
Citation: Gil, G.; Arnaiz, A.; Higuero,

M.; Diez, F.J.; Jacob, E. Context-Aware

Policy Analysis for Distributed Usage

Control. Energies 2022, 15, 7113.

https://doi.org/10.3390/en15197113

Academic Editor: Islam Md

Rizwanul Fattah

Received: 22 July 2022

Accepted: 22 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Context-Aware Policy Analysis for Distributed Usage Control
Gonzalo Gil 1,* , Aitor Arnaiz 1 , Mariví Higuero 2 , Francisco Javier Diez 1 and Eduardo Jacob 2

1 Tekniker, Basque Research and Technology Alliance (BRTA), Iñaki Goenaga 5, 20600 Eibar, Spain
2 Escuela de Ingeniería de Bilbao, Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
* Correspondence: gonzalo.gil@tekniker.es

Abstract: To boost data spaces and benefit from the great opportunities that they present, data
sovereignty must be provided by Distributed Usage Control (DUC). Assuming that DUC will be
managed by implementing and enforcing policies, notable efforts have already been undertaken in
the context of Access Control (AC) regarding policy analysis due to the impact of low-quality policies
on security. In this regard, this paper proposes that policy analysis in the DUC context should be
understood as an extension of the AC, which is further affected by other challenging features, chief
among which are context-aware control and extended control through action requirements. This
paper presents a novel Context-Aware Policy Analysis (CAPA) algorithm for detecting inconsistencies
and redundancies for DUC policies by supporting a large set of heterogeneous conditions. In this
regard, the dependent relationship of conditions is formulated which will lead to more efficient
conflict detection. By implementing this concept, a novel tree structure that combines a resource and
a policy structure is presented to search for and compare relevant rules from policies. Built on the
tree structure and through the formalization of rule conflicts, CAPA is developed and the security
and performance it provides is tested in a wind energy use case.

Keywords: data sovereignty; distributed usage control; policy quality; energy data; conditions

1. Introduction

In a study conducted by the European Commission [1] in which many companies
of different sizes and sectors were interviewed, companies recognized the importance
of Business-to-Business (B2B) data sharing. Among others, the following benefits stand
out: improvements in the design of products and services, the generation of new business
models, and the establishment of new partnerships. As a result, the European Commission
is promoting the development of European Data Spaces [2] where companies can participate
in distributed collaborative ecosystems as data providers by making their data available
under certain requirements, and as data consumers by exploiting the data available. This
serves to boost the data economy, competitiveness, and innovation at the European level.

In the energy sector, being able to process data acquired from different stakehold-
ers in the course of power generation, transmission, transformation, distribution, and
consumption would significantly advance knowledge to improve the performance of the
value chain [3]. However, stakeholders are reluctant to share data if they lose control over
its use once it reaches the distributed consumer to be exploited. As a result, knowledge
extraction from data becomes a challenge. In this regard, ensuring data sovereignty [4],
defined as the self-determination of individuals and organizations regarding the use of
their data, becomes the key enabler to boost data sharing, enable data processing, and gain
knowledge to take a big step in the energy sector. This is the case in areas such as wind
energy generation, where recent analyses have highlighted data sharing as an important
drawback [5–7]. For instance, access to data from e.g., turbine performance, usually re-
tained by wind farm operators and OEMs (original equipment manufacturers), by different
stakeholders (e.g., component OEMs) would optimize the maintenance & operation of
the value chain [8]. Data sovereignty calls for future control over the usage of the data in

Energies 2022, 15, 7113. https://doi.org/10.3390/en15197113 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15197113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-8988-4986
https://orcid.org/0000-0002-9970-4803
https://orcid.org/0000-0001-8451-556X
https://orcid.org/0000-0001-7093-0586
https://doi.org/10.3390/en15197113
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15197113?type=check_update&version=2


Energies 2022, 15, 7113 2 of 25

distributed infrastructures, also denoted as Distributed Usage Control (DUC) [9]. In this
sense, Access Control (AC) models can be considered a good starting point from which to
address the development of DUC approaches.

Assuming that DUC will be managed through the implementation and enforcement
of sticky policies [10], AC research literature [11] has already demonstrated that expressing
policies without conflicts, i.e., providing good quality, is not trivial. Furthermore, low-
quality policies have a great impact on:

• Security: leading to unauthorized data disclosure and/or denial of legal access, thus
affecting data sovereignty.

• Performance: requiring longer policy enforcement times, which affects data sharing
performance.

Thus, ensuring security in DUC through policy quality becomes crucial to ensure data
sovereignty and to encourage data sharing.

The DUC model can be considered as an extension of AC models [12], but it introduces
some significant features that further affect policy quality and render the adoption of
existing AC policy analysis methods [13,14] non-feasible. These are the following:

• Context-aware control: due to the importance of context information for policy en-
forcement in distributed infrastructures, permission and prohibition rules are refined
through much more numerous and diverse conditions than in AC. That is, while some
conditions may apply to different domains (e.g., time or location), as they are non-
dependent, dependent conditions such as those related to time can be heterogeneously
described (e.g., time intervals or an event in time).

• Extended control by supporting action requirements: to further control distributed
data usage, permission rules are refined by supporting duty rules that define the
actions that must be executed before and after data usage is granted.

This paper addresses data sovereignty by providing security in DUC. Addressing
both new features of DUC is of great importance, but we focus on analyzing the rules
within policies that support context-aware control. In this regard, we take the policy quality
requirements already defined in AC [11], ensure policy correctness by implementing
semantic technologies, and we address security through a policy-analysis-based approach
that ensures policy consistency and minimality. Consistency ensures that two policies
do not express contradictory rights that may lead to unauthorized data disclosure, while
minimality makes sure that there are no redundant policies, so security risks are avoided
in policy management. Policy completeness and relevance may certainly affect security
but providing them requires a data usage transaction-based analysis which lies outside the
scope of this paper.

Following a logical approach, we face the challenge of supporting DUC-specific
features based on existing AC policy analysis approaches. In this regard, we consider
tree-based modeling to be the most suitable approach, because it enables all consistency
and minimality conflicts to be detected. This means that security is always ensured. Thus,
it guarantees data sovereignty, which is of utmost importance for DUC to reduce the
reluctance to share data. This approach can also be adapted to the complexity introduced
by conditions on rules. On this basis, this paper makes the following contributions:

• A novel tree structure combining a Policy Tree (PT) and a Resource Tree (RT) is pre-
sented. Using this tree structure, security can be assessed and provided by efficiently
analyzing consistency and minimality for DUC with the support of context-aware
control. On the one hand, by identifying, formulating, and implementing the depen-
dent relationship of conditions, relevant rules are efficiently searched and irrelevant
analyses are thus avoided. On the other hand, dependent conditions are stored in ref-
erence formats. In this way, efficient comparisons can be made between heterogeneous
conditions.

• A method for assessing rule conflicts in the form of inconsistencies and redundancies
is formalized. In this regard, depending on whether rules are of permission or pro-



Energies 2022, 15, 7113 3 of 25

hibition, the inferences of their refinement with conditions (e.g., time intervals) for
dependent but non-overlapping conditions (the rest of the time) are considered.

• A Context-Aware Policy Analysis (CAPA) algorithm is presented. It is built on the tree
structures presented and implements the proposed assessment method for rule conflicts.

Lastly, to assess the feasibility of this approach, CAPA is formalized and implemented
in a real wind energy use case. It is demonstrated that security can be provided. Thus,
ensuring data sovereignty, leading to the sharing of data from wind turbine performance
along the value chain, which will allow wind farm maintenance and operation to be
optimized. Its own performance is also analyzed.

The rest of the paper is structured as follows: Section 2 reviews existing work on
policy quality in DUC. Due to the lack of research in this domain, related work on AC is
also reviewed with special focus on the tree-based modeling approach. Section 3 defines
and formulates a DUC model encompassing existing models, thus generalizing the contri-
butions presented throughout the paper. Section 4 introduces several definitions, which
are used to present the tree structure and the rule conflict assessment method that enable
policy analysis algorithms to be developed. To enable an efficient policy analysis to be
conducted, Section 5 describes the tree structure composed of an RT and a PT. Section 6 sets
out the assessment method for conflicts between rules. Section 7 presents CAPA, based
on the tree structure explained in Section 5, and implements the rule conflict assessment
method defined in Section 6. Section 8 confirms the feasibility of CAPA in a wind energy
use case by presenting its ability to ensure security and by analyzing its performance.
Finally, conclusions about this work and future lines of research are highlighted.

2. Related Work

Below, we provide an overview of the related work published so far about policy
quality in DUC. The related work on policy quality in AC is considered of great interest as
a starting point for developing DUC solutions, so it is also analyzed, with particular focus
on the tree-based modeling approach.

