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Abstract

A central unanswered question in economic theory is that of price
formation in disequilibrium. This paper lays down the methodological
groundwork for a model that has been suggested as an answer to this
question (Arrow, 1959; Fisher, 1983; Hahn, 1989). We consider sellers
that monopolistically compete in prices but have incomplete information
about the structure of the market they face. They each entertain a simple
demand conjecture in which sales are perceived to depend on the own
price only, and set prices to maximize expected profits. Prior beliefs on
the parameters of conjectured demand are updated into posterior beliefs
upon each observation of sales at proposed prices, using Bayes’ rule. The
rational learning process thus constructed drives the price dynamics of
the model. Its properties are analysed. Moreover, a sufficient condition is
provided, relating objectively possible events and subjective beliefs, under
which the price process is globally stable on a conjectural equilibrium for
almost all objectively possible developments of history.
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1. Introduction

In economic theory, a key role in the coordination of behaviour is played by

prices. As a consequence, the so-called price mechanism is much debated, and
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the need for it operating freely often stressed. Yet there are many open research
questions on the matter of prices, especially on how they come to take on equi-
librium values. For one thing, it is generally left unexplained whose business
it actually is to call and change prices. Particularly in models in which price-
taking behaviour is assumed, this is a pressing question. Reliance on a unique
price vector indicates it is left to a single person or institution, and a number
of models has been presented in which the central person is in fact an altruistic
auctioneer—e.g. in the tatonnement process, the Edgeworth process, and the

Hahn process.

Apart from the fact that it seems odd, if not plainly inconsistent, to model
all behaviour but that of the auctioneer as resulting from constrained rational
choice, at least two things meet the eye in these explanations. First, they need an
exogenous central coordinator to explain the rise of equilibria that are meant to
be the outcome of decentralized competitive economies. Second, the conditions
these processes need for convergence on equilibrium price values for arbitrary
initial prices—i.e. for global stability of the disequilibrium process—have been

found to be pretty strong.

A number of suggestions has been made to study the disequilibrium behaviour
of prices more seriously. An early one was by Arrow (1959). He proposed
to make price a choice variable of individual firms, that consequently need to
come equipped with some local monopoly power, at least as a disequilibrium
phenomenon. To Arrow, the construct of perfect competition did not allow for
an explanation of price behaviour. More recently, Fisher (1983) developed an
elaborate model of disequilibrium behaviour in which there is clarity on who is
setting prices. It is done by dealers, who specialize in differentiated goods, which
gives them the local monopoly to act as a coordinator. Fisher’s objective to
have disequilibrium processes end in competitive equilibrium, however, led him
originally to model dealers as little auctioneers, changing prices in the direction
of competitive equilibrium values. Yet, the general structure of his stability

proof allows for dealers to set prices more rationally, exploiting their powers,



and this is done later in the book. How prices change with perceptions, however,
is not discussed in depth. In Hahn (1989) several partial examples are given of
perception changes and associated behaviour that may indeed be plausible for
monopolistically competing price setters to develop—including a rudimentary
version of the behaviour we study in this paper. Yet, the consequences of such
behaviour, particularly when performed in general equilibrium settings, are only

hinted upon.

When prices are choice variables of firms, the way firms perceive their market
position, and especially changes in these perceptions, can account for the dy-
namics of prices. This idea is used in the present paper to construct a model
of price adjustment and study its limit behaviour, i.e. its stability properties.
In the present model, a number of firms is in monopolistic price competition,
but does not have perfect information on the market demand it faces. At each
moment in time, based on its information to date on past prices and sales, each
firm entertains a demand conjecture instead. Naturally, this conjecture has a
structural form different from that of objective demand. Particularly, we con-
sider the most extreme case where firms only consider their own price as an
explanatory variable, and do not consider the price effects of competing prod-
ucts. Within their conjectured structures, firms learn in a Bayesian way about
the value of the demand parameters it has modelled. A fleshed out conjecture

serves as a basis for an optimal price through expected profit maximization.

It is shown that, for initial beliefs that do not assign zero probability to de-
velopments of prices and sales that can actually happen, the incomplete beliefs
converge to a finite limit, and therefore prices converge as well. This is called ‘no
statistical surprise’. Convergence takes place on a set of ‘conjectural equilibria’.
Under ‘no statistical surprise’, therefore, the price process is globally stable in
that it reaches an equilibrium for every initial belief-structure. Which particu-
lar equilibrium is reached depends on the initial beliefs. This path-dependency
result runs solely over beliefs, since the model assumes the absence of trade

at disequilibrium prices. The stability result does not rely on specific condi-



tions on the structure of objective demand. Instead, the ‘no statistical surprise’
condition is sufficient for the perceived structure to absorb all price effects on

objective demand.

The literature on Bayesian or rational learning is quite recent and large. Our
paper builds on several of its results. One focus has been the concern to justify
the use of rational expectations equilibria. Particularly Bray and Savin (1986),
and Bray and Kreps (1987) have worked in this direction, and have established
convergence results for myopic Bayesian learners on rational expectations equi-
librium in versions of the cobweb-model. FEarly work by Blume and Easley
(1982; 1984) is also concerned with the influence learning has on the eventual
equilibrium situation reached, but in a general equilibrium setting. Particularly,
they have focussed on conditions under which Bayesian learners will identify the

true model among several models.

In partial equilibrium models of single firms learning their demand, Easley and
Kiefer (1988) among others, study the influence of active learning on firms’
optimization problems. Actively learning firms are aware of the fact that their
behaviour influences their options for learning. In a discrete game theoretical
setting, Kalai and Lehrer (1993; 1995) have obtained results for rational learning
behaviour. Kalai and Lehrer (1993) considers learning in a correctly specified
structure, and states conditions under which it converges to a Nash equilibrium

of the perfect information game that are similar to ours.

Another, much less extensively travelled, route has been to study the influence
of structural misspecification on the convergence process and its equilibria. Kir-
man (1975; 1983; 1995) sets up an early example of two firms learning, in a least
squares way, in a misspecified structure of their game. He does not establish
general convergence results, however. Nyarko (1991) constructs an example of
a single, actively learning monopolist whose beliefs do not settle, due to a very
particular structural specification error. Kalai and Lehrer (1995) extends the
1993 convergence conditions to structurally misspecified models to identify the

usable notion of equilibrium. The article does not present explicit convergence



results, however.

This paper is organized as follows. The next section presents the model struc-
ture. Section 3 discusses some elementary properties of stochastic processes.
Sections 4 and 5 present the convergence result, and discuss its nature. Section
6 concludes on the global stability of the price process on the equilibria of the

model, introducing the concept of ‘no statistical surprise’. Section 7 summarizes.
2. The Model

Consider an economy with n different firms. Each firm i has the ability to
produce its own commodity. It is supposed to take decisions on price, quality,
etc. concerning the commodity it produces. In this paper we will assume that
the aggregate of all these strategic choices to be made by firm i are incorporated
into one single action space P;. For technical reasons each P; is assumed to be

a compact metric space. !

OBJECTIVE DEMAND

In this paper we will assume that the objective demand for commodity ¢ is not
deterministic. In order to model this, let the commodity space of firm ¢ be
denoted by X;. For technical reasons this commodity space is assumed to be a

compact metric space as well.

Suppose that firm 7 has decided to take action p; in P;. We write p := (p;)ien €
P := T[], P; for the entire vector of decisions taken. Now the demand for com-

modity i is supposed to be given by the density function

fi(zi | p)

with respect to the probability measure v; defined on the Borel o-algebra B(X;)

generated by the metric on the commodity space X;.

Remarks. For technical reasons we assume that for any open set U C X; we

have v;(U) > 0. Further, by f;(z; | p) being defined with respect to v; we mean

IThe paper applies a variety of concepts from real analysis. In order to make the paper
self-contained, we offer them in an appendix.



that
/ fi(x; | p)dv; = 1.
X;

We will also assume that the function f;: X; x P — IR is continuous. N
PERCEIVED DEMAND

None of the firms is fully aware of the mechanism that generates the demand it
faces. Instead, each firm ¢ has a collection ©; of "worlds” it deems possible. In
world 8; € ©; it conjectures that it serves a demand function that is distributed

according to the density function
gi(zi | pi,0:)

with respect to v;. Again, we assume for technical reasons that ©; is a compact

metric space and that g;: X; X P; x ©; — IR is continuous.

Remarks. Subjective demand conjectures deviate importantly from objec-
tive demand: each firm only considers the effect of its own decision on the
demand for its commodity, and neglects the influence of the decisions of the
other commodities. In effect, each firm believes that it is a monopolist on its

own market.

This structural misspecification reflects incomplete information on the side of
the firms. We focus on this extreme situation where only the effect of a firm’s
own decision is considered for reasons of exposition. The analysis could be
extended to include less severe forms of incomplete information, e.g. structures
in which the effects of the actions taken by several of the nearest competitors

are included. q
EXPECTED PROFITS

Within its structural misspecification of how the world works, each firm ¢ be-
lieves that there exists a ”true” world. However it does not know which of
possible worlds in ©; is the true one. Instead, the firm’s perception of the world
is stochastic. This means that each firm i has a belief represented by an element

of the set IP(0;) of probability measures on ©;. Such a belief u; € IP(0;) assigns



to each Borel subset A of ©; a real number p;(A) that reflects the probability

firm 4 assigns to the event that the real world is an element of A.

Further, let
mi(pi, ;) € R

be the net profit of demand x; when firm ¢ decides to take action p;. (We will
assume throughout the paper that 7; is continuous.) Then, given a belief u; of

firm 4, the amount II;(p;, ;) of money firm ¢ expects to earn is given by

IT; (pi, 114) =/ / mi(pi> i) gi (4,05 | pi)dvidp;.
e; JX;

Since each firm ¢ is assumed to be rational it will try to maximize II;(p;, ;) and
take an optimal decision. Concerning optimal decisions we make the following

assumption.

Assumption 1. Given the belief u; of firm 4 there is a unique optimal
decision. In other words, there is exactly one decision in P;, denoted by p;(u;),
for which II; (p; (u;), ps) is larger than or equal to II(p;, u;) for any other possible

action p; of firm 7 in P;.

Remarks.  Note that p;(u;) need not maximize expected profits in an ob-
jective sense. This is so since, although the world is in fact stochastic, it is
stochastic in a way different from perception. More specifically, given the vec-
tor p(u) := (pi(p;))ien of individual decisions, objective demand is distributed

on X; according to

fi(zi | p(w)),

which shows how the true sales opportunities depend on the beliefs of all firms.
And in turn these opportunities determine the objective expected net profit. In

other words, the objective expected net profit of firm i is in fact given by

/ mi(pi, i) fi(zs | p(p))dv;.
X;

No firm is, of course, capable of tuning its behaviour to this true expected net

profit. N



3. Information processing and the Bayes operator

Beliefs are updated according to the Bayesian updating rule, as follows. Suppose
that u; is the current belief of firm 4 in IP(©;). Now the observation of demand
z; in X; induces the updated belief B;(u;)(z;) in IP(©;) that assigns to a Borel
set A C ©; the probability

LA 9i(0i | pipa), zi)dp
Bi(pi)(w:)(A) == 2 :
Jo, 9i(0: | pipi), =i)dpi
Provided of course that the denominator is not equal to zero. In order to guar-
antee that this is the case, independent of the belief u;, we make the following

assumption.

Assumption 2. For all p;, §; and z;,
gi(zi | pi,0;) > 0. <

Given this assumption it can be shown that the above formula indeed yields a
mapping

from the space of probability measures times the space of quantities X; back

to the space of probability measures. 2

This particular updating method,
known as Bayesian updating, is firmly founded in probability theory. In that
sense it is sensible from the firms’ perspective to extract information from past

observations in this way.
CONJECTURAL EQUILIBRIUM

Although it makes perfect sense from the perspective of the firms, the learn-
ing process described is ill-founded in objective terms since it is based on an
unrecognized structural misperception of demand. Hence, in general it cannot
be hoped that subjective perceptions will come to explain the true demand for
a commodity. Yet, there is a natural candidate for beliefs that are in ‘equilib-

rium’ with the objective world. Consider a single firm. The firm’s beliefs are in

2The technicalities supporting this statement can be found in Appendix D.



equilibrium if perceived optimal decisions set on the basis of this belief return
quantities that are no ground for a revision of beliefs. This is the concept of

individual conjectural equilibrium.

