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Abstract: The existence of gravitational radiation arriving at null infinity J +, i.e., escaping from the
physical system, is addressed in the presence of a non-negative cosmological constant Λ ≥ 0. The
case with vanishing Λ is well understood and relies on the properties of the News tensor field (or the
News function) defined at J +. The situation is drastically different when Λ > 0, where there is no
known notion of ‘News’ with similar good properties. In this paper, both situations are considered
jointly from a tidal point of view, that is, taking into account the strength (or energy) of the curvature
tensors. The fundamental object used for this purposes is the asymptotic (radiant) super-momentum, a
causal vector defined at infinity with remarkable properties. This leads to a novel characterization of
gravitational radiation valid for the general case with Λ ≥ 0, which has been proven to be equivalent
when Λ = 0 to the standard one based on News. Here, the implications of this result when Λ > 0
are analyzed in detail. A general procedure to construct ‘News tensors’ when Λ > 0 is depicted, a
proposal for asymptotic symmetries is provided, and an example of a conserved charge that may
detect gravitational radiation at J + is exhibited. A series of illustrative examples is listed as well.

Keywords: gravitational radiation; Λ ≥ 0; asymptotic structure

1. Introduction

The characterization of gravitational radiation escaping (or entering) asymptotically
flat spacetimes was firmly established in the 1950–60’s [1–6]; see [7] and references therein
for a comprehensive review from 1973. The covariant approach uses Penrose’s conformal
completions [8–11], and the basic ingredient is the News tensor field [4,5], a tensor that lives
at infinity and which, when non-zero, univocally determines the existence of gravitational
radiation escaping (or entering) the spacetime.

Unfortunately, results based on the News tensor apply only to the case with a vanishing
cosmological constant, i.e., Λ = 0. From the beginning of this century, it has been known
that the Universe is in accelerated expansion, e.g., [12,13], which proves the existence of
a positive cosmological constant, i.e., Λ > 0. This constant might be an effective one, or a
true new universal constant; however, in either event it destroys the asymptotically flat
picture independently of the value of Λ. Even if Λ is minuscule, the problem remains.
These difficulties were pointed out in [14] and largely explained in [15,16], where the
various problems involved were clearly exposed.

This situation has prompted many scientists to attack these problems, resulting in a
plethora of new results, techniques, definitions, and various attempts to recover the neat
and nice picture we had when Λ = 0. Nowadays, there is a vast literature on the subject
and a better understanding of the predicament when Λ > 0, which can be categorized in
the following points:

• Linearized approximations [17,18], including a version of the quadrupole formula
in the linear regime [19,20], the power radiated by a binary system in a de Sitter
background [21], or intended definitions of energy [22,23].
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• Studies using techniques of exact solutions, analyzing the asymptotic behaviour of
the Weyl tensor [24], or the radiation generated by accelerating black holes [25,26].

• Definitions of mass-energy, using spinorial techniques [27,28], or Newman–Penrose
expansions in preferred coordinate systems [29] or on null hypersurfaces [30], or for
weak gravitational waves [31,32], or using Hamiltonian techniques [33], or for the case
of a black hole, assuming the existence of a timelike Killing vector [34]. For a review,
see [35].

• Searching for mass-loss formulas by means of Newman–Penrose formalism using
Bondi-type coordinate expansions [36–40].

• Using holographic methods, gauge fixing, and foliations, particularly on J , to study
asymptotic symmetries [41,42], potentially in combination with Bondi-like coordinate
expansions [43].

• Looking for charges and conservation laws; see [33,44–46] and references therein.
• The relation between the radiation and the properties of the sources [18,47] and

computation of multipole moments in asymptotically de Sitter spacetimes [48].
• Comparing the gravitational wave fluxes at the de Sitter cosmological horizon with

that arriving at infinity using the quadrupole formula and a short wavelength approx-
imation [49].

Despite all these advances, a basic problem remains: how to unambiguously character-
ize the presence of gravitational radiation at J . Here, to solve this fundamental problem,
we explore alternative, although physically equivalent, descriptions of the existence of
radiation at infinity when Λ = 0. The main aim in this quest is to find alternatives that
can perform equally well in the presence of a positive cosmological constant. We found an
appropriate characterization of gravitational radiation at J that is fully equivalent to the
standard one based on the News tensor [50]. Our proposal is based on a re-scaled version
of the Bel–Robinson tensor [3,51–53] at J , which describes the tidal energy-momentum
of the gravitational field. The News tensor encodes information about quasi-local energy-
momentum radiated away by an isolated system, while the Bel–Robinson tensor describes
the energy-momentum properties of the tidal gravitational field; for historical reasons, the
name ‘super-energy’ is used for this (see Appendix A). There is a relationship between
super-energy and quasi-local energy-momentum quantities on closed surfaces [53–55] that
can be exploited. Furthermore, actual measurements of gravitational waves are essentially
of a tidal nature. Hence, it seems a good idea to explore the re-scaled Bel–Robinson tensor
as a viable object for detecting the existence of gravitational radiation.

With this novel, though equivalent, characterization of radiation, we were able to
simply use the appropriate version when Λ > 0 and determine whether or not it was
able to do the job. Having confirmed this [56], we were able to find the fundamental
object that can be used for that purposes, as well, namely, the asymptotic (radiant) super-
momentum. This is introduced in Section 2, which presents our radiation criteria for general
Λ ≥ 0. The next section is devoted to clarifying the equivalence with the News prescription
when Λ = 0, then Section 4 is devoted to the case with positive Λ. The problem of the
existence of News-like objects in this case and the question of incoming and outgoing
radiation are discussed in Section 5, and the existence of asymptotic symmetries is studied
in Section 6. Finally, the paper ends with a list of examples presented in [57,58] and a few
closing comments.

Before that, we set up the forthcoming sections as follows.

1.1. Weakly Asymptotically Simple Spacetimes

Throughout this paper, I assume that the spacetime (M̂, ĝ) is weakly asymptotically
simple, admitting a conformal compactification à la Penrose [8,10,11,59] such that there
exists an (unphysical) spacetime (M, g) and a conformal embedding Φ : M̂ ↪→ M such that

Φ∗(Ω−2g) M̂
= ĝ, Ω ∈ C∞(M), Ω|Φ(M̂) > 0
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where Φ∗ is the pullback of Φ, and the boundary of the image of M̂ in M, denoted by
J := ∂[Φ(M̂)], is a smooth hypersurface where Ω vanishes:

Ω
J
= 0, n := dΩ

J

6= 0.

Here, J is called “null infinity”. When Λ ≥ 0, it consists of two (not necessarily
connected) subsets: future (J +) and past (J −) null infinity, distinguished by the absence
of endpoints of past or future causal curves contained in (M, g), respectively. Under
appropriate decaying conditions for the physical Ricci tensor R̂µν, we have [8,11]

nµnµ J
= −Λ

3
=⇒J is


timelike if Λ < 0
null if Λ = 0
spacelike if Λ > 0

(1)

In cases with Λ ≥ 0, nµ is taken to be future-pointing.
Using the relations between the Levi–Civita connections ∇̂ and∇ and the correspond-

ing curvature tensors, we can find that J is a totally umbilic hypersurface in (M, g), that
is [11,60],

∇µnν −
1
4

gµν∇ρnρ = 0.

There is a gauge freedom by changing the conformal factor by an arbitrary positive factor

Ω→ Ωω, 0 < ω ∈ C∞(M). (2)

Though this is not necessary, in order to concord with references [50,56–58] I partly fix this
gauge freedom. Under the previous gauge change, the covariant derivative of the normal
behaves as [11,58,60]

∇µnµ J
−→ 1

ω
∇µnµ +

4
ω2 nµ∇µω

such that by choosing ω in such a way that

4nµ∇µω + ω∇µ∇µΩ
J
= 0

in the new gauge we obtain ∇µnµ = ∇µ∇µΩ
J
= 0, which in turn implies

∇µnν = ∇µ∇νΩ
J
= 0. (3)

The remaining gauge freedom is provided by functions ω > 0 restricted to

£nω = nµ∇µω
J
= 0.

As J is a hypersurface, it inherits a metric from (M, g), its first fundamental form;
the set of vector fields of a manifold V is denoted by X(V):

h(X, Y) := g(X, Y), ∀X, Y ∈ X(J ).

Considering any basis {~ea} (a, b, · · · = 1, 2, 3) of vector fields in X(J ), the corresponding
components are denoted by

hab = g(~ea, ~eb).

Due to (1), the metric hab is Riemannian (positive definite) if Λ > 0, Lorentzian if Λ < 0,
and degenerate if Λ = 0. In the latter case, nµ is tangent to J such that nµ = naeµ

a , and thus
na is the degeneration direction

habna = 0, (Λ = 0). (4)
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For general Λ, and according to (3) in our partial gauge fixing, J is a totally geodesic
hypersurface, its second fundamental form vanishing:

K(X, Y) = 0 ∀X, Y ∈ X(J ).

This leads to the existence of a canonical torsion-free connection ∇ on J , inherited from
(M, g), independently of the sign of Λ:

∇XY := ∇XY ∀X, Y ∈ X(J ).

This connection is, of course, the Levi–Civita connection of (J , hab) whenever Λ 6= 0.
Actually, we have

∇chab = 0 (5)

for all values of Λ.
It is possible to define a volume 3-form εabc by

−nαεabc :
J
= Vηαµνρeµ

aeν
beρ

c.

where ηαµνρ is the canonical volume 4-form in (M, g) and the constant

V =

{
(|Λ|/3)1/2 if Λ 6= 0

1 if Λ = 0.

Again, ∇dεabc = 0 in all cases.
Henceforth, say that S ⊂ J is a cut on J if it is a two-dimensional spacelike

submanifold immersed in J . When Λ > 0, the ‘spacelike’ character is ensured and all
possible two-dimensional submanifolds are cuts. For Λ = 0, cuts are cross sections of the
null J transversal to the null generators everywhere. In many cases, cuts have S2 topology,
and these always exist in the regular (or asymptotically Minskowskian) case when Λ = 0
as the topology of J is R× S2 [61]. However, this is not necessarily the case when Λ > 0,
and furthermore, even in the case with J ' R× S2 we might be interested in preferred
cuts with non-S2 topology. Examples are provided in [58].

2. Asymptotic (Radiant) Super-Momentum: The Radiation Criterion

A real gravitational field is described by the curvature of spacetime. In particular,
gravitational radiation is the propagation of curvature, that is, the propagation of changing
geometrical properties, in space and time. Hence, the existence of gravitational radiation
carrying energy-momentum lost by isolated systems in their dynamical evolution should be
amenable to a description that considers the strength of the curvature, that is, the strength of
the tidal gravitational effects, as the fundamental variable. This is the basic idea developed
in what follows, and which was put forward and developed in detail in [50,56–58].

The strength1 of the tidal gravitational forces can be appropriately described by the
Bel–Robinson tensor (see Appendix A), defined by

Tαβλµ = Cαρλ
σCµσβ

ρ+
∗
Cαρλ

σ
∗
Cµσβ

ρ.

Tαβλµ is conformally invariant, fully symmetric, and traceless

Tαβλµ = T(αβλµ), T ρ
ρλµ = 0

and satisfies the dominant property

Tαβλµuαvβwλzµ ≥ 0 (6)
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for arbitrary future-pointing vectors uα, vβ, wλ, and zµ (the inequality is strict if all of them
are timelike). The Bel–Robinson tensor is covariantly conserved

∇αTαβλµ = 0

if the Λ-vacuum Einstein field equations Rβµ = Λgβµ hold, andmore generally, whenever
the Weyl tensor is divergence-free. This provides conserved quantities if there are (con-
formal) Killing vector fields [53,62]. Nevertheless, Tαβλµ is not a good tensor to describe
radiation arriving at infinity. The reason for this is that it can be proven under very general
circumstances that the Weyl tensor vanishes at J [8,11,61]:

Cαβµ
ν J

= 0.

Therefore, the Bel–Robinson tensor vanishes there too.
However, the vanishing of the Weyl tensor at J allows us to introduce the re-scaled

Weyl tensor

dαβµ
ν :=

1
Ω

Cαβµ
ν (7)

which is well defined, as well as generically non-vanishing, at J . This is a conformally
invariant traceless tensor field defined on M with the same symmetry and trace properties
as the Weyl tensor, that is, it is a Weyl-tensor candidate; see Appendix A. In the physical
spacetime, we have

∇νdαβµ
ν M̂
= Ω−1∇̂νĈαβµ

ν

such that dαβµ
ν is divergence-free on M̂ as well as at J in Λ-vacuum2. The gauge behaviour

of the re-scaled Weyl tensor under the remaining gauge freedom (2) is simply

dαβµ
ν → 1

ω
dαβµ

ν.

The Bianchi identities imply that

dαβµ
νnν + 2∇[αSβ]µ

J
= 0 (8)

where Sβµ := 1
2 (Rβµ − 1

6 gβµ) is the Schouten tensor on (M, g).
Considering that dαβµ

ν is a Weyl-tensor candidate, we can build its super-energy
tensor T{d} as shown in Appendix A:

T{d}αβγδ := Dαβγδ := Ω−2Tαβγδ = dαµγ
νdδνβ

µ+
∗
dαµγ

ν
∗
dδνβ

µ

which can be considered as a re-scaled Bel–Robinson tensor. Here, Dαβγδ is regular at J ,
and non-vanishing in general; Dαβγδ has all the properties of the Bel–Robinson tensor,
in particular, being fully symmetric and traceless. In addition, it is divergence-free at J
under the decaying conditions for the physical energy-momentum tensor, which implies

∇νdαµγ
ν J

= 0. Its gauge behaviour under (2) is

Dαβγδ →
1

ω2Dαβγδ.