2.1. DUC Policy Quality

Lazouski et al. [15] conducted a survey on the pioneering Usage Control (UCON)
model [16]. This paper identifies security analysis, policy completeness, and consistency as
important fields of research within usage control that have not yet been studied but that
need to be addressed as fundamental points.

Kelbert et al. [17] present the Distributed Usage Control Framework. For the imple-
mentation of DUC policies, the Obligation Specification Language (OSL) [18] was followed.
However, policy quality analysis is not addressed.

The International Data Spaces Association (IDSA) Reference Architecture Model [19],
based on the reference Open Digital Rights Language (ODRL) information model (IM)
(https://www.w3.org/TR/odrl-model/ accessed on 26 September 2022), formalizes the
IDSA usage policy language (UPL) within the IDSA IM (https://w3id.org/idsa/core
accessed on 26 September 2022) for the implementation of DUC policies [20]. Furthermore,
built on the IDSA UPL, Bader et al. [21] present an overview of the challenges posed by
DUC policies if they are to be enforceable. However, this work is incomplete and policy
quality is not mentioned.

2.2. AC Policy Quality

In AC research literature, major efforts have been dedicated to policy quality assess-
ment. In this regard, Aqib et al. [13] report the first survey on policy analysis mechanisms.
This paper finds that policy can be analyzed through different approaches, denoted as
formal methods, model checking, matrix-based approaches, mining techniques, mutation
testing techniques, and others. Policy quality requirements are also limited to consistency
and completeness. In this regard, based on existing work, each mechanism is reviewed and
classified according to the policy analysis strategy used and the policy quality requirements

https://www.w3.org/TR/odrl-model/
https://w3id.org/idsa/core


Energies 2022, 15, 7113 4 of 25

addressed. Later, Bertino et al. [11] analyze policy quality in more depth. As a result, policy
quality requirements are extended by including minimality, relevance, and correctness.

Based on these defined policy quality requirements and the increased number of
papers on policy analysis in AC, Jabal et al. [14] conducted a more extensive and mature
survey. Formal methods, model checking, data mining, graph/tree-based modeling, and
mutation testing were identified as the most widely used approaches for policy analysis.
Additionally, the large body of existing research was reviewed and classified based on the
approach used and the policy quality requirements addressed. As a result, a comparison
was drawn between the most widely used approaches and the policy quality requirements
most widely addressed.

Because of the extensive research on policy analysis for AC, gathered in the previous
survey, and due to some common features considered of interest for our approach for
analyzing the quality of policies in the DUC context, we will deepen and narrow the
research on specific tree-based modeling policy analysis approaches, with a special focus
on papers that address context-aware control.

Chao et al. [22] formally define inconsistency for the role-based AC model [23] and
address it through a checking algorithm that analyzes a set of rules defined for hierarchical
classified roles. However, consistency is highly oriented to ensure the concepts of separation
of duty and the cardinality constraint.

Sun et al. [24] present a conflict detection algorithm to ensure consistency in the
purpose AC model by supporting hierarchically classified usage purposes. Specifically,
inconsistencies are defined in a novel way. It is defined that if a usage purpose is already
permitted for a resource, dependent usage purposes are denied by inference for the same
resource and cannot be permitted. Otherwise, an inconsistency is detected. In this approach,
it is assumed that rules are always defined as permissions.

Aqib et al. [25] present an algorithm for detecting inconsistencies for XACML [26],
addressing rule refinement through Boolean expressions. However, it is limited to time-
related Boolean expressions, which are always expressed as time ranges. Inconsistency is
defined as contrary decisions for the same resource in overlapping time intervals. Thus,
conditions are oversimplified because their inferences for dependent but non overlapping
conditions are not considered.

Finally, although the concept of dependent relationship of resources is presented by
Mohan et al. [27], Deng et al. [28] address it in depth and the transmission relationship of
access authority is presented. In this regard, a conflict algorithm is presented for XACML
by supporting time-based conditions expressed through time ranges. This paper focuses on
detecting inconsistencies not only for common resources but also for dependent resources.
However, inconsistencies are limited to overlapping time spans. Therefore, the concept of
condition is also oversimplified, as inferences are not considered.

In short, from the AC research literature, the algorithms presented for policy analysis
following the tree-based modeling approach are oriented towards providing policy consis-
tency. Furthermore, only one condition is addressed in each algorithm. This means that
roles are supported for role-based AC, usage purpose is addressed for purpose AC, and
time is considered for XACML. Moreover, conditions are always expressed homogeneously.
Roles and usage purposes are hierarchically classified, and time is expressed through time
ranges. In addition, the concept of condition is oversimplified. Depending on whether
rules are of permission or prohibition, their refinement with conditions has inferences
for dependent but non-overlapping conditions. However, this issue is not considered
for conflict detection. Finally, the dependent relationship of resources is introduced for
XACML through the transmission relationship of access authority. However, it has all the
above-mentioned limitations.

That said, although these papers can be considered a good starting point for building
DUC solutions and providing support for DUC specific features, the importance of context-
aware control for DUC means that policy analysis must be addressed by managing a broad
set of heterogeneous conditions. Otherwise, policy quality will not be completely ensured.



Energies 2022, 15, 7113 5 of 25

In this regard, we present CAPA in this paper: a policy analysis algorithm which seeks
to provide security in DUC through policy consistency and minimality for context-aware
policies. CAPA is built on a tree-based structure that implements the dependent relationship
of resources and conditions and thus enables conflicts between rules refined through
multiple heterogeneous conditions to be detected efficiently. It also detects inconsistencies
and redundancies by considering the inferences of rule refinement. Thus, security is
ensured through an algorithm that also provides good performance.

3. Distributed Usage Control Model

The DUC model has followed an incremental approach in which the pioneering
UCON model has evolved into more refined and expressive models. Cases in point are the
reference ODRL IM and, later, the IDSA UPL which, formalized within the IDSA IM, is the
most mature DUC model to date. On that basis, we define a generic DUC model below
that encompasses all the above.

Formula (1) formalizes the set of policies p ∈ P that are composed of the subset of
rules r ∈ R. These rules will be analyzed for policy consistency and minimality.

p = {ri}, i = 1, . . . , N (1)

where N is the number of rules.
A rule ri describes the usage control statement related to permission for or prohibition of

data usage and the duty that DUC may be required to perform under a permission. It is described
through the typei = {permission, prohibition, duty}, subi ∈ S, acti ∈ A, resi ∈ Res and
Ci ⊂ C which refer respectively to the rule type, subject, action, resource, and the set of
conditions so that Formula (2) is satisfied.

ri = (typei, subi, acti, resi, Ci), i = 1, . . . , N (2)

Ci =
{

conj
}

, j = 1, . . . , M

where M is the number of conditions.
The rule type typei refers to whether the usage control statement is a permission,

prohibition, or duty. Action requirements specified as duty rules in the DUC model are an
additional feature that further affects policy quality. Addressing them in policy analysis is
a very interesting line of research, but the scope of this paper is focused on context-aware
control, so only permission and prohibition rules are considered in the rest of the paper.

A subject subi represents a participant within a data usage relationship. These may
have the role of assignee or assigner. The assigner is responsible for defining ri, while the
assignee is responsible for its enforcement. Thus, the assigner has no impact on policy
quality. Therefore, in the rest of the paper subi always refers to the assignee.

An action acti describes the activity that a subi is permitted or prohibited from performing.
A resource resi represents the target digital content to which a ri applies.
Conditions Ci describe the specifications under which ri applies. Each conj ∈ Ci is in

the form of a Boolean expression, and thus composed of two operands (le f tOperandj and
rightOperandj) compared by an operator

(
operatorj

)
which results in either true or false.

Thus, we define condition conj satisfying Formula (3).

conj =
{

le f toperandj, operatorj, rightOperandj
}

(3)

The rest of our work is presented below, based on this general DUC model.

4. Definitions

This section presents some definitions and axioms which constitute basic aspects and
statements assumed in our approach.



Energies 2022, 15, 7113 6 of 25

Definition 1. Atomic Condition Rule: if a rule r1 is refined by only one condition such that
M = 1, we define that r1 is an atomic condition rule.

Definition 2. Composite Condition Rule: if a rule r1 is refined by more than one condition such
that M > 1, we define that r1 is a composite condition rule.

Axiom 1. Rule Condition Atomization: given a composite condition rule r1 =
(type1, sub1, res1, act1, C1 = {con11, con12}), we can split it into atomic condition rules r11 =
(type1, sub1, res1, act1, {con11}) and r12= (type1, sub1, res1, act1, {con12}) maintaining
the entire scope.

