateful hot reload allows changing code and in a moment, this changes can be
seen on the screen, without losing the state of the app and developers are able to fix
bugs, if appeared, in no time.

2. Expressive and Flexible UI

Flutter moves the widgets, rendering, gestures, and animation into the framework,
to give a complete control over every pixel on the screen to give flexibility to build
custom designs.

3. Native Apps for Android and IOS

Flutter apps follow platform conventions and interface details, such as icons, fonts,
scrolling, navigation, and more. That’s the reason why the apps built with flutter
features on both the Google Play Store and App store.

Flutter is free and open source that is used by developers and organisations around the
world, including enterprise, agencies, and startups. Flutter is a toolkit that makes it easy for
the developers to design beautiful interfaces for all sorts of screen sizes and devices and it
comes with pre-built widgets that help to lay out your app easily. Flutter asks for a blank
window on a device either it's iOS, an android, desktop or a website and it draws on that
blank window.

Everything in a flutter is a widget. The main idea is to build an interface with widgets that
describes how the UI view should be like in the current state and whenever the state
changes, it rebuilds the description. Widget creates a hierarchy in an app where every widget
acquires the properties from its parent widget. Flutter contains Cupertino packs and all sets
of widgets that are from material design, help to build a basic visual layout structure. The
basic widgets that are commonly used are text, row, column, stack, and container. Widgets
can be stateful or stateless. Stateful widget can be updated based on user action or data
change and will be able to re-render if the widget state changes, while stateless widget is
not able to change its state during the runtime of an app.

30

The layer system is used to design a flutter framework. It consists of three layers: framework,
engine and embedder (see figure 15). The layers don’t have access to the layer below. The
layer present on the top i.e., Framework layer, represents the UI of an application that
provides with the reactive and modern frameworks written in Dart. It includes all the
required packages, layouts, set of platforms. In framework layer form bottom we have
foundational classes and animation painting, gestures that are the building block services.
Then comes the rendering layer that helps to build a tree of renderable objects, and it
automatically updates the layout to show changes.

Figure 15: Flutter architecture

Above rendering, a Widget layer is present that defines the combination of classes that can

be reused and in the rendering layer each render object has a corresponding class in the

widget. The material and Cupertino are the library that uses the widget layer to implement

the material or IOS design languages.

The Flutter engine is written mostly in C++ and supports all applications of flutter. It is liable

for converting drawing instructions into pixel data i.e., rasterization, whenever a new frame

needs to be painted. Engine gives the low-level implementation of core API of flutter

including text layout, graphics, network I/O, file, plugin architecture, accessibility support,

31

Dart runtime and compile toolchain. It is presented to the framework layer through dart: ui,

that covers the basic C++code in Dart classes.

The embedder provides the entry point and coordinates with the OS for accessing services

like input, accessibility, rendering surfaces and manages the event loop. Java and C++ are the

languages used for the Android platform in embedder, C++ for Windows, and Objective-C++

/objective-C for IOS. Embedder helps to integrate the flutter code as a module in an existing

application or the code for the whole content of the application.

The Flutter SDK provides with the following:

- A modern react-style framework.

- Rich set of ready-made widgets.

- 2D rendering engine.

- Unit and integration testing APIs and plugin APIs to connect to the system and 3 party

SDKs.

- Dart Dev tools for debugging, testing.

- Command-line tools for compiling and building applications.

Flutter contains widgets and independently draws UI components by using its own rendering

engine and “Skia” graphics library (see figure 16). The code compiles to Android or IOS native

code beforehand that ensures that all the UI elements behave in the same manner on any

platform or device.

Figure 16: Flutter components

32

4.3 Firebase

Firebase is a backend application development software that provides with the backend
services such as cloud storage, Realtime database, authentication, reporting and fixing app
crashes , machine learning, remote configuration, tracking analytics, and hosting for static
files. It is a NoSQL cloud hosted database that stores and sync data between users in
realtime and the data is stored in the form of JSON file. These are some of his key features:

● Firebase authentication, secure users accounts and let them access these accounts
under authenticated credentials. It supports the authentication process by using
passwords, phone number, Google, Facebook, Twitter etc.

● The realtime database that sync the data across all clients in realtime and data
remain available even when the app is offline.

● It provides fast hosting for the web app. The contents are being cached into the
content delivery networks worldwide.