Henceforth, this paper concentrates on the physically relevant case with non-negative
Λ ≥ 0. The fundamental object on which the entire approach is based is the following
one-form

Πα := −nµnνnρDαµνρ = −∇µΩ∇νΩ∇ρΩDαµνρ (9)
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which is geometrically well defined and uniquely defined at J . Here, the properties of
Πα at J are mainly used. From the general dominant property of super-energy tensors
(Appendix A), we know that Πα|J is causal and future pointing, which is true in a neigh-
bourhood of J when Λ > 0 as well, and can always be achieved on such a neighbourhood
when Λ = 0 by an appropriate choice of Ω. In general, Πα|J is called the asymptotic
super-momentum. Actually, in the situation where Λ = 0, Πα|J is null,; as it is important to
stress this fact, the adjective “radiant” and then a specific notation is used:

Λ = 0 : Πµ|J := Qµ, QµQµ = 0 (Asymptotic radiant super-momentum)

Λ > 0 : Πµ|J := pµ, pµ pµ ≤ 0 (Asymptotic super-momentum)

The gauge behaviour under (2) is the same for both Qµ and pµ, namely, in general it is
the case that

Πα|J → ω−5Πα|J .

Furthermore, we have the following important property:

∇µΠµ J
= 0 (10)

which holds in full generality when Λ = 0 [57], but needs to assume that the energy-
momentum tensor of the physical space-time (M̂, ĝµν) behaves approaching J as T̂αβ|J ∼
O(Ω3) [58] (this includes the vacuum case, T̂αβ = 0).

The existence of gravitational radiation cannot be detected at a given point, due to
the non-local nature of the gravitational field. Thus, the maximum one can aspire for is
to detect the radiation by tidal deformations of cuts [63]. Consider any cut S ⊂ J and
let `µ be a null normal to S such that ` ∧ n 6= 0. The criteria that we found to detect the
existence or absence of gravitational radiation arriving at J + (or departing from J −) are
as follows [50,56–58]

Criterion 1 (Absence of radiation on a cut). When Λ ≥ 0, there is no gravitational radiation
on a cut S ⊂J with spherical topology if and only if Πα|S is orthogonal to S pointing along the
direction `α + sgn(Λ)(nα − `α).

Observe that this criterion states that pµ points along nµ if Λ > 0, and that if Λ = 0,Qµ

points along `µ (which in this case is uniquely determined as the null direction orthogonal
to S other than nµ).

The restriction on the topology of the cut will be justified later during the discussion
of the equivalence with the standard characterization of a vanishing news tensor if Λ = 0.
However, such a restriction can be somewhat relaxed when considering open portions of
J . Thus, we can let ∆ ⊂J denote an open portion of J with the same topology of J .

Criterion 2 (Absence of radiation on ∆ ⊂J ). When Λ ≥ 0, there is no gravitational radiation
on an open portion ∆ ⊂J that admits a cut with S2 topology if and only if Πα|∆ is transversal to
J and orthogonal to ∆. This is the same as saying that Πα|∆ is orthogonal to every cut within ∆.

Equivalently, there is no gravitational radiation on such open portion ∆ ⊂J if and only if
nα|∆ is a principal direction of the re-scaled Weyl tensor dαβλµ there.

Observe that these criteria are identical for cases with positive or zero Λ, and that they
are purely geometrical and fully determined by the algebraic properties of dαβλµ. Here,
the principal directions of the Weyl-tensor candidate dαβλµ are considered in the classical
sense [2,3], that is, those lying in the intersection of the principal planes, or in other words,
the common directions of the eigen-2-forms of dαβλµ when seen as an endomorphism
on 2-forms. Recall that when considering only the causal principal vectors, there is one
principal timelike vector for Petrov type I and no null one, while for Petrov type D there
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is an entire 2-plane of causal principal directions containing the two multiple null ones.
Finally, for Petrov types II, III, or N, there is one null principal vector and no timelike one.

I now move on to a few brief considerations about the implications of these criteria
from the viewpoint of the algebraic properties of the re-scaled Weyl tensor. In the case with
Λ = 0, stating thatQα is orthogonal to ∆ ⊂J and transversal to J can only happen ifQα

actually vanishes there Qα|∆ = 0. However, this is known to imply [64,65] that the null nµ

is actually a multiple principal null direction of dαβλµ|∆, that is to say, the re-scaled Weyl
tensor is algebraically special and of at least Petrov type II there, which is in accordance
with the discussion in [24]. Hence, if dαβλµ is type I and Λ = 0, the existence of radiation
is ensured. In the case with Λ > 0, pµ is orthogonal to ∆ ⊂ J (and then automatically
transversal as well) if pµ points along the normal nµ, meaning that p ∧ n = 0. This states
that the ‘asymptotic’ super-Poynting (see later Section 4.1.1) relative to the frame defined
by nµ vanishes, that is, (

δ
µ
ν −

3
Λ

nµnν

)
pν ∆

= 0,

which implies that nµ is a principal vector of dαβλµ [3,66]. As nµ is timelike in this situation,
absence of radiation, in this case requires that dαβλµ|∆ is of Petrov type I or D. The converse
does not hold; for instance, the C-metric is Petrov type D and contains gravitational
radiation (see Section 7 and [58]).

There should be no confusion between the Petrov type of the physical Weyl tensor
Ĉαβλ

µ and that of dαβλ
µ. Of course, there is a relationship between them, as the Petrov

type of the latter can only be equally or more, degenerate than that of the former in the
asymptotic region. This follows because the Weyl tensor is conformally invariant, meaning

that Ĉαβλ
µ M̂
= Cαβλ

µ; therefore, using (7), the Petrov type of dαβλ
µ is the same as that of

Ĉαβλ
µ on a neighbourhood of J . Using any invariant characterization of the Petrov types,

as for instance with curvature invariants or the number of principal null directions, it can
easily be deduced that the Petrov type of dαβλ

µ at J is as degenerate or more as that of the
physical Weyl tensor near J . The reasoning is here that if one of the invariants used in the
classification [67] vanishes in the neighbourhood of J , it vanish at J as well, while if it
does not vanish on the neighbourhood, it may vanish or not at J . Therefore, the possible
Petrov types of dαβλ

µ are restricted as follows

• If the Petrov type of Ĉαβλ
µ in the asymptotic region is I, then dαβλ

µ can have any Petrov
type at J .

• If the Petrov type of Ĉαβλ
µ in the asymptotic region is II, then dαβλ

µ can have any
Petrov type at J except I.

• If the Petrov type of Ĉαβλ
µ in the asymptotic region is III, then dαβλ

µ can have Petrov
types III, N, and 0 at J .

• If the Petrov type of Ĉαβλ
µ in the asymptotic region is N, then dαβλ

µ is either Petrov
type N or 0 at J .

• If the Petrov type of Ĉαβλ
µ in the asymptotic region is D, then dαβλ

µ is either Petrov
type D or 0 at J .

• If Ĉαβλ
µ = 0 on an open asymptotic region, then dαβλ

µ J
= 0.

Hence, all Petrov types on the asymptotic region of the physical spacetime except for
0 are compatible with the existence and with the absence of gravitational radiation crossing
J .

In what follows, I first show that Criterion 2 coincides with the traditional one when
Λ = 0, then I discuss the implications this has when Λ > 0.
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3. The Case with Λ = 0: Equivalence with the News Criterion

As we saw in Section 1.1, if Λ = 0 nµ is null, then hab is degenerate, while nµ J
= naeµ

a
and na is the degeneration vector field at J ; ergo, it is tangent to its null generators,
habna = 0. Using the canonical connection and (3), na is parallel on J :

∇bna = 0. (11)

The topology of J is usually taken to be R× S2, although there are cases where this
does not hold if there are singularities or incompleteness of J . In the standard case with
J ' R× S2, the cuts S can be chosen to be topologically S2; see Figure 1. For any cut S
there is a unique lightlike vector field `µ orthogonal to S and such that nµ`µ = −2; this is the
vector field `µ used in Criterion 1. Here, {~EA} denotes any basis of X(S) (A, B, · · · = 2, 3).
These can be extended to vector fields on J by choosing them on any cut and then
propagating them such that £nEa

A = MAna (for some MA which will be irrelevant in what
follows), where £v is the Lie derivative with respect to va on J . Then, {~ea} = {~n,~EA} are
a basis of vector fields on J . Let hab represent any tensor field satisfying

habhachbd = hcd

; such hab suffers from an indeterminacy, as hab + nasb + nbsalso satisfies the condition as
well for arbitrary sb. Nevertheless, hab allows us to raise indices and take traces unambigu-
ously when acting on covariant tensors fully orthogonal to na.

S
~n ~̀~n

~EA

Figure 1. This is a schematic representation of J + when Λ = 0, where ~n is the null degeneration
vector field, S is a cut, ~̀ is the unique null vector orthogonal to S and transversal to J , and ~EA

are vector fields tangent to the cut. Cuts are two-dimensional surfaces, usually with S2 topology.
In the picture, one dimension is suppressed; thus, this topology of the cut is represented here as
a circumference.

The connection ∇, which is inherited from the spacetime, has a curvature tensor Rabc
d

and the corresponding (symmetric) Ricci tensor Rac := Radc
d. It happens that

Rabnb = 0,

and therefore,
R := habRab (12)
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is well defined.
Due to (5) and to the vanishing of the second fundamental form on J , which in-

duces (11), in this case we again have

£nhab = 0.

Hence, all possible cuts are isometric, with a first fundamental form

qAB := habEa
AEb

B, £nqAB = nc∇cqAB = 0

which is essentially the non-degenerate part of hab. Its covariant derivative is denoted by
DA. The scalar curvature (or twice the Gaussian curvature) of the cuts is precisely (12), and
£nR = 0. Of course, only the conformal class is fixed because of the gauge freedom (2):

hab → h̃ab
J
= ω2hab, q̃AB

S
= ω2qAB. (13)

The structure (hab, na) on J is universal. Nevertheless, observe that it does not contain
any dynamical behaviour. The dynamics, and therefore the possible existence of gravitational
radiation, is not encoded in this universal structure; rather, it comes from structure inherited
from the physical spacetime. In this Λ = 0 situation, the time dependence along J is
actually encoded in the connection ∇ and its curvature. This is crucial. Notice that

£n∇ 6= 0, [£n,∇] 6= 0

In particular, for any one-form t

[£n,∇b]ta = −nctc

(
Sab −

1
2

he f Se f hab

)
(14)

where Sab is the pull-back of the Schouten tensor to J :

Sab :
J
= Sµνeµ

aeν
b, naSab = 0

as provided by

Sab −
1
2

he f Se f hab = Rab −
1
2

Rhab.

In plain words, Sab encodes the time variations within J , and hence contains the
information about any gravitational radiation crossing J . However, Sab has non-trivial
gauge behaviour:

Sab → Sab −
1
ω
∇a∇bω +

2
ω2∇aω∇bω− 1

2ω2 hab ωc∇cω (15)

(here, gµν∇νω :
J
= ωceµ

c). It is necessary to extract the relevant gauge-invariant part of
Sab, which is the News tensor field.

There are many ways to define the News tensor field, such as by using expansions in
Bondi coordinates [4,5,68], by defining the asymptotic outgoing shear [8,11,59,69], or by
computing the limit at J of Ω−1∇µnν in certain gauges [70]. For the present purposes,
the best suited definition is the dynamical (time-dependent) and gauge invariant part of Sab,
in accordance with [61]. This is a geometrically neat and physically clarifying definition.

To find the explicit expression, we can begin by noticing that Sab is orthogonal to
na, meaning that only the components SAB = SabEa

AEb
B are non-zero. Nevertheless, these

components change from cut to cut due to the dynamical dependence of Sab itself. By pro-
jecting (8) to J , we have

2∇[aSb]c = −eα
a eβ

b eλ
c dαβλ

µnµ (16)
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from which it easily follows that

£nSbc = na∇aSbc = −nαeβ
b eλ

c dαβλ
µnµ 6= 0,

which is non-vanishing in general. In particular,

£nSAB = nc∇cSAB 6= 0

such that SAB depend on the cut. Such a time-dependent part is what is of interest here.
Consequently, it is necessary to subtract from Sab a tensor field that is symmetric, orthogonal
to na, time-independent, and with a gauge behaviour that compensates (15) such that the
relevant information contained in (16) remains intact. Explicitly, we need a tensor field ρab
such that

ρab = ρba, naρab = 0, ∇[cρa]b = 0, (17)

and with the following gauge behaviour under (13):

ρ̃ab = ρab −
1
ω
∇a∇bω +

2
ω2∇aω∇bω− 1

2ω2 hab ωc∇cω.

Note that nc∇cρab = 0 follows from the above, meaning that ρab is actually a true
two-dimensional tensor field with only ρAB non-zero components, and these are time-
independent nc∇cρAB = 0. Therefore, it is enough to have this tensor field on any cut.
However, this is the tensor ρAB studied in Appendix B. Observe that we then have, in addition,
habρab = R/2.

The News tensor field is defined by [61]

Nab := Sab − ρab (18)

and has the following properties

Nab = Nba, naNab = 0, habNab = 0

More importantly, Nab is gauge invariant under (13)

Nab = Ñab.

From (16), (18), and (17) we can derive

2∇[aNb]c = −eα
a eβ

b eλ
c dαβλ

µnµ (19)

from which, as before,
£nNab 6= 0

in general, meaning that the News tensor generically changes from one cut to another. The
pullback of Nab to any cut S is denoted by

NAB(S)
S
= NabEa

AEb
B.

Here, I use the notation
ṄAB(S) : S= Ea

AEb
B£nNab

The classical characterization of gravitational radiation in the case where Λ = 0 is provided
as follows:
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Definition 1 (Classical radiation characterization). There is no gravitational radiation on a
given cut S ⊂J if and only if the News tensor vanishes there:

NAB(S) = 0⇐⇒ Nab
S
= 0⇐⇒ no gravitational radiation on S

Remark 1. Observe that Nab is a tensor field and its vanishing at any point is an invariant
statement. Nevertheless, we cannot aspire to localize gravitational radiation at a point, and thus
the vanishing of Nab at a given point has no meaning in principle (see, e.g., the discussion in [63]).
On the other hand, the vanishing of Nab on an entire cut does have a meaning, as this is a quasilocal
statement. In this sense, Nab is related to the quasi-local energy-momentum properties of the
gravitational field at J .

To justify the previous definition, a description of the gravitational energy-momentum
properties at infinity is needed, which in turn requires the knowledge of the asymptotic
symmetries, that is, the symmetries of J , namely, the BMS group [4,9,61,70,71]. A conve-
nient characterization of the infinitesimal isometries of J that is independent of the gauge
choice is provided by the vector fields ~Y ∈ X(J ), satisfying

£Y(nanbhcd) = 0.