Thus, a set of rules R1, which can be refined by atomic conditions and/or composite
conditions can be split into a set of atomic condition rules R2. From R2, the tree structure
is built, and the rule conflict assessment method is applied, enabling policy analysis
algorithms to be developed. Thus, hereinafter we refer to atomic condition rules.

Definition 3. Dependent Relationship of Conditions: for conditions con1 and con2, we define
them as satisfying the dependent relationship of conditions con1 ↔ con2 if they apply to the
same domain, such as time, so that they may overlap. Furthermore, we define them as applying
to the same domain and thus, that the dependent relationship of conditions is satisfied if their
corresponding le f toperand1 and le f toperand2 are related to the same application domain Lad so
that Formula (4) is met.

con1 ↔ con2 = (le f toperand1 ∈ Lad ∧ le f toperand2 ∈ Lad) (4)

For example, two conditions con1 and con2 which refine r1 and r2 apply to the same
domain if their corresponding le f toperand1 = current time ∈ Ltime and le f toperand2 =
duration ∈ Ltime are related to time. However, con1 and con3 which refine r1 and r3 are
not dependent, for example, if le f toperand1 = current time ∈ Ltime and le f toperand3 =
connector ∈ Lconnector are respectively related to time and the connector.

Definition 4. Overlapping Relationship of Conditions: for conditions con1 and con2, if
con1 ∩ con2 6= ∅, we consider that con1 and con2 satisfy the overlapping relationship of conditions.

con1 ∩ con2 6= ∅ (5)

Definition 5. Conditions Whitelisting Approach: in this approach, policies are described only
through permission rules that explicitly define all the conditions that must be met to allow data
usage. This leads to Axiom 2, which we define as follows.

Axiom 2. If a rule r1 of type1 = permission is set for subject sub1 on resource res1 with action
act1 given a condition con1 related to a specific application domain such that le f toperand1 ∈ Lad1
as shown in Formula (6), the enforcement of r1 for dependent but non-overlapping conditions with
respect to con1 will always lead to a prohibition. Furthermore, complementary permissions such as
for con2 can be defined on dependent and overlapping conditions so that permission is refined at
con1 ∩ con2.

r1 = (type1 = permission, sub1, res1, act1, con1 = (le f tOperand1 ∈ Lad1, operator1, rightOperand1)) (6)

For example, the enforcement of a rule r1 of the permission type leads to permission
from 1 January 2022 to 1 January 2023, but condition enforcement at any other time will
result in a prohibition. Moreover, a permission rule r2 can be defined as complementary
at maintenance time so that permission is only granted at maintenance time between
1 January 2022 and 1 January 2023.



Energies 2022, 15, 7113 7 of 25

Definition 6. Conditions Blacklisting Approach: following this approach data usage is granted
by default, and only prohibition rules are described, so that if only one prohibition is met, i.e., if only
one condition is met, data usage is blocked. From this, we define Axiom 3.

Axiom 3. If a rule r1 of type1 = prohibition is set for subject sub1 on resource res1 with action
act1 given a condition con1 related to a specific application domain such that le f toperand1 ∈ Lad1
as shown in Formula (7), the enforcement of r1 for non-overlapping but dependent conditions with
respect to con1 will lead to permission by default. However, complementary prohibitions such as for
con2 can be defined on dependent but non-overlapping conditions, so that prohibition is extended to
con1 + con2.

r1 = (type1 = prohibition, sub1, res1, act1, con1 = (le f tOperand1 ∈ Lad1, operator1, rightOperand1)) (7)

For example, the enforcement of a rule r1 of type prohibition leads to a prohibition for
a Connector A, while a rule r2 also of the prohibition type will complement the previous
one, describing a prohibition also for Connector B. However, for all other connectors data
usage is permitted.

Definition 7. Dependent Relationship of Resources: for resources resi and resj, if resj is part
of resi so that resi → resj , we say that they satisfy the dependent relationship of resources.

resi → resj (8)

Definition 8. Time Complexity: This measures the time required to execute an algorithm. It is
measured as the number of times that the statements of an algorithm are executed. It is expressed
using the big O annotation.

5. Tree Structures for Efficient Policy Analysis

Our approach is based on building tree structures for resources and the rules defined
on them. This section presents some initial concerns related to efficient policy analysis and
the most significant features of the trees.

For N atomic condition rules, conflicts can be detected by brute force by making a
total of N ∗ (N − 1) comparisons between each of the rules. However, that results in poor
performance for the following two reasons:

1. Irrelevant analysis of rules that never lead to conflict: For two rules, r1 and r2,
inconsistencies and redundancies appear only for the same subject and action, so
sub1 = sub2 ∧ act1 = act2. Furthermore, they may appear for common resources
res1 = res2 as well as for dependent resources res1 → res2 As a result, only rules sat-
isfying Formulas (9) and (10) must be analyzed for common and dependent resource
conflicts respectively.

subi = subj ∧ acti = actj ∧ resi = resj (9)

subi = subj ∧ acti = actj ∧ resi → resj (10)

These rules that must always be analyzed because they may lead to conflicts that are
denoted below as relevant rules.

In DUC, with the refinement of rules through a wide set of conditions, not only does
the number of rules increase considerably but rules for a subject and action also apply to
different condition application domains which are non-dependent and thus never lead to a
conflict, so their analysis is irrelevant. From this, we define Axiom 4.

Axiom 4. Efficient analysis of DUC relevant rules. To efficiently detect common and dependent
resource conflicts in DUC, only relevant rules that satisfy Formulas (11) and (12) respectively,
which introduce the dependent relationship of conditions, must be analyzed.



Energies 2022, 15, 7113 8 of 25

subi = subj ∧ acti = actj ∧ resi = resj ∧ coni → conj (11)

subi = subj ∧ acti = actj ∧ resi → resj ∧ coni → conj (12)

These relevant rules must also be efficiently detected through the rule set.

2. Inefficient comparison between relevant rules: In the AC context, conditions are
always homogeneously defined. For example, time is always expressed as a range.
Therefore, no conversions are needed for conditions to be made comparable. In DUC,
by contrast, the conditions that apply to the same domain may be heterogeneously
expressed. Time conditions are a case in point. Time may be expressed as a range or
as an event in time. As a result, direct comparisons cannot be made, and condition
conversions are required. On this basis, we define Axiom 5.

Axiom 5. Efficient comparison of DUC relevant rules. Based on the dependent relationship of
conditions, reference formats must be established for each condition application domain so that het-
erogeneous conditions are converted once and then efficiently compared as many times as necessary.

The following subsections present a novel tree structure based on Axiom 4 and Axiom 5
that combines a Resource Tree (RT) and a Policy Tree (PT). This enables relevant rules for
common and dependent resources to be detected and compared efficiently.

5.1. Resource Tree

In the RT class diagram, shown in Figure 1, all the resources available in a use case are
stored and structured according to their dependent relationships.

Figure 1. Resource Tree Class Diagram.

Specifically, each resource is represented via a RT node denoted as resourceNode. Each
resourceNode contains its parent resourceNode and child resourceNodes satisfying the de-
pendent relationship. Each resourceNode also contains a PT that stores and structures all
the rules defined on it. Thus, relevant rules not only for common resources but also for
dependent resources can be efficiently searched and compared.

5.2. Policy Tree

As shown in Figure 2, the PT of each resourceNode is composed of 5 types of nodes: the
resource resi, the action acti, the subject subi, the condition application domain Ladi, and
the conditions coni.

The process of building the PT for each resourceNode is as follows. In the first instance
all the rules defined within policies are sequentially analyzed in search of common resource
conflicts. In this process, each rule is analyzed in relation to every relevant rule already
stored in the PT of the corresponding resourceNode. Then the rule is stored in that PT. In
this way, the following rules can be compared with that rule to check for common resource
conflicts in further analysis and once all the rules have been analyzed, dependent resource
conflicts can be checked for throughout the tree structure. To enable policy analysis to take
place efficiently, the rules are structured in the PT following a set of guidelines.



Energies 2022, 15, 7113 9 of 25

Figure 2. Tree Structure of Policy Tree.

First, to detect dependent resource conflicts, when common resource conflicts are
detected and all the rules are stored in the PT of each resourceNode, searches are made from
the root resourceNode through the RT branches sequentially comparing the resulting permis-
sions or prohibitions defined for each subject subi on each action acti with those defined
for dependent resources. Therefore, to run this search efficiently and avoid redundancies,
starting from the root node resi, we built the PT by classifying the rules based on the actions
acti and subjects subi to which they refer. Given that there are typically fewer actions than
subjects, and to reduce the number of branches and improve the search efficiency, the
resource node resi has one branch for each node related to the action acti involved in data
usage, but each action node acti has one branch for each node related to the subject subi to
which the rule refers.

