
Degree in Computer Engineering
Computer science

End of degree work

Quantum extreme learning machine for
classification tasks

Author

Unai Sainz de la Maza Gamboa

2022

Degree in Computer Engineering
Computer science

End of degree work

Quantum extreme learning machine for
classification tasks

Author

Unai Sainz de la Maza Gamboa

Director(s)
Jose A. Pascual Saiz

Summary

Quantum computing is one of the most researched areas in computer science and physics.
However, current quantum computers are influenced by unwanted noise from environ-
mental factors. Quantum Extreme Learning Machine (QELM) is a hybrid classical-quantum
framework that is intended to take advantage of these complex and rich dynamics of noisy
intermediate-scale quantum (NISQ) devices to improve learning capacity. This work ex-
plores the power of a contemporary gate-based QELM relative to current classical binary
classification problem solvers. On the other hand, we have not limited ourselves to trans-
ferring the classical algorithm to its corresponding quantum algorithm but have investi-
gated it more deeply, proposing several variations of it. We need to consider that the use
of quantum simulators limits our work, which may lack rich enough dynamics to generate
sufficiently complex output. Finally, other directions, such as exploring alternative quan-
tum platforms as a quantum substrate and implementing them in real hardware, may be
considered a potential focus for future research.

i

Contents

Summary i

Contents iii

List of Figures v

List of Tables vii

1 Introduction 1

2 The aims of the project 5

3 Introduction to Quantum Computing 7

3.1 The qubit . 7

3.1.1 Multiple qubits . 9

3.1.2 Quantum gates . 10

3.1.3 Measurement . 10

3.1.4 Expectation value . 11

3.1.5 Quantum entanglement . 11

3.1.6 Quantum circuits . 12

4 State of the art 15

iii

CONTENTS

5 ELM and QELM 17

5.1 Extreme Learning Machine . 17

5.1.1 Formal description . 17

5.1.2 ELM algorithm . 18

5.2 Quantum Extreme Learning Machine 18

5.2.1 Data encoding . 19

5.2.2 Quantum substrate . 20

5.2.3 Training strategies . 22

6 Results 25

6.1 Experimental setup . 25

6.1.1 Execution environment . 25

6.1.2 Datasets . 26

6.1.3 Training and evaluation framework 27

6.2 Analysis of the results . 28

6.2.1 Scikit-learn datasets . 29

6.2.2 UCI breastcancer . 31

6.2.3 UCI banknote authentication . 32

6.2.4 UCI haberman survival . 32

6.2.5 UCI early diabetes . 33

7 Conclusions 35

8 Future work 37

Bibliography 39

iv

List of Figures

1.1 Basic ingredients of ELM . 2

3.1 Bloch sphere representation of a qubit 8

3.2 Hadamard gate applied to a single qubit 12

3.3 A sequence of three gates applied to a single qubit 12

3.4 A circuit for preparing the maximally entangled quantum state from the
initial state . 13

3.5 A measurement operator acting on a single qubit 13

5.1 Quantum circuit example . 21

5.2 QELM training illustration . 23

6.1 2d visualization of the scikit-learn datasets 29

6.2 Accuracy score for scikit-learn datasets 30

6.3 UCI Breastcancer results . 31

6.4 UCI Banknote authentication results . 32

6.5 UCI haberman survival results . 33

6.6 UCI Early diabetes results . 34

v

List of Tables

6.1 Summary of the datasets . 27

vii

1. CHAPTER

Introduction

In recent years, an explosion of unconventional computing methods and systems has been
occurring. These unconventional methods are mostly neuro-inspired, where the computa-
tional paradigm goes hand in hand with the design of a physical substrate trying to mimic
the computational power of the human brain, [1].

One of those methods is the extreme learning machine (ELM), an algorithm proposed
by [2] that is a particularisation of the reservoir computing (RC) framework applied to
feed-forward neural networks (NN). This framework exploits the natural dynamics of
input-driven randomly connected NN for information processing, not requiring gradient-
based back-propagation to work. The only difference between RC and ELM is that the
first one exploits the natural dynamics of the substrate as an internal memory of the past
inputs, while ELM does not.

The main advantage of the ELM concept is its minimal requirements for learning (what
is known as the training process), mainly because the learning process is made without
an iterative tuning of the hidden nodes. Figure 1.1 shows the three layers of a typical
ELM algorithm: an input layer, the hidden layer (or the substrate), and the output layer.
This process can be summarised as follows: the information from the input is fed into
the substrate, which works as a reservoir. The intermediate representation produced by
the previous step is then used to create the desired output after optimisation of the output
connections.

In ELM, one only needs to adjust the weights (connections) of the substrate with the
output layer via, for example, linear regression. The rest of the weights are randomly

1

2 Introduction

Input Substrate Output

Tr
ai
ni
ng

Figure 1.1: Basic ingredients of ELM

initialised and not optimised through the process. The bulk of the processing is offloaded
to a fixed complex system, and desired input-output maps are achieved by adjusting how
its state is post-processed, [3]. This allows the algorithm to avoid multiple iterations and
local minimisation while maintaining good generalisation and fast training times.

The quantum counterpart of ELM is the quantum extreme learning machine, so instead of
having a number of artificial hidden nodes (the substrate), we have a quantum system as a
dynamical system with a number of qubits (the quantum substrate). This will be referred
to in the following as QELM and is the main topic of this work. Notice that the same
applies to RC, known as QRC, to its quantum counterpart.

Recent advances in quantum computing have accelerated efforts to develop new algo-
rithms that can take advantage of this new information processing paradigm. In a similar
line, QELM is an excellent candidate to demonstrate the potential of how rich quantum
dynamics can enhance classical machine learning (ML) methods.

Quantum systems exhibit many degrees of freedom that can be exploited for QELM.
Therefore, exploring extended quantum systems as substrates for ML in QELM represents
a timely and potentially disruptive opportunity. The main idea is to take advantage of the
quantum complexity as a substrate, more precisely, to use the complex dynamics and the
noise of those NISQ devices. Also, the quantum substrate can offer a faster computation
of the final state compared to the classical substrate.

Quantum noise, such as decoherence, is a decisive limiting factor in gate-based quantum
computing, but in principle, QELM is well suited for current noisy-intermediate-scale-
quantum (NISQ) systems. Because of that, some proposals have been made to exploit the
natural dynamics of gate-based superconducting quantum processors as a reservoir [4].

The rest of the work is organised as follows. In Chapter 2, we explain the project’s objec-
tives. In Chapter 3, we briefly introduce quantum computing and fix our notation. In Chap-
ter 5, we present ELM and its quantum counterpart, the QELM, dissecting the process of
translating the classical algorithm to quantum computing. In Chapter 4, we study the

3

state-of-the-art and some recent proposals made in the field. The performance of QELM
in some standard datasets is underlined in Chapter 6. We end the work by discussing some
conclusions and highlighting potential opportunities for this research line.

2. CHAPTER

The aims of the project

The project’s primary goal is to explore the quantum counterpart of ELM (Extreme Learn-
ing Machine). To accomplish this task, we need to learn the fundamentals of quantum
computing, understand them, and be able to use the quantum computer as a computa-
tional resource. Furthermore, we need to study the literature and familiarise ourselves
with some quantum platforms to be used, in our case, the IBM-Q platform.

