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Abstract: In this work, we have successfully fabricated nanocrystalline Co2MnSi Heusler alloy
glass-coated microwires with a metallic nucleus diameter (dnuclei) 10.2 ± 0.1 µm and total diameter
22.2 ± 0.1 µm by the Taylor–Ulitovsky technique for the first time. Magnetic and structural inves-
tigations have been performed to clarify the basic magneto-structural properties of the Co2MnSi
glass-coated microwires. XRD showed a well-defined crystalline structure with a lattice parameter
a = 5.62 Å. The room temperature magnetic behavior showed a strong in-plane magnetocrystalline
anisotropy parallel to the microwire axis. The M-H loops showed unique thermal stability with
temperature where the coercivity (Hc) and normalized magnetic remanence exhibited roughly stable
tendency with temperature. Moreover, quite soft magnetic behavior has been observed with values
of coercivity of the order of Hc = 7 ± 2 Oe. Zero field cooling and field cooling (ZFC-FC) magneti-
zation curves displayed notable irreversible magnetic dependence, where a blocking temperature
(TB = 150 K) has been observed. The internal stresses generated during the fabrication process
induced a different magnetic phase and is responsible for the irreversibility behavior. Moreover,
high Curie temperature has been reported (Tc ≈ 985 K) with unique magnetic behavior at a wide
range of temperature and magnetic fields, making it a promising candidate in magnetic sensing and
spintronic applications.

Keywords: Co2MnSi Heusler alloys; magnetic properties; glass-coated microwires; blocking temperature;
thermal stability; spintronic

1. Introduction

Ferromagnetic materials with high spin polarization (≈100%) have attracted special
and considerable attention due to their wide range of applications in the field of spintronics,
magneto-optics and thermoelectricity [1]. Full and half Heusler alloys, because of their
unique electronic structures which support up to 100% spin polarization, are of particular
interest [2–4]. In this class of materials, the majority spin band has a metallic behavior,
whereas the minority spin band has semiconducting or insulating properties because of the
existence of a bandgap around the Fermi energy [5]. Thus, these materials perform 100%
spin polarized at the Fermi energy.

Among Heusler alloys, Co-based Heusler compounds are very promising materials
for multifunction applications due to low magnetic damping coefficients, high Curie point
(Tc > 1200 K), tunable band structure and high magnetic moment [6–8]. In addition,
such alloys present extraordinary and anomalous physical properties above and below

Processes 2022, 10, 2248. https://doi.org/10.3390/pr10112248 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10112248
https://doi.org/10.3390/pr10112248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-7679-9619
https://orcid.org/0000-0001-5801-9191
https://orcid.org/0000-0003-3007-7175
https://orcid.org/0000-0002-2926-9826
https://orcid.org/0000-0001-5025-4859
https://doi.org/10.3390/pr10112248
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10112248?type=check_update&version=1


Processes 2022, 10, 2248 2 of 12

room temperature due to the large Berry curvature linked with their band structure [9,10].
Therefore, Co-based Heusler compounds are widely studied and investigated by many
researchers around the world.

Among Heusler alloys based on 3d transition elements (especially, Co), Co2MnSi is of
particular interest for advanced spintronic devices because of its large bandgap for minority
spins (0.5 to 0.8 eV), high Curie temperature (~985 K), high tunnel magnetoresistance,
large magnetoresistance ratios and perpendicular magnetic anisotropy [11–14]. Both the
experimental and theoretical investigation conducted on Co2MnSi over the last two decades
have been focused on the structural and magnetic properties and their relation to spin
polarization [11,15–17]. The highest spin polarization value that has been observed for bulk
Co2MnSi is ~93% at room temperature by ultraviolet photoemission spectroscopy [18]. The
Co2MnSi Heusler alloy is considered one of the most studied Co-based Heusler compounds
and a promising material for spintronic application.