Second, we classify the rules according to the dependent relationship of conditions
in application domains Ladi

. Specifically, in the PT each subi has a set of branches each of
which contains a child node with one condition application domain Ladi

where the rule
applies. These condition application domains are identified from each le f toperandi that
may describe a condition. Furthermore each Ladi node has two branches depending on the
type of the rule defined. Finally, each of these branches has the list of conditions under
which each type of rule applies for the corresponding application domain Ladi. The PT
is represented by a hash table where the key represents the node itself and the value, the
child node. Thus, for common resource conflicts it takes O (1) to search for relevant rules
on a specific application domain Ladi. For dependent resource conflicts, the analysis is
performed individually comparing the resulting relevant permissions and prohibitions
for two dependent resources for each subject subi, action acti, and condition application
domain Ladi. Therefore, taking at most O (SxAxLad).

Finally, we store the lists of conditions for each application domain through reference
formats. Thus, time-related conditions are stored as time intervals regardless of whether
they are expressed in that term or, for example, as an event in time, while user-related
conditions are stored as a list of users regardless of whether they are explicitly expressed
as such or defined through membership. Consequently, every time a rule is analyzed, the
condition that refines it is only converted once and many unnecessary conversions between
stored heterogeneous conditions are avoided. This improves performance in comparing
conditions.

6. Conflict Detection

In the following subsections we propose an assessment method for detecting conflicts
between relevant rules in DUC for common and dependent resources in the form of incon-
sistencies and redundancies. The method is individualized depending on the approach
used for rule definition (whitelisting or blacklisting).



Energies 2022, 15, 7113 10 of 25

6.1. Common Resource Conflicts

Below, we define how inconsistencies and redundancies appear between two relevant
rules defined for a common resource depending on the approach used for rule definition.

6.1.1. Whitelisting

For two relevant rules ri and rj described through the whitelisting approach, we define
that two non-overlapping conditions such that coni ∩ conj = ∅ lead to an inconsistency
when Formula (13) is satisfied, but if one condition is encompassed by another such that
coni ∩ conj = coni or coni ∩ conj = conj a redundancy appears when Formula (14) is
satisfied. Regarding the former, two non-overlapping conditions will never be satisfied
at the same time. Therefore, a prohibition will always result. For the latter, one condition
encompasses the other one, so the first one is unnecessary because it is less restrictive.

typei = typej = PERMISSION ∧ subi = subj ∧ acti = actj ∧ resi = resj ∧ coni ∩ conj = ∅ (13)

typei = typej = PERMISSION ∧ subi = subj ∧ acti = actj ∧ resi = resj ∧
(
coni ∩ conj = coni ∨ coni ∩ conj = conj

)
(14)

As shown in Figure 3, for the relevant rules r1, r2, r3, and r4 that satisfy the dependent
relationship of conditions such that le f toperand1,2,3,4 ∈ Ltime , con2 refines con1. However,
while con1 and con3 lead to an inconsistency as con1 ∩ con3 = ∅ because permission
would never be granted, con1 and con4 lead to a redundancy because con1 ∩ con4 = con4
and permission would only be granted for con4.

Figure 3. Common Resource Conflict Detection. Whitelisting Approach.

6.1.2. Blacklisting

In this case, for two relevant rules ri and rj described through the blacklisting approach,
we say that a common resource conflict appears (always as a redundancy) if a condition such
as coni encompasses the other condition conj, or vice versa so that Formula (15) is satisfied.

typei = typej = PROHIBITION ∧ subi = subj ∧ acti = actj ∧ resi = resj ∧
(

coni ∩ conj = coni ∨ coni ∩ conj = conj

)
(15)

As shown in Figure 4, for the relevant rules r1, r2, and r3, which satisfy the dependent
relationship of conditions such that le f toperand1,2,3 ∈ Lcon, while con1 complements con2,
a conflict arises as a redundancy when a condition con2 encompasses con3. This is because
con3 is not necessary as it is already defined within con2.



Energies 2022, 15, 7113 11 of 25

Figure 4. Common Resource Conflict Detection. Blacklisting Approach.

Within this approach, we consider that prohibition rules can be combined with per-
mission rules so that exceptions are introduced to the permissions granted. Thus, relevant
rules ri and rj described through the whitelisting and blacklisting approaches respectively
do not lead to a conflict if the prohibition refines the permission to some extent so that
coni ∩ conj ⊂ coni.

In other words, on the one hand we define that a redundancy appears that satisfies
Formula (16) when the two rules do not overlap so that coni ∩ conj = ∅. This is because the
prohibition rule is redundant with respect to the prohibition already set by the permission
rule on dependent but non-overlapping conditions. On the other hand, we define that an
inconsistency appears that satisfies Formula (17) if the prohibition rule makes an exception
to the entire permission so that coni ∩ conj = coni and the permission becomes invalid.

typei = PERMISSION ∧ typej = PROHIBITION ∧ subi = subj ∧ acti = actj ∧ resi = resj ∧ coni ∩ conj = ∅ (16)

typei = PERMISSION ∧ typej = PROHIBITION ∧ subi = subj ∧ acti = actj ∧ resi = resj ∧ coni ∩ conj = coni (17)

As shown in Figure 5, for the relevant rules r1, r2, r3, r4 refined through dependent
conditions, an exception is correctly made for r1 when r2 is defined. Whereas r4 leads to
a redundancy as the prohibition is already made by r1, and r3 results in an inconsistency
because it makes the permission already defined invalid regardless of the condition.

6.2. Dependent Resource Conflicts

Dependent resource conflicts may arise between the resulting relevant permissions
or prohibitions defined for a subject to perform an action on a resource for each condition
application domain.

Deng et al. [28] define the transmission relationship of access authority, based on the
idea that if a prohibition is defined on an upper resource, it is deduced that access for
child resources is also denied. However, the oversimplification with which conditions are
supported means that this axiom is not correctly translated. Based on the real inferences
of refining rules through conditions, we fully translate the axiom proposed in what we
call the transmission relationship of usage authority. Depending on how rules are defined,
the transmission relationship of usage authority changes. However, the idea is the same:
for a set of rules defined on a resource, the resulting permissions must be more restrictive
through dependent resources.

The following subsections present the concept of the transmission relationship of
usage authority for each approach used in rule definition. On that basis, we also define
how inconsistencies appear depending on the conditions.



Energies 2022, 15, 7113 12 of 25

Figure 5. Common Resource Conflict Detection. Whitelisting + Blacklisting Approach.

6.2.1. Whitelisting

For the whitelisting approach, we define the transmission relationship of usage au-
thority as per Figure 6.

Figure 6. Transmission Relationship of Usage Authority. Whitelisting Approach.

Based on the resulting permissions from all the relevant rules defined for two depen-
dent resources on a specific application domain Lad, it can be said that if a permission is
defined on an upper resource, the transmission relationship of usage authority is satisfied
if a more restrictive permission is defined on child resources such that conj ⊆ coni. But if a
less restrictive permission conj ⊇ coni satisfying Formula (18) or a prohibition is defined,
an inconsistency appears.

typei = PERMISSION ∧ typei = PERMISSION ∧ subi = subj ∧ acti = actj ∧ resi = resj ∧ conj ⊇ coni = 0 (18)

6.2.2. Blacklisting

We define the transmission relationship of usage authority for the blacklisting ap-
proach as per Figure 7.

Figure 7. Transmission Relationship of Usage Authority. Blacklisting Approach.



Energies 2022, 15, 7113 13 of 25

In particular, also based on the results obtained for two dependent resources from
all the relevant rules on an specific application domain Lad, if a prohibition is defined on
an upper resource, it can be said that the transmission relationship of usage authority is
satisfied if either a more restrictive prohibition is defined on child resources such that at least
the upper resource conditions are also included satisfying Formula (19), or a permission is
explicitly defined on a condition where a prohibition has not been explicitly defined that
satisfies Formula (20).

typei = PROHIBITION ∧ typei = PROHIBITION ∧ subi = subj ∧ acti = actj ∧ resi = resj ∧ conj ⊇ coni (19)

typei = PROHIBITION ∧ typei = PERMISSION ∧ subi = subj ∧ acti = actj ∧ resi = resj ∧ conj ∩ coni = 0 (20)

7. Context-Aware Policy Analysis Algorithm

Figure 8 presents the flow diagram of the CAPA algorithm, which is based on the
tree structures described in Section 5 and implements the method for detecting rule con-
flicts outlined in Section 6. The flow diagram describes how CAPA detects common and
dependent resource conflicts between the policies defined in a use case.

