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Functional neuroimaging research on anxiety has traditionally focused on brain networks associated with the psychological aspects
of anxiety. Here, instead, we target the somatic aspects of anxiety. Motivated by the growing appreciation that top-down cortical
processing plays a crucial role in perception and action, we used resting-state functional MRI data from the Human Connectome
Project and Dynamic Causal Modeling (DCM) to characterize effective connectivity among hierarchically organized regions in the
exteroceptive, interoceptive, and motor cortices. In people with high (fear-related) somatic arousal, top-down effective connectivity
was enhanced in all three networks: an observation that corroborates well with the phenomenology of anxiety. The anxiety-
associated changes in connectivity were sufficiently reliable to predict whether a new participant has mild or severe somatic
anxiety. Interestingly, the increase in top-down connections to sensorimotor cortex were not associated with fear affect scores, thus
establishing the (relative) dissociation between somatic and cognitive dimensions of anxiety. Overall, enhanced top-down effective
connectivity in sensorimotor cortices emerges as a promising and quantifiable candidate marker of trait somatic anxiety.
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INTRODUCTION

Anxiety disorders are among the most prevalent psychiatric
disorders worldwide [1, 2]. Furthermore, undiagnosed or sub-
clinical anxiety is fairly ubiquitous in the general population and is
characterized by impairment in diverse areas of life [3]. The search
for the neurological bases of anxiety and anxiety disorders has
provided many important insights, yet a comprehensive, transla-
table understanding has remained elusive. This is reflected in
relatively low recovery rate [4] and high prevalence of relapse
[5, 6] in anxiety disorders. This warrants further research and,
possibly, new approaches.

Research into neurobiology of anxiety primarily focuses on its
cognitive aspects. The classical neurocognitive model of anxiety
proposes the disruption of the amygdala-prefrontal circuitry in
anxiety, which represents deficient recruitment of prefrontal
control and amygdala hyper-responsivity to threat [7]. Apart from
amygdala-prefrontal circuitry, the cingulo-opercular, fronto-parie-
tal, ventral attention, and default mode networks are among other
major networks implicated in the core cognitive mechanisms of
anxiety, such as appraising and regulating emotional salience,
deranged cognitive control, and so on [8-11].

However, anxiety is an embodied phenomenon, which is known
to cause alterations in several sensorimotor functions including
exteroception, interoception and motor functioning. A significant
number of individuals with anxiety disorders consistently display
symptoms of heightened sensitivity to external stimuli. There
appears to be significant epidemiological overlap between anxiety
and Sensory Processing Sensitivity (SPS) [12-15]- a condition
characterized by greater sensitivity to subtle stimuli [16, 17].

Several interoceptive symptoms, such as elevated heartbeat
perception, palpitation, difficulty breathing, and feeling tense
show strong association with anxiety [18-23]. Elevated muscle
tension is among the most consistent physiological findings in
chronic anxiety disorders and reduction of muscle tension is a
major component of many behavioral therapeutic approaches to
alleviate anxiety [24]. Motor restless and hyperactivity are other
prominent motor features of anxiety. Although there are a few
neuroimaging studies that examined (or reported) sensorimotor
changes in anxiety, our understanding of sensory and motor
functions of brain is undergoing a paradigm shift. Motivated by
the growing appreciation that top-down/backward information
flow in brain (i.e., from functionally higher to lower areas) plays
crucial roles in perception (and action) [25-27], we investigated
the effective connectivity among hierarchically organized sensor-
imotor regions and its association with (trait) anxiety. Here,
effective connectivity refers to the influence that one neural
system exerts over another, either at a synaptic or population level
[28]. In contrast to data-driven approaches (e.g., whole- brain
functional connectivity analyses), we adopted a model-based
approach informed by empirical knowledge about the functional
architectures of sensorimotor networks: namely exteroceptive,
interoceptive, and motor networks. For exteroception, we selected
lateral frontal pole (FP1)-the terminal relay station for exterocep-
tive sensory information [29]-and primary visual (V1), auditory
(A1), and somatosensory (SSC) cortices. For interoception, we
chose anterior and posterior insula (Al and Pl) based on known
role of the insula in interoception and a posterior to anterior
hierarchical organization in insula [8, 30]. Finally for motor regions,
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Fig. 1 Analysis pipeline. Outline of the analysis pipeline, see Materials and Methods.

we chose supplementary motor area (SMA) and primary motor
cortex (MC). SMA is responsible for planning complex movements
of the contralateral extremities and is postulated to occupy a
higher level of hierarchy in the motor cortex.

