
Bachelor Degree In Computer Engineering
Computer Science

Thesis

User friendly denoising based on deep learning

Author

Urtzi Beorlegui Pascal

2022

Bachelor Degree In Computer Engineering
Computer Science

Thesis

User friendly denoising based on deep learning

Author

Urtzi Beorlegui Pascal

Directors
Ignacio Arganda, Nagore Barrena

Abstract

When taking images with microscopes, it is almost inevitable not to generate noise in the
process. As a result, systems have been proposed to correct this problem. With the rise
of deep learning techniques, it was to be expected that solutions based on these methods
would emerge. Although there are many and very diverse proposals, the aim of this pro-
ject is to analyse and present one of the most recent proposals: Divnoising. This method is
based on an unsupervised model in a variational auto-encoder (VAE) framework incorpo-
rating also a noise model, which can be directly measured or bootstrapped from the noisy
images.

Furthermore, this work contains several experiments done with the Divnoising model and
different datasets. Finally, there is a guide explaining a user-friendly Jupiter Notebook
designed for people with no experience in the field of programming and computing.

i

Contents

Abstract i

Contents iii

List of Figures v

Table index xi

1 Introduction 1

1.1 Motivation & Objectives . 1

1.2 Objectives of this project . 4

1.3 Project outline . 5

2 Related and previous work 7

2.1 Classical approach . 7

2.1.1 Spatial domain filtering . 8

2.1.2 Transform domain filtering . 9

2.1.3 Methods in other domains . 10

2.2 State of the art . 11

2.2.1 Block-matching and 3D filtering (BM3D) 11

2.2.2 Deep Learning . 14

iii

CONTENTS

3 Methodology 25

3.1 The Divnoising model . 25

3.2 ZeroCostDL4Mic notebook . 28

4 Experiments 39

4.1 Dataset description . 39

4.2 Noise Model . 40

4.2.1 Calibration Images . 40

4.2.2 Bootstrap . 42

4.3 Evaluation metrics . 43

4.3.1 SSIM (structural similarity) map 43

4.3.2 RSE (Root Squared Error) map 44

4.4 Training . 45

4.5 Results . 46

4.5.1 Mouse nuclei results . 46

4.5.2 Convallaria results . 56

5 Conclusions 59

Appendixes

A Gantt Diagram 63

B Experiment 2 results 65

Bibliography 73

iv

List of Figures

1.1 Noise types: (a) original image, clean signal, (b) original signal with Ad-
ditive white Gaussian noise (AWGN), (c) original signal with added salt
pepper noise, and (d) original signal with added speckle noise 2

2.1 Basic methodology of averaging filter. First, a central pixel and the size
of the window are selected. Then, the pixels belonging to that window are
averaged and the value of the central pixel is replaced by that average.
Finally, the center of the window is moved and the process for the whole
image is repeated. Source: [7]. 8

2.2 Schematic of the process followed by the wavelet transformation filter
for denoising. The original signal is taken and transformed into wavelet
space. The filter is applied in this space (soft or hard) and the inverse is
done to return to the original signal space. Source: [7]. 10

2.3 Illustration of grouping blocks from noisy natural images corrupted by
white Gaussian noise with standard deviation 15 and zero mean. Each
fragment shows a reference block marked with “R” and a few of the
blocks matched to it. Source: [6]. 13

2.4 BM3D example results. Results for different values of σ for each step
of the algorithm are shown In particular: a noisy image with a high va-
riance (left), a basic estimation in an intermediate phase of the algorithm
(center), and the final result (right). Source: [21]. 13

2.5 Different layers of a CNN. From left to right: input layer with color image,
convolutional layer to extract the features, max-pooling layers to simplify
the model, fully connected layers to make the prediction and output layer.
Picture taken from [8]. 15

v

LIST OF FIGURES

2.6 Example of the feature maps after a convolution layer of 6 kernels. Sour-
ce: [28]. 15

2.7 Example of a max-pooling with 2×2 filter and stride 2. Source: [28]. . . 16

2.8 Conventional vs blind-spot network. A conventional network (a) looks at
the whole input in order to make the prediction, so it more information
to predict the outcome. In addition to this they have a clean picture that
is expected as a result. A blind-spot network (b), on the other hand, does
not look at the pixel to be predicted in order not to learn the identity since
there is no objective result. Source [6]. 17

2.9 Blind-spot masking scheme in Noise2Void: (a) a noisy training image;
(b) a magnified image patch from (a), a random value (blue rectangle) is
copied into the central pixel to create the blind-spot this modified image
is the input during training; and (c) the target patch corresponding to (b).
The original input is used as target. The loss is only calculated for the
blind-spot pixels masked in (b). Source: [6]. 18

2.10 Encoder-decoder scheme. The encoder input is encoded into latent space.
Then, the decoder reconstructs from the information obtained by enco-
ding the input. Source: https//towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73. 18

2.11 Problem of encoding points in latent space. Let’s imagine that we get a
powerful encoder that manages to encode all input on the real axis (one in-
put one real value). If we choose any point in the latent space, what we get
when we decode it may not contain any information to recreate a signal.
Source: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73. 19

2.12 Latent space of a VAE. The aim is to create a "gradient"over the infor-
mation in the latent space and the intermediate solutions, thus being able
to generate new information. Source: https://towardsdatascience.
com/understanding-variational-autoencoders-vaes-f70510919f73. 21

2.13 Training scheme. From bottom to top: The input data, x, is encoded to a
normal distribution N (µz|x,∑z|x. After the encoder have learn the distri-
bution the decoder take the distribution to sample from that latent space
z. This way a new output is generated at the end. Source: https://web.
eecs.umich.edu/justincj/slides/eecs498/498FA2019lecture19.

pd37. 22

vi

https//towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://web.eecs.umich.edu/ justincj/slides/eecs498/498 FA2019 lecture19.pd37
https://web.eecs.umich.edu/ justincj/slides/eecs498/498 FA2019 lecture19.pd37
https://web.eecs.umich.edu/ justincj/slides/eecs498/498 FA2019 lecture19.pd37

3.1 Divnoising Training/Inference scheme. Top, in the training phase the la-
tent space is adjusted using the noise model, minimizing the loss value
(see Equation 3.6. Bottom, to predict the clean image, the model genera-
tes various prediction from the learned distribution, once the predictions
are made, the model interpolate the result with all the predictions. Sour-
ce [29]. 26

3.2 Divnoising inference. We can observe the results returned by the model.
From left to right: input (noisy) image, MMSE estimation, three pre-
dictions of the 1000 generated, result from another estimation method
(MAP), and the ground truth image (without noise). Source: [29]. 27

3.3 Example of an executable notebook cell. In order to execute the cell, click
on the arrow icon in the upper left corner. 28

3.4 Example of an executable notebook cell. In this case the code is visible to
see how each module works and to be able to make modifications. 29

3.5 Example of an executable notebook cell. The information output of an
executed cell is shown, in this case of a cell that determines whether or
not a GPU is available for training the model. 29

3.6 File site of the notebook. if a Google Drive session is connected the files
and folders will be appear and will be accessible to the notebook. 30

3.7 If the user do not have a database to test the notebook, check "Test_Data"option
to download a standard database. Else, the user can write the path to their
own dataset. 30

3.8 Definable parameters for the training of the network. The noise model
can be learned form calibration images or can be bootstrapped from noisy
images. 31

3.9 Definable parameters for the training of the network. The variables can be
adjust to optimize the results for different datasets. 32

3.10 Execution of a training process. In this example, it will train for 500 epochs. 33

3.11 Trained model download cell. The model will be downloaded in a .zip to
the local computer. 34

3.12 Cell indicating the path to the model that will be evaluated. 34

vii

LIST OF FIGURES

3.13 Evaluation charts, the output of the extract metrics cell. 35

3.14 Cell output showing the evaluation metrics. top left original image, top
right model prediction, bottom left SSIM map, bottom right RSE map. . . 36

3.15 Prediction cell. Running this cell will save the predicted images in the
desired path. 37

4.1 Dataset example. (a) Mouse nuclei image example. (b) Convallaria image
example. 40

4.2 left, A single calibration image. right, averaged calibration image. This
will be the GT to generate the probability distribution of the Noise Model. 41

4.3 Example Probability distribution P(x|s) at signal 10525. The noise model
thats is going to use to train the Divnoising model. 42

4.4 Experiment 1 loss Chart. 47

4.5 Experiment 1 metrics. Top left, the original image. Top Right, The pre-
diction given by the model. Bottom left, SSIM map with SSIM value.
Bottom Right, RSE map wuth NRMSE and PSNR values 48

4.6 Experiment 2 loss Chart. 49

4.7 Experiment 2 metrics. Top left, the original image. Top Right, The pre-
diction given by the model. Bottom left, SSIM map with SSIM value.
Bottom Right, RSE map wuth NRMSE and PSNR values 49

4.8 Experiment 3 loss Chart. 50

4.9 Experiment 3 metrics.Top left, the original image. Top Right, The predic-
tion given by the model. Bottom left, SSIM map with SSIM value. Bottom
Right, RSE map wuth NRMSE and PSNR values 50

4.10 Experiment 4 loss Chart. 51

4.11 Experiment 4 metrics. Top left, the original image. Top Right, The pre-
diction given by the model. Bottom left, SSIM map with SSIM value.
Bottom Right, RSE map wuth NRMSE and PSNR values 52

4.12 Experiment 5 loss Chart. 52

viii

4.13 Experiment 5 metrics. Top left, the original image. Top Right, The pre-
diction given by the model. Bottom left, SSIM map with SSIM value.
Bottom Right, RSE map wuth NRMSE and PSNR values 53

4.14 Experiment 6 loss Chart. 54

4.15 Experiment 6 metrics. Top left, the original image. Top Right, The pre-
diction given by the model. Bottom left, SSIM map with SSIM value.
Bottom Right, RSE map wuth NRMSE and PSNR values 54

4.16 Comparison between the worse prediction and the best prediction. Left,
worse, prediction from experiment 1 . Right, best, prediction from expe-
riment 5. 55

4.17 Experiment 6 loss Chart. 57

4.18 Experiment 6 metrics. Top left, the original image. Top Right, The pre-
diction given by the model. Bottom left, SSIM map with SSIM value.
Bottom Right, RSE map wuth NRMSE and PSNR values 58

4.19 Comparison between the worse prediction and the best prediction. Left,
worse, prediction from experiment 2 . Right, best, prediction from expe-
riment 6. 58

A.1 Gantt diagram displaying the task with their respective duration. Research:
Task 1, revise and study in depth the vae models in order to be able to im-
plement Divnoising in a notebook. Task 2, after getting to know how a
vanilla VAE works, read about the new method to be implemented and
see why the differences it has make it superior for this job. Task 3, to
study and look at different denoising technologies in order to complete
the thesis and to understand the origin of this problem and how it has
been tackled during this time. To better understand the motivation behind
it. Task 3, research methods to be able to create GT and choose an option
to implement on the notebook. 64