● The applications are tested on physical and the virtual devices that are in Google’s
data centers.

● Notifications send through firebase does not involve any additional coding.

Firebase provides with two types of cloud-based databases that are accessible by clients and
support realtime data syncing.

1. Cloud Firestore Database
The Cloud Firestore is a flexible and scalable database for web, mobile and server
development and lets you store your data in the cloud and sync it across all the
devices or can even share them among multiple users. It has robust client libraries,
full support for offline mode so that your app continues to work fine whether you are
connected or not. Involve comprehensive set of security rules that help you manage
access, easy to use data browsing tool and also lets you structure the data that
makes sense because of its querying and fetching capabilities. It works in near real
time, automatically fetch changes from database or one can request and fetch data
manually.

It supports flexible and hierarchical data structures to store data in documents
and organize it into collections. Queries can be used to retrieve an individual, specific
document or to retrieve all the documents in a collection. Cloud Firestore uses data
synchronization to update the data on any device that is connected and can also
cache the data that your app is using actively so that the app can read, write listen,
and query data even if the device is offline. The figure below shows how the data is
represented in Firestore (see figure 17).

33

Figure 17: SocialBook Cloud Firestore Database

2. Realtime Database
Realtime database allows storing and sync data between users in real time. This
makes it easy for users to access the data from any device, mobile or web and helps
users to collaborate with one another. Whenever the data is being updated in
realtime database, it stores the data in the cloud and simultaneously notifies all
the interested devices in milliseconds. It is optimized for offline use so if a loser loses
connection the database SDK uses a local device to serve and store changes. So,
when the user gets connected again the data will automatically be synchronized.

Figure 18: Realtime Database example

The realtime database uses data sync. The connected devices receive the updates in
seconds, every time data changes. The data validation and security remain available
through realtime database security rules. The data inside it stores as a one large JSON
tree (see figure 18).

34

Chapter 5 - Implementation

This chapter begins with a tutorial explaining how flutter applications are created to align
with the requirements. The most important files and folder are also briefly described. In the
second part fragments of the codes are introduced and explained.

5.1 Application setup

SocialBook app is a flutter mobile application. Flutter is a Google's UI toolkit for building
advanced custom UI designed applications for mobile, web and desktop. In order to
install and run Flutter, the following requirements must be met for your development
environment.

● Operating system: Chrome OS (64-bit) with Linux (Beta) turned on or macOS.

● Disk Space: 600 MB for windows or 2.8 GB for macOS (not including disk space for

IDE/tools).

● An IDE or text editor of your choice, such as Android Studio or VS Code configured

with the Dart and Flutter plugins.

● Git for Windows, for running git commands.

● The latest stable version of Flutter.

● A browser, such as Chrome.

We can browse through flutter documentation to install all the required tools for our
application setup. After that, run the following command “flutter doctor” (see figure 19) to
ensure that if there are any other dependencies that one need to complete the setup:

Figure 19: Flutter installation command

Flutter Doctor assesses which tools are installed on the local machine and what other
software need to be installed and to be configured. It checks the current environment and
then displays a report of the status of your Flutter installation or notify if any problem is
encountered. In this app, everything is perfectly installed and by running flutter doctor -v
command, no issues have been found (see figure 20).

Figure 20: Flutter installation command -v

35

When configuration is done, it’s the time to create an app in the IDE. Visual Studio Code is

the environment being used for creating flutter app. Open the command palette in VS code

to create a project. Enter the desired project name (see figure 21) and open the created

project in IDE.

Figure 21: Flutter new project creation

When a project is created , it generates a list of files and folders important to develop a

project (see figure 22). The structure of the project is as follows:

Figure 22: SocialBook files

Lib Folder: The implemented dart code part is inside the lib folder. The lib folder of this app

contains subfolders models, providers, resources, screens, utils and widgets. By default, this

lib folder contains only the main.dart file. It’s the entry point for the dart programs when a

flutter app is run, it first runs main function.

36

Android/ IOS Folder: This folder contains the folders and files that are needed for running

the application on an android operating system. The flutter code, after converting into native

code, is injected into this android folder and then through this android app build is formed.

So, if required to implement platform specific feature or configuration related to android,

then it is done through this android folder. Same for IOS folder that contains files related to

IOS app creation.

