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Abstract: Monitoring virus infections can be an important selection tool in honey bee breeding. A 

recent study pointed towards an association between the virus-free status of eggs and an increased 

virus resistance to deformed wing virus (DWV) at the colony level. In this study, eggs from both 

naturally surviving and traditionally managed colonies from across Europe were screened for the 

prevalence of different viruses. Screenings were performed using the phenotyping protocol of the 

‘suppressed in ovo virus infection’ trait but with qPCR instead of end-point PCR and a primer set 

that covers all DWV genotypes. Of the 213 screened samples, 109 were infected with DWV, 54 were 

infected with black queen cell virus (BQCV), 3 were infected with the sacbrood virus, and 2 were 

infected with the acute bee paralyses virus. It was demonstrated that incidences of the vertical 

transmission of DWV were more frequent in naturally surviving than in traditionally managed 

colonies, although the virus loads in the eggs remained the same. When comparing virus infections 

with queen age, older queens showed significantly lower infection loads of DWV in both 

traditionally managed and naturally surviving colonies, as well as reduced DWV infection 

frequencies in traditionally managed colonies. We determined that the detection frequencies of 

DWV and BQCV in honey bee eggs were lower in samples obtained in the spring than in those 

collected in the summer, indicating that vertical transmission may be lower in spring. Together, 

these patterns in vertical transmission show that honey bee queens have the potential to reduce the 

degree of vertical transmission over time. 
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1. Introduction 

Disease pressure is an inherent driver of the evolution of eusociality [1,2] or social 

task division [3], and it forms an important component in the evolution of western honey 

bees (Apis mellifera). With the arrival of the Varroa mite (Varroa destructor), the virus 

landscape in honey bee colonies was considerably changed by the introduction of a new 

transmission pathway, thereby influencing virus virulence and evolution [4–13]. Through 

Varroa-mediated transmission, virus diseases have become one of the most important 

proximate causes of colony mortality and honey bee decline [14–21]. 

Of the 72 virus species that have been identified in honey bees [22], the most 

commonly occurring belong to the families Iflaviridae and Dicistroviridae [23], 

particularly the sacbrood virus (SBV), black queen cell virus (BQCV), acute bee paralysis 

virus (ABPV) and deformed wing virus (DWV). Both ABPV and DWV consist of a 

complex of closely related, co-circulating master variants capable of forming viable 

recombinants [22,24,25]. The DWV complex is best described as a group of functionally 

and genetically compatible minor and major variants and their recombinants based on 

four master strains [26], of which DWV-A and DWV-B are currently the most common 

[27–32]. Dynamics in the presence and abundance of honey bee viruses show strong 

seasonal and geographical variation [33–35]. This variation is driven by the local 

adaptations of the virus, host and vector species, as well as by the specific characteristics 

of each virus [36–40]. Together, they form a geographic mosaic of coevolution [41]. 

In the first years after managed colonies are left untreated against the Varroa mite, 

colony mortality increases considerably [42,43]. This results in strong selective pressure 

forcing bees, mites and the viruses to adapt to each other. Most naturally surviving 

populations consist of unmanaged or feral colonies [40]. In managed colonies, two 

approaches have been described to transition from treated colonies to naturally surviving 

colonies. The first consists of leaving a large number of colonies unmanaged with respect 

to swarming, re-queening and Varroa control [39] and allowing natural selection to take 

place. This is described as the ‘Bond’ test: ‘live and let die’ [39]. A second approach, named 

‘Darwinian black box’, builds further on this by adding selection for strong spring 

development [43]. One of the best studied naturally surviving populations with regard to 

virus–host coevolution is an isolated, closed honey bee population located at the tip of the 

Näsudden peninsula in the south of Gotland, a Swedish island in the Baltic sea. After 

implementing the Bond test in 1999, these honey bee colonies evolved an increased 

tolerance for DWV infections [38,44]. In addition, BQCV and SBV infections were less 

abundant in the autumn and early spring, possibly due to the reduced colony size of the 

Gotland colonies in these seasons [45]. 

Each response to a parasite influences transmission dynamics within and between 

honey bee colonies. As honey bees live in large groups, the transmission of viruses 

through trophallaxis, feeding or body contact occurs frequently. This form of transmission 

between individuals of the same generation is defined as horizontal transmission. 