Anxiety is known to increase stimulus-driven attention [31], is
associated with hypervigilance [32], and psychomotor agitation —
states where top-down cortical information flow is supposed to be
enhanced. Moreover, as discussed above, anxiety is known to
enhance sensorimotor processing in all three sub-domains:
exteroception, interoception, and proprioception. Thus, we
hypothesized that—with increasing anxiety scores—top-down
effective connectivity in three networks will be enhanced. We
analyse changes in connectivity associated with both cognitive
and somatic aspects of anxiety. Here, somatic represents body
(Greek “somatikos = of the body), as distinct from the mind. The
body communicates with the internal and external milieu through
sensory perception (exteroceptive, interoceptive and propriocep-
tive) and action (motor and autonomic). The theoretical motiva-
tion for the current study borrows from enactive and embodied
treatments that can be seen in the light of interoceptive inference
[32-36]. For example, under embodied cognition hypothesis,
“‘understanding’ is sensory and motor simulation” [37]. The same
holds in the context of mental health: somatic therapy “focuses on
resolving the symptoms of chronic stress and post-traumatic
stress. by directing the client’s attention to internal sensations,
both visceral (interoception) and musculoskeletal (proprioception
and kinesthesis), rather than primarily cognitive or emotional
experiences” [38]. The bilateral involvement of interoception and
exteroception—two major subdomains of sensory perception and
proprioception—underwrites our hypothesis that sensory and
motor networks are jointly implicated in somatic anxiety.
Specifically, we expected to find correlates of somatic anxiety in
sensorimotor hierarchies because many theoretical accounts of
anxiety and stress refer to changes in the sensitivity of neuronal
populations to afferents: for example, in predictive coding
accounts failures of sensory attenuation or selective attention
are often cast in terms of aberrant precision or synaptic gain
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control: e.g., Ainley, Apps, Fotopoulou, and Tsakiris [39], Barrett
and Simmons [40], Gu and FitzGerald [41], and Seth [42].

MATERIALS AND METHODS

Our main objective was to test the hypothesis of anxiety related
enhancement of top-down effective connectivity in sensory and motor
networks. Resting state fMRI data from a subset of participants in “WU-
Minn HCP Data - 1200 Subjects” dataset available at ConnectomeDB
platform (https://db.humanconnectome.org/app/template/Login.vm) were
used for that purpose. We used Dynamic Causal Modeling to estimate
effective connectivity. A schematic illustration of analysis steps is provided
in Fig. 1.

Selection of participants and psychometric scores

Among the 1200 participants data available in the dataset, 87 individuals
without psychometric scores or MRI scans were eliminated. We also
eliminated all the participants with sadness survey scores above 40 which
left us with 238 participants. It is well established that depression and
anxiety are highly comorbid. Furthermore, a recent study by Ray et al. [43]
demonstrated depression associated changes in effective connectivity in
sensory and motor cortices. The sadness survey in the NIH toolbox is a self-
report measure which assesses sadness using a Computer-Adaptive Test
(CAT). According to the NIH toolbox, a sadness score below 40 is
considered in the minimal range. By eliminating participants with high
sadness score, we controlled for influence of depression on effective
connectivity.

Our main psychological measure of interest in this study was the Fear-
Somatic Arousal (FSA) survey: unadjusted scale score. The FSA test is a
6-item fixed-length form used in the age group of 18-85 to assess the
somatic symptoms of anxiety [44-47]. The unadjusted scale score has a
mean of 50 and standard deviation of 10. We plotted the FSA scores of 238
participants to ascertain the distribution of FSA scores (supplementary fig.
6). We found 74 individuals with a score of 40.1. All the scores above 40.1
were distributed over the range of 45-70. A possible reason for this
peculiar finding might be some approximation in how the scores are
calculated. Since subsequent analysis steps used summary statistics of
these scores (e.g., mean, standard deviation), we removed those 74
participants, with the same score, from our analysis. Our final analysis
considered 164 participants (81 males and 83 females, mean age
28,7 + 3.48 years, range 22-35 years).
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Fig.2 Regions of interest for different networks. a Motor. b Exteroceptive, and c Interoceptive networks. FP1: lateral frontal pole, A1: primary
auditory cortex, V1: primary visual cortex, SSC: primary somatosensory cortex, Al: anterior insula, Pl: posterior insula, MC: primary motor
cortex. SMA: supplementary motor area. The images were created using MRIcroGL (https://www.nitrc.org/projects/mricrogl/).