Secondly, to fully understand the ELM algorithm, an in-depth study of the method has
to be carried out, exploring all the details related to the original algorithm, e.g., the ideas
behind it, the methods, the possible improvements, and all those things that can be relevant
in order to understand the algorithm altogether.

The third step is to learn about the RC (Reservoir Computing) framework and see how
this has been adapted using a quantum-based reservoir. More specifically, see how this
quantum-based reservoir has been used to adapt the ELM algorithm to its quantum coun-
terpart. This has to be done studying the literature and the state-of-the-art.

The primary purpose of this project is to combine every knowledge acquired in a practical
case study. More precisely, propose a new hybrid method that uses the ELM algorithm
training strategy and quantum systems as a computational resource, i.e. as a reservoir, and
then use it to solve classification problems.

Finally, to evaluate the value of the proposed model, we will need to choose a diverse and
complete set of standard benchmarks, the correct performance metrics, and other classical
models to compare against them.

5

6 The aims of the project

The goals can be summarised as follows:

• Study the basic mathematical foundation required to understand the fundamentals
of quantum computing.

• Complete comprehension of the ELM algorithm and the RC framework in order to
translate them to its quantum counterpart.

• Propose a new QELM method using gate-based quantum circuits as a reservoir, and
explore some variants of the proposal.

• Compare the performance of the proposed QELM with the classical ELM and other
classical models using some standard datasets for classification problems.

3. CHAPTER

Introduction to Quantum Computing

Here, we present a less formal but hopefully more intuitive approach to explaining the
basic theory necessary to understand and recognise the significance of this work.

3.1 The qubit

Classical computation is based on binary logic. Here the information is carried on systems
called bits that can take two states, either 0 or 1.

On the other hand, Quantum computation relies upon a physical system called a qubit
being in a state. The computational basis states are labelled as |0⟩ and |1⟩; these are the
quantum analogues of the classical binary states 0 and 1.

The notation used before to label the states is known as bra-ket notation (or Dirac nota-
tion) [5] and is a helpful way of expressing vectors in quantum mechanics, such as

|0⟩=

(
1
0

)
, |1⟩=

(
0
1

)
. (3.1)

These are known as kets, and their Hermitian conjugates are known as bras,

|0⟩† = ⟨0| (3.2)

A critical difference between the quantum case and the classical one is that a qubit can

7

8 Introduction to Quantum Computing

exist in a continuum of states between |0⟩ and |1⟩; [6], this is known as superposition,
which can be written as a linear combination of the computational basis states,

|ψ⟩= α |0⟩+β |1⟩ (3.3)

where |0⟩, |1⟩ are orthonormal basis states, which satisfy

⟨0|0⟩= 1,⟨1|1⟩= 1,⟨0|1⟩= 0,⟨1|0⟩= 0, (3.4)

and α,β ∈ C are complex probability amplitudes that satisfy |α|2 + |β |2 = 1. Therefore,
the general form of a single qubit state can be expressed as

|ψ⟩= cos
(

θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩ ,θ ∈ [0,π],φ ∈ [0,2π] (3.5)

where φ and θ are real numbers that define a point on a unit three-dimensional sphere,
as shown in Figure 3.1. This is usually known as Bloch sphere, and transformations on a
single qubit are seen as rotations on this sphere.

Figure 3.1: Bloch sphere representation of a qubit

Combining a bra and a ket, we can form an inner product,

⟨ψ|ψ⟩ ≡ ⟨ψ|ψ⟩= ∥ψ∥2 = 1, (3.6)

3.1 The qubit 9

and can also facilitate the outer product,

|ψ⟩⟨ψ|=

(
α

β

)(
α∗ β ∗

)
=

(
|α|2 αβ ∗

βα∗ |β |2

)
. (3.7)

3.1.1 Multiple qubits

We can scale up the system, including additional qubits, so the quantum state of such
unentangled qubits can be described by the tensor product of the individual quantum
states. For example, if we have a system with two qubits, |ψ1⟩=α1 |0⟩+β1 |1⟩ and |ψ2⟩=
α2 |0⟩+β2 |1⟩, they compose a system that can written as

|ψ1⟩⊗ |ψ2⟩ ≡ |ψ1⟩ |ψ2⟩ ≡ |ψ1ψ2⟩ (3.8)

= (α1 |0⟩+β1 |1⟩)(α2 |0⟩+β2 |1⟩) (3.9)

= α1α2 |00⟩+α1β2 |01⟩+β1α2 |10⟩+β1β2 |11⟩ (3.10)

=

α1α2

α1β2

β1α2

β1β2

 . (3.11)

where ⊗ is the Kronecker product.

This can be generalised to a system with n qubits, |ψ1 . . .ψn⟩, where the basis state |x⟩
is located in the (x+1)th position of the vector that belongs to a particular vector space,
namely the Hilbert space, that can be described as

C2 ⊗·· ·⊗C2︸ ︷︷ ︸
n times

≡ (C2)⊗n. (3.12)

So to describe a n qubit system, we need 2n −1 numbers to describe it. This allows quan-
tum systems to have more degrees of freedom compared to classical methods, e.g., in
principle, a system with n = 300 qubits could perform more calculations at once than
atoms in the observable universe.

10 Introduction to Quantum Computing

3.1.2 Quantum gates

The classical gates are the basic building blocks of classical computers; similarly, on the
quantum computer, we have the quantum gates. But comparing the classical setting, the
quantum one is quite different because qubits can exist in superpositions of states.

Quantum gates are unitary transformations that are described by unitary matrices U , such
that U†U = I. For example, the CX (controlled-NOT) gate, flips the second (target) qubit
if the first (controlled) qubit is a |1⟩. Thus, in this setting, the action can be represented on
the computational basis by the matrix

CX =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3.13)

The CX gate has particular importance in quantum computation, mainly because it is the
standard form to introduce entanglement into a quantum system.

3.1.3 Measurement

Quantum states are changed when we measure them, referred to as wave function col-

lapse. More specifically, we measure the state in a orthonormal basis, for example the
computational basis, after which it will collapse into the state |0⟩ or |1⟩, with probabili-
ties ⟨0|ψ⟩ = |α|2 and ⟨1|ψ⟩ = |β |2 respectively. After the measurement, the system will
continue evolving from that collapsed state.

We can measure all the systems, collapsing the complete system, or we can measure
a chunk of it, only collapsing the measured part and keeping the rest of the system in
superposition.

We measure an observable, M, which is a Hermitian operator (M† = M) that has a spectral
decomposition

M = ∑
m

mPm (3.14)

where Pm is the projection operator onto the eigenspace of M with eigenvalue m. When
measuring this observable for a state |ψ⟩, the possible outcomes are given by the eigenval-

3.1 The qubit 11

ues, m, for which the state will collapse to Pm|ψ⟩
⟨ψ|Pm|ψ⟩ . Therefore, the probability of obtaining

the measurement m is given by ⟨ψ|Pm |ψ⟩.