The most common technique for preparing and fabricating magnetic Heusler alloys
is arc melting followed by thermal treatment [19,20]. This method allows one to prepare
bulk Heusler alloys with tunable chemical compositions. Moreover, different techniques
are supposed to obtain Heusler alloys with varied forms such as thin films, nanoparticles,
ribbons and nanostructured materials as reported elsewhere [21].

Many physical properties of bulk Heusler alloys can be tailored and improved by
miniaturization as described elsewhere [22–25]. However, preparation of all perspective
“multifunctional and smart” Heusler alloys faces several problems and challenges. Firstly,
large-scale production of Heusler compounds alloys with exact chemical composition and
reproducible physical properties. In addition, the high cost of specific techniques that re-
quire extreme high physical constrains and conditions (ultra-high vacuum, pressure, power,
high temperature and specific substrate). Therefore, the recent upgrade of the Taylor–
Ulitovsky method, which allows preparation of ultra-thin and homogenous glass-coated
microwires—a composite material consisting of a metallic nucleus (diameter ~0.1–100 µm)
covered with a glass coating (thickness ~2–30 µm) has recently attracted considerable
attention [26]. The low cost for large-scale production (i.e., several kilometers from a small
ingot (~5 g)) makes it a very promising technique for fabrication of multifunctional and
smart materials for a wide range of applications. In addition, the possibility of prepara-
tion glass-coated microwires with different structures (amorphous, nano-crystalline, and
granular) provides a unique advantage to investigate the effect of different microstructures
of the same material on its physical properties [27–33]. Moreover, the glass-coating layer
offers insulation from electrical short-circuit, which allows the microwire to be used in
a chemically aggressive environment. Thus, glass-coated microwires are strongly used in
biomedical applications and hyperthermia for in vitro cancer cell treatment [34–36].

Despite numerous investigations of the different physical properties of Co2MnSi alloys
with different physical forms, not many studies that deal with Co2MnSi–based glass coated
microwires are reported. In the present study, we try to investigate the magneto-structural
properties of Co2MnSi glass-coated microwires prepared by the Taylor–Utilovsky technique.
The basic magnetic and structural characterization have been performed. The XRD analysis
proves the existence of a nanocrystalline L21 ordered structure beside the disordered B2 and
amorphous phases. The M-H loops show thermal stability at a wide range of temperature,
where the value of coercivity and the remanence did not show noticeable differences.
In addition, the investigation of the temperature dependence of the magnetization has
indicated the presence of the magnetic phase transition at low temperature. Moreover, we
show that it is possible to produce up to kilometres of nanocrystalline Co2MnSi Heusler-
based glass-coated microwires simply/rapidly/at low cost by using the Taylor–Ulitovsky
method that may enhance the suitability of Co2MnSi for sensing and microspintronic-
based devices.
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2. Materials and Methods