Build Folder: It contains flutter application compiled code and is generated and managed by

flutter SDK. Flutter SDK makes changes inside it automatically with app development.

Test Folder: This folder is used to write test dart code that tests the flutter application.

Pubspec.yaml: This configuration file contains all the dependencies (third-party packages),

related to our application, in side it. User is also able to configure any type of assets (images,

fonts, mp3 files etc.) inside this file.

Firebase (Backend for App):

SocialBook involves firebase as a backend to link with the flutter application. Create a project

in firebase console. Then adding firebase to your app by adding package name from

build.gradle file that resides in android folder with in a flutter app (see figure 23).

Figure 23: Location for build.gradle

After registering the app, the next step is to download the “google-services.json” file. This

file is placed inside the folder structure of flutter app. This file connects the backend to the

front end of the application. Add the file into the android folder, dependencies are added in

the pubspec.yaml file. The firebase auth dependency to authenticate users to the app,

cloud_firestore in order to read the value of a document or a collection. The connection of

firebase with the flutter app is completed with these basic configurations.

37

Figure 24: Project package dependencies

Other dependencies shown in the figure above (see figure 23) involve firebase cloud

messaging that let users exchange and deliver messages. Cloud functions dependency that

run backend code automatically in the response to triggered events by HTTPS request or

firebase features, a firebase crashlytics to fix crashes, storage dependency to store and serve

user content like photographs, videos etc., firebase dynamic links for handling link across

platforms.

38

5.2 Code development

Main.dart:

The main.dart file contains main function, is the first file to be executed when the user runs
the flutter application. This void main function contains a runApp() method that loads the
app layout. Main function uses async keyword to await for firebase.initializeApp method,
which creates and initialises the Firebase app instance. A firebaseOptions is used to
configure the app’s services.

void main() async {
WidgetsFlutterBinding.ensureInitialized();
if (kIsWeb) {
await Firebase.initializeApp(
options: const FirebaseOptions(

apiKey: "AIzaSyCP8YDr2cMnYSCAcDoJQiPzY_YCw3jg7L",
appId: "1:1070797723393:web:d72b71883dcbeab7fced00",
messagingSenderId: "1070797723393",
projectId: "socialbook--c1f51",
storageBucket: 'socialbook-c1f51.appspot.com'),

);
} else {
await Firebase.initializeApp();

}
runApp(const MyApp());

}

Code fragment 1: Main.dart main()

As stated earlier everything in flutter app is a widget from buttons to text boxes, logos etc.
Class MyApp extends the StatelessWidget. StatelessWidgets are used where the state never
changes during the runtime of an application. So, the appearance and the properties remain
unchanged. For example, icons, texts and icons buttons are examples of stateless widget.
Inside MateriaLApp widget then introduces the theme and title of the book. The users'
authentication state is provided as a snapshot to the stream builder in order to check
whether the use is authenticated or not. Using the snapshot property, we can display the
login screen to a user if the user is not signed in.

class MyApp extends StatelessWidget {
const MyApp({Key? key}) : super(key: key);
@override
Widget build(BuildContext context) {
return MultiProvider(
providers: [
ChangeNotifierProvider(
create: (_) => UserProvider(),

),
],
child: MaterialApp(
debugShowCheckedModeBanner: false,
title: 'SocialBook',
theme: ThemeData.dark().copyWith(

39

scaffoldBackgroundColor: mobileBackgroundColor,
),
home: StreamBuilder(
stream: FirebaseAuth.instance.authStateChanges(),
builder: (context, snapshot) {
if (snapshot.connectionState == ConnectionState.active) {
if (snapshot.hasData) {
return const ResponsiveLayout(
mobileScreenLayout: MobileScreenLayout(),
webScreenLayout: WebScreenLayout(),

);
} else if (snapshot.hasError) {
return Center(
child: Text('${snapshot.error}'),

);
}

}
if (snapshot.connectionState == ConnectionState.waiting) {
return const Center(
child: CircularProgressIndicator(),

);
}
return const LoginScreen();