Figure 8. CAPA Algorithm Flow Diagram.

Initially, the algorithm retrieves the information needed to connect to the domain-specific
ontology where the resources of a given use case are described (resourceDescriptionBackend) and
to the backend where the target policies to be analyzed are stored (policyStorageBackend).
From the resourceDescriptionBackend, a first instance of the RT is built in the rootResourceNode
through the resourceTreeInitialization algorithm by sequentially storing child resources as child
resourceNodes based on their dependent relationships. Next, from the policyStorageBackend, the
target policies P to be analyzed are retrieved. Then, from the rootResourceNode, through
the commonResourceConflictDetection algorithm, each rule of P is sequentially checked for
common resource conflicts. As a result, the rootResourceNode is retrieved with the rules of
each policy stored in the PT of the corresponding resourceNode. Lastly, dependent resource
conflicts are finally detected by the dependentResourceConflictDetection algorithm by running
a backtracking process from the rootResourceNode along all its branches.

The resourceTreeInitialization, the commonResourceConflictDetection and the dependen-
tResourceConflictDetection algorithms (marked in blue in Figure 8) illustrate the impact of
our contributions on the policy analysis procedure, leading in addition to the optimized
performance provided by CAPA. The following subsections describe these algorithms in
depth. Furthermore, for each of them the time complexity is identified to highlight their
performance.

7.1. Resource Tree Initialization Algorithm

With the resourceDescriptionBackend as input, Figure 9 represents the flow diagram of
the algorithm that builds the RT in the rootResourceNode for a given use case.



Energies 2022, 15, 7113 14 of 25

Figure 9. Resource Tree Initialization Algorithm Flow Diagram.

Initially, the information stored in the domain-specific ontology is retrieved through
the getResourceDescription algorithm and stored in a HashMap res containing the URI of
the resource as the key and the list of URIs of the resources that satisfy the dependent
relationship as the value. Then, the information about the root resource is stored in the
rootResourceNode and the RT is built by sequentially analyzing in res the resources that
satisfy the dependent relationship. Specifically, for each resourceNode denoted as crn,
dependent resources are identified from res (childResources). If there are child resources (cr),
a resourceNode is constructed (childResourceNode) for each one and they are joined to the RT
through the parent resourceNode and stored to be analyzed in the following iteration.

As a result, for a set of resources Res, the resourceTreeInitialization algorithm takes
O (Res) to build the RT.

7.2. Common Resource Conflict Detection Algorithm

Figure 10 shows the flow diagram of the algorithm that detects common resource
conflicts for a set of policies P. It is built on the RT previously stored in the rootResourceNode.

To that end, all the rules r defined on each of the policies p ∈ P are sequentially
analyzed. Specifically, for each r, the resourceNode from the RT that belongs to the resource
defined in r is first identified through the findResourceNode algorithm. Second, the condition
application domain Lad is identified from the condition that refines r. Third, through the
conflictDetection algorithm and from Lad, conflicts are efficiently searched for and detected
between r and the relevant rules already stored in the PT of the resourceNode found. The
condition cond that refines r is also retrieved in its reference format. Finally, r is added
with cond to the PT of the corresponding resourceNode through the addRuleToPT algorithm
so that it can be efficiently compared in the analysis of the following rules. As a result,
the RT is retrieved as an output with all the rules stored in the corresponding PTs of each
resourceNode.



Energies 2022, 15, 7113 15 of 25

Figure 10. Common Resource Conflict Detection Algorithm Flow Diagram.

The findResourceNode and the conflictDetection algorithms become too complex, so they
are further analyzed in the following subsections. In the opposite way, the addRuleToPT
algorithm is limited to adding a rule to the HashMap that makes up the PT. This algorithm
has a time complexity of O (1).

7.2.1. FindResourceNode Algorithm

Taking the rootResourceNode and the target rule r as inputs, Figure 11 describes the
flow diagram of the algorithm that retrieves from the RT the resourceNode belonging to the
resource defined on r.

Figure 11. FindResourceNode Algorithm Flow Diagram.

Starting with the rootResourceNode, the resourceNodes belonging to each level of the
RT are sequentially analyzed. If the resourceNode belongs to the resource defined in r, the
search is stopped and the resourceNode is returned. Otherwise, its child resourceNodes are
stored for further analysis.

Therefore, for a set of resources Res it takes O (1) to find the corresponding resourceNode
in the best case if r is defined for the rootResourceNode and O (Res) in the worst case if all
the branches of the RT are analyzed until the resourceNode is found.



Energies 2022, 15, 7113 16 of 25

7.2.2. ConflictDetection Algorithm

Figure 12 shows the algorithm based on Lad that efficiently retrieves and compares with
r the relevant rules stored in the PT of the resourceNode previously found throughout the RT.

The flow diagram is represented for time-based conditions, but the logic is extended
to other condition application domains. To detect conflicts, the condition that refines r is
first converted to the reference format so that it can be efficiently compared with all the
relevant time-based conditions stored in the PT of the resourceNode. Second, through the
getPermittedTimes and getProhibitedTimes algorithms and based on Lad, relevant time-based
conditions related to r are respectively efficiently retrieved for permissions and prohibitions
from the PT of the resourceNode. Thus, from them and through the compareTimeConditions
algorithm that implements the evaluation formalized in Section 6.1, common resource
conflicts are efficiently detected.

The time complexity of the conflictDetection algorithm can be analyzed in the following
2 complementary ways:

• Relevant conditions search: for a resourceNode, it takes O (1) for getPermittedTimes
and getProhibitedTimes algorithms to find either permission or prohibition relevant
conditions through the HashMap that makes up the PT.

• Relevant conditions comparison: if done by brute force, comparing heterogeneous
conditions requires one conversion for the condition that refines the target rule and
another for each relevant condition stored in the PT. However, in the algorithm
presented, condition comparisons through the compareTimeCondition algorithm for a
set of R rules only require R conversions: one for each target rule.

Figure 12. ConflictDetection Algorithm Flow Diagram.

7.3. Dependent Resource Conflict Detection Algorithm

Figure 13 shows the backtracking process along the RT for dependent resource conflict
detection via a flow diagram.



Energies 2022, 15, 7113 17 of 25

First, starting from the rootResourceNode, the algorithm checks whether each resourceNode
denoted as crn, has child resourceNodes. If so, each child resourceNode denoted as childrn is
stored for further backtracking and is then analyzed for conflict detection. In this analysis,
a sequential search is performed over the actions of each subject that are controlled by
at least one rule. For each one, if the childrn is also controlled for the same subject and
action, conflicts are sequentially searched for and detected for each condition application
domain Lad. Figure 13 shows the flow diagram for time-based conditions, but the method
is extensible to all other domains. This said, for each Lad, through the getTime algorithm, the
list of conditions defined for both the parent resourceNode crn and child resourceNode childrn
are retrieved and the resulting parentTime and childTime permissions are respectively cal-
culated. Thus, by executing the compareDependentTimeConditions algorithm that implements
the assessment formalized in Section 6.2, any dependent resource conflicts are detected.

The time complexity of the dependentResourceConflictDetection algorithm can be
analyzed in the following 3 complementary ways:

• Dependent Resource Conflicts Search: given a resource controlled for a set of subjects
S on a set of actions A and refined through lad application domains, it takes at most
O (SxAxLAd) to search for dependent resource conflicts for the resourceNode.

• Relevant conditions search: for a resourceNode, it takes O (1) for the getTime algorithm
to find the permitted and prohibited conditions through the HashMap that makes up the PT.

• Relevant conditions comparison: conditions are already stored in reference formats,
so conversions in the compareDependentTimeConditions algorithm are not required.

Figure 13. Dependent Resource Conflict Detection Algorithm Flow Diagram.



Energies 2022, 15, 7113 18 of 25

8. Experimental Assessment

The aim of the experimental assessment is to prove that CAPA provides security by
detecting all inconsistencies and redundancies on all the policies defined by a data owner
in a DUC solution that has been implemented in a wind energy use case. The performance
provided by CAPA is also analyzed by measuring its efficiency. It is worth mentioning that
this considerable efficiency increase is obtained by including support for the dependent
relationship of conditions. To that end, the lack of context-aware policy analysis approaches
leads to a Basic Policy Analysis, denoted as BPA, being implemented. BPA implements the
algorithms described in Section 7 but omits the contributions presented in Section 5 related
to the efficient search and comparison of DUC relevant rules. In this regard, conditions are
not structured in the PT based on their dependent relationship and they are stored in the
same format in which they are expressed.