3.1.4 Expectation value

A measured observable can be seen as a discrete random variable, taking specific val-
ues (eigenvalues of M) with certain probabilities. We can define the expectation of this
observable as

E(M)≡ ∑
m

mP(M = m) (3.15)

= ∑
m

m⟨ψ|Pm |ψ⟩ (3.16)

= ⟨ψ|∑
m

mPm |ψ⟩ (3.17)

= ⟨ψ|M |ψ⟩ . (3.18)

This can also be written as
⟨M⟩|ψ⟩ . (3.19)

However, in reality, we cannot measure this directly, and in practice, we will need to run
the circuit many times (known as shots) and then calculate the average value. This can also
be seen in how often the circuit should be evaluated (or "sampled") to estimate statistical
values.

3.1.5 Quantum entanglement

Quantum entanglement is a particular feature related to quantum information and quan-
tum computation. Because of this feature, some states in the Hilbert space cannot be
written as a tensor product of multiple single qubit states. Instead, these states are entan-

gled, mainly because the qubits have intrinsic influences over each other, i.e. they cannot
be described independently.

One of the most used examples is the Bell pair, defined as

|00⟩+ |11⟩√
2

(3.20)

12 Introduction to Quantum Computing

cannot be written in a tensor product form like

(α1 |0⟩+β1 |1⟩)(α2 |0⟩+β2 |1⟩) (3.21)

for any α1,β1,α2,β2 ∈ C. When a single qubit of this state is measured, we immediately
know the other qubit state.

3.1.6 Quantum circuits

As we want this work to be self-contained, here we explain the basics of quantum circuits
to understand those shown in Section 5.2.

In a quantum circuit diagram, each solid depicts a qubit, or more generally, a qubit register.
By convention, the top line is assigned to qubit 0, and the others are labelled sequentially.
Operations are represented by quantum gates acting on one or more qubits, denoted as a
box. For example, Figure 3.2 shows the Hadamard operation acting on a single qubit.

Figure 3.2: Hadamard gate applied to a single qubit

On those diagrams, time flows from left to right. Quantum gates are ordered in chrono-
logical order, with the left-most gate as the gate applied first to the qubits. For example,
Figure 3.3 describes A,B,C operations applied to a single qubit, forming the unitary ma-
trix U = CBA; notice that the convention for matrix multiplication obeys the opposite,
with the right-most matrix applied first.

Figure 3.3: A sequence of three gates applied to a single qubit

Consider the unitary operation CNOT01(H ⊗ 1); this gate sequence creates a maximally
entangled two-qubit state:

CNOT01(H ⊗1) =
|00⟩+ |11⟩√

2
(3.22)

3.1 The qubit 13

Figure 3.4 shows the circuit for preparing this maximally entangled quantum state. Notice
that the symbol behind the Hadamard gate represents the CNOT gate, where the black
circle indicates the control qubit, and the cross indicates the target qubit.

Figure 3.4: A circuit for preparing the maximally entangled quantum state from the initial state

A critical point about quantum circuits is that they need to have the same number of inputs
and outputs. As all quantum operations, except measurement, are unitary and therefore
reversible, if they did not have the same number of outputs as inputs, they would not be
reversible and hence not unitary.

The remaining operation to visualise in quantum circuit diagrams is the measurement
operator. As you can see in Figure 3.5, the measurement operation is denoted by a meter
symbol. This operation takes a qubit register (solid line), measures it, and the output is
saved in a classical information register (double solid lines).

Figure 3.5: A measurement operator acting on a single qubit

A particular type of quantum circuit is the variational circuit. This circuit depends upon
classical parameters. This allows us to convert classical information into quantum infor-
mation; this is further explained in Section 5.2.1.

4. CHAPTER

State of the art

In this chapter, we study the current methods proposed for QELM and QRC. The reason
to add QRC here is that it is the most studied method in the literature, and the recent
advances are also valuable for QELM.

First, note that the research community uses both QELM and QRC terms interchangeably,
sometimes referring to QELM as QRC for non-temporal tasks. Here, we only use QRC to
refer to jobs applied to temporal tasks to maintain a consistent nomenclature.

As QRC and QELM are novel approaches to quantum neuromorphic computing, they are
of great interest in the areas of machine learning and quantum computing. Following the
initial proposal of quantum spin networks as reservoir substrates [7], there has been a
variety of work exploring the possibilities that quantum mechanics can offer to this area
of research. At the moment, the spin-based implementation is the most used quantum
platform for QRC [8, 9, 10, 11, 12, 13, 14]. Also, for QELM, fermionic and bosonic setups
have been proposed for light field phase estimation [15], and entanglement detection [16],
which are typically challenging to extract from experimental setups. The use of QELM
has also been reported in an NMR experiment [17].

Regarding the classical tasks, [18] proposes using quantum circuits as a substrate for
classifying synthetically generated data. Additionally, the authors suggest that the feature
space enhanced by quantum entangling operations is essential to obtain good performance
in QELM [18]. On the other hand, [19] also uses quantum circuits, but in this case, to
study the electronic ground and first excited states of two molecules. However, they are
not limited to analysing the model’s performance; they also study the complexity of the

15

16 State of the art

quantum circuits, using the majorization principle [20] as an indicator.

As far as know, there are, at present, no attempts to apply the QELM framework to the
most studied classical tasks like image classification. Instead, recent proposals have ap-
plied QRC to this task [21, 22], treating images as temporal data, that is, decomposing
them into a series of time steps and introducing each one of them into the quantum circuit
at a time. For each time step, they measure the circuit using a technique called mid-circuit

measurement1. Notice that this technique has not been implemented yet in all the circuit-
based quantum hardware available. The same strategy is used in [4], where they apply
QRC for classifying objects from time-series data generated from the sensor robot that
grabs them.

QELM has also been proposed for quantum chemistry [23], being an example of a quan-
tum task. Here, the first two excited molecular energies, transition dipole moment between
the ground states, and the corresponding excited states are predicted from the ground-state
wave function of the molecule.

1https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/
midcircuit-measurement/

https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/midcircuit-measurement/
https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/midcircuit-measurement/

5. CHAPTER

ELM and QELM

5.1 Extreme Learning Machine

Extreme Learning Machine is a learning algorithm that, unlike most other neural network
learning algorithms, does not require gradient-based backpropagation to work. Instead,
it uses Moore-Penrose’s generalised inverse [24] to set the weights of the output layer,
setting all the other connections randomly.

5.1.1 Formal description

For N distinct samples (xi,yi), where xi = [xi1,xi2, ...,xin]
T ∈Rn are the features associated

to the samples, and yi = [yi1,yi2, ...,yim]
T ∈Rm are the true labels of the samples, a standard

single-hidden layer feed-forward network with L hidden nodes and activation function
g(x) is modelled as

fL(x) =
L

∑
i=1

βig(wi · x j +bi) = o j, j = 1, ...,N (5.1)

where wi = [wi1,wi2, ...,win]
T is the weight vector connecting the ith hidden node and the

input nodes, βi = [βi1,βi2, ...,βim]
T is the weight vector connecting the ith hidden node

and the output nodes, bi is the bias term of the ith hidden node, and wi · x j denotes the
inner product of wi and x j.