Definition 1.  An individual conjectural equilibrium for firm i is a belief p;
for which for all z; € X;
Bi(pi)(xi) = ;. d

Since the observed sales depend upon the decisions of all firms, it is quite spe-
cial for a single firm to be in individual conjectural equilibrium. Yet, if all firms
simultaneously are in individual conjectural equilibrium, none has a reason to
deviate unilaterally from its decision, since none believes it can improve its posi-
tion by doing so. This leads us to consider the following notion of an equilibrium

for our economy.

Definition 2. A conjectural equilibrium is a vector u = (u;);en of individual

conjectural equilibria. N
4. Learning dynamics

In the previous section we saw that firms have a mis-specified model of the true
state of the world and they are not aware of this false interpretation of their
environment. Nevertheless, given their mis-specification of the way the world
works, they are aware of the fact that they are not fully informed about the
true state of the world. This lack of information is modeled as a probability
distribution p;p (the initial belief) over the collection ©; of all worlds that firm
i deems possible. This belief reflects the amount of prior information firm ¢ has

concerning the true state of world.

Now since each firm is a profit maximizer and since it is aware of the fact that it
is not fully informed, it is eager to learn more about the true state of the world
from market experience. It does so in the following way. Given its prior belief
Wio firm 7 sets its (subjective) optimal decision p; (o). Once each firm has made
this move the objective demand density function establishes the quantities that

can actually be sold given the actions pg := p;(pi0)ien. This means that for



each firm i a quantity z;; is drawn from the probability measure that assigns

to each Borel set A C X; the probability

/ fi(xi | po)dv;.
A

This new information is ground for a revision of beliefs via Bayesian updating.

Repeating this procedure yields the following learning process.

At a given time 7 = 0,1, ..., each individual firm 4 has recorded a history of
consumer demands

hir = (Tit) =1

of finite length 7. This market information is the basis of the belief p;, (hi;) of
firm ¢ at time 7 concerning the state of the world. It then takes a new action
pi(pir (hir)) based on its current belief. Given the vector p, := (p;(thir (hir)))ien
of new decisions, firm i observes a new quantity z;,1 drawn from the probability

distribution that assigns to each Borel set A C X; the probability

/A filas | pr)du.

Subsequently beliefs are updated according to the Bayesian updating rule. For-

mally,
Pir41 (hir, Tirg1) = Bi(pir (hir))(@irs1)-

Remarks. Note that the decision on p;(uir(hi-)) the firm takes at time 7
is a function only of the beliefs at time 7, which in turn derive from the initial
beliefs ;o and the recorded history up until 7. Hence, it is sufficient to record

sequences of observed quantities, as the firms do.

So we have constructed a well-specified process in which beliefs lead to perceived
optimal decisions p,, which serve as endogenous signals to obtain new informa-
tion about the parameters of the distribution of objective demand. This new
information, in turn, leads to an update of beliefs and therefore, to new optimal

decisions p; 1. q

INFINITE HISTORIES AND BELIEFS

10



The above-described process driving the decision dynamics of the model thus
embodies both subjectively rational learning and subjectively rational actions.
In order to study the dynamic properties of this decision process, we make
use of martingale convergence theory. For that purpose, we need to construct
an underlying probability space on which we can identify martingales. This is
the space of all possible future developments of history a firm ¢ foresees at the

beginning of time. * Formally, let

be the space of all histories h;, of length 7. B(H;;) denotes the Borel o-algebra
on H;,. Further, let H; := Hfil X; be the space of infinite histories. A spe-
cific element of H; is denoted by h;. By B(H;) we denote the Borel o-algebra
generated by the product topology on H;.

To complete the probability space of all future histories, we need a measure \;
on B(H;). Formally this ); is defined inductively on histories of finite length,
combined with infinite extensions. We will now go through this construction
step by step. First note that it is in fact sufficient to specify the numbers
o0
Xi(D-x ] X
t=17+1
for each Borel set D, in H;;. Because, once these numbers are known, there is

a unique way to extend \; to B(H;). So we only need to specify the numbers

/\ZT(H Dt)a
t=1

where \;; is the probability measure induced by the beliefs of firm ¢ up till time

7. Once these numbers are known, A; follows straightforwardly. In fact,

N([IDex TT X0 :=x-(J] Po),
t=1 t=7+1 t=1

3We deviate somewhat from the structure generally chosen for this purpose, e.g. in Easley
and Kiefer (1988), though in essence the spaces are the same.

11



the probability that an infinite history starts with a history h;; in the set
[1;—, D:. In order to specify these numbers we naturally start with Ao (0) := 1.
Further, for 7 =1,

A (D1) :=/ / 9i(wi,0; | pi(pio))dpiodv;.
Dy JO;

In order to now define A;; 1 inductively, assume that A;; is known. Let h;; be a
history of length 7. Then the transition probability v;r+1(hir)(Dr11) of ending

up in D;41 C X; provided we have observed history h;, is equal to

Yira1 (hir)(Drs1) = /D /@ 0i(20,0 | pi(pir (hir ) dpi (i ).
1 i

The transition probability gives the subjective probability of an observation
Zir41 being in D,y given that the firm has already observed history h;, and
subsequently believes that ;- (h;;) is the appropriate probability distribution

over ©;. We then have
T+1

/\ir+1(H Dt) = / / ]lH:j—f D, d'yi7-+1(hi7-)dAiT
t=1 Hir /X B

= / 1]'[;':1Dt/ 1p, . dYir+1(hir)dNir
Hi, X

i

= /H I, p,Yir+1 (i) (Dry1)dNir

= / Yir+1(hir ) (Dry1)dAir.
[T7=; D:

The definition reflects how \;- 11 derives as the weighted ‘sum’ (i.e., the integral)
of all transition probabilities, where the weights are the probabilities ;- the firm
assigns to the observation that conditions the particular transition probability.
The first step easily follows from rewriting the indicator function on the product
set as a product of indicator functions. It is then observed that the inner integral
equals ir4+1(hir)(Dir+1). Finally, the indicator function is replaced by the

restricted integral.

Now notice that, since the above computation implies that for all sets D, in

B(H;;) we have

Air41(Dr x X;) = / Yir+1 (hir ) (Xi)dAir
D,

12



- / 1, dNir = \ir(D5),
D

-

the measures \;; are consistent. Therefore, by the Theorem of Kolmogorov,

there is a unique probability measure \; on B(H;) such that

(D X H X>_>\” (D).

t=7+1

for all Borel sets D, in B(H;;).

An appealing way to think about ); is as the probability firm i initially assigns
to observing the infinite history h;o € H;oo, based on its prior beliefs and its
awareness of the learning process it is about the engage in. An example may

help to clarify this.

Example 1. A stochastic variable X takes on one of two values, x1 or zs.
The probability of z; (and hence z2) depends on a parameter 6, that is either

6, or 6. Let Pr(zy,2o | 61) = (%,2) and Pr(zy,z2 | 62) = ( be the

373 2’2)

conditional probabilities of x; and x5, and suppose py = (i, %) are the prior
beliefs on (61, 6>). Over time, a sequence of observations (z;), .y molds beliefs.

We have
11

11 31

nE =) = Jogt+y 5=, =& =m)
12 3 1 13

nXr =) = Z'§+Z'§—ﬂ—/\1(X1—x2).

Suppose X; = x1. Application of Bayes rule now gives posterior beliefs

1.1 3.1 2 9
| (X1 =21) = (3 14 33 101 14 23 )= (= 7)-
i'3Ti2 175Ti2 1
Similarly, X; = x5 would return

12 3 1
1.2 3.1 4 9
N1|(X1—$2):(1 24 33 1771 24 23 1):(_7_)'
i5tia g3ty 1313

We then have the conditional transition probabilities

21 9 1 31
pe=nlXi=n) = 3t 3 6
2 2 9 1 35
e =nlXfi=n) = 3 276

13



41 9 1 35
X, = X, = - . = . ==
V(o =21 [ Xi = 25) 33713278
4 2 9 1 43

’)/Q(XQ—CU2|X1—ZL'2) = 1—3§+1—3§—%

The A-measure for the t = 2 paths is now constructed by combining the condi-
tional transition probabilities, as follows.

11 31 31
Xi=z,Xo=z) =X =21) Xo=z1 | X1 =21) = 21 66 = 144

Similarly we find

11 35 35
>\2(X1—CU1,X2—332) = ﬂ%—m
13 35 35
(= Xo=m) = o=y
13 43 43
>\2(X1_$2;X2—ZE2) = ﬂ,?—g—m

Finally, the posteriors follow from Bayes’ rule as

4 27
pr | (i =21, X0 =21) = (37, 37)
| (X —xX—x)—(§2—7)— | (X1 = 29,X2 =)
M2 1 =71, 2—2—35,35 = W2 1 ="T2,A2 =T
16 27
pa | (X1—$2,X2—I2)—(4—3,4—3)-
This concludes the example. N
5. Convergence of beliefs and actions

The prime interest in this paper is to know whether, given initial beliefs, the pro-
cess of Bayesian updating will eventually converge to a conjectural equilibrium.
That is, we ask whether learning will teach some invariable posterior ideas, or
whether perceptions, and thus decisions, will keep on changing for ever. In or-
der to address this question we will employ a convergence theorem concerning
martingales. However, before we can apply this theorem we need to show that,
on the probability space (H;, B(H;), \;) constructed above, beliefs indeed form

a martingale. To that end we first need to introduce some notation.

Consider an infinite history h; = (z;)f2, in H;. The finite history h;, :=

(xit)j—1 in H;, is called the truncation of h; till time 7. Further, let A be a

14



Borel set in B(0;). Consider the function u;r(A) from H; to IR that assigns to

an infinite history h; the real number

pir (A)(hi) == pir (hir)(A).

Secondly, notice that the above truncation of infinite histories to histories of
length 7 induces is a natural identification of each element D, of the o-algebra

B(H;;) with the set

D, x [ X
t=7+1
in B(H;). The subalgebra of B(H;) of sets of this form is denoted by B, (H;).

It is immediately clear that B,(H;) is a subset of B,yi(H;). Furthermore,
it is also not so hard to see that each function p;, (A) is B, (H;)-measurable
and bounded by K = 1. In other words, the sequence (u;r(A))S; provides

information *. We will show that it is even a martingale.

Theorem 1. Let A be a Borel set in B(©;). Then the sequence (u;r(A))X2

=1

of random wvariables is a martingale on w.r.t. \;.

Proof. Let A be a Borel set in B(©;) and let C' be a Borel set in B, (H;). We
have to check that

/ tir41 (A)(hi)dX; = / pir (A) (hy)dA;.
c c
Since C is an element of B, (H;) we know it can be written as
D, x HXi
t=1

for some Borel set D, in H;;. So, since \; agrees with X\;;y1 on Br11(H;),

Lemma 4 in Appendix A yields
/ pir 11 (A) (hi)dAs =
D, XHt:l X;
/ i1 (Pirs Tirg1) (A)dNir 1 =
D,— ><XZ'

/ / uir+1(hm$ir+1)(z4)/ 9i(Tir+1,05 | Pir)dptir (hir )dvidX;r .
D, JX; O;

4See Definition 17 in Appendix C.
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Plugging Bayes’ rule into this expression yields

/ / S 9i(@irs1,05 | pir)dpir (hir)
b, Jxi Jo, 9i(®ir+1,0i | pir)dpir (hir)

X/ 9i(Tiry1,0; | pir)dpsir (hir )dvidA,
0;

and the two integrals over ©; cancel out. Which reduces the above expression

to

/ / /gi(wi‘r-&-laei|pir)dﬂir(hir)d1/id>\ir.
D, JX; JA

To this expression we can apply the Theorem of Fubini and switch the order of

integration over X; and A. This yields

/ // 9i(Tir41,0i | pir)dvidpir (hir)dNir = / /]lGid,u‘ir(hiT)dAiT
p, JaJx, D, Ja
= [ it (A)ri,
D,

where the first equality results from the fact that g; is a density function with

respect to v;. This concludes the proof. <

This result may not be very surprising. It states that the nature of Bayesian
learning is such that a firm does not expect to change its beliefs in the future.
Of course, an actual observation will in general change beliefs, but based upon
current beliefs on future realizations of sales, a firm ex ante predicts it will not.
One way to interpret this is as Bayesian learning being sufficient, in that the

information present at times is used to the full.

Example 2. In our example, it is easy to see that beliefs have the martingale
property. The expectation E)(-) taken with respect to A is

11 2 13 4 1

Ex(p1(61)) = AT W B to(61),
and similarly

31 4 35 8 35 8 43 16 1

E 6 = — s — - . — _ e — —_— = -
M) = T 31 T 3 Tt 3 T 1 13 4

= p10(6h).
This concludes the example. N

With the result in hand, we can apply the martingale convergence theorem set
out in the Appendix. We can use this result to study the limit beliefs of agents,

and hence of decisions, as follows.

