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tA 
entral unanswered question in e
onomi
 theory is that of pri
eformation in disequilibrium. This paper lays down the methodologi
algroundwork for a model that has been suggested as an answer to thisquestion (Arrow, 1959; Fisher, 1983; Hahn, 1989). We 
onsider sellersthat monopolisti
ally 
ompete in pri
es but have in
omplete informationabout the stru
ture of the market they fa
e. They ea
h entertain a simpledemand 
onje
ture in whi
h sales are per
eived to depend on the ownpri
e only, and set pri
es to maximize expe
ted pro�ts. Prior beliefs onthe parameters of 
onje
tured demand are updated into posterior beliefsupon ea
h observation of sales at proposed pri
es, using Bayes' rule. Therational learning pro
ess thus 
onstru
ted drives the pri
e dynami
s ofthe model. Its properties are analysed. Moreover, a suÆ
ient 
ondition isprovided, relating obje
tively possible events and subje
tive beliefs, underwhi
h the pri
e pro
ess is globally stable on a 
onje
tural equilibrium foralmost all obje
tively possible developments of history.Journal of E
onomi
 Literature Classi�
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the need for it operating freely often stressed. Yet there are many open resear
hquestions on the matter of pri
es, espe
ially on how they 
ome to take on equi-librium values. For one thing, it is generally left unexplained whose businessit a
tually is to 
all and 
hange pri
es. Parti
ularly in models in whi
h pri
e-taking behaviour is assumed, this is a pressing question. Relian
e on a uniquepri
e ve
tor indi
ates it is left to a single person or institution, and a numberof models has been presented in whi
h the 
entral person is in fa
t an altruisti
au
tioneer|e.g. in the tâtonnement pro
ess, the Edgeworth pro
ess, and theHahn pro
ess.Apart from the fa
t that it seems odd, if not plainly in
onsistent, to modelall behaviour but that of the au
tioneer as resulting from 
onstrained rational
hoi
e, at least two things meet the eye in these explanations. First, they need anexogenous 
entral 
oordinator to explain the rise of equilibria that are meant tobe the out
ome of de
entralized 
ompetitive e
onomies. Se
ond, the 
onditionsthese pro
esses need for 
onvergen
e on equilibrium pri
e values for arbitraryinitial pri
es|i.e. for global stability of the disequilibrium pro
ess|have beenfound to be pretty strong.A number of suggestions has been made to study the disequilibrium behaviourof pri
es more seriously. An early one was by Arrow (1959). He proposedto make pri
e a 
hoi
e variable of individual �rms, that 
onsequently need to
ome equipped with some lo
al monopoly power, at least as a disequilibriumphenomenon. To Arrow, the 
onstru
t of perfe
t 
ompetition did not allow foran explanation of pri
e behaviour. More re
ently, Fisher (1983) developed anelaborate model of disequilibrium behaviour in whi
h there is 
larity on who issetting pri
es. It is done by dealers, who spe
ialize in di�erentiated goods, whi
hgives them the lo
al monopoly to a
t as a 
oordinator. Fisher's obje
tive tohave disequilibrium pro
esses end in 
ompetitive equilibrium, however, led himoriginally to model dealers as little au
tioneers, 
hanging pri
es in the dire
tionof 
ompetitive equilibrium values. Yet, the general stru
ture of his stabilityproof allows for dealers to set pri
es more rationally, exploiting their powers,2



and this is done later in the book. How pri
es 
hange with per
eptions, however,is not dis
ussed in depth. In Hahn (1989) several partial examples are given ofper
eption 
hanges and asso
iated behaviour that may indeed be plausible formonopolisti
ally 
ompeting pri
e setters to develop|in
luding a rudimentaryversion of the behaviour we study in this paper. Yet, the 
onsequen
es of su
hbehaviour, parti
ularly when performed in general equilibrium settings, are onlyhinted upon.When pri
es are 
hoi
e variables of �rms, the way �rms per
eive their marketposition, and espe
ially 
hanges in these per
eptions, 
an a

ount for the dy-nami
s of pri
es. This idea is used in the present paper to 
onstru
t a modelof pri
e adjustment and study its limit behaviour, i.e. its stability properties.In the present model, a number of �rms is in monopolisti
 pri
e 
ompetition,but does not have perfe
t information on the market demand it fa
es. At ea
hmoment in time, based on its information to date on past pri
es and sales, ea
h�rm entertains a demand 
onje
ture instead. Naturally, this 
onje
ture has astru
tural form di�erent from that of obje
tive demand. Parti
ularly, we 
on-sider the most extreme 
ase where �rms only 
onsider their own pri
e as anexplanatory variable, and do not 
onsider the pri
e e�e
ts of 
ompeting prod-u
ts. Within their 
onje
tured stru
tures, �rms learn in a Bayesian way aboutthe value of the demand parameters it has modelled. A 
eshed out 
onje
tureserves as a basis for an optimal pri
e through expe
ted pro�t maximization.It is shown that, for initial beliefs that do not assign zero probability to de-velopments of pri
es and sales that 
an a
tually happen, the in
omplete beliefs
onverge to a �nite limit, and therefore pri
es 
onverge as well. This is 
alled `nostatisti
al surprise'. Convergen
e takes pla
e on a set of `
onje
tural equilibria'.Under `no statisti
al surprise', therefore, the pri
e pro
ess is globally stable inthat it rea
hes an equilibrium for every initial belief-stru
ture. Whi
h parti
u-lar equilibrium is rea
hed depends on the initial beliefs. This path-dependen
yresult runs solely over beliefs, sin
e the model assumes the absen
e of tradeat disequilibrium pri
es. The stability result does not rely on spe
i�
 
ondi-3



tions on the stru
ture of obje
tive demand. Instead, the `no statisti
al surprise'
ondition is suÆ
ient for the per
eived stru
ture to absorb all pri
e e�e
ts onobje
tive demand.The literature on Bayesian or rational learning is quite re
ent and large. Ourpaper builds on several of its results. One fo
us has been the 
on
ern to justifythe use of rational expe
tations equilibria. Parti
ularly Bray and Savin (1986),and Bray and Kreps (1987) have worked in this dire
tion, and have established
onvergen
e results for myopi
 Bayesian learners on rational expe
tations equi-librium in versions of the 
obweb-model. Early work by Blume and Easley(1982; 1984) is also 
on
erned with the in
uen
e learning has on the eventualequilibrium situation rea
hed, but in a general equilibrium setting. Parti
ularly,they have fo
ussed on 
onditions under whi
h Bayesian learners will identify thetrue model among several models.In partial equilibrium models of single �rms learning their demand, Easley andKiefer (1988) among others, study the in
uen
e of a
tive learning on �rms'optimization problems. A
tively learning �rms are aware of the fa
t that theirbehaviour in
uen
es their options for learning. In a dis
rete game theoreti
alsetting, Kalai and Lehrer (1993; 1995) have obtained results for rational learningbehaviour. Kalai and Lehrer (1993) 
onsiders learning in a 
orre
tly spe
i�edstru
ture, and states 
onditions under whi
h it 
onverges to a Nash equilibriumof the perfe
t information game that are similar to ours.Another, mu
h less extensively travelled, route has been to study the in
uen
eof stru
tural misspe
i�
ation on the 
onvergen
e pro
ess and its equilibria. Kir-man (1975; 1983; 1995) sets up an early example of two �rms learning, in a leastsquares way, in a misspe
i�ed stru
ture of their game. He does not establishgeneral 
onvergen
e results, however. Nyarko (1991) 
onstru
ts an example ofa single, a
tively learning monopolist whose beliefs do not settle, due to a veryparti
ular stru
tural spe
i�
ation error. Kalai and Lehrer (1995) extends the1993 
onvergen
e 
onditions to stru
turally misspe
i�ed models to identify theusable notion of equilibrium. The arti
le does not present expli
it 
onvergen
e4



results, however.This paper is organized as follows. The next se
tion presents the model stru
-ture. Se
tion 3 dis
usses some elementary properties of sto
hasti
 pro
esses.Se
tions 4 and 5 present the 
onvergen
e result, and dis
uss its nature. Se
tion6 
on
ludes on the global stability of the pri
e pro
ess on the equilibria of themodel, introdu
ing the 
on
ept of `no statisti
al surprise'. Se
tion 7 summarizes.2. The ModelConsider an e
onomy with n di�erent �rms. Ea
h �rm i has the ability toprodu
e its own 
ommodity. It is supposed to take de
isions on pri
e, quality,et
. 
on
erning the 
ommodity it produ
es. In this paper we will assume thatthe aggregate of all these strategi
 
hoi
es to be made by �rm i are in
orporatedinto one single a
tion spa
e Pi. For te
hni
al reasons ea
h Pi is assumed to bea 
ompa
t metri
 spa
e. 1OBJECTIVE DEMANDIn this paper we will assume that the obje
tive demand for 
ommodity i is notdeterministi
. In order to model this, let the 
ommodity spa
e of �rm i bedenoted by Xi. For te
hni
al reasons this 
ommodity spa
e is assumed to be a
ompa
t metri
 spa
e as well.Suppose that �rm i has de
ided to take a
tion pi in Pi. We write p := (pi)i2N 2P := Qi Pi for the entire ve
tor of de
isions taken. Now the demand for 
om-modity i is supposed to be given by the density fun
tionfi(xi j p)with respe
t to the probability measure �i de�ned on the Borel �-algebra B(Xi)generated by the metri
 on the 
ommodity spa
e Xi.Remarks. For te
hni
al reasons we assume that for any open set U � Xi wehave �i(U) > 0. Further, by fi(xi j p) being de�ned with respe
t to �i we mean1The paper applies a variety of 
on
epts from real analysis. In order to make the paperself-
ontained, we o�er them in an appendix. 5



that ZXi fi(xi j p)d�i = 1:We will also assume that the fun
tion fi:Xi � P ! IR is 
ontinuous. /PERCEIVED DEMANDNone of the �rms is fully aware of the me
hanism that generates the demand itfa
es. Instead, ea
h �rm i has a 
olle
tion �i of "worlds" it deems possible. Inworld �i 2 �i it 
onje
tures that it serves a demand fun
tion that is distributeda

ording to the density fun
tiongi(xi j pi; �i)with respe
t to �i. Again, we assume for te
hni
al reasons that �i is a 
ompa
tmetri
 spa
e and that gi:Xi � Pi ��i ! IR is 
ontinuous.Remarks. Subje
tive demand 
onje
tures deviate importantly from obje
-tive demand: ea
h �rm only 
onsiders the e�e
t of its own de
ision on thedemand for its 
ommodity, and negle
ts the in
uen
e of the de
isions of theother 
ommodities. In e�e
t, ea
h �rm believes that it is a monopolist on itsown market.This stru
tural misspe
i�
ation re
e
ts in
omplete information on the side ofthe �rms. We fo
us on this extreme situation where only the e�e
t of a �rm'sown de
ision is 
onsidered for reasons of exposition. The analysis 
ould beextended to in
lude less severe forms of in
omplete information, e.g. stru
turesin whi
h the e�e
ts of the a
tions taken by several of the nearest 
ompetitorsare in
luded. /EXPECTED PROFITSWithin its stru
tural misspe
i�
ation of how the world works, ea
h �rm i be-lieves that there exists a "true" world. However it does not know whi
h ofpossible worlds in �i is the true one. Instead, the �rm's per
eption of the worldis sto
hasti
. This means that ea
h �rm i has a belief represented by an elementof the set IP(�i) of probability measures on �i. Su
h a belief �i 2 IP(�i) assigns6



to ea
h Borel subset A of �i a real number �i(A) that re
e
ts the probability�rm i assigns to the event that the real world is an element of A.Further, let �i(pi; xi) 2 IRbe the net pro�t of demand xi when �rm i de
ides to take a
tion pi. (We willassume throughout the paper that �i is 
ontinuous.) Then, given a belief �i of�rm i, the amount �i(pi; �i) of money �rm i expe
ts to earn is given by�i(pi; �i) = Z�i ZXi �i(pi; xi)gi(xi; �i j pi)d�id�i:Sin
e ea
h �rm i is assumed to be rational it will try to maximize �i(pi; �i) andtake an optimal de
ision. Con
erning optimal de
isions we make the followingassumption.Assumption 1. Given the belief �i of �rm i there is a unique optimalde
ision. In other words, there is exa
tly one de
ision in Pi, denoted by pi(�i),for whi
h �i(pi(�i); �i) is larger than or equal to �(pi; �i) for any other possiblea
tion pi of �rm i in Pi.Remarks. Note that pi(�i) need not maximize expe
ted pro�ts in an ob-je
tive sense. This is so sin
e, although the world is in fa
t sto
hasti
, it issto
hasti
 in a way di�erent from per
eption. More spe
i�
ally, given the ve
-tor p(�) := (pi(�i))i2N of individual de
isions, obje
tive demand is distributedon Xi a

ording to fi(xi j p(�));whi
h shows how the true sales opportunities depend on the beliefs of all �rms.And in turn these opportunities determine the obje
tive expe
ted net pro�t. Inother words, the obje
tive expe
ted net pro�t of �rm i is in fa
t given byZXi �i(pi; xi)fi(xi j p(�))d�i:No �rm is, of 
ourse, 
apable of tuning its behaviour to this true expe
ted netpro�t. /7