17

18 ELM and QELM

This feedforward network can approximate the N samples with zero error such that ∑
L
j=1 ∥o j−

y j∥= 0, so there exist βi, wi, and bi such that

fL(x) =
L

∑
i=1

βig(wi · x j +bi) = y j, j = 1, ...,N (5.2)

This can be written as Hβ = T, where H is the output matrix of the hidden layer and T
is the target matrix for the training data. We can also write it as an optimisation objective
such that

∥Hβ̂ −T∥= minβ∥Hβ −T∥ (5.3)

and the smallest norm least-squares solution of the above system is

β̂ = H†T (5.4)

where H† is the Moore-Penrose generalized inverse of the matrix H. We use the gener-
alised inverse because there could be issues calculating the inverse of the matrix if the
matrix is singular. Note that constructing the pseudoinverse is equivalent to the usual in-
verse in nonsingular (thus invertible) matrices, and approximates well when the matrix is
singular [25].

5.1.2 ELM algorithm

The whole process explained above can be summarised as a four-step algorithm that,
given a training set φ = (xi,yi)|xi ∈Rn,yi ∈Rm, i = 1, ...,N, and hidden node number L,

1. Randomly assign input weight wi and bias bi, for i = 1, ...,L.

2. Calculate the output matrix of the hidden layer H.

3. Calculate the output weight β̂ = H†T, where T = [t1, ...,TN]
T .

4. Use β̂ to make a prediction on new data T̂ = Hβ̂ .

5.2 Quantum Extreme Learning Machine

The idea of a quantum extreme learning machine lies in replacing the complex classical
dynamical system with a quantum one, using the Hilbert space, where quantum states live

5.2 Quantum Extreme Learning Machine 19

(a complex high-dimensional space) as an enhanced feature space of the input data. Nev-
ertheless, post-processing the output in the same way as we did in the classical algorithm.

5.2.1 Data encoding

The first issue to address is introducing all the data into the quantum system. Data en-
coding is a crucial part of all quantum machine learning models, so the expressive power
of various strategies has been studied before [26]. Approaches such as basis encoding,
amplitude encoding, and many others have been studied in the recent literature [27, 28].
However, not all of these encoding strategies are suitable for our purpose. Here, we intro-
duce the amplitude and angle encodings, two of the most widely used encoding schemes
appropriate for our objective.

With amplitude encoding, the data are encoded in the amplitudes of a quantum state. A
classical N-dimensional data point x is represented by the amplitudes of a n-qubit quantum
state |ψx⟩ as

|ψx⟩=
N

∑
i=1

xi |i⟩ (5.5)

where N = 2n, xi is the i-th element of x and |i⟩ is the i-th computational basis state. Since
classical information forms the amplitudes of a quantum state, the input must satisfy the
normalisation condition |x|2 = 1.

This method encodes 2n inputs in n qubits, providing an exponential advantage in terms
of storage. Unfortunately, preparing the superposition state requires a complicated cir-
cuit whose depth scales exponentially [29]. This may be a limitation in using amplitude
encoding on larger quantum computers.

Angle encoding uses rotation gates to encode the data, so given an input feature vector
x = [x1, ...,xN]

T ∈RN , the encoding can be described as

|x⟩=U(xi) |0⟩⊗n (5.6)

where U is a unitary operation parameterized by xi such as rotation gates Rx,Ry,Rz. This
encoding strategy encodes N features in n qubits with a constant depth quantum circuit,
where n ≥ N, so it is very efficient in terms of operations, only requiring a single qubit
rotation to realise it [30], but is not optimal in the number of qubits used [31].

One of the advantages of using angle encoding is that the tensor product produces a num-

20 ELM and QELM

ber of nonlinear basis functions, exponential in the number of qubits [32]. Other classical
approaches need to increase the depth of the circuit to obtain a more significant number
of nonlinear basis functions and increase precision [33].

Despite not being the most efficient in terms of storage, with all the strengths shown
above, we have decided to use angle encoding to encode our data into quantum circuits.
We make an additional trick to increase the model’s precision, modifying angle encoding
to contain more information as we make the quantum system bigger. First, the data is
encoded into the quantum system, all this data is scaled to [0,1]. Then, we duplicate
and slightly modify the data, using the complete quantum system when performing angle
encoding. For example, suppose we have a scaled x input vector and a system with n

qubits. We can define the modified encoding scheme as

|x⟩=
n⊗
i

i∗ x(i%N), (5.7)

where for each qubit, we multiply the qubit index i ∈ [0,n] with the corresponding data
point x chosen, using the modulus operation between the qubit index and the total number
of features N.

The main idea behind this is to take advantage of the complete Bloch sphere, projecting
every data point more dispersedly and achieving a precision increase when measuring.
Notice that if we use the standard angle encoding with a data point x ∈ [0,1], we only use
one quadrant of the Bloch sphere, concentrating all the information in this small region
and making the classification after the measurement less accurate.

Apart from our method, another possibility is to scale the data to [0,2π] and encode it
without data duplication. As we are also using the complete Bloch sphere, this method
improves the performance; however, we see that our scheme still works better.

5.2.2 Quantum substrate

To check whether the idea of QELM is working, we keep the quantum circuit as simple
as possible, not adding extra complexity but maintaining the main advantages of using a
quantum system as a substrate.

As seen in Figure 5.1, the circuit is made up of three main parts; the first is the input
encoding part explained in the previous section, and a cascade of CX gates forms the sec-
ond to generate additional entanglement between qubits. Finally, since we cannot directly

5.2 Quantum Extreme Learning Machine 21

Figure 5.1: Quantum circuit example

access none of the information, a suitable observable M should be measured. This can be
done for all the qubits or a subset.

Formally, this quantum circuit can be described as follows, having a n-qubit system, which
is initialised to

|0⟩⊗n . (5.8)

We feed the input into the quantum system using the input encoding applied to the initial
state

U(x) |0⟩⊗n . (5.9)

Denoting the cascade of gates CX CXn−1,n . . .CX2,3CX1,2 as σ(X) and the entire circuit
action as V (x), this will create the state

V (x) |0⟩⊗n . (5.10)

To extract the information, we select to average the Z observable defined by the matrix

Z =

(
1 0
0 −1

)
(5.11)

in one qubit, with eigenvectors |0⟩ , |1⟩ and eigenvalues 1,−1, respectively. To calculate
the average from the measurements, running and measuring the circuit s >> 1 times, with
s known as shots, will approximate

〈
Z⊗n〉

V (x)|0⟩⊗n . (5.12)

From the measurements, we obtain a vector h ∈R1×n of the expectation values, where n

22 ELM and QELM

is the number of qubits in the system, seeing this h vector as the output of the quantum
substrate.

5.2.3 Training strategies

The original idea of the classical ELM is to treat the whole training set all at once, passing
every example through the dynamical system, i.e. through the single layer feed-forward
network (SLFN). However, we cannot directly translate this strategy and use the quantum
system as a quantum dynamical system, i.e., the quantum substrate.

Due to the input encoding strategy selected (restricted to N features, with N < n, where
n is the number of qubits of the quantum system), and the size of the current quantum
systems (with n ≤ 24 qubits), we are limited in the number of examples that we can pass
through the quantum substrate at a time. Taking this into account, we decide to treat each
example individually, encoding N features for each instance.