The fabrication of Co2MnSi glass-coated microwires with a nominal ratio (2:1:1),
i.e., Co50Mn25Si25 was quite a challenge due to the easy evaporation of Mn which will effect
the real nominal composition ratio. Therefore, we started preparing the Co2MnSi alloy
by using a commercial arc furnace with an Mn excess. We have performed the melting
from highly pure elements, Co (99.99%), Si (99.9%) and Mn (99.99%) under vacuum and in
an argon atmosphere to avoid the Co2MnSi alloy from oxidation during the melting process.
The melting process was repeated five times to have homogenous alloys of Co2MnSi. Then
we checked the nominal chemical composition of the Co2MnSi alloys by using energy
dispersive X-ray (EDX)/ scanning electron microscopy (SEM). After we confirmed the
nominal ratio (2(Co):1(Mn):1(Si)) we started the fabrication of the Co2MnSi glass-coated
microwires by using the Taylor–Ulitovsky technique, which consists on drawing and
casting directly from the melted Co50Mn25Si25 alloy as described in detail elsewhere [37,38].
Briefly, an ingot was heated above its melting temperature by a high frequency inductor,
and then a glass capillary formed, which was filled with molten Co2MnSi alloy, drawn
out and wound onto a rotating pick-up bobbin [39]. The speed of the wire drowning and
the velocity of the rotation of the pick-up bobbin controlled the diameter of the metallic
nuclei, d. In addition, rapid melt quenching is achieved by a stream of coolant, when
the formed microwire passes through a coolant stream [40]. By using scanning electron
microscopy, SEM, (see Figure 1a,c) we estimate the geometric parameters of Co2MnSi
glass-coated microwires where the metallic nucleus diameter of the prepared Co2MnSi
microwire is dnuclei = 10.2 ± 0.1 µm and the total diameter Dtotal = 22.2 ± 0.1 µm. The
most interesting part in fabrication process is that the metallic nuclei is surrounded by the
glass coating during the rapid solidification process to prevent the metallic nuclei from
the oxidation, so it is an ideal technique for Mn-based alloys. Moreover, such a process is
associated with elevated internal stresses arising from the rapid quenching itself, drawing
and from the different thermal expansion coefficients of the glass and the metallic nucleus
and adding additional internal stress [41,42].
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Figure 1. SEM image of Co2MnSi glass-coated microwire (a) and its cross section (b). (c) High
magnification of a single glass coated microwire and (d) indicates the formation of Co2MnSi glass-
coated microwires, sketch.
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We checked the chemical composition of the as-prepared samples with energy disper-
sive X-ray spectroscopy (EDX). The real chemical composition is obtained from analysis of
10 different points as described in Figure 1b and the average of the chemical composition is
about (Co51Mn23.9Si25.1), i.e., the nominal ratio (2:1:1) is approved.

The investigation of the microstructure of Co2MnSi glass-coated microwires and
its phase analysis have been conducted by using X-ray diffraction (XRD) BRUKER (D8
Advance, Bruker AXS GmbH, Karlsruhe, Germany). The Cu Kα (λ = 1.54 Å) radiation has
been used in all the patterns.

Room temperature and thermal magnetic behavior of Co2MnSi glass-coated microwire
samples has been performed by using the physical property magnetic system, PPMS
(Quantum Design Inc., San Diego, CA, USA) for the field cooling and zero-field cooling
magnetization curves for a temperature range from 5–350 K with an applied external
magnetic field of 100 Oe.

3. Results
3.1. Morphological and Structure Properties

Figure 1 describes the morphological properties of the as-prepared Co2MnSi glass-
coated microwires, which have been performed by SEM. As shown in Figure 1b, a perfect
cylindrical shape is observed which reveals the homogenous distribution of Co2MnSi.

Figure 2 shows the XRD analysis of the as-prepared Co2MnSi glass-coated microwires.
A wide halo centered on a 2θ ≈ 20◦ peak related to the presence of an amorphous phase
is combined with a narrow peak at the same angle related to the ordered L21 cubic phase
with (220). The main source of the amorphous phase is the rapid melt quenching associated
with the Taylor–Ulitovsky fabrication method [27]. In addition, a very narrow peak at
2θ ≈ 45.6◦ is detected that corresponds to the highly ordered L21 cubic structure (space
group: Fm-3m). In addition, other peaks with (111) and (200) for 2θ ≈ 24◦ and 2θ ≈ 27◦,
respectively, are related to the disordered B2 structure.
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Figure 2. X-ray diffraction pattern of Co2MnSi glass-coated microwire measured at room temperature.

By using the formula reported in [33], we estimated the nanocrystalline grain size, Dg,
related to each peak as listed in Table 1.

Table 1. Average grain size (nm) of as-cast Co2MnSi glass-coated microwire.