However, transmission between generations by either eggs or semen is defined as vertical 

transmission [27]. Virus infections of queens, or their eggs, have been shown to interfere 

with normal egg development, to elicit a stress response in eggs [46] and to cause 

important health risks for the queen herself [47–50]. The importance of the honey bee 

queen in the viral dynamics of the colony was recently highlighted with the discovery of 

the ‘suppressed in ovo virus infection’ trait (SOV) [49]. This trait is described by the virus 

status of a sample containing 10 pooled drone eggs, and it reflects the degree of vertical 

transmission of viruses at the time of sampling. Colonies headed by a queen laying virus-

free eggs have been found to show fewer and less severe DWV infections in almost all 

developmental stages of both drones and workers [49]. In addition, this potential to 

suppress viral infections is heritable [49] and alters the tissue specificity of DWV [50]. 

Drone eggs are unfertilized and therefore only reflect the vertical virus transmission of 

the queen to her offspring [51]. As drone eggs are only produced in the spring and 
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summer, the choice of drone eggs compared to worker eggs includes the limitation of 

when samples can be collected. 

The aim of this study was to compare virus infections in eggs collected from naturally 

surviving colonies (NSCs) and traditionally managed colonies (TMCs) across Europe, 

along with an analysis of the effects that queen age and sampling season have on infection 

patterns in these eggs. The previously described SOV phenotyping protocol [49] was used 

to screen for the presence of viruses after implementing two improvements: First, the 

detection of viral pathogens using qPCR instead of end-point PCR allowed for the 

quantification of the viral load of the eggs and lowered the detection threshold. Second, 

as the SOV trait is associated with increased virus resistance across DWV genotypes [50], 

a shift was made from screening for DWV-A only to a generic screening for the DWV 

complex. Overall, this research improved our understanding of how the patterns of the 

vertical transmission of viruses differ across Europe and in different breeding program 

selection strategies. 

2. Materials and Methods 

2.1. Virus Screening in Eggs 

The 187 samples collected as part of the Flemish bee-breeding program in 2020 were 

used to compare the transition from an end-point PCR to a qPCR approach and to compare 

the quantification of DWV infections using primers specific to DWV-A or DWV-B and a 

generic DWV primer (DWV-Fam). All samples were collected following the phenotyping 

protocol for the SOV trait, as described by de Graaf et al. (2020), and they were screened 

using qPCR for DWV-A, DWV-B, DWV-Fam, SBV, ABPV and BQCV. To compare the 

performance of the end-point PCR to that of the qPCR, positive samples covering a 101–

108/10 egg range were selected and analyzed using end-point PCR for SBV, ABPV, DWV-

A and BQCV. 

2.2. Egg Sample Collection across Europe 

Egg samples were collected in 9 countries across Europe during either the spring (the 

beginning of March to the end of May) or summer (the beginning of June to the end of 

July) of 2020, depending on the presence of drone brood in each country and in each 

season (Table 1). Each country sampled between 6 and 12 TMCs (colonies managed 

following local standard practices, including treatment against the Varroa mite) and, if 

present, between 4 and 13 NSCs (colonies from populations that survive without 

treatment against the Varroa mite). In total, 53 samples were collected from NSCs, and 

160 were collected from TMCs (including 72 from Slovenia). The samples from Slovenia 

were collected in the scope of a different project, hence the larger sample size. The colonies 

were managed following local standard practices, and the queens descended from locally 

adapted or native stock. The treatment of the TMCs against the Varroa mite was 

performed with registered products in each country. The management of the NSCs was 

conducted according to the ‘Darwinian black box’ selection method [43] or the ‘Bond’ test 

[39]. From each of the 213 sampled colonies, a pooled sample of 10 drone eggs was 

collected following the phenotyping protocol of the SOV trait, as described by de Graaf et 

al. (2020). If drone eggs were not present in the spring or summer and if attempts to induce 

drone laying did not succeed, worker eggs were collected instead (as was the case for 34 

colonies). All samples were immediately stored at −20 °C and kept in a cold chain during 

transport to Belgium, where they were analyzed for DWV-Fam, BQCV, SBV and ABPV 

using RT-qPCR. For each sampled colony, information was gathered on the sampling 

season (spring or summer), subspecies, queen age, beekeeping method (for both TMCs 

and NSCs) and the presence of clinical signs at the time of sampling. This information was 

used to explain possible outliers and to look for correlations between multiple factors. 