B.1 Experiment 1 loss Chart. 65

B.2 Experiment 1 metrics. Top left, the original image. Top Right, The pre-
diction given by the model. Bottom left, SSIM map with SSIM value.
Bottom Right, RSE map wuth NRMSE and PSNR values 66

ix

LIST OF FIGURES

B.3 Experiment 2 loss Chart. 66

B.4 Experiment 2 metrics. Top left, the original image. Top Right, The pre-
diction given by the model. Bottom left, SSIM map with SSIM value.
Bottom Right, RSE map wuth NRMSE and PSNR values 67

B.5 Experiment 3 loss Chart. 67

B.6 Experiment 3 metrics. Top left, the original image. Top Right, The pre-
diction given by the model. Bottom left, SSIM map with SSIM value.
Bottom Right, RSE map wuth NRMSE and PSNR values 68

B.7 Experiment 4 loss Chart. 68

B.8 Experiment 4 metrics. Top left, the original image. Top Right, The pre-
diction given by the model. Bottom left, SSIM map with SSIM value.
Bottom Right, RSE map wuth NRMSE and PSNR values 69

B.9 Experiment 5 loss Chart. 69

B.10 Experiment 5 metrics. Top left, the original image. Top Right, The pre-
diction given by the model. Bottom left, SSIM map with SSIM value.
Bottom Right, RSE map wuth NRMSE and PSNR values 70

B.11 Experiment 6 loss Chart. 70

B.12 Experiment 6 metrics. Top left, the original image. Top Right, The pre-
diction given by the model. Bottom left, SSIM map with SSIM value.
Bottom Right, RSE map wuth NRMSE and PSNR values 71

x

Table index

4.1 Experiments of Divnoising network with Mouse Nuclei dataset. The co-
lumn No is used to denote the number of experiment. The column Ns
method represents the noise model generator method used in the expe-
riment. The column Eps indicates the number of epochs the model has
trained in each experiment.The next 3 columns indicate the evaluation
metrics, SSIM (see Section 4.3.1), NRMSE (see Section 4.3.2) and PSNR
(see Section 4.3.2). The bold line highlights the experiment with the best
results. 47

4.2 Experiments of Divnoising network with Convallaria dataset. The column
No is used to denote the number of experiment. The column Ns method
represents the noise model generator method used in the experiment. The
column Eps indicates the number of epochs the model has trained in each
experiment.The next 3 columns indicate the evaluation metrics, SSIM
(see Section 4.3.1), NRMSE (see Section 4.3.2) and PSNR (see Section
4.3.2). The bold line highlights the experiment with the best results. . . . 56

xi

CHAPTER 1

Introduction

Biomedical image processing is a very broad field [9], it covers biomedical signal gathe-
ring, image forming, picture processing, and image display to medical or biological diag-
nosis based on features extracted from images. Some basic image processing techniques
including outlining, deblurring, noise cleaning, filtering, search, classical analysis and
texture analysis. This thesis will focus on denosing techniques and will describe various
classical techniques before analyzing a state of the art technique in depth.

In order for these systems to be effective for biomedical applications fast and efficient
image processing methods have to be developed. With that in mind, methods are created
giving fast and reliable results. Since a late or wrong diagnosis can have fatal consequen-
ces. With that in mind, Divnoising is developed, a fast, efficient and easy to use noise
removal method for professionals in fields other than computer science.

1.1 Motivation & Objectives

One of the biggest challenges in image processing is image denoising. Images are of-
ten taken in poor lighting and atmospheric conditions. Therefore, it is essential to have
effective tools to solve or alleviate this problem.

Noise is usually generated during image acquisition, encoding, transmission and proces-
sing. The noise comes in many forms, Additive White Gaussian Noise (AWGN), impulse

1

2 Introduction

noise (salt and pepper), quantisation noise, Poisson noise and speckle noise are most fre-
quently discussed noises in the literature [7].

(a) Original (b) AWGN

(c) Salt & pepper noise (d) Speckle noise

Figure 1.1: Noise types: (a) original image, clean signal, (b) original signal with Additive white
Gaussian noise (AWGN), (c) original signal with added salt pepper noise, and (d) original signal
with added speckle noise
.

1.1 Motivation & Objectives 3

Due to the sensitivity of biological sample to the radiation damage, the low dose imaging
conditions used for electron microscopy result in extremely noisy images. The processes
of digitization, image alignment, and 3D reconstruction also introduce additional sources
of noise in the final representation [20]. Innumerable investigations have been made to
solve this problem, although it has not yet been completely solved, there have been great
improvements in this field. It is a very important field of stufy because of its applications,
especially in the fields of medicine and biology. It is of vital importance to be able to
clearly differentiate the objects seen in the original signal. A misdiagnosis in these cases
can be fatal, so having effective and fast denoising methods is of vital importance.

Along the same lines, microscopy is also fundamental in the medical area of study, which
is the science of using physical systems to view small objects. Those systems are known
as microscopes. Originally, microscopes were plainly optical devices, using finely ground
lenses to expand the resolution of samples. More recently, the field of microscopy has
started to use technologies such as electron beams or even physical probes to produce
the signal. But, as we have said before, being such small objects, they are sensitive to
radiation and extreme caution must be taken with the doses, and these small doses is what
causes more noise than usual to be generated in biomedical microscope images, noise that
has to be eliminated later by denoising techniques.

The objective of denoising is to reconstruct the original image by removing the added
noise. This process plays an important role in a wide range of applications. Such as image
restoration, visual tracking, image segmentation, image classification, etc. Noise often
makes these functions difficult or even impossible. Obtaining the original image is crucial
for good performance in these algorithms. Many algorithms have been proposed, each
with its strengths and weaknesses. Even so, this problem remains open, especially when
the images have been taken in very poor conditions where the noise is very high.

Particularly in the context of microscope imaging, noise comes from three sources [2]:

1. Dark noise: corresponds to electronic noise, generated by agitation of electrons. It
follows a Poisson distribution and affects mainly to the background.

2. Photon noise: generated by inaccuracy in counting the number of photons, due to
the nature of photon emission, this form of noise is inherent in all optics.

3. Readout noise: generated by the inaccuracy of the chips in transforming the image
into digital form. It follows a normal distribution with zero mean.

4 Introduction

As we can see, there are many difficulties in obtaining the original image taken by a
microscope. But it is vital that techniques are developed to overcome these problems. In
order to advance in other fields such as biology or medicine. It is important to be able
to detect shapes in an image to be able to diagnose or study with clarity, noise greatly
hinders these tasks.

1.2 Objectives of this project

As we will discuss below, noise removal techniques have evolved over the course of his-
tory [2]. Giving solid results. We see this progress especially with the rise of deep learning,
whose results greatly improve the results obtained by traditional methods.

With this in mind, the objective of this work is to study and analyze a modern deep lear-
ning model designed for denoising, especially for denoising microscope images. One of
the main objectives, is the generation of clean images generated only from noisy ima-
ges taken directly. The architecture to be used is a convolutional variational autoencoder,
Divnoising [30]. This model is used to deal with two major difficulties. First, in order not
to have to generate the clean image from a single clean image or solution. In this case,
several images are generated and then following some criteria the new image is interpo-
lated. Second, the need to learn without labels, this network learns the noise distribution
only with images taken directly. In this way, we have a totally unsupervised system that
generates results that competes and sometimes outperforms supervised models.

Once the model has been studied, another objective is to implement the model in such
a way that people unfamiliar with computers science and machine learning methods can
make use of this powerful technique. Furthermore, it will be implemented in such a way
that it does not consume any of the user’s resources. That is to say, all the computational
process will be done on an external server. At all times the objective is to facilitate the use
of this tool to all users.

For these reasons, there is a project called ZeroCostDL4Mic 1 that is born with this philo-
sophy. We will implement the Divnoising model in a Google colabotary notebook follo-
wing the structure of the work of this project.

In summary, the objectives of this project are as follows:

1ZeroCostDL4Mic project

https://github.com/HenriquesLab/ZeroCostDL4Mic

1.3 Project outline 5

1. Study and analysis of different noise removal systems. Especially deep learning
models.

2. Study, analysis and use of the Divnoising convolutional architecture.

3. Implementation of the model in an environment that is easy to access and use for
non-expert users.

4. Contribution to the ZeroCostDL4Mic project with the developed implementation.

1.3 Project outline

This report will be structured as follows. First, Section 2, we will talk about some tech-
niques that have been proposed throughout history to deal with this problem, thus in-
troducing State of the art methods, methods that give the best results nowadays. In the
following Section 3 we will explain the model that will be analyzed in this work, that is,
we will explain how Divnoising works and why it gives good results. In addition, in this
section we will show how the notebook developed for the easy use of this powerful tool is
organised. Once this model has been explained, the results of the experiments, Section 4
carried out to corroborate the efficiency of the model and the notebook developed will
be shown. In addition to the results, this section will explain the datasets used to recrea-
te the experiments, the evaluation metrics used and how the noise model necessary for
the correct functioning of the model is generated. Finally, Section 5, we will discuss the
conclusions reached after having studied and experimented with the model.

CHAPTER 2

Related and previous work

The major challenge of the algorithms implemented for denoising is to remove as much
of the noise as possible without losing the most significant details of the original image.
Over time, the resolution of the devices has increased, so the number of image sensors
per unit area increases. Therefore, cameras capture noise more often. We will look at the
broad solutions that have been given to this problem and algorithms that have evolved to
achieve satisfactory results for users.

No image restoration technique is universal [14], that is, for all types of noise models. A
proper estimation of noise and knowledge about the best available toolset at hand for a
particular noise type is mandatory for efficient implementation of this image restoration
task.

2.1 Classical approach

As we have already mentioned, the aim of denoising is to obtain the original image from
the acquired noisy image. To deal with this problem, different methods have been imple-
mented over the years [7].

starting from simple methods such as filters, transformations or statistical methods to
more complex methods as unsupervised models that learns from noisy signals to generate
the clean images.

7

8 Related and previous work

We can model noise in a simple way as follows:

f (x) = u(x)+n(x)x ⊂ X ,X ⊂ Z2

where u(x) is the true signal and n(x) denotes noise at location x.

2.1.1 Spatial domain filtering

Filtering in the spatial domain [35], has been used for a long time because of its low com-
plexity and good results. Filters are ultimately nothing more than the inverse degradation
model of the image. They are designed for a single type of degradation and noise model,
although some have multiple uses.

The simplest type of filtering is averaging or mean or box filtering. This generates an
output for each pixel as the mean of the neighborhood pixels of a given range. However,
these types of filtering tend to generate an undesirable amount of smoothing on edges and
loss of detail.