3. Information pro
essing and the Bayes operatorBeliefs are updated a

ording to the Bayesian updating rule, as follows. Supposethat �i is the 
urrent belief of �rm i in IP(�i). Now the observation of demandxi in Xi indu
es the updated belief Bi(�i)(xi) in IP(�i) that assigns to a Borelset A � �i the probabilityBi(�i)(xi)(A) := RA gi(�i j pi(�i); xi)d�iR�i gi(�i j pi(�i); xi)d�i :Provided of 
ourse that the denominator is not equal to zero. In order to guar-antee that this is the 
ase, independent of the belief �i, we make the followingassumption.Assumption 2. For all pi, �i and xi,gi(xi j pi; �i) > 0: /Given this assumption it 
an be shown that the above formula indeed yields amapping Bi: IP(�i)�Xi ! IP(�i);from the spa
e of probability measures times the spa
e of quantities Xi ba
kto the spa
e of probability measures. 2 This parti
ular updating method,known as Bayesian updating, is �rmly founded in probability theory. In thatsense it is sensible from the �rms' perspe
tive to extra
t information from pastobservations in this way.CONJECTURAL EQUILIBRIUMAlthough it makes perfe
t sense from the perspe
tive of the �rms, the learn-ing pro
ess des
ribed is ill-founded in obje
tive terms sin
e it is based on anunre
ognized stru
tural misper
eption of demand. Hen
e, in general it 
annotbe hoped that subje
tive per
eptions will 
ome to explain the true demand fora 
ommodity. Yet, there is a natural 
andidate for beliefs that are in `equilib-rium' with the obje
tive world. Consider a single �rm. The �rm's beliefs are in2The te
hni
alities supporting this statement 
an be found in Appendix D.8



equilibrium if per
eived optimal de
isions set on the basis of this belief returnquantities that are no ground for a revision of beliefs. This is the 
on
ept ofindividual 
onje
tural equilibrium.De�nition 1. An individual 
onje
tural equilibrium for �rm i is a belief �ifor whi
h for all xi 2 Xi Bi(�i)(xi) = �i: /Sin
e the observed sales depend upon the de
isions of all �rms, it is quite spe-
ial for a single �rm to be in individual 
onje
tural equilibrium. Yet, if all �rmssimultaneously are in individual 
onje
tural equilibrium, none has a reason todeviate unilaterally from its de
ision, sin
e none believes it 
an improve its posi-tion by doing so. This leads us to 
onsider the following notion of an equilibriumfor our e
onomy.De�nition 2. A 
onje
tural equilibrium is a ve
tor � = (�i)i2N of individual
onje
tural equilibria. /4. Learning dynami
sIn the previous se
tion we saw that �rms have a mis-spe
i�ed model of the truestate of the world and they are not aware of this false interpretation of theirenvironment. Nevertheless, given their mis-spe
i�
ation of the way the worldworks, they are aware of the fa
t that they are not fully informed about thetrue state of the world. This la
k of information is modeled as a probabilitydistribution �i0 (the initial belief) over the 
olle
tion �i of all worlds that �rmi deems possible. This belief re
e
ts the amount of prior information �rm i has
on
erning the true state of world.Now sin
e ea
h �rm is a pro�t maximizer and sin
e it is aware of the fa
t that itis not fully informed, it is eager to learn more about the true state of the worldfrom market experien
e. It does so in the following way. Given its prior belief�i0 �rm i sets its (subje
tive) optimal de
ision pi(�i0). On
e ea
h �rm has madethis move the obje
tive demand density fun
tion establishes the quantities that
an a
tually be sold given the a
tions p0 := pi(�i0)i2N . This means that for9



ea
h �rm i a quantity xi1 is drawn from the probability measure that assignsto ea
h Borel set A � Xi the probabilityZA fi(xi j p0)d�i:This new information is ground for a revision of beliefs via Bayesian updating.Repeating this pro
edure yields the following learning pro
ess.At a given time � = 0; 1; : : :, ea
h individual �rm i has re
orded a history of
onsumer demands hi� = (xit)�t=1of �nite length � . This market information is the basis of the belief �i� (hi� ) of�rm i at time � 
on
erning the state of the world. It then takes a new a
tionpi(�i� (hi� )) based on its 
urrent belief. Given the ve
tor p� := (pi(�i� (hi� )))i2Nof new de
isions, �rm i observes a new quantity xi�+1 drawn from the probabilitydistribution that assigns to ea
h Borel set A � Xi the probabilityZA fi(xi j p� )d�i:Subsequently beliefs are updated a

ording to the Bayesian updating rule. For-mally, �i�+1(hi� ; xi�+1) := Bi(�i� (hi� ))(xi�+1):Remarks. Note that the de
ision on pi(�i� (hi� )) the �rm takes at time �is a fun
tion only of the beliefs at time � , whi
h in turn derive from the initialbeliefs �i0 and the re
orded history up until � . Hen
e, it is suÆ
ient to re
ordsequen
es of observed quantities, as the �rms do.So we have 
onstru
ted a well-spe
i�ed pro
ess in whi
h beliefs lead to per
eivedoptimal de
isions p� , whi
h serve as endogenous signals to obtain new informa-tion about the parameters of the distribution of obje
tive demand. This newinformation, in turn, leads to an update of beliefs and therefore, to new optimalde
isions p�+1. /INFINITE HISTORIES AND BELIEFS 10



The above-des
ribed pro
ess driving the de
ision dynami
s of the model thusembodies both subje
tively rational learning and subje
tively rational a
tions.In order to study the dynami
 properties of this de
ision pro
ess, we makeuse of martingale 
onvergen
e theory. For that purpose, we need to 
onstru
tan underlying probability spa
e on whi
h we 
an identify martingales. This isthe spa
e of all possible future developments of history a �rm i foresees at thebeginning of time. 3 Formally, letHi� := �Yt=1Xibe the spa
e of all histories hi� of length � . B(Hi� ) denotes the Borel �-algebraon Hi� . Further, let Hi := Q1t=1Xi be the spa
e of in�nite histories. A spe-
i�
 element of Hi is denoted by hi. By B(Hi) we denote the Borel �-algebragenerated by the produ
t topology on Hi.To 
omplete the probability spa
e of all future histories, we need a measure �ion B(Hi). Formally this �i is de�ned indu
tively on histories of �nite length,
ombined with in�nite extensions. We will now go through this 
onstru
tionstep by step. First note that it is in fa
t suÆ
ient to spe
ify the numbers�i(D� � 1Yt=�+1Xi)for ea
h Borel set D� in Hi� . Be
ause, on
e these numbers are known, there isa unique way to extend �i to B(Hi). So we only need to spe
ify the numbers�i� ( �Yt=1Dt);where �i� is the probability measure indu
ed by the beliefs of �rm i up till time� . On
e these numbers are known, �i follows straightforwardly. In fa
t,�i( �Yt=1Dt � 1Yt=�+1Xi) := �i� ( �Yt=1Dt);3We deviate somewhat from the stru
ture generally 
hosen for this purpose, e.g. in Easleyand Kiefer (1988), though in essen
e the spa
es are the same.11



the probability that an in�nite history starts with a history hi� in the setQ�t=1Dt. In order to spe
ify these numbers we naturally start with �i0(;) := 1.Further, for � = 1,�i1(D1) := ZD1 Z�i gi(xi; �i j pi(�i0))d�i0d�i:In order to now de�ne �i�+1 indu
tively, assume that �i� is known. Let hi� be ahistory of length � . Then the transition probability 
i�+1(hi� )(D�+1) of endingup in D�+1 � Xi provided we have observed history hi� is equal to
i�+1(hi� )(D�+1) := ZD�+1 Z�i gi(xi; �i j pi(�i� (hi� )))d�i� (hi� )d�i:The transition probability gives the subje
tive probability of an observationxi�+1 being in D�+1 given that the �rm has already observed history hi� andsubsequently believes that �i� (hi� ) is the appropriate probability distributionover �i. We then have�i�+1(�+1Yt=1 Dt) := ZHi� ZXi 1lQ�+1t=1 Dtd
i�+1(hi� )d�i�= ZHi� 1lQ�t=1Dt ZXi 1lD�+1d
i�+1(hi� )d�i�= ZHi� 1lQ�t=1Dt
i�+1(hi� )(D�+1)d�i�= ZQ�t=1Dt 
i�+1(hi� )(D�+1)d�i� :The de�nition re
e
ts how �i�+1 derives as the weighted `sum' (i.e., the integral)of all transition probabilities, where the weights are the probabilities �i� the �rmassigns to the observation that 
onditions the parti
ular transition probability.The �rst step easily follows from rewriting the indi
ator fun
tion on the produ
tset as a produ
t of indi
ator fun
tions. It is then observed that the inner integralequals 
i�+1(hi� )(Di�+1). Finally, the indi
ator fun
tion is repla
ed by therestri
ted integral.Now noti
e that, sin
e the above 
omputation implies that for all sets D� inB(Hi� ) we have �i�+1(D� �Xi) = ZD� 
i�+1(hi� )(Xi)d�i�12



= ZD� 1lHi� d�i� = �i� (D� );the measures �i� are 
onsistent. Therefore, by the Theorem of Kolmogorov,there is a unique probability measure �i on B(Hi) su
h that�i D� � 1Yt=�+1Xi! = �i� (D� ):for all Borel sets D� in B(Hi� ).An appealing way to think about �i is as the probability �rm i initially assignsto observing the in�nite history hi1 2 Hi1, based on its prior beliefs and itsawareness of the learning pro
ess it is about the engage in. An example mayhelp to 
larify this.Example 1. A sto
hasti
 variable X takes on one of two values, x1 or x2.The probability of x1 (and hen
e x2) depends on a parameter �, that is either�1 or �2. Let Pr(x1; x2 j �1) = ( 13 ; 23 ) and Pr(x1; x2 j �2) = ( 12 ; 12 ) be the
onditional probabilities of x1 and x2, and suppose �0 = ( 14 ; 34 ) are the priorbeliefs on (�1; �2). Over time, a sequen
e of observations (xt)t2IN molds beliefs.We have 
1(X1 = x1) = 14 � 13 + 34 � 12 = 1124 = �1(X1 = x1)
1(X1 = x2) = 14 � 23 + 34 � 12 = 1324 = �1(X1 = x2):Suppose X1 = x1. Appli
ation of Bayes rule now gives posterior beliefs�1 j (X1 = x1) = ( 14 � 1314 � 13 + 34 � 12 ; 34 � 1214 � 13 + 34 � 12 ) = ( 211 ; 911):Similarly, X1 = x2 would return�1 j (X1 = x2) = ( 14 � 2314 � 23 + 34 � 12 ; 34 � 1214 � 23 + 34 � 12 ) = ( 413 ; 913):We then have the 
onditional transition probabilities
2(X2 = x1 j X1 = x1) = 211 � 13 + 911 � 12 = 3166
2(X2 = x2 j X1 = x1) = 211 � 23 + 911 � 12 = 356613




2(X2 = x1 j X1 = x2) = 413 � 13 + 913 � 12 = 3578
2(X2 = x2 j X1 = x2) = 413 � 23 + 913 � 12 = 4378 :The �-measure for the t = 2 paths is now 
onstru
ted by 
ombining the 
ondi-tional transition probabilities, as follows.�2(X1 = x1; X2 = x1) = �1(X1 = x1) � 
2(X2 = x1 j X1 = x1) = 1124 � 3166 = 31144 :Similarly we �nd �2(X1 = x1; X2 = x2) = 1124 � 3566 = 35144�2(X1 = x2; X2 = x1) = 1324 � 3578 = 35144�2(X1 = x2; X2 = x2) = 1324 � 4378 = 43144 :Finally, the posteriors follow from Bayes' rule as�2 j (X1 = x1; X2 = x1) = ( 431 ; 2731)�2 j (X1 = x1; X2 = x2) = ( 835 ; 2735) = �2 j (X1 = x2; X2 = x1)�2 j (X1 = x2; X2 = x2) = (1643 ; 2743):This 
on
ludes the example. /5. Convergen
e of beliefs and a
tionsThe prime interest in this paper is to know whether, given initial beliefs, the pro-
ess of Bayesian updating will eventually 
onverge to a 
onje
tural equilibrium.That is, we ask whether learning will tea
h some invariable posterior ideas, orwhether per
eptions, and thus de
isions, will keep on 
hanging for ever. In or-der to address this question we will employ a 
onvergen
e theorem 
on
erningmartingales. However, before we 
an apply this theorem we need to show that,on the probability spa
e (Hi;B(Hi); �i) 
onstru
ted above, beliefs indeed forma martingale. To that end we �rst need to introdu
e some notation.Consider an in�nite history hi = (xit)1t=1 in Hi. The �nite history hi� :=(xit)�t=1 in Hi� is 
alled the trun
ation of hi till time � . Further, let A be a14



Borel set in B(�i). Consider the fun
tion �i� (A) from Hi to IR that assigns toan in�nite history hi the real number�i� (A)(hi) := �i� (hi� )(A):Se
ondly, noti
e that the above trun
ation of in�nite histories to histories oflength � indu
es is a natural identi�
ation of ea
h element D� of the �-algebraB(Hi� ) with the set D� � 1Yt=�+1Xiin B(Hi). The subalgebra of B(Hi) of sets of this form is denoted by B� (Hi).It is immediately 
lear that B� (Hi) is a subset of B�+1(Hi). Furthermore,it is also not so hard to see that ea
h fun
tion �i� (A) is B� (Hi)-measurableand bounded by K = 1. In other words, the sequen
e (�i� (A))1�=1 providesinformation 4. We will show that it is even a martingale.Theorem 1. Let A be a Borel set in B(�i). Then the sequen
e (�i� (A))1�=1of random variables is a martingale on w.r.t. �i.Proof. Let A be a Borel set in B(�i) and let C be a Borel set in B� (Hi). Wehave to 
he
k that ZC �i�+1(A)(hi)d�i = ZC �i� (A)(hi)d�i:Sin
e C is an element of B� (Hi) we know it 
an be written asD� �Yt=1Xifor some Borel set D� in Hi� . So, sin
e �i agrees with �i�+1 on B�+1(Hi),Lemma 4 in Appendix A yieldsZD��Qt=1Xi �i�+1(A)(hi)d�i =ZD��Xi �i�+1(hi� ; xi�+1)(A)d�i�+1 =ZD� ZXi �i�+1(hi� ; xi�+1)(A) Z�i gi(xi�+1; �i j pi� )d�i� (hi� )d�id�i� :4See De�nition 17 in Appendix C. 15



Plugging Bayes' rule into this expression yieldsZD� ZXi RA gi(xi�+1; �i j pi� )d�i� (hi� )R�i gi(xi�+1; �i j pi� )d�i� (hi� ) � Z�i gi(xi�+1; �i j pi� )d�i� (hi� )d�id�i�and the two integrals over �i 
an
el out. Whi
h redu
es the above expressionto ZD� ZXi ZA gi(xi�+1; �i j pi� )d�i� (hi� )d�id�i� :To this expression we 
an apply the Theorem of Fubini and swit
h the order ofintegration over Xi and A. This yieldsZD� ZA ZXi gi(xi�+1; �i j pi� )d�id�i� (hi� )d�i� = ZD� ZA 1l�id�i� (hi� )d�i�= ZD� �i� (hi� )(A)d�i� ;where the �rst equality results from the fa
t that gi is a density fun
tion withrespe
t to �i. This 
on
ludes the proof. /This result may not be very surprising. It states that the nature of Bayesianlearning is su
h that a �rm does not expe
t to 
hange its beliefs in the future.Of 
ourse, an a
tual observation will in general 
hange beliefs, but based upon
urrent beliefs on future realizations of sales, a �rm ex ante predi
ts it will not.One way to interpret this is as Bayesian learning being suÆ
ient, in that theinformation present at times is used to the full.Example 2. In our example, it is easy to see that beliefs have the martingaleproperty. The expe
tation E�(�) taken with respe
t to � isE�(�1(�1)) = 1124 � 211 + 1324 � 413 = 14 = �0(�1);and similarlyE�(�2(�1)) = 31144 � 431 + 35144 � 835 + 35144 � 835 + 43144 � 1643 = 14 = �0(�1):This 
on
ludes the example. /With the result in hand, we 
an apply the martingale 
onvergen
e theorem setout in the Appendix. We 
an use this result to study the limit beliefs of agents,and hen
e of de
isions, as follows. 16