In addition to FSA, we also included Fear-Affect (FA) Survey: Unadjusted
Scale Score in our analysis. This self-report measure assesses fear and
anxious misery for ages 18-85, using a CAT format. Overall, FA reflects the
cognitive aspects of anxiety.

Brain image acquisition

All participants were scanned using a Siemens 3T scanner housed at
Washington University in St Louis. Scans were taken using a standard 32-
channel Siemens receive head coil and a “body” transmission coil. The
rsfMRI data were of approximately 15 minutes duration with eyes open
and relaxed fixation on a projected bright crosshair on a dark background
(in a dark room).

The structural and functional MRI images were acquired using the
following parameters [48]:

Structural MRI: T1w 3D magnetization-prepared rapid acquisition with
gradient echo (MPRAGE), Field of View: 224 x 224 mm, TR = 2400 ms,
TE=2.14ms, Flip Angle= 8’, Voxel size= 0.7 mm isotropic. T2W 3D T2-
SPACE, Field of View: 224 x 224 mm, TR=3200ms, TE=565ms, Flip
Angle= variable, Voxel size=0.7 mm isotropic.

Functional MRI: Gradient echo Echo Planar Imaging (EPI) sequence, Field
of View: 208 x 180 mm (ROXPE), TR =720 ms, TE =33.1 ms, Flip Angle=
52°, Voxel size: 2.0 mm isotropic, 72 slices.

Pre-processing

We used the minimally pre-processed structural and functional MRI data
provided by the Human Connectome Project (WU-Minn HCP 1200 Subjects
Data Release) and obtained through the database at http:/
db.humanconnectome.org. In brief, structural data underwent gradient
nonlinearity and b0 distortion correction, co-registration between the T1-
weighted and T2-weighted images, bias field correction by capitalizing on
the inverse intensities from the T1- and T2-weighting and, finally,
registration of the subject’s native structural volume space to MNI space.
We used the functional data processed by the fMRIVolume functional
pipeline. FMRIVolume removes spatial distortions, realigns volumes to
compensate for subject motion, registers the fMRI data to the structural,
reduces the bias field, normalizes the 4D image to a global mean, and
masks the data with the final brain mask. Details about the preprocessing
pipeline could be found in [48]. After downloading these minimally
preprocessed data, the first five functional images were removed to allow
the magnetization field to stabilize to a steady state and the remaining
images were denoised by regressing out several nuisance signals such as
head motion (using the Friston-24 head motion parameters) and
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cerebrospinal fluid and white matter signals using the SPM12 V771
toolbox (Statistical Parametric Mapping, http://www fil.ion.ucl.ac.uk/spm).

Selection of ROIs and extraction of time series

The Regions of interest selected for our analysis were the lateral frontal
pole (FP1), primary auditory cortex (A1), primary visual cortex (V1) and
somatosensory cortex (SSC) for exteroception network, anterior and
posterior insulae (Al & PI) for interoceptive network and primary motor
cortex (MC) and supplementary motor area (SMA) for motor network. The
regions of interest for each network are depicted in Fig. 2. The ROIs were
defined using masks taken from the SPM Anatomy toolbox [49]. To extract
time series for subsequent DCM analysis, we took the first principal
components of the time series from all voxels included in the masks and
adjusted the data for “effects of interest” (i.e.,, mean-correcting the time
series).

Dynamic causal modeling and parametric empirical Bayes

We used the Spectral DCM approach using DCM12.5 as implemented in
SPM12 v7771 (http://www fil.ion.ucl.ac.uk/spm) to estimate the effective
connectivity within each network. Spectral DCM is a computationally
efficient form of Dynamic Causal Modeling for estimating effective
connectivity from resting state timeseries (as summarized in terms of
their cross spectral density).