}
Code fragment 2: Main.dart class MyApp

Login interface:
The packages placed in pubspec.yaml file are imported in different class files to use them
while implementing the app logic. The first screen visible to a user of the app is the login
screen. The class loginScreen extends the statefulWidget as stateful widgets are dynamic
and, based on user actions, are updated during runtime. TextEditingController for both
password and email text fields as it is for an editable text field. Whenever a user modifies
text fields, the text fields updates and controller notify it to the listeners. A void Dispose()
method is used to release the memory allocated to the variables when the state object is
removed. Inside loginUser(), setState() is used to notify the framework that the internal state
of the object is changed. Authmethod to check if user enters verified credentials and is not
left empty, then they will be navigated to another screen by using MaterialPageRoute that
helps to give animation when transitioning between the two pages occur. It takes in the
builder, and one needs to provide context and the screen on which the user will be going to
navigate upon after logging in.

class LoginScreen extends StatefulWidget {
const LoginScreen({Key? key}) : super(key: key);

@override
_LoginScreenState createState() => _LoginScreenState();

}

class _LoginScreenState extends State<LoginScreen> {
final TextEditingController _emailController = TextEditingController();
final TextEditingController _passwordController = TextEditingController();
bool _isLoading = false;
@override

40

void dispose() {
super.dispose();
_emailController.dispose();
_passwordController.dispose();

}
void loginUser() async {
setState(() {
_isLoading = true;

});
String res = await AuthMethods().loginUser(

email: _emailController.text, password: _passwordController.text);
if (res == 'success') {
Navigator.of(context).pushAndRemoveUntil(

MaterialPageRoute(
builder: (context) => const ResponsiveLayout(
mobileScreenLayout: MobileScreenLayout(),
webScreenLayout: WebScreenLayout(),

),
)

Code fragment 3: login_screen.dart class LoginScreen

The build (BuildContext context) describes the part of the user interface represented by this
widget. This widget contains scaffold, a widget that is used to implement the basic material
design visual layout structure. Inside it are containers that carry a logo of the app, then text
boxes for email and password. After that a login button. Don’t have text is added after login
button that navigates user towards Signup screen in case user is not registered in the app.

Widget build(BuildContext context) {
return Scaffold(
resizeToAvoidBottomInset: false,
body: SafeArea(
child: Container(

Image.asset(
'assets/socialbooklogo.png',
height: 130,

),
const SizedBox(
height: 64,

),
TextFieldInput(
hintText: 'Enter your email',
textInputType: TextInputType.emailAddress,
textEditingController: _emailController,

),
const SizedBox(
height: 24,

),
TextFieldInput(
hintText: 'Enter your password',
textInputType: TextInputType.text,
textEditingController: _passwordController,
isPass: true,

),
const SizedBox(
height: 24,

),

41

InkWell(
child: Container(
child: !_isLoading

? const Text(
'Log in',

)
: const CircularProgressIndicator(

color: primaryColor,
)

onTap: loginUser,
),
const SizedBox(
height: 12,

),
Flexible(
child: Container(),
flex: 2,

),
Row(
mainAxisAlignment: MainAxisAlignment.center,
children: [
Container(
child: const Text(
'Dont have an account?',

),
)

Code fragment 4: login_screen.dart widget BuildContext

Sing up interface:

The class signup screen extends Statefulwidget. It contains TextEditingController so that if
you modify the [text] or [selection] properties, the text field will be notified and will update
itself appropriately. Inside UinBlist image file is being stored. Authmethods performs
authentication and are responsible for assigning identity and a set of policies to a user. If the
credentials provided are accepted by the application, then the user account has been
created. This navigates the user towards the profile screen or else display a pop-up error
message on screen using ShowSnackBar widget.

String res = await AuthMethods().signUpUser(
email: _emailController.text,
password: _passwordController.text,
username: _usernameController.text,
bio: _bioController.text,
file: _image!);

if (res == "success") {
setState(() {
_isLoading = false;

});
Navigator.of(context).pushReplacement(
MaterialPageRoute(
builder: (context) => const ResponsiveLayout(
mobileScreenLayout: MobileScreenLayout(),
webScreenLayout: WebScreenLayout(),

),
),

);
} else { //loading to false

42

setState(() {
_isLoading = false;

});
// show the error
showSnackBar(context, res);

}
}

Code fragment 5: signup_screen.dart Authmethods()

SelectImage method is created to set state in order to display the image selected from
gallery into the circle avatar. The buildwidget contains the interface layout that will be shown
on the user interface to the user to enter their required credentials into the fields. Container
class is used to position different widgets' on the screen according to the convenience. For
signup, it involves a circle avatar that contains an icon button. On pressing will direct user to
select a picture from gallery. Text fields for username, email, password and for user bio.
Inside InkWell widget Signup text is placed. InkWell is a rectangle area that responds to the
touch events performed by users. If user already have an account, the user will be navigated
to the log in screen.