Take an in�nite history hi in Hi. Let �i� (hi) be the probability measure inIP(�i) that assigns to ea
h Borel set A of �i the real number �i� (hi)(A).Theorem 2. There exists a Borel set S of in�nite histories in Hi with�i-probability one on whi
h the sequen
e (�i� (hi))1�=1 of probability measures
onverges weakly to a probability measure �i1(hi) for every history hi in S.Proof. We will �rst 
onstru
t S. Sin
e �i is 
ompa
t and metri
, we knowthat there exists a 
ountable basis of the topology. Let U be the 
olle
tion of�nite interse
tions of elements of this basis. Take a �xed element U of U . ByTheorem 1, the sequen
e (�i� (U))1�=1 is a martingale. So, by Theorem 18 ofAppendix C there is a set S(U) of in�nite histories in Hi with �i(S(U)) = 1su
h that (�i� (hi)(U))1�=1 
onverges for every history hi in S(U).Now sin
e U is the 
olle
tion of �nite interse
tions of a 
ountable 
olle
tion, itis a 
ountable set itself. This implies thatS := \U2U S(U)has �i-probability one, sin
e it is a 
ountable interse
tion of sets S(U), all having�i-probability one.The 
onstru
tion of the limit probability measure 
an be done as follows. Take ahistory hi in S. Sin
e IP(�i) is sequentially 
ompa
t by Theorems 12, 13 and 14of Appendix B, we know that a subsequen
e of (�i� (hi))1�=1 
onverges weakly tosome probability measure, say �i1(hi). We will show that the original sequen
e
onverges weakly to this probability measure. To this end, noti
e that�i� (hi)(U)! �i1(hi)(U) for all U 2 Ufor the original sequen
e, sin
e this sequen
e is 
onvergent for every elementU of U by 
onstru
tion of S and the above holds for the weakly 
onvergentsubsequen
e. Moreover, U is 
losed under �nite interse
tions and ea
h open setis obviously a 
ountable union of elements of U sin
e U 
ontains a 
ountablebasis of the topology on �i by 
onstru
tion. Hen
e, by Lemma 8, (�i� (hi))1�=117




onverges weakly to �i1(hi) and the proof is 
omplete sin
e hi was 
hosenarbitrarily in S. /From now on we will automati
ally assume that we only 
onsider histories hi inS whenever we talk about �i1(hi). E�e
tively, we only 
onsider the domain of�i1. We 
an now prove the following result.Theorem 3. The sequen
e pi(�i� (hi))1�=1 of a
tions �i-almost-surely 
on-verges to the limit de
ision pi(�i1(hi)).Proof. By the 
ontinuity of pi established in Lemma 14 of Appendix D, weknow that the sequen
e pi(�i� (hi))1�=1 of optimal de
isions given beliefs at time� 
onverges to pi(�i1(hi)) whenever the sequen
e �i� (hi)1�=1 of beliefs 
onvergesto �i1(hi). This though happens with �i-probability one by Theorem 2. /6. The nature of limit beliefs and limit a
tionsWe now know that in our model beliefs, and 
onsequently de
isions, 
onvergeto limit beliefs and unique limit de
isions respe
tively, for �i-almost-all devel-opments of history. In this se
tion we will derive some properties of the limitbeliefs and de
isions. We will show that a limit belief is unique in the sense that,roughly speaking, it only puts weight on worlds that generate the same proba-bility distribution over demands. Furthermore we will show that it supports a
onje
tural equilibrium.UNIQUE LIMIT BELIEFSFor an analysis of the limit properties of beliefs and de
isions, 
onsider thefollowing 
onstru
tion. Let �i be a probability measure on �i. Evidently �i isa 
ompa
t set with �i(�i) = 1. So, the 
olle
tionK := fK � �i j K is 
ompa
t and �i(K) = 1gis not empty. Thus we 
an de�ne the support of �i bysupp(�i) := \K2KK:18



The only question is whether this set has probability one a

ording to �i. Tothis end, noti
e that the topology on �i has a 
ountable basis, say B, sin
e �iis separable and metri
. So,supp(�i) = \B2B:�i(B)=0�i nB:Hen
e, �i(supp(�i)) = 1 by the subadditivity of �i.A more 
olloquial de�nition of the support of a probability measure �i on �i isto say that it is the smallest 
ompa
t subset K of �i with �i(K) = 1. Anyhow,it enables us to give the followingDe�nition 3. A belief �i does not distinguish if there exists a fun
tionhi : Xi ! IR, su
h that for any �i in supp(�i) and for all xi in Xigi(xi j pi(�i); �i) = hi(xi):This 
ondition on �i states that every world �i in the support of �i generatesthe same density fun
tion on Xi. Consequently, no signal xi will give �rm i areason to 
hange its belief. A more interesting fa
t is that the 
onverse of thisobservation is also true. This is re
e
ted inTheorem 4. A belief �i does not distinguish if and only ifBi(�i)(xi) = �iholds for all xi in Xi.Proof. Suppose that �i does not distinguish. Then we 
an take hi : Xi ! IR,su
h that hi(xi) = gi(xi j pi(�i); �i) for all �i 2 supp(�i):Consequently, for any xi 2 Xi, and any Borel set A in �i we haveBi(�i)(xi)(A) = RA gi(xi j pi(�i); �i)d�iR�i gi(xi j pi(�i); �i)d�i = RA hi(xi)1lsupp(�i)d�iR�i hi(xi)1lsupp(�i)d�i= hi(xi)�i(A)hi(xi)�i(�i) = �i(A):19



Suppose, on the other hand, that �i distinguishes. Then we know that there isa pair �i; 
i 2 supp(�i), and an x�i 2 Xi for whi
hgi(x�i j pi(�i); �i) > gi(x�i j pi(�i); 
i):So we 
an �nd two positive numbers U > L 2 IR and open neighborhoodsN(�i) 3 �i and N(
i) 3 
i su
h that for all �i in N(�i)gi(x�i j pi(�i); �i) � Uand for all �i in N(
i) gi(x�i j pi(�i); �i) � L:Now noti
e that �i(N(�i)) > 0 sin
e otherwise supp(�i) n N(�i) would be a
ompa
t set with �i-probability one that is stri
tly in
luded in supp(�i). Forthe same reason �i(N(
i)) > 0. This implies thatBi(�i)(x�i )(N(�i))Bi(�i)(x�i )(N(
i)) � RN(�i) U1l�id�iRN(
i) L1l�id�i = U�i(N(�i))L�i(N(
i)) > �i(N(�i))�i(N(
i)) :So, at least Bi(�i)(x�i )(N(�i)) 6= �i(N(�i))or Bi(�i)(x�i )(N(
i)) 6= �i(N(
i)):In any 
ase, Bi(�i)(x�i ) does not equal �i and the proof is 
omplete. /The interpretation of the proposition is straightforward. A belief �i does notdistinguish if and only if Bayesian updating has no e�e
t on the belief for anypossible signal xi. This fa
t has important impli
ations. Parti
ularly sin
e we
an show that the limit beliefs �i1(hi) in fa
t are �xed points of the Bayesianupdating method as we will do now.To this end, we need the following preliminary result. Let B be a 
ountablebasis of the topology on Xi. Let W be the 
olle
tion of sample paths (xit)1t=1 inHi for whi
h there is a basis element B in B su
h that fxit j xit 2 Bg is �nite.We will show �rst that the following is true.20



Lemma 1. �i(W ) = 0.Proof. Let B be an element of B and let T be a natural number. De�neW (B; T ) := f(xit)1t=1 j xit =2 B for all t � Tg:Note that this 
onstru
tion is su
h that W = SB;T W (B; T ). So, W is the
ountable union of sets W (B; T ). Hen
e, by the subadditivity of �i it suÆ
esto prove that �i(W (B; T )) = 0 for any 
hoi
e of B and T .To this end, noti
e that W (B; T ) = TYt=1Xi � 1Yt=T+1B
:Now take some � � T . Denote the subset QTt=1Xi � Q�t=T+1B
 of the setHi� of �nite histories up till time � by W� . Then, for a history hi� in W� , theone-step transition probability 
i�+1(hi� (B) to B is
i�+1(hi� )(B) := ZB Z�i gi(xi; �i j pi� )d�i� (hi� )d�i� ZB Z�i "d�i� (hi� )d�i = "�i(B):Here " > 0 is 
hosen su
h that gi(xi; �i j pi� ) � " for all xi and �i, whi
h 
an bedone by the 
ompa
tness of Xi, the 
ontinuity of gi and the assumption thatgi is larger than zero on Xi. Consequently, 
i�+1(hi� )(B
) � 1� "�i(B). Usingthis result, we get that�i�+1(W�+1) := ZW� 
i�+1(hi� )(B
)d�i� � (1� "�i(B))�i� (W� ):Now ba
ksubstitution yields�i�+1(W�+1) � (1� "�i(B))��T+1�iT (WT ) = (1� "�i(B))��T+1:Further, sin
e B is an open set, we know that �i(B) > 0 by assumption. So,0 � 1� "�i(B) < 1 and hen
elim�!1�i�+1(W�+1) = 0:21



Finally, sin
e 0 � �i(W ) � �i� (W� ) for all � � T by 
onstru
tion of �i, itfollows that �i(W ) = 0. /The interpretation of this result is that �rms expe
t a priori that the signalsthey will re
eive are persistently ex
iting. That is, they expe
t to observe allpossible quantities in�nitely many times over the 
ourse of their learning pro
ess,so that they will be able to indeed extra
t suÆ
ient information from them. ThesuÆ
ien
y of the information is re
e
ted inTheorem 5. There is a subset Z of S with �i-probability one su
h that thebelief �i1(hi) does not distinguish for any hi in Z.Proof. Let S be as in Theorem 2 and let W be as in Lemma 1. WriteZ := S nW . Clearly, �i(Z) = 1, sin
e �i(S) = 1 and �i(W ) = 0. Now takea history hi = (xi� )1�=1 in Z. Then, sin
e hi is an element of S we know that�i1(hi) exists. We will show that it does not distinguish.By Theorem 4 it suÆ
es to show that B(�i1(hi))(xi) = �i1(hi) for all xi in Xi.To this end, take an x�i 2 Xi. Then, sin
e hi = (xi� )1�=1 is not an element ofW , we know that it interse
ts ea
h element of the basis B in�nitely many times.So, sin
e Xi is metri
, this implies that we 
an �nd a subsequen
e (xi�(�))1�=1of (xi� )1�=1 su
h that xi�(�) ! x�i as � !1. Then, on one handB(�i�(�)(hi�(�)))(xi�(�)+1) = �i�(�)+1(hi�(�)+1) = �i�(�)+1(hi)! �i1(hi)in the weak topology sin
e the above sequen
e is a subsequen
e of (�i� (hi))1�=1whi
h 
onverges to �i1(hi) in the weak topology by the 
hoi
e of S. On theother hand, B(�i�(�)(hi�(�)))(xi�(�)+1)! B(�i1(hi))(x�i )sin
e B is 
ontinuous by Theorem 19 of Appendix D. Hen
e, sin
e the spa
eIP(�i) is Hausdor�, �i1(hi) = B(�i1(hi))(x�). /Note that if we make the natural assumption that 
onje
tured density fun
tionsof demand are uniquely 
hara
terized by the value of �i, the proposition implies22



that the posterior distribution 
onverges to a point mass on one parti
ular world�i in �i.Assumption 3. For any pi 2 Pi we have gi(xi j pi; �i) = gi(xi j pi; 
i) for allxi 2 Xi if and only if �i = 
i.For a world �i the measure that puts probability one on �i is 
alled a Dira
measure or a point mass. We have the following result.Corollary 1. Suppose we have Assumption 3. Then �i1(hi) is a Dira
measure for every hi in Z.Proof. Let hi be a history in Z. Then �i1(hi) does not distinguish byTheorem 5. So, for any pair of worlds �i and 
i in the support of �i1(hi) wehave that gi(xi j pi(hi); �i) = gi(xi j pi(hi); 
i)for the unique limit de
ision pi(hi) := pi(�i1(hi)) in Pi and all xi inXi. Further,by Assumption 3, this 
an only be the 
ase if �i = 
i. Hen
e, the support of�i1(hi) is inevitably a singleton and �i1(hi) is a Dira
 measure. /CONJECTURAL EQUILIBRIUMProvided the stru
ture of per
eptions satis�es Assumptions 1-3 we have shownthat, with �i-probability one, �rm i's belief is a Dira
 measure �i1(hi). Conse-quently, �rm i's limit de
ision is pi(hi) := pi(�i1(hi)). Let �i(hi) be the uniqueworld in the support of �i1(hi). The pair (�i(hi); pi(hi)) then spe
i�es the limitsto
hasti
 view of the world of ea
h �rm. That is, ea
h �rm i per
eives demandto be distributed in the limit asgi(xi j pi(hi); �i(hi)):We 
an now relate our results straightforwardly with our 
on
ept of equilibrium.We say that 
onvergen
e is almost sure if it is �i-almost sure for every i.Theorem 6. The learning pro
ess almost surely 
onverges to a 
onje
turalequilibrium. 23