As explained above, we get a vector h ∈R1×n of expectation values of Z observable from
the quantum circuit; this is done for every example. Then we concatenate all of those
vectors hi ∈R1×n, i = 1, . . . ,m, where m is the number of examples on the training set. So
we construct a H ∈Rn×m matrix concatenating all the intermediate representations. This is
equivalent to treating all the examples of the training set at once, i.e., the classical method
used in the original ELM.

After constructing the matrix H, we use the same procedure in the original ELM explained
in Section 5.1.1. Still, instead of calculating the β̂ weights using the H matrix we get from
the classical feed-forward hidden layer, we use the one constructed using the intermediate
representations calculated by the quantum substrate.

To summarise, we introduce each example through the quantum substrate; then, we get
an intermediate representation for each sample using the expectation values; hereafter, we
use those representations to construct the H matrix. Then we calculate the Moore-Penrose
generalised inverse of this matrix, that is, H†, and use it to calculate the optimised β̂

weights. Notice that those weights are then used on inference time, as we did with ELM.
Finally, we show the entire process graphically in Figure 5.2.

Apart from the method we explain above, we explore other strategies to see the potential
of different ideas and variations of the original algorithm.

The first variation we explore is to change the training algorithm, that is, to use another

5.2 Quantum Extreme Learning Machine 23

... x =

Example
with

features

Example
with

features

Moore-Penrose pseudo
inverse of . True labels.

Figure 5.2: QELM training illustration

optimisation algorithm to train the model, thus maintaining the quantum substrate as a
computational resource. We choose the classical gradient descent algorithm for the opti-
misation algorithm, changing the learning process into an iterative one.

We also propose using an ensemble of quantum substrates, passing every example for
each one of them and combining the outputs. In this case, we continue with the same
training process, solving it as a one-step optimisation process.

However, we discard both ideas, the first one because we do not see any performance
improvement, but we have seen worse performance and much slower training times. We
think this is mainly because we eliminate the original efficient optimisation process, mak-
ing it iterative and slow.

Although we have seen improvement in model accuracy for the ensemble of quantum
substrate variation, training and inference times are unfeasible. For training the model
with this method, we need to pass every example with N features through a quantum
system with n qubits T times, where T is the number of substrates. This makes the process
very costly in the number of operations and slows the model.

Notice that another option could be to replace the optimisation algorithm with a similar
one. For example, the Ridge Regression method solves linear least squares but uses the
L2-norm regularisation technique to reduce overfitting. However, we did not implement
this variation because it is beyond the scope of this work.

6. CHAPTER

Results

Since quantum computers are currently more difficult to access than classical computers,
all the experiments have been carried out using quantum simulators [34]. These simu-
lators perform all the linear algebraic operations that mathematically describe quantum
systems. This is very demanding in terms of computation, so to reduce this overhead, all
the benchmarks are done using small and not very complex (in terms of the number of
features) standard datasets for binary classification problems.

6.1 Experimental setup

6.1.1 Execution environment

We have explored a wide range of quantum simulators from different quantum software
libraries. In the end, we chose a combination of two of them, namely Pennylane 1, by
Xanadu, and Qiskit 2, by IBM. We use the first one to build the quantum circuits, making it
possible to run them with most of the simulators and real hardware available. In particular,
we use the ideal (noise-free) qiskit.aer simulator provided by Qiskit to run the circuits.

Apart from the noiseless simulations done using the Aer simulator, we also perform noisy
simulations. More specifically, we use the Noise Model object provided by Qiskit, with

1https://pennylane.ai/
2https://qiskit.org/

25

https://pennylane.ai/
https://qiskit.org/

26 Results

which we can add the noise parameters of the real IBM quantum processors to our simu-
lated quantum circuits. It should be noted that these noise emulations currently have their
limitations and are not exact replications. All the simulations, both noiseless and noisy,
have been executed on 1024 shots.

We build our noise model using the 16 qubits ibmq_guadalupe quantum computer noise
parameters. That is, for depolarizing noise, an Avg. CNOT error of p ≈ 0.01 and an Avg.
Readout error of p ≈ 0.02, and for thermal relaxation noise, an Avg. Amplitude damping
T 1 ≈ 93µs, and an Avg. Phase damping T 2 ≈ 95µs.

On the other hand, even having tried to use real quantum hardware provided by IBM and
IonQ, the restrictive access queue policies have made it unfeasible.

6.1.2 Datasets

For the datasets, we have selected both synthetically generated data using the scikit-learn

library (SKL) and real data from the UCI Machine Learning Repository.

To aid the reader in judging the results, we will briefly describe the datasets using a short
description of the problem, the number of examples, and the number of features. Also,
notice that the dataset names use the format [UCI | SKL]_name, where the first part of the
name describes the data source, and the second part is the name of the dataset.

• SKL_make-circles: produces Gaussian data with a spherical decision boundary for
binary classification. There are 100 samples (points), and 2 features (x, y).

• SKL_make-gaussian_quantiles: divides a single Gaussian cluster into near-equal-
size classes separated by concentric hyperspheres for binary classification. There
are 100 samples (points), and 2 features (x, y).

• SKL_make-moons: produces two interleaving half circles for binary classification.
There are 100 samples (points), and 2 features (x, y).

• SKL_make-classification: generate a random binary classification problem with some
noise. There are 100 samples (points), and 2 features (x, y).

• UCI_breast-cancer: there are 569 samples (patients), and 30 features (thickness,
cell size uniformity, etc.). The variable to predict is encoded as 2 (benign) and 4
(malignant).

6.1 Experimental setup 27

• UCI_banknote-authentication: there are 1372 samples (images of banknotes), and
4 features (variance of the image, skewness, kurtosis, and entropy). The variable to
predict is encoded as 0 (authentic) and 1 (forgery).

• UCI_haberman-survival: there are 306 samples (patients), and 3 features (age, year
of operation, number of positive auxiliary nodes detected). The variable to predict
is encoded as 0 (survived) and 1 (died).

• UCI_early-diabetes: there are 520 samples (questionnaires from patients), and 16
(age, sex, sudden weight loss, alopecia, etc.). The variable to predict is encoded as
1 (positive) and 0 (negative).

Name Examples Features

SKL_make-circles 100 2
SKL_make-gaussian_quantiles 100 2
SKL_make-moons 100 2
SKL_make-classification 100 2
UCI_breast-cancer 569 30
UCI_banknote-authentication 1372 3
UCI_haberman-survival 306 3
UCI_early-diabetes 520 16

Table 6.1: Summary of the datasets

6.1.3 Training and evaluation framework

Every dataset is divided into two subsets, namely training and test sets. We keep the 80%
of the dataset for the train set and the remaining 20% for the test set. Note that these splits
are made using the same random seed to maintain the reproducibility of the experiments.

We test the scalability of quantum systems using different numbers of qubits; more pre-
cisely, we select a set of various qubits depending on the number of features for each
problem. However, the system with the highest number of qubits is still tiny to keep the
experiments as close as possible to the actual hardware.

The problem we try to solve is a binary classification problem, but as some of the datasets
are not balanced in the number of labels to predict, so we need to be careful with the
metrics we use.