This can be shown to be equivalent to (φ ∈ C∞(J ))

£Ynb = −φnb, £Yhab = 2φhab

and the set of such vector fields is a Lie algebra. Any vector field of the form Ya = αna

with £nα = 0 (and gauge behaviour α̃ = ωα) satisfies these relations. These are called
infinitesimal super-translations, and constitute an infinite-dimensional Abelian ideal. The rest
of the BMS algebra is provided by the conformal Killing vectors of (S , qAB), i.e., the Lorentz
group for round spheres. There exists, however, a four-dimensional Abelian sub-ideal
constituted by the solutions of the linear equation (∆ is the Laplacian on (S , qAB); see
Appendix B)

∇a∇bα + αρab −
1
2

hab

(
∆α +

R
2

)
= 0

the elements of which are called infinitesimal translations. This equation is fully orthogonal
to na and time-independent (its Lie derivative with respect to na vanishes), and thus it is
actually fully equivalent to the equation on any given cut

DADBα− 1
2

qAB∆α + α

(
ρAB −

R
4

qAB

)
= 0.

This is precisely equation (A19), the four independent solutions of which are denoted by π(µ).
Using these solutions Yb

(µ)
:= π(µ)nb, the corresponding Bondi-Trautman 4-momentum on

any given cut S can be expressed as [61]

B(µ)(S) := − 1
32π

∫
S

π(µ)

(
dβµν

ρnρ`
βnµ`ν + 2σABNAB

)
where σAB is the shear tensor of S along `µ, that is to say, the trace-free part of Eµ

AEν
B∇µ`ν

on S .
Now, let ∆ ⊂ J + be a connected open portion of J + with the same topology as

J + and limited by two cuts, S1 and S2, with S2 entirely in the future of S1, as shown in
Figure 2. We can compute the Bondi–Trautman 4-momentum for both cuts and check the
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difference. This results in removing any matter content around J + for simplicity and to
make things clearer; for the general case see, e.g., [57,61]

B(µ)(S2)− B(µ)(S1) = −
1

32π

∫
∆

π(µ)h
abhcdNacNbd

which is a null vector in the auxiliary Minkowski metric of Appendix B where ηµνπ(µ)π(µ) =
0 and, in particular, has a strictly negative 0-component. This leads to the interpretation of
News in Definition 1.

S1

S2

∆

Figure 2. Schematic representation of a portion ∆ of J + delimited by two cuts S1 and S2 when
Λ = 0 (one dimension is suppressed). The cut S2 is in the future of S1. The portion ∆ has the same
topology as J +, and is depicted by the shadowed part.

Now, we can finally prove the equivalence of Definition 1 with Criteria 1 and 2. On a
given cut S , the radiant super-momentum can be split into its null transverse (along `α)
and tangent parts to J ,

Qα S
=

1
2
W`α +Qaeα

a,

whereW := −nµQµ ≥ 0 and

Qa
:=

1
2
Zna +QAEa

A with Z := −`µQµ ≥ 0.

These quantities are observer-independent: Z and QA
depend only on the cut, whileW is

fully intrinsic to J .
The theorem that proves equivalence with Criterion 1 is:] as follows.

Theorem 1 (Radiation condition). There is no gravitational radiation on a given cut S ⊂ J
with S2 topology if and only Qµ points along `µ on that cut:

NAB(S) = 0 ⇐⇒ Qa S
= 0 (⇐⇒ Z = 0).



Universe 2022, 8, 478 13 of 42

Proof. Projecting (19) to S , a somewhat long calculation leads to

W S
= 2ṄABṄAB ≥ 0, (20)

Z S
= 8D[ANB]CD[ANB]C = 4DC NC

ADBNBA ≥ 0, (21)

QA S
= 8ṄBCD[BNA]C = −4ṄBADC NC

B. (22)

Equation (21) implies that Z = 0 ⇐⇒ D[ANB]C = 0. Using (22), this happens if and only

if Qa
= 0, that is, if and only if 2Qµ S

= W`µ. However, D[ANB]C = 0, or equivalently,
DANA

B = 0, informs us that NAB is a traceless symmetric Codazzi (and divergence-free)
tensor on the compact S , which implies [72] that NAB = 0. Hence, NAB = 0 ⇐⇒ Qa

= 0
on S .

Remark 2. As the radiant super-momentum Qµ is always null, this theorem can be equivalently
stated as follows: there is no gravitational radiation on a given cut S ⊂J if and only if the radiant
super-momentum is orthogonal to S everywhere and is not co-linear with nα. Notice that, given a
cut, this statement is totally unambiguous.

Similarly, the theorem that proves equivalence with Criterion 2 is as follows.

Theorem 2 (No radiation on ∆ ⊂J ). There is no gravitational radiation on an open portion
∆ ⊂ J which contains a cut with topology S2 if and only if the radiant super-momentum Qα

vanishes on ∆:
Nab

∆
= 0 ⇐⇒ Qα ∆

= 0.

Proof. If cuts with S2 topology can be found in ∆, then according to the previous remark

and Theorem 1 the absence of radiation on ∆ requires that 2Qα S
= W`α on every possible such

cut S included in ∆. However, this is only possible if Qα ∆
= 0. More generally, observe first

that Nab
∆
= 0 trivially implies that Qα ∆

= 0 due to (20)–(22) independently of the topologies.

Conversely, if Qα ∆
= 0, then from (20) ṄAB

∆
= 0, meaning that Nab is time-independent and

NAB is the same for all possible cuts (as they are all locally isometric). From (21), we have
D[ANB]C = 0 on every cut. Thus, if a compact cut has a positive Gaussian curvature such
that its topology is necessarily S2, then a known theorem [72] implies that NAB = 0.

Remark 3. If there is gravitational radiation at J , there can arise situations where it is actually
the case that 2Qµ = W`µ 6= 0 for a given foliation of cuts with Z = 0 on them. Of course, this
is only possible if the cuts have a non-S2 topology. In this case, on those cuts D[ANB]C = 0 (and
DBNBA = 0). In particular, for instance if R = 0, we further have DC NAB = 0, meaning that
NAB is constant on those cuts. Hence, Nab = Nab(u) are functions of a single coordinate u such
that the foliation is defined by u =const., and necessarily na∇au 6= 0. For any other cut not in this
special foliation, Z 6= 0. In any case, the non-vanishing of Qµ detects the radiation in this case
correctly. Examples of this situation exist in the C-metric and the Robinson–Trautman solutions.

4. The Case with Λ > 0

The case of asymptotically de Sitter spacetimes is much harder and of a different
nature. The main differences and basic complications both arise due to the fact that n is now
timelike, and thus J is a spacelike hypersurface; thus, there is no notion of ‘evolution’.
The topology of J is not determined, and has no ‘universal’ structure. The existence of
infinitesimal symmetries is not guaranteed. There is a major issue concerning incoming and
outgoing gravitational radiation. The very notion of energy is unclear, as there cannot be
any globally defined timelike Killing vector, indeed, all possible Killing vectors on (M̂, ĝ)
become tangent to J at J , ergo, they are spacelike there. There are other issues as well;
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see, e.g., [14–16,35]. Nonetheless, Criteria 1 and 2 appropriately identify the cases without
radiation, though there remain a number of subtleties to be understood concerning the
mixture (or possible anihilation) of incoming and outgoing radiation.

Let us start by noting that, contrary to the asymptotically flat case where one generally
deals with a nice topology R× S2, in the case with Λ > 0 the topology of any connected
component of J is not determined (see Figure 3).

nµ
J+

S
Figure 3. This is a schematic representation of J + when Λ > 0, where nµ is timelike and normal
to J +, and S represents a cut with spherical topology. As usual, one dimension is suppressed.
The topology of J is not fixed, and the manifold can be R3, R× S2, S3, or even S3 \ {p1, . . . , pn}
with n > 2; see the main text. If, for instance, the topology is S3, the shown schematic representation
should be understood as a stereographic projection onto Euclidean space. Thus, the best way to
imagine J + when Λ > 0 is as S3, possibly with a number of points removed.

Its topology can be (see e.g., [73] with examples):

1. S3. This is the case for de Sitter or Taub–NUT–de Sitter spacetimes.
2. R× S2. This happens in Kerr–de Sitter spacetime, including Kottler with spherical

symmetry.
3. R3, such as in Kottler spacetimes with non-positively curved group orbits.
4. Others, S3 \ {p1, . . . , pn} with n > 2.

The conformal geometry of (J , hab) is provided by the completion of the physical
spacetime. In particular,

• Its intrinsic Schouten tensor, which actually coincides with the pull-back of the
Schouten tensor on (M, g):

Sab := Rab −
R
4

hab
J
= Sµνeµ

aeν
b

• The corresponding Cotton–York tensor Cab, which coincides with the magnetic part of
the re-scaled Weyl tensor [11,15,74](

Λ
3

)1/2
Cab := εa

cd∇cSdb
J
=
∗
dµνρ

σn̄σeµ
an̄νeρ

b (23)

where n̄µ is the normalized version of nµ.

Only the trace-free part of Sab enters into the previous equation. Considering the
foliation by spacelike hypersurfaces Ω = const. around J determined by n = dΩ, the time
derivative of its shear σµν coincides on J with the aforementioned trace-free part

σ̇ab :
J
= eµ

aeν
b£n̄σµν = Sab −

1
12

Rhab.

The completion of the physical spacetime provides the electric part of the re-scaled Weyl
tensor3

Fab :
J
= dµνρ

σn̄σeµ
an̄νeρ

b
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although this is not intrinsic to (J , hab); Fab can be seen to coincide with the second
time-derivative of the shear:

σ̈ab
J
= 2

(
Λ
3

)1/2
Fab.

In general, Cab and Fab are trace-free tensors with gauge behaviour under (2)

{Cab,Fab} → ω−1{Cab,Fab}.

From the Bianchi identities, Cab is divergence-free, that is to say, it is a TT-tensor. For ap-
propriate decaying condition of the physical energy-momentum tensor, Fab is a TT-tensor.
Under these decaying conditions, the Bianchi identities reduce to

∇aCab = 0, ∇aF ab = 0, ∇[cCa]b =
1
2

εcadḞ d
b, ∇[cFa]b =

1
2

εcadĊd
b. (24)

Note that the first two are consequences of the second pair by using the traceless property
of Fab and Cab. In the above, the dot means the derivative along the unit normal n̄µ to J .

There are several fundamental results demonstrating that the geometry of the physical
spacetime is fully encoded as initial conditions of a well-posed initial value problem
on (J , hab) together with a symmetric and trace-free tensor field (Fab). This can be seen as
an initial or final value problem. Specifically, I refer to

• A classical result by Starobinsky [77]. An expansion in powers of e−(
Λ
3 )

1/2
t as t→ ∞

shows that the first term is a spatial three-dimensional metric hab; the next two terms
are then determined by the curvature of hab and a traceless symmetric tensor Fab with
a divergence that depends on the matter contents and is divergence free in vacuum,
with these three terms determining the whole expansion.

• A more mathematical (and more general) similar result thanks to Fefferman and
Graham [78,79] shows that, given any conformal geometry (Σ, hab), the addition
of a TT-tensor Fab provides (via a well determined expansion) a four-dimensional
spacetime with a conformal completion that has (J , hab) = (Σ, hab).

• The results by Friedrich [11,74–76] prove that the Λ-vacuum Einstein field equations
are equivalent to a set of symmetric hyperbolic partial differential equations on the
unphysical spacetime and the solutions are fully determined by initial/final data
consisting of a three-dimensional Riemannian manifold with the metric conformal
class plus a TT-tensor. The Riemannian manifold turns out to be (a representative of
the conformal class of) (J , hab), while the TT-tensor coincides with the electric part
Fab of the re-scaled Weyl tensor.

In summary, we now know that any property of the physical spacetime is fully encoded in
the triplet (J , hab,Fab). Consequently, the existence or absence of gravitational radiation
is fully encoded in (J , hab,Fab). Our criteria fulfil this completely, because the asymptotic
super-momentum can be split into the parts tangent and normal to J

pα := −Dα
βµνnβnµnν J

= Wn̄α + p̄aeα
a

futhermore, (10) now requires appropriate matter decaying conditions and provides

∇µ pµ J
= 0 =⇒ Ẇ +∇a p̄a = 0 (25)

where p̄a is called the asymptotic super-Poynting vector. Observe that Criterion 1 (respectively
Criterion 2) states that there is no gravitational radiation crossing a cut S ⊂J (respectively
∆) if p̄a vanishes on S (resppectively ∆). From well-known old results [3,80,81],

p̄a = 2
(

Λ
3

)(3/2)
εabcCbdF c

d (26)
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meaning that there is no gravitational radiation crossing J if and only if Ca
b and F a

b
conmute:

p̄a = 0 ⇐⇒ εabcCbdF c
d = 0.

This condition is truly encoded on (J , hab,Fab) and takes all its elements into account,
as required.

Remark 4 (Radiation encoded at J ). From the perspective of the initial, or final, value problem,
given a particular conformal geometry representing (J , hab), it is only necessary to add a TT
tensor Fab such that it does (does not) conmute with the Cotton–York tensor Cab if the spacetime
is (is not) free of gravitational radiation. Observe that there is a special possibility when (J , hab)
is conformally flat, such that Cab = 0, in which case the resulting spacetime does not contain
gravitational radiation redgardless of which TT-tensor field Fab is added.

Now, let ∆ ⊂ J be an open region of J bounded by two disjoint cuts S1 and S2,
as shown in Figure 4. From (25), we easily obtain∫

∆
Ẇε =

∫
S1

ma
1 p̄aε2 −

∫
S2

ma
2 p̄aε2 (27)

where ma
1 and ma

2 are the unit normals to S1 and S2 within J , respectively. We later see
that p̄ama has a sign in relevant cases.

nµJ+

∆

S1

ma1ma2S2

Figure 4. Schematic representation of a region ∆ in J + when Λ > 0 bounded by two disjoint cuts
S1 and S2. The vector fields ma

1 and ma
2 are the unit normal vectors to the cuts S1 and S2 within J +,

respectively.