Figure 2.1: Basic methodology of averaging filter. First, a central pixel and the size of the window
are selected. Then, the pixels belonging to that window are averaged and the value of the central
pixel is replaced by that average. Finally, the center of the window is moved and the process for
the whole image is repeated. Source: [7].

i) Mean Filters
This filter acts on an image by smoothing it. It reduces the intensity variations bet-

ween the adjacent pixels. The mean filter is one of the simplest filter types. The filter
window replaces the center pixel value with the average value of the near pixels [39]. Its
methodology is depicted in Figure 2.1.

2.1 Classical approach 9

ii) Wiener Filter
The formulation of the Wiener filter is based upon the assumption that the imaging

system is linear and stationary [15]. Furthermore, it is also assumed that the noise is
additive with constant variance. With these assumptions, the filter minimizes the mean-
square error between the original image and the restored image.

iii) Median Filter
The median filter follows the window principle too. The median of the window is

calculated and then the value of the central pixel is replaced with this value.

iv) Lee’s sigma filter
An enhanced version of Lee’s sigma filter [22] is derived for filtering of images affected
by multiplicative noise with speckle statistics. A new edge reserving filter which is called
the mean and median hybrid (MMH) filter is developed to achieve all kinds of noise
removal, as well as edge preservation. A hybrid filter that consists of a nonlinear filter and
a fuzzy weighted linear filter is derived to reduce the mixed noise. The adopted the first
part uses the statistics techniques are used to remove the large magnitude impulsive noise
then the second part uses a weighted average linear filter to remove additive Gaussian
noise and small ripple impulsive noise. Three variants are combined in a trimmed mean
filter by fuzzy set to get better noise smoothing results [34].

2.1.2 Transform domain filtering

In contrast with spatial domain filtering methods, transform domain filtering methods first
transform the given noisy image to another domain, and then apply a denoising procedure
on the transformed image according to the different characteristics of the image and its
noise (larger coefficients denote the high frequency part, i.e., the details or edges of the
image, smaller coefficients denote the noise). The transform domain filtering methods
can be subdivided according to the chosen basis transform functions, which may be data
adaptive or non-data adaptive [24].

Lately, there has been a lot of research on these methods, especially the wavelet trans-
forms, a simple method that offers very good results especially in image denoising. It
involves applying the wavelet transform to the original data by thresholding the wavelet
coefficient and inverting the wavelet transform afterwards (see Figure 2.2).

Here, the threshold plays an important role in the denoising process. Finding an optimum
threshold is a tedious task [33]. Smaller threshold value leaves higher number of coeffi-

10 Related and previous work

Figure 2.2: Schematic of the process followed by the wavelet transformation filter for denoising.
The original signal is taken and transformed into wavelet space. The filter is applied in this space
(soft or hard) and the inverse is done to return to the original signal space. Source: [7].

cients associated with noise information. On the other hand, larger threshold values will
shrink the signal feature, over-smoothing or blurring the image.

2.1.3 Methods in other domains

Apart from spatial filters and domain transformations, many other methods for image
denoising have been investigated. As well as methods based on statistics and random
fields. These methods aim at constructing spatially homogeneous models adaptable to
varying levels of signal with the help of parametrization of the variables which are self-
random in nature.

For these methods, there are two effective techniques. Namely, the principal component
analysis (PCA), which treats only the data information given by the second-order sta-
tistics, and the independent component analysis (ICA) which comes as an extension to
PCA to give better performance, by living up to high order statistics (the case of the most
natural images). The main idea of both statistical techniques, PCA and ICA, is to use an
orthogonal decomposition to separate linearly as much as possible the correlated data into
independent sub-sets. In the non-adaptative approaches there are many methods due to the
variety of basic functions such as, wavelets, wave atoms, curvelets, contourlet, wedgelets,
and bandelets, which transform the image to the frequency domain. From those, the ol-
dest, the most popular, and the dominant one (”wavelet”), is highlighted in the following
sections. Recently, in the transform domain, a new efficient method called block-matching
and 3D filtering (BM3D) and developed by Dabov et al. (see subsection 2.2.1) use a spar-

2.2 State of the art 11

se 3D transform by grouping similar 2D-blocks in the image into a 3D-array (grouped). In
this case, the image is represented in the transform domain by many 3D-groups. Then, the
spectrum is shrunken to separate the noise from other features. This method has shown
great efficiency in removing noise compared to several techniques, but in the case of high
level of noise, it gives less performance. For that, a bounded BM3D method was proposed
based on the basis BM3D to exceed this limitation. Furthermore, many techniques were
derived from the BM3D such as in [4], his paper proposes a bounded BM3D scheme
which focuses on the optimal choice of shrinkage operator, and the two algorithms in [13]
CD-BM3D and iterative CD-BM3D used the complex domain [3].

In this area, Hossein Rabbani proposed a novel noise reduction algorithm [31] where the
noisy captured 3-D data are first transformed by a discrete complex wavelet transform
(DCWT). Using a nonlinear function, the data is modeled as the sum of the clean data
plus additive Gaussian or Rayleigh noise. A mixture of bivariate Laplacian probability
density functions is used for the clean data in the transformed domain.

2.2 State of the art

The denoising techniques have evolved over the years, and not only that, new and more
powerful tools such as neural networks have emerged. In this section, we will explain so-
me of the denoising tools that nowadays provide the best results, such as block-matching
or neural networks like convolutional neural networks (CNNs) or variational autoenco-
ders (VAEs), which despite needing a large amount of data to learn, once trained they
produce very good results.

2.2.1 Block-matching and 3D filtering (BM3D)

As mentioned in the previous section, BM3D [6] is an algorithm based on an enhanced
sparse representation in transform domain. This algorithm assembles similar 2-D frag-
ments of the image into a 3-D array called groups. In our work, we will use this tool to
generate a pseudo-ground truth, in case there are no calibration images from the micros-
cope to use as reference. We will go more in depth on this topic when we analyze the
model used in the project.

The transform-domain denoising methods typically assume that the true signal can be well
approximated by a linear combination of some few elements. With this purpose in mind,

12 Related and previous work

what they propose is grouping. They call grouping to putting together similar fragments
of d dimensions into a d + 1 dimensional structure called a group. The idea of this is
to be able to use a higher dimensional filtering of each group, thus being able to better
exploit the similarities (correlation, affinity, etc.) between the grouped fragments in order
to estimate the true signal. This approach is called collaborative f iltering.

This grouping can be done in many ways [11]: K-means clustering, self-organizing maps,
fuzzy clustering, and others. The similarity between two fragments is usually done as the
inverse of some distance, i.e. the more similar two fragments are, the smaller this distance
will be.

To create the different clusters in BM3D, they use what they call grouping by matching.
In the techniques we have mentioned, the objective is to create different clusters, where
each object belongs to a single cluster. That is, disjoint classes are created, which causes
that not all objects in each class are treated in the same way. Those that are closer to
the centroid will be better represented than those that are further away from the centroid.
Furthermore, creating clusters is often a time-consuming process since recursive proce-
dures are used, which is quite computationally demanding. For these reasons, a simpler
method is used, grouping similar fragments by matching. Matching is a method for grou-
ping fragments similar to the reference fragment. This makes the same fragment belong to
the group of two different references. The fragment whose similarity (distance) is greater
than a certain threshold belongs to the group of that reference. Any signal can be used as
a reference, thus building several groups. The threshold that is set could be considered as
the diameter of the group.

Block-maching (BM) is a particular matching approach, it is used to find similar blocks.
In Figure 2.3, we see a few reference blocks and the ones that they match.

Once we have the groups formed, we have to estimate the value of the reference. This
could be done by averaging all the fragments of the group. But, this is only an efficient
technique when all the fragments of the group are identical and in nature this is not the
case. Therefore, another way of estimation has to be found. To solve this problem, the
collaborative filtering by shrinkage in transform domain is presented. For this purpose,
first a linear transformation of dimension d + 1 is applied. Then, we shrink (e.g. by soft
and hard thresholding) the transform coefficients to attenuate the noise. Finally, the the
linear transform is inverted, to produce estimates of all grouped fragments (see Figure 2.4.

2.2 State of the art 13

Figure 2.3: Illustration of grouping blocks from noisy natural images corrupted by white Gaussian
noise with standard deviation 15 and zero mean. Each fragment shows a reference block marked
with “R” and a few of the blocks matched to it. Source: [6].

Figure 2.4: BM3D example results. Results for different values of σ for each step of the algo-
rithm are shown In particular: a noisy image with a high variance (left), a basic estimation in an
intermediate phase of the algorithm (center), and the final result (right). Source: [21].

14 Related and previous work

2.2.2 Deep Learning

Deep learning techniques have emerged as powerful solutions in all fields of computer
vision, and the field of denoising is no exception [36]. Many deep learning models have
been presented that offer state-of-the-art results.

First of all, there are several types of machine (and thus deep) learning methods. In general
terms, machine learning methods consist of supervised, semisupervised and unsupervised
learning methods [36].

Supervised learning methods use a label to know whether the obtained result is accurate.
This way, the parameters can be updated and the network learns. For example, with the
following denoising model:

y = x+µ

where x, y and µ represent the given clean image, noisy image and AWGN of standard
deviation σ , respectively. From the equation above and Bayesian knowledge, it can be
seen that the learning of parameters of the denoising model relies on pair {xk,yk}k=1

N ,
where xk and yk denote the kth clean image and noisy image, respectively. Also, N is the
number of noisy images. This processing can be expressed as xk = f (yk,θ ,m), where θ

is the parameters and m denotes the given noise level.

Brief overview of CNNs

CNNs were mainly developed for use in image processing and computer vision. This is
why it works especially well with images, such as noise removal. The main reason why
this type of network is used in imaging is because of the number of connections. For
example, with a color picture of only 32×32, if we want to connect it to a single neuron
in the hidden layer, we would have 32×32×3 weights. Therefore, if we intend to develop
a deep network, it would be unfeasible.

CNNs generally consist of three main types of neural layers [8]: convolutional layers,
pooling layers and fully connected layers. Each layer plays a different role in the process
(see Figure 2.5).

Instead of using layers of neurons, we have layers of kernels of dimension n, which are
used to convolve the whole image and the feature maps that are created after convolving

2.2 State of the art 15

Figure 2.5: Different layers of a CNN. From left to right: input layer with color image, convo-
lutional layer to extract the features, max-pooling layers to simplify the model, fully connected
layers to make the prediction and output layer. Picture taken from [8].

the original one (see Figure 2.6). Convolution has many advantages: the mechanism of
weight sharing in the same feature map reduces the number of parameters, the local con-
nectivity learns the correlations between neighboring pixels, and it provides invariance to
the location of the object.

Different convolution kernels can be concatenated to generate different feature maps. The
more kernels we apply, the more the channels of the image will grow (remember that an
RGB image has size H ×3, including 3 channels).