Peak Position 2θ (◦) FWHM Bsize (◦) Dg (nm)

45.6 0.17 53.9
21.4 0.21 40.3
23.7 0.20 44.0
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3.2. Magnetic Properties
3.2.1. Room Temperature Magnetic Properties

The hysteresis (M-H) loops of as-prepared Co2MnSi glass-coated microwire measured
at room temperature for two different applied external magnetic field directions to check
the magnetic anisotropy are shown in Figure 3. First, the direction where the external
magnetic field is applied is parallel to the axis of the Co2MnSi glass-coated microwire,
i.e., θ = 0◦ (in plane) and the other direction is perpendicular to the axis of the Co2MnSi
glass-coated microwire, i.e., θ = 90◦ (out of plane). As expected, the sample exhibited
ferromagnetic behavior as the transition to the paramagnetic phase for the Co2MnSi alloy
is above room temperature (Tc = 985 K) [11]. For easy comparison, all hysteresis loops are
normalized to the maximum magnetic moment. As observed in Figure 3, the Co2MnSi
glass-coated microwire shows strong axial magnetic anisotropy where the axial hysteresis
loop shows a squared shape with high magnetic remanence magnetization, whereas the
out-of-axis hysteresis loop shows a liner shape with a remanence magnetization near to
zero (see the inset of Figure 3). Thus, the easy magnetization direction is parallel to the
microwire axis, and the hard magnetization direction is in the perpendicular direction. The
behavior of both the axial and the out-of-axis hysteresis loops indicates the existence of
magnetic anisotropy.
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There are two main sources of this strong magnetic anisotropy, the cubic magnetocrys-
talline anisotropy and the uniaxial magnetic anisotropy due to the existence of crystalline
phases and the shape of the magnetic anisotropy of the microwire, respectively [43,44]. As
shown in the inset of Figure 3, the axial hysteresis loop does not show a perfectly squared
shape as reported for the anisotropic materials. In our case, the non-perfect squared hys-
teresis loop can be attributed to the existence of the amorphous and crystalline phases.
Noteworthily, same observation has recently been observed in our previous work on Co2-
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based Heusler alloy glass-coated microwires [27]. In addition, these observations agree
with results obtained elsewhere for Co2-based Heusler alloy thin films [43].

3.2.2. Temperature Dependence of Magnetic Behavior

Magnetic behavior of the as-prepared Co2MnSi glass-coated microwires at different
temperatures is provided in Figures 4 and 5.
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All loops have been measured at a temperature range from 400 K to 5 K.

In Figure 4, we focus on the part of the hysteresis loops that illustrates the increase of
the saturation field for all samples with temperature. The saturation magnetic field, Hsat,
shows unusual behavior with temperature and magnetic field. A monotonic increase in the
saturation magnetic field by decreasing the temperature from 400 K to 50 K is observed.
Then, Hsat, begins to decrease upon decreasing the temperature from 50 K to 10 K. Finally,
an additional Hsat increase by decreasing the temperature from 10 K to 5 K is observed. The
maximum saturation magnetic field is observed at T = 50 K for the magnetic field (H) range
0 ≤ H ≥ 10,000 Oe. The variation of saturation field with temperature can be attributed
to the change in the magnetic microstructure of Co2MnSi by decreasing the temperature.
In addition, the changing of the internal stresses originated by the glass cover layer with
temperature leads to modification of the microstructure of the sample, which directly affects
the magnetic response. Furthermore, the antiferromagnetic coupling of Mn-Mn, which
appears for the temperatures below the room temperature, adds an additional effect in
changing the magnetic behavior of the Co2MnSi with temperature. On the other hand,
the diamagnetic contribution of the glass-coating can affect the hysteresis loops character
providing a negative slope on M–H loops above the saturation.

The saturation magnetic field for temperature ranges below 50 K shows non-uniform
magnetic behavior compared with the measuring loops at T values higher than 50 K. The
saturation field curves show a notable negative slope for the magnetic curves measured at
20, 10 and 5 K. As depicted in Figure 4, the maximum saturation field is observed at 5 K
for the magnetic field (H) range 10 < H ≥ 50 (kOe). This observation can be related to the
strong antiferromagnetic behavior of Mn-Mn at low temperatures.

