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1. Introduction

Let Γ be a countably based infinite profinite group and consider a filtration se-
ries S of Γ, i.e. a descending chain Γ = Γ0 ≥ Γ1 ≥ · · · of open normal subgroups 
Γi �o Γ with 

⋂
i Γi = 1. These open normal subgroups yield a base of neighbour-

hoods of the identity and induce a translation-invariant metric on Γ which is given 
by dS(x, y) = inf

{
|Γ : Γi|−1 | x ≡ y (mod Γi)

}
, for x, y ∈ Γ. This gives, for a subset 

U ⊆ Γ, the Hausdorff dimension hdimS
Γ(U) ∈ [0, 1] with respect to the filtration series S.

Recently there has been much interest concerning Hausdorff dimensions in profi-
nite groups, starting with the pioneering work of Abercrombie [1] and of Barnea and 
Shalev [3]; recent work includes for example [2,4,7–10,12–14,16,18]. Barnea and Shalev [3]
proved the following group-theoretic formula of the Hausdorff dimension with respect to S

of a closed subgroup H of Γ as a logarithmic density:

hdimS
Γ(H) = lim

i→∞

log|HΓi : Γi|
log|Γ : Γi|

,

where limi→∞ ai is the lower limit of a sequence (ai)i∈N in R.
As observed in [16], the Hausdorff dimension function depends on the choice of the 

filtration series S, hence for a pro-p group Γ, where p is a prime, it makes sense to restrict 
our attention to the five standard filtration series below:

• the p-power series P of Γ, which is given by

P : Γpi

= 〈xpi | x ∈ Γ〉, i ≥ 0;

• the iterated p-power series I of Γ, which is defined by

I : I0(Γ) = Γ, Ii(Γ) = Ii−1(Γ)p, for i ≥ 1;

• the lower p-series L (or lower p-central series) of Γ, which is given recursively by

L : P0(Γ) = Γ, Pi(Γ) = Pi−1(Γ)p [Pi−1(Γ),Γ] for i ≥ 1;

• the Frattini series F of Γ, which is given recursively by

F : Φ0(Γ) = Γ, Φi(Γ) = Φi−1(Γ)p [Φi−1(Γ),Φi−1(Γ)] for i ≥ 1;

• the (modular) dimension subgroup series D (or Jennings series or Zassenhaus series) 
of Γ, which is defined recursively by

D : D0(Γ) = Γ, Di(Γ) = D�i/p�(Γ)p
∏

[Dj(Γ), Di−j(Γ)] for i ≥ 1.

0≤j<i
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Recall for a pro-2 group Γ, the iterated 2-power series coincides with the Frattini series.
It is often of interest to study the collection of Hausdorff dimensions in a given profinite 

group Γ, which gives rise to the following definition: the Hausdorff spectrum of Γ, with 
respect to S, is

hspecS(Γ) = {hdimS
Γ(H) | H ≤c Γ} ⊆ [0, 1],

where H runs through all closed subgroups of Γ. There are two well-known restricted 
Hausdorff spectra: the normal Hausdorff spectrum and the finitely generated Hausdorff 
spectrum. Here the normal Hausdorff spectrum of Γ with respect to S is

hspecS�(Γ) = {hdimS
Γ(H) | H �c Γ};

and the finitely generated Hausdorff spectrum with respect to S is defined as

hspecSfg(Γ) = {hdimS
Γ(H) | H ≤c Γ and H finitely generated}.

Over the past few years, the study of the normal Hausdorff spectra of finitely generated 
pro-p groups has received quite a bit of attention. Indeed, the first examples of finitely 
generated pro-p groups with infinite normal Hausdorff spectra, with respect to the series 
P, I, L, F, D were constructed in [15], and the first family of finitely generated pro-p
groups G(p) with full normal Hausdorff spectra [0, 1] was constructed in [5] and [6].

Those pro-p groups G(p) are 2-generated extensions of an elementary abelian pro-p
group by the pro-p wreath product W = Cp 	̂ Zp = lim←−−k∈N Cp 	 Cpk . In this paper, we 
further investigate the pro-p groups G(p) by computing their finitely generated Hausdorff 
spectra. As with the normal Hausdorff spectra, computations of the finitely generated 
Hausdorff spectra have only recently appeared in the literature; see [11,12,15] and also 
[17, §4.7]. In particular, Fink [11] studied the finitely generated Hausdorff spectrum of 
certain groups acting on rooted trees. Given any α ∈ [0, 1], she constructed a group 
Gα (which is a branch group) with a finitely generated subgroup H ≤ Gα such that 
hdimGα

(H) = α; here the standard filtration series is given by the stabilisers of the 
layers in the tree. Fink further showed that hspecfg(Gα) ⊇ Lα∪([0, 1] ∩L), where L ⊆ Q

and Lα is a certain countable set of irrational numbers in the interval [0, α]. It is left 
open as to whether L could be chosen to equal Q.

In [12], it is shown that hspecSfg(G) = {0, 1} if either G is a finitely generated pro-p
group of positive rank gradient and S = F; or if G is a finitely generated non-abelian 
free pro-p group or a non-solvable Demushkin pro-p group when S is an iterated verbal 
filtration series; or if G is a finitely generated free pro-p group with S = D.

For the pro-p groups constructed in [15], the finitely generated Hausdorff spectra 
were also computed with respect to the standard filtration series, as well as the finitely 
generated Hausdorff spectra of W = Cp 	̂ Zp. For both families of groups, the finitely 
generated Hausdorff spectra consist of infinitely many rational numbers, and these ra-
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tional numbers are either all the p-adic rationals, or a linear transformation of the set of 
all p-adic rationals; see [15, Thm. 2.10 and the proof of Thm. 1.3].

We prove the following:

Theorem 1.1. For p a prime, the pro-p group G(p) satisfies

hspecSfg(G(p)) = {d2
/p2� | � ∈ N, 0 ≤ d ≤ p�

}
for S ∈ {L, D, P, I, F, M}.

Here M denotes a natural filtration series that arises from the construction of G(p); see 
Section 2 for details.

We note that for p = 2 the construction of the pro-2 group G(2) (which was given 
in [6]) in the above family is different from the odd prime case (given in [5]); see Section 2
for precise details.

Now to prove Theorem 1.1, we will focus solely on the pro-2 group G(2). This is 
because a more delicate treatment is required for G(2), as opposed to the odd p case. 
We will see that the proof of Theorem 1.1 for the pro-2 group G(2) simplifies in a 
straightforward manner for the pro-p groups G(p) for odd p, except for the iterated 
p-power series I, which requires a separate treatment. This will be done in Section 5.

As seen below, the computation of the finitely generated Hausdorff spectra in general 
requires a greater level of technical machinery, as opposed to the computation of the 
normal Hausdorff spectra. In particular, precise information about the terms of the 
filtration series is required. We also utilise the fact that small changes in the filtration 
series do not affect the value of the Hausdorff dimension. This enables us to compute the 
orders of relevant quotient groups more easily. Furthermore, as illustrated in the proof 
of Theorem 1.1, we introduce the idea of counting in what we call blocks.

In view of the main result of this paper and of other results concerning the finitely 
generated Hausdorff spectra of finitely generated pro-p groups, it is natural to ask the 
following:

Problem 1.2. Does there exist a finitely generated pro-p group with uncountable finitely 
generated Hausdorff spectra with respect to one or several of the five standard filtration 
series?

This question was already asked in [17, Prob. 17], but without reference to the standard 
filtration series.

Organisation. In Section 2 we recall the construction of the pro-p groups G(p), for p a 
prime, and we recall several properties of G(2). In Section 3, we determine, as precisely as 
possible, the 2-power series and the Frattini series of G(2), before computing in Section 4
the finitely generated Hausdorff spectra of G(2) with respect to M, L, D, P and F. 
Finally in Section 5, we compute the finitely generated Hausdorff spectrum of G(p), for 
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odd primes p, with respect to the iterated p-power series I, which completes the proof 
of Theorem 1.1.

Notation. All subgroups of profinite groups are generally taken to be closed subgroups. 
We use the notation ≤o and ≤c to denote open and closed subgroups respectively. 
Throughout, we use left-normed commutators, for example, [x, y, z] = [[x, y], z].

Acknowledgments. We thank the referee for suggesting improvements to the exposition 
of the paper.

2. The family of pro-p groups G(p)

Let p be any prime. For k ∈ N, let 〈ẋk〉 ∼= Cpk and 〈ẏk〉 ∼= Cp. Define

Wk = 〈ẏk〉 	 〈ẋk〉 ∼= Bk � 〈ẋk〉

where Bk =
∏pk−1

i=0 〈ẏ ẋ i
k

k 〉 ∼= C pk

p . The structural results for the finite wreath products Wk

transfer naturally to the inverse limit W ∼= lim←−−k
Wk which is the pro-p wreath product

W = 〈ẋ, ẏ〉 = B � 〈ẋ〉 ∼= Cp 	̂ Zp

with top group 〈ẋ〉 ∼= Zp and base group B = 〈ẏẋi | i ∈ Z〉 ∼= C ℵ0
2 . We refer the reader 

to [15, §2.4] for further results concerning the groups Wk and W .
Let F2 = 〈a, b〉 be the free pro-p group on two generators and let k ∈ N. There exists 

a closed normal subgroup R � F2, respectively Rk � F2, such that

F2/R ∼= W, respectively F2/Rk
∼= Wk = Cp 	 Cpk ,

with a corresponding to ẋ, respectively ẋk, and b corresponding to ẏ, respectively ẏk.
Let Y ≥ R be the closed normal subgroup of F2 such that Y/R is the pre-image of B

in F2/R, and let Yk ≥ Rk be the closed normal subgroup of F2 such that Yk/Rk is the 
pre-image of Bk in F2/Rk.