Figure 2.6: Example of the feature maps after a convolution layer of 6 kernels. Source: [28].

The idea of pooling is down-sampling in order to reduce the complexity of the further
layers [10]. It would be something like decreasing the resolution, thus preventing over-
fitting. Pooling does not affect the number of channels in that layer and can be done in
different ways. The most common ways are max pooling or average pooling. The image
is partitioned into n sub-regions and either the maximum value (see Figure 2.6) of the
sub-region or the average value is chosen depending on the type of pooling.

16 Related and previous work

Figure 2.7: Example of a max-pooling with 2×2 filter and stride 2. Source: [28].

The fully connected layer works similarly to the neurons in a traditional neural network.
Each node is directly connected to all nodes in the previous and next layer. This layer is
usually where the most parameters are concentrated (90% of the total parameters of the
model) and the most difficult to train. The function of the fully connected layer is decision
making. The training of these networks is identical to that of traditional networks with a
forward pass (prediction) and a backward pass (learning).

Denoising networks

In this case, we are interested in having our network fed one (noisy) image and return
another (clean) image. The image denoising task must be formulated as a learning pro-
blem to train the convolutional network. Since we assume access to clean, noise-free
images, we implicitly specify the desired image processing task by integrating a noise
process into the training procedure. Specifically, we assume a noise process n(x) opera-
ting on an image xi drawn from a distribution of natural images X . If we consider the full
convolutional network to be some function [12] Fφ with free parameters φ , then the para-
meter estimation problem is to minimize the reconstruction error of the images subjected
to the noise process: minφ ∑i(xi −Fφ (n(xi))

2

As mentioned above, this type of network requires a pair of images. Normally, the noise is
generated artificially from the noise-free image. In practical cases, it is difficult to obtain
noise-free images. In order to generate a model that is able to learn only from images with
noise, Noise2Noise [23] was implemented. However, sometimes it is not possible to obtain
pairs of noisy images, and to solve this problem and go one step further, Noise2Void [18]
was created, a CNN that learns from single noisy images only.

In this Noise2Void, it is proposed to derive the two parts of the training, the input and the
target, from a single noisy image xi. If the model were to learn from a complete image

2.2 State of the art 17

patch, it would learn the identity. In particular, it would simply take the central pixel of
the input and replicate it in the prediction (see Figure 2.8a).

Figure 2.8: Conventional vs blind-spot network. A conventional network (a) looks at the whole
input in order to make the prediction, so it more information to predict the outcome. In addition
to this they have a clean picture that is expected as a result. A blind-spot network (b), on the other
hand, does not look at the pixel to be predicted in order not to learn the identity since there is no
objective result. Source [6].

To train without a reference (clean) image we do the following. We assume that the recep-
tive field xRF(i) of this network has a blind-spot in the center (see Figure 2.8b). The CNN
prediction si is affected by the surrounding pixels except for the pixel xi at that location.
This blind-spot network has less information than a conventional CNN would have, so it
is expected to have a slightly reduced accuracy. However, since only one pixel is subtrac-
ted from the receptive field, reasonable results are expected. The main advantage of using
this blind-spot architecture is the impossibility to learn the identity. Since we assume the
noise to be pixel-wise independent given the signal, the neighboring pixels have no in-
formation about the noise that may be in pixel xi. Even if the original value cannot be
obtained, since the signal is assumed to contain statistical dependencies, the network can
still estimate the signal si by looking only at the surroundings of pixel xi (see Figure 2.9).

Variational Autoencoders (VAEs)

As we have just seen, the most recent denoising methods implement architectures that are
able to learn from noisy images alone. As we have said, most of the time the pictures that
are accessible are noisy images. Therefore, the way forward in the field of denoising is
this, training with noisy images. The main approach of this project, Divnoising, shares
this vision, although unlike Noise2Void, it does not use a CNN-based architecture, but a
variational autoencoder (VAE) based one.

18 Related and previous work

Figure 2.9: Blind-spot masking scheme in Noise2Void: (a) a noisy training image; (b) a magnified
image patch from (a), a random value (blue rectangle) is copied into the central pixel to create the
blind-spot this modified image is the input during training; and (c) the target patch corresponding
to (b). The original input is used as target. The loss is only calculated for the blind-spot pixels
masked in (b). Source: [6].

Unlike CNNs, which are discriminative models (they only generate one solution), VAEs
are generative models. They seek to learn the probability distribution in order to create
new solutions. Before explaining how a VAE works, there are some terms that are useful
to know beforehand.

VAE is an autoencoder whose encoding distribution is regularized during the training in
order to ensure that its latent space has the property that allows to generate new data [32].

First, we will explain what the encoder is. The encoder is the process that generates new
features from old features. The job of the decoder would be to retrieve the old features
from the ones created by the encoder. The features created by the encoder (from the initial
space) are also called latent space. When encoding the initial space, information can be
lost, which means that it is often impossible to recover all the information in the decoding
process (See Figure 2.10).

Figure 2.10: Encoder-decoder scheme. The encoder input is encoded in-
to latent space. Then, the decoder reconstructs from the information ob-
tained by encoding the input. Source: https//towardsdatascience.com/
understanding-variational-autoencoders-vaes-f70510919f73.

As we have mentioned, the decoder generates a new space, but we do not know which

https//towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https//towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

2.2 State of the art 19

space is the optimal one in order not to lose information when generating it with our
encoder. The VAEs are neural networks, so the main idea is to make both encoder and
decoder two different networks: one to generate the latent space and the other to return
that information to the initial space. These two neural networks seek to reduce the recons-
truction error, which can be done via gradient descent over the parameters of the joint
network, parameters that we will see later.

If we only have a decoder and an encoder, we cannot generate new information. The only
thing we will do is compress and decompress information that we already know and, in
many cases, this information will no longer be useful due to the loss of information when
going into the decoder and trying to reconstruct it again. It is true that we can take a ran-
dom point from the latent space and pass it through the decoder to generate new data.
However, there is another factor to take into account: the regularity of the latent space.
This is a complicated issue that depends a lot on the distribution of the information in the
initial space, the dimensions of the latent space and the architecture of the encoder. The-
refore, it is very difficult to ensure a priori that the encoder will organize the information
in a way that is compliant with the idea of generating information in this way.

Figure 2.11: Problem of encoding points in latent space. Let’s imagine that we get a po-
werful encoder that manages to encode all input on the real axis (one input one real va-
lue). If we choose any point in the latent space, what we get when we decode it may not
contain any information to recreate a signal. Source: https://towardsdatascience.com/
understanding-variational-autoencoders-vaes-f70510919f73.

In Figure 2.11, there is a simple example of what would happen if we try to generate infor-
mation in this way, choosing a random point in the latent space. Let’s supposed we have
an encoder (to put a simple and illustrative case) that converts the given information to
the real axis (each data represented as a real value). We could encode and decode without
any loss (overfitting). If we choose a point (the purple point, new information) from that
real space, what it would generate has no value. This happens because the autoencoder

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

20 Related and previous work

is trained to have as little loss as possible, without taking into account the latent space
organization. To avoid this problem, a regularization is added to the process.

To regularize the autoencoder, VAEs are created. They work in the same way as an au-
toencoder, but with one difference: instead of encoding the input at a single point in the
latent space, it encodes that information as a distribution over the latent space. Therefore,
the model would be trained as follows. First, the input is encoded as a distribution over
the latent space. Second, a point in the latent space is sampled with that probability. Third,
the sampled point is decoded and the reconstruction error can be computed. Finally, the
reconstruction error is backpropagated through the network.

The distribution in the latent space is a normal distribution, so that it can be trained to
return the mean and the covariance matrix describing that Gaussian.

N (µ, σ2)

The reason why the input is encoded as a distribution with variance is that in this way,
we force the encoder to form a distribution close to the standard distribution. The regu-
larization term in the loss formula is expressed as the Kulback-Leibler divergence (KL
divergence) between the returned distribution and the standard Gaussian.

This regularization (see Figure 2.12) aims to make the generative process possible and
it can be simplified into two properties: continuity (two nearby points in the latent space
cannot give totally different results) and completeness (for a chosen distribution, a sam-
pled point should give a "meaningful"content). Both the covariance matrix and the mean
that the encoder returns have to be regularized. As mentioned before, this is done by
forcing the distribution returned by the encoder to resemble a normal distribution. With
this regularization term, we get the distributions to "overlap"and be centered, in order to
achieve the properties mentioned above. This, as with any regularization term, makes the
reconstruction error larger. However, the trade off between reconstruction error and KL
divergence can be adjusted.

We have seen how autoencoders work, so we can define the encoder this way, p(z|x), and
the decoder on the other hand, p(x|z), being z the encoded information in the latent space.
The regularization of the latent space appears in the encoder representation, encoded re-
presentations in the latent space are indeed assumed to follow the prior distribution p(z).
By Bayes’ theorem we know that

p(z|x) = p(x|z)p(z)
p(x)

=
p(x|z)p(z)∫

p(x|u)p(u)du
(2.1)

2.2 State of the art 21

Figure 2.12: Latent space of a VAE. The aim is to create a "gradient"over
the information in the latent space and the intermediate solutions, thus being
able to generate new information. Source: https://towardsdatascience.com/
understanding-variational-autoencoders-vaes-f70510919f73.

That distribution is intractable. So we want to approximate p(z|x) using another distribu-
tion q(z). If we make the assumption that q(z) is a standard Gaussian distribution (tracta-
ble) and that p(x|z) is a Gaussian distribution defined by a function f whose covariance
matrix has the form of an identity matrix multiplied by a constant c, we have that:

p(z)≡N (0, I)

p(x|z)≡N (f (z),cI), c > 0 (2.2)

we want to minimize KL(q(z)||p(z|x))

KL(q(z)||p(z|x)) =−∑
z

q(z) log
p(z|x)
q(z) (2.3)

p(z|x) = p(x|z)p(z)
p(x)

=
p(x,z)
p(x)

(2.4)

KL(q(z)||p(z|x)) =−∑
z

q(z) log
p(z,x)
q(z)

+∑
z

q(z) log p(x)︸ ︷︷ ︸
log p(x)

(2.5)

log p(x)︸ ︷︷ ︸
constant

= KL(q(z)||p(z|x))︸ ︷︷ ︸
Minimize this

+∑
z

q(z) log
p(x,z)
q(z)︸ ︷︷ ︸

L

(2.6)

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

22 Related and previous work

L is usually called Evidence Lower-Bound(ELBO) The optimization objective of the
VAEs, is the ELBO [17]. The ELBO is derived through Jensen’s inequality [26]. The
key idea is to minimize KL by maximizing L as p(x) is a known constant value. As we
have said the KL calculation is intractable so the only way we have to minimize it is to
maximize L.