Figure 5 illustrates the hysteresis loops of Co2MnSi glass-coated microwires measured
in the temperature range from 400 to 50 K. All measured hysteresis loops do not show
a notable magnetic change, where the average values of the coercivity and normalized
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magnetic remanence do not show a strong change with temperature (see Figure 6). The
difference between the highest value and the lowest value of the coercivity and the nor-
malized remanence is 5 Oe and 0.08, respectively. This observation is different from the
one that we reported for Co2FeSi glass-coated microwires, in which we observed a strong
dependence of the coercivity and remanence on temperature, as reported in Ref. [27]. We
illustrated that the competition between different kinds of magnetic anisotropy, i.e., the
uniaxial magnetic anisotropy, cubic magnetocrystalline anisotropy and their temperature
dependence led to the anomalous magnetic behavior of the coercivity and remanence with
temperature. In the current case, we suppose a weak dependence for both types of the
magnetic anisotropy on the temperature. Thus, roughly a stable magnetic behavior with
temperature is observed.
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Figure 5. Hysteresis loops, measured in an applied magnetic field parallel to the axis of the microwires
at different temperatures from 50 K to 400 K for as-prepared Co2MnSi glass-coated microwires.

It is important to evaluate the complete magnetic behavior with temperature in order
to check its thermal stability, which it is an important physical property to determine its
potential for spintronics application. In addition, the temperature dependence can provide
useful information on the possibility for the magnetic phase transition. Thus, we measured
the magnetization dependence on temperature (M vs. T), i.e., zero field cooling, (ZFC)
and field cooling (FC), at low magnetic field (H = 100 Oe) and temperature range from 5 to
350 K, as plotted in Figure 7. In the field cooling protocol, the as-prepared Co2MnSi glass-
coated microwires were cooled down to 5 K under an applied magnetic field (H = 100 Oe),
which caused the random magnetic moment vectors to freeze parallel to the applied field
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at low temperatures. However, the M-H loops show a thermal magnetic stability (M vs. T)
for both ZFC and FC magnetization curves that show strong irreversibility magnetic
behavior with a blocking temperature at 150 K. Such magnetic irreversibility has been
detected in Co2-based Heusler alloy glass-coated microwires [27]. This irreversibility
strongly depends on the micromagnetic structure of the magnetic materials. In addition,
it appears to be owing to the coexistence of typical re-entrant ferromagnetism and spin
glass-type behavior, as reported elsewhere [45]. Moreover, the disordered structure (B2
phase) and chemical composition of the Co2MnSi glass-coated microwires affects the
irreversibility behavior where the magnetic ground state is not purely ferromagnetic but
has a strong antiferromagnetic contribution, especially at low temperature for Mn-Mn
interaction; random spin disorder (B2 phase) is also found with the ferromagnetic order
(L21 phase) [11,46].
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4. Discussion

The main features of the magneto-structural properties of Co2MnSi glass-coated mi-
crowires comes from the fabrication process where Co2MnSi Heusler compounds prepared
with different form and technique (thin films, bulk and ribbons) does not show simi-
lar magneto-structural behavior at the same conditions [11–16]. As we described above,
the main peculiarity of the Taylor–Ulitovsky method for preparing Heusler-alloy-based
glass-coated microwires is the simultaneous rapid solidification of the metallic nucleus
surrounded by the glass coating [24,27,47]. Therefore, strong mechanical internal stresses
are induced and distributed in a complex and inhomogeneous way within the metallic
nucleus radius of the glass-coated microwires. Thus, near to the axis of the metallic nucleus
the tensile stresses are the strongest. Meanwhile closer to the interface layer with the glass
coating the compressive stresses are dominant [38,48,49].