4.1. Geometry of Cuts on J

Our criteria for absence of radiation are primarily associated with cuts, and thus it is
convenient to develop a formalism for the geometry of these cross-sections of J in relation
with the physical quantities relevant for the criteria. Let S be any cut on J and let mb

denote the unit vector field normal to S within J ; as before, let {Ea
A} be a basis of tangent

vector fields on S . The first fundamental form of the cut is denoted by

qAB = habEa
AEb

B

and (13) holds. Define for every symmetric tensor field t̄ab on J its corresponding parts in
an orthogonal decomposition relative to S and thereby introduce the notation for all such
tensor decompositions:

t̄ab = tABEa
AEb

B + tAEa
Amb + tBEb

Bma + tmamb

then, raise and lower the indices of the objects on S with the inherited metric qAB. The Levi–
Civita connection of (S , qAB) is denoted by γA

BC, and we thus have

Ea
A∇aEb

B = γC
ABEb

C −κABmb,
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where κAB is the second fundamental form of S in J as well as the unique non-zero
second fundamental form of S in the unphysical spacetime. We can decompose this object
as usual:

κAB := ΣAB +
1
2
κqAB, κ := qABκAB, qABΣAB = 0

where ΣAB is the shear of S in J , or the unique non-zero shear of S in the unphysical
spacetime. Furthermore, for any symmetric tab

Ea
AEb

BEc
C∇c t̄ab = DCtAB + tAκBC + tBκAC.

Under the allowed gauge transformations (13), the above objects and those relative to
Sab transform as follows (ωA := DAω, ωm := mb∇bω)):

m̃a = ωma, (28)

γ̃C
AB = γC

AB +
1
ω

(
δC

AωB + δC
B ωA −ωCqAB

)
, (29)

κ̃AB = ωκAB + ωmqAB, (30)

Σ̃AB = ωΣAB, (31)

κ̃ =
1
ω
κ +

2
ω2 ωm, (32)

S̃AB = SAB −
1
ω

DAωB +
2

ω2 ωAωB −
1

2ω2 ωDωDqAB −
ωm

ω

(
κAB +

1
2ω

ωmqAB

)
, (33)

S̃A =
1
ω

(
SA −

1
ω

DAωm +
1
ω
κABωB +

2
ω2 ωmωA

)
, (34)

S̃ =
1

ω2

(
S− 1

ω
mamb∇a∇bω +

2
ω2 ω2

m −
1

2ω2∇cω∇c
ω

)
. (35)

The projections of the gauge-invariant Equation (23) onto the cut S lead to the follow-
ing relations:

D[CSA]B +κB[CSA] =
1
2

(
Λ
3

)1/2
εCACB, (36)

Ea
AEb

Bmc∇cSab − DASB +κD
A SBD − SκAB =

(
Λ
3

)1/2
εA

DCDB (37)

where εAB is the canonical volume element 2-form on (S , qAB). Relation (36) is gauge
invariant, while (37) is gauge homogeneous with a factor 1/ω. As the righthand side
of (36) is easily seen to be gauge invariant (because C̃ab = (1/ω)Cab), it follows that
D[CSA]B +κB[CSA] is gauge invariant. The skew-symmetric part of (37) reads

D[CSA] −κD
[CSA]D =

1
2

(
Λ
3

)1/2
εCAC

(notice that C := Cabmamb = −CE
E , as follows from Cb

b = 0), while the symmetric part reads

Ea
AEb

Bmc∇cSab − D(ASB) +κD
(ASB)D − SκAB =

(
Λ
3

)1/2
ε(A

DCB)D =

(
Λ
3

)1/2
εA

DČBD

where we use a check of the matrices to denote its trace-free part:

ČAB := CAB −
1
2

qABCE
E, εDAČB

D = εDBČA
D = εD(ACB)

D (38)
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and similarly for F̌AB. Using the two-dimensional identity

κD
(ASB)D −

1
2
κSAB −

1
2

SD
DκAB +

1
2

(
κSD

D −κCDSCD

)
qAB = 0

the previous symmetric part can be recast into the form

Ea
AEb

Bmc∇cSab − D(ASB) +
1
2
κSAB +

(
1
2

SD
D − S

)
κAB

−1
2

(
κSD

D −κCDSCD

)
qAB =

(
Λ
3

)1/2
εA

DČBD. (39)

An equivalent form of (36) is

DBSB
A − DASD

D +κSA −κB
ASB =

(
Λ
3

)1/2
CDεDA.

We can rewrite (36) in a form without SA. This can be achieved using the Gauss and
Codazzi relations for S , which can be checked to read

SA[CqD]B + qA[CSD]B = KqA[CqD]B −κA[CκD]B, (40)

D[CκA]B = qB[CSA] (41)

Relation (41) is equivalent to its trace

SA = DEκE
A − DAκ. (42)

The Gauss Equation (40) is fully equivalent to its trace and to its double trace:

SD
DqAB = KqAB +κD

AκDB −κκAB, (43)

SD
D = K +

1
2

(
κABκAB −κ2

)
= K− det(κE

F ), (44)

which can be easily checked using a typical two-dimensional identity, and for the last part
using the Cayley–Hamilton theorem:

κD
AκDB −κκAB + qAB det(κE

F ) = 0.

Another simpler version of this relation is simply

ΣA
DΣDB =

1
2

ΣDEΣDEqAB. (45)

Notice that
κABκAB = ΣABΣAB +

1
2
κ2.

Using (42), Equation (36) can be rewritten as

D[CSA]B +κB[C

(
DEκA]E − DA]κ

)
=

1
2

(
Λ
3

)1/2
εCACB, (46)

the lefthand side of which is (must be!) gauge invariant, in accordance with (52). This is
equivalent, aftercalculation, to

DC

(
SC

A −
1
2

ΣCEΣEA +
κ
2

ΣC
A +

κ2

8
δC

A − KδC
A

)
=

3
2

DB(ΣBEΣEA)− ΣCEDEΣCA +

(
Λ
3

)1/2
εEACE. (47)
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Observe that the righthand side in this expression is gauge-homogeneous with a factor
1/ω2.

Projecting the Bianchi Equations (24) to the cut S as before, we can derive

D[CCA]B +κB[CCA] =
1
2

εCAḞB, (48)

Ea
AEb

Bmc∇cCab − DACB +κA
DCBD + CE

EκAB = εADḞD
B, (49)

D[CFA]B +κB[CFA] =
1
2

εCAĊB, (50)

Ea
AEb

Bmc∇cFab − DAFB +κA
DFBD +FE

EκAB = εADĊD
B (51)

Analogously to Lemma A1, the following result can be proven for cuts on J when
Λ > 0

Lemma 1. Let pAB = p(AB) be any symmetric tensor field on (S , qAB) with the following gauge
behaviour under residual gauge transformations (13):

p̃AB = pAB −
1
ω

DAωB +
2

ω2 ωAωB −
1

2ω2 ωDωDqAB −
ωm

ω

(
κAB +

1
2ω

ωmqAB

)
Then,

D̃[C p̃A]B + κ̃B[C

(
D̃Eκ̃A]E − D̃A]κ̃

)
= D[C pA]B +κB[C

(
DEκA]E − DA]κ

)
+

1
ω

(
pB[C − SB[C

)
ωA] +

1
ω

qB[C

(
pD

A] − SD
A]

)
ωD

The proof is again by direct calculation. As a corollary, we immediately have

D̃[CS̃A]B + κ̃B[C

(
D̃Eκ̃A]E − D̃A]κ̃

)
= D[CSA]B +κB[C

(
DEκA]E − DA]κ

)
(52)

4.1.1. The Super-Poynting Vector and Asymptotic Radiant Super-Momenta on Cuts of J

Here, I denote by
~k± := ~̄n± ~m, kµ

+k−µ = −2

the two future null normals to the cut S (see Figure 5) and, considering that ΣAB is the only
non-zero shear of S in J , the corresponding two null shears are simply ±ΣAB.

nµ
J+

k
µ
+ k

µ
−

S
mµ

Figure 5. Schematic representation of the two null normals kµ
± = n̄µ ± mµ to the cut S at a given

point of the cut.

We introduce, for each cut S , the two asymptotic radiant super-momenta as

Qα
± := −Dα

µνρkµ
±kν
±kρ
±, (53)
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and they are always, by construction, null and future. It is convenient to have formulae
for p̄a and for Qα

± in terms of Cab and Fab. To that end, we write the asymptotic radiant
super-momenta in the given bases

Qα
± =

1
2
W±kα

∓ +
1
2
Z±kα

± + QA
±Eα

A (54)

or equivalently

Qα
± =

1
2
(W± +Z±)n̄α ± 1

2
(Z± −W±)mα + QA

±Eα
A (55)

where by direct (long) calculation we find

W± := −k±α Qα
± = 8(F̌AB ∓ εDAČB

D)(F̌AB ∓ εCAČB
C) ≥ 0, (56)

Z± := −k∓α Qα
± = 4(FA ± εABCB)(FA ± εADCD) ≥ 0, (57)

QA
± := WA

α Qα
± = ±8(F̌AB ∓ εD(AČB)

D)(FB ± εBECE). (58)

Several useful formulas are

Z+ −Z− = 16εABFACB, Z+ +Z− = 8(FAFA + CACA), (59)

W+ −W− = 32εABF̌ADČB
D, W+ +W− = 16(F̌ABF̌AB + ČABČAB), (60)

QA
+ −QA

− = 16(ČABCB + F̌ABFB), QA
+ + QA

− = 16εAB(ČBDFD − F̌ BDCD). (61)

Then, the expressions of the components of p̄a can be easily found. Orthogonally decom-
posing the super-Poynting on S as(

3
Λ

)3/2
p̄a = pmma + pAEa

A

another straightforward calculation leads to

pm =
1

16
(Z+ −Z− −W+ +W−) + 3εABCAF B =

1
16

(W− −W+ + 2Z− − 2Z+) (62)

(where the first in (59) has been used) and to

pA = 2εAB

(
CBDFD −F BDCD + CE

EF B −FE
ECB

)
= 2εAB

(
ČBDFD − F̌ BDCD +

3
2

CE
EF B − 3

2
FE

ECB
)

(63)

=
1
8
(
Q+

A + Q−A
)
+ 3εAB

(
CE

EFB −FE
ECB

)
.

For completeness, note in passing that

Qα
++Qα

− =
1
2
(W++W−+Z++Z−)nα +

1
2
(Z+−Z−−W++W−)mα +

(
QA

+ + QA
−

)
Eα

A. (64)

5. Are There Any News for Cuts (and for J )?

There are objects in the literature called “News” tensors in the case with Λ > 0 based
on analogies with the asymptotically flat case. None of them seem to have led to properties
similar to that of the News tensor when Λ = 0, and doubts can be raised about the existence
of news in the general case with Λ > 0. Nevertheless, in this section I describe a general
method to search for such ‘News’, and a tensor field is uncovered that is certainly part of
any news tensor, if any exists.

Recall first of all that, when Λ = 0, Nab is pull-backed Schouten tensor gauge corrected,
and that we can unambiguously define the news tensor associated with any cut S by
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projecting into the cut. An interesting idea, in light of the previous considerations, is to try
to assign to any possible cut S ⊂J —and especially when the cut is topologically S2—a
gauge invariant tensor field contained partly in the pullback to S of Sab.

Why partly? Well, there are crucial differences now with respect to the case with
Λ = 0, as now the Schouten tensor Sab is fully intrinsic to (J , hab), in contrast with the
asymptotically flat case, where it arises as the curvature of the connection as inherited from
the ambient manifold, though not intrinsic to the null (J , hab). In this sense, note that (23)
is fully intrinsic to the spacelike (J , hab), showing in particular that Sab is determined
exclusively by Cab and thus it cannot contain by itself any gauge-invariant part that describes the
existence of radiation, which, as explained before, must be encoded in the triplet (J , hab,Fab). A
key equation now is the identity

1
2

3
Λ

p̄c = ∇c(F abSab)−∇a(F abSbc)− Sab∇cF ab

which graphically shows that the asymptotic super-Poynting depends on the interplay
between Sab and Fab. In this formula, every term on the righthand side has a complicated
gauge behaviour, yet their combination equals p̄c, the gauge behaviour of which is simply
p̄c → ω−5 p̄c. Considering that the vanishing of p̄c characterizes the absence of radiation,
the existence of any ‘source’ of type News for p̄c requires a splitting of the righthand terms
in gauge well-behaved parts plus a remainder that must be uniquely determined. Such a
“News tensor” should then satisfy appropriate differential equations.

Despite these difficulties, Sab will probably entail the part of the news (if this exists)
not related to the TT-tensor Fab. This is the part that we were able to identify in [58], as I
discuss in the following.

Let us generalize Corollary A2 by finding the general form of the tensor fields defined
by Corollary A1, now with a general non-vanishing D[CtA]B.

Proposition 1. Let S ⊂J be a cut on J ; then, if the equation

D[CWA]B = XCAB (65)

for a given gauge invariant tensor field XCAB = X[CA]B has a solution for WAB = W(AB) with a
gauge behaviour (A23) and with a = 1, then this solution is provided by

WAB = SAB −
1
2

ΣA
DΣBD +

κ
2

ΣAB +
κ2

8
qAB + MAB (66)

where MAB is a trace-free, gauge invariant, and symmetric tensor field solution of

D[C MA]B = XCAB −
1
2

(
Λ
3

)1/2
εCACB + D[C

(
ΣA]EΣB

E
)
− 1

2
DBΣ[C

EΣA]E. (67)

Remark 5. The righthand side of (67) is gauge invariant. If the cut has S2 topology the solution is
unique. More generally, MAB (and a fortiori WAB) is unique whenever (S , qAB) has a conformal
Killing vector with a fixed point [58].

Proof. Using (29), (31), (32), and (33) it is a matter of checking that the tensor (66) has the
gauge behaviour (A23) with a = 1, provided MAB is gauge invariant. Its trace, on using (44)
and (45), is

WE
E = K. (68)

Therefore, Corollary A1 applies and D[CWA]B is gauge invariant. For the second part,
using (47) and manipulating a little, we arrive at

D[CWA]B =
1
2

(
Λ
3

)1/2
εCACB − D[C

(
ΣA]EΣB

E
)
+

1
2

DBΣ[C
EΣA]E + D[C MA]B



Universe 2022, 8, 478 22 of 42

from where (67) immediately follows. Due to the second part in Corollary A1, D[C MA]B is
gauge invariant.