Additional samples were collected if the apiary was composed of more than 10 colonies 

with drone eggs present during sampling. Supplementary Table S3 provides an overview 
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of the sampled populations and countries, the number of worker egg samples collected in 

each country and the presence of clinical signs at the time of sampling, and it lists the 

location of the sampled populations, including the year of establishment of the NSC 

populations. 

2.3. RNA extraction and cDNA synthesis 

All samples were first homogenized in the presence of zirconium beads in 0.5 mL 

QIAzol lysis reagent (Qiagen). RNA was extracted using an RNeasy Lipid Tissue Mini Kit 

(Qiagen) according to the manufacturer’s instructions, including a DNAse step, and it was 

finally eluted in 30 µL elution buffer. The concentration of the total RNA was measured 

using Nanodrop (Isogen). Using random hexamer primers, 200 ng of RNA was retro-

transcribed with a RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo 

Scientific, Waltham, MA, USA). Honey bee β-actin was used to control RNA integrity. 

2.4. End-Point PCR 

All end-point PCR reaction mixtures contained 2 μM of each primer (see 

Supplementary S1), 1 mM MgCl2, 0.2 mM dNTPs each, 1.2 U HotStarTaq Plus DNA 

polymerase (Qiagen) and 2 μL cDNA product. The end-point PCR assays were performed 

using the following cycling conditions: 95 °C for 5 min; 94 °C for 30 s, 55 °C for 30 s, 72 °C 

for 1 min, 35 cycles; final elongation 72 °C for 10 min, hold 4 °C. The end-point PCR 

amplicons were analyzed by electrophoresis using 1.5% agarose gels stained with 

ethidium bromide and visualized under UV light. Positive and negative controls were 

included in each run. 

2.5. qPCR 

The virus load qPCR determination was performed using Platinum™ SYBR™ Green 

qPCR SuperMix-UDG (Thermo Scientific). Each reaction consisted of 0.4 µM of each 

primer (sequences provided in Supplementary S1), 11.45 µL RNase-free water, 12.5 µL 

SYBR Green and 1 µL of cDNA template. All samples were run in duplicate in a three-

step RT-qPCR. The thermal cycling conditions started with an initial activation stage at 95 

°C for 2 min, followed by 35 cycles of a denaturation stage at 95 °C for 15 s, an annealing 

stage at 58 °C for 20 s and an extension stage at 72 °C for 30 s. This procedure was followed 

by a melting curve analysis to confirm the specificity of the product (55–95  °C with 

increments of 0.5 °C s−1). Each plate included a no-template control and a positive control. 

A standard curve obtained through an 8-fold 5× serial dilution of a known amount of viral 

plasmid loads (range of 104–1010 copies/µL) was used for absolute quantification. All data 

were analyzed using CFX Manager™ 3.1 software (Bio-Rad). Baseline correction and 

threshold setting were performed using the automatic calculation offered by the same 

software. The maximum accepted quantification cycle (Ct) difference between replicates 

was set to two Ct. The successful amplification of the β-actin internal reference gene was 

used to confirm RNA integrity throughout the entire procedure [52]. For each sample, the 

virus load for the 200 ng RNA included in the cDNA reaction was multiplied to account 

for the total volume of RNA per sample, and it was subsequently divided by 10 to 

represent data as total viral load per individual egg. The linear standard equations for the 

plasmid standards and primers specific for each virus were as follows: Ct = −3.519 × 

+47.762, R2 = 0.997 for DWV; Ct = −4.458 × +50.946, R2 = 0.865 for ABPV; Ct = −4.260 × 

+55.151, R2 = 0.943 for BQCV; and Ct = −4.571 × +45.651, R2 = 0.938 for SBV. 