Proof. By Theorem 5 we know that the belief �i1(hi) of �rm i does notdistinguish on Z. So, by Theorem 4 it is a �xed point of the Bayes operatorand hen
e an individual 
onje
tural equilibrium. Sin
e this holds for every �rmthese beliefs form a 
onje
tural equilibrium. /7. Obje
tive Convergen
e to Conje
tural EquilibriumWe now know that for almost all developments of history to whi
h a �rm initiallyassigns non-zero probability, its beliefs on the parameters of 
onje
tured marketdemand, and thereby the de
isions it takes, 
onverge to a unique limit beliefthat puts all mass on a single parameter of 
onje
tured demand. For ea
h �rm,the limit de
ision is an individual 
onje
tural equilibrium.Sin
e these results hold for every individual �rm i, we are indeed 
lose to 
on
lu-sions on the behaviour of the 
omplete e
onomy. However, sin
e the 
onje
turesthat �rms entertain are stru
turally misspe
i�ed, their beliefs of possible devel-opments of history need not ne
essarily mat
h with the obje
tive sequen
e ofmarket demand they fa
e. Consequently, a
tual histories may unfold that have�i-probability zero for some �rms. Firms fa
ing su
h probability zero historieswill be unable to 
ope with it: Bayesian learning breaks down under su
h sho
k-ing surprises, and 
onvergen
e fails. In order to ex
lude the rise of su
h paths,therefore, we need a 
ondition that relates beliefs to obje
tive probabilities.The obje
tive probability measure on the spa
e of sample paths of the formhi 2 Hi is potentially in
uen
ed by the behaviour of all �rms through theobje
tive demand fun
tions fi(xi j p). In fa
t, for given initial beliefs �0 of thepopulation, the unfolding sequen
e of individual a
tions that derives from the�rms' sequential individual appli
ation of Bayes' rule within their 
onje
tureddemand stru
tures, lays out a 
omplete history of the world, when performedin the interrelated obje
tive demand stru
tures. For given priors, the onlysto
hasti
 in
uen
e on the individually observed history hi is from fi(xi j p� )for ea
h � .The 
onstru
tion of obje
tive probabilities on spa
e Hi requires an obje
tive24



probability measure �i on B(Hi). Like �i, �i is formally de�ned indu
tivelyon histories of �nite length, 
ombined with in�nite extensions. For � = 0 wenaturally have �i0(;) = 1. In order to now de�ne �i;�+1 indu
tively, assumethat �i� is known. Then, given that we have a history hi� of length � , we 
ande�ne the transition probability Æi�+1(hi� )(D�+1) for ea
h Borel subset D�+1of Xi as Æi�+1(hi� )(D�+1) = ZD�+1 fi(xijp� )d�i:Again we 
an de�ne�i�+1(�+1Yt=1 Dt) := Z��t=1Dt Æi�+1(hi� )(D�+1)d�i�and apply the Theorem of Kolmogorov. We now 
ome to a 
ru
ial relationshipbetween the obje
tive and subje
tive probability measures �i and �i.Assumption 4. The probability measure �i is absolutely 
ontinuous withrespe
t to probability measure �i for every �rm i.In the interpretation that we have o�ered for the measures �i and �i, absolute
ontinuity of �i with respe
t to �i implies that no a
tual development is possiblethat was not a priori foreseen as a possibility by the �rm 
on
erned. There is,therefore, 'No Statisti
al Surprise' on the side of �rms. This may seem strong,but is an assumption that it in fa
t often (impli
itly) made in e
onometri
spe
i�
ations. Moreover, it seems a natural 
ondition ne
essary for beliefs tosettle down, as one 
an hardly expe
t beliefs to 
onverge if all the time new andunforeseen events stir up the learning pro
ess. We make it, and then have thefollowing prime result.Theorem 7. Beliefs almost surely 
onverge to a 
onje
tural equilibrium.Proof. By Theorem 6 we have that the beliefs of ea
h �rm i 
onverge toan individual 
onje
tural equilibrium �i-almost surely. Sin
e �i is absolutely
ontinuous with respe
t to �i, this 
onvergen
e is also �i-almost-surely. /Again, sin
e pi is 
ontinuous, we get 25



Theorem 8. The de
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 knowledge of topology and measure theory should be ableto understand all of it. Mainly we tried to build the theory along the shortestroute possible. Most of the theory presented here 
an be found in some formin a number of textbooks su
h as Billingsley (1968) or Kolomogorov and Fomin(1970). Usually however you also need to have read at least half of these booksbefore you are able to understand the proofs of the theorems we need. There-fore we de
ided to in
lude these Appendi
es in order to give the reader theopportunity to require the insights needed in the paper as qui
kly as possible.Appendix A provides some basi
 de�nitions 
on
erning probability measures aswell as a short treaty on regularity of probability measures and some immediate
onsequen
es thereof. Appendix B treats the notion of weak 
onvergen
e andvarious alternative des
riptions of its related topology. Appendix C is basi
allya 
omplete proof of (a simple version of) the martingale 
onvergen
e theorem,27



taking only the Radon-Nikodym Theorem as given. The proofs in these �rstthree Appendi
es are mainly based on Billingsley (1968). Appendix D is 
om-pletely geared towards the paper itself and provides a detailed and 
ompleteproof of the 
ontinuity of the Bayes operator. Finally, Appendix E providesproofs 
on
erning the support of some of the probability measures used in thepaper. The latter two Appendi
es are based on Easley and Kiefer (1988).APPENDIX A. PROBABILITY MEASURESIn this Appendix we provide some basi
 measure theoreti
 notions as well asa treatment of regularity probability measures and some of its 
onsequn
es.Before we 
an introdu
e the 
on
ept of (probability) measures, we need thenotion of an algebra. Suppose we have a (non-empty) set X .De�nition 4. (algebra) A 
olle
tion � of subsets of X is 
alled an algebra if:(i) ; 2 �(ii) if A 2 � then X nA 2 � and(iii) if A1; : : : ; An are elements of �, then [ni=1Ai 2 �.Conditions (ii) and (iii) automati
ally imply that �nite interse
tions of elementsof � are also elements of �.De�nition 5. (�-algebra) An algebra � is 
alled a �-algebra if it moreoverholds that:(iv) if A1; A2; : : : is a 
ountable sequen
e of elements of �, then [1i=1Ai is alsoan element of �.A sequen
e A1; A2; : : : is 
alled mutually disjoint (m.d. for short) if the inter-se
tion of Ai and Aj is empty whenever i is not equal to j. Now let � be a�-algebra on X . The 
entral notion of measure theory isDe�nition 6. (measure) A non-negative fun
tion�:� ! IR
28



is 
alled a measure if for every m.d. sequen
e A1; A2; : : : in � it holds that�([1i=1Ai) = 1Xi=1 �(Ai):It goes without saying that the expression on the right hand side of the equalityis supposed to exist. The 
ondition itself is 
alled the �-additivity of �.De�nition 7. (probability measure) A measure � with �(X) = 1 is 
alled aprobability measure.Suppose that we have a topology � on X . With this topology we 
an asso
iate a�-algebra on X in a very natural way. To see this, �rst noti
e that the 
olle
tion2X of all subsets of X is a �-algebra that 
ontains � . So, the 
olle
tion V of all�-algebra's that 
ontain � is not empty. This means thatB := \�2V�is a non-empty 
olle
tion of subsets of X . Even better, it is a �-algebra that,evident by 
onstru
tion, 
ontains � . We say that � generates this �-algebra.De�nition 8. (Borel �-algebra) Any �-algebra that is generated by a topol-ogy is 
alled a Borel �-algebra.REGULARITYLet B be the Borel �-algebra asso
iated with a metri
 spa
e (X; d) and let � bea probability measure on B.De�nition 9. (regularity) We say that � is regular if for every Borel set Ain B and every real number " > 0 we 
an �nd a 
losed set F and an open set Usu
h that F � A � U and �(U n F ) < ".That is, a measure is regular if every Borel set 
an be en
losed by an openset, and 
an itself en
lose a 
losed set, su
h that the measure of the di�eren
ebetween the sandwi
hing sets is arbitrarily 
lose to zero.Theorem 9. Every probability measure � on B is regular.29



Proof. Let � be an arbitrary probability measure on �. Let R de�ned as the
olle
tion of sets A � X for whi
h for every " > 0 there exist a 
losed set F andan open set U su
h thatF � A � U and �(U n F ) < ":Noti
e that � is regular if and only if B is a subset of R. Now, in order to showthat B is indeed a subset of R we make two steps. First of all we will show thatany 
losed set is an element of R. Then we will show that R is a �-algebra.Sin
e B is by de�nition the smallest �-algebra that 
ontains all open, and thusalso all 
losed, sets these two fa
ts together imply that B is a subset of R andthe proof is 
omplete.Step 1. Take an arbitrary 
losed set A. We will show that it is an element ofR. To this end, take a real number " > 0. We will 
onstru
t F and U . Sin
e Ais 
losed we 
an simply take F := A. In order to 
onstru
t U , de�ne for ea
hnatural number n the open setUn := �x 2 X j d(x;A) < 1n�where d(x;A) := inf fd(x; a) j a 2 Ag. It is readily seen that U1 � U2 � : : :.Moreover, A = \1n=1Un sin
e A is 
losed. Now de�ne R1 := X nU1 andRn := Un�1 n Unfor n � 2. Then R1; R2; : : : are mutually disjoint sin
e U1 � U2 � : : :. Moreover,1[n=1Rn = (X n U1) [ 1[n=2Un�1 n Un = X n \1n=1Un = X nA:So, sin
e all sets involved are 
learly Borel sets and � is �-additive,1� �(A) = �(X nA) = �( 1[n=1Rn) = 1Xn=1�(Rn):Hen
e, given the 
hosen " > 0, we 
an take a natural number N" su
h that����� N"Xn=1�(Rn)� (1� �(A))����� < ":30



Now de�ne U := UN". Then on one hand U is an open set that, by the de�nitionof U = UN", 
learly 
ontains A. On the other hand we get thatN"[n=1Rn = (X n U1) [ (U1 nU2) [ : : : [ (UN"�1 n UN") = X n UN" :Hen
e,�(U n F ) = j�(U n F )j = j�(U)� �(F )j = j�(UN")� �(A)j= j(1� �(UN")� (1� �(A))j = j�(X n UN")� (1� �(A))j= ����([N"n=1Rn)� (1� �(A))��� = ����� N"Xn=1�(Rn)� (1� �(A))����� < ";where the se
ond equality holds sin
e F � U . This shows that A is indeed anelement of R.Step 2. Now we will show that R is a �-algebra. The �rst requirement of thede�nition of a �-algebra is easy to 
he
k sin
e it follows from the previous stepthat the empty set is an element of R.Part A. Next we have to show that X nA is an element of R for every elementA of R. We will even show a somewhat stronger statement, namely that A nBis an element of R for any two sets A and B in R.So, take two sets A and B in R. Then we 
an take open sets U and V and
losed sets F and G withF � A � U and G � B � Vsu
h that �(U n F ) < " and �(V nG) < ":De�ne H := F n V and W := U nG. It is easy to 
he
k that W is open, H is
losed and H � A n B � W . Finally, it is elementary to show that W nH is asubset of the union of U n F and V nG. Hen
e,�(W nH) � �(U n F ) + �(V nG) < "+ " = 2":So, at least we know now that X nA is an element of R for every A in R.31



Part B. To get the third requirement, let A1; A2; : : : be a sequen
e in R. Wehave to show that A := [nAn is also an element of R. This we will also doin two steps. In this �rst step we make the additional assumption that thesequen
e is mutually disjoint. Now take a real number " > 0. Sin
e An is anelement of R, we 
an take an open set Un and a 
losed set Fn su
h thatFn � An � Un and �(Un n Fn) < �12�n ":Sin
e the sequen
e A1; A2; : : : is mutually disjoint, it is 
lear that the sequen
eF1; F2; : : : is also mutually disjoint. So, by the �-additivity of � we know that1Xn=1�(Fn)exists and we 
an take an N su
h that1Xn=N+1�(Fn) < ":Take U := [nUn and F := [Nn=1Fn. Clearly, U is open and F is 
losed, whileF � A � U . Moreover, U n F is a subset of the union of U1 n F1; U2 n F2; : : :together with FN+1; FN+2; : : :. This however implies that �(U n F ) is less thanor equal to 1Xn=1�(Un n Fn) + 1Xn=N+1�(Fn) = 1Xn=1(12)n"+ " = 2":Part C. Now in the third part we will show that the union A of a sequen
eA1; A2; : : : of elements of R 
an be written as the union of a mutually disjointsequen
e B1; B2; : : : of elements of R. Then from the above argument in PartB we 
an 
on
lude that A is indeed an element of R and the proof is 
omplete.To this end, de�ne the sequen
e B1; B2; : : : as follows. Take B1 := A1 and de�neBn re
ursively by Bn := An nBn�1:Obviously the sequen
e is mutually disjoint. Furthermore, B1 = A1 is 
learlyan element of R. So, sin
e A2 is also an element of R we know by our result32



in Part A that B2 = A2 n B1 is also an element of R. Hen
e, by iterating thisargument we get that every Bn is an element of R. /The fa
t that a measure � on a metri
 spa
e X is regular has some ni
e 
onse-quen
es, espe
ially when X is 
ompa
t. We will dis
uss some of them.For a set A in X and a real number " > 0, write A" := fx 2 X j d(x;A) < "gand A" := fx 2 X j d(x;A) � "g. Further, when A = fxg we will write x" andx" instead of fxg" and fxg". The boundary �A of A is the set�A := fx 2 X j for every " > 0; x" \A 6= ; and x" \ A
 6= ;g :The interior int(A) is de�ned as A n �A. Note that �A is 
losed and int(A) isopen. Both sets are therefore elements of B, no matter what A is. Now let �be a probability measure on X . Then A is 
alled �-
ontinuous if �(�A) = 0,that is if the boundary of A has �-probability zero. We have the following threeresults.Lemma 2. Let F be a 
losed set in X and let � > 0. There exists an " > 0su
h that �(F ")� �(F ) < �:The same inequality automati
ally holds for all Æ < " and F" instead of F ".Proof. Take an � > 0. Sin
e F is 
losed, regularity of � implies that there isan open set U � F su
h that �(U nF ) < �. We will show that there is a naturalnumber n su
h that F 1n is a subset of U .So, suppose that this is not the 
ase. Then we 
an �nd a point xn in F 1n n Ufor every n. Sin
e X is 
ompa
t, we may assume w.l.o.g. that this sequen
e ofpoints has a limit, say x. Then, sin
e d(x; F ) = 0 and F is 
losed, x must bean element of F . On the other, all xn lie outside U and U is open. So, x is notan element of U . This 
ontradi
ts the assumption that F is in
luded in U . /Corollary 2. Let A be a �-
ontinuous Borel set in X and let � > 0. Thenfor all suÆ
iently small " > 0,�(A")� �(A) < �:33