As mentioned in the introduction, the definition of the pro-p groups G(p), for p an 
odd prime, is slightly different from the case p = 2. For an odd prime p, the pro-p
group G := G(p) is defined as follows:

G = F2/N where N = [R, Y ]Y p.

For k ∈ N we set

Gk = F2/Nk where Nk = [Rk, Yk]Y p
k 〈apk〉F2 .

We denote by H and Z the closed normal subgroups of G corresponding to Y/N and 
R/N , and we denote by Hk and Zk the closed normal subgroups of Gk corresponding 
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to Yk/Nk and Rk/Nk. We denote the images of a, b in G, respectively in Gk, by x, y, 
respectively xk, yk, so that G = 〈x, y〉 and Gk = 〈xk, yk〉.

The groups Gk are finite for all k ∈ N and they form an inverse system giving 
lim←−−k

Gk = G. Furthermore we have [H, Z] = Hp = 1, respectively [Hk, Zk] = H p
k = 1.

For the case p = 2, we set

N = [R, Y ]R2,

respectively

Nk = [Rk, Yk]R 2
k 〈a2k〉F2 ,

and, for convenience we write G := G(2), and define

G = F2/N, respectively Gk = F2/Nk.

As in the odd prime case, we denote by H and Z the closed normal subgroups of 
G corresponding to Y/N and R/N , and we denote by Hk and Zk the closed normal 
subgroups of Gk corresponding to Yk/Nk and Rk/Nk. Likewise, we denote the images 
of a, b in G, respectively in Gk, by x, y, respectively xk, yk, so that G = 〈x, y〉 and 
Gk = 〈xk, yk〉.

Similarly, we have that the groups Gk are finite for all k ∈ N and that lim←−−k
Gk = G. 

Here we have [H, Z] = Z2 = 1, respectively [Hk, Zk] = Z 2
k = 1.

We recall the following definition from [15]: for a countably based infinite pro-p
group Γ, equipped with a filtration series S : Γ = Γ0 ≥ Γ1 ≥ · · · , and a closed sub-
group H ≤c Γ, we say that H has strong Hausdorff dimension in Γ with respect to S
if

hdimS
Γ(H) = lim

i→∞

logp|HΓi : Γi|
logp|Γ : Γi|

is given by a proper limit.
From [5] and [6], we have that for these pro-p groups G(p), for p a prime, the sub-

group Z has strong Hausdorff dimension 1 with respect to the filtration series M, L, D, 
P, I, and F. Here we recall that M : M0 ≥ M1 ≥ · · · stands for the natural filtration 
series of G(p) where each Mi is the subgroup of G(p) corresponding to Ni/N , and here 
N0 = F2.

Recall that for p = 2, we write G = G(2). As observed above, owing to the fact that 
the subgroup H of G is not of exponent 2, a more delicate treatment is required for G, 
as opposed to the odd p case. Also, as mentioned in the introduction, it turns out that 
the proof of the finitely generated Hausdorff spectra for the pro-2 group G, with respect 
to M, L, D, P, F, generalises immediately to the pro-p groups G(p), for odd primes p. 
Therefore for the rest of this section and the next two, we focus solely on the pro-2
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group G, and only in Section 5 do we explicitly consider the pro-p groups G(p), for odd 
p, for computing the finitely generated Hausdorff spectrum of G(p) with respect to the 
iterated p-power series I.

2.1. Properties of G

Here we recall some properties of the pro-2 group G from [6, §3].
For k ∈ N, the logarithmic order of Gk is

log2 |Gk| = k + 2k+1 +
(

2k

2

)
= k + 22k−1 + 2k+1 − 2k−1,

and the nilpotency class of Gk is 2k+1−1. Also we have that H 2
k = Zk and, consequently, 

that H2 = Z. In particular, the exponent of Hk, and of H, is 4.
Further

log2 |Z : γi(G) ∩ Z| =

⎧⎪⎪⎨⎪⎪⎩
i2 − 1

4 if i is odd,

i2

4 if i is even.

In the sequel, we need the following notation, which will be used frequently in the 
paper. We will denote c1 = y and ci = [y, x, i−1. . ., x] for i ∈ N≥2. For k ∈ N, we will use 
the same notation for the corresponding elements in the group Gk. Thus, we will also 
write c1 = yk and ci = [yk, xk, i−1. . ., xk] for every i ∈ N≥2, when working in the groups Gk. 
It will be clear from the context whether we mean G or Gk.

We further write zm,n = [cm, cn] for every m, n ∈ N, and we note the following 
descriptions for H and Z:

H = 〈ci | i ∈ N〉, and Z = 〈c 2
� , zm,n | �,m, n ∈ N with n < m〉;

also for every i ≥ 2,

γi(G) ∩ Z = 〈c 2
� , zm,n | � ≥ i, 1 ≤ n < m, m + n ≥ i〉.

We recall a useful result from [6, Cor. 3.5]:

Lemma 2.1. In the group G, for m, n ∈ N we have

[zm,n, x
2k

] = zm+2k,nzm,n+2kzm+2k,n+2k for every k ∈ N0.

Lastly, we recall terms of the lower 2-series and the dimension subgroup series of Gk

from [6, Prop. 3.10 and 3.11]: For k ∈ N, the length of the lower 2-series of Gk is 2k+1−1
and
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P0(Gk) = Gk,

P1(Gk) = 〈x 2
k , y

2
k 〉γ2(Gk),

and

Pi(Gk) =
{
〈x 2i

k , c 2
i 〉γi+1(Gk) for 2 ≤ i ≤ 2k−1,

〈x 2i

k 〉γi+1(Gk) for 2k−1 + 1 ≤ i ≤ 2k+1 − 1.

For k ∈ N, the length of the dimension subgroup series of Gk is 2k+1 and

Di(Gk) = 〈x 2l(i+1)

k 〉γ�(i+1)/2�(Gk)2γi+1(Gk) for 0 ≤ i ≤ 2k+1 − 1,

where l(i + 1) = �log2(i + 1)�.

3. The 2-power series and the Frattini series of G

Below we will precisely determine the terms G2k ∩Z and Φk(G). For convenience, we 
recall the following standard commutator identities.

Lemma 3.1. Let Γ = 〈a, b〉 be a group, let p be any prime, and let r ∈ N. For u, v ∈ Γ, 
let K(u, v) denote the normal closure in Γ of (i) all commutators in {u, v} of weight at 
least pr that have weight at least 2 in v, together with (ii) the pr−s+1th powers of all 
commutators in {u, v} of weight less than ps and of weight at least 2 in v for 1 ≤ s ≤ r. 
Then

• (ab)pr ≡K(a,b) a
pr

bp
r [b, a](

pr

2 )[b, a, a](
pr

3 ) · · · [b, a, pr−2. . . , a](
pr

pr−1)[b, a, pr−1. . . , a],
• [apr

, b] ≡K(a,[a,b]) [a, b]pr [a, b, a](
pr

2 ) · · · [a, b, a, pr−2. . . , a](
pr

pr−1)[a, b, a, pr−1. . . , a].

Next, for i, j, k ∈ N, we define the elements

wi,j,k = [zi+1,j , x, 2
k−2. . . , x][zi+2,j+1, x, 2

k−3. . . , x] · · · [zi+2k−2,j+2k−3, x]zi+2k−1,j+2k−2,

and it follows by routine commutator calculus that

[cicj , x, 2
k−1. . . , x] = [ci, x, 2

k−1. . . , x][cj , x, 2
k−1. . . , x]wi,j,k. (3.1)

For k ∈ N, we define the normal subgroup

Lk =
〈
wi,j,k, zm,n | i, j, n ∈ N, m ≥ 2k

〉G
.

The significance of this subgroup will become clear in the next lemma, for which we need 
the following notation: for every h ∈ H, and referring to Lemma 3.1, we define dk(h) ∈ Z

as
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(xh)2
k

= x2k

[h, x, 2k−1. . . , x]dk(h).

Additionally, for all k ∈ N let

Qk = 〈c 2
� | � ≥ 2k−1〉.

Lemma 3.2. In the pro-2 group G, for k ∈ N,

(i) for every z ∈ Z, we have

[z, x, 2k−1. . . , x] ∈ LkQk;

(ii) for h1, h2 ∈ H, we have

[h1h2, x, 2
k−1. . . , x] ≡ [h1, x, 2

k−1. . . , x][h2, x, 2
k−1. . . , x] (mod Lk);

(iii) for every h1, h2 ∈ H, we have

dk(h1h2) ≡ dk(h1)dk(h2) (mod Lk).

Proof. (i) Take first m, n ∈ N with m > n. Since Lk is normal in G, we have 
[wm−1,n,k, x] ∈ Lk. Note also that

[wm−1,n,k, x] = [zm,n, x, 2
k−1. . . , x]wm,n+1,kz

−1
m+2k−1,n+2k−1, (3.2)

so we obtain [zm,n, x, 2
k−1. . . , x] ∈ Lk.

From (3.1) we have

[c 2
i , x,

2k−1. . . , x] = [ci, x, 2
k−1. . . , x]2wi,i,k ∈ LkQk

for every i ∈ N, so part (i) follows.
(ii) For every h1, h2 ∈ H write

w(h1, h2)

= [[h1, x, h2], x, 2
k−2. . . , x][[h1, x, x, [h2, x]], x, 2k−3. . . , x] · · · [h1, x, 2

k−1. . . , x, [h2, x, 2
k−2. . . , x]],

so that w(ci, cj) = wi,j,k. It is easy to see that w is bilinear and that w(z, h) = w(h, z) = 1
for every h ∈ H and z ∈ Z. Moreover, routine computations give

[h1h2, x, 2
k−1. . . , x] = [h1, x, 2

k−1. . . , x][h2, x, 2
k−1. . . , x]w(h1, h2).