In summary:

log p(x)≥ L= Ez∼q(z) log p(x|z)︸ ︷︷ ︸
Data reconstruction

−KL(q(z)||p(z))︸ ︷︷ ︸
regularization

(2.7)

Figure 2.13: Training scheme. From bottom to top: The input data, x, is encoded to a normal
distribution N (µz|x,∑z|x. After the encoder have learn the distribution the decoder take the distri-
bution to sample from that latent space z. This way a new output is generated at the end. Source:
https://web.eecs.umich.edu/justincj/slides/eecs498/498FA2019lecture19.pd37.

Taking all this into account, the train process would take the following form: we enter
the data through the encoder to obtain the latent space distribution. Then the encoder
should match p(z) (KL see Equation 2.3). Then, the model has to sample z from the
encoder output, and then pass that sample through the decoder. The resulting data should
be similar to the original data (ELBO see Equation 2.7).

Once we have trained the model, we can modify data and generate new one.

https://web.eecs.umich.edu/ justincj/slides/eecs498/498 FA2019 lecture19.pd37

2.2 State of the art 23

With a trained VAE model we can generate new information. As an imput we put the
information we want to manipulate. Once we have the latent space distribution, we take
the z-sample we have generated, z ∼ N (µz|x, σ2

z|x). When we have sampled z we can
modify some dimension of z and then pass the modified z through the decoder. Finally,
all you have to do is sample new data x ∼ (µx|z, σ2

x|z).

CHAPTER 3

Methodology

3.1 The Divnoising model

First, unsupervised content-aware image restoration (CARE) methods [19] emerged. They
can, enabled by sensible assumptions about the statistics of imaging noise, learn a map-
ping from noisy to clean images, without ever seeing clean data during training. Some
of these methods additionally include a probabilistic model of the imaging noise [29] to
further improve their performance. Note that such denoisers can directly be trained on a
given body of noisy images.

As mentioned above, the methodology chosen in this project is Divnoising [29].

Divnoising is build on the VAE setup but interprets it from a denoising-specific perspec-
tive. It supposed that the images have been created from a clean signal via a known noise
model. They replace the generic normal distribution (see Equation 2.2), with a known
noise model

PNM(x|s) =
N

∏
i

PNM(xi|si) (3.1)

We get

pθ (x|z) = PNM(x|s) =
N

∏
i

PNM(xi|si) (3.2)

25

26 Methodology

with the decoder now predicting the signal

gθ (z) = s (3.3)

With p(z) and the noise model, the decoder now describes a full joint model for all three
variables:

pθ (z,x,s) = PNM(x|s)pθ (s|z)p(z), (3.4)

For a given zk, the decoder describes a distribution over noisy images (p(x|z)). The co-
rresponding clean signal sk, is deterministically defined. Hence, pθ (s|z) is a Dirac distri-
bution [38] centered at gθ (z).

The noise model is usually thought to factorize as a product of pixels, implying that the
corruption, given the underlying signal, is occurring independently in each pixel as

p(x|s) =
N

∏
i

PNM(xi|si) (3.5)

The noise model (PNM(xi|si) can either be measured with paired calibration images, or
bootstrapped from noisy data. In the current project, the option to boostrap the noise
model has been implemented with BM3D. The implementation gives you the option to
use calibration images, but, if you don’t have them available you can always use just the
dirty images and through BM3D boostrap the noise model. We will talk about this later.

Figure 3.1: Divnoising Training/Inference scheme. Top, in the training phase the latent space is
adjusted using the noise model, minimizing the loss value (see Equation 3.6. Bottom, to predict
the clean image, the model generates various prediction from the learned distribution, once the
predictions are made, the model interpolate the result with all the predictions. Source [29].

3.1 The Divnoising model 27

This is said to be true for Poisson noise and camera readout noise. We will refer to the
probability PNM(xi|si) of observing a particular noisy value xi at a pixel i given clean
signal si.

Having the previous equation into account (see Equation 3.5), the reconstruction loss
becomes

LR
Φθ (x) = EqΦ(z|x)[

N

∑
i=1

− log p(xi|s = gθ (Z))]. (3.6)

Apart from this modification, the method used by the traditional VAE for training is follo-
wed (see Section 2.2.2). The only thing that is modified is the distribution that the training
data model learns. Therefore, it can be assumed that it complies with the properties of the
vanilla VAE. That is, the model describes the distribution of the training data while the
latent space approximates a distribution that generates results.

The Divnoising model can be used to generate images from pθ (x), but what we are interes-
ted in is to use it for denoising. Therefore, we aim to obtain p(s|x), that is, the distribution
of the possible clean images s given a noisy observation x. With a well-trained model, it
is possible to obtain samples sk from an approximate posterior, feeding the noisy image
x into the encoder, drawing samples zk ∼ qΦ(z|x) and decoding the samples via the deco-
der to get sk = gθ (zk). Given a set of posterior samples sK for noisy images x, there are
different consensus estimates to be able to infer. For example, approximate the minimum
mean square error (MMSE) estimate by averaging the samples sk. Another option is to
find the maximum a posteriori (MAP). Once we have this distribution, to get the clean
images the the mean shift algorithm [5] with a decreasing bandwidth is followed.

Figure 3.2: Divnoising inference. We can observe the results returned by the model. From left to
right: input (noisy) image, MMSE estimation, three predictions of the 1000 generated, result from
another estimation method (MAP), and the ground truth image (without noise). Source: [29].

28 Methodology

3.2 ZeroCostDL4Mic notebook

Finally, the last task for this thesis was the creation of a user-friendly notebook in order to
create a tool accessible to everyone. In this way, an interface is created to be able to use
this tool even without any knowledge of programming or deep learning. An interface, in
which the users enter the images to be denoised and after a simple process they get clean
images. In other words, to make the network usable for everyone, always following the
philosophy and aesthetics of the notebooks developed by the ZeroCostDL4Mic project
[37].

Remember that all the processes that are run are executed on a server external to the user’s
computer, making it even more accessible as it does not require computational power.
Normally it takes time and power to train a network. This simplifies this problem and the
user does not have to worry about his computer equipment.

To begin with, there are two types of cells in notebooks. Text cells and executable cells.
The text cells are merely informative, while the executable cells have an icon in the upper
left corner of the cell that must be clicked to run the program.

Figure 3.3: Example of an executable notebook cell. In order to execute the cell, click on the
arrow icon in the upper left corner.

These executable cells are composed of code and text. Normally the code is not hidden
and is visible to everyone. In this case, it is decided to hide it as it is not revealing to the
end user. However, if you want to see the code behind the text in these cells, you can do
so by selecting "show code". For example, in the Figure 3.3 the code is not visible. But,
as we have said, when selecting "show code"the code appears and it would look like in
the Figure 3.4.

3.2 ZeroCostDL4Mic notebook 29

Figure 3.4: Example of an executable notebook cell. In this case the code is visible to see how
each module works and to be able to make modifications.

Once these cells are executed, they usually have an output, but not always. For example,
the Figure 3.3 does not show any output. But, if you run the cell that determines whether
or not you have a GPU for training, you will see the entire output as in Figure 3.5. If a
graphics card is available, the graphics card information is printed.

Figure 3.5: Example of an executable notebook cell. The information output of an executed cell
is shown, in this case of a cell that determines whether or not a GPU is available for training the
model.

30 Methodology

After executing that first cell, the next executable cell gives the possibility of connecting
the session to Google Drive. This allows the notebook to access all the files saved in the
users Google Drive account, so that if the user intends to use a dataset for that session
it can be easily accessed. To log in to google to access the information stored in drive,
the cell shown in the figure below is executed (Figure 3.3). Once played the cell a new
browser window will appear, select the google account and select "allow".

Figure 3.6: File site of the notebook. if a Google Drive session is connected the files and folders
will be appear and will be accessible to the notebook.

However, if the user does not have a dataset with which to test the network, there is a
default option that downloads one of the two datasets mentioned above (see Section 4.1),
the mouse nuclei dataset. The images can be downloaded in section 3 of the booklet.

Figure 3.7: If the user do not have a database to test the notebook, check "Test_Data"option to
download a standard database. Else, the user can write the path to their own dataset.

The next step in the notebook is to indicate the parameters to decide which type of noise

3.2 ZeroCostDL4Mic notebook 31

model will be used to train the network. The user can either select a trained noise model
or learn it from scratch. The noise model can be learned from noisy signals (bootstrapped)
or can be learned using microscopy calibration images. If training with noisy images is
selected, there is a parameter to chose the percentage of images that will be used to train
the model. Training time increase with the number of images. Using calibration images is
less time consuming, although it also takes some time to train the noise model.

Figure 3.8: Definable parameters for the training of the network. The noise model can be learned
form calibration images or can be bootstrapped from noisy images.

The following step in the notebook is to indicate the parameters with which the network
is going to be trained. Each parameter is defined in a text cell shown in Figure 3.9. The
parameters can be calibrated to obtain the best time-quality results. As shown in the Sec-
tion 4, sometimes training longer does not give much better results. If the user has a
previously trained model, there is the possibility to enter the path of this model and by
selecting the option "Trained_Model", the step of training the model is saved. This is the
most expensive step of the whole denoising process.

32 Methodology

Figure 3.9: Definable parameters for the training of the network. The variables can be adjust to
optimize the results for different datasets.

If it is not the case that you have a trained model, the training process will start. It lasts
up to the epochs that have been assigned to it in the parameters. Otherwise, if the loss of
the model does not decrease in many epochs, it patiently stops the training process and
returns the model with the lowest loss that has been achieved in the whole process.

3.2 ZeroCostDL4Mic notebook 33

Figure 3.10: Execution of a training process. In this example, it will train for 500 epochs.

Once the model has been trained, there is the possibility to download the model for future
occasions and skip this step. It is always recommended to download the model to avoid
possible computational hours.

34 Methodology

Figure 3.11: Trained model download cell. The model will be downloaded in a .zip to the local
computer.

After training and saving the model, it is time to evaluate the model. In this notebook
different metrics are used to evaluate the quality of the results returned by the model (see
Section 4).

Figure 3.12: Cell indicating the path to the model that will be evaluated.

Once we have a trained model, either a newly trained model or a previously trained model,
we have to indicate the path as shown in 3.12. This extracts the values needed for the
subsequent calculation of the loss graphs and the structural similarity (SSIM) and root
squared error (RSE). the next executable cell displays two charts: the training loss and
validation loss vs. epoch number in linear scale and the training loss and validation loss
vs. epoch number in log scale (see Figure 3.13).

3.2 ZeroCostDL4Mic notebook 35

Figure 3.13: Evaluation charts, the output of the extract metrics cell.

In addition to the graphs, RSE and SSIM metrics can also be generated (see Figure 3.14.
These metrics help to evaluate the performance of the model. The original image and
the predicted image are also displayed. Thus giving the opportunity to make a subjective
assessment by the human eye.