Proof. The 
orollary follows easily from the previous Lemma on
e we havemade the observations that, sin
e A is �-
ontinuous, �(A) = �(
lA) and A" =(
lA)". /Lemma 3. Let A be a subset of X. The set of real numbers " > 0 for whi
hA" is not �-
ontinuous is a 
ountable set.Proof. In order to prove this, take a set A in X . Noti
e that for " > 0, theset �A" is a subset of the set fx 2 X j d(x;A) = "g. So, the interse
tion of �A"and �AÆ is empty as soon as " is not equal to Æ.We have to show that there are at most 
ountably many numbers " > 0 forwhi
h �(�A") > 0. To this end, let n be a natural number. Suppose thatthere are positive numbers "1; : : : ; "n+2 su
h that "k 6= "l whenever k 6= l andmoreover 1n+ 1 � �(�A"k ) for all k = 1; : : : ; n+ 2:Then by additivity of � and the fa
t mentioned above that the sets �A"k aremutually disjoint,1 � �(n+2[k=1 �A"k) = n+2Xk=1 �(�A"k ) � n+2Xk=1 1n+ 1 = n+ 2n+ 1 > 1whi
h is a 
ontradi
tion. Consequently, there is a �nite number of numbers" > 0 with �(�A") � 1n+1 , and therefore 
ountably many numbers " > 0 with�(�A") > 0. /Finally in this se
tion we will prove a te
hni
al statement 
on
erning the linkbetween integrals over �i and those over beliefs �i� (hi�).Lemma 4. Let � be a bounded and B�+1(Hi)-measurable fun
tion. Then wehave ZHi �(hi)d�i= ZHi� ZXi �(hi� ; xi�+1) Z�i gi(xi�+1�i j pi� )d�i� (hi� )d�id�i� :34



Proof. Let D �D�+1 �Q1t=�+1Xi be a Borel set in B�+1(Hi). ThenZHi 1lD�D�+1�Q1t=�+2Xid�i = ZHi;�+1 1lD�D�+1d�i�+1= �i�+1(D �D� ) = ZHi� 1lD � 
i�+1(hi� )(D�+1)d�i�= ZHi� ZXi 1lD�D�+1 Z�i gi(xi�+1; �i j pi� )d�i� (hi� )d�id�i� :The same equality now easily follows for an arbitrary integrable fun
tion. /APPENDIX B. WEAK CONVERGENCEIn the text we dis
uss the 
onvergen
e of beliefs over time. The type of 
on-vergen
e we use is 
ommonly known as weak 
onvergen
e on the set IP(�) ofprobability measures on �. That is, we apply the following 
on
ept. Let C(�)be the 
olle
tion of 
ontinuous fun
tions f : � ! IR. Note that ea
h of thesefun
tions is bounded, sin
e � is 
ompa
t. With ea
h f in C(�) and � 2 IP(�)we 
an therefore asso
iate a numberZ� f(�)d�;the integral of f with respe
t to �. We will use the following terminology.De�nition 10. A sequen
e (�n)1n=1 of probability measures in IP(�) 
on-verges weakly to a probability measure �1 in IP(�) if for ea
h f 2 C(�)Z� f(�)d�n ! Z� f(�)d�1:Noti
e that this is just a de�nition. It is 
lear that there is a topology in whi
hthe above sequen
es do 
onverge. What is not immediately 
lear is that there isa topology in whi
h these are the only 
onvergent sequen
es. Nevertheless, wewill show that this is the 
ase, and also provide a number of di�erent des
riptionsof this topology.TOPOLOGYOne helpful interpretation of this notion of 
onvergen
e of measures is in termsof pointwise 
onvergen
e of fun
tionals 5. Let C(�)� be the 
olle
tion of fun
-5A fun
tional is a linear fun
tion from some ve
tor spa
e to the real numbers.35



tionals on � that are 
ontinuous with respe
t to the max-norm on C(�). Themax-norm jjf jj1 of a fun
tion f in C(�) is de�ned as the real numberjjf jj1 := maxfjf(�)j j � 2 �g:The 
olle
tion C(�)� is 
alled the (�rst) dual spa
e of C(�). We 
an say thata sequen
e (In)1n=1 in C�(�) 
onverges pointwise to I 2 C�(�) if for all pointsf in the domain C(�) In(f)! I(f):Now let � be a probability measure in IP(�). With this probability measure we
an asso
iate a fun
tional I(�) in C(�)� byI(�)(f) := Z� f(�)d�:Then, it is easily seen that (�n)1n=1 
onverges weakly to �1 if and only if(I(�n))1n=1 
onverges pointwise to I(�1). Thus weak 
onvergen
e is linked tothe produ
t topology on C(�)�.Weak 
onvergen
e of a sequen
e of probability measures is also related to the
on
ept of topologi
al 
onvergen
e. In order to see this 
onne
tion, take asequen
e x0; x1; x2; : : : of elements of a topologi
al spa
e (X; �). We say thatthe sequen
e 
onverges to x in topology � if for every set U 2 � with x 2 Uthere exists an N 2 IN su
h that xn 2 U for all n � N .Now there is a topology on IP(�) su
h that the 
onverging sequen
es a

ordingto this topology 
oin
ide with the weakly 
onverging sequen
es. This topologyis 
alled the weak topology on IP(�) and it is denoted by W .W is de�ned as the topology generated by the 
olle
tion B of sets B � IP(�)for whi
h there is a probability measure � in IP(�) and a sequen
e f1; : : : ; fn of
ontinuous fun
tions on � as well as a sequen
e "1; : : : ; "n of positive numbersin IR su
h thatB = �� 2 IP(�) j ����Z� fk(�)d� � Z� fk(�)d����� < "k for all k = 1; : : : ; n� :36



It is elementary to 
he
k that B is indeed a basis and that 
onvergen
e in thetopology W generated by it 
oin
ides with weak 
onvergen
e.In terms of appli
ability a more 
onvenient basis for W is the 
olle
tion Cof subsets C of � for whi
h there is a probability measure � on �, a sequen
eA1; : : : ; An of �-
ontinuous Borel sets and a sequen
e "1; : : : ; "n of positive num-bers su
h thatC = f� j j�(Ak)� �(Ak)j < "k for all k = 1; : : : ; ng:At least it is 
lear that C is indeed a basis and therefore generates some topology.Before we show that the topology generated by C is indeedW we will �rst showa result that is somewhat stronger than stri
tly ne
essary in the proof. We needit in its full strength later though.Lemma 5. Let � be a probability measure on � and let f be a 
ontinuousfun
tion on �. Further suppose that we have a 
losed �-
ontinuous set F anda real number " > 0. Then the set B of probability measures � for whi
h����ZF f(�)d� � ZF f(�)d����� < "
ontains an element C of C with � in C.Proof. We may assume w.l.o.g. that 0 � f(�) � 1. Take a natural numbers in IN. Then, sin
e f is 
ontinuous and F is a 
losed �-
ontinuous set, usingLemma 3 we 
an 
onstru
t 
losed �-
ontinuous sets G0s � G1s � � � � � Gss inF su
h that(i) f(�) � ks � 1s2 for all � 2 Gks and(ii) f(�) < ks for all � 2 F nGks 6.Write Rks := Gks nGk+1;s for k = 0; : : : ; s� 1 and Rss := Gss:Then sXk=0(ks � 1s2 )�(Rks) � ZF f(�)d� � sXk=0 k + 1s �(Rks);6Note that this 
ondition implies G0s = F .37



while ����� sXk=0(ks � 1s2 )�(Rks)� sXk=0 k + 1s �(Rks)�����= sXk=0(k + 1s � ks + 1s2 )�(Rks) = (1s + 1s2 ) sXk=0 �(Rks)= (1s + 1s2 )�(F ):Now take a natural number t in IN su
h that ( 1t + 1t2 )�(F ) < 12". ThenRot; : : : ; Rtt is a �nite number of �-
ontinuous Borel sets. So, the 
olle
tionof probability measures � for whi
h for all Rktj�(Rkt)� �(Rkt)j < "2(t+ 1)(t+ 2)is an element of C.Now take su
h a �. We will show that it is an element of the set B spe
i�ed inthe Lemma as well. To this end, noti
e that����� tXk=0(k + 1t )�(Rkt)� tXk=0 k + 1t �(Rkt)������ tXk=0(k + 1t ) j�(Rkt)� �(Rkt)j � tXk=0(k + 1t ) "2(t+ 1)(t+ 2)= "2t(t+ 1)(t+ 2) tXk=0(k + 1) = "2t(t+ 1)(t+ 2) 12(t+ 1)(t+ 2)= "4t � 14":A similar argument holds for the lower bounds on the respe
tive integrals, so����ZF f(�)d� � ZF f(�)d����� � 34" < ": /This enables us to showLemma 6. The topology generated by C 
oin
ides with W.Proof. A. First we will show that the topology generated by C is a subset ofW . To see this, take a probability measure �, a �-
ontinuous set Borel set A38



and a real number � > 0. It is suÆ
ient to show that the setC := f� j j�(A)� �(A)j < �g
ontains an element of the above basis B of W .In order to show that, noti
e that A is a �-
ontinuous Borel set. So, by Corollary2, we know that there is an " > 0 su
h that �(A") � �(A) < 12�. Further, thefun
tion f : �! IR de�ned byf(�) := (1� "�1d(�; A)) _ 0is 
ontinuous. So, the 
olle
tion of probability measures � su
h that����Z� f(�)d�� Z� f(�)d����� < 12�is an element of B. We will show that it is a subset of C. To this end, noti
ethat 1lA � f � 1lA" on �. Using this fa
t, together with the above inequalitieswe get �(A) � Z� f(�)d� < Z� f(�)d�+ 12�� �(A") + 12� � �(A) + 12� + 12� = �(A) + �:The other inequality follows from the same line of reasoning applied to the�-
ontinuous set Borel set � nA.B. Conversely, suppose that we have a set of the formf� j ����Z� f(�)d�� Z� f(�)d����� < "gfor some 
ontinuous f and " > 0. Then, sin
e � is a 
losed �-
ontinuous set, itmust 
ontain an element of C by Lemma 5. /Next we will show that the weak topology also 
oin
ides with the topologyindu
ed by the following distan
e fun
tion on IP(�).Let � and � be two elements of IP(�). Then the Prohorov distan
e �(�; �) isde�ned as the in�mum over those real numbers " > 0 for whi
h every Borel set39



A in � satis�es both�(A) � �(A") + " and �(A) � �(A") + ":First we will establishTheorem 10. The Prohorov distan
e � is a metri
 on the set IP(�).Proof. The only 
ondition whose proof is not straightforward is the assertionthat �(�; �) = 0 implies � = �.So, assume that �(�; �) = 0. Take a 
losed set F in �. We will show that�(F ) = �(F ). To this end, take a positive number � > 0. By Lemma 2 we knowthat �(F ") � �(F ) < � for all suÆ
iently small " > 0. Furthermore, sin
e theProhorov distan
e between � and � equals zero, we also know that�(F ) � �(F") + "for all these " > 0. Together this yields�(F ) � �(F ) + � + "for all suÆ
iently small " > 0. Sin
e � > 0 was also arbitrary we �nd that�(F ) � �(F ). The 
onverse inequality follows by symmetry.So now we now that � and � 
oin
ide on 
losed sets. However, sin
e � and �are probability measures, this immediately implies that they 
oin
ide on opensets as well. Then though they must 
oin
ide on all Borel sets by the regularityof both measures. /This implies that the Prohorov distan
e indu
es a Hausdor� topology, one thatwe will 
all the Prohorov topology for the moment. In order to show that it
oin
ides with the weak topology we needLemma 7. Let � be a probability measure on � and let " > 0 be a realnumber. There exists a �nite partition A of � su
h that ea
h A in A is a �-
ontinuous Borel set and diam(A) � ". Additionally, A 
an be 
onstru
ted insu
h a way that ea
h A in A has a non-empty interior.40



Proof. Noti
e that, by Lemma 3, we 
an 
hoose for ea
h � in � a positiveÆ(�) < 12" su
h that �Æ(�) is �-
ontinuous. Sin
e the 
olle
tion of these sets 
overthe 
ompa
t set � we 
an �nd �(1); : : : ; �(n) su
h that the �nite 
olle
tion ofopen sets Bk := �(k)Æ(�(k)) still 
overs �. Let A be the 
olle
tion of non-emptysets of the form \k2KBk \ \k=2K� nBkfor some subset K of f1; : : : ; ng. This is 
learly a partition of �. Furthermore,sin
e ea
h element A of A is a �nite interse
tion of �-
ontinuous Borel setsBk and their 
omplements, it is easy to see that ea
h element of A is also a�-
ontinuous Borel set. Finally, sin
e B1; : : : ; Bn 
overs �, ea
h A in A mustbe 
ontained in at least one Bk by non-emptiness of A.The additional requirement of non-empty interior 
an be guaranteed as well.The proof of this is in two parts. LetA = fA1; : : : ; Angbe a �nite partition of � su
h that diam(A) � " and moreover ea
h Ak isthe interse
tion of an open set Uk and a 
losed set Gk. Noti
e that the abovepartition indeed has these properties. We will show how to 
onstru
t a partitionwhose elements have non-empty interior.Let N be the (possibly empty) 
olle
tion of sets A in A whose interior is notempty. Let A1; : : : ; Am be an enumeration of N . De�neB1 := A1 [ [A=2N 
l(A1) \ Aand iteratively for ea
h 2 � k � mBk := �Ak [ [A=2N 
l(Ak) \A� n [i�k�1Bi:We will show that B1; : : : ; Bm satis�es all our requirements. It is immediate thatit is a sequen
e of mutually disjoint Borel sets. Furthermore, sin
e Ak � Bk �
l(Ak) it is also immediate that ea
h Bk has non-empty interior and diameterless than or equal to ". So, we only have to show that B1; : : : ; Bm 
overs �.41