16



Take an infinite history h; in H;. Let p;r(h;) be the probability measure in
IP(©;) that assigns to each Borel set A of ©; the real number p;, (h;)(A).

Theorem 2. There exists a Borel set S of infinite histories in H; with
Ai-probability one on which the sequence (pir(h;))32, of probability measures

converges weakly to a probability measure p;oo(h;) for every history h; in S.

Proof.  We will first construct S. Since O; is compact and metric, we know
that there exists a countable basis of the topology. Let U be the collection of
finite intersections of elements of this basis. Take a fixed element U of /. By
Theorem 1, the sequence (p;r(U))92,; is a martingale. So, by Theorem 18 of
Appendix C there is a set S(U) of infinite histories in H; with \;(S(U)) = 1
such that (ur(h;)(U))22, converges for every history h; in S(U).

T=1
Now since U is the collection of finite intersections of a countable collection, it
is a countable set itself. This implies that
S:= () S)
Ueu

has \;-probability one, since it is a countable intersection of sets S(U), all having

Ai-probability one.

The construction of the limit probability measure can be done as follows. Take a
history h; in S. Since IP(©;) is sequentially compact by Theorems 12, 13 and 14
of Appendix B, we know that a subsequence of (u;-(h;))22, converges weakly to
some probability measure, say i (h;). We will show that the original sequence

converges weakly to this probability measure. To this end, notice that
wir (hi)(U) = pioo(hi)(U)  for al U e U

for the original sequence, since this sequence is convergent for every element
U of U by construction of S and the above holds for the weakly convergent
subsequence. Moreover, U/ is closed under finite intersections and each open set
is obviously a countable union of elements of U since U contains a countable

basis of the topology on ©; by construction. Hence, by Lemma 8, (- (h;))22

T=1
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converges weakly to p;oo(hi) and the proof is complete since h; was chosen

arbitrarily in S. 4

From now on we will automatically assume that we only consider histories h; in
S whenever we talk about p;(h;). Effectively, we only consider the domain of

lico- We can now prove the following result.

Theorem 3. The sequence p;(uir (h;))2, of actions \;-almost-surely con-

verges to the limit decision p;(lico(hi)).

Proof. By the continuity of p; established in Lemma 14 of Appendix D, we
know that the sequence p;(ui-(h;))$2; of optimal decisions given beliefs at time
T converges to p; (lico (h;)) whenever the sequence p;ir- (h;)22; of beliefs converges

t0 fico(hi). This though happens with \;-probability one by Theorem 2. <
6. The nature of limit beliefs and limit actions

We now know that in our model beliefs, and consequently decisions, converge
to limit beliefs and unique limit decisions respectively, for \;-almost-all devel-
opments of history. In this section we will derive some properties of the limit
beliefs and decisions. We will show that a limit belief is unique in the sense that,
roughly speaking, it only puts weight on worlds that generate the same proba-
bility distribution over demands. Furthermore we will show that it supports a

conjectural equilibrium.
UNIQUE LIMIT BELIEFS

For an analysis of the limit properties of beliefs and decisions, consider the
following construction. Let u; be a probability measure on ©;. Evidently O; is

a compact set with 1;(©;) = 1. So, the collection
K:={K C 0; | K is compact and u;(K) =1}
is not empty. Thus we can define the support of u; by

supp(ui) == ) K.
KeK
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The only question is whether this set has probability one according to u;. To
this end, notice that the topology on ©; has a countable basis, say B, since O;

is separable and metric. So,

supp(ui) =[] @i\ B.

BeB:p;(B)=0
Hence, u;(supp(u;)) = 1 by the subadditivity of u;.

A more colloquial definition of the support of a probability measure u; on ©; is
to say that it is the smallest compact subset K of ©; with u;(K) = 1. Anyhow,

it enables us to give the following

Definition 3. A belief u; does not distinguish if there exists a function

h; : X; = R, such that for any 6; in supp(p;) and for all z; in X;
gi(@i | pi(pi), 0:) = hi(z;).

This condition on p; states that every world #; in the support of u; generates
the same density function on X;. Consequently, no signal z; will give firm i a
reason to change its belief. A more interesting fact is that the converse of this

observation is also true. This is reflected in

Theorem 4. A belief y; does not distinguish if and only if
Bi(pi) (i) = p
holds for all z; in X;.

Proof.  Suppose that u; does not distinguish. Then we can take h; : X; — R,
such that

hi(zi) = gi(wi | pi(pi),0;) for all 6; € supp(u;)-

Consequently, for any z; € X;, and any Borel set A in ©; we have

N\ (s ~Jagi(i | pi(p),00)dp: [ hi(zi) dsupp u) disi

Bilpus)(m)(4) = o, gi(xi | pi(pa), 0a)dpi — fo, Pi(i) Isupp(u,) disi
_ hi(m)m(4)

© hi(z)pi(©:) pald).
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Suppose, on the other hand, that p; distinguishes. Then we know that there is
a pair (;,7; € supp(u;), and an z; € X; for which

gi(z} | pipa), Gi) > gi(x] | i), vi)-

So we can find two positive numbers U > L € IR and open neighborhoods

N(¢) o ¢ and N(v;) 3 ; such that for all 8; in N((;)

gi(x; | pi(p),0:) > U

and for all 6; in N(v;) gi(z} | pi(pi),0:) < L.

Now notice that u;(N(¢;)) > 0 since otherwise supp(p;) \ N(¢) would be a
compact set with p;-probability one that is strictly included in supp(u;). For
the same reason u;(N(7;)) > 0. This implies that

Bi(pi)(#5) (N () | Ivieo V1ot _ Upi(N(G) (N ()
Bi(na) (@) (N (1)) = [y Llosdui  Lps(N (%)) = (N (7))

So, at least Bi(pi) (7)) (N () # i N(G))
or Bi(pi)(x7) (N (7i)) # pi(N (7))
In any case, B;(u;)(zF) does not equal p; and the proof is complete. q

The interpretation of the proposition is straightforward. A belief u; does not
distinguish if and only if Bayesian updating has no effect on the belief for any
possible signal z;. This fact has important implications. Particularly since we
can show that the limit beliefs p; (h;) in fact are fixed points of the Bayesian

updating method as we will do now.

To this end, we need the following preliminary result. Let B be a countable
basis of the topology on X;. Let W be the collection of sample paths (x;)52, in
H; for which there is a basis element B in B such that {z; | x; € B} is finite.

We will show first that the following is true.
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Lemma 1. X\;(W)=0.

Proof. Let B be an element of B and let T be a natural number. Define
W(B,T) :={(xi);2y | zit ¢ B forallt > T}.

Note that this construction is such that W = (Jg 7 W(B,T). So, W is the
countable union of sets W (B,T). Hence, by the subadditivity of A; it suffices
to prove that \;(W(B,T)) = 0 for any choice of B and T.

To this end, notice that

T 0o
wB,T)=[[x:x [[ B
t=1 t=T+1

Now take some 7 > T. Denote the subset []/_, X; x [Ti=r41 B of the set
H;. of finite histories up till time 7 by W,. Then, for a history h;, in W, the

one-step transition probability vir41(hir (B) to B is
o) (B) = [ [ giCon, | pir ) (hir
BJo;
> / / edpir (hir)dv; = ev;(B).
BJo;

Here ¢ > 0 is chosen such that g;(x;,0; | pir) > € for all z; and 6;, which can be
done by the compactness of X;, the continuity of ¢g; and the assumption that
gi is larger than zero on X;. Consequently, v;r41(hir)(B¢) <1 —ev;(B). Using
this result, we get that

Ai‘r+1 (WTJrl) = / ’yiTJrl(hi‘r)(Bc)d)\iT S (]- - E’/l(B))AZT(WT)
Now backsubstitution yields

Nirg1 (Wri1) < (L —evy(B) T \p (Wr) = (1 —evy(B))™ T+

Further, since B is an open set, we know that v;(B) > 0 by assumption. So,

0 <1—ey;(B) <1 and hence
lim Xjri1 (Wrp1) = 0.
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Finally, since 0 < (W) < A\ (W) for all 7 > T by construction of A;, it
follows that A\;(W) = 0. q

The interpretation of this result is that firms expect a priori that the signals
they will receive are persistently exciting. That is, they expect to observe all
possible quantities infinitely many times over the course of their learning process,
so that they will be able to indeed extract sufficient information from them. The

sufficiency of the information is reflected in

Theorem 5.  There is a subset Z of S with \;-probability one such that the
belief i (h;) does not distinguish for any h; in Z.

Proof. Let S be as in Theorem 2 and let W be as in Lemma 1. Write
Z = S\ W. Clearly, \;(Z) = 1, since X\;(S) = 1 and A;(W) = 0. Now take
a history h; = (z;;)22, in Z. Then, since h; is an element of S we know that

Lico (h;) exists. We will show that it does not distinguish.

By Theorem 4 it suffices to show that B(uieo (hi))(2i) = tico (h;) for all z; in X;.

To this end, take an = € X;. Then, since h; = (z;;)?2, is not an element of

T=1
W, we know that it intersects each element of the basis B infinitely many times.
So, since X; is metric, this implies that we can find a subsequence (2 (7))7%;

of (7i;)72, such that z;4(-) — 2] as 7 — oo. Then, on one hand

B(ttia(r) (hia(r) (Tia(r)+1) = tia(r)+1 (Pia(r)+1) = Bia(r)+1(hi) = pioo (i)

in the weak topology since the above sequence is a subsequence of (u;(h;))%,

which converges to ;e (hi) in the weak topology by the choice of S. On the
other hand,

B(/'Lia(‘r) (hioz(r)))(wia(r)+1) - B(/'Lloo (hl)) (Q?:)

since B is continuous by Theorem 19 of Appendix D. Hence, since the space

IP(0;) is Hausdorff, piioo (i) = B(Hico (hi))(z*). <

Note that if we make the natural assumption that conjectured density functions

of demand are uniquely characterized by the value of 8;, the proposition implies
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that the posterior distribution converges to a point mass on one particular world

9i in ®z

Assumption 3. For any p; € P; we have g;(z; | pi, ;) = gi(z; | pi,y:) for all
x; € X; if and only if {; = ;.

For a world #; the measure that puts probability one on 6; is called a Dirac

measure or a point mass. We have the following result.

Corollary 1. Suppose we have Assumption 3. Then i (h;) is a Dirac

measure for every h; in Z.

Proof. Let h; be a history in Z. Then pis(h;) does not distinguish by
Theorem 5. So, for any pair of worlds (; and +; in the support of pic(h;) we
have that

gi(zi | pi(hi), G) = gi(zi | pi(hi), i)
for the unique limit decision p;(h;) := pi(fioo (hi)) in P; and all z; in X;. Further,
by Assumption 3, this can only be the case if {; = 7;. Hence, the support of

Lico (h;) is inevitably a singleton and ;0 (h;) is a Dirac measure. <
CONJECTURAL EQUILIBRIUM

Provided the structure of perceptions satisfies Assumptions 1-3 we have shown
that, with \;-probability one, firm i’s belief is a Dirac measure ;oo (h;). Conse-
quently, firm ¢’s limit decision is p;(h;) := p;(pico (hi)). Let 0;(h;) be the unique
world in the support of pin (h;). The pair (6;(h;), pi(h;)) then specifies the limit
stochastic view of the world of each firm. That is, each firm i perceives demand

to be distributed in the limit as

gi(zi | pi(hi), 0:(hs)).

We can now relate our results straightforwardly with our concept of equilibrium.

We say that convergence is almost sure if it is A\;-almost sure for every i.

Theorem 6. The learning process almost surely converges to a conjectural

equilibrium.
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Proof. By Theorem 5 we know that the belief p;n(h;) of firm i does not
distinguish on Z. So, by Theorem 4 it is a fixed point of the Bayes operator
and hence an individual conjectural equilibrium. Since this holds for every firm

these beliefs form a conjectural equilibrium. <
7. Objective Convergence to Conjectural Equilibrium

We now know that for almost all developments of history to which a firm initially
assigns non-zero probability, its beliefs on the parameters of conjectured market
demand, and thereby the decisions it takes, converge to a unique limit belief
that puts all mass on a single parameter of conjectured demand. For each firm,

the limit decision is an individual conjectural equilibrium.