36 Methodology

Figure 3.14: Cell output showing the evaluation metrics. top left original image, top right model
prediction, bottom left SSIM map, bottom right RSE map.

Finally, there is the cell that extracts the results. If the cell in the Figure 3.15 is executed,
the noisy images will be processed by the network and the results predicted by the network
will be stored in the path chosen by the user. The user can choose the number of samples
he wants to use to make the inference and produce the final noise-free image as explained
in the Figure 3.2.

3.2 ZeroCostDL4Mic notebook 37

Figure 3.15: Prediction cell. Running this cell will save the predicted images in the desired path.

CHAPTER 4

Experiments

The aim of this chapter is to see the functionality of the Divnoising network and its per-
formance under different scenarios and to show the results it produces. A set of images
(see dataset) with different training parameters will be processed to see the difference in
performance under different conditions. To make this comparison we will use different
metrics (see evaluation) that we will explain later

4.1 Dataset description

We use public microscopy datasets (see Figure 4.1) which show realistic levels of noise,
introduced by the respective optical imaging setups. The FU-PN2V Convallaria1 [19] da-
ta, consists of 100 noisy calibration images (intended to generate a noise model), and 100
images of size 1024 ˆ 1024 showing a noisy Convallaria section. The FU-PN2V Mouse
nuclei2 [29] data is composed of 500 noisy calibration images and 200 noisy images of
size 512 ˆ 512 showing labeled cell nuclei. The FU-PN2V Mouse actin (Prakash et al.,
2020) data from the same source consists of 100 noisy calibration images and 100 noisy
images of size 1024 ˆ 1024 of the same sample, but labeled for the protein actin.

For this experiment we will only use the unlabeled images and they will all be 512x512.
The 1024x1024 images will be discarded. By using more than one dataset we will be able

1convallaria
2Mouse nuclei

39

https://zenodo.org/record/5156913##.YqIL7ahByUk
https://zenodo.org/record/5156960##.YqIME6hByUk

40 Experiments

(a) MouseNuclei (b) Convallaria

Figure 4.1: Dataset example. (a) Mouse nuclei image example. (b) Convallaria image example.

to observe better the real performance of the network. To verify that it does not work well
only with a specific type of image, it is useful for use with any type of image.

4.2 Noise Model

Image restoration is the task of estimating a clean signal s = (s1, ...,sN = from a corrup-
ted observationx = (x1, ...,XN), where si and xi, refer to the respective pixel intensities.
The corrupted x is thought to be drawn from a probability distribution PNM(x|s), which
we call the observation likelihood or the noise model. Contrary to existing methods,
Divnoising is designed to capture the inherent uncertainty of the denoising problem by
learning a suitable posterior distribution. Formally, the posterior we are interested in is
p(s|x) ∝ p(x|s)p(s) and depends on two components: the prior distribution p(s) of the
signal as well as the observation likelihood pNM(x|s) introduced above. While th eprior is
a hihgly complex distribution, the likelihood p(x|s) of a given imaging system (camera/-
microscope) can be described analytically.

4.2.1 Calibration Images

We will use pairs of noisy calibration observations xi and clean signal si (created by ave-
raging these noisy, calibration images) to estimate the conditional distribution p(xi|si)

4.2 Noise Model 41

The noise model is a characteristic of the camera or microscope and not of the sample.

The calibration images can be anything which is static and imaged multiple times in
succession. Thus, the edge of slide works as well. We can either bin the noisy - GT pairs
(obtained from noisy calibration images) as a 2-D histogram or fit a GMM (Gaussian
Mixture model) distribution to obtain a smooth, parametric description of the noise model.

Using the raw pixels xi, and our averaged GT si, we are now learning a GMM based noise
model. It describes the distribution p(xi|si) for each si.

A Gaussian mixture model is a probabilistic model that assumes all the data points are
generated from a mixture of a finite number of Gaussian distributions with unknown pa-
rameters. One can think of mixture models as generalizing k-means clustering to incor-
porate information about the covariance structure of the data as well as the centers of the
latent Gaussians.

Figure 4.2: left, A single calibration image. right, averaged calibration image. This will be the GT
to generate the probability distribution of the Noise Model.

Using the raw pixels xi, and our averaged GT si, we are now learning a GMM based noise
model. It describes the distribution p(xi|si) for each si.

42 Experiments

Figure 4.3: Example Probability distribution P(x|s) at signal 10525. The noise model thats is
going to use to train the Divnoising model.

4.2.2 Bootstrap

Here we assume that we do not have access to calibration data to create a noise model
for training DivNoising. In this case, we use an approach called Bootstrapping to create
a noise model from noisy data itself. The idea is that we will first use the unsupervised
denoising method BM3D to obtain denoised images corresponding to our noisy data.
Then we will treat the denoised images as pseudo GT corresponding to the noisy data and
use the pair of noisy images and corresponding BM3D denoised images to learn a noise
model.

As will be explained in the Section 3, the opportunity to create a noise model simply from
dirty images is given. Because, usually no calibration images are available to generate the
noise model. It has been decided to use BM3D for its results and speed. Although any
denoising technique that generates a GT in order to create the GMM would work.

DivNoising when using bootstrapped noise model generally gives better results compared
to Noise2Void denoising. Also, unlike Noise2Void, we additionally obtain diverse denoi-
sed samples corresponding to any noisy image unlike Noise2Void.

As described above, we will use the denoising results obtained by BM3D and treat them
as pseudo GT corresponding to our noisy data. Following this, we will use the pair of
noisy images and corresponding BM3D denoised images to learn a noise model. You can
use any other denoising method as well and treat their denoised result as pseudo GT to
learn a noise model for DivNoising training.

4.3 Evaluation metrics 43

The result is a noise model that will help us in making predictions with Divnoising. The
process from this point on is the same as if we do it with calibration images. Having the
GT images and the dirty images. A GMM based noise model is created.

4.3 Evaluation metrics

In order to evaluate the results of this work, two different techniques will be used, in
addition to the subjective visual assessment. The objective methods are SSIM (structural
similarity) and RSE (root Squared Error) map.

4.3.1 SSIM (structural similarity) map

The SSIM metric is used to evaluate whether two images contain the same structures.
It is a normalized metric and an SSIM of 1 indicates a perfect similarity between two
images. Therefore for SSIM, the closer to 1, the better. The SSIM maps are constructed
by calculating the SSIM metric in each pixel by considering the surrounding structural
similarity in the neighbourhood of that pixel (currently defined as window of 11 pixels
and with Gaussian weighting of 1.5 pixel standard deviation)

The SSIM [27] index consists of three sub-indices: the luminance index, contrast index
and structure index. The luminance reflects the intensity of the object recorded as the
pixel value in the image. The contrast reflects the difference in luminance or extent of
the luminance variation. The structure reflects the Pearson correlation of the luminance
between two images. If we have image X and image Y, the luminance, contrast, and
structure comparison functions of each point in images can be defined, respectively, as:

l(x,y) =
2µxµy +C1

µ2
x µ2

y +C1
(4.1)

c(x,y) =
2σxσy +C2

σ2
x σ2

y +C2
(4.2)

s(x, ,y) =
σxy +C3

σxσy +C3
(4.3)

where µx and µy, σx and σy, and σxy are the local means, standard deviations and cross-

44 Experiments

covariance of image X and image Y, respectively. C1, C2 and C3 are the regularization
constants that have very small values to avoid the extreme small denominator. µx, σx and
σxy are computed by:

µx =
1
N

N

∑
i=1

xi (4.4)

σx = (
1

N −1

N

∑
i=1

(xi −µx)
2)

1
2 (4.5)

σxy =
1

N −1

N

∑
i=1

(xi −µx)(yi −µy) (4.6)

Where i is the index of the points int a local area, N us the total number of points in the
same local area. The local area is a group of neighbors, the shape of the neighborhood is
variable of the filter type.Finally, the SSIM index combines three sub function and has the
following form:

SSIM(x,y) = [l(x,y)]α [c(x,y)]β [s(x,y)]γ (4.7)

4.3.2 RSE (Root Squared Error) map

This is a display of the root of the squared difference between the normalized predic-
ted and target or the source and the target. In this case, a smaller RSE is better. A per-
fect agreement between target and prediction will lead to an RSE map showing zeros
everywhere (dark).

NRMSE

NRMSE[25] gives the average difference between all pixels in the images compared to
each other. Good agreement yields low NRMSE scores. Is defined as follows:

NRMSE =
∑(Si −Oi)

2

∑
2
i

(4.8)

where Oi are observed values and Si are simulated values. A small value of NRMSE
identifies a numerical simulation in good agreement with the field observations.

4.4 Training 45

PSNR

The term peak signal-to-noise ratio (PSNR) [1] is an expression for the ratio between
the maximum possible value (power) of a signal and the power of distorting noise that
affects the quality of its representation. Because many signals have a very wide dynamic
range, (ratio between the largest and smallest possible values of a changeable quantity)
the PSNR is usually expressed in terms of the logarithmic decibel scale. The higher the
score the better the agreement.

The dimensions of the correct image matrix and the dimensions of the degraded image
matrix must be identical. The mathematical representation of the PSNR is as follows:

PSNR = 20log10(
MAX f√

MSE
) (4.9)

Where MSE(Mean Squared Error) is:

MSE =
1

mn

m−1

∑
0

n−1

∑
0
|| f (i, j)−g(i, j)||2 (4.10)

Where f represents the matrix data of out original image, g represents the matrix data or
our degrades image, and m and n represents matrix rows and columns.

4.4 Training

The training process was done in a notebook making use of the services provided by
Google Colab. Some of the parameters varied with the purpose of searching the best
hyperparameters, but several are inherent to the network:

• Optimizer : Adam [16]. It is defined as an extension to Stochastic gradient descent
method.

• Loss Function : The one explained in Section 3, in Equation 3.6.

• Patience : Patience is set to 100 epochs.

When the network goes a long time without a significant improvement (threshold), there
is a mechanism in place for the model to stop training without iterating over all the epochs

46 Experiments

that were indicated at the beginning of the training. The function has a patience parameter,
as we have said before it is a high value, 100 epochs, but it is a value that we cannot change
because it is implemented directly in the model.

The following section shows the results of several experiments, which we will perform. In
these experiments, we want to observe the behavior of the model when two parameters are
changed. The first one is the number of epochs we allow the model to iterate and the other
is the source of the model noise. We will see if it affects having microscope calibration
images or if boostrapping from noisy images give similar results.

4.5 Results

In this section the different experiments will be presented. Experiments will be done trai-
ning 6 different models, changing the number of epochs they have to train and the noise
model provided for training. These experiments will be repeated with both datasets (see
Section 4.1) to see the behavior of the model with different data and to be able to make a
better analysis of the behavior of the model.

4.5.1 Mouse nuclei results

The first experiments were done with the Mouse Nuclei dataset, a dataset composed of
mouse nucleus images. The Table 4.1 shows the results obtained, results that we will
analyze in more detail later.