Since every element in H can be written in the form ci1 · · · cinz for some n ∈ N and 
z ∈ Z, the result follows.
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(iii) From Lemma 3.1 we easily deduce that for every h ∈ H and z ∈ Z we have 
dk(z) = 1 and dk(hz) = dk(h). Now, for h1, h2 ∈ H, we have

(xh2h1)2
k

= (xh2)2
k

[h1, xh2, 2
k−1. . . , xh2]dk(h1)

= x2k

[h2, x, 2
k−1. . . , x][h1, xh2, 2

k−1. . . , xh2]dk(h1)dk(h2).
(3.3)

Here, the first equality holds since dk(h1) is the product of, on the one hand, the element 
[h1, x, 2

k−1−1. . . , x]2, and, on the other hand, commutators of weight 2 in h1, so writing xh2
instead of x does not change the value of dk(h1). Routine computations give

[h1, xh2, 2
k−1. . . , xh2] = [h1, x, 2

k−1. . . , x]
2k−2∏
�=0

[h x
1 , x,

�. . ., x, h2, x, 2
k−2−�. . . , x].

For h1, h2 ∈ H we write ζ(h1, h2) =
∏2k−2

�=0 [h x
1 , x, �. . ., x, h2, x, 2

k−2−�. . . , x] ∈ Z, so that

(xh2h1)2
k

= x2k

[h2, x, 2
k−1. . . , x][h1, x, 2

k−1. . . , x]dk(h1)dk(h2)ζ(h1, h2).

This shows, by part (ii), that dk(h1h2) ≡ dk(h1)dk(h2)ζ(h1, h2) (mod Lk), so

ζ(h1, h2) ≡ ζ(h2, h1) (mod Lk), and ζ(h, h) ≡ 1 (mod Lk)

for every h ∈ H. Next, notice that

[ζ(ci, cj), x] =
2k−2∏
�=0

[cx
i , x,

�. . ., x, cj , x, 2
k−1−�. . . , x]

= [cx
i , cj , x,

2k−1. . . , x]ζ(ci+1, cj)([cx
i , x,

2k−1. . . , x, cj ])−1

≡ ζ(ci+1, cj) (mod Lk).

(3.4)

Since ζ(ci, ci) ∈ Lk and ζ(ci, cj) ≡ ζ(cj , ci) (mod Lk), this shows that ζ(ci, cj) ∈ Lk for 
every i, j ∈ N. This yields dk(h1h2) ≡ dk(h1)dk(h2) (mod Lk). �
Proposition 3.3. For k ∈ N, the pro-2 group G satisfies

G2k ∩ Z = LkQk.

Proof. For r ∈ Z and h ∈ H, we will be considering the expansion of (xrh)2k , always ac-
cording to Lemma 3.1. Hence for conciseness, we will refrain from mentioning Lemma 3.1
for the rest of the proof.

From [6, Proof of Thm. 4.4] we know that Qkγ2k+1(G) ≤ G2k . We now verify that 
Lk ≤ G2k . Indeed, first observe that, for m ≥ 2k and n ∈ N,
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x−2k

(xcm−2k+1)2
k ≡ cm (mod Z).

As G2k is normal in G, commutating with cn yields that we have zm,n ∈ G2k . Then we 
note that

Lk = 〈wi,i,k, zm,n | i, n ∈ N, m ≥ 2k〉G (3.5)

since, wi,i+1,k = 1 and, as in Lemma 2.1, we have

[wi,j,k, x] = wi+1,j,kwi,j+1,kwi+1,j+1,k

for every i, j ∈ N. Hence it suffices to show that wi,i,k ∈ G2k for i ∈ N. From (3.1), we 
have

x−2k

(xc 2
i )2

k

= [c 2
i , x,

2k−1. . . , x] = c 2
2k+i−1wi,i,k,

from which it follows that wi,i,k ∈ G2k , as required.
It remains to show that G2k ∩Z ≤ LkQk. Let g = (xrh)2k , with r ∈ Z and h ∈ H. We 

first show that g is, modulo LkQk, a product of elements of the form (x2m

h∗)s2k with 
m ∈ N0, s ∈ Z and h∗ ∈ H. To do this, we show that actually every element of the form 
((x2n

h1)th2)2
k , with h1, h2 ∈ H, n ∈ N0 and t odd, can be written in that way modulo 

LkQk. Let N ∈ N be such that h2 ∈ γN (G). If N ≥ 2k, then

((x2n

h1)th2)2
k

= (x2n

h1)t2
k

[h2, x, 2
k+n−2n
. . . , x]z,

with z ∈ γ2k+1(G) ∩Z ≤ LkQk. Write h∗ = [h2, x, 2
k+n−2n−2k+1. . . , x]. Since clearly dk(h∗) ∈

γ2k+1(G) ∩ Z, we have

[h2, x, 2
k+n−2n
. . . , x] = [h∗, x, 2

k−1. . . , x] ≡ x−2k

(xh∗)2
k

(mod LkQk).

Suppose now that N < 2k and that the assertion follows whenever h2 lies in γN+1(G). 
Let t∗ be such that tt∗ ≡ 1 (mod 4). Then,

((x2n

h1)th2)2
k

= ((x2n

h1)t(h t∗

2 )t)2
k

= ((x2n

h1h
t∗

2 )th3)2
k

,

with h3 ∈ γN+1(G), and the assertion follows by reverse induction.
Therefore, since G is the closure of the subgroup consisting of elements of the form 

xrh with r ∈ Z and h ∈ H, then G2k is the closure of the subgroup generated by elements 
of the form

g = (xh1)ε12
k · · · (xhn)εn2k

(x2m1
h∗

1)εn+12k · · · (x2mν
h∗
ν)εn+ν2k

with n, ν ∈ N0, mj ∈ N, hi, h∗
j ∈ H and εi ∈ {−1, 1}. Now, working modulo LkQk in 

the equivalences below, and noting that γ2k+1−2(G) ∩ Z ≤ LkQk, Lemma 3.2 gives
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g =
n∏

i=1
(xhi)εi2

k
ν∏

i=1
(x2mi

h∗
i )εn+i2k

≡
n∏

i=1
(x2k

[hi, x, 2
k−1. . . , x]dk(hi))εi

ν∏
i=1

(x2k+mi [h∗
i , x,

2k+mi−2mi. . . , x])εn+i

≡
n∏

i=1
xεi2k

[hεi
i , x,

2k−1. . . , x]dk(hεi
i )

ν∏
i=1

xεn+i2k+mi [h∗
i , x,

2k+mi−2mi. . . , x]εn+i · [ĥ, x, 2k−1. . . , x]

≡ xr2k

[hh∗, x, 2
k−1. . . , x]dk(h) (mod LkQk),

with r ∈ Z, h ∈ H and ĥ, h∗ ∈ γ2k(G). Since dk(h) ∈ Z, it follows that g ∈ Z if and 
only if r = 0 and hh∗ ∈ Z. Hence h ∈ γ2k(G)Z, which implies that dk(h) ∈ Lk. Further, 
from Lemma 3.2(i), we have [hh∗, x, 2

k−1. . . , x] ∈ LkQk. Therefore g ≡ 1 (mod LkQk), as 
desired. �

The next observation will be useful for the next section. Recall that for a filtration 
series S : G = S0 ≥ S1 ≥ · · · of G, we denote by S |Z the restriction S ∩Z : Z = S0 ∩Z ≥
S1 ∩ Z ≥ · · · .

Corollary 3.4. For the pro-2 group G and K ≤c Z, we have

hdimP|Z
Z (K) = hdimM|Z

Z (K).

Proof. For k ∈ N, it follows from the construction of Gk that

Mk ∩ Z = 〈c 2
� , zm,n | � > 2k, m > 2k, n ∈ N〉 ≤ G2k ∩ Z;

compare also [6, Lem. 3.3(ii)]. We claim that

LkQk = 〈wi,i,k, [zj+1,j , x, 2
k−1. . . , x], z2k,n, c

2
� | 1 ≤ i ≤ 2k−1,

1 ≤ j ≤ 2k−1 − 1, 1 ≤ n ≤ 2k − 1, 2k−1 ≤ � ≤ 2k〉(Mk ∩ Z).

Indeed, recall from (3.5) that

Lk = 〈wi,i,k, zm,n | i, n ∈ N, m ≥ 2k〉G,

and moreover, as seen in (3.2) we have

[wi,i,k, x] ≡ [zi+1,i, x, 2
k−1. . . , x]wi+1,i+1,k (mod γ2k+1(G) ∩ Z),

so the claim follows.
Now, by counting the number of generators, we have

log2 |LkQk : Mk ∩ Z| ≤ 2k+1 + 2k−1.
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Hence, by Proposition 3.3,

lim
k→∞

log2 |G2k ∩ Z : Mk ∩ Z|
log2 |Z : G2k ∩ Z| ≤ lim

k→∞

2k+1 + 2k−1

log2 |Z : G2k ∩ Z| = 0,

where the equality follows from the fact that log2 |Z : G2k ∩ Z| ≥ 2
(2k−1

2
)
; cf. [6, Proof 

of Thm. 4.4]. The result now follows from [16, Lem. 2.2]. �
We now determine the Frattini series F precisely. Recall that for i, j, � ∈ N,

wi,j,� = [zi+1,j , x, 2
�−2. . . , x][zi+2,j+1, x, 2

�−3. . . , x] · · · [zi+2�−2,j+2�−3, x]zi+2�−1,j+2�−2.

For j, � ∈ N, we write wj,� := wj,j,�. Then for k ∈ N, we define

Ψk = 〈[wj,�−1, x
2�

, x2�+1
, . . . , x2k−1

] | 2 ≤ � ≤ k, 2�−2 ≤ j ≤ 2�−1 − 1〉 ≤ γ2k−1(G),

Λk = 〈[zm,n, x
2�

, x2�+1
, . . . , x2k−1

] | 2 ≤ � ≤ k − 1, 2�−1 ≤ n < m < 2�〉 ≤ γ2k+1(G),

Θk = 〈zm,n, zm′,n′ | m,n ≥ 2k−1, m′ ≥ 2k, n′ ∈ N〉 ≥ γ2k+2k−1−1(G) ∩ 〈zi,j | i, j ∈ N〉.