Profile Screen:

The profile screen is the main landing screen after logging into the application. The
ProfileScreenState involves declaring the datatypes of the attributes that are visible on
screen, like followers and following. Get the data of the user from firebaseFirestore with a
collection name “user”. Also get the books from “posts” collection in Firestore to display on
the profile page of user. The build widget holds the design layout of the profile page.
CircularProgressIndicator(), a small animating circular icon, will be displayed first in case if
data is loading. After that, in scaffold title that includes the username along with the circular
avatar is placed on the profile screen. In column, followers, books and following text is
placed along with the numerical data loaded above the texts. The follow button will change
into a sign-out button if the user is on his/her own profile.

Also check the availability of the book. If book available, then it will be having green borders,
else red.

child: Container(
decoration: BoxDecoration(

border: Border.all(color: snap['isBookAvailable'] == true ?
Colors.green : Colors.red, width: 3)

Code fragment 6: profile_screen.dart BoxDecoration()

Feed Screen:

Class feedScreen contain variables with different keywords. MediaQuery is used in order to
retrieve the width of the screen. Querying the current media using MediaQuery.of will cause
your widget to rebuild automatically whenever the MediaQueryData changes (e.g., if the
user rotates their device).

Widget build(BuildContext context) {
final width = MediaQuery.of(context).size.width;

Code fragment 7: feed_screen.dart MediaQuery

43

Scaffold implements a basic material design visual layout structure. Appbar is used to display
the title above. Streambuilders allow apps to display the async data. It will navigate the way
to the collection from where you want to read data from, like in this app to read data from
posts collection to display that collection on the feed screen and then calling snapshots at
the end that will grab the relevant posts found in Firestore. In case data not returned of is
still loading, a CircularProgressIndicator() is displayed on screen. After receiving the data, use
ListView to build the list of documents present in the snapshot documents list.

Search Screen:

The search bar, present on the top of the feed screen, helps to search for a user. Firestore
returns the data of all the users that match our typed search name or related to it. Listview
will build a list with each user having their specific profile picture and username. Tapping on
any of the listed users present on screen will lead to their profile screen, where the user can
see other books posted by them as well.

Search Book Screen:

Search Book screen offers the users of the application to find the books posted by other
users. The theme of the book dropdownlist is created at first, and the initial value is set to
“Ignore Theme”. If nothing is filled in the title text field and theme is not selected, then the
search won’t happen. SnackBar will show a message on the screen as ‘please fill at least one
of the fields.’

If the user only wants to search through the title, then the Firestore searches the book with
the title entered by the user and returns it to it if found. And if the user searches with title
and added theme of the book too then will get the book from that theme user selected. Else
SnackBar will display a message “No matching results”.

if (theme == 'Ignore Theme') {
snap = await FirebaseFirestore.instance

.collection('posts')

.where(
'title_lower',
isGreaterThanOrEqualTo: _titleController.text.toLowerCase(),

)
.get();

print(snap.runtimeType);
} else {
snap = await FirebaseFirestore.instance

.collection('posts')

.where('theme', isEqualTo: theme)

.where(
'title_lower',
isGreaterThanOrEqualTo: _titleController.text

.toLowerCase(),
)
.get();

print(snap.runtimeType);
}

setState(() {
isLoading = false;

});
if (snap.docs.length == 0) {

44

return showSnackBar(context, 'No matching results');

Code fragment 8: search_book_screen.dart SnackBar

The title text field and a DropDownMenuItem will be visible to the users on their screen. On
tapping the search button, a CircularProgressIndicator will be shown on screen, so the user
can wait for the required data to be loaded on to their screens.

Add_Post Screen:

Class AddPostScreen first shows a popup to the screen. SimpleDialogOption let users have a
choice between several options. If user selects ‘Take a photo’ then will be able to take
picture from gallery, else can choose from gallery or cancel the operation.
SimpleDialogOption widget will call onPressed callback that uses Navigator.pop to close the
dialog.

