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otro sitio) si no fuera por vosotrxs. Nunca habrá suficientes tesis para agredeceros tanto.
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desde los inicios de nuestra amistad ;) que sepáis que era mi yo pre-cient́ıfica intentando
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Resumen

En las últimas décadas hemos podido presenciar avances drásticos en el campo

de la electrónica, que han ocasionado un fuerte impacto en aplicaciones que afectan

prácticamente todos los aspectos de nuestra vida. Estos progresos surgen, en gran

medida, por la continua miniaturización de los dispositivos electrónicos, en particular

de los transistores basados en siĺıceo, que han dado lugar a circuitos más eficientes y

menos costosos. Obviamente dicho escalamiento no puede continuar indefinidamente.

Por ejemplo, a la escala nanométrica los efectos de la mecánica cuántica comienzan a

ganar importancia, aśı como otras limitaciones de naturaleza cient́ıfica y tecnológica,

que ponen ĺımites al tamaño mı́nimo y funcionamiento de los dispositivos basados en

siĺıceo.

Desde que se consiguió aislar el grafeno, una capa de grosor monoatómica de átomos

de carbono dispuestos en forma de panel de abeja, ha habido un gran esfuerzo gener-

alizado a la hora de explorar las infinitas posibilidades que este material ofrece para

el diseño de dispositivos que podŕıan suponer la próxima generación de la electrónica

actual basada en transistores de siĺıceo. Sin embargo, el grafeno posee una estructura

de bandas que no presenta un gap (carácter metálico), lo que imposibilita su uso como

material canal en la arquitectura del transistor de efecto campo. Esto se puede solventar

utilizando grafeno nanoestructurado en su lugar, ya que dichos sistemas pueden heredar

algunas de las propiedades excepcionales del grafeno a la par que permiten moldear las

propiedades electrónicas y magnéticas como se desee. De la misma manera, los mate-

riales magnéticos son esenciales para la tecnoloǵıa moderna, ya que juegan un papel

important́ısimo en el almacenamiento de datos, aśı como en dispositivos espintrónicos

(en los que se aprovecha el grado de libertad del esṕın del eslectrón además de su carga).

Mientras que el grafeno no es en principio un material magnético, derivados del grafeno

y el grafeno nanoestructurado pueden mostrar magnetismo ya que una red de carbonos

conjugados puede disponer de electrones desapareados que dan lugar a espines localiza-

dos (π-magnetism).

A la hora de construir dispositivos electrónicos y espintrónicos, se requiere un control

a nivel molecular de las partes que componen dicho dispositivo a través de fuertes enlaces

covalentes entre moléculas que permita un transporte de electrones eficiente entre ellas

y que provea de alta estabilidad. En el caso de los métodos ‘top-down’, como la foto-

litograf́ıa, la calidad de los bordes en las estructuras–que juegan un papel crucial en las

propiedades del material–es dif́ıcil de controlar a escala atómica, mientras que en el caso

de técnicas tipo ‘bottom-up’, como la śıntesis sobre superficies de moléculas orgánicas en

ultra-alto vaćıo, pueden dar muestras de precisión atomı́stica, lo que la convierte en uno
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de los métodos más poderosos para una construcción controlada de nanoarquitecturas

funcionales.

En la primera parte de esta tesis analizamos, desde un punto de vista teórico, el origen

del magnetismo en muchas nanoestructuras de grafeno que han sido sintetizadas exper-

imentalmente y que muestran señales de magnetismo. Para ello hemos desarrollado un

software en Python (llamada libreŕıa hubbard) que, basado en el modelo de Hubbard

en aproximación de campo medio, nos ha permitido estudiar la estructura electrónica en

función del esṕın, teniendo en cuenta la repulsión electrónica, en las moléculas que dan

lugar a la presencia de magnetismo.