Note that the zm,n in the presentation of Θk are precisely the elements that we would 
obtain if we let � = k in the presentation of Λk.

Proposition 3.5. For each k ∈ N, we have

Φk(G) = 〈x2k

, cj | j ≥ 2k〉QkΨkΛkΘk,

with log2 |Ψk| ≤ 2k−1 − 1 and, for k ≥ 2,

log2 |ΛkΘk : Θk| =
k−1∑
�=2

(2�−1 − 1)2�−2 = 22k−3 + 1
3 − 2k−2.

Proof. We proceed by induction on k, with the result for k = 1 being trivial. Thus, 
assume the result true for k − 1. As Φk(G) = Φk−1(G)2 and [Φk−1(G), Φk−1(G)] ≤
Φk−1(G)2, it is clear that

Φk(G) = 〈x2k〉Qk[Φk−1(G),Φk−1(G)].

From [6, Proof of Thm. 4.5] we have

〈cj | j ≥ 2k〉 ≤ Φk(G) and c2k−1 /∈ Φk(G),

and moreover, as Φk(G) � G, it follows that zm,n ∈ Φk(G) for all m ≥ 2k and n ∈ N. 
Also, since ci ∈ Φk−1(G) for all i ≥ 2k−1, we have zm,n ∈ Φk(G) for all m, n ≥ 2k−1. 
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This shows that Θk ≤ Φk(G). Thus, noting that 〈cj | j ≥ 2k〉QkΘk is normal in G, we 
claim that

[Φk−1(G),Φk−1(G)] ≡ ΨkΛk (mod 〈cj | j ≥ 2k〉QkΘk). (3.6)

Note that [ΨkΛk, x2k−1 ] ≤ γ2k+2k−1−1(G) ∩ 〈zi,j | i, j ∈ N〉 ≤ Θk, so ΨkΛk is normal 
in Φk−1(G) modulo Θk. Here for a subgroup A ≤ G, by [A, x2k−1 ] we mean 〈[a, x2k−1 ] |
a ∈ A〉. Thus, in order to prove (3.6), let us compute the commutators coming from 
[Qk−1, x2k−1 ], [Ψk−1, x2k−1 ], [Λk−1, x2k−1 ], [Θk−1, x2k−1 ], and [cj , x2k−1 ] for j ≥ 2k−1.

It is routine to see that

[Λk−1Θk−1, x
2k−1

] ≡ Λk (mod Θk) (3.7)

and that [Ψk−1, x2k−1 ] ⊆ Ψk. Observe also that for j ≥ 2k−1 we have [cj , x2k−1 ] =
c 2
j+2k−2cj+2k−1z with z ∈ Θk, c 2

j+2k−2 ∈ Qk and cj+2k−1 ∈ 〈c� | � ≥ 2k〉. Hence, it suffices 
to show that Ψk ≡ [Qk−1Ψk−1, x2k−1 ] (mod QkΘk). For this purpose, as seen in the 
proof of Proposition 3.3, notice that [c 2

j , x
2k−1 ] ≡ wj,k−1 (mod Qk), which lies in Ψk

if 2k−2 ≤ j ≤ 2k−1 − 1 and in Θk if j ≥ 2k−1. Moreover, this gives us precisely the 
generators of Ψk that are not in [Ψk−1, x2k−1 ], so the assertion follows.

Next, since Ψk = [Ψk−1, x2k−1 ]〈wj,k−1 | 2k−2 ≤ j ≤ 2k−1−1〉, the inductive hypothesis 
yields

|Ψk| ≤ |Ψk−1| + 2k−2 ≤ 2k−2 − 1 + 2k−2 = 2k−1 − 1,

as desired.
For the final statement, we show that the generators in the presentation of Λk generate 

it independently modulo Θk. Then, the result will follow just by counting the generators. 
In order to do so, define for every s ∈ N the subgroup

Θk,s = 〈zm,n, zm′,n′ | m,n ≥ s, m′ ≥ 2k〉Θk.

Clearly, Θk,s = Θk for every s ≥ 2k−1. Note by Lemma 2.1 that the generators 
[zm,n, x2�

, x2�+1
, . . . , x2k−1 ] lie in Θk,s for every 1 ≤ s ≤ n < m while

[zm,n, x
2�

, x2�+1
, . . . , x2k−1

] ≡ zm+2�+···+2k−1,n (mod Θk,n+1). (3.8)

Now, observe that [z3,2, x22
, x23

, . . . , x2k−1 ] is the unique generator in the presentation 
of Λk with n = 2. This is, hence, the unique generator not lying in Θk,3, and hence 
it is independent from all the others. By induction, suppose that for all n < s with 
s > 3, the generators [zm,n, x2�

, x2�+1
, . . . , x2k−1 ] of Λk are independent. Take then the 

generators with n = s and note by (3.8) that they are all independent modulo Θk,s+1. 
They are hence also independent from all the other previously considered generators, 
and the assertion follows. �
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4. The finitely generated Hausdorff spectra of G

In this section, we prove the main result for the case p = 2. As the proof is quite 
technical, we outline the general approach here. First we perform three reduction steps. 
One, we observe that, for a closed subgroup K of G, the Hausdorff dimension of K in G is 
unchanged by adding or removing a finite number of generators in Z to K; see Lemma 4.1. 
Two, for a finitely generated closed subgroup K of G, we observe that hdimS

G(K) =
hdimS|Z

Z (K ∩ Z) and hence it suffices to work within the subgroup Z; see Corollary 4.3. 
Three, with the second observation, we make use of the fact that the restrictions to Z of 
the filtration series P and M are essentially the same (see Corollary 3.4), hence it suffices 
to consider the four filtration series L, D, M and F. As mentioned in the introduction, 
in the final part of the proof, which boils down to a counting argument, we introduce 
the idea of counting in blocks, which simplifies computations.

Lemma 4.1. Let L be a closed subgroup of G and S ∈ {L, D, P, F, M}. Then, for every 
n ∈ N and z1, . . . , zn ∈ Z, we have

hdimS
G(L) = hdimS

G(L〈z1, . . . , zn〉G).

Proof. Write K = L〈z1, . . . , zn〉G and A = 〈z1, . . . , zn〉G, and note that K = LA. Now, 
recalling that we write S : G = S0 ≥ S1 ≥ · · · for a filtration series of G, we have

|LASi : Si| ≤ |LSi : Si| · |ASi : Si|

and by [16, Lem. 5.3],

hdimS
G(A) = hdimS

G(Z) · hdimS|Z
Z (A).

Thus, using the proof of [5, Lem. 2.3], it follows that hdimS
G(A) = 0 has strong Hausdorff 

dimension. Therefore

hdimS
G(K) = hdimS

G(LA) ≤ hdimS
G(L) + hdimS

G(A) ≤ hdimS
G(L),

and since L ≤ K, equality follows. �
Let S : G = S0 ≥ S1 ≥ · · · be a filtration series of G. For k ∈ N, we define

nk = min{i ∈ N | γi(G) ≤ Sk}.

From [6] we know that if S ∈ {L, D} then nk = k+ 1, if S = M then nk = 2k+1, if S = P

then nk ≤ 2k+1, and if S = F then nk ≤ 2k + 2k−1 − 1. Further we have that

lim nk = 0 (4.1)

k→∞ log2 |Z : Sk ∩ Z|
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for every S ∈ {L, D, P, F, M}.
On the other hand, for every k ∈ N we also define

αk = min{i ∈ N | x2i ∈ Sk}.

It is easy to see that if S ∈ {L, P, F, M} then we have αk = k, and if S = D then 
αk = �log2(k + 1)�.

This next lemma is key to obtaining the second reduction step mentioned above.

Lemma 4.2. Let S ∈ {L, D, P, M, F} and let K = 〈x2�

h, h1, . . . , hd〉 be a finitely generated 
closed subgroup of G, for some �, d ∈ N0 and h, h1, . . . , hd ∈ H. Then,

lim
i→∞

log2 |KSi ∩ Z : (K ∩ Z)(Si ∩ Z)|
log2 |Z : Si ∩ Z| = 0.

Proof. For every i ∈ N, let ni and αi be defined as above. For S ∈ {L, D, P, M, F}, it 
follows from the previous sections that Si = 〈x2αi

, Si,H〉 with Si,H = Si ∩H. Note also 

that αi
i→∞−−−→ ∞. It suffices to show that for every i such that αi ≥ � we have

|KSi ∩ Z : (K ∩ Z)(Si ∩ Z)| ≤ 2(2d+2)ni+1.

Indeed, by (4.1) we then have

lim
i→∞

log2 |KSi ∩ Z : (K ∩ Z)(Si ∩ Z)|
log2 |Z : Si ∩ Z| ≤ lim

i→∞

(2d + 2)ni + 1
log2 |Z : Si ∩ Z| = 0,

as desired.
So we fix such an i and write for simplicity SH = Si,H . In the following, we will be 

working modulo (K ∩ Z)(Si ∩ Z), hence for simplicity we set (K ∩ Z)(Si ∩ Z) = 1. We 
have

KSi = 〈x2�

h, h1, . . . , hd, x
2αi 〉SH .

Observe, however, that

〈x2�

h, x2αi 〉 = 〈x2�

h, h0〉, (4.2)

where h0 = x2αi (x2�

h)−2αi−� ∈ H, and it can be seen, by Lemma 3.1 and since αi−� ≥ 0, 
that h0 ∈ γ2αi−2�+1(G)Z. So

KSi = 〈x2�

h, h0, h1, . . . , hd〉SH .