Since these results hold for every individual firm 4, we are indeed close to conclu-
sions on the behaviour of the complete economy. However, since the conjectures
that firms entertain are structurally misspecified, their beliefs of possible devel-
opments of history need not necessarily match with the objective sequence of
market demand they face. Consequently, actual histories may unfold that have
Ai-probability zero for some firms. Firms facing such probability zero histories
will be unable to cope with it: Bayesian learning breaks down under such shock-
ing surprises, and convergence fails. In order to exclude the rise of such paths,

therefore, we need a condition that relates beliefs to objective probabilities.

The objective probability measure on the space of sample paths of the form
h; € H; is potentially influenced by the behaviour of all firms through the
objective demand functions f;(z; | p). In fact, for given initial beliefs ug of the
population, the unfolding sequence of individual actions that derives from the
firms’ sequential individual application of Bayes’ rule within their conjectured
demand structures, lays out a complete history of the world, when performed
in the interrelated objective demand structures. For given priors, the only
stochastic influence on the individually observed history h; is from f;(z; | pr)

for each 7.

The construction of objective probabilities on space H; requires an objective

24



probability measure p; on B(H;). Like A;, p; is formally defined inductively
on histories of finite length, combined with infinite extensions. For 7 = 0 we
naturally have p;o(#) = 1. In order to now define p; ;41 inductively, assume
that p;r is known. Then, given that we have a history h;, of length 7, we can
define the transition probability ;-1 (hir)(Dr41) for each Borel subset D41
of X; as

Sirt1(hir)(Dry1) = / fi(xi|pr)dv;.

D,y
Again we can define
T7+1
pir+1(H Dy) := / Oirt1(Phir ) (Dry1)dpir
t=1 X{—1 Dt
and apply the Theorem of Kolmogorov. We now come to a crucial relationship

between the objective and subjective probability measures p; and ;.

Assumption 4.  The probability measure p; is absolutely continuous with

respect to probability measure \; for every firm i.

In the interpretation that we have offered for the measures \; and p;, absolute
continuity of p; with respect to A; implies that no actual development is possible
that was not a priori foreseen as a possibility by the firm concerned. There is,
therefore, ’No Statistical Surprise’ on the side of firms. This may seem strong,
but is an assumption that it in fact often (implicitly) made in econometric
specifications. Moreover, it seems a natural condition necessary for beliefs to
settle down, as one can hardly expect beliefs to converge if all the time new and
unforeseen events stir up the learning process. We make it, and then have the

following prime result.
Theorem 7.  Beliefs almost surely converge to a conjectural equilibrium.

Proof. By Theorem 6 we have that the beliefs of each firm 4 converge to
an individual conjectural equilibrium A;-almost surely. Since p; is absolutely

continuous with respect to \;, this convergence is also p;-almost-surely. <

Again, since p; is continuous, we get
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Theorem 8.  The decision vector p, converges p;-almost surely to a conjec-

tural equilibrium decision vector pso.
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In the Appendices we collected most of the theoretical framework needed in
the paper. We did not try to make it completely self-contained. Nevertheless,
anyone with a basic knowledge of topology and measure theory should be able
to understand all of it. Mainly we tried to build the theory along the shortest
route possible. Most of the theory presented here can be found in some form
in a number of textbooks such as Billingsley (1968) or Kolomogorov and Fomin
(1970). Usually however you also need to have read at least half of these books
before you are able to understand the proofs of the theorems we need. There-
fore we decided to include these Appendices in order to give the reader the

opportunity to require the insights needed in the paper as quickly as possible.

Appendix A provides some basic definitions concerning probability measures as
well as a short treaty on regularity of probability measures and some immediate
consequences thereof. Appendix B treats the notion of weak convergence and
various alternative descriptions of its related topology. Appendix C is basically

a complete proof of (a simple version of) the martingale convergence theorem,
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taking only the Radon-Nikodym Theorem as given. The proofs in these first
three Appendices are mainly based on Billingsley (1968). Appendix D is com-
pletely geared towards the paper itself and provides a detailed and complete
proof of the continuity of the Bayes operator. Finally, Appendix E provides
proofs concerning the support of some of the probability measures used in the

paper. The latter two Appendices are based on Easley and Kiefer (1988).
APPENDIX A. PROBABILITY MEASURES

In this Appendix we provide some basic measure theoretic notions as well as
a treatment of regularity probability measures and some of its consequnces.
Before we can introduce the concept of (probability) measures, we need the

notion of an algebra. Suppose we have a (non-empty) set X.

Definition 4. (algebra) A collection X of subsets of X is called an algebra if:
(i) Per

(ii) if A € X then X \ A € R and

(i) if 44,..., A, are elements of X, then U ; 4; € N.

Conditions (ii) and (iii) automatically imply that finite intersections of elements

of N are also elements of N.

Definition 5. (o-algebra) An algebra X is called a o-algebra if it moreover
holds that:
(iv) if Ay, Aa,... is a countable sequence of elements of R, then U2, A; is also

an element of N.

A sequence Aj, As, ... is called mutually disjoint (m.d. for short) if the inter-
section of A; and A; is empty whenever i is not equal to j. Now let R be a

o-algebra on X. The central notion of measure theory is

Definition 6. (measure) A non-negative function

wX =R
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is called a measure if for every m.d. sequence Aq, As, ... in X it holds that

It goes without saying that the expression on the right hand side of the equality
is supposed to exist. The condition itself is called the o-additivity of w.

Definition 7. (probability measure) A measure p with p(X) =1 is called a

probability measure.

Suppose that we have a topology 7 on X. With this topology we can associate a
o-algebra on X in a very natural way. To see this, first notice that the collection
2% of all subsets of X is a o-algebra that contains 7. So, the collection V of all

o-algebra’s that contain 7 is not empty. This means that

B := NgepR
is a non-empty collection of subsets of X. Even better, it is a o-algebra that,
evident by construction, contains 7. We say that T generates this o-algebra.

Definition 8. (Borel o-algebra) Any o-algebra that is generated by a topol-

ogy is called a Borel o-algebra.
REGULARITY

Let B be the Borel o-algebra associated with a metric space (X,d) and let u be

a probability measure on B.

Definition 9. (regularity) We say that u is regular if for every Borel set A
in B and every real number € > 0 we can find a closed set F' and an open set U

such that F C AC U and p(U \ F) < e.

That is, a measure is regular if every Borel set can be enclosed by an open
set, and can itself enclose a closed set, such that the measure of the difference

between the sandwiching sets is arbitrarily close to zero.

Theorem 9.  Every probability measure u on B is reqular.
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Proof.  Let p be an arbitrary probability measure on ©. Let R defined as the
collection of sets A C X for which for every € > 0 there exist a closed set F' and

an open set U such that
FcAcCcUand u(U\F) <e.

Notice that p is regular if and only if B is a subset of R. Now, in order to show
that B is indeed a subset of R we make two steps. First of all we will show that
any closed set is an element of R. Then we will show that R is a o-algebra.
Since B is by definition the smallest o-algebra that contains all open, and thus
also all closed, sets these two facts together imply that B is a subset of R and

the proof is complete.

Step 1.  Take an arbitrary closed set A. We will show that it is an element of
R. To this end, take a real number £ > 0. We will construct F' and U. Since A
is closed we can simply take F' := A. In order to construct U, define for each

natural number n the open set
1
U, = {x € X |d(z,A) < E}

where d(z,A) := inf {d(z,a) | a € A}. It is readily seen that Uy D Uz D ....
Moreover, A = NS, U, since A is closed. Now define R := X \ Uy and

Ry, =Up_ \ U,
for n > 2. Then Ry, R,, ... are mutually disjoint since U; D Us D .... Moreover,

DRn:(X\Ul)U DUM\U =X\ N2, U, =X\ A

n=2

So, since all sets involved are clearly Borel sets and p is o-additive,

1—pu(A) = w(X \ A) = u(|J Rn) = Y n(Ry).

Hence, given the chosen € > 0, we can take a natural number N, such that
N
S wl(Ra) - (1= ()| <.
n=1
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Now define U := Un.. Then on one hand U is an open set that, by the definition
of U = Une, clearly contains A. On the other hand we get that

Ne
U Rn=(X\U)UU\U2)U...U(Un,—1 \Ux,) = X \ Un..
Hence,
wUNF) = |wU\F)|=|uU) = pn(F)] = |uUn,) — n(4)|

= |1 =pUn.) = (1 = p(A)] = X\ Un.) = (1 = p(4))|

Ne
U R) = (1= pu(A)] = |37 wlRa) = (1= u(A))] <2,

where the second equality holds since F' C U. This shows that A is indeed an

element of R.

Step 2. Now we will show that R is a o-algebra. The first requirement of the
definition of a g-algebra is easy to check since it follows from the previous step

that the empty set is an element of R.

Part A. Next we have to show that X \ A is an element of R for every element
A of R. We will even show a somewhat stronger statement, namely that A\ B

is an element of R for any two sets A and B in R.

So, take two sets A and B in R. Then we can take open sets U and V and
closed sets F' and G with

FCAcU and GCBCV

such that w(U\F)<e and p(V\G)<e.

Define H := F\V and W := U \ G. It is easy to check that W is open, H is
closed and H C A\ B C W. Finally, it is elementary to show that W \ H is a
subset, of the union of U \ F' and V' \ G. Hence,

p(WA\NH) <up(U\F)+u(V\G) <e+e=2e

So, at least we know now that X \ A is an element of R for every A in R.
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Part B. To get the third requirement, let Ay, Ao, ... be a sequence in R. We
have to show that A := U,A, is also an element of R. This we will also do
in two steps. In this first step we make the additional assumption that the
sequence is mutually disjoint. Now take a real number ¢ > 0. Since A, is an

element of R, we can take an open set U,, and a closed set F,, such that
1 n
F,CA,cU, and pU,\F, < <§> E.

Since the sequence Ay, As, ... is mutually disjoint, it is clear that the sequence

Fy, F5, ... is also mutually disjoint. So, by the o-additivity of y we know that

Z 1(Fy)

exists and we can take an NV such that

Take U := U,U, and F := UN_, F,. Clearly, U is open and F is closed, while
F Cc A cCU. Moreover, U \ F is a subset of the union of U; \ F1,Us \ Fy,...
together with Fyi1, FN42,.... This however implies that u(U \ F) is less than

or equal to

S WUNF)+ S u(F) = Z(%)”a be=2e

n=1 n=N+1 n=1
Part C. Now in the third part we will show that the union A of a sequence
Ay, Ay, ... of elements of R can be written as the union of a mutually disjoint
sequence By, Bs, ... of elements of R. Then from the above argument in Part

B we can conclude that A is indeed an element of R and the proof is complete.

To this end, define the sequence By, Bs, . .. as follows. Take By := A; and define
B,, recursively by

Bn = An \ anl-

Obviously the sequence is mutually disjoint. Furthermore, B; = A; is clearly

an element of R. So, since A, is also an element of R we know by our result
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in Part A that By = A, \ By is also an element of R. Hence, by iterating this

argument we get that every B,, is an element of R. <

The fact that a measure p on a metric space X is regular has some nice conse-

quences, especially when X is compact. We will discuss some of them.

For a set A in X and a real number ¢ > 0, write A. := {z € X | d(z,A4) < €}
and A® := {z € X | d(z, A) < e}. Further, when A = {z} we will write z. and
z¢ instead of {z}. and {z}°. The boundary A of A is the set

A :={re X | foreverye >0,z NA#0 and z. N A° # 0}.

The interior int(A) is defined as A \ 0A. Note that 0A is closed and int(A) is
open. Both sets are therefore elements of 5, no matter what A is. Now let u
be a probability measure on X. Then A is called p-continuous if u(6A) = 0,
that is if the boundary of A has p-probability zero. We have the following three

results.

Lemma 2. Let F be a closed set in X and let 7 > 0. There exists an € > 0
such that
p(F*) = p(F) <.

The same inequality automatically holds for all § < € and F. instead of F*.

Proof. Take an n > 0. Since F' is closed, regularity of y implies that there is
an open set U D F such that u(U\ F) < n. We will show that there is a natural

number n such that F'= is a subset of U.

So, suppose that this is not the case. Then we can find a point z,, in Fx \U
for every n. Since X is compact, we may assume w.l.0.g. that this sequence of
points has a limit, say x. Then, since d(x, F) = 0 and F is closed, x must be
an element of F. On the other, all z,, lie outside U and U is open. So, z is not

an element of U. This contradicts the assumption that F' is included in U. <«

Corollary 2.  Let A be a u-continuous Borel set in X and let n > 0. Then
for all sufficiently small € > 0,

1(A%) — p(A) <.
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Proof.  The corollary follows easily from the previous Lemma once we have
made the observations that, since A is p-continuous, u(A) = p(cld) and A° =
(clA)e. q

Lemma 3. Let A be a subset of X. The set of real numbers e > 0 for which

AF is not p-continuous is a countable set.