Dynamic Causal Modeling is a well-established approach to estimate the
causal architecture (effective connectivity) of distributed neuronal
responses from observed BOLD (Blood-Oxygen-Level-Dependent) signals
recorded from fMRI. It is primarily based on two equations. First, the
neuronal state equation models the change of a neuronal state-vector in
time, depending on directed connectivity within a distributed set of
regions that, in the context of DCM for cross spectral density, are subject to
endogenous fluctuations, whose spectrum is estimated. Second, an
empirically validated hemodynamic model that describes the trans-
formation of neuronal state into a BOLD response. The underlying neural
state equation is written as follows:

X(t) = F(x(t),6") +v(1) (1

The function fis the neural model (i.e., a description of neuronal dynamics),
x is the rate of change of the neural states x, 8" is the unknown
connectivity parameters (i.e., intrinsic effective connectivity) and v(t)
represents a stochastic process that models the endogenous neural
fluctuations, which drive the resting state.
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Fig. 3 Psychometric scores across participants before and after othogonalization. FSA: fear somatic arousal scores, FA: fear affect scores
before orthogonalization, FAO: fear affect scores after orthogonalization. The correlation values between difference scores are also shown.

The hemodynamic model equation is used to translate the transforma-
tion of neuronal state into a BOLD response:

y(t) = k(x(t),0") + ¢(t) ®)
Here, the function k specifies the biophysical processes that transform
neural activity x into the BOLD response with parameters 6" plus the
observation noise ¢.

Spectral DCM offers a computationally efficient inversion of the pursuing
model of resting state fMRI. Spectral DCM simplifies the estimation of
generative model by fitting data features into the frequency do- main (i.e.,
using Fourier transforms) instead of the original BOLD time series as
employed in the DCM of evoked induced responses. By switching to
second order statistics (i.e, complex cross-spectra), spectral DCM
circumvents the problem of estimating time varying fluctuations in
neuronal states and estimates their spectra, which is time invariant. In
other words, the problem of estimating hidden neuronal states disappears
and is replaced by the problem of estimating their correlation functions of
time or spectral densities over frequencies (and observation noise) that are
much easier to parameterize and estimate. For this purpose, a scale free
(power law) form for the endogenous and error fluctuations is used [50]
and is written as follows:
9v(w,8) = a,wP

3
ge(w, 8) = aew P ®)

Here, {a, B} C O are the parameters controlling the amplitudes and
exponents of the spectral density of these random effects. A standard
Bayesian model inversion (i.e., Variational Laplace) is used to infer the
parameters of the models from the observed signal i.e., the parameters of
the fluctuations and the effective connectivity. A detailed mathematical
description of spectral DCM can be found in [27] and [51].

First level (within-subject) analyses involved estimating fully connected
models (i.e., between all nodes plus self-connections) for each subject for
each kind of network (motor, exteroception, and interoception) in both
hemispheres (right and left). In other words, we specified a subgraph or
DCM for each modality, with a well-defined lower (i.e., sensory) and higher
(i.e., secondary or association) cortical node and estimated the between
node (extrinsic) and within-node (intrinsic) effective connectivity for each
subgraph. This was repeated for both hemispheres, giving six DCMs for
each subject. Our particular interest was in the back- ward extrinsic
connectivity—and whether there were any systematic effects of anxiety on
these directed connections, either within or between modalities over
subjects. We performed a diagnostic test for each DCM to assess the
convergence of model inversion. The accuracy of model inversion was
determined by looking at the average percentage variance-explained by
DCM model estimation when fitted to the observed (cross spectral) data.

Second level (between-subject) analysis used Parametric Empirical Bayes
(PEB): a hierarchical Bayesian model that uses a general linear model (GLM)
of subject-specific parameters. The role of PEB is to model differences in
individual (within-subject) connections, in relation to subject specific
reports of anxiety [52, 53]. One advantage of the PEB framework over the
classical tests (e.g., t test) is that it uses the full posterior density over the
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parameters from each subject’s DCM. That is, both the expected values and
the associated uncertainty (i.e., posterior covariance) of the parameters for
each connection are taken to the between-subject or group level [54]. The
group mean, by default, is the first regressor or covariate in the GLM. FSA
scores, FA scores, age, and sex were the further four regressors in this
study. FSA and FA scores were mean-centered (across all subjects) to
enable the first regressor to be model the group mean of each parameter.
Moreover, as FSA and FA scores showed collinearity, we orthogonalized
the FA scores with respect to FSA scores using Gram-Schmidt orthogo-
nalization. We plot the FSA, FA, and orthogonalized FA scores in Fig. 3. We
used Bayesian model reduction (BMR) to explore the space of possible
models that could potentially explain the resting state data in all subjects.
BMR considers candidate models by removing one or more connections
from a full or parent model [53]. BMR prunes connection parameters from
the full model by scoring each reduced model based on its log model-
evidence. The pruning continues until there is no further improvement in
model-evidence. The final step accommodated uncertainty over the
remaining models using Bayesian Model Averaging (BMA) [55]. BMA takes
the parameters of the selected models and averages them in proportion to
their model evidence.