SimpleDialogOption(
padding: const EdgeInsets.all(20),
child: const Text("Cancel"),
onPressed: () {
Navigator.pop(context);

}
Code fragment 9: add_post_screen.dart SimpleDialogOption

The Build widget involves the User interface display fields. Write a description, title, the
dropdownbuttons for book format, availability, theme of the book. On pressing the post
button, the book details entered will be posted. Title and description of the book must be
fulfilled by the user in order to post a book.

Comments Screen:

This screen involves the comment posted by different users on the Book post. Scaffold
method contains the title ‘comments’ on top of the page. Then using streamBuilder that
helps in managing the stream's state. When performing the query, Firestore returns a
QuerySnapshot that gives access to the documents in the collection and returns to the
screen the book title comment that posted on it, date on which it is published. On tapping
post text button after entering the comment in the comment field. The comment will be
posted along with the username, profile picture and the comment they wrote on a particular
book post.

Comments Update Screen:

This screen contains the comments posted by user on different books. Fetches details from
Firestore and displays it on the screen. The title of the book on which the comment was
made, comments text, and the last updated date on which the comment was posted.

45

46

Chapter 6 - Testing

This chapter is divided in two parts. The first one revolves around the feedback data
gathering process and the decisions taken accordingly. The second part consist of a series of
tests for each screen and the results yielded.

6.1 Users feedback

The SocialBook application has been evaluated by different real users through various stages
of the development, using an agile methodology. They have been looking for any changes
required in user interface elements, in usability, functionality, and the design, to improve the
app experience. The user testing conducted was with the help of a small sample group of
peers of different ages and educations. The participants had to test SocialBook on numerous
occasion and answer a Google form, their feedback provided me with valuable insight into
where my application needs to improve. Each user had different devices to check flow across
multiple devices. Following are the main functionalities for which testing was carried out:

- Register and Login to the application

- Create a post

- Search posted book

- View details of posts

- Comment/reply on post

- Check availability

- Log out and close app

Also, the testing is done based on user experience with the interface design in order to know
whether the created application meet the expectations of user and how it looks, feel and the
ease of use from user point of view. Following are some elements of interface that users
were advised to into look during testing phase:

- Input controls involving buttons, text fields, dropdown list and list boxes.

- The navigational components that include navigation bar at the bottom of the page,

navigation icons, menu icons, search field for book search and user search by name.

- Pop-ups, modal for post creation, progress bar, message boxes.

After getting the required feedback from the users and their experience with the application,
I got to learn many things. Their perspectives on the application interface and its
functionalities have been very valuable. Following are some suggestions by the user towards
SocialBook:

47

- Users want to search book not only by name but can also be able to add the theme
of the book from which category that book belongs so that the search could be more
efficient for them to access their desired book.

- Users want to delete their posted books and edit the details.

- Users want to have an option where they can follow/unfollow other users in order to
feel more secure.

- Users want to select the posted book image not just from the gallery but also be able
to open up their camera and take an image of the book to post it.

- Users would like to view all of their comments that are posted on different book on
one page and not have to check each book one by one.

- User want to be able to check if a book is available or not in a faster way, rather than
clicking on each one.

- User would like to have a sorting function in the profiles for arranging books in
various ways, such as new/old or pdf/book.

All this feedback and more was collected and carefully analysed. Afterwards, it was

considered if those changes were going to be added SocialBook or not. Following are some

changes and adjustments that are made in this final version of the application:

- The search option is updated where users can not only search by book name but can

select book theme too for more precise results being shown to them.

- A search bar on the top f the feed page is created so that the user will be able to find

the publisher of the book if they know their username.

- The user who posted the book will be able to delete their respective book from their

profiles.

- Users will be able to change the status of their posted books. If the book they posted

is acquired by other user they updated the status of the book to be reserved. If book

is reserved or in use, the corner frame on the image will turn red else green if book is

available.

- A choice will appear before users before posting a book, to select image from gallery

or take picture from their camera, otherwise there is also the option to cancel the

action.

- A comments update page is created for users to view their own comments they

posted on different books that are clickable and navigate them to that particular

book’s comments where they posted it and will be able to view any update regarding

their query or whatever they asked in comment.