Now, notice that the tensor field WAB −MAB, that is,

UAB := SAB −
1
2

ΣA
DΣBD +

κ
2

ΣAB +
κ2

8
qAB

has the following trace
UE

E = K (69)

and that Equation (47) can be rewritten, in terms of UAB as

DC(UC
A −UE

EδC
A) =

3
2

DB(ΣBEΣEA)− ΣCEDEΣCA +

(
Λ
3

)1/2
εEACE. (70)

Contracting this equation with any conformal Killing vector field ξA and integrating its
lefthand side on S∫
S

ξA[DC(UC
A −UE

EδC
A)] =

∫
S

DC[ξ
A(UC

A −UE
EδC

A)]−
∫
S
(UCA −UE

EqCA)DCξA

=
∫
S

DC[ξ
A(UC

A −UE
EδC

A)]−
1
2

∫
S
(UCA −UE

EqCA)qCADBξB

=
∫
S

DC[ξ
A(UC

A −UE
EδC

A)] +
1
2

∫
S

KDBξB

where the second equality relies on the fact that ξA is a conformal Killing vector and in the
last equality I have used (69). If S is compact, the first summand here vanishes. Concerning
the second, a non-trivial result proved in Appendix B, namely, (A29), shows that this term
vanishes if S is compact. Therefore, whenever the cut S is compact, we arrive at

∫
S

ξ A

(
3
2

DB(ΣBEΣEA)− ΣCEDEΣCA +

(
Λ
3

)1/2
εEACE

)
= 0 (71)

for every conformal Killing vector fields ξA if S is compact.
Define the first piece of news on S as the tensor field

VAB := UAB − ρAB (72)

where ρAB is the tensor field of Corollary A2. Explicitly, the first piece of news is provided
by

VAB = SAB −
1
2

ΣA
DΣBD +

κ
2

ΣAB +
κ2

8
qAB − ρAB.

By construction, VAB is gauge invariant and trace free, meaning that

D[CVA]B = D[CUA]B

is gauge invariant. However, VAB depends only on the intrinsic geometry of (J , hab) and
the cut, and therefore it simply cannot contain the desired News tensor, which must involve,
as previously explained, Fab. It follows that the part described by MAB must be related to
Fab, thereby bringing the information encoded in Fab into the total tensor (66). Hence, it
follows that the ‘source’ XCAB in Equation (65) has to somehow entail Fab. The definition
of VAB induces

WAB = UAB + MAB = ρAB + VAB + MAB, (73)

meaning that MAB is the second piece of news and the total News tensor field of cut S is

NAB = VAB + MAB. (74)
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NAB is symmetric, traceless, gauge invariant, and satisfies the gauge-invariant equation

D[C NA]B = XCAB. (75)

Notice that NAB is partly known, as the first piece VAB is explicitly known for any cut
S . To find the complete news tensor, we need to identify the appropriate tensor field
XCAB = X[CA]B, which provides, via (67), the second piece MAB. Thus, the problem of
the existence of NAB reduces to the existence of a tensor field XCAB, or equivalently of the
one-form XA := XC

AC with
XCAB = 2qB[CXA],

such that the Equation (67) has a solution for MAB and the vanishing of XA is equivalent,
on the entire cut S , to the vanishing of NAB.

To ascertain under which circumstances such choices allow for the existence of the
tensor MAB, let us consider the trace of (67) which is actually equivalent to (67) itself:

1
2

DC MC
A = XA +

1
2

(
Λ
3

)1/2
εABCB − 3

8
DA(ΣDEΣDE) +

1
2

ΣCEDCΣEA. (76)

We know that this provides the tensor field MAB if and only if the righthand side is L2-
orthogonal to every conformal Killing vector field on S ; see, for instance Appendix H in
[82] (there is a six-parameter family of these vector fields in the sphere, per Appendix B).
Therefore, using here the relations (71) for every conformal Killing ξA, the existence of NAB
requires that ∫

S
ξAXA = 0 (77)

for every conformal Killing vector ξA. An analysis of this condition is performed in
Appendix C. Observe that, given that XCAB is gauge invariant, the gauge behaviour of XA
is simply

X̃A = ω−2XA (78)

and therefore the statement in (77) is gauge independent (because ξAXAεBC is gauge
invariant). Here, using Lemma A3, a plausible solution for XA is any one-form of the form

XA = ∆ f DA f (79)

for a choosable function f on S . Observe that due to

∆̃ f =
1

ω2 ∆ f , ∀ f ∈ C2(S)

any such one-form has the correct gauge behaviour (78) for f gauge invariant. Moreover,
the physical units of XA are L−2, and thus f carries no physical units. Notice finally that
XA = 0 if and only if f is constant in the sphere topology.

In principle, it is desirable that XA be related to the existence or not of radiation such
that the vanishing of a would-be news tensor field NAB implies the vanishing of XA and,
vice versa, hopefully, the function f in (79) should be related to the triplet (J , hab,Fab),
explicitly including Fab. One possibility is that f is a (known) function of the potentials
HC, hC and HF , hF that ČAB and F̌AB possess according to Formula (A34). Observe that
while these potentials have the right physical dimensions (a-dimensional), they do not
have a simple gauge behaviour.

5.1. The Problem of Incoming and Outgoing Radiation: The Case with Qα
− = 0

As mentioned at the beginning of Section 4, one of the big differences of the Λ > 0-case
with respect to to the Λ = 0-case is the existence of possible incoming radiation that arrives
at J + mingling with the outgoing flux of radiation. This is a complicated matter, and there
is no easy way to try to identify incoming or outgoing components of the radiation. It
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should be remarked that our Criteria 1 and 2, based on the vanishing of the asymptotic
super-Poynting p̄a in the case with Λ > 0, does not discriminate between these types
of radiations. The absence/presence of radiation on a cut may in general be due to a
balance between several possible components, and this varies from one cut to another. This
was recognized some time ago as a dependence of the radiative part of the field on the
direction of the approach to J if J is not a null hypersurface [8,24,83].T his issue is of
special importance when considering isolated sources of radiation, or sources emitting
gravitational radiation that are confined to a compact region of spacetime.

In the asymptotically flat scenario, the lightlike character of J + implies that any
radiation escaping from the spacetime through infinity necessarily travels along lightlike
directions transversal to J +. The generators of J + are the only exceptional lightlike
directions, and they provide an evolution direction which can be seen as ‘incoming di-
rection’; thus, radiation from the physical spacetime is exclusively outgoing. In contrast,
when Λ > 0, every radiation component without exception crosses J + and escapes from
the spacetime. In this, case it is necessary to find physically reasonable conditions ruling
out undesired radiative components, leaving the radiation emitted by the isolated system
of sources. In [84], a proposal to solve this problem was presented, however, it relies
on information from the physical spacetime. In our opinion, and according to the entire
philosophy of this paper, everything happening at the portion of the physical spacetime
provided by the past domain of dependence of J + is determined by the information
encoded in the triplet (J +, hab,Fab)—modulo conformal re-scalings—such that any ‘in-
coming radiation’ or any undesired radiation components are encoded in that triplet too. I
wish to stress that this is independent of the existence of multiple isolated sources emitting
the radiation, or of the possibility of scattering of the radiation by other components or
matter, etcetera, because everything that happens in the (domain of dependence of J in
the) physical spacetime is encoded in the initial/final data (J , hab,Fab).

Moreover, inspiration can be found in the asymptotitcally flat situation. The vanishing
of the radiant super-momentum when Λ = 0 entails the absence of radiation transversal
to J +, and thus we may suspect that absence of radiation propagating transversally to
some null direction is encoded in the analogous radiant super-momenta as well. More
specifically, in this setup the vanishing of one of the radiant supermomenta (53) may mean
absence of radiation components travelling along the corresponding transversal directions
on that particular cut S . This is graphically explained in Figure 6.

For instance, consider the case with Qµ
− = 0 on a cut S . Following the previous

discussion, this may indicate that there are no radiation components along directions
transversal to kµ

− (see Figure 6), in particular along the second null normal to S , kµ
+.

Observe that Qµ
− = 0 signifies that kµ

− is a repeated principal null direction of the re-scaled
Weyl tensor, and in this sense, it may be thought of as the direction of propagation of
asymptotic radiation. In turn, this signifies that ma is, on the given cut S , an ‘incoming’
direction that provides the direction of ‘evolution’ of radiation at S within J +, in analogy
with the null na in the asymptotically flat case, Figure 6. More importantly, as I prove
next, the condition Qµ

− = 0 can be expressed in explicit manner in terms of the triplet
(J +, hab,Fab). Assuming Qα

− = 0 on S is equivalent, due to (56), (57), and (58) for the
minus sign, to

FA = εABCB and F̌AB = εADČB
D. (80)

These conditions actually state that, on the cut S ,

Fab − 1
2Fcdmcmd(3mamb − hab)

S
= mdεed(a

(
Cb)

e + mb)m f C f
e
)

. (81)

This is our fundamental relation for cuts with only one radiation component. Note that
this condition states that Fab is determined by Cab (which is intrinsic to (J , hab)) except
for the one single component Fcdmcmd, which is the only extra degree of freedom not
provided by the conformal geometry of (J , hab). This free degree of freedom concerns the
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Coulombian part of the gravitational field, proving that (81) certainly affects the radiative
degrees of freedom.

S~n~̀ ~̀~n

J+

pq nµ

J+
k
µ
+ k

µ
−

S
ma pq ma

k
µ
+k

µ
−

Figure 6. Comparison of J + and null directions orthogonal to a cut S for the case with Λ = 0 (left)
and the case with Λ > 0 (right). On the left the physical spacetime is the region below the cone
representing J + and on the right the region below the plane that represents J +. In both cases, two
points p and q belonging to the cut are shown, as well as the two null normals to the cut S at those
points. On the left, they are provided by nµ itself, and `µ, and on the right by kµ

± = n̄µ ±mµ, where
~m is the unit normal to S within J +, such that mµ = maeµ

a . We know that on the left the vanishing
of the asymptotic radiant super-momentum Qµ = 0 is equivalent to the vanishing of the news tensor,
and thus to the absence of radiation crossing J +. If one modifies the cut passing through, say, p,
the picture would be similar, although with a different ~̀ . All possible such null ~̀ for all possible
cuts through p span the little cone shown above p, and similarly for q. Hence, vanishing of Qµ

implies that there is no radiation on any of all those transversal directions spanning the little cone,
with the exception, of course, of~n, which is not transversal but tangent to J + and actually defines
an evolution direction to the future. Notice that Qµ = 0 states that nµ is a multiple principal null
direction of the re-scaled Weyl tensor dαβλ

µ. Inspiration from these properties on the left is used on the
right picture to try to isolate a unique component of radiation arriving at the cut S when Λ > 0 (right
picture) set Qµ

− = 0, assuming that this implies absence of radiation arriving along the directions
spanned by the little cones shown above p or q except along kµ

−, in analogy with the left-side situation.
This would mean that the radiation is arriving basically along the null direction kµ

−, which again is
a multiple null direction of the re-scaled Weyl tensor, which makes sense. If this interpretation is
accepted, the vector ma on the right defines, in analogy with na on the left, an evolution direction
towards the “future” within the spacelike J +. In a way, we can think of the radiation as crossing S
towards its exterior (the projection of kµ

−).

Using (81), the asymptotic super-Poynting vector on S can be readily computed:(
3
Λ

)3/2
p̄a S

= −2ma
(

CbcCbc + mbCbemcCce
)
+ 4CabCbcmc + CbcmbmcCaeme − 3(Fbcmbmc)εademdCe f m f

or equivalently (these can be obtained from (62) and (63)),

pm = −2
(
F̌ABF̌AB +FAFA

)
= −2

(
ČABČAB + CACA

)
≤ 0, (82)

pA =
[
4F̌AB + 3

(
CE

EεAB −FE
EqAB

)]
FB =

[
4ČAB + 3

(
CE

EqAB −FE
EεAB

)]
CB. (83)

Concerning the asymptotic super-momentum Qα
+, again using (56), (57), and (58) now

for the + sign, we can derive

W+ = 32F̌ABF̌AB, Z+ = 16FAFA, Q+
A = 32F̌ABF B.



Universe 2022, 8, 478 26 of 42

or equivalently

Qα
+ = 8

(
2F̌ABF̌ABkα

− +FAFAkα
+ + 4F̌ABFBEα

A

)
= 8

(
2ČABČABkα

− + CACAkα
+ + 4ČABCBEα

A

)
. (84)

Remark 6. It is remarkable that, with the restrictions put on Fab in this case, Qα
+ is fully deter-

mined by the intrinsic geometry of (J , hab) and the cut S as follows from (84). This is true for
pm as well; see (82). The only remaining ‘extrinsic’ quantity identified above, FE

E = −Fabmamb,
only affects the components pA tangential to the cut. Another important point to remark is that
pm = p̄ama ≤ 0 is non-positive, in accordance with the intuition that radiation in this situation
travels towards the exterior of the cut S (Figure 6), providing an interesting interpretation for the
balance law (27). Furthermore, pm = 0 implies that the entire p̄a = 0 vanishes, and this statement
again depends only on the intrinsic geometry of (J , hab) and the cut now.

If the discussed interpretation of the condition Qµ
−
S
= 0 is to be accepted, then the

absence of radiation determined by p̄a should equivalently eliminate the unique radiative
component that was left on the cut S . This is proven in the following proposition.

Proposition 2. The following conditions are all equivalent at any point of S :

1. Qµ
− = Qµ

+ = 0.
2. Qµ

− = 0 and pm = 0.
3. Qµ

− = 0 and p̄a = 0.
4. F̌AB = ČAB = 0 and FA = CA = 0.
5. In the basis {~m,~EA}

(Fab) = FE
E

 −1 0 0
0 1/2 0
0 0 1/2

, (Cab) = CE
E

 −1 0 0
0 1/2 0
0 0 1/2

 (85)

Proof. Provided a circular proof 1⇒ 2⇒ 3⇒ 4⇒ 5⇒ 1:

• If Qµ
− = Qµ

+ = 0, then from (84) ČAB = 0 = CA such that (82) provides pm = 0.
• If Qµ

− = 0 and pm = 0, (82) implies ČAB = 0 = CA and together with (83) provides
that the full p̄a vanishes.

• If Qµ
− = 0 and p̄a = 0, (82) implies ČAB = 0 = CA, and (80) then that F̌AB = 0 = FA.