Proof. In order to prove this, take a set A in X. Notice that for £ > 0, the
set OA® is a subset of the set {z € X | d(z, A) = €}. So, the intersection of 9 A®

and 0A’ is empty as soon as ¢ is not equal to 4.

We have to show that there are at most countably many numbers £ > 0 for
which p(0A%) > 0. To this end, let n be a natural number. Suppose that
there are positive numbers €1,...,,42 such that g, # ¢ whenever k # [ and

moreover

< A®%) forallk=1,... 2.
n+1_u(8 ) for all k N R

Then by additivity of u and the fact mentioned above that the sets QA®* are

mutually disjoint,

n+2 n+2 n+2 1 n+ 2
1> OAF) = OA%*) > = >1
_u(kL:J1 ) ;u( )_;nle T

which is a contradiction. Consequently, there is a finite number of numbers

e > 0 with u(8A°) > 5, and therefore countably many numbers ¢ > 0 with

u(0A%) > 0. N

Finally in this section we will prove a technical statement concerning the link

between integrals over \; and those over beliefs p;, (hiT).

Lemma 4. Let ¢ be a bounded and B,11(H;)-measurable function. Then we

have

| ot

H;

= / /¢(hir,$ir+1)/ 9i(Zir410; | pir)Aptir (hiz)dvidir.
Hi,- Xi (")i
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Proof. Let D x D,y X H;’iﬂ_l X; be a Borel set in B;11(H;). Then

/ IpxD, i xTTg2, ., X dXi = / 1pxp, 1 dNir 41
H.

i i,r41

= Arna(Dx D)= / 15 - ir1 (hir) (Dy 1 )dir
H;

/ / 1pxp, 4, / 9i(Tiry1,0i | pir)dppir (hir )dvidir.

Hir J X; O;

The same equality now easily follows for an arbitrary integrable function. <
APPENDIX B. WEAK CONVERGENCE

In the text we discuss the convergence of beliefs over time. The type of con-
vergence we use is commonly known as weak convergence on the set IP(0) of
probability measures on ©. That is, we apply the following concept. Let C(0)
be the collection of continuous functions f:® — IR. Note that each of these
functions is bounded, since © is compact. With each f in C(0) and p € IP(0)

we can therefore associate a number

/@ 7 (®)dp,

the integral of f with respect to u. We will use the following terminology.

Definition 10. A sequence (i), of probability measures in IP(©) con-
verges weakly to a probability measure i, in IP(0) if for each f € C(O)

/@ £(6)dpun /@ £(6)dpico-

Notice that this is just a definition. It is clear that there is a topology in which
the above sequences do converge. What is not immediately clear is that there is
a topology in which these are the only convergent sequences. Nevertheless, we
will show that this is the case, and also provide a number of different descriptions

of this topology.
TOPOLOGY

One helpful interpretation of this notion of convergence of measures is in terms

of pointwise convergence of functionals 5. Let C'(©)* be the collection of func-

5A functional is a linear function from some vector space to the real numbers.
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tionals on © that are continuous with respect to the max-norm on C(©). The

max-norm | f|e of a function f in C(O) is defined as the real number

[floo == max{[f(0)] | 6 € O}.

The collection C'(©)* is called the (first) dual space of C(©). We can say that
a sequence (I,,)22, in C*(0O) converges pointwise to I € C*(0©) if for all points
f in the domain C(©)

L(f) = 1(f)-

Now let 1 be a probability measure in IP(©). With this probability measure we

can associate a functional I(u) in C'(0©)* by

I(u)(f) = /@ £(6)du.

Then, it is easily seen that (un)22, converges weakly to pio if and only if
(I(1n))$L, converges pointwise to I(uo). Thus weak convergence is linked to

the product topology on C(©)*.

Weak convergence of a sequence of probability measures is also related to the
concept of topological convergence. In order to see this connection, take a
sequence g, 1,2, ... of elements of a topological space (X, 7). We say that
the sequence converges to x in topology T if for every set U € 7 with x € U

there exists an N € IN such that x, € U for all n > N.

Now there is a topology on IP(0) such that the converging sequences according
to this topology coincide with the weakly converging sequences. This topology

is called the weak topology on IP(©) and it is denoted by W.

W is defined as the topology generated by the collection B of sets B C IP(0)
for which there is a probability measure p in IP(©) and a sequence fi, ..., fn of
continuous functions on © as well as a sequence &1, ...,&, of positive numbers

in IR such that

5={vere) \/@fkw)du—/@fk(o)du

< g forallk:l,...,n}.
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It is elementary to check that B is indeed a basis and that convergence in the

topology W generated by it coincides with weak convergence.

In terms of applicability a more convenient basis for W is the collection C
of subsets C of © for which there is a probability measure p on ©, a sequence
Ay, ..., A, of p-continuous Borel sets and a sequence €1, . . . , €, of positive num-

bers such that
C={v||pAr) —v(A)| <ep forallk=1,...,n}.

At least it is clear that C is indeed a basis and therefore generates some topology.
Before we show that the topology generated by C is indeed W we will first show
a result that is somewhat stronger than strictly necessary in the proof. We need

it in its full strength later though.

Lemma 5.  Let p be a probability measure on © and let f be a continuous
function on ©. Further suppose that we have a closed u-continuous set F and

a real number € > 0. Then the set B of probability measures v for which

/Ff(e)dv—/Ff(0)du‘<5

contains an element C of C with p in C.

Proof. =~ We may assume w.l.o.g. that 0 < f(#) < 1. Take a natural number
s in IN. Then, since f is continuous and F' is a closed u-continuous set, using
Lemma 3 we can construct closed p-continuous sets Gos D Gis D -+ D G4 in

F such that
i) f() > % — = for all § € Gy, and
(ii) f(0) <% foralle F\Gy, °.

Write Rps == Gis \ Gpy1,s for k=0,...,s—1 and Rss := Gss.

Then (5 - i) < [ fO)dn <Y (),
F k=0

S S
k=0

6Note that this condition implies Gos = F.
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while

s s2
k=0 k=0
L k+1 k1 1 1. <
= > 5 T ) Brs) = (S + ) > u(Rys)
k=0 k=0
1 1
= (—+ —=)u(F).
(- + )u(F)

Now take a natural number ¢ in IN such that (} + #%)u(F) < 3e. Then
Ry, ..., Ry is a finite number of p-continuous Borel sets. So, the collection

of probability measures v for which for all Ry

€

[V(Rit) — p(Rie)| < 20t +1)(t+2)

is an element of C.

Now take such a v. We will show that it is an element of the set B specified in

the Lemma as well. To this end, notice that

2(t + 1)(t + 2)

k=0 k=0
€ i c
= m;(k—}—l):mi(t—i—l)(t—l—%
_ £ 1
- 4_t > 18.

A similar argument holds for the lower bounds on the respective integrals, so

A

/ F(O)dv —/ f(e)du‘ <3<
F F 4
This enables us to show

Lemma 6.  The topology generated by C coincides with WV .

Proof. A. First we will show that the topology generated by C is a subset of

W. To see this, take a probability measure u, a p-continuous set Borel set A
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and a real number n > 0. It is sufficient to show that the set

C:={v||u(4) —v(4)| <n}
contains an element of the above basis B of W.

In order to show that, notice that A is a u-continuous Borel set. So, by Corollary
2, we know that there is an ¢ > 0 such that p(A°) — u(A) < $n. Further, the
function f:® — IR defined by

f(6) :=(1—ec1d(#,A) V0
is continuous. So, the collection of probability measures v such that

/@ F(O)dpi - /@ FO)dv

is an element of B. We will show that it is a subset of C. To this end, notice

<1
Y

that 14 < f < 14 on ©. Using this fact, together with the above inequalities

we get
v) < [ 1@< [ ot g
< (AT + %n < u(4) + %n + %n = u(A) +n.

The other inequality follows from the same line of reasoning applied to the

p-continuous set Borel set © \ A.

B. Conversely, suppose that we have a set of the form

v ‘ [ r@du— [ i

for some continuous f and € > 0. Then, since O is a closed p-continuous set, it

<e}

must contain an element of C by Lemma 5. N

Next we will show that the weak topology also coincides with the topology
induced by the following distance function on IP(©).

Let 1 and v be two elements of IP(0). Then the Prohorov distance p(u,v) is

defined as the infimum over those real numbers € > 0 for which every Borel set

39



A in O satisfies both

First we will establish
Theorem 10.  The Prohorov distance p is a metric on the set IP(©).

Proof.  The only condition whose proof is not straightforward is the assertion

that p(u,v) = 0 implies p = v.

So, assume that p(u,v) = 0. Take a closed set F' in ©. We will show that
w(F) = v(F). To this end, take a positive number 5 > 0. By Lemma 2 we know
that v(F*°) — v(F) < n for all sufficiently small £ > 0. Furthermore, since the

Prohorov distance between p and v equals zero, we also know that

w(F) <v(F.) +e¢

for all these € > 0. Together this yields
w(F) <v(F)+n+e

for all sufficiently small € > 0. Since n > 0 was also arbitrary we find that

w(F) < v(F). The converse inequality follows by symmetry.

So now we now that p and v coincide on closed sets. However, since p and v
are probability measures, this immediately implies that they coincide on open
sets as well. Then though they must coincide on all Borel sets by the regularity

of both measures. q

This implies that the Prohorov distance induces a Hausdorff topology, one that
we will call the Prohorov topology for the moment. In order to show that it

coincides with the weak topology we need

Lemma 7. Let o be a probability measure on © and let € > 0 be a real
number. There exists a finite partition A of © such that each A in A is a u-
continuous Borel set and diam(A) < e. Additionally, A can be constructed in

such a way that each A in A has a non-empty interior.
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Proof.  Notice that, by Lemma 3, we can choose for each # in © a positive
4(0) < %a such that 6;(9) is u-continuous. Since the collection of these sets cover
the compact set © we can find 6(1),...,6(n) such that the finite collection of
open sets By := 0(k)s(g(k)) still covers ©. Let A be the collection of non-empty

sets of the form

() BN [ ©\ B

kEK kg K
for some subset K of {1,...,n}. This is clearly a partition of ©. Furthermore,

since each element A of A is a finite intersection of u-continuous Borel sets
B, and their complements, it is easy to see that each element of A is also a
p-continuous Borel set. Finally, since By, ..., B, covers 0, each A in A must

be contained in at least one By, by non-emptiness of A.

The additional requirement of non-empty interior can be guaranteed as well.

The proof of this is in two parts. Let
AZ {Ala---,An}

be a finite partition of © such that diam(A) < e and moreover each A is
the intersection of an open set Uy and a closed set Gj.. Notice that the above
partition indeed has these properties. We will show how to construct a partition

whose elements have non-empty interior.

Let A be the (possibly empty) collection of sets A in A4 whose interior is not
empty. Let Ay,..., A, be an enumeration of /. Define
By =AU (] d(4)nA4
AN
and iteratively for each 2 < k <m
By = (A,c U J dn A) \ U B

A¢N i<k—1
We will show that By, ..., B,, satisfies all our requirements. It is immediate that
it is a sequence of mutually disjoint Borel sets. Furthermore, since A, C By C
cl(Ag) it is also immediate that each By has non-empty interior and diameter

less than or equal to €. So, we only have to show that By, ..., By, covers O.
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Suppose that there exists an element # in © that is not covered by any Bj.
Then it is certainly not an element of any A in N. So, since A covers O, it must
be an element of some A* ¢ A'. Now suppose that it is also an element of the

closure of some A; in A. Then it is also an element of

Aeu | (4 nA
AN

since it is specifically an element of cl(Ay) N A*. This though implies that it is
either an element of By or an element of Ui< w1 Bi- Both cases contradict the
assumption that x is not covered by any By. Hence, 8 is not an element of the

closure of any A in N.

Since © is compact and N is finite, this implies that there is an ¢ > 0 such that
. does not intersect any A in N. So, 6. must be covered by the elements in
A\ N. We will derive a contradiction. Let Aj,..., A; be an enumeration of
A\ N. The claim is that there is at least one A; that is dense some non-empty
open subset of f.. Suppose not. Then in particular A; is not dense on any
non-empty open subset of x.. So, there is a #(1) in 6. and an (1) > 0 such
that 6(1).(1) has an empty intersection with A;. This implies that 6(1).() is
covered by A,, ..., A,. Iteration of this argument eventually yields an open set
(t + 1).(441) that has empty intersection with all Ay in A\ N. However, since
0(t+1)-(¢41) is a subset of f. this means that it has an empty intersection with

every A in A which contradicts the assumption that 4 covers 0.