EXPERIMENT 1

As we can see in the figure below, the loss tended to decrease even more. If he had been
allowed to train with more epochs the loss would have decreased and the results would
have been better. We can also observe that in the SSIM map (see Figure 4.5) there are
many dark blue areas, indicating that in that area it differs quite a lot from the image you
want to obtain. In this case, it would indicate the presence of a lot of noise in the lower
part of the image that the model has not been able to eliminate in this experiment.

4.5 Results 47

No. Ns method #Eps SSIM↑ NRMSE↓ PSNR↑
1 Bootstrap 10 0.578 0.208 24.419
2 Calibration 10 0.594 0.204 24.723
3 Bootstrap 50 0.624 0.198 25.38
4 Calibration 50 0.639 0.194 25.738
5 Bootstrap 500 0.644 0.193 25.858
6 Calibration 244 0.641 0.194 25.719

Table 4.1: Experiments of Divnoising network with Mouse Nuclei dataset. The column No is used
to denote the number of experiment. The column Ns method represents the noise model generator
method used in the experiment. The column Eps indicates the number of epochs the model has
trained in each experiment.The next 3 columns indicate the evaluation metrics, SSIM (see Section
4.3.1), NRMSE (see Section 4.3.2) and PSNR (see Section 4.3.2). The bold line highlights the
experiment with the best results.

Figure 4.4: Experiment 1 loss Chart.

48 Experiments

Figure 4.5: Experiment 1 metrics. Top left, the original image. Top Right, The prediction given
by the model. Bottom left, SSIM map with SSIM value. Bottom Right, RSE map wuth NRMSE
and PSNR values

EXPERIMENT 2

The results of this second experiment are very similar to the results of the first experiment.
What changed from one experiment to the other is the noise model used to train the model.
Both models have had 10 epochs to learn how to remove the noise from the images. As
we can see in the graphs of the Figure 4.6, the trend of the loss is the same. In other words,
there is still room for improvement. The results are slightly better but the difference is not
remarkable. If we compare the maps of experiment 1 (see Figure 4.5) and experiment 2
(see Figure 4.7), the difference is imperceptible.

EXPERIMENT 3

Continuing with Experiment 3, As seen in experiments 1 and 2, the model has the capacity
to keep learning and make better predictions. In this experiment it is allowed to train up
to 50 epochs, which results in much better results as can be seen in the metrics of the 4.1
Chart. Regarding the loss, we can see in the Graph 4.8 how around epoch 30 the decrease
in loss slows down and at epoch 40 there is hardly any improvement. We can then intuit
what will happen with the following experiments. Even so, we can see in the metrics of
the Figure 4.9 that the results improves visibly compared to the 10 epochs of the previous
experiments.

4.5 Results 49

Figure 4.6: Experiment 2 loss Chart.

Figure 4.7: Experiment 2 metrics. Top left, the original image. Top Right, The prediction given
by the model. Bottom left, SSIM map with SSIM value. Bottom Right, RSE map wuth NRMSE
and PSNR values

50 Experiments

Figure 4.8: Experiment 3 loss Chart.

Figure 4.9: Experiment 3 metrics.Top left, the original image. Top Right, The prediction given by
the model. Bottom left, SSIM map with SSIM value. Bottom Right, RSE map wuth NRMSE and
PSNR values

4.5 Results 51

EXPERIMENT 4

In experiment 4, the trend of experiments 1 and 2 is repeated. That is, the results provided
by the model are identical using the noise model trained with calibration images or if is
bootstrapped from noisy images instead. Looking at the Figure 4.10 we see that the same
thing happens with the loss, it stagnates and the improvement is very small.

Figure 4.10: Experiment 4 loss Chart.

EXPERIMENT 5

For Experiment 5, the idea was to check if training until the model no longer improved
gave good enough results to justify the training time, about 6 times more than training
with 50 epochs. As we can see in the Table 4.1, this experiment is the one that gives the
best results. Even so, it should be noted that the improvement is very small compared to
the results obtained in experiments 3 and 4. As expected from the previous experiments,
the loss decreases rapidly at the beginning but then stabilizes and the improvement is
minimal. This can be seen in the Graph 4.12 and in the Table 4.1, as in spite of the
considerable increase on time the metrics are almost the same.

EXPERIMENT 6

In this last experiment number 6, the method of learning the noise model is by using

52 Experiments

Figure 4.11: Experiment 4 metrics. Top left, the original image. Top Right, The prediction given
by the model. Bottom left, SSIM map with SSIM value. Bottom Right, RSE map wuth NRMSE
and PSNR values

Figure 4.12: Experiment 5 loss Chart.

4.5 Results 53

Figure 4.13: Experiment 5 metrics. Top left, the original image. Top Right, The prediction given
by the model. Bottom left, SSIM map with SSIM value. Bottom Right, RSE map wuth NRMSE
and PSNR values

calibration images as in experiments 2 and 4. Unlike the first two experiments performed
with this technique, it gives results slightly inferior to boostrapping. However, it is worth
noting that the training process instead of finishing with 500 iterations, it finished earlier
because of patience at 244 iterations. The result is almost the same as using the other
method (see Table 4.1). We can say that even if we train this model more, it will not give
better results than it does now.

To summarise the experiments with the first database, one could say that the model gives
good results. Even so, there is a moment, around 40 epochs, where the model hardly
improves. So it does not make much sense to train it much longer, as the computational
time needed is not justified by the results to be obtained. Next, a figure with the worst
performing instance (experiment 1) next to the best performing instance (experiment 5)
(see Figure 4.19) are shown.

It can be seen in the Figure 4.19, that the instance of experiment 1 blurs the images a lot
and information is lost especially at the edges and in areas of high intensity. On the con-
trary, the prediction of the experiment 5 instance preserves the image information much
better. By not blurring the edges and areas where the contrast of values is high, the diffe-
rence is better perceived. In the case of experiment 1, the inside of the cell is perceived

54 Experiments

Figure 4.14: Experiment 6 loss Chart.

Figure 4.15: Experiment 6 metrics. Top left, the original image. Top Right, The prediction given
by the model. Bottom left, SSIM map with SSIM value. Bottom Right, RSE map wuth NRMSE
and PSNR values

4.5 Results 55

as very uniform when in fact it is not. The other instance is responsible for maintaining
these differences, and the shapes inside the cell, which is where the information is most
complex, are better distinguished.

Figure 4.16: Comparison between the worse prediction and the best prediction. Left, worse, pre-
diction from experiment 1 . Right, best, prediction from experiment 5.

56 Experiments

4.5.2 Convallaria results

The second round of experiments were done with the convallaria dataset, a dataset com-
posed of Convallaria majalis cell images. The Table 4.2 shows the results obtained, results
that we will analyze in more detail later.

No. Ns method #Eps SSIM↑ NRMSE↓ PSNR↑
1 Bootstrap 10 0.717 0.163 27.191
2 Calibration 10 0.754 0.165 27.845
3 Bootstrap 50 0.717 0.163 27.191
4 Calibration 50 0.767 0.162 28.158
5 Bootstrap 200 0.767 0.162 28.158
6 Calibration 200 0.767 0.162 28.158

Table 4.2: Experiments of Divnoising network with Convallaria dataset. The column No is used
to denote the number of experiment. The column Ns method represents the noise model generator
method used in the experiment. The column Eps indicates the number of epochs the model has
trained in each experiment.The next 3 columns indicate the evaluation metrics, SSIM (see Section
4.3.1), NRMSE (see Section 4.3.2) and PSNR (see Section 4.3.2). The bold line highlights the
experiment with the best results.

For this second experiment the maximum epochs have been decreased from 500 to 200
because the improvement is almost null but the computation time increased a lot and
caused problems with the services offered by Google Colab. However, as expected, this
change had no impact on the results obtained.

As can be seen in the table, the behaviour is identical with both datasets. For this reason,
in this section we will only present a graph with the loss of the best result (experiment
6), the results offered by this experiment and, as in the previous section, a comparison
between the best and the worst prediction. All the results can be found in Appendix B.

It is worth noting that the results obtained with this dataset are better as observed in all
metrics. This may be due to the complexity of the images and the noise in them. The
images of the Mouse Nuclei dataset have more complexity (more edges and shapes) than
this second dataset. For this reason the results obtained are somewhat worse.

Even so, as we have mentioned before, the behaviour of the model is the same in both
cases. Around epoch 40, the improvement is almost nil, and all the training from then on
hardly gives any results. You can see this in that with 50 epochs or 200 epochs the result
is exactly the same. The model cannot learn any more.

4.5 Results 57

Training the noise model with calibration images gives slightly better results, but it is
shown that if these are not available, training the noise model with bootstrap gives almost
as good results. Therefore, it is not decisive to have calibration images to be able to use
this tool, and they are not always available. This makes this tool much more versatile and
easily accessible for everybody.

Figure 4.17: Experiment 6 loss Chart.

58 Experiments

Figure 4.18: Experiment 6 metrics. Top left, the original image. Top Right, The prediction given
by the model. Bottom left, SSIM map with SSIM value. Bottom Right, RSE map wuth NRMSE
and PSNR values

Figure 4.19: Comparison between the worse prediction and the best prediction. Left, worse, pre-
diction from experiment 2 . Right, best, prediction from experiment 6.

CHAPTER 5

Conclusions

As mentioned earlier in Chapter 1, one of the goals of this project was to solve the job of
noise removal. This goal has been achieved in the Chapters 2 and 3 by investigating and
different denoising methods and their performance.

The second objective was to implement one of the most recent networks to tackle the
denoising task. The chosen network has been Divnoising. A network that improves the
traditional VAE for this type of work by adding a noise model. Moreover, this imple-
mentation has been developed following the ZeroCostDL4Mic team guidelines, whose
goal is to make deep learning methods available to people who do not have expertise
in the field of deep learning or programming. The resulting notebook is an easy-to-use
notebook available to everyone.

Furthermore, the Divnoising model has been tested as explained in Section 4 . First it is
tested with the MouseNuclei dataset. The best result, as can be seen in the Table 4.1, is
given by experiment 5. It was expected that with calibration images the result would be
better than with the other noise model learning method. Even so, the difference is almost
null, both methods give similar results.

The model was then tested with the second dataset, Convallaria, and the best results were
obtained in experiment 4. In this case, as expected, the best results are by giving the
model the noise model learned from calibration images. Even so, as in the previous case,
the difference is almost nil. Moreover, it shows that it is not necessary to train it for many
periods because the experiment 4, 5 and 6 give the same result.

59

60 Conclusions

Summarising the experiments, two issues become clear. First, after 50 epochs, the impro-
vement is very small, but the time it takes to train the model increases a lot. Second, the
method chosen to learn the noise model is not so relevant when training the model. The
results obtained by both methods are very similar, although using calibration images the
results are slightly better.