En el art́ıculo I (Nat. Commun. 10, 200 (2019)) estudiamos un sistema compuesto

por una unión de dos nanocintas quirales que, aun teniendo la misma geometŕıa molecu-

lar, muestran diferentes escenarios: en algunos casos esta molécula muestra una resonan-

cia al nivel de Fermi, asociada al efecto Kondo, que implica un electrón localizado (estos

casos fueron nombrados como tipo-1 y tipo-2), mientras que en otros casos (tipo-3) estas

moléculas muestran una curva de transición singlete-triplete. Para entender la existencia

de esta diferencia encontrada en los espectros de la corriente frente al voltaje recogidos

con el microscopio de efecto túnel, simulamos dicha estructura con nuestro paquete hub-

bard en combinación con teoŕıa del funcional de la densidad (Density Functional The-

ory, DFT). Aśı pudimos comprobar que, dado que las funciones de onda de los orbitales

moleculares eran extremadamente localizadas, la presencia de la repulsión electrónica

lleva a los electrones a reorganizarse en la molécula para desaparearse y ocupar orbitales

moleculares diferentes con el fin de reducir dicha interacción (estos electrones desaparea-

dos componen los llamados radicales). Teniendo este escenario en mente, para entender

que en algunos casos solo hubiera un único radical (tipo-1 y tipo-2) lo que hicimos fue

pasivar cada uno de los radicales con un átomo extra de hidrógeno. De esta manera se

elimina el radical correspondiente y permanece el otro. En el caso en el que hay dos

radicales presentes, estos se acoplan formando un singlete, lo que da lugar al espectro

encontrado tipo-3. Cabe remarcar que tanto las funciones de onda encontradas como

las polarizaciones de esṕın se corresponden con un gran parecido tanto cualitativo como

cuantitativo a los resultados experimentales.

En el art́ıculo II (Phys. Rev. Lett. 124, 177201 (2020)) estudiamos el caso de una

molécula tipo trianguleno. Dicha molécula acomoda un imbalance entre las subredes de

la red bipartita, lo que origina un esṕın total distinto de cero (en este caso, el estado

de más baja enerǵıa es aquél con S = 1, ya que tiene 19 átomos de carbono en una

subred mientras que 17 en la otra). De nuevo, simulamos el sistema con nuestro paquete

hubbard y con DFT. Dichas simulaciones muestran una excelente similitud con el

experimento, y demuestran que efectivamente el estado de más baja enerǵıa es aquél

https://www.nature.com/articles/s41467-018-08060-6
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.177201
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con S = 1. Experimentalmente dicho resultado se observó al medir el espectro de la

corriente frente al voltaje en el microscopio de efecto túnel, en el que se ve una resonancia

tipo Kondo infra-apantallado (underscreened Kondo), asociado al efecto Kondo de un

estado tipo triplete. En este art́ıculo no solo estudiamos el caso del monómero sino

también del d́ımero (unión de dos monómeros). Al tener un conjunto de dos sistemas

con dos radicales cada uno, se esperaŕıa que el conjunto de ellos tuviera cuatro radicales

presentes, sin embargo, en el proceso de la śıntesis sobre la superficie, la geometŕıa

molecular resultante presenta un pentágono que cambia la naturaleza de cuatro radicales

a solo dos (demostrado tanto teórica como experimentalmente). En este art́ıculo también

estudiamos el efecto de la pasivación de los radicales con átomos extra de hidrógeno,

que además constituye una forma de demostrar el número de radicales presentes en las

moléculas.