So we can take a non-empty open set V' and a set Ay = Uy N G}, in A whose
interior is empty such that Ay is dense on Vj. Then it is certainly true that
Gy, is dense on the non-empty (!) open set V' N Uy. This however implies that
V' NUy is a subset of Gy, since Gy, is closed. So, the non-empty open set V NUj
is a subset of Uy N Gy = A and Ay, has a non-empty interior. Contradiction.

Hence, 6 is an element of some By and By, ..., B, is a cover of O. <
Theorem 11.  The Prohorov topology coincides with the weak topology WW.

Proof. A. First we will show that the weak topology is a subset of the Prohorov
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topology. To this end, let u be a probability measure on ©. Further, let A be

a p-continuous Borel set in © and let € > 0. It is sufficient to show that
C:={v eP(0)||u(A) —v(A)] <n}

is an element of the Prohorov topology by Lemma 6. To do that, it is even
sufficient to show that there exists a real number § > 0 such that the collection

of probability measures v with p(u,v) < ¢ is a subset of C.

To this end, notice that A is assumed to be a p-continuous Borel set. So, by
Corollary 2, we know that there is an € > 0 such that (A7) < p(A) + 3n. We

can even take € such that € < %n. Then, for v with p(u,v) < ¢,

V(A) < u(A%) 2 < u(A) + g0+ 20 = u(A) + 0.

In order to get the converse inequality v(A) > u(A) —n we can simply apply

the above line of reasoning to the p-continuous Borel set X \ A.

B. Secondly we will show that the Prohorov topology is a subset of the weak
topology. To this end, take a probability measure p on ® and a real number
e > 0. By Lemma 6 it is sufficient to show that the collection of probability
measures v with Prohorov distance less than € to p contains an element of the

basis C of WW described above.

Take a partition A of @ as in Lemma 7. Then it is clear that the set
C:={v||v(A) —u(Ad)| < |A|te forall Aec A}

is an element of C. So we only need to show that all elements of C' have Prohorov

distance less than € to p.

In order to do this, take an element v of C'. Furthermore, let B be a Borel
set in @. Let S be the set of elements A of A for which B N A is not empty.
Then, since A is a cover of ©, B is a subset of S := [J,.5 A. Moreover, since
diam(A) < ¢ for all A, S is a subset of B.. Therefore we have

W(B) < u(S) =Y u(A) < Y (W(A) +]A7"e) <v(S) +& <v(B:) +e.
AeS Aes
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Similarly v(B) <v(S) < u(S)+e < u(B:)+e

which completes the proof. N
COMPACTNESS

We need to establish one more topological feature of IP(0), its compactness. We
will provide a complete and detailed proof along the lines of the direct Theorem
of Prohorov. However, we will bypass the embedding Theorem of Urysohn.
First we need some general theory. In this section (K,d) will be an arbitrary

complete metric space.

Definition 11. We say that K is sequentially compact if every sequence has

a convergent subsequence.

Definition 12.  Suppose we have a real number £ > 0. A finite e-cover of K

is a finite collection of open sets

with center point x; and radius € that cover K.
Still under the assumption that K is complete and metric we have

Theorem 12.  The following three statements are equivalent.
(1) K is compact
(2) K is sequentially compact and separable

(3) For every real number € > 0 there ezists a finite e-cover of K.
Proof. We will show the implications in the cycle (1) = (3) — (2) — (1).

(1) = (3).  Suppose that K is compact. Let € > 0. Then the collection of open
sets ze with z in K is obviously an open cover of K. Hence, by compactness, it

has a finite subcover and this subcover obviously is a finite e-cover of K.

(3) = (2). Suppose that (3) holds. Take a sequence (z,)5; in K. We have
to show that this sequence has a convergent subsequence. To this end, take a

natural number k. Then by assumption we can find points y(k1),...,y(ks(k))
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such that

y(kl)x,...,y(ks(k))

1
&

B

covers K. Now consider the following construction. Since

y(11)1,...,y(1s(1));

covers K, there must be a y(1¢(1)) such that y(1¢(1)); contains an infinite of
number points z,. Let z,(1) be the first. Furthermore, switch to a subsequence

that is completely contained in y(1¢£(1));. Since

y(21)1,... ,y(28(2))%

[N

covers K, there must be a y(2¢(2)) such that y(2t(2))% contains an infinite
number of points x,. Let z,(;) be the first one that has index a(2) > «a(1).
Notice that we can do that, since there is an infinite number of points x,, that
satisfy our conditions. Furthermore, switch to a subsequence that is completely

contained in y(2¢(2))1. Et cetera.

Thus we find a subsequence (T4 (n))nzy Of Z1,%2,. .. such that 24(ky, Ta(rt1)s - -
is completely contained in y(kt(k)) 1 . This however means that this subsequence

is Cauchy. Hence, since K is complete, it must be convergent.

Finally notice that the collection of points y(ks) for k in IN and 1 < s < s(k) is

a countable set that is dense in K. Hence, K is separable as well.

(2) = (1). Suppose that K is separable and sequentially compact. Let A be
some index set and let (Uy)aea be an open cover of K. Suppose it does not

have a finite subcover. We will derive a contradiction.

Since K is separable and metric, we know that there is a countable basis B
that generates the topology on K. Let By, Bs,... be an enumeration of those
elements of B that are contained in some U,. Since B is a basis, it is clear that
the above sequence also covers K. Furthermore it is clear that does not have a
finite subcover, since a finite subcover of By, Bs, ... easily translates to a finite

subcover of (Uy)aca-
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Now consider the following construction. Take a point x; in By(1) := B;. Now
notice that By;) does not cover K. Therefore the minimal natural number k
for which By, is not a subset of By exists. Denote this number by k(2) and
take a point

Ty € Bk(g) \Bk(l)-

Now By 1), Br(2) does not cover K either. So the minimal number £ for which
By is not a subset of By(1) U Byz) exists as well. Denote this number by k(3).
Automatically k(3) > k(2). Take a point

73 € Bys) \ Br1) U Bi)-

Et cetera. Thus we get a sequence x,Zs,... of points in K. By assumption
this sequence has a subsequence x,(1), 4(2),- - - that converges to some point,
say z, in K. Now, since By, Bs, ... covers K, we know that z is an element of

some B,,. Furthermore, B,, must be a subset of U:ﬂ Bi(ny by construction.
This though contradicts the fact that a tail of the sequence x,(1), Ta(2),--- 18

not contained in this union by construction. <

Switching back to the original setting, consider the metric space IP(©) equipped
with the Prohorov distance p. We will show its (sequential) compactness by

showing that it has a finite e-cover for each £ > 0. First of all we have
Theorem 13.  The metric space (IP(©), p) is complete.

Proof.  Let w1, us,-.. be a Cauchy sequence of probability measures on ©.
We will show that it converges to a probability measure p on ©. To this end,

let R be the collection of Borel sets A in © for which the sequence

pa(A), pa(A),. ..

converges. Define the function v: R — IR by

v(A) = lim p,(A)

n— o0

for all A in R. First in Part A we will show that R is a ring and that v is a

premeasure on R. So, v has a unique extension to the o-algebra generated by
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R. Then in Parts B and C we will show that the o-algebra generated by R

must be equal to the Borel g-algebra and the proof is complete.

A.  Using the o-additivity of the probability measures u, it is straightforward

to check that R is a ring and that v is a pre-measure on the ring R.

B. Let x be an element of . In this part we will show that the collection of
numbers € > 0 for which z¢ is not an element of R is countable 7. To this end

define the function f,:IR = IR by

Write D := diam(©). Then
(1) fa(e) =1for all e > D and f,(¢) =0 foralle <0
(2) f. is non-decreasing

(3) f. is cadlag by Lemma 2 and (2).

Now let ¢, g2, ... be an enumeration of the rational numbers. Since fi, fo,. ..

is a bounded sequence, there is a subsequence fi1, fi2,... such that

fuila), fiz(qr),---

converges. Similarly we can take a subsequence fo1, fa2, ... such that

fo1(q2), f22(q2), - - -

converges. Then it is not so hard to show that the subsequence (fir)52; con-
verges for all ¢; and we can define
fl@) == lim fer(q).
k—oo

This is obviously a non-decreasing function on the rational numbers, so we can

extend f to all real numbers by

f(r) :==inf{f(q) @ >r}.

"The argument used here is basically the proof of Helly’s Theorem tailored to our special
situation.
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It is elementary to check that f satisfies (1) till (3).

Now take a real number r such that f is continuous in r. We want to show that

£ = Jim_ fa(r)

n—o0

Let n > 0. First we will show that there exists an N such that

fm(r) < f(r) +n
for all m > N. First of all, notice that we can take a rational number g > r

such that f(q) < f(r) + 3. We can assume w.l.o.g. that § :=¢q —r < 7.

Next, having chosen § = ¢ — r, we can choose a natural number N; such that

P(lny o) < & for all m,n > Nj since the sequence 1, pz, . . . is Cauchy.

Further, write fo(n) := frx. Since fo(1)(q), fa(2)(@), - . - converges to f(g) we can
choose a natural number Ny such that f,,)(q) < f(q) + 7 for all n > Ny.

Now take n such that n > N; and n > N». Then, since a(n) > n, for all m > n,
fn() = (@) < pam) ((27)5) + 0 < pramy (277°) + 6
= fam(@+0<fl@)+2+6<fr)+2+2+d<f(r)+n.

So, if fi(r), f2(r),... does not converge to f(r), then there is a real number
& > 0 and a subsequence fz(1)(7), fg(2)(r), ... converging to f(r) — k. Take L
such that fzq)(r) < f(r) — %n for all (1) > L.

First of all, since f is assumed to be continuous in 7, we can choose a rational

number ¢ < r such that f(q) > f(r) — +x. We may assume that § :=r—gq < ix.

Choose N such that p(im, pn) < 6 for all m,n > N. Since fo1)(q), far2)(q), - -
converges to f(g) we know that we can take an a(n) > N such that f,(,)(q) >

flg) — %n. So, on one hand,
foz(n)(q) > f(q) - %K’ > f(?“) - %H'
On the other hand, take an [ such that 3(I) > N and 3(I) > L. Then

fam) (@) = Bam)(@?) < pgay((x9)s) + 6 < fauy(qg+0) +0

Fay(r) + 56 < f(r) — g6+ 55 =f(r) — 2

IN
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and we have a contradiction. Now since f is non-decreasing, f only has a

countable number of discontinuity points and the proof of Part B is complete.

C. We will show now that the o-algebra generated by R equals the Borel
o-algebra. Since R is a subset of the Borel g-algebra by definition, it suffices to

show that all closed sets are included in the o-algebra generated by R.

To this end, let F' be a closed subset of @. Take a natural number n. By Part
B we can choose for every 6 in © a real number 0 < €(f) < L such that 6=(9) is

an element of R. Now we can choose a finite cover

0;(91) 92(9,1)

of F' by compactness of F'. Then it is clear that

FcU, 6™ cr

while the middle set is an element of R since it is a finite union of elements of
R. Hence, F' can be written as a countable intersection of elements of R and
must therefore be an element of the o-algebra generated by R. This concludes

the proof. <
Secondly,
Theorem 14.  For every ¢ > 0, IP(©) has a finite e-cover.
Proof.  Take a real number € > 0. Take a partition
A={A, ..., A}

as in Lemma 7. Take points zj in int(Ay) and a natural number T such that

T—! < |A] te. These remain fixed throughout the proof.

Let 0(zy) denote the Dirac measure on zj. Let for each k a natural number

0 < t(k) < T be specified such that these numbers sum up to 7. Then

vi= 1 Yoy H(k)O (k)

is a probability measure. Furthermore, each Aj, is v-continuous, since v is a

convex combination of Dirac measures 6(z,,) that are constructed in such a
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way that all Ay, are §(z,,)-continuous. Therefore,
C(v) := {u||u(A) —v(A)| < |A] e forall Ac A}

is an element of the basis C and is therefore included in the set of probability
measures p that have Prohorov distance less than € to v by part B of the proof
of Theorem 11. It is also clear that there is only a finite number of such sets,

since the amount of probability measures of the form

is finite. We will show that the collection of these sets covers IP(©).
Take a probability measure u on ©. Now select for each 1 < k£ < n a natural
number 0 < s(k) < T such that

s(k)+1
< T

Now the numbers s(k) need not add up to T, but their sum is certainly less than
or equal to T. Moreover, it is easy to select numbers t(k) € {s(k),s(k) + 1}
in such a way that the numbers ¢(k) do add up to T, the only restriction here
being that A has at least two elements. Finally, it is elementary to check that

for v defined by
1 n
vi= g Zt(k)(s(a:k)
k=1
the probability measure p is an element of C(v). N
Now we have developed enough equipment to prove
Theorem 15. 1P(0O) is (sequentially) compact w.r.t. the weak topology.