Now, for every 0 ≤ n ≤ d and every m ∈ N0 define hn,m = [hn, x2�

h, m. . ., x2�

h], and let
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KH = 〈hn,m | 0 ≤ n ≤ d, m ∈ N0〉.

Clearly we have KSi = 〈x2�

h〉KHSH , and observe that KH is normalised by x2�

h. 
Therefore, as SH is normal in G, every element g of KSi can be written as

g = (x2�

h)βks

with β ∈ Z2, k ∈ KH and s ∈ SH . Moreover, if g ∈ KSi ∩ Z then we must have β = 0, 
so that g = ks, which we will assume for the rest of the proof.

We proceed by considering two cases: when one of k, s is in Z, and when both k, s /∈ Z. 
If k ∈ Z, then s = k−1g ∈ Si ∩ Z = 1, and so g = k ∈ KH ∩ Z. Similarly, if s ∈ Z then 
s = 1 and so g = k ∈ KH ∩ Z. We claim that

KH ∩ Z = 〈h 2
0,m, [h0, hn,m] | m ∈ N0, 1 ≤ n ≤ d〉.

First, observe that c2αi+1 ∈ SiZ. Indeed, this is clear for S ∈ {L, D}; for S = P we 
have αi = i and (xy)2i ≡ x2i

y2i

c2i (mod Z), so in particular c2i+1 ∈ SiZ, and, since 
G2i ≤ Φi(G), we also have c2i+1 ∈ SiZ if S = F; and for S = M this follows from [15, 
Prop. 2.6(1)]. In particular, this implies that γ2αi+1(G) ≤ SiZ ∩H.

Thus, since Lemma 3.1 yields h0,m ∈ γ2αi+1(G)Z for every m ∈ N, it follows that

[h0,m, H] ≤ [γ2αi+1(G)Z,H] ≤ [SiZ ∩H,H] ≤ Si ∩ Z = 1.

Note also that [hn,m, hr,s] ∈ K ∩ Z = 1 for all 1 ≤ n, r ≤ d and m, s ∈ N0. Finally, we 
have h 2

n,m ∈ K ∩ Z = 1 for all 1 ≤ n ≤ d and m ∈ N0, so the claim follows.
Now, since γni

(G) ∩ Z ≤ Si ∩ Z = 1, we have

|〈h 2
0,m, [h0, hn,m] | m ∈ N0, 1 ≤ n ≤ d〉| ≤ 2(d+1)ni .

Suppose now k, s /∈ Z. If there exists another element t ∈ SH such that kt ∈ Z, then

s−1t = (ks)−1kt ∈ Si ∩ Z = 1,

so s = t. Thus, for each k ∈ KH there exists at most one element z in Z such that ks = z

for some s ∈ SH . In particular, this shows that there are at most |KH | elements g = ks

in Z such that k, s /∈ Z. Now, since the nilpotency class of KH is 2, it is easy to see that 
KH ∩ Z = Φ(KH), and so

|KH | = |KH : Φ(KH)||Φ(KH)| ≤ 2(d+1)ni2(d+1)ni = 2(2d+2)ni .

Finally, summing up, we get that

|KSi ∩ Z| ≤ 2(d+1)ni + 2(2d+2)ni ≤ 2(2d+2)ni+1,

as desired. �



I. de las Heras, A. Thillaisundaram / Journal of Algebra 606 (2022) 266–297 283
Corollary 4.3. Let S ∈ {L, D, P, M, F} and let K = 〈x2�

h, h1, . . . , hd〉 be a finitely gener-
ated closed subgroup of G, for some �, d ∈ N0 and h, h1, . . . , hd ∈ H. Then

hdimS
G(K) = hdimS|Z

Z (K ∩ Z).

Proof. Recall, from the proof of [15, Thm. 2.10], that KZ/Z has strong Hausdorff di-
mension in W . Hence, as Z has strong Hausdorff dimension in G, it follows from [15, 
Lem. 2.2] that

hdimS
G(K) = lim

k→∞

log2|KSk ∩ Z : Sk ∩ Z|
log2|Z : Sk ∩ Z| ,

where S is given by S : G = S0 ≥ S1 ≥ · · · . Moreover, by Lemma 4.2 we have

lim
k→∞

log2 |KSk ∩ Z : Sk ∩ Z|
log2 |Z : Sk ∩ Z|

= lim
k→∞

log2 |KSk ∩ Z : (K ∩ Z)(Sk ∩ Z)|
log2 |Z : Sk ∩ Z| + lim

k→∞

log2 |(K ∩ Z)(Sk ∩ Z) : Sk ∩ Z|
log2 |Z : Sk ∩ Z|

= lim
k→∞

log2 |(K ∩ Z)(Sk ∩ Z) : Sk ∩ Z|
log2 |Z : Sk ∩ Z| ,

and thus hdimS
G(K) = hdimS|Z

Z (K ∩ Z), as required. �
For a subgroup K = 〈x2�

h, h1, . . . , hd〉 of G, and, in view of Corollary 4.3, for the 
purpose of computing K ∩ Z, we will fix the notation used in the proof of Lemma 4.2. 
Thus, for every 1 ≤ n ≤ d and every m ∈ N0, we write hn,m = [hn, x2�

h, m. . ., x2�

h]. 
Suppose i1, . . . , id ∈ N are such that

h1 ∈ γi1(G)Z\γi1+1(G)Z, . . . , hd ∈ γid(G)Z\γid+1(G)Z.

Notice by Lemma 3.1 that hn,m ≡ cin+m2� (mod γin+m2�+1(G)Z). Also, we set I =
{in + m2� | 1 ≤ n ≤ d, m ∈ N0}, and for every j ∈ I, we write c∗j = hn,m, where n, m
are such that j = in + m2�. If j ∈ N\I, then we just write c∗j = cj . Finally, for every 
j, k ∈ N define z∗j,k = [c∗j , c∗k] and consider the set

BZ = {(c∗i )2, z∗j,k | i, j, k ∈ N}.

Thus, since c∗j ≡ cj (mod γj+1(G)Z) for every j ∈ N, it follows that

z∗j,k ≡ zj,k (mod γj+k+1(G) ∩ 〈zm,n | m ≥ j, n ≥ k〉). (4.3)

Hence, the set BZ is a basis for Z.
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Let now

KZ = 〈(c∗i )2, z∗j,k | i, j, k ∈ I〉.

It is clear that K = 〈x2�

h〉KH where, as in Lemma 4.2,

KH = 〈hn,m | 1 ≤ n ≤ d, m ∈ N0〉.

Since x2�

h normalises KH , it follows that a general element g ∈ K can be written as

g = (x2�

h)αc∗j1 · · · c
∗
jnz,

with α ∈ Z2, n ∈ N0, jr < jr+1 for every 1 ≤ r ≤ n − 1 and z ∈ KZ . Now, if g ∈ Z, then 
we must have α = 0 and n = 0, and so K ∩ Z = KZ .

Now that we explicitly know the subgroup K ∩Z, the strategy that we will follow for 
computing its Hausdorff dimension in Z will be based on counting blocks. For a fixed 
� ∈ N0 and for every r, s ∈ N0 with s ≤ r, we define a block in Z as

Br,s = 〈z∗i+r2�,j+s2� | 1 ≤ i, j ≤ 2�〉.

Lemma 4.4. Fix �, d ∈ N0, let S ∈ {L, D, M, F} and let K = 〈x2�

h, h1, . . . , hd〉 be a 
subgroup of G as defined above. Write m(k) = min{j | c 2

j ∈ Sk} and let

Δk =
{
〈Br,s | Br,s ∩ Sk �= 1〉〈(c∗j )2 | j ≥ m(k)〉 if S ∈ {L,D,M},
〈Br,s | Br,s ∩ Θk �= 1〉〈(c∗j )2 | j ≥ m(k)〉ΨkΛk if S = F.

Then, for the filtration series S∗ : Z = Δ0 ≥ Δ1 ≥ · · · of Z, we have

hdimS|Z
Z (K ∩ Z) = hdimS∗

Z (K ∩ Z).

Proof. Note that

Δk =

⎧⎪⎪⎨⎪⎪⎩
〈Br,s | Br,s ∩ γk+1(G) �= 1〉〈(c∗j )2 | j ≥ k〉 if S = L,

〈Br,s | Br,s ∩ γk+1(G) �= 1〉〈(c∗j )2 | j ≥ �(k + 1)/2�〉 if S = D,

〈Br,s | r ≥ 2k−�〉〈(c∗j )2 | j ≥ 2k + 1〉 if S = M,

and BZ being a basis for Z, we can express the generators of γk+1(G) ∩ Z and Θk in 
terms of the elements in BZ . More precisely, one can easily see that

γk+1(G) ∩ Z = 〈(c∗i )2, z∗m,n | i ≥ k + 1, 1 ≤ n < m, m + n ≥ k + 1〉 (4.4)

and
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Θk = 〈z∗m,n, z
∗
m′,n′ | m,n ≥ 2k−1, m′ ≥ 2k, n′ ∈ N〉. (4.5)

Therefore, we clearly have Sk ∩ Z ≤ Δk. Consider now the following family of blocks:

B =
{
{Br,s | Br,s ≤ Δk, Br,s �≤ Sk and s ≤ r} if S ∈ {L,D,M},
{Br,s | Br,s ≤ Δk, Br,s �≤ Θk and s ≤ r} if S = F.

If S ∈ {L, D}, then Br,s ∈ B only if (r + s)2� ≤ k − 2 and (r + s + 2)2� ≥ k + 1, 
so |B| ≤ 2�(k + 1)/2�+1� + 1. For S = M, we have |B| = 0 and for S = F, we have 
|B| = 2k−� − 1.