• F̌AB = ČAB = 0 and FA = CA = 0 simply means that, in the mentioned basis,
the matrices of Fab and Cab take the form displayed in (85).

• If (85) holds in the given basis, then F̌AB = ČAB = 0 and FA = CA = 0 such that
(56)–(58) implyW± = Z± = 0 = QA

±, and thus Qµ
± = 0.

Remark 7. This case corresponds to the situation where the rescaled Weyl tensor has Petrov type D
at J and is aligned at the cut S , that is, the two multiple principal null directions are~k± (unless
when FE

E = CE
E = 0, although this corresponds to the de Sitter spacetime if J ∼ S3).

Similar formulas and results are valid if we assumes Qµ
+ = 0 instead of Qµ

− = 0.
According to the nomenclature introduced in [58], if on ∆ ⊂J there exists a foliation

by cuts, all of them satisfying the property Qµ
− = 0, then we can say that ∆ is strictly

equipped and strongly oriented, with the vector field ma orthogonal to the cuts providing
the orientation and equipment. If, in addition, the cuts are umbilical (ΣAB = 0), ∆ is
both strongly equipped and oriented by ma. The existence of news under such circumstances,
as well as other possibilities, were explored at large in [58]. In particular, it is proven that
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the first component of news provides a good total News tensor field in the case of strongly
equipped and oriented J .

5.2. A Conserved Charge in Vacuum

As yet another justification for Criterion 2, I present a conserved charge, built from
the re-scaled Bel–Robinson tensor, that identifies the existence of radiation in asymptotic
vacuum (this could be generalized to the case with matter) when the spacetime possesses
conformal Killing vector fields. If the energy-momentum tensor of the physical spacetime
vanishes in a neighbourhood U of J +, then on that neighbourhood

∇ρDρ
µντ

U
= 0.

If ξ
µ
i are any three conformal Killing vectors on (M, g) (they can be repeated), then the

currents
Bρ(i, j, k) := ξ

µ

(i)ξ
ν
(j)ξ

τ
(k)D

ρ
µντ

are divergence-free [53,62] on U
∇ρBρ(i, j, k) U= 0.

This implies that the ‘charges’ defined on any spacelike hypersurface Σ without edge within
U by

BΣ(i, j, k) :=
∫

Σ
Bρ(i, j, k)tρ

(where tρ is the unit normal to Σ) are conserved, in the sense that they are independent of
the choice of Σ. In particular, they are equal to BJ +(i, j, k).

If ξ
µ

(i) = ξa
(i)e

µ
a happen to be tangent to J +, it is possible to use the explicit formulae

in [81] to find (for instance, and for simplicity, for three copies of the same ξ
µ

(1) := ξµ),

BJ +(1, 1, 1) =
∫
J +

((
3
Λ

)(3/2)
p̄aξa − ξaεabcξdCbdξeFce

)
.

This charge is generically non-zero. Nevertheless, if (81) holds and p̄a = 0, then it vanishes.
This is precisely the case with proposition 2. This seems to hint in the direction that
(non-zero) values of BJ +(1, 1, 1) arise when there is gravitational radiation arriving at
J +.

6. Symmetries with Λ > 0

One of the missing elements to complete the picture in the Λ > 0 scenario are the
asymptotic symmetries. There is nothing like the BMS algebra/group, and the lack of a
universal structure on J is an impediment to providing a general notion of symmetries
and thereby looking for appropriate conservation and balance laws. Nonetheless, such
missing symmetries may be found in restricted situations such as the one described in the
previous Section 5.1 with strictly equipped and strongly oriented J , that is, if (81) holds
on J .

To start with, I argue that the ‘natural’ definition for (infinitesimal) symmetries is any
vector field ~Y ∈ X(J ), leaving invariant the the tensor field:

Xabcde f := habFcdFe f .

where Xabcde f is gauge invariant (which is precisely the reason why for using two copies
of Fab here) and contains the elements needed to determine any property of the physical
spacetime, the triplet (J , hab,Fab). Thus, a reasonable proposal of infinitesimal symmetries
~Y ∈ X(J ) is simply

£Y(habFcdFe f ) = 0.
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This can be easily shown to be equivalent to

£Yhab = 2ψhab, £YFab = −ψFab (86)

for some function ψ. That this is a good definition is justified by noting that any solution
~Y of (86) generates a Killing vector field on the physical spacetime, and vice versa. This
follows from a result thanks to Paetz [85]. Any solution of (86) is termed basic infinitesimal
symmetry. They satisfy

£Y p̄a = −5ψ p̄a.

Nevertheless, an obvious problem arises with such basic symmetries. Observe that the
first equation in (86) informs us that ~Y must be a conformal Killing vector of (J , hab), and of
course a generic three-dimensional Riemannian manifold does not need to possess such
vector fields. Hence, there are many (J , hab) without any basic infinitesimal symmetries.

To remedy this situation, let me restrict the possible (J , hab) to those which possess a
vector field ma orthogonal to a foliation of cuts such that (81) holds on J , that is to say, J
is strictly equipped and strongly oriented by ma. Then, we want the symmetries to preserve
this structure, conformally keeping the orientation and equipment. This is achieved by the
vector fields that satisfy

£Yhab = 2ψhab + 2γmamb, £Yma = (γ + ψ)ma (87)

for some functions ψ and γ on J . From this, we have

£Yma = −(γ + ψ)ma.

First of all, observe that the basic symmetries (86) are included here (for γ = 0) as long as
they preserve the direction field ma. Second, it is easy to check that the family of solutions
of (87) constitute a Lie algebra. Third, the function γ is gauge invariant under (2), while ψ
has the following behaviour

ψ̃ = ψ +
1
ω

£Yω.

Fourth, equations (87) are equivalent to

£YPab = 2ψPab, £Yma = (γ + ψ)ma (88)

where
Pab := hab −mamb

is the orthogonal projector of the foliation defined by ma that projects to the leaves. In this
form, and given that the projector restricted to each leaf S of the foliation provides the
corresponding first fundamental form qAB, the first relation in (88) states that the vector
fields leave the conformal metrics invariant. Actually, (88) and (87) are examples of in-
finitesimal symmetries called bi-conformal vector fields [86] that leave two orthogonal
distributions conformally invariant. As proven in [86], the solutions of (88) can form an
infinite-dimensional Lie algebra.

The question remains whether or not these new symmetries can be somehow derived
as asymptotic generalized symmetries from the physical spacetime. This is certainly the
case, as briefly explained below. Begin by considering a vector field ξ̂µ on the physical
spacetime (M̂, ĝ) such that it has a smooth extension to J on M. Then, on M̂,

£ξ̂ gµν = Ω2£ξ̂ ĝµν +
2
Ω

£ξ̂ Ωĝµν

and require that
Hµν := Ω2£ξ̂ ĝµν
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has a regular limit to J . The basic idea is to find the ‘minimum’ possible Hµν that induces
the symmetries on (J , hab). In other words, ξ̂µ can be thought as an approximate symmetry
when approaching infinity. We can easily prove [58] that

ξ̂µnµ
J
= 0 =⇒ ξ̂µ J

= Yaeµ
a

and Ya is a vector field on J . It is necessary to take into account that only the class of
vector fields ξ̂µ defined modulo the addition of any term of the form Ωvµ for arbitrary vµ

makes sense. This implies that combinations of type

vµnν + vνnµ − 2vρnρgµν + 2Ω(∇µvν +∇νvµ)

can be added to Hµν without changing the sought asymptotic symmetry.
Thus, in order to choose Hµν, we first notes that Hµν ∝ gµν (including Hµν = 0, which

mimics the case of Λ = 0 as studied in [87]) leads to conformal Killing vectors of (J , hab),
that is, to the basic symmetries (86). Thus, one needs a more general choice. The next
‘minimal’ possible such choice is that Hµν is a rank-1 tensor field on J , that is, there exists
a vector field mµ such that Hµν = Fmµmν, or including the redundant terms above,

Hµν = Fmµmν + vµnν + vνnµ − 2vρnρgµν + 2Ω(∇µvν +∇νvµ)

where, necessarily, mµnµ
J
= 0 [58]. Projection to J then shows that [58]

£Yhab = 2ψhab + 2γmamb

where γ = F|J and ψ = −(2vρnρ + ξµnµ/Ω)|J . This is precisely the first part in (87),
and the Lie algebra property requires the second part.

The precise structure of the Lie algebra of the symmetries (87) depends on the specific
situation, that is, on the particular properties of the foliation determined by the vector field
ma that equips and orientates J . For instance, in the case that the orientation and the
equipment are both strong (meaning that the foliation is by umbilical cuts), the structure
is the product of conformal transformations of the cuts times an ideal which commutes
with the previous and depends on arbitrary functions, meaning that the algebra is infinite
dimensional [58].

7. Closing Comments with Examples

Criteria 1 and 2 have been tested in a variety of spacetimes [56,58] that admit a con-
formal completion, and thus far they agree with the expected results concerning existence
of gravitational radiation as well as in relation to other concepts introduced in this paper.
Herein, I provide a summary of the known results and add several of new ones.

First of all, consider spherically symmetric spacetimes. As we know, they do not
contain any kind of gravitational radiation. If they admit a conformal completion, this can
be assumed to have spherical symmetry as well; then, Cab and Fab inherit the symmetry.
This readily proves that Cab and Fab must be proportional to each other in order for their
commutator to vanish; using (26), this leads to p̄a = 0, which is in agreement with the
absence of radiation in such situations according to our criteria. This includes, in particular,
de Sitter spacetime, which actually has both Cab and Fab vanishing, where it is possible
to identify the ten asymptotically basic infinitesimal symmetries, four possible strong
equipments (all of them equivalent) with umbilical foliations by S2 cuts, and find the
structure of the group of symmetries of type (87) for any of the strong equipments. This
is composed of the conformal Killing vectors of the sphere together with a vector field
of type P(χ)∂χ for arbitrary function P, where χ is a typical latitud coordinate on the
three-dimensional sphere [58].

Next, consider the “Kerr–de Sitter-like spacetimes” as defined in [88]. Basically, these
are the Λ-vacuum spacetimes with a Killing vector field where the ‘Mars–Simon’ tensor
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vanishes [89] and which admits a conformal completion. They include the Kerr–de Sitter
solution in particular, as well as many others [73,88–90]. Kerr–de Sitter-like spacetimes are
characterized by initial data (J , hab,Fab) with

Cab =
A
|Y|5

(
YaYb −

1
3
|Y|2hab

)
, Fab =

B
|Y|5

(
YaYb −

1
3
|Y|2hab

)
for some constants A, B where Ya ∈ X(J ) is a conformal Killing vector on (J , h) with no
fixed points. Ya is the conformal Killing vector induced by the Killing vector of the physical
spacetime with vanishing Mars–Simon tensor. From the expressions above, we check
that Cab and Fab are again proportional to each other such that (26) implies p̄a = 0 and
criterion 2 states that there is no gravitational radiation. This is an expected result. In the
particular case of Kerr-de Sitter spacetime, including the Kottler solution for zero angular
momentum, the constant A = 0 ((J , hab) is conformally flat) and there are two strong
orientations, although neither of them leads to a strong equipment. The corresponding
symmetries (87) coincide with the basic asymptotic symmetries (86) and are induced by the
two Killing vectors of the spacetime. Nonetheless, there exists a ‘natural’ strong equipment
by umbilical cuts, and the corresponding algebra of symmetries (87) is again infinite
dimensional depending on an arbitrary function of one variable [58].

In [88], a more general class of spacetimes, termed asymptotically Kerr–de Sitter-like
spacetimes, was introduced. While these have a Killing vector as well, now the Mars–
Simon tensor is only required to vanish asymptotically. Their characterization at infinity is
provided by data (J , hab,Fab) such that

CabYb = δYa, FabYb = βYa

for some functions δ, β on J , where Ya is the conformal Killing vector on (J , hab) induced
by the Killing vector of the physical spacetime. In other words, Cab and Fab have Ya as a
common eigenvector field. Obviously, while the Kerr–de Sitter-like spacetimes are included
here, there are many other possibilities. In this case, gravitational radiation may be present.
An interesting possibility is the analysis of asymptotically Kerr–de Sitter-like spacetimes
which comply with (81) for some ma. In this case, if Ya points in the direction ma that
equips J , that is to say, Ya = |Y|ma, then the eigenvalues of the common eigendirection
are

δ = Cabmamb, β = Fabmamb

while FA = 0 and CA = 0. Equation (83) tells us that pA = 0, and thus from (82)(
3
Λ

)3/2
p̄a = −ČABČABma.

Next, a very interesting spacetime that can be used as an example is the C-metric [26,67],
both in the Λ > 0 and Λ = 0 cases; see [56,58]. This spacetime is known to have gravitational
radiation in the asymptotically flat case [91]. The existence of gravitational radiation
according to our criterion 2 for Λ ≥ 0 was proven in [56]. For the C-metric, there are two
possible strong orientations, both of them providing strong equipments, and the Lie algebra
of symmetries (87) is infinite-dimensional once more, though in this case depending on
multiple arbitrary functions [58].

Another interesting family of spacetimes that can be used as examples are the Robinson–
Trautman metrics [26,67] for Λ ≥ 0. Generically, they have one strong orientation which
defines a strong equipment, while the corresponding asymptotic symmetries (87) form
an infinite-dimensional Lie algebra that depends on an arbitrary function of one variable.
They generically contain gravitational radiation according to Criterion 2; the particular case
of Petrov type N Robinson–Trautman metrics is analyzed in detail in [58].
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Appendix A. ‘(Super)-Energy’ Tensors in a Nutshell

Given any tensor (field), say tµ1 ...µm , there is a canonical way [53] of constructing a
new tensor (field) T{t}µ1 ...µ2s quadratic on tµ1 ...µm and satisfying the dominant property, that
is to say

T{t}µ1 ...µ2s uµ1 . . . vµ2s ≥ 0 (A1)

for arbitrary future-pointing vectors uµ1 . . . vµ2s . The inequality is strict if all the vectors
uµ1 . . . vµ2s are timelike. In particular, the total timelike component in an orthonormal basis
{~eα} whose timelike direction is given by~e0, that is,

T0...0 := T{t}µ1 ...µ2s eµ1
0 . . . eµ2s

0 ≥ 0

is positive and vanishes if and only if tµ1 ...µm = 0. Such quadratic tensors are called ‘super-
energy’ tensors generically, and its total timelike component is the ‘super-energy’ of tµ1 ...µm

relative to the chosen ~e0. The fully symmetric part T{t}(µ1 ...µ2s)
, which is the only part

relevant for the super-energy of tµ1 ...µm , is unique with the above properties.
If the underlying seed tensor tµ1 ...µm is actually a p-form, then s = 1 and T{t}µν is a

rank-2 symmetric tensor. In particular, if tµ = ∇µφ is an exact one-form, then T{∇φ}µν is
the standard energy-momentum tensor of a massless scalar field φ; while if tµν = F[µν] is a
2-form, then T{F}µν is the standard energy-momentum tensor of the electromagnetic field
Fµν. For further details, see [53].