2.6. Statistics 

The viral loads for each sample were Log10-transformed to improve data 

visualization. Detection thresholds for all pathogens were set at 30 Ct (corresponding to 

103 copies for DWV, BQCV, SBV and APBV). Below this threshold, samples cannot be 

reliably quantified using qPCR [53]. RStudio version 3.6.1 was used for data analyses and 
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visualization. Analyses of the differences in the number of infections between groups 

were conducted using chi-squared tests. For comparisons between the infection loads, T-

tests were used. All tests were checked for and complied with the required assumptions. 

3. Results 

3.1. SOV Phenotyping Method 

The virus detection thresholds on the end-point PCR (based on the end-point PCR of 

the samples positive on the qPCR along a 101–108 copy/reaction range of the starting 

template) were 102 for DWV-A, 107 for BQCV, 106 for ABPV and 108 for SBV (see 

Supplementary S2). A total of 187 samples were screened for DWV-A, DWV-B and DWV-

Fam (generic DWV primer). Of these, 153 (82%) showed amplification when screening 

with DWV-Fam. One sample was only amplified with the DWV-A assay, and two samples 

were only amplified with the DWV-B assay. Of the 153 samples that were amplified with 

the DWV-Fam assay, 98 (64%) were also amplified with the DWV-B assay, 2 (1%) were 

amplified with the DWV-A assay, and 6 (4%) were amplified with both the DWV-A and 

DWV-B assays. The remaining 47 samples (25%) were only amplified with the DWV-Fam 

assay and not with either the DWV-A or DWV-B assay. The median infection load for 

DWV-Fam was 5.8 Log10 virus copy number/egg and was on average 1.69 Log10 higher 

than the sum of DWV-A and DWV-B. 

3.2. Virus Prevalence 

Table 1 shows an overview of the different virus prevalence across all samples, and 

it presents the number of collected samples per country, the number of infections for each 

virus, and the mean infection load for each country and for each selection strategy (TMCs 

or NSCs). In total, 53 samples were collected from NSCs, and 160 were collected from 

TMCs (including 72 from Slovenia). Of the 213 pooled egg samples screened, most 

infections were with DWV (51%), followed by BQCV (25%). Only three samples were 

infected with SBV, and two samples were infected with ABPV. Multiple virus infections 

in the same sample occurred in only 14% of the samples (28 samples were infected with 

two viruses, and one was infected with three viruses). No virus infections were found in 

35% (74/213) of the samples. The differences in infection frequencies varied considerably 

between and within countries. The worker egg samples from Norway and Sweden had 

lower infection frequencies (11/34) than the drone egg samples from other locations 

(61/107). The Slovenian samples were collected in the scope of a different project, hence 

the larger number of samples. To avoid an uneven distribution of the sample size across 

groups, the Slovenian samples were not included for further analyses in this study. The 

differences between subspecies could not be analyzed due to the high variability between 

countries and the hybridization between subspecies. Due to bad weather conditions or the 

inaccessibility of some locations, some countries (the Netherlands, Romania and Sweden) 

were not able to sample the requested number of colonies. 

Figure 1 shows the percentage of virus infections occurring in the two sampling 

seasons (spring and summer). The samples collected in the spring had significantly higher 

infection frequencies than the samples collected in the summer for both DWV (X2 (1, 

N=141) = 9.4, p < 0.05) and BQCV (X2 (1, N = 141) = 12.3, p < 0.05) but not for SBV. 
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Figure 1. Percentage of virus infections in each sampling season. Significant differences are 

indicated with *. The numbers on top of each bar represent the number of positive samples and the 

total sample for each group. 

Table 1. Virus prevalence in pooled egg samples from each participating country for both naturally 

surviving colonies (NSCs) and traditionally managed colonies (TMCs). 

Country 
Sampling 

Season 

NSC/T

MC 

No. of 

Sampled 

Colonies 

No. of 

Virus-

Free 

Samples 

No. of Samples Positive For: 
Mean Infection Load  

(Log10/Egg) 