Notice also that log2 |Br,s| ≤ 22�, hence, if S ∈ {L, D, M}, then we have

lim
k→∞

log2 |Δk : Sk ∩ Z|
log2 |Z : Δk|

≤ lim
k→∞

|B|22�

log2 |Z : γk+1−2�+1(G) ∩ Z| = 0,

while if S = F, we have

lim
k→∞

log2 |Δk : Sk ∩ Z|
log2 |Z : Δk|

≤ lim
k→∞

|B|22�

log2 |Z : γ2k−2�+1(G) ∩ Z| = 0

by [6, Proof of Thm. 4.5].
Now, [16, Lem. 2.2] yields the result. �

Proof of Theorem 1.1 (For the case p = 2). Let K ≤ G be a finitely generated closed 
subgroup of G. We observe that if K ≤ H, then K is finite and hence hdimS

G(K) = 0. 
Therefore we suppose that K �≤ H.

Without loss of generality we may assume, as done in (4.2), that K has only one 
generator of the form x2�

h with � ∈ N0 and h ∈ H. In addition, by Lemma 4.1, we may 
further assume that

K = 〈x2�

h, h1, . . . , hd〉

for some d ∈ N0 and h1, . . . , hd ∈ H\Z, and by Corollary 4.3, we have that hdimS
G(K) =

hdimS|Z
Z (K ∩ Z). Also, following the notation introduced before Lemma 4.4, we have

K ∩ Z = 〈(c∗i )2, z∗j,k | i, j, k ∈ I〉.

Let i1, . . . , id ∈ N be such that

h1 ∈ γi1(G)Z\γi1+1(G)Z, . . . , hd ∈ γid(G)Z\γid+1(G)Z,

where, in the spirit of (4.2), we may assume that i1 < · · · < id and further that i1, . . . , id
are pairwise non-equivalent modulo 2�. Indeed, suppose without loss of generality that 
id ≡ ir (mod 2�) for some 1 ≤ r ≤ d − 1. As mentioned before, we have
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[hn, x
2�

h, m. . ., x2�

h] ≡ cin+m2� (mod γin+m2�+1(G)Z)

for all n ∈ {1, . . . , d} and m ∈ N0. In particular

[hr, x
2�

h, m. . ., x2�

h] ≡ hd (mod γid+1(G)Z)

for some m > 0, and so repeating the standard cancelling process as in (4.2), either, 
after several steps,

• the process stops if it gives a generator h̃ ∈ Z (in this case, we can ignore this 
generator by Lemma 4.1);

• the process stops if it gives a generator h̃ ∈ γj(G)Z\γj+1(G)Z where j �≡ i1, . . . , id−1
(mod 2�); or

• at each cancelling step, the new generator h̃ ∈ γj(G)Z\γj+1(G)Z satisfies j ≡ ir
(mod 2�), for some r ∈ {1, . . . , d − 1}.

In the third case, we may ignore the generator h̃, since each cancellation process replaces 
the generator h̃ ∈ γj(G)Z\γj+1(G)Z with a generator ĥ ∈ γν(G)Z\γν+1(G)Z, where 
ν > j. In other words, we can replace the generator h̃ with a generator ĥ in γμ(G)Z, 
with μ arbitrary large, hence in each finite quotient (K∩Z)(Sk∩Z)

Sk∩Z , the images of the 

generators of K ∩ Z that involve ĥ can be assumed to be trivial.
Next, for r ∈ N and setting Z(r) = 〈zm,n | m, n ≥ r〉, it can be proved, as done 

in [6, §4], that Z(r) has strong Hausdorff dimension 1 in G with respect to S. Thus, 
it is not difficult to see that we can also assume that id ≤ 2�. Indeed, suppose that 
λ2� < id ≤ (λ + 1)2� for some λ ∈ N. It turns out that the generators of K ∩ Z of the 
form (c∗j ) 2, for j ∈ N, are insignificant in the computation of hdimS|Z

Z (K ∩ Z), hence a 

direct computation shows that hdimS|Z
Z (K ∩Z) = hdimS|Z

Z (K ∩Z(λ2�)). This then equals 
the Hausdorff dimension of K ∩ Z(λ2�) in Z(λ2�) by [16, Lem. 5.3].

Now, from Corollary 3.4, it suffices to consider the four filtration series L, D, M
and F. Moreover, if S∗ : Z = Δ0 ≥ Δ1 ≥ · · · is as in Lemma 4.4, then we have 
hdimS|Z

Z (K ∩ Z) = hdimS∗

Z (K ∩ Z). Define the following disjoint families of blocks:

B1 =
{
{Br,s | Br,s ∩ Δk = 1 and s < r} if S ∈ {L,D,M},
{Br,s | Br,s ∩ Θk = 1 and s < r} if S = F,

B2 =
{
{Br,s | Br,s ∩ Δk = 1 and s = r} if S ∈ {L,D,M},
{Br,s | Br,s ∩ Θk = 1 and s = r} if S = F.

For S ∈ {L, D}, it is routine to see that |B2| ≤ �(k+1)/2�+1� and that there exists q ∈ Q

such that limk→∞ |B1|/(k + 1)2 = q. Similarly for S = M, we have |B2| = 2k−�, and 
there exists q ∈ Q such that limk→∞ |B1|/22k = q. For S = F, we have |B2| = 2k−1−�−1
and limk→∞ |B1|/22k = q for some q ∈ Q.
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Note that if s < r, then log2 |Br,s| = 22� and log2 |Br,s ∩K| = d2, while otherwise, if 
s = r, then log2 |Br,s| = 22�−1−2�−1 and log2 |Br,s∩K| := t ≤ d2. With this, we are now 
ready to compute the Hausdorff dimension of K with respect to L, D and M; compare 
(4.7). Let us focus first, however, on the case where S = F. From Proposition 3.5 we 
note that 1

22k log2|Ψk| is negligible as k approaches infinity, hence we can ignore Ψk. As 
done in the proof of Lemma 4.4, we can also express the generators of Λk in terms of the 
elements in BZ . More precisely, and referring to (3.7), we have Λ∗

kΘk = ΛkΘk, where

Λ∗
k = 〈[z∗m,n, x

2i

, x2i+1
, . . . , x2k−1

] | 2 ≤ i ≤ k − 1, 2i−1 ≤ n < m < 2i〉. (4.6)

Observing that

Λ∗
k ∩K ≥ 〈[z∗m,n, x

2i

, x2i+1
, . . . , x2k−1

] | m,n ∈ I, � ≤ i ≤ k − 1, 2i−1 ≤ n < m < 2i〉

(where in the above, we emphasise that i ≥ �) and that for 2 ≤ i ≤ k − 1 we have 
[z∗m,n, x

2i

, x2i+1
, . . . , x2k−1 ] /∈ Λ∗

k ∩K if m /∈ I or n /∈ I, it follows that

log2 |Λ∗
k ∩K : 〈[z∗m,n, x

2i

, . . . , x2k−1
] | m,n ∈ I, � ≤ i ≤ k − 1, 2i−1 ≤ n < m < 2i〉|

approaches 0 as k → ∞. Writing

U1 := log2 |(Λ∗
k ∩K)Θk : Θk| and U2 := log2 |Λ∗

kΘk : Θk|,

and recalling from Proposition 3.5 that the generators in the presentation of Λ∗
k in (4.6)

generate it independently modulo Θk, we see that U1/U2 approaches d2/22� as k → ∞.
Finally, removing the assumption that S = F, we obtain

hdimS∗

Z (K ∩ Z) = lim
k→∞

log2 |(K ∩ Z)Δk : Δk|
log2 |Z : Δk|

= lim
k→∞

|B1|d2 + |B2|t + log2 |〈(c∗j )2 | j ∈ I, j < m(k)〉| − δFU1

|B1|22� + |B2|(22�−1 − 2�−1) + log2 |〈(c∗j )2 | j < m(k)〉| − δFU2

= lim
k→∞

|B1|d2 − δFU1

|B1|22� − δFU2

= d2/22�,

(4.7)

for every S ∈ {L, D, M, F}, where

δF =
{

1 if S = F,

0 otherwise.
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As K was arbitrary, it follows that

hspecSfg(G) = {d2/22� | � ∈ N, 0 ≤ d ≤ 2�}. �
5. The pro-p groups G(p) for odd primes

For convenience, we write G = G(p), for an odd prime p. In this section we determine 
the terms of the six filtration series of G, or their respective intersections with Z. Then 
the proof of Theorem 1.1 will follow exactly in the same way as for p = 2.

As the terms of the filtration series L, D and M can be found in [5], it remains to 
settle the filtration series P, F, and I.

We begin by clarifying the terms of the series Gpk ∩ Z. In principle, the analysis of 
the subgroups Gpk ∩ Z is analogous to the p = 2 case, however certain differences arise, 
due to the fact that c 2

i /∈ Z for i ∈ N.
Using the same notation for the case p = 2, for i, j, k ∈ N, we let

wi,j,k = [zi+1,j , x,
pk−2. . . , x][zi+2,j+1, x,

pk−3. . . , x] · · · [zi+pk−2,j+pk−3, x]zi+pk−1,j+pk−2,

and for k ∈ N,

Lk =
〈
wi,j,k, dk(y), zm,n | i, j, n ∈ N, m ≥ pk

〉G
,

where dk(h) ∈ Z is defined as before, that is,

(xh)p
k

= xpk

[h, x, pk−1. . . , x]dk(h)

for h ∈ H.

Lemma 5.1. In the pro-p group G, for k ∈ N,

(i) for every z ∈ Z, we have

[z, x, pk−1. . . , x] ∈ Lk;

(ii) for h1, h2 ∈ H, we have

[h1h2, x,
pk−1. . . , x] ≡ [h1, x,

pk−1. . . , x][h2, x,
pk−1. . . , x] (mod Lk);

(iii) for every h ∈ H, we have dk(h) ∈ Lk.

Proof. (i) and (ii): This is just as in Lemma 3.2.
(iii) For h1, h2 ∈ H, as before let ζ(h1, h2) =

∏pk−2
�=0 [h x

1 , x, �. . ., x, h2, x, p
k−2−�. . . , x] ∈ Z. 