Suppose that there exists an element � in � that is not 
overed by any Bk.Then it is 
ertainly not an element of any A in N . So, sin
e A 
overs �, it mustbe an element of some A� =2 N . Now suppose that it is also an element of the
losure of some Ak in N . Then it is also an element ofAk [ [A=2N 
l(Ak) \ Asin
e it is spe
i�
ally an element of 
l(Ak) \ A�. This though implies that it iseither an element of Bk or an element of Si�k�1 Bi. Both 
ases 
ontradi
t theassumption that x is not 
overed by any Bk. Hen
e, � is not an element of the
losure of any A in N .Sin
e � is 
ompa
t and N is �nite, this implies that there is an " > 0 su
h that�" does not interse
t any A in N . So, �" must be 
overed by the elements inA n N . We will derive a 
ontradi
tion. Let A1; : : : ; At be an enumeration ofAnN . The 
laim is that there is at least one Ai that is dense some non-emptyopen subset of �". Suppose not. Then in parti
ular A1 is not dense on anynon-empty open subset of x". So, there is a �(1) in �" and an "(1) > 0 su
hthat �(1)"(1) has an empty interse
tion with A1. This implies that �(1)"(1) is
overed by A2; : : : ; An. Iteration of this argument eventually yields an open set�(t+1)"(t+1) that has empty interse
tion with all Ak in A nN . However, sin
e�(t+1)"(t+1) is a subset of �" this means that it has an empty interse
tion withevery A in A whi
h 
ontradi
ts the assumption that A 
overs �.So we 
an take a non-empty open set V and a set Ak = Uk \ Gk in A whoseinterior is empty su
h that Ak is dense on Vk. Then it is 
ertainly true thatGk is dense on the non-empty (!) open set V \ Uk. This however implies thatV \Uk is a subset of Gk, sin
e Gk is 
losed. So, the non-empty open set V \Ukis a subset of Uk \ Gk = Ak and Ak has a non-empty interior. Contradi
tion.Hen
e, � is an element of some Bk and B1; : : : ; Bn is a 
over of �. /Theorem 11. The Prohorov topology 
oin
ides with the weak topology W.Proof. A. First we will show that the weak topology is a subset of the Prohorov42



topology. To this end, let � be a probability measure on �. Further, let A bea �-
ontinuous Borel set in � and let " > 0. It is suÆ
ient to show thatC := f� 2 IP(�) j j�(A)� �(A)j < �gis an element of the Prohorov topology by Lemma 6. To do that, it is evensuÆ
ient to show that there exists a real number Æ > 0 su
h that the 
olle
tionof probability measures � with �(�; �) < Æ is a subset of C.To this end, noti
e that A is assumed to be a �-
ontinuous Borel set. So, byCorollary 2, we know that there is an " > 0 su
h that �(A") < �(A) + 12�. We
an even take " su
h that " < 12�. Then, for � with �(�; �) < ",�(A) � �(A") + " < �(A) + 12� + 12� = �(A) + �:In order to get the 
onverse inequality �(A) > �(A) � � we 
an simply applythe above line of reasoning to the �-
ontinuous Borel set X nA.B. Se
ondly we will show that the Prohorov topology is a subset of the weaktopology. To this end, take a probability measure � on � and a real number" > 0. By Lemma 6 it is suÆ
ient to show that the 
olle
tion of probabilitymeasures � with Prohorov distan
e less than " to � 
ontains an element of thebasis C of W des
ribed above.Take a partition A of � as in Lemma 7. Then it is 
lear that the setC := f� j j�(A) � �(A)j < jAj�1" for all A 2 Agis an element of C. So we only need to show that all elements of C have Prohorovdistan
e less than " to �.In order to do this, take an element � of C. Furthermore, let B be a Borelset in �. Let S be the set of elements A of A for whi
h B \ A is not empty.Then, sin
e A is a 
over of �, B is a subset of S := SA2S A. Moreover, sin
ediam(A) < " for all A, S is a subset of B". Therefore we have�(B) � �(S) = XA2S �(A) < XA2S(�(A) + jAj�1") < �(S) + " � �(B") + ":43



Similarly �(B) � �(S) < �(S) + " � �(B") + "whi
h 
ompletes the proof. /COMPACTNESSWe need to establish one more topologi
al feature of IP(�), its 
ompa
tness. Wewill provide a 
omplete and detailed proof along the lines of the dire
t Theoremof Prohorov. However, we will bypass the embedding Theorem of Urysohn.First we need some general theory. In this se
tion (K; d) will be an arbitrary
omplete metri
 spa
e.De�nition 11. We say that K is sequentially 
ompa
t if every sequen
e hasa 
onvergent subsequen
e.De�nition 12. Suppose we have a real number " > 0. A �nite "-
over of Kis a �nite 
olle
tion of open setsx(1)"; : : : ; x(n)"with 
enter point xk and radius " that 
over K.Still under the assumption that K is 
omplete and metri
 we haveTheorem 12. The following three statements are equivalent.(1) K is 
ompa
t(2) K is sequentially 
ompa
t and separable(3) For every real number " > 0 there exists a �nite "-
over of K.Proof. We will show the impli
ations in the 
y
le (1) ! (3) ! (2) ! (1).(1)! (3). Suppose thatK is 
ompa
t. Let " > 0. Then the 
olle
tion of opensets x" with x in K is obviously an open 
over of K. Hen
e, by 
ompa
tness, ithas a �nite sub
over and this sub
over obviously is a �nite "-
over of K.(3) ! (2). Suppose that (3) holds. Take a sequen
e (xn)1n=1 in K. We haveto show that this sequen
e has a 
onvergent subsequen
e. To this end, take anatural number k. Then by assumption we 
an �nd points y(k1); : : : ; y(ks(k))44



su
h that y(k1) 1k ; : : : ; y(ks(k)) 1k
overs K. Now 
onsider the following 
onstru
tion. Sin
ey(11)1; : : : ; y(1s(1))1
overs K, there must be a y(1t(1)) su
h that y(1t(1))1 
ontains an in�nite ofnumber points xn. Let x�(1) be the �rst. Furthermore, swit
h to a subsequen
ethat is 
ompletely 
ontained in y(1t(1))1. Sin
ey(21) 12 ; : : : ; y(2s(2)) 12
overs K, there must be a y(2t(2)) su
h that y(2t(2)) 12 
ontains an in�nitenumber of points xn. Let x�(2) be the �rst one that has index �(2) > �(1).Noti
e that we 
an do that, sin
e there is an in�nite number of points xn thatsatisfy our 
onditions. Furthermore, swit
h to a subsequen
e that is 
ompletely
ontained in y(2t(2)) 12 . Et 
etera.Thus we �nd a subsequen
e (x�(n))1n=1 of x1; x2; : : : su
h that x�(k); x�(k+1); : : :is 
ompletely 
ontained in y(kt(k)) 1k . This however means that this subsequen
eis Cau
hy. Hen
e, sin
e K is 
omplete, it must be 
onvergent.Finally noti
e that the 
olle
tion of points y(ks) for k in IN and 1 � s � s(k) isa 
ountable set that is dense in K. Hen
e, K is separable as well.(2) ! (1). Suppose that K is separable and sequentially 
ompa
t. Let A besome index set and let (U�)�2A be an open 
over of K. Suppose it does nothave a �nite sub
over. We will derive a 
ontradi
tion.Sin
e K is separable and metri
, we know that there is a 
ountable basis Bthat generates the topology on K. Let B1; B2; : : : be an enumeration of thoseelements of B that are 
ontained in some U�. Sin
e B is a basis, it is 
lear thatthe above sequen
e also 
overs K. Furthermore it is 
lear that does not have a�nite sub
over, sin
e a �nite sub
over of B1; B2; : : : easily translates to a �nitesub
over of (U�)�2A. 45



Now 
onsider the following 
onstru
tion. Take a point x1 in Bk(1) := B1. Nownoti
e that Bk(1) does not 
over K. Therefore the minimal natural number kfor whi
h Bk is not a subset of Bk(1) exists. Denote this number by k(2) andtake a point x2 2 Bk(2) nBk(1):Now Bk(1); Bk(2) does not 
over K either. So the minimal number k for whi
hBk is not a subset of Bk(1) [ Bk(2) exists as well. Denote this number by k(3).Automati
ally k(3) > k(2). Take a pointx3 2 Bk(3) nBk(1) [ Bk(2):Et 
etera. Thus we get a sequen
e x1; x2; : : : of points in K. By assumptionthis sequen
e has a subsequen
e x�(1); x�(2); : : : that 
onverges to some point,say x, in K. Now, sin
e B1; B2; : : : 
overs K, we know that x is an element ofsome Bm. Furthermore, Bm must be a subset of Smn=1Bk(n) by 
onstru
tion.This though 
ontradi
ts the fa
t that a tail of the sequen
e x�(1); x�(2); : : : isnot 
ontained in this union by 
onstru
tion. /Swit
hing ba
k to the original setting, 
onsider the metri
 spa
e IP(�) equippedwith the Prohorov distan
e �. We will show its (sequential) 
ompa
tness byshowing that it has a �nite "-
over for ea
h " > 0. First of all we haveTheorem 13. The metri
 spa
e (IP(�); �) is 
omplete.Proof. Let �1; �2; : : : be a Cau
hy sequen
e of probability measures on �.We will show that it 
onverges to a probability measure � on �. To this end,let R be the 
olle
tion of Borel sets A in � for whi
h the sequen
e�1(A); �2(A); : : :
onverges. De�ne the fun
tion �:R ! IR by�(A) := limn!1�n(A)for all A in R. First in Part A we will show that R is a ring and that � is apremeasure on R. So, � has a unique extension to the �-algebra generated by46



R. Then in Parts B and C we will show that the �-algebra generated by Rmust be equal to the Borel �-algebra and the proof is 
omplete.A. Using the �-additivity of the probability measures �n it is straightforwardto 
he
k that R is a ring and that � is a pre-measure on the ring R.B. Let x be an element of �. In this part we will show that the 
olle
tion ofnumbers " > 0 for whi
h x" is not an element of R is 
ountable 7. To this endde�ne the fun
tion fn: IR! IR byfn(") := �n(x"):Write D := diam(�). Then(1) fn(") = 1 for all " > D and fn(") = 0 for all " < 0(2) fn is non-de
reasing(3) fn is 
adlag by Lemma 2 and (2).Now let q1; q2; : : : be an enumeration of the rational numbers. Sin
e f1; f2; : : :is a bounded sequen
e, there is a subsequen
e f11; f12; : : : su
h thatf11(q1); f12(q1); : : :
onverges. Similarly we 
an take a subsequen
e f21; f22; : : : su
h thatf21(q2); f22(q2); : : :
onverges. Then it is not so hard to show that the subsequen
e (fkk)1k=1 
on-verges for all ql and we 
an de�nef(ql) := limk!1 fkk(ql):This is obviously a non-de
reasing fun
tion on the rational numbers, so we 
anextend f to all real numbers byf(r) := infff(ql) j ql � rg:7The argument used here is basi
ally the proof of Helly's Theorem tailored to our spe
ialsituation. 47



It is elementary to 
he
k that f satis�es (1) till (3).Now take a real number r su
h that f is 
ontinuous in r. We want to show thatf(r) = limn!1 fn(r):Let � > 0. First we will show that there exists an N su
h thatfm(r) � f(r) + �for all m � N . First of all, noti
e that we 
an take a rational number q � rsu
h that f(q) � f(r) + �3 . We 
an assume w.l.o.g. that Æ := q � r < �3 .Next, having 
hosen Æ = q � r, we 
an 
hoose a natural number N1 su
h that�(�n; �m) < Æ for all m;n � N1 sin
e the sequen
e �1; �2; : : : is Cau
hy.Further, write f�(n) := fkk. Sin
e f�(1)(q); f�(2)(q); : : : 
onverges to f(q) we 
an
hoose a natural number N2 su
h that f�(n)(q) < f(q) + �3 for all n � N2.Now take n su
h that n � N1 and n � N2. Then, sin
e �(n) � n, for all m � n,fm(r) = �m(xr) � ��(n)((xr)Æ) + Æ � ��(n)(xr+Æ) + Æ= f�(n)(q) + Æ � f(q) + �3 + Æ � f(r) + �3 + �3 + Æ � f(r) + �:So, if f1(r); f2(r); : : : does not 
onverge to f(r), then there is a real number� > 0 and a subsequen
e f�(1)(r); f�(2)(r); : : : 
onverging to f(r) � �. Take Lsu
h that f�(l)(r) � f(r)� 45� for all �(l) � L.First of all, sin
e f is assumed to be 
ontinuous in r, we 
an 
hoose a rationalnumber q < r su
h that f(q) � f(r)� 15�. We may assume that Æ := r�q < 15�.Choose N su
h that �(�m; �n) < Æ for all m;n � N . Sin
e f�(1)(q); f�(2)(q); : : :
onverges to f(q) we know that we 
an take an �(n) � N su
h that f�(n)(q) �f(q)� 15�. So, on one hand,f�(n)(q) � f(q)� 15� � f(r)� 25�:On the other hand, take an l su
h that �(l) � N and �(l) � L. Thenf�(n)(q) = ��(n)(xq) � ��(l)((xq)Æ) + Æ � f�(l)(q + Æ) + Æ� f�(l)(r) + 15� � f(r)� 45�+ 15� = f(r) � 35�48



and we have a 
ontradi
tion. Now sin
e f is non-de
reasing, f only has a
ountable number of dis
ontinuity points and the proof of Part B is 
omplete.C. We will show now that the �-algebra generated by R equals the Borel�-algebra. Sin
e R is a subset of the Borel �-algebra by de�nition, it suÆ
es toshow that all 
losed sets are in
luded in the �-algebra generated by R.To this end, let F be a 
losed subset of �. Take a natural number n. By PartB we 
an 
hoose for every � in � a real number 0 < "(�) < 1n su
h that �"(�) isan element of R. Now we 
an 
hoose a �nite 
over�"(�1)1 ; : : : ; �"(�n)nof F by 
ompa
tness of F . Then it is 
lear thatF � Snk=1 �"(�k)k � F 1nwhile the middle set is an element of R sin
e it is a �nite union of elements ofR. Hen
e, F 
an be written as a 
ountable interse
tion of elements of R andmust therefore be an element of the �-algebra generated by R. This 
on
ludesthe proof. /Se
ondly,Theorem 14. For every " > 0, IP(�) has a �nite "-
over.Proof. Take a real number " > 0. Take a partitionA = fA1; : : : ; Angas in Lemma 7. Take points xk in int(Ak) and a natural number T su
h thatT�1 < jAj�1". These remain �xed throughout the proof.Let Æ(xk) denote the Dira
 measure on xk. Let for ea
h k a natural number0 � t(k) � T be spe
i�ed su
h that these numbers sum up to T . Then� := 1T Pnk=1 t(k)Æ(xk)is a probability measure. Furthermore, ea
h Ak is �-
ontinuous, sin
e � is a
onvex 
ombination of Dira
 measures Æ(xm) that are 
onstru
ted in su
h a49



way that all Ak are Æ(xm)-
ontinuous. Therefore,C(�) := f� j j�(A) � �(A)j < jAj�1" for all A 2 Agis an element of the basis C and is therefore in
luded in the set of probabilitymeasures � that have Prohorov distan
e less than " to � by part B of the proofof Theorem 11. It is also 
lear that there is only a �nite number of su
h sets,sin
e the amount of probability measures of the form1T nXk=1 t(k)Æ(xk)is �nite. We will show that the 
olle
tion of these sets 
overs IP(�).Take a probability measure � on �. Now sele
t for ea
h 1 � k � n a naturalnumber 0 � s(k) � T su
h thats(k)T � �(Ak) < s(k) + 1T :Now the numbers s(k) need not add up to T , but their sum is 
ertainly less thanor equal to T . Moreover, it is easy to sele
t numbers t(k) 2 fs(k); s(k) + 1gin su
h a way that the numbers t(k) do add up to T , the only restri
tion herebeing that A has at least two elements. Finally, it is elementary to 
he
k thatfor � de�ned by � := 1T nXk=1 t(k)Æ(xk)the probability measure � is an element of C(�). /Now we have developed enough equipment to proveTheorem 15. IP(�) is (sequentially) 
ompa
t w.r.t. the weak topology.Proof. By Theorem 13 we know that IP(�) is 
omplete with respe
t to theProhorov distan
e. By Theorem 14 we know that it has a �nite "-
over for every" > 0. Hen
e, by Theorem 12, it is also (sequentially) 
ompa
t. /SEQUENTIAL THEOREMS 50