DWV BQCV SBV ABPV DWV BQCV SBV ABPV 

Belgium 
Spring NSC 10 1 9 (90%) 0 0 0 4.3    

 TMC 11 4 7 (64%) 2 (18%) 0 0 6.1 4.2   

Croatia Summer TMC 10 3 4 (40%) 3 (30%) 1 (10%) 0 4.7 5.3 3.3  

France 
Spring NSC 13 2 7 (54%) 11 (85%) 0 0 5.6 5.5   

 TMC 10 2 1 (10%) 8 (80%) 0 0 5.8 6.4   

the 

Netherlands 

Partly in 

spring and 

summer 

NSC 10 2 8 (80%) 3 (30%) 0 0 6.2 5.4   

 TMC 6 1 5 (83%) 3 (50%) 0 0 5.4 4.9   

Norway 
Summer NSC 10 1 9 (90%) 1 (10%) 0 0 5.1 4.9   

 TMC 10 5 4 (40%) 3 (30%) 0 0 4.3 4.7   

Portugal Spring TMC 10 1 8 (80%) 1 (10%) 0 0 5.1 3.3   

Romania 
Spring NSC 4 1 0 3 (75%) 0 0  4.5   

 TMC 9 4 2 (22%) 4 (44%) 0 0 4.0 4.0   

Slovenia Spring TMC 72 27 
38 

(53%) 
11 (15%) 2 (2%) 2 (2%) 5.3 5.2 3.2 3.8 

Spain Spring TMC 10 4 5 (50%) 1 (10%) 0 0 5.5 4.8   

Sweden 
Summer NSC 6 5 1 (16%) 0 0 0 5.0    

 TMC 12 11 1 (8%) 0 0 0 4.3    

3.3. Natural survivors vs. Traditionally Managed Colonies 

Figure 2 shows the percentage of virus infections (A) and the infection loads (B) for 

both NSCs and TMCs and for each virus. The infection frequencies were significantly 

higher in NSCs than in TMCs for DWV (X2 (1, N = 111) = 8.6, p < 0.05) but not for BQCV 

(X2 (1, N = 111) = 0.1, p = 0.75). No significant differences were found between the infection 

loads of TMCs and NSCs for DWV (t (68) = -0.6, p = 0.52; TMCs = 5.2 ± 0.4, NSCs = 4.9 ± 
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1.6) and BQCV (t (33) = 1.6, p = 0.11; TMCs = 4.4 ± 0.9, NSCs = 4.8 ± 0.1). On average, most 

infections hovered around 105 for both DWV and BQCV in this sample cohort. 

 

Figure 2. Percentage of viral infections (A) and infection loads (B) for naturally selected and 

traditionally managed colonies. Data are provided for each virus. Significant differences are 

indicated with *. The numbers on top of each bar represent the number of positive samples and the 

total sample for each group. 

3.4. Queen Age 

Figure 3A shows the frequency of infection with DWV or BQCV for each queen age 

and for both TMC and NSC groups. For DWV, a significant decrease in the percentage of 

infected samples was found in TMCs between queens aged 0 and 1 year (X2 (1, N = 59) = 

3.9, p < 0.05). This trend continued with a lower infection frequency in queens aged 2 years 

(1/10) than in queens aged 1 year (14/42), albeit not significant. No differences in infection 

frequencies were found between queen ages in NSCs. Figure 3B shows the infection loads 

of DWV and BQCV for each queen age for both TMC and NSC groups. As previously 

shown, the infection load did not differ between the two groups. Comparing infection 

loads between queen ages showed significantly higher infection loads in queens aged 0 

years (M = 5.7, SD = 0.2) than in queens aged 1 year for DWV (M = 4.8, SD = 1.6; t (29) = 

2.6, p < 0.05) for both TMCs and NSCs. Albeit not significant, the mean DWV infection 

load for queens aged 2 years (M = 5.3) was lower than the mean of queens aged 1 year (M 

= 6.2). No significant differences in infection frequencies or infection load were found for 

BQCV. The infection load did however show a similar general trend, with mean infection 

loads decreasing with age (5.0 in queens aged 0 years, 4.6 in queens aged 1 year and 4.4 in 

queens aged 2 years). Interestingly, the spread in the infection loads of queens aged 0 

years largely lacks infection loads lower than 107 for DWV and BQCV. Seasonal 

differences in sample collection did not influence the infection frequency of DWV in 

queens aged 0 years (X2 (1, N = 25) = 1.69, p = 0.16) and older queens (X2 (1, N = 97) = 2.2, p-

value = 0.14). Queen age was unknown for 19 out of 141 samples (13%). 
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Figure 3. Overview of the infection frequency (A) and the infection load (B) for each queen age from 

both naturally selected and traditionally managed colonies. Significant differences are indicated 

with *. The numbers on top of each bar represent the number of positive samples and the total 

sample for each group. 