Leave-one-out validation analysis

Finally, we tested whether the FSA scores could be predicted based on
subject-specific estimates of effective connectivity using a leave-one-out
cross validation analysis [56]. To include just those parameters (i.e.,
connection strengths) that had the greatest evidence of being non-zero,
we thresholded the BMA to focus on parameters that had a 95% posterior
probability of being present. A participant was left out and a parametric
empirical Bayesian model was inverted to predict the score of the left-out
subject, based on the specific connections chosen. The Pearson’s
correlation between the predicted score and the measured was used to
summarize the out-of-sample effect size; namely, the degree to which
effective connectivity could predict - or could be predicted by - anxiety.

RESULTS

Accuracy of DCM model estimation

The inversion of DCM models for individual participants produced
excellent results in terms of accuracy (see Fig. 4). Across
participants, the minimum percentage variance-explained by
DCM -when fitted to observed (cross spectra) data - were
79.82%, 57.69% and 53.26% for right motor, exteroception and
interoception networks respectively. As for the left hemisphere,
these values were 77.64%, 44.31% and 48.89% respectively.

Effective connectivity

Group mean effective connectivity. The results for group mean
effective connectivity are shown in Fig. 5a, b and detailed in
supplementary fig. 1. Among extensive networks of connections in
both hemispheres, one noteworthy pattern emerged in the
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Fig. 4 Accuracy of DCM model estimation. Average-percentage
explained by our DCM models for the target networks in both
hemispheres.

backward effective connectivity. In exteroceptive sensory net-
works across hemispheres, back- ward connections were inhibi-
tory. In interoception and motor networks, they were excitatory.
Most of the forward connections, in all three networks, were
inhibitory in nature.

Changes in effective connectivity with FSA scores. FSA scores
reflect the somatic aspect of trait anxiety. The overall pattern of
relative changes in effective connectivity with increasing FSA
scores is depicted in Fig. 5¢, d. The actual values can be found in
Supplementary Fig. 2. As with mean connectivity, the FSA
associated changes were most consistent in (extrinsic or between
region) backward connections across both hemispheres. In
general, all three kinds of network showed enhanced top-down
(backward) influences. For example, in exteroceptive cortices, with
increasing FSA scores top-down connections became more
inhibitory. Conversely, top-down connections in interoceptive
and motor networks became more excitatory.

Changes in effective connectivity with FA scores. FA scores
primarily represent cognitive aspects of anxiety. The connections
showing significant association with FA scores are depicted in Fig.
5¢, d. Supplementary Fig. 3 contains estimated effective con-
nectivity values. Unlike FSA scores, no enhancement of top-down
connectivity was observed in association with FA scores. Rather,
right Al to Pl backward connectivity was weakened i.e., became
inhibitory (it was excitatory at the group mean level). In general,
changes with FA scores remained confined to bottom-up and
lateral connections.

Cross validation. In a leave-one-out cross-validation among all
connections showing significant association with FSA scores, five
connections were found to predict FSA scores at a significant level
of a=0.05 (see Table 1 and Fig. 6). These connections were: left
FP1 to left SSC (corr = 0.22, p-value = 0.00272), right FP1 to right
V1 (corr=0.17, p-value=0.01682), right A1 to right V1
(corr =0.14, p-value = 0.03359), right MC to right MC (self-loop)
(corr=10.15, p-value =0.02801), left Al to left Pl (corr=0.15, p-
value = 0.02792). Note that these correlation coefficients are not
corrected for multiple comparisons because they are not testing
hypotheses — they are summarizing out-of-sample effect sizes,
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under the most likely model of anxiety-related changes in
effective connectivity among subjects.