Mainly, there are three main sources of internal stresses, σi, in glass-coated microwires:
(1) The quenching internal stresses, which are related to the rapid solidification of the metal-
lic nucleus alloy. (2) The stresses originating from the difference in thermal expansion coef-
ficients of the metallic nucleus alloy and glass. (3) Finally, the drawing stresses originating
from the drawing of the composite microwire are present [48,49]. In glass-coated microwires
the solidification of the metallic nucleus alloys in the presence of glass-coating is the main
source of the quenching internal stress from the wire surface towards the microwire axis. By
considering successive concentric cylindrical shells solidifying consecutively starting from
the outside, due to the temperature gradient at the glass transition temperature, one can
easily evaluate such internal stress components, as reported elsewhere [49,50]. The largest
internal stresses were those related to the difference in thermal expansion coefficients of
the metallic alloy andthe glass: the σi value up to 4 GPa [26,38,41,49,50]. Additionally, the
axial σi component, σz, is affected by the ρ-ratio given as d/D, as follows from the most
simplified approximation, σi given as [26,41,49]:

σz = P(k + 1)∆ + 2/(k∆ + 1) (1)

σϕ = σr = P = εEk∆/(k/3 + 1)∆ + 4/3 (2)

where σr and σϕ are radial and circular stresses, respectively. ∆ = (1− ρ2)/ρ2, k = Eglass/Emetalic,
Emetalic, Eglass—Young modulus of metallic nucleus alloy and glass cover layer, respectively,
ε = (αm − αg) (Tm − Troom), αmetalic, αglass are thermal expansion coefficients of metallic nu-
cleus alloy and glass cover layer, respectively, and Tm, Troom are melting and room temperatures.

Consequently, the uniaxial magnetic anisotropy in Co2MnSi glass-coated microwires
must be associated with the internal stresses together with the magnetostriction coefficient,
λs, of Co2-based alloys [26,27,31–33,41]. Therefore, rather strong internal stresses associated
with the presence of glass coatings during the fabrication process can be the origin of
the appearance of a disordered structure phase (B2) besides the ordered one (L21) and
amorphous one (as explained in the XRD analysis see Figure 2 and Table 1). Such a structure
is responsible for the in-plane uniaxial magnetic anisotropy at room temperature beside
the large irreversible magnetic behavior below the room temperature.

Additionally, strong internal stresses can hinder the crystallization process [26,42] and
the nanocrystalline structure of the as-prepared and even annealed Co2MnSi glass-coated
microwires can be related to the presence of such stresses.

On the other hand, Heusler alloys are usually brittle and therefore present poor
mechanical properties [20]. Generally, poor mechanical properties became a problem for
use of conventional methods for the preparation of low dimensional Heusler alloys [20]. In
this sense, the use of the Taylor–Ulitovsky method provides several advantages:

(i) Presence of flexible glass coating can improve the mechanical properties of glass-
coated microwires [42]

(ii) Proposed method allows preparation of thin Heusler alloy microwires by single step
preparation method, directly in the form of a microwire.
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5. Conclusions

In conclusion, we highlighted the fabrication and magneto-structural characterization
of well-known Co2 Heusler alloy (Co2MnSi)-based glass-coated microwires. The magnetic
characterization has been performed for a wide range of temperature 5 to 400 K. Soft
magnetic behavior has been reported with maximum Hc = 9 Oe at (T = 400 K). At room
temperature, the as-prepared sample shows strong in-plane uniaxial magnetic anisotropy
parallel to the microwire axis. The M-H loops show a stable magnetic behavior with chang-
ing the temperature, where no notable change has been observed. Large irreversibility has
been detected below the room temperature with blocking temperature at T = 150 K. The
structure investigation proves a well-defined crystalline structure with a lattice parameter
a = 5.62 Å. In addition, the existence of the disordered B2 and amorphous structures has
been observed. The grain size evaluation proves the existence of nanocrystalline grain size
(Dg = 46 nm). Moreover, we have illustrated that the strong internal stresses, which are
induced by the solidification process during the fabrication process, play a main role in the
magnetic structural properties. Future research is necessary to explain the effects of anneal-
ing conditions and geometrical parameters on the magneto-structural and thermoelectric
properties. From the application viewpoint, our findings are important, which paves the
way for a large-scale production of high-performance Co2-based nanocrystalline soft mag-
netic Heusler-alloy-based glass-coated microwires for a variety of industrial applications.
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