Proof. By Theorem 13 we know that IP(0) is complete with respect to the
Prohorov distance. By Theorem 14 we know that it has a finite e-cover for every

e > 0. Hence, by Theorem 12, it is also (sequentially) compact. N

SEQUENTIAL THEOREMS
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There are also several ways to check whether or not a sequence (up)o2, of
probability measures converges weakly to some limit poo without directly using

the topological framework. In this section we will state some of them.

Theorem 16. (Portmanteau) Let pioo, b1, fi2,- .. be probability measures on
©. Then the following statements are equivalent.

(1) w1, p2, - - . converges weakly to piso

(2) limy, 00 i (A) = ptoo(A) for all poo-continuous Borel sets A

(3) limp o0 ftn(F) = phoo (F') for all closed poo-continuity sets F in ©.

Proof.  The equivalence of (1) and (2) follows from Lemma 6. We will show

(2) —(3) —(2) to establish (3).

The implication from (2) to (3) is evident, so we only have to prove the converse
implication. To that end, assume that we have a sequence pioo, i1, 42, --- Of

probability measures with

lim i, (F) = proo (F)

n—oo

for all closed poo-continuity sets F. Let A be an arbitrary p..-continuity set.

We will show that
lim fin(A4) = oo (A).

n—o0

In order to do that, take an arbitrary real number £ > 0. We will show that

there is a natural number N such that for all n > N

l1n(A) = poo(A)] < 2e.

To this end notice that the closure clA4 of A is a p-continuity set since dclA =

0A. So by our assumption there is a natural number N; such that
in(cl4) = oo (el A)] < 2

for all n > N;. Furthermore, notice that the real number uq(clA) is equal
t0 oo (A) since poo(OA) = 0. Therefore it is sufficient to show that there is a

natural number N, such that for all n > N»

|pn(clA) — pn(A)| <e.
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To this end, notice that dA is closed and, since 00A = 0A, a uso-continuity set

as well. So, by our assumption we know that
lim pn(0A) = peo(0A) = 0.
n—oo
This implies that there is an N5 such that for all n > N,
lun(0A4)] <e.

Therefore, since p,(A\ 0A) < pun(A) < pn(cl4) by monotonicity of u, and
tn(A\ OA) + pn(0A) = pun(clA) since clA = AU 0A, we get that

|ln(clA) = pn(A)] <e

for all n > N5. This concludes the proof. <

Another variant we use in the paper is the following Lemma. Since it is an
immediate consequence of Theorem 16 (3), its prrof is omitted. Suppose we
have a subset U of the Borel g-algebra B such that

(1) finite intersections of elements of U are also elements of U, and

(2) each open set in © is the countable union of elements of .

Lemma 8. A sequence (u,)5>, in IP(O©) converges weakly to a probability
measure loo 0n © whenever (1, (U))5L, converges to ji(U) for every element

U ofU.
APPENDIX C. MARTINGALE CONVERGENCE THEORY

In this section we work within a fixed probability space, denoted by (€, R, ).
We will assume that 2 is a compact metric space. This is not strictly needed
in the proofs, but it does make matters easier and it is the setup in which we
will apply the results discussed here anyway. Further, N is assumed to be a

o-algebra on 2 and A is a probability measure on N.
CONDITIONAL EXPECTATION

In this section we will briefly discuss the theory concerning the existence and

uniqueness of the conditional expected value of a random variable with respect
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to A. The basic theorem is the Radon-Nikodym theorem. We will discuss that
one first. Notice that we don’t need the assumption of o-finiteness since we

assume that every measure is finite.

First we need some definitions. Assume for the moment that we have a o-

subalgebra A of X &, Further suppose that we have two measures p and v on

A.

Definition 13. The measure v is said to be absolutely continuous with respect

to p if for every A in A with pu(A) = 0 we have v(A) = 0.

Definition 14. An A-measurable function f:Q — IR is a density of v with
respect to p if for all A in A

v(A) :/Afd,u.

Theorem 17. (Radon-Nikodym)  Suppose that the measure v is absolutely
continuous with respect to . Then v has a density with respect to . Moreover,

if f and g are two such densities, then f = g A-almost surely °.

Using this result we can show the existence of the conditional expected value of

a random variable 10,

Definition 15. A random variable X w.r.t. A is called integrable with

| X

respect to A if

is a real number.
Now let X be an integrable random variable w.r.t. .

Definition 16.  An expected value of X conditional on A is an A-measurable

and integrable function f on Q such that for all A in A

/A fdX\ = /A Xd.

8 A o-subalgebra of X is a subset of X that is a -algebra.

9By this we mean that the collection of worlds w where the equation is not true has -
probability one.

10A random variable (w.r.t. A) is simply a real-valued .A-measurable function on Q.
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EXISTENCE Existence of a conditional expected value of X on A can easily
be derived from the Radon-Nikodym theorem. In order to do that, assume for

the moment that X is non-negative. Then the formula
v(A) := / Xd\ forall Ae A
A

defines a measure on 4. Furthermore it is easy to check that this measure is
absolutely continuous w.r.t. the restriction of A to A. So, according to the
Radon-Nikodym theorem there exists an A-measurable function f such that for

every A in A

/AfdA:u(A) :/AXdA.

So, this function f is indeed an expected value of X conditional on A.

Now, for a general random variable, notice that the non-negative functions X

and X_ on Q defined by
X+ (w) :=max{X(w),0} and X_(w):=max{—X(w),0}

are both random variables w.r.t. A. So, there are expected values fi and f_ of
X4 and X_ resp. conditional on A. It is now easy to check that f:= fy — f_

is an expected value of X conditional on A. N

UNIQUENESS  Now the second part of the Radon-Nikodym states that two
different conditional expected values of X on A will be equal with probability
one according to A. This means that the collection of expected values of X
conditional on A is an equivalence class of the equivalence relation ~ on the

collection of random variables on A defined by
f~g ifandonlyif f=g¢g - almost surely.

This equivalence class is denoted by IE(X | A). Any element of the class IE(X |
A) is called a version of IE(X | A).

This class is obviously uniquely defined. Nevertheless we will slightly abuse

notation and also use the symbol IE(X | A) to indicate an element of this class.
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In that sense the conditional expected value is defined only modulo sets having

probability zero. <
The following simple observation will be used in the next section.

Lemma 9. Let X and Y be two RX-measurable and integrable functions such

that X <Y with A-probability one. Then
F(X | A) < E(Y | A)
with A-probability one.

MARTINGALES  Let (N)§2, be a sequence of o-subalgebras of 8, i.e. each o-
algebra N; is a subset of . Such a sequence is said to provide information if N;
is a subset of Ny for each ' > t. The expression ”providing information” refers
to the fact that in most applications the sequence of o-algebras is generated by
a sequence of partitions of 2 each partition reflecting the amount of information

available at that time.

Definition 17. A sequence (X;)$2, of random variables on  is said to

provide information if each X; is N;-measurable.

We will assume that such a sequence is uniformly bounded, i.e. there exists a

number K such that for all ¢ and w
|X¢(w)] < K.

This requirement, is of course only a technicality. We impose it because it makes
life easier and because the condition is satisfied anyway in the application we
use it for in the paper. Its main consequence is that each X; is integrable w.r.t.

A and that the expected value
E(X) = [ X))
Q
of | X¢| is also bounded by K.

Definition 18. A sequence (X;)f2, that provides information is called a
submartingale if

X <TE(Xpp1 | Ry)
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for all t. If we even have equality the sequence is called a martingale.

Notice that the submartingale condition states that X; is dominated by a version
of IE(X¢y1 | Nt). This means that the condition is equivalent to the requirement

that

/XtdAS/XtHdA
A A

should hold for all A in N;. Similarly, being a martingale is equivalent with
having equality in the displayed inequality. Of this formulation we will make

particular use.

A martingale converges A-almost surely. In other words, the probability that
the sequence will keep changing, e.g. cycle, is zero. The remaining part of this

section is devoted to a proof of this result.

So, let (X, N;)$2, be a submartingale. Let r be a real number. Define Z;: Q) —
IR by
Zi(w) := max{r, X;(w)}.

Lemma 10.  The sequence (Z:){2, is a submartingale.

Proof. It is immediately clear that each Z; is R;-measurable. Furthermore,
1Z(w)| = | mas{r, Xy(@)}] < max{|r, [Xp@)]} < max|r|, K}

which implies that the sequence has a uniform upper bound. So we only need

to check the submartingale condition. To this end notice that
Xiv1 £ Zip1 and 7 < Zyyg.
So, by Lemma 9,
E(Xip | ) <IE(Zppg [ Re) and r=TE(r | Ry) <IE(Zi | Ry)
with A-probability one. Hence,
Zy = max{r, X;} = max{r, [E(X;y1 | R¢)} S E(Zi11 | Ny)

with A-probability one. This concludes the proof. <
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From now on we will make the further assumption that we have a fixed world
w in © and a fixed natural number n. Only at the end of the proof these will

become variable again.

Notice that X;(w),..., X, (w) is a sequence of real numbers. Now take two real
numbers r and s with » < s. Define Tp(w) := 0, T} (w) := min{t > Tp | 2 <}
and recursively for k = 2,3, ...

min{t > T (w) | 2 <r} when k is odd
Tk (w) =
min{t > Ty (w) | z > s} when k is even

until we are supposed to take the minimum over the empty set ''. So, this
yields an increasing sequence To(w), T1(w), . . ., Tk (n)(w) (w) of natural numbers

smaller than or equal to n.

With this sequence we can associate a sequence of indicator functions. Formally,
for 1 <k <n,let Ij;(w):IN — {0,1} be defined by
1 when T} (w) < t < Ti(w)

Ie(w)(t) := {

0 else.

Strictly speaking, this is not a correct definition for k¥ > K(n)(w) since Ty (w)
is not defined for these values of k. We will interpret the definition for these
cases though as if the corresponding function Ij(w) is constantly equal to zero.
We don’t really need these functions I (w) for values k larger than K (n)(w),
but they do keep notation simple in the proof. We will also use the shorthand
notation

[I(t) =1 ={w e Q| Tp—1(w) <t < Tp(w)},

again with the convention that this is the empty set for values of k larger than

K(n)(w). Then we have
Lemma 11.  The set [I;(t) = 1] is N¢_1-measurable.

Proof. First notice that

[Te(t) =1] ={w | Th1(w) <t < Tip(w)} = {w | Th—1(w) < t}{w | Ti(w) < t}°.

NSince Ty, 1(w) < Ti(w) it is easy to see that {t | Th(w) < t < n} has at most n — k
elements. From this it easily follows that we can perform the recursive step at most n times.
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From this it easily follows that it is sufficient to show that the set
{w ] Th(w) = u}

is N;_j-measurable for each 0 < v < ¢t — 1. This is what we will show now by

induction to k.

Step 1. For k = 0. The set {w | To(w) = u} is either equal to Q (for u = 0)
or to the empty set (for all other values of u). In both cases though it is clearly

an element of N;_.

Step k+ 1, in case k+ 1 is odd.  Suppose we know that {w | T} (w) = u} is an
element of N;_; for all 0 < s <t — 1. Then

{w[Thp1(w) =u} =

u—1

U [{w | Th(w) = v} N {w | Xop1 (@) > 7,0y X1 () > 7, Xu(w) < r}]

v=0
is N;_;-measurable by the induction hypothesis and the fact that X,1,..., X,
are N;_j-measurable. Obviously we can do something similar in case k + 1 is

even. <

Let U, (w) be the largest even number k for which T} (w) exists. So,
Up(w) := max{0 < k < K(n) | K is even}.

This number is called the number of upcrossings over (r, s). It counts the number
of times the sequence goes from being less than or equal to r to being more than

or equal to s. We have the following result.