DISCUSSION

The most striking result of our study was found in the group-
averaged backward (top-down) effective connectivity in sensory
and motor cortices that showed consistent patterns across
hemispheres and consistent changes with FSA scores. The
backward effective connections in exteroceptive sensory networks
were inhibitory by nature whereas they were excitatory in bilateral
interoceptive and motor networks. With in- creased FSA scores
(but not with increased FA scores), this pattern was accentuated in
all three networks. In other words, top-down inhibition in
exteroceptive network and top-down excitation in interoceptive
and motor networks were associated with increased report of
somatic anxiety. In leave-one-out cross validation analyses, five
connections were found to have a sufficiently large effect size to
predict whether somebody has a high or a low FSA score.

There are a few neuroimaging studies that have examined or
reported functional/effective connectivity changes in sensory and
motor cortices as biomarkers for anxiety [57-62]. In contrast to
these extant studies, our work is motivated by a novel under-
standing of neural mechanisms underlying sensory perception.
There is a growing consensus that perception is not a passive
‘bottom-up’ mechanism of progressive abstraction from sensory
input. Rather, recurrent information flow between hierarchically
organized brain regions plays a crucial role in perception. This
underwrites most current theorizing about functional brain
architecture. The most prominent is the theory of predictive
coding [25-27] that has also been extended to motor domain
[63, 64]. The implicit neuronal message passing within cortical
hierarchy motivated us to investigate effective connectivity
among hierarchically organized sensorimotor regions and its
association with (trait) anxiety.

At the group level, the most consistent finding in the current
study concerns the top-down average effective connectivity in
different sensory and motor networks. Across participants and
hemispheres, top-down connections are inhibitory in exterocep-
tive networks and excitatory in interoceptive and motor networks.
The pattern in exteroceptive network is consistent with the role of
top-down predictions explaining away prediction errors at lower
levels, as proposed by the predictive coding framework [27, 65].
Although long-range connections in the brain are excitatory (i.e.,
glutamatergic), predictive coding proposes that backward con-
nections may preferentially target inhibitory interneurons in
superficial and deep layers to evince an overall decrease in
neuronal message passing [27, 65, 66]. In predictive coding, this is
often read as ‘explaining away’ prediction errors at lower levels in
sensory cortical hierarchies so that only those incoming stimuli
that deviate from prediction (i.e., prediction errors) ascend the
hierarchy to revise presentations at higher levels [65-67].
However, the completely opposite pattern was observed in
interoceptive and motor networks. Descending excitatory con-
nections in interoceptive and motor systems may reflect the
increased precision that is thought to mediate attention and
sensory attenuation [68-70]. In this instance, there can be an
explaining away of certain prediction errors, while their precision
may be increased, resulting in an overall excitatory drive. In terms
of synaptic physiology, this can be read as an increase in
postsynaptic gain or cortical excitability.

Moreover, a complementary explanation exists for top-down
excitatory connectivity in motor networks. It could be a reflection
of the fact that ascending prediction errors in the executive motor
system may play a small role—because these prediction errors are
thought to be resolved through cortical spinal reflexes, ie.,
through action [64]. Put simply, in sensory hierarchies exterocep-
tive prediction errors are caused by bottom-up sensory input,
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Left

Group mean

Fig. 5 Effective connectivity (left and right hemispheres). a, b Group mean effective connectivity in sensory and motor networks. Arrow
colors code nature of connections red, excitatory; blue, inhibitory. c—f Connections showing significant association with FSA ¢, d and FA
e, f scores in sensory and motor networks. Arrow colors code direction of connectivity changes relative to the group mean: red, increased;
blue, decreased. For all subfigures, line thickness is kept constant and does not code for the effect size. For the exact values of the estimated
connectivity parameters see Appendix A. Nodes are placed in different planes to denote relative position of different nodes in cortical
hierarchy. SMA: supplementary motor area, MC: primary motor cortex, FP1: lateral frontal pole, V1: primary visual cortex, A1: primary auditory
cortex, SSC: primary somatosensory cortex, Al: anterior insula, Pl: posterior insula.

which are resolved by (inhibitory) top-down predictions. Con-
versely, in motor hierarchies, prediction errors are generated by
(excitatory) top-down proprioceptive predictions, which are
resolved by motor reflexes at the level of the spinal-cord.