48

6.2 Testing screens

In the following tables numerous tests are performed for each individual screen to check if

the expected result of the action is the desired on. The intention is to ensure that

SocialBook is performing as it was intended and to know if there is any bug or error that can

be resolved.

TEST EXPECTED RESULTS

Verify if the login page contains necessary input
fields, login button and sign-up text button i.e., in
case not registered

All the necessary input fields i.e., email and
password fields are present along with login
button and sign-up text button.

Verify that if user can enter correct credentials,
i.e., valid email and password in the text field.

User login to the application, landed on
profile page.

Verify user navigates to signup page when
selecting “don't have an account? Signup”

User successfully landed on the signup page.

Verify if the user can log in with incorrect email
and valid password.

An error message appears “enter valid
username or password”. User cannot log in
to the system.

Verify if user can enter into the system using valid
email and incorrect password.

An error message appears “enter valid
username or password”. User cannot log in
to the system.

Verify if user can log in using invalid password
and email.

An error message will appear “enter valid
username or password”. User cannot log in
to the system.

Verify if user can click on “don't have an account?
Signup”

User landed on register of signup screen
to register the credentials to create an
account.

Verify if login button working correctly after
pressing it.

With correct credentials entered and
pressing login button will land the user on
main screen i.e., profile screen

49

Verify that the validation messages appear or
displayed in case user left password of email field
empty

The system will generate an error message
“enter required credentials”.

Verify that the helping text is placed in the text
fields.

The system displays the helping text in the
text fields before entering credentials in it.

Table 5: Login screen

Table 6: Registration screen

50

Table 7: Profile screen

51

Table 8: Feed screen

Table 9: Search book screen

52

Table 10: Create a post screen

53

Table 11: Book detail screen

Table 12: Comment update screen

54

Chapter 7 - Monitoring and control

This chapter reviews the processes followed during the project and how they have been
managed. It analyses the scope management and the main changes it has undergone during
the development with respect to the original version. The actual number of hours dedicated
and the tasks to which they have been associated with are also included.

7.1 Scope management

At the beginning of the project an initial scope was established, which has varied during the
development of the project. This is partially due to the fact that I did not have the knowledge
to use Flutter and Firebase and also because new use cases were implemented, so the
estimated times at the beginning did not have a sufficiently firm basis.

The main objective and result of this project was to create an application that would serve as
a gateway to a social network for book sharing among students. In the current state
SocialBook is working and scaling properly and therefore that aspect of the target has been
accomplished. The minimum requirements stated at the beginning (see section 2.4) were
met and further some have been upgraded, such as the comment section with the comment
page and reply use case.

7.2 Time management

During the development of the project the hours dedicated to each task, as defined in the
Work Breakdown Structure (see figure 1), have been recorded and accounted. The result of
this can be visualized in the following table (see table 13).

The main deviation from the initial estimation can be seen in the implementation phase,
where 28 more additional hours were committed. This change comes from the expansion of
the original scope and from issues that came along during the development. Having to
incorporate and alter some of the initial uses cases while still not having enough experience
with flutter was the main issue of this increment.

Preparation of the thesis and defence has also seen an increment, fortunately not in such an
impactful manner.

55

Table 13: Estimation actual and deviation table for each task

56

Chapter 8 - Conclusions

This is the last chapter and all the work has been done and being that the case, here I am
going to share my assessment of the project. I will evaluate the work that has been done, the
knowledge I have acquired and explain what my vision of the future of SocialBook should be.

8.1 Lessons learned

Working on a project of this scale has taught me many lessons about developing native apps.
It is true that at the learning curve might be a little stiff since there is a lot to tackle, but it
gets much better once you begin using some key features like:

- Hot-Reload, which was very helpful, I could see immediately what the code I was
trying translated to.

- Built in Widgets, a vast array of widgets that are available for all types of uses , they
helped me make great progress with just a few lines of code.

- Firebase functions, were also a time saver and very interesting to learn about.

Flutter alone has definitely great potential, but once you add the seamless integration it
offers with Firebase it becomes a wonderful developing environment. Although, there is one
thing I found that did give me quite the trouble. That is the constant update process, they
indeed do bring a lot of good features with every new update, but they also make old
packages and widgets obsolete and the migration process was sometimes quite difficult. I
have spent many hours fighting with the deprecated version errors.