There are also several ways to 
he
k whether or not a sequen
e (�n)1n=1 ofprobability measures 
onverges weakly to some limit �1 without dire
tly usingthe topologi
al framework. In this se
tion we will state some of them.Theorem 16. (Portmanteau) Let �1; �1; �2; : : : be probability measures on�. Then the following statements are equivalent.(1) �1; �2; : : : 
onverges weakly to �1(2) limn!1 �n(A) = �1(A) for all �1-
ontinuous Borel sets A(3) limn!1 �n(F ) = �1(F ) for all 
losed �1-
ontinuity sets F in �.Proof. The equivalen
e of (1) and (2) follows from Lemma 6. We will show(2) !(3) !(2) to establish (3).The impli
ation from (2) to (3) is evident, so we only have to prove the 
onverseimpli
ation. To that end, assume that we have a sequen
e �1; �1; �2; : : : ofprobability measures with limn!1�n(F ) = �1(F )for all 
losed �1-
ontinuity sets F . Let A be an arbitrary �1-
ontinuity set.We will show that limn!1�n(A) = �1(A):In order to do that, take an arbitrary real number " > 0. We will show thatthere is a natural number N su
h that for all n � Nj�n(A)� �1(A)j < 2":To this end noti
e that the 
losure 
lA of A is a �1-
ontinuity set sin
e �
lA =�A. So by our assumption there is a natural number N1 su
h thatj�n(
lA)� �1(
lA)j < "for all n � N1. Furthermore, noti
e that the real number �1(
lA) is equalto �1(A) sin
e �1(�A) = 0. Therefore it is suÆ
ient to show that there is anatural number N2 su
h that for all n � N2j�n(
lA)� �n(A)j < ":51



To this end, noti
e that �A is 
losed and, sin
e ��A = �A, a �1-
ontinuity setas well. So, by our assumption we know thatlimn!1�n(�A) = �1(�A) = 0:This implies that there is an N2 su
h that for all n � N2j�n(�A)j < ":Therefore, sin
e �n(A n �A) � �n(A) � �n(
lA) by monotoni
ity of �n and�n(A n �A) + �n(�A) = �n(
lA) sin
e 
lA = A [ �A, we get thatj�n(
lA)� �n(A)j < "for all n � N2. This 
on
ludes the proof. /Another variant we use in the paper is the following Lemma. Sin
e it is animmediate 
onsequen
e of Theorem 16 (3), its prrof is omitted. Suppose wehave a subset U of the Borel �-algebra B su
h that(1) �nite interse
tions of elements of U are also elements of U , and(2) ea
h open set in � is the 
ountable union of elements of U .Lemma 8. A sequen
e (�n)1n=1 in IP(�) 
onverges weakly to a probabilitymeasure �1 on � whenever (�n(U))1n=1 
onverges to �1(U) for every elementU of U .APPENDIX C. MARTINGALE CONVERGENCE THEORYIn this se
tion we work within a �xed probability spa
e, denoted by (
;�; �).We will assume that 
 is a 
ompa
t metri
 spa
e. This is not stri
tly neededin the proofs, but it does make matters easier and it is the setup in whi
h wewill apply the results dis
ussed here anyway. Further, � is assumed to be a�-algebra on 
 and � is a probability measure on �.CONDITIONAL EXPECTATIONIn this se
tion we will brie
y dis
uss the theory 
on
erning the existen
e anduniqueness of the 
onditional expe
ted value of a random variable with respe
t52



to �. The basi
 theorem is the Radon-Nikodym theorem. We will dis
uss thatone �rst. Noti
e that we don't need the assumption of �-�niteness sin
e weassume that every measure is �nite.First we need some de�nitions. Assume for the moment that we have a �-subalgebra A of � 8. Further suppose that we have two measures � and � onA.De�nition 13. The measure � is said to be absolutely 
ontinuous with respe
tto � if for every A in A with �(A) = 0 we have �(A) = 0.De�nition 14. An A-measurable fun
tion f : 
 ! IR is a density of � withrespe
t to � if for all A in A �(A) = ZA fd�:Theorem 17. (Radon-Nikodym) Suppose that the measure � is absolutely
ontinuous with respe
t to �. Then � has a density with respe
t to �. Moreover,if f and g are two su
h densities, then f = g �-almost surely 9.Using this result we 
an show the existen
e of the 
onditional expe
ted value ofa random variable 10.De�nition 15. A random variable X w.r.t. A is 
alled integrable withrespe
t to � if Z
 jX(!)jd�is a real number.Now let X be an integrable random variable w.r.t. �.De�nition 16. An expe
ted value of X 
onditional on A is an A-measurableand integrable fun
tion f on 
 su
h that for all A in AZA fd� = ZAXd�:8A �-subalgebra of � is a subset of � that is a �-algebra.9By this we mean that the 
olle
tion of worlds ! where the equation is not true has �-probability one.10A random variable (w.r.t. A) is simply a real-valued A-measurable fun
tion on 
.53



EXISTENCE Existen
e of a 
onditional expe
ted value of X on A 
an easilybe derived from the Radon-Nikodym theorem. In order to do that, assume forthe moment that X is non-negative. Then the formula�(A) := ZAXd� for all A 2 Ade�nes a measure on A. Furthermore it is easy to 
he
k that this measure isabsolutely 
ontinuous w.r.t. the restri
tion of � to A. So, a

ording to theRadon-Nikodym theorem there exists an A-measurable fun
tion f su
h that forevery A in A ZA fd� = �(A) = ZAXd�:So, this fun
tion f is indeed an expe
ted value of X 
onditional on A.Now, for a general random variable, noti
e that the non-negative fun
tions X+and X� on 
 de�ned byX+(!) := maxfX(!); 0g and X�(!) := maxf�X(!); 0gare both random variables w.r.t. �. So, there are expe
ted values f+ and f� ofX+ and X� resp. 
onditional on A. It is now easy to 
he
k that f := f+ � f�is an expe
ted value of X 
onditional on A. /UNIQUENESS Now the se
ond part of the Radon-Nikodym states that twodi�erent 
onditional expe
ted values of X on A will be equal with probabilityone a

ording to �. This means that the 
olle
tion of expe
ted values of X
onditional on A is an equivalen
e 
lass of the equivalen
e relation � on the
olle
tion of random variables on A de�ned byf � g if and only if f = g �� almost surely.This equivalen
e 
lass is denoted by IE(X j A). Any element of the 
lass IE(X jA) is 
alled a version of IE(X j A).This 
lass is obviously uniquely de�ned. Nevertheless we will slightly abusenotation and also use the symbol IE(X j A) to indi
ate an element of this 
lass.54



In that sense the 
onditional expe
ted value is de�ned only modulo sets havingprobability zero. /The following simple observation will be used in the next se
tion.Lemma 9. Let X and Y be two �-measurable and integrable fun
tions su
hthat X � Y with �-probability one. ThenIE(X j A) � IE(Y j A)with �-probability one.MARTINGALES Let (�t)1t=1 be a sequen
e of �-subalgebras of �, i.e. ea
h �-algebra �t is a subset of �. Su
h a sequen
e is said to provide information if �tis a subset of �t0 for ea
h t0 � t. The expression "providing information" refersto the fa
t that in most appli
ations the sequen
e of �-algebras is generated bya sequen
e of partitions of 
 ea
h partition re
e
ting the amount of informationavailable at that time.De�nition 17. A sequen
e (Xt)1t=1 of random variables on 
 is said toprovide information if ea
h Xt is �t-measurable.We will assume that su
h a sequen
e is uniformly bounded, i.e. there exists anumber K su
h that for all t and !jXt(!)j � K:This requirement is of 
ourse only a te
hni
ality. We impose it be
ause it makeslife easier and be
ause the 
ondition is satis�ed anyway in the appli
ation weuse it for in the paper. Its main 
onsequen
e is that ea
h Xt is integrable w.r.t.� and that the expe
ted valueIE(jXtj) := Z
 jXt(!)jd�of jXtj is also bounded by K.De�nition 18. A sequen
e (Xt)1t=1 that provides information is 
alled asubmartingale if Xt � IE(Xt+1 j �t)55



for all t. If we even have equality the sequen
e is 
alled a martingale.Noti
e that the submartingale 
ondition states thatXt is dominated by a versionof IE(Xt+1 j �t). This means that the 
ondition is equivalent to the requirementthat ZAXtd� � ZAXt+1d�should hold for all A in �t. Similarly, being a martingale is equivalent withhaving equality in the displayed inequality. Of this formulation we will makeparti
ular use.A martingale 
onverges �-almost surely. In other words, the probability thatthe sequen
e will keep 
hanging, e.g. 
y
le, is zero. The remaining part of thisse
tion is devoted to a proof of this result.So, let (Xt;�t)1t=1 be a submartingale. Let r be a real number. De�ne Zt: 
!IR by Zt(!) := maxfr;Xt(!)g:Lemma 10. The sequen
e (Zt)1t=1 is a submartingale.Proof. It is immediately 
lear that ea
h Zt is �t-measurable. Furthermore,jZt(!)j = jmaxfr;Xt(!)gj � maxfjrj; jXt(!)jg � maxfjrj;Kgwhi
h implies that the sequen
e has a uniform upper bound. So we only needto 
he
k the submartingale 
ondition. To this end noti
e thatXt+1 � Zt+1 and r � Zt+1:So, by Lemma 9,IE(Xt+1 j �t) � IE(Zt+1 j �t) and r = IE(r j �t) � IE(Zt+1 j �t)with �-probability one. Hen
e,Zt = maxfr;Xtg = maxfr; IE(Xt+1 j �t)g � IE(Zt+1 j �t)with �-probability one. This 
on
ludes the proof. /56



From now on we will make the further assumption that we have a �xed world! in 
 and a �xed natural number n. Only at the end of the proof these willbe
ome variable again.Noti
e that X1(!); : : : ; Xn(!) is a sequen
e of real numbers. Now take two realnumbers r and s with r < s. De�ne T0(!) := 0, T1(!) := minft � T0 j xt � rgand re
ursively for k = 2; 3; : : :Tk(!) :=8<:minft > Tk�1(!) j xt � rg when k is oddminft � Tk�1(!) j xt � sg when k is evenuntil we are supposed to take the minimum over the empty set 11. So, thisyields an in
reasing sequen
e T0(!); T1(!); : : : ; TK(n)(!)(!) of natural numberssmaller than or equal to n.With this sequen
e we 
an asso
iate a sequen
e of indi
ator fun
tions. Formally,for 1 � k � n, let Ik(!): IN! f0; 1g be de�ned byIk(!)(t) := ( 1 when Tk�1(!) < t � Tk(!)0 else.Stri
tly speaking, this is not a 
orre
t de�nition for k > K(n)(!) sin
e Tk(!)is not de�ned for these values of k. We will interpret the de�nition for these
ases though as if the 
orresponding fun
tion Ik(!) is 
onstantly equal to zero.We don't really need these fun
tions Ik(!) for values k larger than K(n)(!),but they do keep notation simple in the proof. We will also use the shorthandnotation [Ik(t) = 1℄ := f! 2 
 j Tk�1(!) < t � Tk(!)g;again with the 
onvention that this is the empty set for values of k larger thanK(n)(!). Then we haveLemma 11. The set [Ik(t) = 1℄ is �t�1-measurable.Proof. First noti
e that[Ik(t) = 1℄ = f! j Tk�1(!) < t � Tk(!)g = f! j Tk�1(!) < tg\f! j Tk(!) < tg
:11Sin
e Tk�1(!) < Tk(!) it is easy to see that ft j Tk(!) < t � ng has at most n � kelements. From this it easily follows that we 
an perform the re
ursive step at most n times.57