Lemma 12.  Gliven the above setting, we have
2
E(U,) < —— max{|r|, K}.
s—r
Proof. From Lemma 10 we already know that the sequence

Zy = max{r, X;}
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is a submartingale as well. Furthermore, it is easy to see that the random

variables Ty, K(n), It(t) and U, are identical for both (X;)$2; and (Z;)$2,. So,

Zn(w) — Zi(w) = i(Zt(w)—Ztl(w))

= Z ZIk(t)(w) (Zt(w) - Zt71(w))

t=2 k=1
where the second equality follows from the observation that for each 2 <t <n
exactly one element of the sequence I (¢)(w), ..., I,(t)(w) will be equal to one,
while the other elements are equal to zero. Now split the latter term, the double

summation, into the two terms

and Onw) =33 L(t)w) (Zt(w) - ZH(w)).

t=2 k=1

Notice that both E,, and O, are \-integrable since they are N-measurable and
bounded over . In other words, they both have an expected value. We will
treat the two terms separately for the moment and find lower bounds for their

respective expected values.

A.  Concerning the odd term O,,, notice that
EO,) = / On(w)dA
Q

- i i /ka(t)(w)(Zt(w) _Zt—l(CU))dA

t=2 k=1
kodd

n n
>3 (/ Zy(w)dA —/ Zt,l(w)dx).
=2 k=1 [T (t)=1] [Tk (t)=1]

=
k odd

However, since (Z;)2, is a submartingale, we get that

/ Zt(LU)dA - / thl(w)dk Z 0
(7 (8)=1] (7 (t)=1]

for each ¢t by Lemma 11. Hence, IE(O,,) > 0.
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B. Concerning the even term FE,, notice that

E,(w) = i i Ik(t)(w)(Zt(w) - thl(w))
= 3 S RO - 7))
K) o
= Y S RO (4 - Za )

k even

K(n)(w)
= Y (Znw®) - Zn_ @) 2 (s = nUn().

k even

Hence, IE(E,) > (s — r)E(U,).
C. Combined, this yields

(s = r)E(Un)

IN

E(E,) +E(0,) =E(Z, — Z))

A

E(|Z,]) + E(]Z1]) < 2max{|r|, K}

which completes the proof. N

We are now ready for the martingale convergence theorem. For each world w in

) for which the sequence (X;(w))2, converges, we define
Xoo(w) = tl'ggoXt(w).
Now we can prove

Theorem 18.  Let (X;,R):2, be a martingale. Then X ezists A-almost

surely.

Proof.  Suppose not. Let X, be the X-measurable function defined by

X.(w) :=lim tglgo Xt(w)

and similarly X*(w) :=lim sup X;(w).

t—o00
Note that both are well-defined since the martingale is assumed to have a uni-

form bound. Then from the assumption that X, is not almost everywhere
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defined, we have

Mwe Q| Xu(w) < X*(w)} > 0.

Take two rational numbers r < s. Let
B(r,s) ={weN| Xu(lw) <r<s< X" (w)}.

Since {w € Q| X« (w) < X*(w)} is the countable union of all such sets B(r, s),
from the subadditivity of A it follows that A(B(r*,s*)) > 0 for some r* and
s*. Then it is clear that on B(r*,s*) the number of upcrossings U, over the
interval (r*,s*) increases to infinity as n — oo. In particular this implies that

IE(Uy,) — oco. However, in Lemma 12 we have seen that IE(U,) is bounded by
2

s—r

max{|r|, K'}. Contradiction. <q
APPENDIX D. CONTINUITY OF THE BAYES OPERATOR

In this section we will show that the Bayes operator defined in section 3 is con-
tinuous. First of all, notice that the denominator in its definition is larger than
zero by Lemma 16. So, it is easy to see that B(u;)(z;) is a non-negative func-
tion on the Borel o-algebra on ©;. The o-additivity of B(u;)(z;) follows from
the o-additivity of the integral and finally it is obvious that B(u;)(x;)(0;) = 1.
So, B(u;)(x;) is indeed a probability measure, and the Bayes operator thus
only takes on values in IP(©). Back to our aim, its continuity, we first need to

establish some technicalities.

Lemma 13.  Suppose that we have a sequence (p;r)7, that converges to some

pi. Then there is a number K such that for all k > K, all z; and all 6;
|7i (Pir i) gi (@i | pir, 0:) — mi(pi, wi)gi(wi | pi, 03)]] <e-

Proof.  Suppose not. Then for every number n there is a number k(n) > n

and points z;(n) and 6;(n) such that

|7 (Pik(ny> Ti(n))gi(zi () | Pir(n), 0i(n)) — mi(pi, zi(n))gi(zi(n) | pi,0i(n))] > e.

Since both X; and ©; are compact we may assume w.l.o.g that the sequence

z;(n)S2, converges to a point x; and the sequence 6;(n)22; converges to a point

61



¢;. However, since k(n) > n by construction, we know that p;,) — p;. Hence,

taking limits yields
0 = |mi(pi, z:)gi (@i | pir i) — mi(pis i) gi(wi | pi, 0:)] > €
which is a contradiction. N
Lemma 14.  The function p;: TP(©;) — P; is continuous.
Proof. Part (i). First we will show that the expected payoff function
I P, x P(0;) - R

is continuous. Of course we suppose that P(©;) is endowed with the weak
topology. Notice that his topology is metrizable by Theorem 11. Therefore it
is sufficient to establish convergence of II; over sequences. So, take a sequence
(Pik, i) = (piy pi). We want to show that, given e > 0, there exists a natural
number K, such that for all k¥ > K,

|Ti (piks pir) — I (pi, pa)|| < 2e.
By the triangle inequality we only need to show that
ITL; (Pire, pein) — T (piy prin) | + L (i pein) — i (pi, i) | < 2e

for sufficiently large k. We will show that both terms on the left hand side of
the inequality sign are smaller than or equal to e for sufficiently large k. The

first term reads

T (Dike» prire) — T (s, prire) |
= ‘/ / [ﬂ'i(pikawi)gi(wiaei | pir) — mi(pis i) gi(wi, 6; |pi)]dViduik
o Jx;

/ / |7 (Pik» 3) 93 (24,05 | Pir) — T (Pis T3)gi (x4, 05 | ps)| dvidpss,.-
o /x,

IN

Now take K asin Lemma 13. Then, since v; and p;;, are all probability measures,

for each k > K the latter expression is smaller than or equal to

/ / ele, xx,; dvidp, = €.
e; JX;
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Furthermore, the second term reads

Because we assume that IP(0;) is endowed with the weak topology, it suffices

/ / 7i(pi, i) gi (x4, 0; | pi)dvidpi —/ / i (Pi> i) gi (24,05 | pi)dvidp;
91' XZ' C")i Xi

to show that
E,(6:) 32/ mi(pi, i) gi (23 | pi, 0:)dv;

is continuous in 6;. To that end, take a sequence 6;,, — 6;. Let ¢ > 0 be an

arbitrary real number. Let G, be a positive real number such that
|mi(pi, )| < Gp for all z; € X;.

This number exists because 7;(p;,z;) is continuous in z; and X; is compact.

Now take a natural number M), such that for all m > M,

3
lgi(zi | pi, Oim) — gi(zi | pi, 03)] < e
p
Then for all m > M,
IFo6in) = @1 = 1 [ mion) (s | isBin) = (o ) ]

IN

/ s (s, ) g @i | pis Bim) — gs(ai | iy 0:) v

i

Consequently, since v;(X;) =1,

£
1Fo(Oim) = Fo(0] < | Gy =<.
X; 4

Part (ii). Now let (u;x)72; be a sequence converging to p; in the weak topol-
ogy. Then, since P; is a compact metric space, every sequence has a converging
subsequence by Theorem 12. So, we may assume without loss of generality that

pi(pir) converges to some decision p;. We will now show that p? = p;(u;).

Since p;(uix) is the optimal decision given the belief p;1,, we know that for an

arbitrary p; in P; it holds that

0 (pi(pein ), pir) > Wi(ps, par)  for all k.
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So by the continuity of II; we get that
(P}, 1a) > Ti(pi, i),

and pj is an optimal action given belief y1; since p; was arbitrarily chosen. Hence,

pf = pi(u;) by Assumption 1. <
Furthermore, notice that g;: X; x P; x ©; — IR is also continuous. So, the
function h: X; x IP(0;) x ©; - IR by

h(zi, piy 0:) := gi(zi, pi(pi), 0:)

is continuous as well. Now suppose we have a sequence (i, ftin) oo, converging

to some limit (z;, u;). Define the functions f,, and f from ©; to IR by
fn(0i) == h(Tin, pin,0;) and  f(8;) == h(z;, s, 0;).

Now take an arbitrary € > 0. We then have the following lemma.

Lemma 15.  There ezists a natural number N in IN such that |fn — flloo < €

for all n > N.

(oo}

Proof.  Suppose not. Then there is a subsequence (fi)%2; of (fn)

o0

oy and a

sequence (0;,)7>, such that

| fr(Oir) — f(Bir)| > €.

for all £ € IN. Since ©; is compact we may assume that the sequence (0;1)3

converges to some limit 6;. Then for all £k € IN
e <|fe(Oir) — f(Oir)| = |P(@ik, pik, Oir) — h(zi, i, Oire)| -
However, since xz;; — x;, pir — w; and 8;; — 6;, the continuity of h yields
& < |h(zi, pi, 0:) — h(wi, pi, 65)|

so that we arrive at a contradiction. q

The lemma is instrumental in the proof of the following
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Theorem 19.  The Bayes operator is continuous.

Proof.  Suppose that (pin, 2in)32, converges to (u;, x;). It has to be shown
that

Bi(pin)(in) = Bi(pi) ()
as m goes to infinity. It is sufficient to establish (3) of Theorem 16. To this end,
let F' be a closed p;-continuous subset of ©;. What has to be shown is that

Bi(pin)(@in)(F) = Bi(pi)(2i)(F).

By the definition of the Bayes operator,
_ Jpgilwi | p(ui), 0:)dpi
Jo, 9i(xi | p(1:),0:)dp;

Now Lemma 16 in Appendix E guarantees that the denominator is strictly

Bi(pi) (@) (F)

positive. So, since ©; itself is an instance of a closed set F' whose boundary has
measure zero (the boundary of ©; is the empty set after all), it suffices in turn

to show that, given ¢ > 0,

/ng(xin | p(in), 0:)dpsin — /ng(xz) | p(pes), 0:)dp;| < 2e

for sufficiently large n. This is what we set out to do.

First, take N as in Lemma 15. Then for all n > N,

/F 0i(@in | D(jtin), 0:)djtin — /F gi(i | p(us), 0:)djiin

IN

/ (8 — F(0)] dyiin < / |Fu(6:) — F(82)] dpiin
F Q;

IN

/@ ”.fn - f”ood,uzn < Euin(@i) =Eg,

where the last inequality follows from the choice of n and N. So now we only

have to show that for all € > 0, there exists an NV € IN such that for all n > N

/F!]i(ﬂvi | p(ps),0;)dpsin — /ng(xz | p(es), 0:)dps| < e.

In other words, we have to show the existence of a natural number N such that

for every n > N, u;, is an element of the set of probability measures v; with

/F £(6:)dvi — /F £(6:)dps
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This set however contains an element C' of C with u; € C by Lemma 5. Hence,
such an N exists since (u;n)52, weakly converges to u; and C is a basis of the

weak topology by Lemma, 6. <q
APPENDIX E. SUFFICIENTLY WIDE WORLD VIEWS

For the Bayesian learning process to be well specified, we need that there are
no objectively possible events that are assigned probability zero at any time
by the firm. A Bayesian learner, namely, would simply not be able to deal
with such events. Formally it means that the denominator of the updating rule
might become zero. In this section we will show that Assumption 2 avoids this
problem. Although also several somewhat weaker conditions would guarantee
that the Bayesian learning process is well defined, we prefer to work with the
above condition because of its simplicity. And that it is indeed sufficient is

expressed in

Lemma 16.  Let p; be a belief in IP(©;) and suppose that Assumption 2 holds.
Let further a decision p;, a demand x;, and a Borel set A C ©; with pu;(A) >0
be given. Then

/Agi(ei | piswi)dp; > 0.

Proof. Take a decision p; and a demand z;. Then we know that g;(6; |
pi,x;) is a continuous function in the variable 6; since we even assumed that
g; is continuous in all three variables together. Moreover, ©; is compact. So,
there exists a real number € > 0 such that g¢;(0; | pi,z;) > € for all §; € 0,.

Consequently,

/gi(ﬂi | pi, x:)dp; > / ele,dp; =6/ lo;du; = epi(A)
A A A

which is positive since both e and p;(A) are positive by assumption. N
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