Proceeding as in the p = 2 case, we obtain dk(h1h2) ≡ dk(h1)dk(h2)ζ(h1, h2) (mod Lk), 
and ζ(h1, h2) ≡ ζ(h2, h1) (mod Lk). Next, notice that for every i, j ∈ N we have
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ζ(ci, cj)x = ζ(cx
i , c

x
j ) = ζ(cici+1, cjcj+1) = ζ(ci, cj)ζ(ci+1, cj)ζ(ci, cj+1)ζ(ci+1, cj+1)

and from the equivalence [ζ(ci, cj), x] ≡ ζ(ci+1, cj) (mod Lk) in (3.4), we obtain

ζ(ci, cj+1) ≡ ζ(ci+1, cj+1)−1 (mod Lk).

Therefore, as ζ(cpk , cj) ∈ Lk, it follows that ζ(ci, cj) ∈ Lk whenever (i, j) �= (1, 1). Now 
for h ∈ γ2(G), we observe that

ζ(h, h) ≡ dk(h2)dk(h)−2 (mod Lk),

and as dk(h2) = dk(h)4, we conclude that dk(h) ∈ Lk. Since d(y) ∈ Lk by definition, the 
result follows. �

With this, the corresponding statements for Proposition 3.3 and Corollary 3.4 are 
obtained:

Proposition 5.2. For k ∈ N, the pro-p group G satisfies

〈zm,n | m ≥ pk, n ∈ N〉 ≤ Gpk ∩ Z ≤ Lk.

Corollary 5.3. For the pro-p group G and K ≤c Z, we have

hdimP|Z
Z (K) = hdimM|Z

Z (K).

Next, in analogue to the even prime case, one can determine the Frattini series F

precisely, which we include here for completeness. Following the notation in [5], we write 
[i]p = pi−1

p−1 for i ∈ N0. For k ∈ N we correspondingly have

Λk = 〈[zm,n, x
pi

, xpi+1
, . . . , xpk−1

] | 2 ≤ i ≤ k − 1, m, n ≥ 1 + [i]p〉,
Θk = 〈zm,n, zm′,n′ | m,n ≥ 1 + [k − 1]p, m′ ≥ 1 + [k]p, n′ ∈ N〉.

Observe that γ1+2[k−1]p+pk−1(G) ≤ Θk.

Proposition 5.4. For each k ∈ N, we have

Φk(G) =〈xpk

, cj | j ≥ 1 + [k]p〉ΛkΘk.

Finally, we consider the iterated p-power series I for G. This involves a fusion of the 
techniques used for the p-power series and the Frattini series.

For i, j, k ∈ N, with i, j ≥ pk−1, we define the elements

w̃i,j,k = [zi+1,j , x,
pk−pk−1−1. . . , x][zi+2,j+1, x,

pk−pk−1−2. . . , x] · · · zi+pk−pk−1,j+pk−pk−1−1,
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and for every h ∈ γpk−1(G), we define d̃k(h) ∈ Z as

(xpk−1
h)p = xpk

[h, x, pk−pk−1
. . . , x]d̃k(h).

Let thus

L̃k = 〈w̃i,j,k, d̃k(y) | i, j ≥ pk−1〉G,

and, for k ∈ N, we define

Θ̃k = 〈zm,n | m ≥ pk, n ∈ N〉,
Λ̃k =

〈
[zm,n, x

pk−1
, p−1. . . , xpk−1

] | (pk−1 ≤ m < pk, m−
⌊

m
pk−1

⌋
pk−1 ≤ n < pk−1)

∨ (m ∈ {2pk−1, 3pk−1, . . . , (p− 2)pk−1}, n = pk−1)
〉
,

Ω̃k =
〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Ω̃k−1 ∪ Λ̃k−1

〉
,

Ψ̃k =
〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Ψ̃k−1 ∪ L̃k−1

〉
,

where Ω̃1 = Λ̃1 and Ψ̃1 = L̃1. These definitions, together with the following lemma, will 
play the role that Lemma 3.2(i) had for the filtration series P.

Lemma 5.5. For k ∈ N, we have

[Θ̃k−1, x
pk−1

, p−1. . . , xpk−1
]Θ̃k = Λ̃kΘ̃k.

The proof of the above lemma, though not difficult, is a rather long combinatorial 
argument. Therefore we defer the proof to the appendix. Moreover, for the purpose of 
computing Hausdorff dimensions, the set of generators given in the presentation of Λ̃k is 
close enough to a minimal generating set for Λ̃k modulo Θ̃k; see the appendix for further 
details.

Below we have the analogues of Lemma 3.2(ii) and (iii).

Lemma 5.6. In the pro-p group G, for k ∈ N,

(i) for h1, h2 ∈ γpk−1(G), we have

[h1h2, x,
pk−pk−1

. . . , x] ≡ [h1, x,
pk−pk−1

. . . , x][h2, x,
pk−pk−1

. . . , x] (mod L̃k);

(ii) for every h ∈ γpk−1(G), we have d̃k(h) ∈ Θ̃kΛ̃kL̃k.

Proof. Part (i) follows as in Lemma 3.2. For part (ii), let d∗k(h) and d∗∗k (h) be such that

(xpk−1
h)p = xpk

[h, xpk−1
, p−1. . . , xpk−1

]d∗k(h)
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and

[h, xpk−1
, p−1. . . , xpk−1

] = [h, x, pk−pk−1
. . . , x]d∗∗k (h),

and note that d̃k(h) = d∗k(h)d∗∗k (h). Now, similar to (3.3), for h1, h2 ∈ γpk−1(G) we have

(xpk−1
h2h1)p = (xpk−1

h2)p[h1, x
pk−1

h2,
p−1. . . , xpk−1

h2]d∗k(h1)

= xpk

[h2, x,
pk−pk−1

. . . , x][h1, x
pk−1

h2,
p−1. . . , xpk−1

h2]d∗k(h1)d̃k(h2),

and routine computations give

[h1, x
pk−1

h2,
p−1. . . , xpk−1

h2]

= [h1, x,
pk−pk−1

. . . , x]
p−2∏
�=0

[h xpk−1

1 , x, �p
k−1
. . . , x, h2, x,

(p−2−�)pk−1
. . . , x]d∗∗k (h1).

Writing ζ̃(h1, h2) =
∏p−2

�=0 [h xpk−1

1 , x, �p
k−1
. . . , x, h2, x, (p−2−�)pk−1

. . . , x] ∈ Z, we have

(xpk−1
h2h1)p = xpk

[h2, x,
pk−pk−1

. . . , x][h1, x,
pk−pk−1

. . . , x]d̃k(h1)d̃k(h2)ζ̃(h1, h2).

Everything now follows as in the proof of Lemma 5.1. �
Proposition 5.7. For k ∈ N, the pro-p group G satisfies

Θ̃kΛ̃kΩ̃k ≤ Ik(G) ∩ Z ≤ Θ̃kΛ̃kΩ̃kL̃kΨ̃k.

Proof. Using Lemmata 5.5 and 5.6, we can adjust the proof of Proposition 3.3 to the 
filtration series I. The unique significant difference arises when, as done at the end of 
the aforementioned proof, we consider the element [hh∗, x, p

k−pk−1
. . . , x], where in our case 

h ∈ γpk−1(G) ∩ Ik−1(G), h∗ ∈ γ2pk−1(G), and hh∗ ∈ Z.
First note that γ2pk−1(G) ≤ Ik−1(G) by [5, Prop. 3.4], and so

hh∗ ∈ Ik−1(G) ∩ Z ≤ Θ̃k−1Λ̃k−1Ω̃k−1L̃k−1Ψ̃k−1

by the inductive hypothesis. Now, by definition, we have [Λ̃k−1Ω̃k−1, x, p
k−pk−1
. . . , x] ≤

Ω̃k and [L̃k−1Ψ̃k−1, x, p
k−pk−1
. . . , x] ≤ Ψ̃k. Also, Lemma 5.5 yields [Θ̃k−1, x, p

k−pk−1
. . . , x] ≤

Λ̃kΘ̃k, so the result follows. �
Corollary 5.8. For the pro-p group G and K ≤c Z, we have

hdimI|Z
Z (K) = hdimS̃

Z(K),

where S̃ is the filtration of Z defined by the subgroups Θ̃kΛ̃kΩ̃k.
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Finally, the proofs of Lemma 4.1, Lemma 4.2, Corollary 4.3 and Lemma 4.4, and the 
p = 2 proof of Theorem 1.1 work exactly in the same way for p odd and for L, D, M, P, 
I and F (actually it is easier, as Hp = 1). Hence Theorem 1.1 follows.

Appendix A

Proof of Lemma 5.5. Fix k ∈ N, and consider the set Z = {zm,n | pk−1 ≤ m < pk, n <
m}. This set can be decomposed as

Z =

⎛⎝ ⋃
1≤j≤i≤p−1

Zi,j

⎞⎠ ⋃ ⎛⎝ ⋃
1≤i≤p−1

Vi

⎞⎠
where

Zi,j = {zm,n | ipk−1 ≤ m < (i + 1)pk−1, (j − 1)pk−1 ≤ n < jpk−1},
Vi = {zm,n | ipk−1 ≤ n < m < (i + 1)pk−1}.

It is helpful to visualise the elements of Z as a grid where m determines the row and n the 
column, with Zi,j representing the pk−1×pk−1 squares if j > 1 and the pk−1×(pk−1−1)
rectangles if j = 1, and with Vi corresponding to the lower left triangles along the 
diagonal m = n.