28 Results

For balanced datasets, we have used the accuracy metric defined as

Accuracy =
T P+T N

T P+T N +FP+FN
, (6.1)

where TP are true positives, TN true negatives, FP false positives, and FN false negatives.
On the other hand, for unbalanced datasets, as the accuracy can be misleading in these
cases, we have decided to use a combination of three metrics, namely precision, recall,
and F1 score. Those are defined as follows

Precision =
T P

T P+FP
, (6.2)

Recall =
T P

T P+FN
(6.3)

F1_score =
2∗ (Precision∗Recall)

Precision+Recall
. (6.4)

In Section 6.2, we use precision, recall and f1 score to evaluate the models on unbalanced
datasets. However, as the last one is defined as the harmonic mean of the other two, we
will use the f1 score as the primary metric to measure the performance even though we
present all three metrics.

In order to provide more reliable results, each training and evaluation process is performed
5 times, taking the mean and standard deviation of the computed metrics.

6.2 Analysis of the results

We first want to check if the model can perform well with linearly and non-linearly sep-
arable data, using four synthetically generated data from scikit-learn library. Then, as a
sanity check, we run a simple linear model incapable of correctly classifying non-linear
data, particularly a linear Support Vector Machine (SVM) [35].

Once we have verified that our model is capable of performing well with linear and non-
linear data, we test our model on the real datasets from UCI Machine Learning Repository

against the ELM and a Random Forest Classifier (RF) [36].

6.2 Analysis of the results 29

6.2.1 Scikit-learn datasets

As shown in Figure 6.1, we have one linearly separable dataset, make-classification (a),
and three non-linearly separable datasets, namely make-circles (b), make-moons (c), and
make-gaussian_quantiles (d). All these datasets are balanced in the number of labels to
predict; therefore, the use of accuracy is valid when measuring the model’s performance.

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Make-classification

Class 0
Class 1

(a) Make-classification

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Make-circles

Class 0
Class 1

(b) Make-circles

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Make-moons

Class 0
Class 1

(c) Make-moons

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Make-gaussian quantiles

Class 0
Class 1

(d) Make-gaussian_quantiles

Figure 6.1: 2d visualization of the scikit-learn datasets

We start our analysis with the make-classification dataset, where, as can be seen in Figure
6.2 (a), for the system of 2 qubits the model performs worse than the linear SVM baseline.
However, with a system of 4 qubits or more, the model matches or outperforms the linear
baseline.

For the non-linearly separable datasets, our model outperforms the linear SVM on make-
circle (b) and make-gaussian (d). Being QELM, capable of classifying correctly around

30 Results

the 80% of the test examples for both cases with a system of 8 qubits. On the other
hand, SVM classifies around 40% of the examples correctly, that is, worse than a random
model. In the case of the make-moons datasets, we get a weird result, with SVM classify-
ing the test set perfectly and QELM going from the accuracy of 82.5% with two qubits to
classifying perfectly all examples with eight qubits. The not expected extraordinary per-
formance of the SVM may have been due to the small number of examples in the dataset
and favourable train-test splits, where the linear model has been able to separate the data
ideally with a line.

We do not see any significant influence of the noisy simulations, being very similar in
performance to the noiseless ones.

2 4 8 10
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Make-classification

QELM
QELM noise
SVM

(a) Make-classification

2 4 8 10
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Make-circle

QELM
QELM noise
SVM

(b) Make-circles

2 4 8 10
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Make-moons

QELM
QELM noise
SVM

(c) Make-moons

2 4 8 10
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Make-gaussian

QELM
QELM noise
SVM

(d) Make-gaussian_quantiles

Figure 6.2: Accuracy score for scikit-learn datasets

6.2 Analysis of the results 31

6.2.2 UCI breastcancer

As this dataset contains 30 features, and with the encoding strategy we chose, we would
need 30 qubits to get the information into the quantum system; we reduce the dimen-
sionality with Principal Component Analysis (PCA) to three features. We use the same
number of qubits for the smallest system, scaling it up to twelve qubits for the biggest
one.

As shown in Figure 6.3, our model performs pretty well, getting around 80% of F1 score,
but not even matching the classical models, with both Random Forest Classifier and ELM
getting around 97% of F1 score. However, we get similar results to other works like
[37], where they use other quantum methods like quantum-kernel support vector machine
(qKSVM) and quantum distance classifier (qDS) with a higher number of features and
real quantum hardware.

3 6 9 12
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

QELM
QELM noise
RandomForest
ELM

(a) Precision

3 6 9 12
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

QELM
QELM noise
RandomForest
ELM

(b) Recall

3 6 9 12
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

F1
sc

or
e

QELM
QELM noise
RandomForest
ELM

(c) F1 score

Figure 6.3: UCI Breastcancer results

32 Results

6.2.3 UCI banknote authentication

For this problem, as shown in Figure 6.4, our QELM model not only matches its classical
counterpart but is also very close to the Random Forest Classifier, which is the standard
benchmark for tabular data in the machine learning community. Here, we can see a clear
performance boost when increasing the number of qubits of the quantum system, plateau-
ing around six qubits. However, we get the same performance for both noisy and noiseless
simulations, but highlight consistent results for both cases.

3 6 9 12
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

QELM
QELM noise
RandomForest
ELM

(a) Precision

3 6 9 12
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0
R

ec
al

l

QELM
QELM noise
RandomForest
ELM

(b) Recall

3 6 9 12
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

F1
sc

or
e

QELM
QELM noise
RandomForest
ELM

(c) F1 score

Figure 6.4: UCI Banknote authentication results

6.2.4 UCI haberman survival

As can be seen in Figure 6.5, both ELM and QELM have a similar performance, around
82% of F1 score, overcoming the Random Forest Classifier by a slight margin. Contrary

6.2 Analysis of the results 33

to the previous problem, we do not see any significant improvement in the results when
increasing the number of qubits in this problem, as well as we do not see any changes
on the results when using noisy simulations. There have been other attempts to solve this
problem using quantum methods like [38], where they achieve a performance similar to
ours.

3 6 9 12
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

QELM
QELM noise
RandomForest
ELM

(a) Precision

3 6 9 12
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

QELM
QELM noise
RandomForest
ELM

(b) Recall

3 6 9 12
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

F1
sc

or
e

QELM
QELM noise
RandomForest
ELM

(c) F1 score

Figure 6.5: UCI haberman survival results

6.2.5 UCI early diabetes

In the same way, as we did with the UCI breastcancer dataset in Section 6.2.2, we also
reduce the dimensionality of this dataset to three features using PCA. As shown in Figure
6.6, this is the worst performance we get from our QELM model, with a gap between
the classical models and the quantum model of roughly 20% in terms of F1 score. It is
possible that by reducing the dimensionality, we also delete some vital information from

34 Results

the data, and our model is not capable of learning appropriately with a reduced number of
relevant features. Additionally, as in the previous problem, we do not see any performance
boost scaling the number of qubits or using noisy simulations.