In this article, we are interested in the super-energy tensor T{W} of Weyl-tensor
candidates Wαβµν. A Weyl tensor candidate is a double (2,2)-form with the same symmetry
and trace properties of the Weyl tensor:

Wαβµν = W[αβ][µν], Wα[βµν] = 0, Wρ
βρµ = 0.

Its super-energy tensor is the rank-4 tensor

T{W}αβλµ = WαρλσWβ
ρ

µ
σ + WαρµσWβ

ρ
λ

σ − 1
2

gαβWτρλσWτρ
µ

σ

−1
2

gλµWαρτσWβ
ρτσ +

1
8

gαβgλµWνρτσWνρτσ

which, in 4-dimensional spacetime reduces to simply

T{W}αβλµ = WαρλσWβ
ρ

µ
σ + WαρµσWβ

ρ
λ

σ − 1
8

gαβgλµWνρτσWνρτσ. (A2)

This tensor is fully symmetric and traceless [52,53]. It also admits the alternative expression
(still in four dimensions)

T{W}αβλµ = WαρλσWβ
ρ

µ
σ+

∗
Wαρλσ

∗
Wβ

ρ
µ

σ (A3)

where
∗

Wαρλσ :=
1
2

ηαρµνWµν
λσ

and ηαρµν is the canonical volume element 4-form.
If the Weyl-tensor candidate is divergence-free, ∇ρWρ

βµν = 0; then, T{W}αβλµ is
divergence-free as well.
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When Wαβµν = Cαβµν is the true Weyl tensor, T{C}αβλµ is called the Bel–Robinson
tensor [3,51,52].

Appendix B. The Tensor ρAB for Conformal Classes of Two-Dimensional
Riemannian Manfiolds

In this appendix, an important tensor field available in two-dimensional Riemannian
manifolds with relevant conformal properties is presented. This tensor is reminiscent of
another one introduced by Geroch for J in an asymptotically flat situation [61] and allows
extracting the news tensor field from the pullback of the Schouten tensor Sab, as explained
in Section 3. The invariant interpretation and significance of this tensor field is discussed in
this Appendix; see [58].

As all possible two-dimensional Riemannian manifolds are (locally) conformal to the
round sphere, we start by considering the round sphere (S2, qround) with constant Gaussian
curvature K given in conformally flat form in Cartesian coordinates {x, y} by

qround =

[
1 +

K
4
(x2 + y2)

]−2(
dx2 + dy2

)
.

Using canonical angular coordinates on S2 via the standard stereographic projection from
the north pole

x =
2√
K

cot
θ

2
cos ϕ, y =

2√
K

cot
θ

2
sin ϕ,

θ = 2 arctan
2√

K(x2 + y2)
, ϕ = arctan

y
x

with θ ∈ (0, π] and ϕ ∈ [0, 2π), the metric becomes

qround =
1
K

(
dθ2 + sin2 θdϕ2

)
(A4)

and the part in parenthesis is the metric of the unit round sphere, which will be denoted
in index notation by ΩAB from now on. As is well known, the sphere possesses a 6-
dimensional algebra of global conformal Killing vector fields (see, e.g., Appendix F in [58]);
an appropriate basis for them is

~ξ1 = −
(
sin ϕ∂θ + cot θ cos ϕ∂ϕ

)
(A5)

~ξ2 = cos ϕ∂θ − cot θ sin ϕ∂ϕ, (A6)
~ξ3 = ∂ϕ, (A7)

~η1 = cos θ cos ϕ∂θ −
sin ϕ

sin θ
∂ϕ, (A8)

~η2 = cos θ sin ϕ∂θ +
cos ϕ

sin θ
∂ϕ (A9)

~η3 = − sin θ∂θ . (A10)

The first three are actually Killing vectors generating the group SO(3), while the remaining
three are proper conformal Killing vectors satisfying (i = 1, 2, 3, DA is the covariant
derivative on the sphere)

DAηB
(i) = −δB

An(i)

where
n(i) = (sin θ cos ϕ, sin θ sin ϕ, cos θ).
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Observe that the three CKVs (A8)–(A10) are all exact one-forms

η1 =
1
K

d(sin θ cos ϕ), η2 =
1
K

d(sin θ sin ϕ), η3 =
1
K

d(cos θ),

or more compactly

η(i)B =
1
K

DBn(i)

while the three Killing vector fields (A5)–(A7) are co-exact

ξA
(i) = εABη(i)B =

1
K

DB(ε
ABn(i))

where εAB is the volume 2-form. This leads to the known result

DADBn(i) = −ΩABn(i). (A11)

Notice that in particular ∆n(i) = −2Kn(i), where ∆ is the Laplacian on the sphere, meaning
that n(i) are the three spherical harmonics Yi

1, with l = 1. These three, together with the
spherical harmonic of order l = 0, can thus be combined into a single covariant ‘4-vector’

π(µ) := (1, n(i))

which is null in an auxiliary Minkowski metric: ηµνπ(µ)π(ν) = 0. Using (A11), we can then
write (here each π(µ) is considered as a function)

DADBπ(µ) −
1
2

∆π(µ)
1
K

ΩAB = 0. (A12)

The question that arises is then whether there a conformally invariant version of (A12)
valid in arbitrary two-dimensional Riemannian manifolds with metric qAB. To answer this
question, we can perform a general conformal transformation

q̃AB = ω2qAB

and assume that the four π(µ) transform in a “coordinated” and homogeneous manner
such that

π̃(µ) = H(ω)π(µ)

for some function H(ω) to be determined. A direct calculation using the change of the
covariant derivative under conformal re-scalings then leads to

D̃AD̃Bπ̃(µ) = HDADBπ(µ) + DA HDBπ(µ) + DB HDAπ(µ) + π(µ)DADBH

− 1
ω

[
DAωDB(Hπ(µ)) + DBωDA(Hπ(µ))− qCEDCωDE(Hπ(µ))qAB

]
(A13)

whose trace reads

∆̃π̃(µ) =
1

ω2

(
H∆π(µ) + 2qCEDCωDEπ(µ) + π(µ)∆H

)
(A14)

such that the combination of (A13) and (A14) produces

D̃AD̃Bπ̃(µ) −
1
2

q̃AB∆̃π̃(µ) = H
(

DADBπ(µ) −
1
2

∆π(µ)qAB

)
+π(µ)

(
DADB H − 1

ω
DAωDB H − 1

ω
DB HDAω− 1

2
∆HqAB +

1
ω

qCEDcωDE HqAB

)
+ω

[
DAπ(µ)DB

(
H
ω

)
+ DBπ(µ)DA

(
H
ω

)
− qCEDCπ(µ)DE

(
H
ω

)
qAB

]
. (A15)
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Hence, the only way that this can lead to a conformally well-behaved relation is if the terms
with DAπ(µ) dissapear, which requires

H = ω

where an arbitrary multiplicative constant has been set to 1 by a simple redefinition of π(µ).
Introducing this into (A15), we obtain

D̃AD̃Bπ̃(µ) −
1
2

q̃AB∆̃π̃(µ) = ω

(
DADBπ(µ) −

1
2

∆π(µ)qAB

)
+π(µ)

(
DADBω− 2

ω
DAωDBω− 1

2
∆ωqAB +

1
ω

qCEDcωDEωqAB

)
(A16)

To make sense of the conformal behaviour of this expression, notice that the first line
contains the same combination on both sides, and thus the second line must go partly to
one side and partly to the other side in a concordant manner. The terms multiplying qAB
can be easily rearranged using the relation between Gaussian curvatures of conformally
related metrics:

K̃ =
1

ω2

(
K− 1

ω
∆ω +

1
ω2 qCBωBωC

)
=

1
ω2 (K− ∆ ln ω). (A17)

using the notation ωA := DAω. Then, (A16) becomes

D̃AD̃Bπ̃(µ) −
1
2

q̃AB∆̃π̃(µ) −
K̃
2

q̃ABπ̃(µ) = ω

(
DADBπ(µ) −

1
2

∆π(µ)qAB −
K
2

qABπ(µ)

)
+π(µ)

(
DADBω− 2

ω
DAωDBω +

1
2ω

qCEDcωDEωqAB

)
. (A18)

If our goal is achievable, the second line here must be the difference between a symmetric
tensor field and its tilded version up to a factor ω. Calling this tensor field ρAB, we set

ρAB − ρ̃AB :=
1
ω

DADBω− 2
ω2 DAωDBω +

1
2ω2 qCEDcωDEωqAB

which renders (A18) in the form

D̃AD̃Bπ̃(µ) −
1
2

q̃AB∆̃π̃(µ) +

(
ρ̃AB −

K̃
2

q̃AB

)
π̃(µ)

= ω

[
DADBπ(µ) −

1
2

∆π(µ)qAB +

(
ρAB −

K
2

qAB

)
π(µ)

]
This is the sought result, providing the right expression which is well behaved and answers
our question in the affirmative. Hence, the equation valid in arbitrary metrics qAB on the
sphere reads (with DA the covariant derivative for qAB and ∆ and K the corresponding
Laplacian and Gaussian curvature, respectively) as follows:

DADBπ(µ) −
1
2

qAB∆π(µ) +

(
ρAB −

K
2

qAB

)
π(µ) = 0 (A19)

as long as the tensor field ρAB behaves, under conformal re-scalings of type (13), as in

ρ̃AB = ρAB −
1
ω

DADBω +
2

ω2 DAωDBω− 1
2ω2 qABqCDDCωDDω. (A20)

If this holds, and if π(µ) are the four solutions of (A19), then π̃(µ) = ωπ(µ) are the corre-
sponding four solutions in the re-scaled metric q̃AB = ω2qAB. Notice that the constraint
ηµνπ(µ)π(ν) = 0 with the auxiliary Minkowski metric remains invariant.
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The trace of (A19) leads to
qABρAB = K (A21)

which, taking (A20) into account, holds in any gauge because of (A17).
Observe that if we wish to recover (A12) in the round gauge, (A19) requires that

ρAB = (K/2)qAB = (1/2)ΩAB in that gauge such that DCρAB = 0 holds in that round
gauge. In particular,

D[CρA]B = 0 (A22)

and this formula holds in any gauge due to (A20) and (A21). Properties (A20) and (A22)
uniquely determine the tensor ρAB if the two-dimensional manifold has topology S2 (Corol-
lary A2 below) or, more generally, for arbitrary topology if there is a conformal Killing
vector with a fixed point. This follows from the following set of results.

Lemma A1. Let (S , qAB) be any two-dimensional Riemannian manifold and tAB = t(AB) be any
symmetric tensor field on S whose gauge behaviour under residual gauge transformations (13) is

t̃AB = tAB −
a
ω

DAωB +
2a
ω2 ωAωB −

a
2ω2 ωDωDqAB (A23)

for some fixed constant a ∈ R. Then,

D̃[C t̃A]B = D[CtA]B +
1
ω
(aK− tE

E)ω[CqA]B. (A24)

In particular, if nAB = n(AB) is any symmetric and gauge-invariant tensor field on S , then

D̃[CñA]B = D[CnA]B −
1
ω

nE
Eω[CqA]B (A25)

Proof. A direct calculation leads to

D̃[C t̃A]B = D[CtA]B +
1
ω

tB[CωA] +
1
ω

qB[CtD
A]ωD +

a
ω

Kω[CqA]B. (A26)

Using the two-dimensional identity

tB[CωA] + qB[CtD
A]ωD = tE

E qB[CωA]

valid for any symmetric tensor field tAB, Equation (A26) can be rewritten simply as
(A24).

Two important corollaries follow.

Corollary A1. A symmetric tensor field tAB = t(AB) on S whose gauge behaviour under residual
gauge transformations is given by (A23) satisfies

D̃[C t̃A]B = D[CtA]B

if and only if its trace is tC
C = aK.

In particular, a symmetric and gauge-invariant tensor field ÑAB = NAB = N(AB) on S
satisfies

D̃[C ÑA]B = D[C NA]B

if and only if it is traceless NC
C = 0.

Corollary A2. If S has S2-topology, there is a unique symmetric tensor field ρAB whose gauge
behaviour is (A20) and satisfies the equation

D[CρA]B = 0 (A27)
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in any gauge. Furthermore, this tensor field must have a trace ρE
E = K, and for round spheres is

provided by ρAB = qABK/2.

Proof. Uniqueness follows from that of trace-free Codazzi tensors on S2 Riemannian
manifolds by noticing that Corollary A1 implies that any such ρAB has a fixed trace provided
by K and the assumption that (A27) holds in any gauge. Existence can be deduced directly
by noticing that ρAB = qABK/2 is such that DCρAB = 0 in the round metric sphere.

Let ~χ denote any conformal Killing vector on (S2, qAB). Then, as proven in [58], the
symmetric tensor field

£χρAB +
1
2

DADBDCχC

is trace- and divergence-free and gauge invariant under (13). Therefore, it must vanish on
the sphere. Thus, for any conformal Killing vector on (S2, qAB), we have

£χρAB = −1
2

DADBDCχC. (A28)

For manifolds S with other topologies, if they contain a conformal Killing vector ~χ with
a fixed point, which necessarily generates an axial conformal symmetry around the fixed
point [58,92], the uniqueness of ρAB can be proven by adding (A28) for that ~χ as an
assumption. The existence of such a conformal Killing vector is ensured if the topology of
S is either S2 or S1 ×R or R2.

This ‘magic’ tensor ρAB allows us to derive the following non-trivial result.