Then, writing

Ui,1 = {zm,n ∈ Zi,1 | n ≥ m− ipk−1},

and

Wi,j = {zipk−1,(j−1)pk−1} for i ≥ j > 1,

it suffices to show that〈
[zm,n, x

pk−1
, p−1. . . , xpk−1

] | pk−1 ≤ m < pk, n < m
〉
Θ̃k

=
〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ (

p−1⋃
i=1

Ui,1) ∪ (
p−2⋃
i=2

Wi,2)
〉
Θ̃k.

Recall that, for m ≥ pk−1,

[zm,n, x
pk−1

, p−1. . . , xpk−1
] ≡

p−1∏
s=1

(
s∏

t=1
z
(p−1

s )(st)
m+(p−1−t)pk−1,n+(p−1−s+t)pk−1

)
(mod Θ̃k);

compare [5, Lem. 4.3]. Note also that 
(
p−1) ≡ (−1)s (mod p).
s
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Now let z ∈ Zi,j for fixed i, j. Writing m = ipk−1 + μ and n = (j − 1)pk−1 + ν for 
0 ≤ μ, ν ≤ pk−1 − 1, we have

[zipk−1+μ,(j−1)pk−1+ν , x
pk−1

, p−1. . . , xpk−1
]

≡
p−1∏
s=i

(
s∏

t=i

z
(−1)s(st)
μ+(p−1−t+i)pk−1,ν+(p−1−(s−t)+(j−1))pk−1

)
(mod Θ̃k).

From the above it is clear that for � ≤ p−1
2 ,

〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Zp−�,�+1 ∪ · · · ∪ Zp−�,p−�

〉
≤ Θ̃k

and similarly

〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Vp−�

〉
≤ Θ̃k.

Now, set Θ̃k,0 = Θ̃k and recursively define, for 1 ≤ τ ≤ p − 2,

Θ̃k,τ =
〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Up−τ,1 ∪Wp−τ−1,2

〉
Θ̃k,τ−1,

where W1,2 = ∅.
We claim that for 1 ≤ τ ≤ p − 1,

〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Zp−�,�−τ+1, τ ≤ � ≤ p+τ−1

2
〉
Θ̃k,τ−1

=
〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Up−τ,1 ∪Wp−τ−1,2

〉
Θ̃k,τ−1

=
〈 p−1∏

s=p−τ

s∏
t=p−τ

z
(−1)s(st)
μ+(p−1−t+p−τ)pk−1,ν+(p−1−s+t)pk−1 | ν ≥ μ

〉
Θ̃k,τ−1.

(A.1)

Indeed, for τ = 1, the result is clear since

[z(p−�)pk−1+μ,(�−1)pk−1+ν , x
pk−1

, p−1. . . , xpk−1
]

≡
p−1∏

t=p−�

z
(−1)p−1(p−1

t )
μ+(p−1−t+p−�)pk−1,ν+(�−1+t)pk−1 (mod Θ̃k)

≡ z
(p−1
p−�)

μ+(p−1)pk−1,ν+(p−1)pk−1 (mod Θ̃k).

Suppose now that the result holds for τ − 1. Recall that for z ∈ Zi,j we write m =
ipk−1 + μ and n = (j − 1)pk−1 + ν for 0 ≤ μ, ν ≤ pk−1 − 1. We first assume that ν > 0, 
and we write Z∗

i,j for all such z with ν > 0. For z ∈ Z∗
p−�,�−τ+1 with τ ≤ � ≤ p+τ−1

2 , we 
obtain
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[z(p−�)pk−1+μ,(�−τ)pk−1+ν , x
pk−1

, p−1. . . , xpk−1
]

≡
p−1∏

s=p−τ

⎛⎝ s∏
t=p−�

z
(−1)s(st)
μ+(p−1−t+p−�)pk−1,ν+(p+�−τ−1−s+t)pk−1

⎞⎠ (mod Θ̃k)

≡
(
z
(−1)p−τ(p−τ

p−�)
μ+(p−1)pk−1,ν+(p−1)pk−1

)(
z
(−1)p−τ+1(p−τ+1

p−� )
μ+(p−1)pk−1,ν+(p−2)pk−1z

(−1)p−τ+1(p−τ+1
p−�+1)

μ+(p−2)pk−1,ν+(p−1)pk−1

)

× · · · ×

⎛⎝p−2−(�−τ)∏
t=p−�

z
−(p−2

t )
μ+(p−1−t+p−�)pk−1,ν+(�−τ+1+t)pk−1

⎞⎠

×

⎛⎝p−1−(�−τ)∏
t=p−�

z
(p−1

t )
μ+(p−1−t+p−�)pk−1,ν+(�−τ+t)pk−1

⎞⎠ (mod Θ̃k).

We begin by establishing that

〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Z∗

p−�,�−τ+1, τ ≤ � ≤ p+τ−1
2

〉
Θ̃k,τ−1

=
〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Zp−τ,1

〉
Θ̃k,τ−1

(A.2)

If � = τ , the result is clear, so we assume that � > τ . Multiplying the above element with 
[z(p−�+1)pk−1+μ,(�−τ)pk−1+ν , xpk−1

, p−1. . . , xpk−1 ] yields, modulo Θ̃k,

(
z
(−1)p−τ+1( p−τ

p−�+1)
μ+(p−1)pk−1,ν+(p−1)pk−1

)(
z
(−1)p−τ+2(p−τ+1

p−�+1)
μ+(p−1)pk−1,ν+(p−2)pk−1z

(−1)p−τ+2(p−τ+1
p−�+2)

μ+(p−2)pk−1,ν+(p−1)pk−1

)

× · · · ×

⎛⎝p−1−(�−τ)∏
t=p−�+1

z
(p−2

t )
μ+(p−t+p−�)pk−1,ν+(�−τ+1+t)pk−1

⎞⎠

×

⎛⎝p−1−(�−τ)∏
t=p−�

z
(p−1

t )
μ+(p−1−t+p−�)pk−1,ν+(�−τ+t)pk−1

⎞⎠

≡
p−1∏

s=p−τ

⎛⎝ s∏
t=p−�+1

z
(−1)s+1(st)
μ+(p−t+p−�)pk−1,ν+(p−2+�−τ−s+t)pk−1

⎞⎠ (mod Θ̃k)

≡ [z(p−�+1)pk−1+μ,(�−τ−1)pk−1+ν , x
pk−1

, p−1. . . , xpk−1
]−1 (mod Θ̃k).

Therefore, as z(p−�+1)pk−1+μ,(�−τ)pk−1+ν ∈ Zp−(�−1),(�−1)−(τ−1)+1, repeating this process 
yields
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[z(p−�)pk−1+μ,(�−τ)pk−1+ν , x
pk−1

, p−1. . . , xpk−1
]

≡ [z(p−�+1)pk−1+μ,(�−τ−1)pk−1+ν , x
pk−1

, p−1. . . , xpk−1
]−1 (mod Θ̃k,τ−1)

...

≡ [z(p−τ)pk−1+μ,ν , x
pk−1

, p−1. . . , xpk−1
]±1 (mod Θ̃k,τ−1).

(A.3)

In other words,

〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Zp−τ,1

〉
Θ̃k,τ−1

=
〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Z∗

p−τ−1,2
〉
Θ̃k,τ−1

...

=
〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Z∗

� p−τ+1
2 �,� p−τ+1

2 �
〉
Θ̃k,τ−1,

which yields (A.2).
We consider now the case ν = 0, which only occurs for the squares Zi,j where j > 1. 

Further it suffices to consider such elements z ∈ Zp−�,�−τ+1 with 2 < τ < � ≤ p+τ−1
2 . 

Similarly one obtains

〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Zp−τ−1,2\Z∗

p−τ−1,2
〉
Θ̃k,τ−1

=
〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Zp−τ−2,3\Z∗

p−τ−2,3
〉
Θ̃k,τ−1

...

=
〈
[z, xpk−1

, p−1. . . , xpk−1
] | Z� p−τ+1

2 �−1,� p−τ+1
2 �+1\Z∗

� p−τ+1
2 �−1,� p−τ+1

2 �+1

〉
Θ̃k,τ−1,

where of course Zi,j = ∅ if j > i.
Hence we have the first step towards claim (A.1). It remains to show that

Uτ :=
〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Zp−τ,1

〉
Θ̃k,τ−1

=
〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Up−τ,1

〉
Θ̃k,τ−1

=
〈 p−1∏

s=p−τ

s∏
t=p−τ

z
(−1)s(st)
μ+(p−1−t+p−τ)pk−1,ν+(p−1−s+t)pk−1 | ν ≥ μ

〉
Θ̃k,τ−1

(A.4)

and

〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Zp−τ−1,2\Z∗

p−τ−1,2
〉
Uτ〈

pk−1
p−1 pk−1 〉 (A.5)
= [z, x , . . . , x ] | z ∈ Wp−τ−1,2 Uτ .
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Suppose that 0 < ν < μ. Akin to (A.3), we have that

[z(p−τ)pk−1+μ,ν , x
pk−1

, p−1. . . , xpk−1
] ≡ [z� p−τ

2 �pk−1+μ,� p−τ
2 �pk−1+ν , x

pk−1
, p−1. . . , xpk−1

]±1

≡ [z� p−τ
2 �pk−1+ν,� p−τ

2 �pk−1+μ, x
pk−1

, p−1. . . , xpk−1
]∓1

≡ [z(p−τ)pk−1+ν,μ, x
pk−1

, p−1. . . , xpk−1
]ε,

where ε ∈ {−1, 1}, depending on whether τ is even or odd. This proves (A.4), and 
similarly for (A.5).

Finally, we consider Vi, for 1 ≤ i ≤ p−1
2 . In a similar manner, one can show that

〈
[z, xpk−1

, p−1. . . , xpk−1
] | z ∈ Vi

〉
Θ̃k,p−2i = Θ̃k,p−2i,

and the result follows. �
We note that some of the generators in the presentation of Λ̃k where μ = ν are trivial 

modulo Θ̃k. The number of such generators is insignificant in relation to the minimum 
generating set of Λ̃k.
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