On this basis, this section presents the most significant results obtained in the wind
energy use case where CAPA and BPA are implemented and tested. To do so, the compo-
nents of the use case that are most relevant in terms of implementation are identified and
explained. Next, due to the lack of large-scale sets of rules related to DUC, specific rule sets
are created for the purposes of assessment. The settings used in the environment where
CAPA and BPA are deployed are also detailed. Finally, the results of the experimental
assessment are analyzed.

8.1. Wind Energy Use Case

In wind energy, wind farm competitiveness is closely connected with the maintenance
of wind turbines. Therefore, analyzing and learning from the data collected from the wind
turbine operation is of the utmost importance [8]. However, due to current reluctance to
share private data, the data collected from wind turbine operations is retained by wind
farm operators and OEMs. As the data owners, they are the only actors who usually
extract added value from the data [5]. Thus, other stakeholders in the value chain such
as component suppliers and third-party service providers are missing the opportunity to
analyze and learn from wind turbine operation data. This issue has a major impact not
only on the competitiveness of each individual stakeholder, but also on that of the entire
value chain. To increase competitiveness, reluctance to share data must be overcome by
encouraging trusted data sharing. In this regard, there are already architecture models such
as IDSA [19] which provide a reliable reference for driving the development of ecosystems
that can boost data sharing by providing trust, data sovereignty, and interoperability.

Figure 14 presents a use case for wind energy, where the IDSA ecosystem is adopted to
enable trusted sharing of gearbox-related data across the value chain. This use case features
a company that deploys sensors which monitor the gearbox of a wind turbine and provide
condition data from the lubrication system. From that data, edge computing services
developed by a service company estimate gearbox health status. The gearbox is one of
the components of a wind turbine that has the greatest impact on maintenance. Therefore,
sharing such information with other stakeholders in the value chain such as the component
supplier is of great interest because their combined data and expertise can significantly
improve gearbox operation and maintenance (e.g., by improving component design, by
establishing specific maintenance policies, etc.). To promote trustworthy sharing of this
data by providing data sovereignty, a technology provider deploys two IDS DataSpace
Connectors to share data between a data owner and user, an Identity Provider to provide
trust between the IDS DataSpace Connectors, and a Vocabulary Provider for resource
description. The Connectors and the Vocabulary Provider are directly involved in this DUC
demonstration, so they are described in more detail below.

IDSA DataSpace Connectors (https://international-data-spaces-association.github.
io/DataspaceConnector/ accessed on 26 September 2022) are the technical components
responsible for correct data sharing between a data owner (e.g., the wind farm operator) and
a data user (e.g., a component supplier) through the trusted IDSA ecosystem. Among other
tasks, they are responsible for providing data sovereignty through DUC. On the side of the

https://international-data-spaces-association.github.io/DataspaceConnector/
https://international-data-spaces-association.github.io/DataspaceConnector/


Energies 2022, 15, 7113 19 of 25

data provider, they are responsible for implementing the DUC policies defined by the data
owner. On the side of the data consumer, they are responsible for enforcing DUC policies
correctly. To provide semantic interoperability through these connectors, DUC policies are
implemented following the IDSA UPL by integrating the IDSA IM through a Java Library.
In the IDSA IM, usage requirements are defined through IDSA contracts (called simply
contracts hereafter). A contract comprises two sections: The contract metadata and the
IDSA Usage Control Policy. The metadata contains contract-specific information (e.g., the
date of issue and the participants), while the IDSA Usage Control Policy, following the
IDSA UPL, comprises IDSA Rules that describe the usage control statements that must be
examined for policy quality. Therefore, policy analysis takes place within the IDSA DataSpace
Connector in the role of the data provider through the implementation of CAPA or BPA.

Figure 14. IDSA Wind Energy Use Case.

The Vocabulary Provider manages and provides a domain-specific Wind Farm On-
tology (in this case WFOnt) (https://w3id.org/wfont) that describes the resources shared
by the IDSA DataSpace Connectors through the IDSA ecosystem. As a result, not only
common but also dependent resource conflicts can be detected through policy analysis by
CAPA and BPA. WFOnt is inspired by the SANDIA Report [29] and reuses the AffectedBy
and EEP (execution-executor-procedure) ontology design patterns to discover sensors or
actuators that observe or act on a given quality or feature of interest.

8.2. Datasets and Setting

For the experimental assessment, we have developed a dataset generator that creates
the rule sets summarized in Table 1.

These rule sets have been created following these guidelines:

• Each rule set contains 200, 2000, or 20,000 rules.
• For 50 resources available in a use case, which are classified into 5 levels of dependency,

the rules of each rule set are equally divided into 10, 1000, or 10,000 rules defined for
two dependent resources: the deepest one and its parent.

• For each of these two resources, the combined number of subjects and actions con-
trolled varies exponentially from 1 to 10, 100, and 1000. In the rest of the analysis, this
combination of subjects and their controlled actions is denoted as the product AxS.

https://w3id.org/wfont


Energies 2022, 15, 7113 20 of 25

• All subjects have the same number of rules defined for each action, 10 or 100, which
are refined respectively by 2 or 20 Conditions for each of the following 5 application
domains: Time, Connector, Location, Security Level, and Count.

Table 1. Experimental Assessment Rule Sets.

Rule Set R Res AxS C Lad

1

200

2

1 × 10
10

5: Time, Connector, Location,
Security Level, and Count

2 10 × 1

3 1 × 1 100

4

2000

1 × 100

105 10 × 10

6 100 × 1

7 1 × 10
100

8 10 × A

9

20,000

1 × 1000

10
10 10 × 100

11 100 × 10

12 1000 × 1

13 1 × 100

10014 10 × 10

15 100 × 1

CAPA and BPA are implemented in Java 17. All the experiments were performed on a
Linux Server running Ubuntu 20.04 with 1 core and 2 GB RAM.

8.3. Results

In the following subsections, we first indicate the extent to which CAPA and BPA
ensure security by detecting all inconsistencies and redundancies. Next, we focus on the
measurement and analysis of CAPA’s performance for this purpose compared to BPA. To
provide a better insight, CAPA and BPA performances regarding common and dependent
resource conflict detection are individually analyzed below.

8.3.1. CAPA and BPA Security

Conflicts were intentionally generated in the rule sets to assess the detection capabili-
ties of the tree-based approach (included in both CAPA & BPA).

A 100% conflict detection is observed for CAPA and BPA. Therefore, we consider
that the current policy analysis algorithm approach provides full security regarding policy
consistency and minimality. In this way, this algorithm can boost data sharing in these
ecosystems by providing data owners with trust and thus helping to overcome their
reluctance to share their data.

8.3.2. CAPA and BPA Performance on Common Resource Conflict Detection

For a more detailed, more comprehensive analysis, we split the analysis of the per-
formance provided by both algorithms regarding common resource conflict detection into
findResourceNode, conflictDetection, and addRuletoRT algorithms, as done in Section 7.2 in
describing the conflict detection algorithm.

1. findResourceNode: Section 7.2.1 theoretically defines that the time complexity to
find the resource defined in a rule within the RT is O (1) in the best case if the rule is
defined for the root resourceNode and O (Res) in the worst case if all the branches of the RT
are analyzed until the resourceNode is found. In the experiment performed, for the rules



Energies 2022, 15, 7113 21 of 25

defined for the deepest resource the time required to find the resourceNode is not significant:
it takes at most 1 ms for CAPA and BPA.

2. conflictDetection: from the resourceNode found by the findResourceNode algorithm,
the time required to detect common resource conflicts for a rule depends on the time
required to search and compare relevant conditions through the corresponding PT.

The experimental assessment proves that regardless of the number of subjects and
actions, if the product AxS is the same (e.g., 1 × 100, 10 × 10, or 100 × 1) then the
performance provided by the conflictDetection algorithm in CAPA and BPA depends only
on the number of conditions (10 or 100). For a clearer analysis, Figure 15 represents the total
time that the conflictDetection algorithm takes in CAPA and BPA to detect conflicts in all the
rules defined for the deepest resource in each rule set based on AxS. In both Figures, the
volume handled by the policy analysis algorithms increases from 10 to 100 and 1000 rules.
In case of Figure 15a, AxS ranges from 10 to 100 and 1000 with 10 Conditions set in each
controlled action for each subject. In Figure 15b AxS ranges from 1 to 10 and 100 AxS with
100 Conditions.

1 
 

 
 

 
 

1 
 

 
 

 
 Figure 15. Total time required by the conflictDetection algorithm in CAPA and BPA: (a) 10 Conditions;
(b) 100 Conditions.

Figure 15 shows that CAPA always provides a better performance. Conditions are
demonstrated to be the component of the rule with a major impact on the performance
provided by policy analysis algorithms. In this regard, CAPA also proves to be more
adaptive to an increasing number of conditions.