3 6 9 12
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

QELM
QELM noise
RandomForest
ELM

(a) Precision

3 6 9 12
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

QELM
QELM noise
RandomForest
ELM

(b) Recall

3 6 9 12
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

F1
sc

or
e

QELM
QELM noise
RandomForest
ELM

(c) F1 score

Figure 6.6: UCI Early diabetes results

7. CHAPTER

Conclusions

Despite the recent efforts and improvements over the years in the field of quantum com-
puting, the current NISQ quantum computers are far from ideal, suffering from unwanted
noise. QELM tries to take advantage of this problem and presents itself as an alternative
that can be implemented using the current real hardware.

We present and implement a circuit-based Quantum Extreme Learning Machine frame-
work, successfully tackling supervised learning tasks in binary classification. However,
our QELM could not outperform classical machine learning models, highlighting that
it is important to maintain a grounded perspective when investigating novel, interesting
quantum machine learning techniques.

Wanting to get closer to the results we would get with real hardware, we use noise models
from real IBM quantum computers to simulate the dynamics of these systems. However,
as these models are approximations of the error, and there is no classical computer that
can faithfully simulate the complex dynamics of the quantum noise, we have not been
able to find any performance boost when using them.

Quantum computers are growing fast in the number of qubits available and improving
with new methodologies and topologies that reduce the upper bound of the noise present
in the actual QPUs. All these advances will surely improve the current methods and may
launch a new scenario where hybrid quantum-classical methods can provide a viable al-
ternative to purely classical methods.

Finally, due to the versatility of the QELM and QRC frameworks, they can be imple-

35

36 Conclusions

mented using a wide range of quantum platforms, opening a whole world of possibilities
to quantum computing and machine learning researchers.

8. CHAPTER

Future work

The field of quantum based reservoir computing is still in its early stages, so there is much
to be said for future directions. The first thing we could explore to improve this work could
be to replicate this work but using a real quantum device, in order to determine if the
results are improved by the richer dynamics of the quantum hardware, particularly with
respect to noise variations and entanglement, but also to check if we could take advantage
of the quantum speed-up [39]. As quantum computers become more accessible and their
capabilities improve, there will be room for more information to be encoded into more
qubits, as well as with more reliable results.

Other different encoding schemes could provide us with the opportunity to encode larger
data into quantum computers. For example, in the idea of data reuploading [40], they
discuss how to load a higher-dimensional data point by breaking it down into sets of
sequentially parameterized gates using only one qubit.

Also, the use of other types of quantum substrates needs to be investigated. Nuclear mag-
netic resonance in molecules [17] and trapped ions are potential platforms for spin-based
QELM systems [41], as well as spin systems in terms of quantum circuits as depicted in
[42]. Neutral atom platforms are another option to consider, motivated by their long co-
herence times, quantum registers with a larger number of qubits, and higher connectivity
[43]. Furthermore, other physical implementations are possible, for example, photonic ex-
perimental setups [44], arrays of quantum dots in semiconductor devices, and in coupled
superconducting qubits [45].

Apart from the ideas shown above, we can consider other interesting lines of research,

37

38 Anexo

such as combining some quantum substrates as an ensemble of them. This has been ex-
plored in [46, 47], where they use several different substrates, running them in parallel
and combining their outputs.

Finally, as we rely on quantum noise as a valuable resource and the current quantum com-
puters are usually affected by these phenomena, studying what kind of noise in quantum
hardware, and what structure of quantum processors is more suitable could be crucial
[4, 48].

Bibliography

[1] D. Monroe, “Neuromorphic computing gets ready for the (really) big time,” Com-

mun. ACM, vol. 57, p. 13–15, jun 2014.

[2] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory and
applications,” p. 13, 2006.

[3] P. Mujal, “Quantum Reservoir Computing for Speckle-Disorder Potentials,”
arXiv:2201.11096, Jan. 2022.

[4] Y. Suzuki, Q. Gao, K. C. Pradel, K. Yasuoka, and N. Yamamoto, “Natural quan-
tum reservoir computing for temporal information processing,” Scientific Reports,
vol. 12, p. 1353, Jan. 2022.

[5] P. Dirac, “A new notation for quantum mechanics,” 1939.

[6] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information:

10th Anniversary Edition. USA: Cambridge University Press, 10th ed., 2011.

[7] K. Fujii and K. Nakajima, “Harnessing disordered-ensemble quantum dynamics for
machine learning,” Phys. Rev. Applied, vol. 8, p. 024030, Aug 2017.

[8] K. Nakajima, K. Fujii, M. Negoro, K. Mitarai, and M. Kitagawa, “Boosting compu-
tational power through spatial multiplexing in quantum reservoir computing,” Phys.

Rev. Applied, vol. 11, p. 034021, Mar 2019.

[9] A. Kutvonen, T. Sagawa, and K. Fujii, “Optimizing a quantum reservoir computer
for time series prediction,” arXiv:1807.03947, June 2020.

[10] Q. H. Tran and K. Nakajima, “Higher-Order Quantum Reservoir Computing,” Oct.
2020.

39

40 Anexo

[11] J. Chen and H. I. Nurdin, “Learning Nonlinear Input-Output Maps with Dissipative
Quantum Systems,” Quantum Information Processing, vol. 18, p. 198, July 2019.

[12] J. Chen, H. I. Nurdin, and N. Yamamoto, “Temporal information processing on noisy
quantum computers,” Phys. Rev. Applied, vol. 14, p. 024065, Aug 2020.

[13] R. Martínez-Peña, J. Nokkala, G. L. Giorgi, R. Zambrini, and M. C. Soriano, “In-
formation Processing Capacity of Spin-Based Quantum Reservoir Computing Sys-
tems,” Cognitive Computation, Oct. 2020.

[14] S. Dasgupta, K. E. Hamilton, and A. Banerjee, “Characterizing the memory capacity
of transmon qubit reservoirs,” May 2022.

[15] L. C. G. Govia, G. J. Ribeill, G. E. Rowlands, H. K. Krovi, and T. A. Ohki, “Quan-
tum reservoir computing with a single nonlinear oscillator,” Phys. Rev. Research,
vol. 3, p. 013077, Jan 2021.

[16] S. Ghosh, A. Opala, M. Matuszewski, T. Paterek, and T. C. H. Liew, “Quantum
reservoir processing,” npj Quantum Information, vol. 5, p. 35, Dec. 2019.

[17] M. Negoro, K. Mitarai, K. Fujii, K. Nakajima, and M. Kitagawa, “Machine learning
with controllable quantum dynamics of a nuclear spin ensemble in a solid,” June
2018.

[18] K. Fujii and K. Nakajima, “Quantum reservoir computing: a reservoir approach to-
ward quantum machine learning on near-term quantum devices,” arXiv:2011.04890,
Nov. 2020.

[19] L. Domingo, G. Carlo, and F. Borondo, “Optimal quantum reservoir computing for
the NISQ era,” May 2022.

[20] R. O. Vallejos, F. de Melo, and G. G. Carlo, “The principle of majorization: appli-
cation to random quantum circuits,” Physical Review A, vol. 104, p. 012602, July
2021. arXiv:2102.09999.

[21] F. Hu, S. Khan, G. Angelatos, and H. Tureci, “A Quantum Reservoir Computing
Approach to Image Classification,” in APS March Meeting Abstracts, vol. 2021 of
APS Meeting Abstracts, p. V32.001, Jan. 2021.