All in all, it is important to point out that even though the predicted images are not as
good as the original signal, the results can be of great use for the biologists, since the
improvement from a noisy image before and after processing is significant. Additionally,
the availability of the network to everyone can result in a thorough testing, which can lead
to the investigation of new methods that can improve the current results.

Appendixes

61

CHAPTER A

Gantt Diagram

63

64 Appendix A

FEBRUARY MARCH APRIL MAY JUNE JULY
TASK

Research
 Task 1 Revise VAE Networks
 Task 2 Read Divnoising paper
 Task 3 Research articles on the topic
 Task 4 Research methods to create Ground Truth (GT)

Model Testing
 Task 1 Make a first draft of the notebook
 Task 2 Create testing notebooks to generate different GT
 Task 3 Make Tests

Implementation of the ZeroCost notebook
 Task 1 Read and execute different notebooks
 Task 2 implementation

Correcting the notebook

Thesis document writing

Presentation preparation

Figure A.1: Gantt diagram displaying the task with their respective duration. Research: Task 1,
revise and study in depth the vae models in order to be able to implement Divnoising in a note-
book. Task 2, after getting to know how a vanilla VAE works, read about the new method to be
implemented and see why the differences it has make it superior for this job. Task 3, to study and
look at different denoising technologies in order to complete the thesis and to understand the origin
of this problem and how it has been tackled during this time. To better understand the motivation
behind it. Task 3, research methods to be able to create GT and choose an option to implement on
the notebook.

CHAPTER B

Experiment 2 results

Figure B.1: Experiment 1 loss Chart.

65

66 Appendix B

Figure B.2: Experiment 1 metrics. Top left, the original image. Top Right, The prediction given
by the model. Bottom left, SSIM map with SSIM value. Bottom Right, RSE map wuth NRMSE
and PSNR values

Figure B.3: Experiment 2 loss Chart.

Experiment 2 results 67

Figure B.4: Experiment 2 metrics. Top left, the original image. Top Right, The prediction given
by the model. Bottom left, SSIM map with SSIM value. Bottom Right, RSE map wuth NRMSE
and PSNR values

Figure B.5: Experiment 3 loss Chart.

68 Appendix B

Figure B.6: Experiment 3 metrics. Top left, the original image. Top Right, The prediction given
by the model. Bottom left, SSIM map with SSIM value. Bottom Right, RSE map wuth NRMSE
and PSNR values

Figure B.7: Experiment 4 loss Chart.

Experiment 2 results 69

Figure B.8: Experiment 4 metrics. Top left, the original image. Top Right, The prediction given
by the model. Bottom left, SSIM map with SSIM value. Bottom Right, RSE map wuth NRMSE
and PSNR values

Figure B.9: Experiment 5 loss Chart.

70 Appendix B

Figure B.10: Experiment 5 metrics. Top left, the original image. Top Right, The prediction given
by the model. Bottom left, SSIM map with SSIM value. Bottom Right, RSE map wuth NRMSE
and PSNR values

Figure B.11: Experiment 6 loss Chart.

Experiment 2 results 71

Figure B.12: Experiment 6 metrics. Top left, the original image. Top Right, The prediction given
by the model. Bottom left, SSIM map with SSIM value. Bottom Right, RSE map wuth NRMSE
and PSNR values

Bibliography

[1] (2020). Peak signal-to-noise ratio as an image quality metric.

[2] Boyat, A. K. and Joshi, B. K. (2015). A review paper: noise models in digital image
processing. arXiv preprint arXiv:1505.03489.

[3] Charmouti, B., Junoh, A. K., Mashor, M. Y., Ghazali, N., Wahab, M. A., Muhammad,
W. Z. A. W., Yahya, Z., and Beroual, A. (2019). An overview of the fundamental
approaches that yield several image denoising techniques. Telkomnika, 17(6).

[4] Chen, Q. and Wu, D. (2010). Image denoising by bounded block matching and 3d
filtering. Signal Processing, 90(9):2778–2783.

[5] Cheng, Y. (1995). Mean shift, mode seeking, and clustering. IEEE transactions on

pattern analysis and machine intelligence, 17(8):790–799.

[6] Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. (2007). Image denoising by
sparse 3-d transform-domain collaborative filtering. IEEE Transactions on image pro-

cessing, 16(8):2080–2095.

[7] Goyal, B., Dogra, A., Agrawal, S., Sohi, B., and Sharma, A. (2020). Image denoising
review: From classical to state-of-the-art approaches. Information Fusion, 55:220–244.

[8] Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., and Lew, M. S. (2016). Deep learning
for visual understanding: A review. Neurocomputing, 187:27–48.

[9] Huang, H. (1981). Biomedical image processing. Critical reviews in bioengineering,
5(3):185–271.

[10] Ilesanmi, A. E. and Ilesanmi, T. O. (2021). Methods for image denoising using
convolutional neural network: a review. Complex & Intelligent Systems, 7(5):2179–
2198.

73

74 Appendix B

[11] Jain, A. K., Murty, M.Ñ., and Flynn, P. J. (1999). Data clustering: a review. ACM

computing surveys (CSUR), 31(3):264–323.

[12] Jain, V. and Seung, S. (2008). Natural image denoising with convolutional networks.
Advances in neural information processing systems, 21.

[13] Katkovnik, V. and Egiazarian, K. (2017). Sparse phase imaging based on complex
domain nonlocal bm3d techniques. Digital Signal Processing, 63:72–85.

[14] Kaur, J., Kaur, M., Kaur, P., and Kaur, M. (2012). Comparative analysis of image
denoising techniques. International journal of Emerging Technology and Advanced

engineering, 2(6):296–298.

[15] King, M. A., Doherty, P. W., Schwinger, R. B., and Penney, B. C. (1983). A wiener
filter for nuclear medicine images. Medical physics, 10(6):876–880.

[16] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

[17] Kingma, D. P. and Welling, M. (2019). An introduction to variational autoencoders.
arXiv preprint arXiv:1906.02691.

[18] Krull, A., Buchholz, T.-O., and Jug, F. (2019). Noise2void - learning denoising from
single noisy images. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR).

[19] Krull, A., Vičar, T., Prakash, M., Lalit, M., and Jug, F. (2020). Probabilistic noi-
se2void: Unsupervised content-aware denoising. Frontiers in Computer Science, 2:5.

[20] Kujawa, S. and Krahl, D. (1992). Performance of a low-noise ccd camera adapted
to a transmission electron microscope. Ultramicroscopy, 46(1-4):395–403.

[21] Lebrun, M. (2012). An analysis and implementation of the bm3d image denoising
method. Image Processing On Line, 2012:175–213.

[22] Lee, J.-S. (1983). Digital image smoothing and the sigma filter. Computer vision,

graphics, and image processing, 24(2):255–269.

[23] Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., and
Aila, T. (2018). Noise2noise: Learning image restoration without clean data. arXiv

preprint arXiv:1803.04189.

BIBLIOGRAPHY 75

[24] Li, X., Hu, Y., Gao, X., Tao, D., and Ning, B. (2010). A multi-frame image super-
resolution method. Signal Processing, 90(2):405–414.

[25] Mentaschi, L., Besio, G., Cassola, F., and Mazzino, A. (2013). Why nrmse is not
completely reliable for forecast/hindcast model test performances. In Geophysical

Research Abstracts, volume 15.

[26] Pap, E. and Štrboja, M. (2010). Generalization of the jensen inequality for pseudo-
integral. Information Sciences, 180(4):543–548.

[27] Peng, J., Shi, C., Laugeman, E., Hu, W., Zhang, Z., Mutic, S., and Cai, B. (2020).
Implementation of the structural similarity (ssim) index as a quantitative evaluation
tool for dose distribution error detection. Medical physics, 47(4):1907–1919.

[28] Pinaya, W. H. L., Vieira, S., Garcia-Dias, R., and Mechelli, A. (2020). Convolutional
neural networks. In Machine learning, pages 173–191. Elsevier.

[29] Prakash, M., Krull, A., and Jug, F. (2020). Fully unsupervised diversity denoising
with convolutional variational autoencoders. arXiv preprint arXiv:2006.06072.

[30] Prakash, M., Krull, A., and Jug, F. (2021). Fully unsupervised diversity denoising
with convolutional variational autoencoders. In International Conference on Learning

Representations.

[31] Rabbani, H., Nezafat, R., and Gazor, S. (2009). Wavelet-domain medical image
denoising using bivariate laplacian mixture model. IEEE transactions on biomedical

engineering, 56(12):2826–2837.

[32] Rocca, J. (2019). Understanding variational autoencoders (vaes) building, step by
step, the reasoning that leads to vaes.

[33] Roy, V. (2013). Spatial and transform domain filtering method for image de-noising:
A review. International Journal of Modern Education & Computer Science, 5(7).

[34] Sairam, R. M., Sharma, S., and Gupta, K. (2013). Study of denoising method of
images-a review. Journal of Engineering Science and Technology Review, 8(5):41–48.

[35] Sharma, A. and Singh, J. (2013). Image denoising using spatial domain filters: A
quantitative study. In 2013 6th International Congress on Image and Signal Processing

(CISP), volume 1, pages 293–298. IEEE.

76 Appendix B

[36] Tian, C., Fei, L., Zheng, W., Xu, Y., Zuo, W., and Lin, C.-W. (2020). Deep learning
on image denoising: An overview. Neural Networks, 131:251–275.

[37] von Chamier, L., Laine, R. F., Jukkala, J., Spahn, C., Krentzel, D., Nehme, E.,
Lerche, M., Hernández-Pérez, S., Mattila, P. K., Karinou, E., et al. (2021). Democ-
ratising deep learning for microscopy with zerocostdl4mic. Nature communications,
12(1):1–18.

[38] Wildberger, K., Lang, P., Zeller, R., and Dederichs, P. (1995). Fermi-dirac distribu-
tion in ab initio green’s-function calculations. Physical Review B, 52(15):11502.

[39] Windyga, P. S. (2001). Fast impulsive noise removal. IEEE transactions on image

processing, 10(1):173–179.

	Abstract
	Contents
	List of Figures
	Table index
	Introduction
	Motivation & Objectives
	Objectives of this project
	Project outline

	Related and previous work
	Classical approach
	Spatial domain filtering
	Transform domain filtering
	Methods in other domains

	State of the art
	Block-matching and 3D filtering (BM3D)
	Deep Learning

	Methodology
	The Divnoising model
	ZeroCostDL4Mic notebook

	Experiments
	Dataset description
	Noise Model
	Calibration Images
	Bootstrap

	Evaluation metrics
	SSIM (structural similarity) map
	RSE (Root Squared Error) map

	Training
	Results
	Mouse nuclei results
	Convallaria results

	Conclusions
	Gantt Diagram
	Experiment 2 results
	Bibliography