Lemma A2. Let (S2, qAB) be any Riemannian manifold on the 2-sphere. Then, for every conformal
Killing vector field ~ξ ∫

S2
£ξ K = 0. (A29)

Proof. Let (S2, qAB) be any Riemannian manifold on the 2-sphere, and let ρAB be the
unique tensor field on (S2, qAB) of Corollary A2. Then,

DC(ρ
C

A − δC
AK) = 0

and this statement is conformally invariant. Contracting here with ξ A and integrating, we
easily obtain

0 = −1
2

∫
S2

KDCξC =
1
2

∫
S2

ξCDCK.

This result seems to have been found first in [93] (and see references therein), and is
actually valid for arbitrary compact Riemannian manifolds in higher dimensions if the scalar
curvature is used instead of K. In that paper, the authors prove the same for arbitrary
compact manifolds.

Lemma A3. Let (S , qAB) be any compact 2two-dimensional Riemannian manifold. Then, for any
conformal Killing vector ~ξ ∫

S2
∆ f £ξ f = 0, ∀ f ∈ C2(S)

and this statement is conformally invariant.
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In explicit calculations, it is sometimes useful to have the version of (A20) that provides
ρAB in terms of ρ̃AB, the conformal metric metric q̃AB, and its covariant derivative D̃A, which
reads

ρAB = ρ̃AB +
1
ω

D̃AωB −
1

2ω2 q̃CDωCωD q̃AB. (A30)

If the two-dimensional metric has axial symmetry, we can present an explicit expres-
sion of the tensor ρAB in explicit adapted coordinates {xA} = {p, ϕ}, with ∂ϕ the axial
Killing vector. Let the metric be

qABdxAdxB = F(p)dp2 + G(p)dϕ2

where F and G are arbitrary functions of p only subject to satisfying the necessary regularity
condition at the fixed point of ∂ϕ [92]. This metric is (locally) conformal to the round metric
(A4) by adapting the coordinates on the round sphere we can make the fixed point of ∂ϕ

coincide with either θ = 0 or θ = π in (A4). Then, the tensor ρAB is explicitly provided by

ρpp =
F

2G
sin2 θ −Ψ′ +

F′

2F
Ψ− 1

2
Ψ2,

ρpϕ = 0,

ρϕϕ =
1
2

sin2 θ +
Ψ
2F

(GΨ− G′)

where primes are derivatives with respect to p and

tan
θ

2
= beε

∫ √
F/Gdp, Ψ =

G′

2G
− ε

√
F
G

cos θ

with ε2 = 1 a sign, while b is a constant to be determined at the fixed point depending on
the choice of θ = 0, π.

With these formulas at hand, we can easily derive that, for the flat metric with F(p) = 1
and G(p) = p2, the tensor ρAB| f lat = 0 vanishes [58].

Appendix C. Analysis of (77) Based on the Hodge Decomposition

On (S2, qAB), the Hodge theorem applies; thus, any one-form X can be decomposed,
uniquely, into an exact one-form, plus a co-exact one-form, plus a harmonic one-form,
the latter in the cohomology class as X. As S2 is simply connected, the harmonic one-form
necessarily vanishes, and thus (using ? for the Hodge operator on (S2, qAB)),

X = ?d ? X[2] + dX, XA = DBXAB + DAX

for some 2-form XAB = X[AB] and scalar field X subject to the freedom XAB → XAB + c1εAB
and X → X + c2, with c1, c2 arbitrary constants. Notice that

XAB = εABx, x := ?X[2] =
1
2

εABXAB

thus, that the above formula can be re-expressed in terms of two scalar fields x and X:

XA = εA
BDBx + DAX = DB

(
εA

Bx + δA
BX
)

(A31)

with
εABDAXB = −∆x, DAXA = ∆X. (A32)

From (A31), we can readily obtain

qABXAXB = DBxDBx + DBXDBX + 2εABDAXDBx (A33)
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The dual decomposition is simply

(?X)A = εA
BDBX− DAx = DB

(
εA

BX− δA
Bx
)

.

Observe that x and X are gauge invariant if and only if XA is gauge invariant. In our case,
we are rather interested in the situation where XA has gauge behaviour (78). The relation
between the x, X in one gauge and x̃, X̃ in another gauge is non-trivial.

There exists a decomposition for symmetric and traceless tensors (see, e.g., [94]) HAB,
analogous to (A31) as well as with two potentials, say, h and H, povided by

HAB = DADBH − 1
2

qAB∆H + ε(A
EDB)DEh (A34)

which has a dual version,

ε(A
EHB)E = ε(A

EDB)DEH − (DADBh− 1
2

qAB∆h).

Notice that as H, h are functions on the sphere, they can be expanded in spherical harmonics,
as explained below for x and X, although the harmonics with spin s = 0, 1 do not contribute
to the Formula (A34). In other words, the potentials H, h are defined up to addition of
arbitrary harmonics with s = 0, 1. These formulas can be applied, for instance, to ČAB, F̌AB
or ΣAB.

Fortunately, the analysis of the the gauge-invariant condition (77) can be peformed in
any gauge, in particular, in one where the metric of the cut S is the round metric (A4). Thus,
for any CKV ~ξ we have, using (A31),∫

S
ξAXA =

∫
S

ξ A
(

εA
BDBx + DAX

)
=
∫
S

(
x εABDAξB − DCξCX

)
.

It follows from this expression that the term with X is irrelevant for Killing vectors (as
DCξC = 0 then), while the term with x is irrelevant for conformal Killing vectors, as we
proved in Appendix B that all of them are closed as one-forms (and thus D[AξB] = 0 for
them). Taking into account that, for the Killing vectors (A5)–(A7), a direct calculation
provides

εABDAξB
(i) = 2n(i), ∀i = 1, 2, 3,

it easily follows that the condition (77) splits into two similar relations for x and X:∫
S

xn(i) = 0,
∫
S

Xn(i) = 0, ∀i = 1, 2, 3. (A35)

However, n(i) are the spherical harmonics of degree s = 1, and thus the above relations
simply express that both x and X must be L2-orthogonal to Yi

1.
As x and X are functions on S2, they can be expanded in spherical harmonics, that is,

x =
∞

∑
s=0

xi1 ...is n(i1) . . . n(is), X =
∞

∑
s=0

Xi1 ...is n(i1) . . . n(is),

where xi1 ...is and Xi1 ...is are (for s ≥ 2) fully symmetric and traceless ‘constant tensors’

Xi1 ...is = X(i1 ...is), xi1 ...is = x(i1 ...is), δi1i2 Xi1 ...is = δi1i2 xi1 ...is = 0

and are totally traceless in the sense that contraction on any two indices with δij vanishes.
Therefore, condition (77) re-expressed as (A35) simply implies that the terms with s = 1,
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xi and Xi vanish. As x and X are defined up to the addition of an arbitrary constant, the
terms s = 0 can be eliminated and (A35) imply the following expansions:

x =
∞

∑
s=2

xi1 ...is n(i1) . . . n(is), X =
∞

∑
s=2

Xi1 ...is n(i1) . . . n(is).

Introducing these expressions into (A31), for the solution of (77) we have

XA =
∞

∑
s=2

s
(

xi1 ...is εABηB
(i1)

+ Xi1 ...is η(i1)A

)
n(i2) . . . n(is). (A36)

Now, let {v, ?v} be an appropriate ON basis on S2 (this can be chosen to be the
eigenbasis of CAB, or of FAB, etcetera; however, those choices are not compulsory, and thus
vA must be seen as an arbitrary unit vector field). As we can express all the conformal
Killing vector fields on this basis,

ηA
(i) = f(i)v

A + g(i)ε
ABvB, (?η)A

(i) = ξA
(i) = −g(i)v

A + f(i)ε
ABvB.

The scalar products of the conformal Killing vectors are known (or can be directly
computed):

~ξ(i) ·~ξ(j) = ~η(i) ·~η(j) = qABDAn(i)DBn(j) =
1
K
(δij − n(i)n(j)), (A37)

~η(i) ·~ξ(j) =
1
K

εij
kn(k). (A38)

Another interesting identity is

n(i)~η(i) =~0, n(i)
~ξ(i) =~0 (A39)

where sum on i is understood. The functions f(i), g(i) are thus subject, due to (A37)–(A38),
to the following relations

f(i) f(j) + g(i)g(j) =
1
K

(
δij − n(i)n(j)

)
, f(j)g(i) − f(i)g(j) =

1
K

εijkn(k)

and due to (A39)
δijn(i) f(j) = 0, δijn(i)g(j) = 0.

In simpler words, {n(i), f (i), g(i)} constitute an orthonormal triad in the standard flat space.
Using this in (A36), we arrive at the expression

XA =
∞

∑
s=2

sn(i2) . . . n(is)
[(

Xi1 ...is f (i1) − xi1 ...is g(i1)
)

vA +
(

Xi1 ...is g(i1) + xi1 ...is f (i1)
)

εABvB
]
. (A40)

Notes
1 This could be called the ‘energy’ of the Weyl curvature, although I prefer to use the word ‘strength’ to avoid misunderstandings,

as the physical units are not those of energy [52,53]. While the name ‘super-energy’ has been traditionally used for these quadratic
quantities in the curvature, this may lead to confusion as well. A better name would be the tidal energy, however, it is unclear
whether this will catch on.

2 Actually, at J it is enough that the physical Cotton tensor decays quickly enough [57,58].
3 The standard notation for this electric part is Dab [56,58,74–76], but I use Fab here to avoid notational conflicts.

References
1. Trautman, A. Radiation and Boundary Conditions in the Theory of Gravitation. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.

1958, 6, 407–412.
2. Pirani, F.A.E. Invariant Formulation of Gravitational Radiation Theory. Phys. Rev. 1957, 105, 1089. [CrossRef]

http://doi.org/10.1103/PhysRev.105.1089


Universe 2022, 8, 478 40 of 42

3. Bel, L. Les états de radiation et le problème de l’énergie en relativité général. Cah. De Phys. 1962, 16, 59–80. English translation:
Radiation States and the Problem of Energy in General Relativity. Gen. Rel. Grav. 2000, 32, 2047–2078. [CrossRef]

4. Bondi, H.; van der Burg, M.G.J.; Metzner, A.W.K. Gravitational waves in general relativity. VII. Waves from axisymmetric isolated
systems. Proc. R. Soc. A 1962, 269, 21–52. [CrossRef]

5. Sachs, R.K. Gravitational waves in general relativity. VIII. Waves in asymptotically flat space-times. Proc. R. Soc. A 1962,
270, 103–126. [CrossRef]

6. Newman, E.; Penrose, R. An Approach to Gravitational Radiation by a Method of Spin Coefficients. J. Math. Phys. 1962,
3, 566–578. [CrossRef]

7. Zakharov, V.D. Gravitational Waves in Einstein’s Theory; Wiley and Sons: Hoboken, NJ, USA, 1973.
8. Penrose, R. Zero rest-mass fields including gravitation: Asymptotic behaviour. Proc. R. Soc. A 1965, 284, 159–203.
9. Newman, E.T.; Penrose, R. Note on the Bondi-Metzner-Sachs Group. J. Math. Phys. 1966, 7, 863–870. [CrossRef]
10. Frauendiener, J. Conformal Infinity. Living Rev. Relativ. 2004, 7, 1. [CrossRef]
11. Valiente Kroon, J.A. Conformal Methods in General Relativity; Cambridge University Press: Cambridge, UK, 2016. [CrossRef]
12. Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner,

R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998,
116, 1009–1038. [CrossRef]

13. Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.;
et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565–586. [CrossRef]

14. Penrose, R. On cosmological mass with positive Λ. Gen. Rel. Grav. 2011, 43, 3355–3366. [CrossRef]
15. Ashtekar, A.; Bonga, B.; Kesavan, A. Asymptotics with a positive cosmological constant: I. Basic framework. Class. Quant. Grav.

2014, 32, 025004. [CrossRef]
16. Ashtekar, A. Implications of a positive cosmological constant for general relativity. Rep. Prog. Phys. 2017, 80, 102901. [CrossRef]
17. Ashtekar, A.; Bonga, B.; Kesavan, A. Asymptotics with a positive cosmological constant. II. Linear fields on de Sitter spacetime.

Phys. Rev. D 2015, 92, 044011. [CrossRef]
18. Date, G.; Hoque, S.J. Gravitational waves from compact sources in a de Sitter background. Phys. Rev. D 2016, 94, 064039.

[CrossRef]
19. Ashtekar, A.; Bonga, B.; Kesavan, A. Asymptotics with a positive cosmological constant. III. The quadrupole formula. Phys. Rev.

D 2015, 92, 104032. [CrossRef]
20. Hoque, S.J.; Aggarwal, A. Quadrupolar power radiation by a binary system in de Sitter background. Int. J. Mod. Phys. D 2019,

28, 1950025. [CrossRef]
21. Bonga, B.; Hazboun, J. Power radiated by a binary system in a de Sitter universe. Phys. Rev. D 2017, 96, 064018. [CrossRef]
22. Bishop, N. Gravitational waves in a de Sitter universe. Phys. Rev. D 2016, 93, 044025. [CrossRef]
23. Kolanowski, M.; Lewandowski, J. Energy of gravitational radiation in the de Sitter universe at J + and at a horizon. Phys. Rev.

D 2020, 102, 124052. [CrossRef]
24. Krtouš, P.; Podolský, J. Asymptotic directional structure of radiative fields in spacetimes with a cosmological constant. Class.

Quant. Grav. 2004, 21, R233–R273. [CrossRef]
25. Podolský, J.; Kadlecová, H. Radiation generated by accelerating and rotating charged black holes in (anti-)de Sitter space. Class.

Quant. Grav. 2009, 26, 105007. [CrossRef]
26. Griffiths, J.B.; Podolský, J. Exact Space-Times in Einstein’s General Relativity; Cambridge Monographs on Mathematical Physics;

Cambridge University Press: Cambridge, UK, 2009. [CrossRef]
27. Szabados, L.B. On the total mass of closed universes with a positive cosmological constant. Class. Quant. Grav. 2013, 30, 165013.

[CrossRef]
28. Szabados, L.B.; Tod, P. A positive Bondi-type mass in asymptotically de Sitter spacetimes. Class. Quant. Grav. 2015, 32, 205011.

[CrossRef]
29. Saw, V.L. Bondi mass with a cosmological constant. Phys. Rev. D 2018, 97, 084017. [CrossRef]
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