[22] M. V. Bastida, Supervised Learning with Quantum Reservoir Computing. Princeton
University Senior Theses, Princeton University, 2021.

BIBLIOGRAPHY 41

[23] H. Kawai and Y. O. Nakagawa, “Predicting excited states from ground state wave-
function by supervised quantum machine learning,” Machine Learning: Science and

Technology, vol. 1, p. 045027, Dec. 2020.

[24] A. Ben-Israel and T. Greville, “Generalized inverses: theory and applications,” 1974.

[25] R. Penrose, “A generalized inverse for matrices,” Mathematical Proceedings of the

Cambridge Philosophical Society, vol. 51, pp. 406–413, July 1955.

[26] M. Schuld, R. Sweke, and J. J. Meyer, “The effect of data encoding on the expres-
sive power of variational quantum machine learning models,” Physical Review A,
vol. 103, p. 032430, Mar. 2021.

[27] M. Weigold, J. Barzen, F. Leymann, and M. Salm, “Expanding Data Encoding Pat-
terns For Quantum Algorithms,” in 2021 IEEE 18th International Conference on

Software Architecture Companion (ICSA-C), pp. 95–101, Mar. 2021.

[28] S. Lloyd, M. Schuld, A. Ijaz, J. Izaac, and N. Killoran, “Quantum embeddings for
machine learning,” Tech. Rep. arXiv:2001.03622, arXiv, Feb. 2020.

[29] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, “Parameterized quantum circuits
as machine learning models,” Quantum Science and Technology, vol. 4, p. 043001,
Nov. 2019.

[30] R. LaRose and B. Coyle, “Robust data encodings for quantum classifiers,” Physical

Review A, vol. 102, p. 032420, Sept. 2020.

[31] E. Grant, M. Benedetti, S. Cao, A. Hallam, J. Lockhart, V. Stojevic, A. G. Green, and
S. Severini, “Hierarchical quantum classifiers,” npj Quantum Information, vol. 4,
pp. 1–8, Dec. 2018.

[32] E. Stoudenmire and D. J. Schwab, “Supervised Learning with Tensor Networks,”
in Advances in Neural Information Processing Systems, vol. 29, Curran Associates,
Inc., 2016.

[33] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,”
Physical Review A, vol. 98, p. 032309, Sept. 2018.

[34] E. Altman, K. R. Brown, G. Carleo, L. D. Carr, E. Demler, C. Chin, B. DeMarco,
S. E. Economou, M. A. Eriksson, K.-M. C. Fu, M. Greiner, K. R. A. Hazzard, R. G.
Hulet, A. J. Kollar, B. L. Lev, M. D. Lukin, R. Ma, X. Mi, S. Misra, C. Monroe,

42 Anexo

K. Murch, Z. Nazario, K.-K. Ni, A. C. Potter, P. Roushan, M. Saffman, M. Schleier-
Smith, I. Siddiqi, R. Simmonds, M. Singh, I. B. Spielman, K. Temme, D. S. Weiss,
J. Vuckovic, V. Vuletic, J. Ye, and M. Zwierlein, “Quantum Simulators: Architec-
tures and Opportunities,” PRX Quantum, vol. 2, p. 017003, Feb. 2021.

[35] C. J. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” Data

Mining and Knowledge Discovery, vol. 2, pp. 121–167, June 1998.

[36] L. Breiman, “Random Forests,” Machine Learning, vol. 45, pp. 5–32, Oct. 2001.

[37] S. Moradi, C. Brandner, C. Spielvogel, D. Krajnc, S. Hillmich, R. Wille, W. Drexler,
and L. Papp, “Clinical data classification with noisy intermediate scale quantum
computers,” Scientific Reports, vol. 12, p. 1851, Feb. 2022.

[38] I. F. Araujo, D. K. Park, F. Petruccione, and A. J. da Silva, “A divide-and-conquer
algorithm for quantum state preparation,” Scientific Reports, vol. 11, mar 2021.

[39] Rønnow Troels F., Wang Zhihui, Job Joshua, Boixo Sergio, Isakov Sergei V., Wecker
David, Martinis John M., Lidar Daniel A., and Troyer Matthias, “Defining and de-
tecting quantum speedup,” Science, vol. 345, pp. 420–424, July 2014.

[40] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and J. I. Latorre, “Data re-
uploading for a universal quantum classifier,” Quantum, vol. 4, p. 226, Feb. 2020.

[41] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. Allman, C. H.
Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, and B. Neyenhuis,
“Demonstration of the trapped-ion quantum CCD computer architecture,” Nature,
vol. 592, pp. 209–213, Apr. 2021.

[42] N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N. Quesada, and S. Lloyd,
“Continuous-variable quantum neural networks,” Physical Review Research, vol. 1,
p. 033063, Oct. 2019.

[43] R. A. Bravo, K. Najafi, X. Gao, and S. F. Yelin, “Quantum reservoir computing using
arrays of Rydberg atoms,” arXiv:2111.10956, Nov. 2021.

[44] A. J. Kollár, M. Fitzpatrick, and A. A. Houck, “Hyperbolic lattices in circuit quan-
tum electrodynamics,” Nature, vol. 571, pp. 45–50, July 2019.

[45] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow,
and J. M. Gambetta, “Supervised learning with quantum-enhanced feature spaces,”
Nature, vol. 567, pp. 209–212, Mar. 2019.

BIBLIOGRAPHY 43

[46] G. Angelatos, H. Tureci, F. Hu, and S. Khan, “Quantum Annealing Systems as
Reservoirs I: Design and Performance,” in APS March Meeting Abstracts, vol. 2022
of APS Meeting Abstracts, p. W37.004, Jan. 2022.

[47] S. Vintskevich and D. Grigoriev, “Computing with two quantum reservoirs con-
nected via optimized two-qubit nonselective measurements,” May 2022.

[48] T. Kubota, Y. Suzuki, S. Kobayashi, Q. H. Tran, N. Yamamoto, and K. Nakajima,
“Quantum Noise-Induced Reservoir Computing,” July 2022.

[49] P. Mujal, R. Martínez-Peña, J. Nokkala, J. García-Beni, G. L. Giorgi, M. C. Soriano,
and R. Zambrini, “Opportunities in Quantum Reservoir Computing and Extreme
Learning Machines,” Advanced Quantum Technologies, vol. 4, no. 8, p. 2100027,
2021.

[50] M. Schuld and F. Petruccione, Supervised Learning with Quantum Computers.
Quantum Science and Technology, Springer International Publishing, 2018.

	Summary
	Contents
	List of Figures
	List of Tables
	Introduction
	The aims of the project
	Introduction to Quantum Computing
	The qubit
	Multiple qubits
	Quantum gates
	Measurement
	Expectation value
	Quantum entanglement
	Quantum circuits

	State of the art
	ELM and QELM
	Extreme Learning Machine
	Formal description
	ELM algorithm

	Quantum Extreme Learning Machine
	Data encoding
	Quantum substrate
	Training strategies

	Results
	Experimental setup
	Execution environment
	Datasets
	Training and evaluation framework

	Analysis of the results
	Scikit-learn datasets
	UCI breastcancer
	UCI banknote authentication
	UCI haberman survival
	UCI early diabetes

	Conclusions
	Future work
	Bibliography