4. Discussion 

In comparison with the previously described SOV phenotyping protocol [49], this 

study implemented two improvements for virus screening in honey bee eggs. Measuring 

virus prevalence with qPCR showed, as expected, a higher detection sensitivity than when 

measuring virus prevalence with end-point PCR. The detection threshold of the qPCR was 

around 103 (30 Ct) for all viruses, while the end-point PCR showed significantly higher 

detection thresholds for SBV, BQCV and ABPV (108 for SBV, 107 for BQCV and 106 for 

ABPV). This implies that phenotyping using end-point PCR underestimated the number 

of virus infections for these viruses. There was no difference between both detection 

thresholds for DWV. It should be noted that samples negative on qPCR can still be 

infected below the detection threshold and that positive samples might be infected with 

viruses in a dormant state. An important advantage of qPCR is that breeding programs 

can manually set threshold values based on the breeding goal and the virulence of the 

virus. Each breeding program can thus determine the degree of positive or negative 

selection desired. Infection loads in eggs are linked with the infection status of the queen 

[53,54] and have been shown to reduce virus infections in the colony as a whole [49]. 

Nevertheless, the impact of different virus infection loads in eggs on subsequent 

developmental stages is currently unknown. Further research, where eggs with different 

virus infections are reared in vitro, could improve our understanding of the impact that 

vertical transmission has on antiviral responses and honey bee health. 

The comparison between individual DWV genotypes and the generic DWV showed 

a large underestimation of DWV infections in this sample cohort when screening for either 

one of the genotypes or the sum of DWV-A and DWV-B. This can be seen in terms of the 

underestimation of the number of infected samples (25% of the samples) and the lower 

infection loads (on average 1.69 Log10 lower). In comparison, a previous study in the UK 

found 40% higher DWV titers when screening with a universal DWV-complex assay than 

when pooling the results of screening with specific DWV-A and DWV-B assays [55]. 

Possible explanations for this could be the presence of different genotypes, DWV-C or 

DWV-D, neither of which has to date been detected in Belgium [26,27], or mutations in 
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the primer region that hamper correct primer hybridization [56]. A study on the genetic 

diversity within a DWV population in a colony showed that 82% of the genome had >1 

sequence variant present in the frequency of >1%, and 39% of the genome had >1 sequence 

variant present in a frequency of >10% [8]. In addition, shifts in the sequence space of the 

DWV-A quasispecies have been shown after injection in honey bee pupae [57]. The rapid 

shifts in the DWV quasispecies are consistent with the punctuated evolution theory, 

whereby the infection of a new host causes a selective sweep, followed by diversification 

towards an increased genetic heterogeneity that has potentially adapted to the host-

specific antiviral defenses [28]. This implies that primer regions, although being in 

conserved regions, may evolve over time and reduce the primer amplification efficiency. 

With regard to the virus prevalence in drone eggs collected across Europe, virus-free 

samples were found in all countries and in both TMC and NSC groups in the sample 

cohort studied herein. According to the SOV protocol, queens laying virus-free eggs at the 

time of sampling were phenotyped as SOV-positive (SOV+) [49]. The low number of 

infections in the Gotland population (located in Näsudden) and in the TMC (located in 

Sigarve) populations from Sweden was remarkable, as both groups only had one sample 

infected with DWV despite multiple studies recording high viral loads in the worker bees 

of Gotland throughout the years [35,38,44,45,58–60]. The presence of SOV+ queens across 

Europe serves as a possible starting point for local breeding programs to perform selection 

within the variation in virus resistance present within honey bee populations [49,61]. 

Including subsequent generations descending from SOV+ queens in breeding programs 

is crucial to maximize selection on the heritable genetic contribution [49] behind virus 

resistance. This is because the SOV trait does not differentiate between samples that are 

free of viruses due to the virus resistance of the queen or due to other non-genetic 

circumstances. In this study, virus abundance and prevalence were based on one 

sampling time point. However, for accurate SOV phenotyping, multiple samples could be 

collected at different time points to differentiate between queens that temporarily lay 

virus-free eggs and queens that do so consistently. This is an important consideration, as 

virus dynamics have been shown to change across the seasons [62]. 