In line with the marked consistency of the patterns of top-down
effective connectivity, the changes in backward effective con-
nectivity—with the extent of somatic arousal—also showed a
consistent pattern and fit comfortably with phenomenology of
anxiety syndromes. With increasing somatic anxiety scores, the
patterns found in top-down connections at the group level are
accentuated in all three networks. In other words, connections
from lateral frontal pole to primary exteroceptive cortices become
more inhibitory, whereas connections from supplementary motor
area to primary motor cortex—and from anterior to posterior
insula become more excitatory with increasing somatic anxiety.
Enhancement of top-down processing in exteroceptive networks
is in line with the hypervigilance and heightened sensitivity to
external stimuli in anxiety and increased Sensory Processing
Sensitivity (SPS) [16, 17] in several anxiety disorders. The
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enhancement in the interoceptive network is consistent with
elevated heartbeat perception, difficulty breathing, feeling tense
[18-23] and other interoceptive symptoms in anxiety. Elevated
muscle tension, motor restless and hyperactivity are some of the
prominent features of anxiety [24] that might well be reflected in
the increased top-down motor network effective connectivity.

In this context it is noteworthy that descending predictions of
precision play an important role in active inference accounts of
several psychiatric conditions—in which synaptic pathophysiology
and psychopathology can be accounted for by a failure of sensory
attenuation; namely, the attenuation or suspension of the
precision of sensory prediction errors. This failure of attention
and attenuation has been used to explain several conditions,
including autism, schizophrenia, Parkinson’s disease and depres-
sion [71-75]. The present work suggests that the disinhibition—
which underlies a failure of sensory attenuation—may also
characterize trait somatic anxiety.

In sharp contrast to FSA scores, FA scores did not show
association with increased descending effective connectivity
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Table 1. Leave-one-out cross validation.

Connections Correlation p value
IFP1 — ISSC 0.22 0.00272
IFP1 > IV1 0.08 0.14339
ISSC — IFP1 0.04 0.28516
V1 > IV1 0.06 0.23341
rFP1— rSSC —0.02 0.61198
rFP1 — rV1 0.17 0.01682
rA1 — rFP1 0.12 0.06161
rA1 — rSSC 0.09 0.12070
rA1 - rVi 0.14 0.03359
rA1 — rA1 0.13 0.05109
ISMA — IMC —0.06 0.78262
rSMA — rMC 0.05 0.24576
rMC — rSMA 0.12 0.5771
rMC — rMC 0.15 0.02801
1Al - IPI 0.15 0.02792

among regions in exteroceptive, interoceptive and motor net-
works. This finding is in line with-and furnishes the neurobiolo-
gical basis for-distinction between cognitive and somatic aspects
of anxiety [76-86]. In this work, we effectively define somatic
anxiety in relation to cognitive anxiety. Cognitive anxiety has been
broadly described as the “negative expectations, worries, and
concerns about oneself, the situation at hand, and potential
consequences”. In contradistinction, somatic anxiety has been
associated with “the perception of one’s physiological arousal”
[87]. Cognitive anxiety has been frequently associated with
expressions like “fear of the worst happening”, “terrified”, and
“fear of losing control” whereas somatic anxiety emphasizes the
interoceptive and autonomic sequalae of embodied states;
including shortness of breath, pounding heart, dizziness, sweating,
numbness, unsteadiness, feeling hot, and a feeling of choking
[88-93]. While cognitive and somatic symptoms interact with one
another [94], they have been postulated to be distinctive aspects
of the anxiety process, reflected in differences in antecedence,
phenomenology, behavioral relevance, and therapeutic response
[76, 77]. For example, threat of electric shock has been shown to
have its primary influence on somatic anxiety, whereas social or
performance evaluation tends to have a stronger eliciting effect
on cognitive anxiety [78, 79]. Similarly, cognitive anxiety
symptoms have been shown to respond effectively to
cognitively-oriented approaches such as cognitive restructuring
or processing. On the other hand, somatic symptoms have been
shown to respond to physiologically-based approaches, including
biofeedback and relaxation [80, 81]. Finally, cognitive and somatic
anxiety have differential influences on performance. In several
studies in professional athletes, cognitive anxiety is unrelated to
motor performance [82] or has a negative relationship [83],
whereas somatic anxiety is accompanied by improved perceptuo-
motor performance [84] or demonstrates an inverted-U relation-
ship with motor performance: such that performance initially
improved and then deteriorated with increasing somatic anxiety
[83]. Note that the finding from the present study does not
suggest that individuals with heightened cognitive anxiety cannot
show increased backward effective connectivity as cognitive and
somatic anxiety are often coexistent. The results, however, do
suggest that the enhanced top-down cortical processing in
sensorimotor networks reflects somatic, rather than cognitive,
aspect of anxiety.