Overall I do think Flutter updates are worthwhile, especially since its last 3.0 update, where
now with just coding once you can compile the code even for macOS and Linux.

8.2 Personal evaluation

The begging of the project was quite challenging. I had previous knowledge of Android and
Kotlin, since I studied them in the course of Software Engineering II, where we built a few
simple applications. Human-Computer Interaction had also taught me useful things like how
to design and focus on the user’s experience. I had also taken three subjects on databases
and felt quite comfortable on my skills of dealing with data. Other subjects such as Web
Systems and Software Quality has as well helped me feel confident in approaching to build a
social network application.

However, even thought I had also this experience, the start was quite overwhelming. Having
to learn a new framework from scratch, using a new type of database model, planning ahead
a huge project and much more was something I found quite challenging.

57

Good thing was that all this was just a short-lived initial phase. Once I started taking the first
steps with SocialBook all begun to feel more natural and clear. Flutter and Dart language
were reasonably easy to take a grasp of, after only a short 10-hour course I was able to
create my first Flutter mini programs and begun to familiarize with the environment.

Completing this project has taken me a lot of time, and during that I have seen how flutter
has evolved and become a very popular tool for mobile app development. By seeing this
evolution I was able to try out and learn much more than I initially expected, for which I am
grateful.

8.3 Future work

SocialBook development stops at this stage for now, but from all the feedback I have

received and from seeing how the project has performing I have prepared this list of features

that I think would being value to the purpose of the social-network:

1. With longevity in mind, since people will upload more and more books, one useful

feature would be to be able to sort in different manners the books that are uploaded

on each user's page, not only for the one that uploads them but also for people that

are checking others profiles.

2. Regarding scalability, a good thing to incorporate would be a report system for

inappropriate content uploaded and for misbehaving users.

3. Add different type of user roles, for example a teacher, this way students will know

that they can trust that user. A community type user account could also be an

interesting addition, for example a user for an entire classroom.

58

Bibliography

1. Official Flutter documentation:

https://docs.flutter.dev/

2. Official Firebase documentation:

https://firebase.google.com/docs

3. Goodreads - Book cataloging website

https://www.goodreads.com/

4. The story graph - Book tracking website

https://thestorygraph.com/

5. Book trib - Online literary books

https://booktrib.com/

6. Native apps

https://magenest.com/en/native-app-example/

7. Hybrid apps

https://magenest.com/en/hybrid-app-examples/

8. Cross Platform apps

https://www.netsolutions.com/insights/cross-platform-app-frameworks-in-2019/

9. Progressive web apps

https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps

10. A complete guide to Flutter architecture

https://blog.logrocket.com/complete-guide-flutter-architecture/

11. Official Dart documentation:

https://dart.dev/

12. Choose a Database: Cloud Firestore or Realtime Database

https://firebase.google.com/docs/database/rtdb-vs-firestore

59

https://docs.flutter.dev/
https://firebase.google.com/docs
https://www.goodreads.com/
https://thestorygraph.com/
https://booktrib.com/
https://magenest.com/en/native-app-example/
https://magenest.com/en/hybrid-app-examples/
https://www.netsolutions.com/insights/cross-platform-app-frameworks-in-2019/
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://blog.logrocket.com/complete-guide-flutter-architecture/
https://dart.dev/
https://firebase.google.com/docs/database/rtdb-vs-firestore

13. Monitoring your Flutter app's stability with Firebase Crashlytics

https://www.youtube.com/watch?v=cIFLFpKTy7c

14. Flutter - Stateful vs Stateless Widgets

https://www.geeksforgeeks.org/flutter-stateful-vs-stateless-widgets/

15. Exploring StreamBuilder In Flutter

https://medium.flutterdevs.com/exploring-streambuilder-in-flutter-5958381bca67

16. Flutter 3.0 - What’s New In Flutter

https://medium.flutterdevs.com/flutter-3-0-whats-new-in-flutter-12259bf090ba

60

https://www.youtube.com/watch?v=cIFLFpKTy7c
https://www.geeksforgeeks.org/flutter-stateful-vs-stateless-widgets/
https://medium.flutterdevs.com/exploring-streambuilder-in-flutter-5958381bca67
https://medium.flutterdevs.com/flutter-3-0-whats-new-in-flutter-12259bf090ba