In addition to the high prevalence of DWV, the second most common virus found in 

this study was BQCV. This virus is the most common cause of queen larval death [63,64], 

but it has not been found to cause overt symptoms in queens despite the detection of high 

infection loads [65]. Viruses of the ABPV complex and SBV have been found in eggs 

[54,66–68], but they were rarely detected in this study. The higher virulence of BQCV, SBV 

and ABPV [4,48,69–72] compared to the lower virulence of DWV [69] could explain why 

they are less likely to be transmitted vertically without causing queen supersedure or 

colony health issues [73]. 

Differences in infection patterns between countries can be caused by climatic 

conditions, by the seasonality of honey bee viruses [34,56,74–80] or by the low number of 

samples per country. This is reflected in the significant differences in infection frequencies 

between the spring and summer sampling seasons in this study. Interestingly, infection 

frequencies with DWV were higher in spring, contrasting with the generally higher 

infection frequencies reported for adult bees during the summer and autumn 

[62,75,77,80]. These findings indicate that conclusions based on SOV phenotyping should 

always take the time of sampling into account when interpreting results and that the SOV 

status can change between seasons. Other factors affecting virus abundance are 

nutritional quality and availability [81,82], connectivity between colonies [83], colony 

demography [84,85], population heterogeneity [86–90], colony management [91], the 

degree of local adaptation [92], individual and colony-level immune responses [93] and 

other stress factors (such as exposure to neonicotinoids) [94]. In this study, worker eggs 

did not have higher infection loads than drone eggs despite the possible occurrence of 

trans-spermal virus transmission [25]. 

By comparing naturally surviving with traditionally managed populations in the 

same local context, insights can be gained into which evolutionary adaptations are needed 
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for honey bees to survive without treatment against the Varroa mite. Typical for naturally 

surviving populations is that they harbor higher mite numbers that serve as an important 

vector for viruses [39,95]. Honey bee colonies react to these high disease pressures with 

adaptations in their antiviral responses or by forms of social immunity [96]. This study 

shows that, in this sample cohort, infection frequencies were significantly higher in NSCs 

than in TMCs for DWV but that infection loads did not differ between the two groups. 

Honey bee queens appear to avoid increased vertical transmission loads despite increased 

infection frequencies. Virus loads in worker bees were not studied here. Therefore, it 

remains uncertain if the higher infection frequencies are a result of increased virus 

circulation in the naturally surviving populations. The high variability between both 

groups in each country could be caused by previously mentioned factors affecting virus 

abundance, the time since colonies were left untreated [36,37] or the degree of genetic 

divergence between TMCs and NSCs within a country [52,62,90]. 

Honey bee queens accumulate viral infections and infection loads during queen 

rearing [97,98], during mating flights [47,99,100] or as they become older [47,51,68], 

despite increased immune responses [101]. In contrast to what was expected, both the 

infection frequency of DWV and the infection load in the eggs of queens from TMCs 

decreased with increasing queen age. This difference is not caused by the mortality of 

queens with high infection loads, as the distribution of the egg infection loads does not 

overlap between queens aged 0 years and 1 year. Queens from NSCs showed the same 

trends in infection loads across all queen ages but did not show differences in infection 

frequencies. For BQCV, only the infection load was significantly lower in queens aged 0 

years than in queens aged 1 year from TMCs. In beekeeping practices, queens are often 

renewed yearly, as young queens are associated with lower winter mortality [66,102]. This 

study suggests that older queens from colonies that are treated against the Varroa mite 

might be able to adapt their antiviral responses to DWV and thereby reduce the infection 

loads transmitted via their eggs. If so, the frequent renewal of queens could limit this 

potential as opposed to selecting towards increased queen longevity. 

By focusing on the role of honey bee queens, this research adds to the growing 

literature on the relationship between viral infections and honey bee health. Evolutionary 

patterns of resistance and tolerance can form the theoretical foundation to incorporate 

virus resilience in breeding programs. This is a promising perspective, as shown by the 

variability of vertical transmission over time, across queen ages and under different 

evolutionary conditions. 
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