From this it easily follows that it is suÆ
ient to show that the setf! j Tk(!) = ugis �t�1-measurable for ea
h 0 � u � t � 1. This is what we will show now byindu
tion to k.Step 1. For k = 0. The set f! j T0(!) = ug is either equal to 
 (for u = 0)or to the empty set (for all other values of u). In both 
ases though it is 
learlyan element of �t�1.Step k+1, in 
ase k+1 is odd. Suppose we know that f! j Tk(!) = ug is anelement of �t�1 for all 0 � s � t� 1. Thenf! j Tk+1(!) = ug =u�1[v=0hf! j Tk(!) = vg \ f! j Xv+1(!) > r; : : : ; Xu�1(!) > r;Xu(!) � rgiis �t�1-measurable by the indu
tion hypothesis and the fa
t that Xv+1; : : : ; Xuare �t�1-measurable. Obviously we 
an do something similar in 
ase k + 1 iseven. /Let Un(!) be the largest even number k for whi
h Tk(!) exists. So,Un(!) := maxf0 � k � K(n) j K is eveng:This number is 
alled the number of up
rossings over (r; s). It 
ounts the numberof times the sequen
e goes from being less than or equal to r to being more thanor equal to s. We have the following result.Lemma 12. Given the above setting, we haveIE(Un) � 2s� r maxfjrj;Kg:Proof. From Lemma 10 we already know that the sequen
eZt := maxfr;Xtg58



is a submartingale as well. Furthermore, it is easy to see that the randomvariables Tk, K(n), Ik(t) and Un are identi
al for both (Xt)1t=1 and (Zt)1t=1. So,Zn(!)� Z1(!) = nXt=2�Zt(!)� Zt�1(!)�= nXt=2 nXk=1 Ik(t)(!)�Zt(!)� Zt�1(!)�where the se
ond equality follows from the observation that for ea
h 2 � t � nexa
tly one element of the sequen
e I1(t)(!); : : : ; In(t)(!) will be equal to one,while the other elements are equal to zero. Now split the latter term, the doublesummation, into the two termsEn(!) := nXt=2 nXk=1k even Ik(t)(!)�Zt(!)� Zt�1(!)�and On(!) := nXt=2 nXk=1k odd Ik(t)(!)�Zt(!)� Zt�1(!)�:Noti
e that both En and On are �-integrable sin
e they are �-measurable andbounded over 
. In other words, they both have an expe
ted value. We willtreat the two terms separately for the moment and �nd lower bounds for theirrespe
tive expe
ted values.A. Con
erning the odd term On, noti
e thatIE(On) = Z
On(!)d�= nXt=2 nXk=1k odd Z
 Ik(t)(!)�Zt(!)� Zt�1(!)�d�= nXt=2 nXk=1k odd�Z[Ik(t)=1℄Zt(!)d� � Z[Ik(t)=1℄ Zt�1(!)d��:However, sin
e (Zt)1t=1 is a submartingale, we get thatZ[Ik(t)=1℄ Zt(!)d�� Z[Ik(t)=1℄Zt�1(!)d� � 0for ea
h t by Lemma 11. Hen
e, IE(On) � 0.59



B. Con
erning the even term En, noti
e thatEn(!) = nXt=2 nXk=1k even Ik(t)(!)�Zt(!)� Zt�1(!)�= nXk=1k even nXt=2 Ik(t)(!)�Zt(!)� Zt�1(!)�= K(n)(!)Xk=1k even nXt=2 Ik(t)(!)�Zt(!)� Zt�1(!)�= K(n)(!)Xk=1k even �ZTk(!)(!)� ZTk�1(!)(!)� � (s� r)Un(!):Hen
e, IE(En) � (s� r)IE(Un).C. Combined, this yields(s� r)IE(Un) � IE(En) + IE(On) = IE(Zn � Z1)� IE(jZnj) + IE(jZ1j) � 2maxfjrj;Kgwhi
h 
ompletes the proof. /We are now ready for the martingale 
onvergen
e theorem. For ea
h world ! in
 for whi
h the sequen
e (Xt(!))1t=1 
onverges, we de�neX1(!) := limt!1Xt(!):Now we 
an proveTheorem 18. Let (Xt;�t)1t=1 be a martingale. Then X1 exists �-almostsurely.Proof. Suppose not. Let X� be the �-measurable fun
tion de�ned byX�(!) := lim inft!1Xt(!)and similarly X�(!) := lim supt!1Xt(!):Note that both are well-de�ned sin
e the martingale is assumed to have a uni-form bound. Then from the assumption that X1 is not almost everywhere60



de�ned, we have � f! 2 
 j X�(!) < X�(!)g > 0:Take two rational numbers r < s. LetB(r; s) := f! 2 
 j X�(!) < r < s < X�(!)g :Sin
e f! 2 
 j X�(!) < X�(!)g is the 
ountable union of all su
h sets B(r; s),from the subadditivity of � it follows that �(B(r�; s�)) > 0 for some r� ands�. Then it is 
lear that on B(r�; s�) the number of up
rossings Un over theinterval (r�; s�) in
reases to in�nity as n ! 1. In parti
ular this implies thatIE(Un) ! 1. However, in Lemma 12 we have seen that IE(Un) is bounded by2s�r maxfjrj;Kg. Contradi
tion. /APPENDIX D. CONTINUITY OF THE BAYES OPERATORIn this se
tion we will show that the Bayes operator de�ned in se
tion 3 is 
on-tinuous. First of all, noti
e that the denominator in its de�nition is larger thanzero by Lemma 16. So, it is easy to see that B(�i)(xi) is a non-negative fun
-tion on the Borel �-algebra on �i. The �-additivity of B(�i)(xi) follows fromthe �-additivity of the integral and �nally it is obvious that B(�i)(xi)(�i) = 1.So, B(�i)(xi) is indeed a probability measure, and the Bayes operator thusonly takes on values in IP(�). Ba
k to our aim, its 
ontinuity, we �rst need toestablish some te
hni
alities.Lemma 13. Suppose that we have a sequen
e (pik)1k=1 that 
onverges to somepi. Then there is a number K su
h that for all k > K, all xi and all �ijj�i(pik; xi)gi(xi j pik; �i)� �i(pi; xi)gi(xi j pi; �i)jjj < ":Proof. Suppose not. Then for every number n there is a number k(n) � nand points xi(n) and �i(n) su
h thatjj�i(pik(n); xi(n))gi(xi(n) j pik(n); �i(n))� �i(pi; xi(n))gi(xi(n) j pi; �i(n))jj � ":Sin
e both Xi and �i are 
ompa
t we may assume w.l.o.g that the sequen
exi(n)1n=1 
onverges to a point xi and the sequen
e �i(n)1n=1 
onverges to a point61



�i. However, sin
e k(n) � n by 
onstru
tion, we know that pik(n) ! pi. Hen
e,taking limits yields0 = jj�i(pi; xi)gi(xi j pi; �i)� �i(pi; xi)gi(xi j pi; �i)jj � "whi
h is a 
ontradi
tion. /Lemma 14. The fun
tion pi: IP(�i)! Pi is 
ontinuous.Proof. Part (i). First we will show that the expe
ted payo� fun
tion�i:Pi � IP(�i)! IRis 
ontinuous. Of 
ourse we suppose that IP(�i) is endowed with the weaktopology. Noti
e that his topology is metrizable by Theorem 11. Therefore itis suÆ
ient to establish 
onvergen
e of �i over sequen
es. So, take a sequen
e(pik; �ik) ! (pi; �i). We want to show that, given " > 0, there exists a naturalnumber K, su
h that for all k � K,jj�i(pik; �ik)��i(pi; �i)jj � 2":By the triangle inequality we only need to show thatjj�i(pik; �ik)��i(pi; �ik)jj+ jj�i(pi; �ik)��i(pi; �i)jj � 2"for suÆ
iently large k. We will show that both terms on the left hand side ofthe inequality sign are smaller than or equal to " for suÆ
iently large k. The�rst term readsjj�i(pik ; �ik)��i(pi; �ik)jj= ��������Z�i ZXih�i(pik ; xi)gi(xi; �i j pik)� �i(pi; xi)gi(xi; �i j pi)id�id�ik��������� Z�i ZXi jj�i(pik; xi)gi(xi; �i j pik)� �i(pi; xi)gi(xi; �i j pi)jj d�id�ik:Now takeK as in Lemma 13. Then, sin
e �i and �ik are all probability measures,for ea
h k � K the latter expression is smaller than or equal toZ�i ZXi "1l�i�Xid�id�ik = ":62



Furthermore, the se
ond term reads��������Z�i ZXi �i(pi; xi)gi(xi; �i j pi)d�id�ik � Z�i ZXi �i(pi; xi)gi(xi; �i j pi)d�id�i�������� :Be
ause we assume that IP(�i) is endowed with the weak topology, it suÆ
esto show that Fp(�i) := ZXi �i(pi; xi)gi(xi j pi; �i)d�iis 
ontinuous in �i. To that end, take a sequen
e �im ! �i. Let " > 0 be anarbitrary real number. Let Gp be a positive real number su
h thatjj�i(pi; xi)jj � Gp for all xi 2 Xi:This number exists be
ause �i(pi; xi) is 
ontinuous in xi and Xi is 
ompa
t.Now take a natural number Mp su
h that for all m �Mpjjgi(xi j pi; �im)� gi(xi j pi; �i)jj � "Gp :Then for all m �MpjjFp(�im)� Fp(�i)jj = jj ZXi �i(pi; xi)�gi(xi j pi; �im)� gi(xi j pi; �i)�d�ijj� ZXi jj�i(pi; xi)jjjjgi(xi j pi; �im)� gi(xi j pi; �i)jjd�i:Consequently, sin
e �i(Xi) = 1,jjFp(�im)� Fp(�i)jj � ZXi Gp "Gp d�i = ":Part (ii). Now let (�ik)1k=1 be a sequen
e 
onverging to �i in the weak topol-ogy. Then, sin
e Pi is a 
ompa
t metri
 spa
e, every sequen
e has a 
onvergingsubsequen
e by Theorem 12. So, we may assume without loss of generality thatpi(�ik) 
onverges to some de
ision p�i . We will now show that p�i = pi(�i).Sin
e pi(�ik) is the optimal de
ision given the belief �ik, we know that for anarbitrary pi in Pi it holds that�i(pi(�ik); �ik) � �i(pi; �ik) for all k:63



So by the 
ontinuity of �i we get that�i(p�i ; �i) � �i(pi; �i);and p�i is an optimal a
tion given belief �i sin
e pi was arbitrarily 
hosen. Hen
e,p�i = pi(�i) by Assumption 1. /Furthermore, noti
e that gi:Xi � Pi � �i ! IR is also 
ontinuous. So, thefun
tion h:Xi � IP(�i)��i ! IR byh(xi; �i; �i) := gi(xi; pi(�i); �i)is 
ontinuous as well. Now suppose we have a sequen
e (xin; �in)1n=1 
onvergingto some limit (xi; �i). De�ne the fun
tions fn and f from �i to IR byfn(�i) := h(xin; �in; �i) and f(�i) := h(xi; �i; �i):Now take an arbitrary " > 0. We then have the following lemma.Lemma 15. There exists a natural number N in IN su
h that jjfn� f jj1 < "for all n � N .Proof. Suppose not. Then there is a subsequen
e (fk)1k=1 of (fn)1n=1 and asequen
e (�ik)1k=1 su
h that jfk(�ik)� f(�ik)j � ":for all k 2 IN. Sin
e �i is 
ompa
t we may assume that the sequen
e (�ik)1k=1
onverges to some limit �i. Then for all k 2 IN" � jfk(�ik)� f(�ik)j = jh(xik ; �ik; �ik)� h(xi; �i; �ik)j :However, sin
e xik ! xi, �ik ! �i and �ik ! �i, the 
ontinuity of h yields" � jh(xi; �i; �i)� h(xi; �i; �i)jso that we arrive at a 
ontradi
tion. /The lemma is instrumental in the proof of the following64



Theorem 19. The Bayes operator is 
ontinuous.Proof. Suppose that (�in; xin)1n=1 
onverges to (�i; xi). It has to be shownthat Bi(�in)(xin)! Bi(�i)(xi)as n goes to in�nity. It is suÆ
ient to establish (3) of Theorem 16. To this end,let F be a 
losed �i-
ontinuous subset of �i. What has to be shown is thatBi(�in)(xin)(F )! Bi(�i)(xi)(F ):By the de�nition of the Bayes operator,Bi(�i)(xi)(F ) = RF gi(xi j p(�i); �i)d�iR�i gi(xi j p(�i); �i)d�i :Now Lemma 16 in Appendix E guarantees that the denominator is stri
tlypositive. So, sin
e �i itself is an instan
e of a 
losed set F whose boundary hasmeasure zero (the boundary of �i is the empty set after all), it suÆ
es in turnto show that, given " > 0,����ZF gi(xin j p(�in); �i)d�in � ZF gi(xi) j p(�i); �i)d�i���� < 2"for suÆ
iently large n. This is what we set out to do.First, take N as in Lemma 15. Then for all n � N ,����ZF gi(xin j p(�in); �i)d�in � ZF gi(xi j p(�i); �i)d�in����� ZF jfn(�i)� f(�i)j d�in � Z�i jfn(�i)� f(�i)j d�in� Z�i jjfn � f jj1d�in � "�in(�i) = ";where the last inequality follows from the 
hoi
e of n and N . So now we onlyhave to show that for all " > 0, there exists an N 2 IN su
h that for all n � N����ZF gi(xi j p(�i); �i)d�in � ZF gi(xi j p(�i); �i)d�i���� < ":In other words, we have to show the existen
e of a natural number N su
h thatfor every n � N , �in is an element of the set of probability measures �i with����ZF f(�i)d�i � ZF f(�i)d�i���� < ":65



This set however 
ontains an element C of C with �i 2 C by Lemma 5. Hen
e,su
h an N exists sin
e (�in)1n=1 weakly 
onverges to �i and C is a basis of theweak topology by Lemma 6. /APPENDIX E. SUFFICIENTLY WIDE WORLD VIEWSFor the Bayesian learning pro
ess to be well spe
i�ed, we need that there areno obje
tively possible events that are assigned probability zero at any timeby the �rm. A Bayesian learner, namely, would simply not be able to dealwith su
h events. Formally it means that the denominator of the updating rulemight be
ome zero. In this se
tion we will show that Assumption 2 avoids thisproblem. Although also several somewhat weaker 
onditions would guaranteethat the Bayesian learning pro
ess is well de�ned, we prefer to work with theabove 
ondition be
ause of its simpli
ity. And that it is indeed suÆ
ient isexpressed inLemma 16. Let �i be a belief in IP(�i) and suppose that Assumption 2 holds.Let further a de
ision pi, a demand xi, and a Borel set A � �i with �i(A) > 0be given. Then ZA gi(�i j pi; xi)d�i > 0:Proof. Take a de
ision pi and a demand xi. Then we know that gi(�i jpi; xi) is a 
ontinuous fun
tion in the variable �i sin
e we even assumed thatgi is 
ontinuous in all three variables together. Moreover, �i is 
ompa
t. So,there exists a real number " > 0 su
h that gi(�i j pi; xi) � " for all �i 2 �i.Consequently,ZA gi(�i j pi; xi)d�i � ZA "1�id�i = " ZA 1�id�i = "�i(A)whi
h is positive sin
e both " and �i(A) are positive by assumption. /
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