On the one hand, for the same number of rules, for example, 1000, if conditions
increase from 10 to 100 at the cost of reducing AxS from 100 to 10, both algorithms show a
loss of performance, but CAPA drops by only 50% while BPA drops by 100%. In addition,



Energies 2022, 15, 7113 22 of 25

for the same AxS, if conditions increase from 10 to 100, for 10AxS the conflcitDetection
algorithm requires 6 s more in BPA, while in CAPA it requires just 3.

On the other hand, it is observed that these issues become even more evident as AxS
increases. For 10AxS the conflcitDetection algorithm requires 6 and 3 more s in BPA and
CAPA respectively when the conditions increase from 10 to 100, but for 100AxS CAPA
requires 5 more s and in BPA the performance becomes clearly worse, requiring 24 more s.
Furthermore, for 10,000 rules an increasing number of conditions at the cost of AxS also
has a greater impact on performance with respect to 1000 rules. This is demonstrated by
the fact that the performance of CAPA drops by just 2 s while BPA drops by 26 s.

3. addRuleToRT: when conflicts are detected, the time complexity of adding a rule to
the PT of the resourceNode is theoretically defined as O (1) in Section 7.2, but in practice it
takes at most 1 ms for both policy analysis algorithms. Thus, it is considered non-significant.

In short, the results show that conditions are the component of the rule that has the
greatest impact on the performance provided by CAPA and BPA in detecting common
resource conflicts. This becomes even more critical as the number of conditions increases.
In this regard, the results show that CAPA provides a better performance than BPA and
is also more adaptable to an increasing number of conditions because of the dependent
relationship of conditions that it supports.

8.3.3. CAPA and BPA Performance on Dependent Resource Conflict Detection

The experimental assessment only addresses the detection of dependent resource
conflicts between the deepest resource within the RT and its parent. That is because this
enables us to make a more accurate analysis of CAPA and BPA performance in this area, and
the results can be extrapolated to the analysis of a larger number of dependent resources
considering the time required for the backtracking process through the RT.

The dependentResourceConflictDetection algorithm performs a sequential search over the
actions for each subject that are controlled for two dependent resources. So, if the product
AxS is the same, for the same number of conditions then the performance provided for
CAPA and BPA is observed to be the same. Therefore, to make a more comprehensive
analysis, Figure 16 represents the total time that the dependentResourceConflictDetection
algorithm requires to detect conflicts between the deepest resource and its parent based on
AxS for 10 conditions and 100 Conditions.

For dependent resource conflict detection, CAPA also provides better performance
and deals better with increasing numbers of conditions.

First, for the same number of rules, note that reducing AxS and increasing the number
of conditions provides better performance. This is because of the time required for the
sequential search for relevant rules for each subject in each action between dependent
resources.

Second, for the same number of AxS (e.g., 10AxS), when the conditions increase
from 10 to 100 CAPA shows little impact on performance, but BPA takes 500 ms longer.
Furthermore, as the number of AxS increases, performance becomes even more critical. For
100AxS CAPA also shows the same performance for 10 and 100 Conditions, but in BPA
there is a drop of 16 s.

Therefore, although the product of AxS seems to be critical for dependent resource
conflict detection, the fact that CAPA supports the dependent relationship of conditions
means that it not only always provides better performance but also reduces the impact of
increasing numbers of conditions.



Energies 2022, 15, 7113 23 of 25

 

2 

 
Figure 16. Total time required by the dependentResourceConflictDetection algorithm in CAPA and BPA:
(a) 10 Conditions; (b) 100 Conditions.

9. Conclusions

Data sharing has become one of the main barriers to making significant progress in
the energy sector. To solve this issue, data sovereignty must be ensured through DUC
solutions. In this regard, it is essential to ensure security in DUC through policy quality.

On the understanding that context-aware control is one of the main new challenging
features in the DUC context with respect to AC scenarios for providing data sovereignty
in distributed ecosystems, this paper highlights its increased impact on policy quality
and the challenges that it poses for efficient policy analysis. Not supporting conditions
for policy analysis in DUC significantly increases the appearance of low-quality policies,
leading to security breaches which may jeopardize the adoption of distributed collaborative
ecosystems, but an efficient policy analysis which supports a wide set of heterogeneous
conditions is challenging with respect to existing AC policy analysis approaches.

Accordingly, this paper presents CAPA, a tree-based modeling policy analysis al-
gorithm for secure DUC approaches that ensures policy consistency and minimality for
context-aware policies. To that end, CAPA is supported on previous AC policy analysis
approaches: a consolidated area of research. Formalization and application to a wind
energy use case shows that CAPA avoids security issues in DUC solutions, thus, facilitating
data sharing throughout the value chain which have allowed and will allow researchers to
advance in the knowledge of efficient wind energy generation. Furthermore, due to the
complexity introduced by conditions and the lack of policy analysis algorithms that support
them, it is not possible to compare performance with CAPA. However, by implementing
a basic policy analysis algorithm (BPA), it is proven that CAPA significantly improves
the performance provided in the policy analysis process by supporting the dependent
relationship of conditions.



Energies 2022, 15, 7113 24 of 25

In conclusion, although data sharing presents great benefits, it depends largely on the
implementation of secure, high-performance DUC solutions. In this regard, implement-
ing good-quality policies is of the utmost importance. This paper addresses one of the
main challenges in DUC: support for context-aware policies for policy consistency and
minimality.

Future work will focus on extending CAPA to permit the real-time analysis of new
rules by efficiently comparing them with relevant rules previously defined, analyzed, and
thus stored in the tree structure. Completeness and relevance will be also addressed by
complementing CAPA with transaction-based analysis is to provide full policy quality.
Finally, the impact of action requirements on policy quality will be analyzed in depth, and
an extension of CAPA will be studied to include adequate support for them. Additionally,
based on the idea that ensuring security by detecting all the conflicts is crucial to promote
data sharing, other approaches followed in the AC domain for policy analysis, different
from tree-based modelling, will be explored. This analysis will have a particular focus
on their ability to adapt to the complexity introduced by the DUC model, and, if any,
comparing the performance provided with respect to CAPA. Moreover, unlike AC, policies
in DUC are differently implemented by the data provider and consumer, negotiated and
agreed to be afterwards enforced. In this regard, the applicability of CAPA in the policy
negotiation process will be studied to ensure good quality agreed policies. Finally, future
work will also address ongoing work related to the extraction of knowledge from the wind
energy value chain, as the number of stakeholders and data grows, to make significant
progress in its performance.

Author Contributions: Conceptualization, G.G., M.H. and A.A.; methodology, G.G., M.H. and A.A.;
software, G.G.; validation, G.G.; formal analysis, G.G.; investigation, G.G.; writing—original draft
presentation, G.G.; writing—review and editing, G.G., M.H., A.A., F.J.D. and E.J.; supervision, M.H.,
A.A. and F.J.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partly supported by the project HODEI-X (KK-2021/00049), funded by
SPRI-Basque Government through the ELKARTEK program.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Scaria, E.; Berghmans, A.; Pont, M.; Arnaut, C.; Leconte, S. Study on Data Sharing between Companies in Europe: Final Report,

Publications Office. 2018. Available online: https://data.europa.eu/doi/10.2759/354943 (accessed on 15 June 2022).
2. European Commission. A European Strategy for Data | Shaping Europe. Available online: https://digital-strategy.ec.europa.eu/

en/policies/strategy-data (accessed on 15 June 2022).
3. Zhou, K.; Fu, C.; Yang, S. Big data driven smart energy management: From big data to big insights. Renew. Sustain. Energy Rev.