The model comparison discussed above furnishes clear
evidence for changes in a number of connections that underwrite
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anxiety, as scored with the FSA scores. One might now ask
whether these changes can be used to predict somatic arousal in
individuals. In other words, are the underlying effect sizes
sufficiently large to anticipate whether somebody has a high or
a low FSA score? This question goes beyond whether there is
evidence for an association and addresses the utility of
connectivity phenotyping for precision medicine. One can
estimate out of sample effect sizes using cross validation under
a parametric empirical Bayesian scheme [53]. In this analysis, we
withhold a particular participant and ask whether one could have
predicted the FSA score given the effective connectivity estimates
from that subject. In the current analysis, five individual
connections from three networks showed a significant out-of-
sample correlation with FSA score. This suggests that a nontrivial
amount of variance in the FSA score could be explained by
effective connectivity. It is also important to note that three out of
five connections are backward connections, further highlighting
the importance of top-down processing in somatic anxiety.

A note on our choice of network nodes. As we were primarily
interested in quantifying top-down or descending connectivity in
the cortical hierarchy, we selected primary sensory/motor cortices
and an accompanying “higher” region for each network. Thus,
bilateral primary motor, visual, auditory, somatosensory cortices
and posterior insula were selected as lower nodes. It should be
pointed out here that posterior insula is widely considered as the
primary interoceptive cortex [40, 95, 96]. For motor networks, SMA
was chosen as the higher node. SMA is responsible for planning
(rather than directly executing) complex movements of the
contralateral extremities [97, 98] and is thus posited to occupy a
higher level in the functional hierarchy than the primary motor
cortex. For interoception, we chose the anterior insula based on a
posterior to anterior hierarchical organization in the insula
[99, 100]. For exteroceptive networks, the higher region ought
to be situated at a higher level in the functional organization of
the cortex compared to three lower regions: the primary visual,
auditory, and somatosensory cortices. Several tracing, lesion, and
physiological studies suggest that visual, auditory, and somato-
sensory processing pathways converge at different regions of
VLPFC [101] and DLPFC [102]. We therefore chose the lateral
frontal pole as representative of a higher node. Empirical studies
[103, 104] support a posterior to anterior sensory representational
hierarchy in the prefrontal cortex and place the lateral frontal pole
one level higher than both DL and VL PFC in the cortical hierarchy.

Findings from the current study should be considered within
the context of certain limitations. Although our study sample was
large for neuroimaging measures-and we undertook steps like
cross-validation to ensure the generalizability of our findings-
replication in a different sample would be an important next step.
Secondly, in the present work, we investigated the association of
effective connectivity with subthreshold anxiety in a large-scale
dataset. None of our participants reported a diagnosis of anxiety
disorder. We will consider testing for the association of
pathological anxiety with effective connectivity, in sensory and
motor networks, in future work.

The insights from the present work have significant translatable
potential. Further research should be conducted to investigate the
effectiveness of therapeutic interventions like neurofeedback and
relaxation techniques in reverting the top-down effective con-
nectivity and physical symptoms of somatic anxiety. Another
interesting approach is emerging noninvasive brain stimulation
techniques like Transcranial Magnetic Stimulation (TMS). Recent
research has established that TMS can modulate cortico-cortical
connectivity in specific neural circuits [105-107]. Specific brain
regions in the sensory or motor networks could be stimulated and
their effect on the somatic anxiety could be studied using state-of-
the-art techniques that are currently available. This may have
clinical implications for pathological or trait anxiety in the general
population and in specific contexts like sports performance.
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Fig. 6 Leave one out cross validation analysis. The out-of-samples estimate of FSA score for each subject (orange line) with 90% confidence
interval (shaded area). The purple line represents the actual FSA score. Correlation values between actual and estimated FSA scores are shown

in the legend.

In summary, our results advance our mechanistic understanding
of the pathophysiology that underwrites somatic anxiety. Tradi-
tional neuroimaging accounts of anxiety have centered around
the cognitive aspects of anxiety at the expense of bodily
symptoms. The present work establishes anxiety as an embodied
phe- nomenon by demonstrating that enhanced top-down
effective connectivity in sensory and motor cortices affords a
promising neural signature of trait anxiety. It also establishes the
generalizability and predictive validity of this novel marker- and
may portend a new avenue of research into the neural
underpinnings and therapeutic treatments of anxiety.
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