2016, 56, 215–225. [CrossRef]
4. Jarke, M.; Otto, B.; Ram, S. Data Sovereignty and Data Space Ecosystems. Bus. Inf. Syst. Eng. 2019, 61, 549–550. [CrossRef]
5. Kusiak, A. Renewables: Share data on wind energy. Nature 2016, 529, 19–21. [CrossRef] [PubMed]
6. Van Kuik, G.A.; Peinke, J.; Nijssen, R.; Lekou, D.; Mann, J.; Sørensen, J.N.; Ferreira, C.; van Wingerden, J.W.; Schlipf, D.; Gebraad,

P.; et al. Long-term Research Challenges in Wind Energy—A Research Agenda by the European Academy of Wind Energy. Wind
Energy Sci. 2016, 1, 1–39. [CrossRef]

7. Leahy, K.; Gallagher, C.; O’Donovan, P.; O’Sullivan, D.T.J. Issues with Data Quality for Wind Turbine Condition Monitoring and
Reliability Analyses. Energies 2019, 12, 201. [CrossRef]

8. López De Calle, K.; Ferreiro, S.; Roldán-Paraponiaris, C.; Ulazia, A. A Context-Aware Oil Debris-Based Health Indicator for Wind
Turbine Gearbox Condition Monitoring. Energies 2019, 12, 3373. [CrossRef]

9. Gil, G.; Arnaiz, A.; Higuero, M.; Diez, F.J. Assessment Framework for the Identification and Evaluation of Main Features for
Distributed Usage Control Solutions. ACM Trans. Priv. Secur. 2022. [CrossRef]

10. Pearson, S.; Casassa-Mont, M. Sticky Policies: An Approach for Managing Privacy across Multiple Parties. Computer 2011, 44, 60–68.
[CrossRef]

11. Bertino, E.; Abu Jabal, A.; Calo, S.; Verma, D.; Williams, C. The Challenge of Access Control Policies Quality. J. Data Inf. Qual.
2018, 10, 1–6. [CrossRef]

https://data.europa.eu/doi/10.2759/354943
https://digital-strategy.ec.europa.eu/en/policies/strategy-data
https://digital-strategy.ec.europa.eu/en/policies/strategy-data
http://doi.org/10.1016/j.rser.2015.11.050
http://doi.org/10.1007/s12599-019-00614-2
http://doi.org/10.1038/529019a
http://www.ncbi.nlm.nih.gov/pubmed/26738579
http://doi.org/10.5194/wes-1-1-2016
http://doi.org/10.3390/en12020201
http://doi.org/10.3390/en12173373
http://doi.org/10.1145/3561511
http://doi.org/10.1109/MC.2011.225
http://doi.org/10.1145/3209668


Energies 2022, 15, 7113 25 of 25

12. Sandhu, R.; Park, J. Usage Control: A Vision for Next Generation Access Control. In International Workshop on Mathematical Methods,
Models, and Architectures for Computer Network Security; Springer: Berlin/Heidelberg, Germany, 2003; pp. 17–31. [CrossRef]

13. Aqib, M.; Shaikh, R.A. Analysis and Comparison of Access Control Policies Validation Mechanisms. Int. J. Comput. Netw. Inf.
Secur. 2014, 7, 54–69. [CrossRef]

14. Abu Jabal, A.; Davari, M.; Bertino, E.; Makaya, C.; Calo, S.; Verma, D.; Russo, A.; Williams, C. Methods and Tools for Policy
Analysis. ACM Comput. Surv. 2019, 51, 1–35. [CrossRef]

15. Lazouski, A.; Martinelli, F.; Mori, P. Usage control in computer security: A survey. Comput. Sci. Rev. 2010, 4, 81–99. [CrossRef]
16. Park, J.; Sandhu, R. The UCON ABC usage control model. ACM Trans. Inf. Syst. Secur. 2004, 7, 128–174. [CrossRef]
17. Kelbert, F.; Pretschner, A. Data Usage Control for Distributed Systems. ACM Trans. Priv. Secur. 2018, 21, 1–32. [CrossRef]
18. Hilty, M.; Pretschner, A.; Basin, D.; Schaefer, C.; Walter, T. A Policy Language for Distributed Usage Control. In European

Symposium on Research in Computer Security; Springer: Berlin/Heidelberg, Germany, 2007; pp. 531–546. [CrossRef]
19. Otto, B.; Steinbuss, S.; Teuscher, A.; Lohmann, S. IDSA Reference Architecture Model. Available online: https://

internationaldataspaces.org//wp-content/uploads/IDS-Reference-Architecture-Model-3.0-2019.pdf (accessed on 15 June 2022).
20. Andreas, E.; Christian, J.; Robin, B.; Arghavan, H.; Sebastian, B.; Christian, K.; Pascal, B.; Gerd, B.; Mark, G.; Fabian, B.; et al.

Usage Control in the International Data Spaces 3.0. Available online: https://internationaldataspaces.org/wp-content/uploads/
dlm_uploads/IDSA-Position-Paper-Usage-Control-in-the-IDS-V3.pdf (accessed on 15 June 2022).

21. Bader, S.R.; Maleshkova, M. Towards Enforceable Usage Policies for Industry 4.0. In Proceedings of the International Workshop
on Large Scale RDF Analytics (LASCAR) at Extended Semantic Web Conference (ESWC), Portorož, Slovenia, 3 June 2019.

22. Huang, C.; Sun, J.; Wang, X.; Si, Y. Inconsistency Management of Role Base Access Control Policy. In Proceedings of the 2009
International Conference on E-Business and Information System Security, Wuhan, China, 23–24 May 2009; pp. 1–5. [CrossRef]

23. Sandhu, R.; Coyne, E.; Feinstein, H.; Youman, C. Role-based access control models. Computer 1996, 29, 38–47. [CrossRef]
24. Sun, L.; Wang, H.; Tao, X.; Zhang, Y.; Yang, J. Privacy Preserving Access Control Policy and Algorithms for Conflicting Problems.

In Proceedings of the 2011IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications,
Changsha, China, 16–18 November 2011; pp. 250–257. [CrossRef]

25. Aqib, M.; Shaikh, R.A. An Algorithm to Detect Inconsistencies in Access Control Policies. In Proceedings of the Intl. Conf. on
Advances in Computing, Communication and Information Technology (CCIT’14), London, UK, China, 1–2 June 2014; pp. 171–175.
[CrossRef]

26. Organization for the Advancement of Structured Information Standards (OASIS). eXtensible Access Control Markup Language
(XACML) Version 3.0. 2013. Available online: http://docs.oasisopen.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf (accessed on
15 June 2022).

27. Mohan, A.; Blough, D.M.; Kurc, T.; Post, A.; Saltz, J. Detection of Conflicts and Inconsistencies in Taxonomy-Based Authorization
Policies. In Proceedings of the 2011 IEEE International Conference on Bioinformatics and Biomedicine, Atlanta, GA, USA,
12–15 November 2011; Volume 2011, pp. 590–594. [CrossRef]

28. Deng, F.; Zhang, L.-Y. Elimination of policy conflict to improve the PDP evaluation performance. J. Netw. Comput. Appl. 2017, 80, 45–57.
[CrossRef]

29. Peters, V.A.; Hill, R.R.; Stinebaugh, J.A.; Veers, P.S. Wind Turbine Reliability Database Update; Sandia National Laboratories:
Albuquerque, NM, USA; Livermore, CA, USA, 2009. [CrossRef]

http://doi.org/10.1007/978-3-540-45215-7_2
http://doi.org/10.5815/ijcnis.2015.01.08
http://doi.org/10.1145/3295749
http://doi.org/10.1016/j.cosrev.2010.02.002
http://doi.org/10.1145/984334.984339
http://doi.org/10.1145/3183342
http://doi.org/10.1007/978-3-540-74835-9_35
https://internationaldataspaces.org//wp-content/uploads/IDS-Reference-Architecture-Model-3.0-2019.pdf
https://internationaldataspaces.org//wp-content/uploads/IDS-Reference-Architecture-Model-3.0-2019.pdf
https://internationaldataspaces.org/wp-content/uploads/dlm_uploads/IDSA-Position-Paper-Usage-Control-in-the-IDS-V3.pdf
https://internationaldataspaces.org/wp-content/uploads/dlm_uploads/IDSA-Position-Paper-Usage-Control-in-the-IDS-V3.pdf
http://doi.org/10.1109/ebiss.2009.5138002
http://doi.org/10.1109/2.485845
http://doi.org/10.1109/trustcom.2011.34
http://doi.org/10.15224/978-1-63248-010-1-34
http://docs.oasisopen.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://doi.org/10.1109/bibm.2011.79
http://doi.org/10.1016/j.jnca.2016.12.001
http://doi.org/10.2172/983696

	Introduction 
	Related Work 
	DUC Policy Quality 
	AC Policy Quality 

	Distributed Usage Control Model 
	Definitions 
	Tree Structures for Efficient Policy Analysis 
	Resource Tree 
	Policy Tree 

	Conflict Detection 
	Common Resource Conflicts 
	Whitelisting 
	Blacklisting 

	Dependent Resource Conflicts 
	Whitelisting 
	Blacklisting 


	Context-Aware Policy Analysis Algorithm 
	Resource Tree Initialization Algorithm 
	Common Resource Conflict Detection Algorithm 
	FindResourceNode Algorithm 
	ConflictDetection Algorithm 

	Dependent Resource Conflict Detection Algorithm 

	Experimental Assessment 
	Wind Energy Use Case 
	Datasets and Setting 
	Results 
	CAPA and BPA Security 
	CAPA and BPA Performance on Common Resource Conflict Detection 
	CAPA and BPA Performance on Dependent Resource Conflict Detection 


	Conclusions 
	References