En los art́ıculos mencionados anteriormente estudiamos los casos particulares de ge-

ometŕıas tipo sp2 basadas únicamente en carbono. En el art́ıculo III (Nano Lett. 22,

164–171 (2022)) estudiamos también el efecto de la presencia de heteroáotomos en la ge-

ometŕıa molecular, manteniendo el carácter sp2, que como demostramos en este art́ıculo

pueden jugar un papel fundamental en las propiedades magnéticas. Por ejemplo, al reem-

plazar un grupo CH en el borde de una nanocinta quiral pristina por un grupo C=O

(grupo carbonilo), se añade un electrón a la red π del sistema. Como consecuencia, el

número impar de electrones causa la presencia de radicales tipo π. Lo mismo ocurre en

el caso contrario, en el que empezamos con una nanocinta quiral completamente fun-

cionalizada con ketonas, en la que se reemplaza un grupo C=O por un grupo CH. En

este estudio demostramos cómo el acoplo entre los presentes electrones desapareados

depende de su posición relativa, que incluye una gran dependencia en la quiralidad, aśı

como de la naturaleza qúımica que la rodea (es decir, con o sin estar funcionalizados con

ketonas). Dado que el grupo carbonilo también pertenece a una hibridización tipo sp2,

éste contribuye con un electrón pz, y puede como primera aproximación considerarse

como un sitio pz en su correspondiente subred. En un intento de construir un modelo

sencillo para estudiar estos sistemas con nuestro paquete hubbard, comenzamos uti-

lizando los mismos parámetros para los átomos de carbono que para los de ox́ıgeno, a

este modelo lo llamamos MFH-TB(1). Sin embargo, la existencia de discrepancias de

este modelo con otros más exactos (DFT) nos llevaron a considerar otro modelo en el que

cambiamos los elementos de matriz del Hamiltoniano entre primeros vecinos a t = 3.8

eV y los potenciales a εi = −1.5 eV para los átomos de ox́ıgeno enlazados a átomos de

carbono (manteniendo t = 2.7 eV y los potenciales a εi = 0 para el resto de los átomos).

Este modelo mejoró drásticamente tanto resultados cuantitativos como cualitativos en

comparación con lo obtenido con DFT. Cualitativamente estos parámetros se pueden

https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.1c03578
https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.1c03578
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relacionar directamente con el hecho de que el enlace C=O es mas corto que el enlace

C−C, mientras que el potencial ‘más negativo’ del ox́ıgeno se relaciona con su más alta

electronegatividad con respecto a los átomos de carbono.

En la segunda parte de esta tesis, nos centramos en el transporte cuántico de elec-

trones en estructuras de grafeno. Inspirado por las muchas similitudes entre fotones

propagando en gúıas de onda y electrones viajando de forma baĺıstica en estructuras de

grafeno, nace el campo de la ‘óptica electrónica en estructuras de grafeno’, donde los

electrones se comportan como fotones en dichos medios. Teniendo las ideas de los exper-

imentos del campo de la óptica en mente, podemos pensar en estudiar interferometŕıa

electrónica, para lo cual se necesitan ciertos bloques fundamentales para la construcción

de los interferómetros, como por ejemplo espejos electrónicos, divisores del haz, filtros,

etc. Aqúı demostramos que las nanocintas de grafeno pueden ser unos buenos can-

didatos para desarrollar este tipo de experimentos, ya que además de presentar buenas

propiedades para este fin, hay perspectiva de posible realización experimental gracias al

desarrollo de la śıntesis sobre superficies.

En el art́ıculo IV (Phys. Rev. B 102, 035436 (2020)) estudiamos de forma general

dispositivos formados por nanocintas de grafeno cruzadas con un ángulo relativo de 60◦

y dispuestas una encima de la otra a una distancia t́ıpica de van der Waals en grafito

(unos 3.34 Å aproximadamente). Debido a la simetŕıa de la red hexagonal del grafeno,

cuando el ángulo de cruce entre las cintas es de 60◦, se produce una maximización en

la transferencia de electrones entre las cintas. En este art́ıculo demostramos que este

fenómeno da lugar a que los electrones puedan transmitirse por este dispositivo de cua-

tro terminales sin reflexión y con un ratio de transmisión dentro y entre nanocintas que

depende de la anchura de las nanocintas y de la enerǵıa del electrón transmitido. En

este contexto podemos encontrar que en función de estos parámetros estos dispositivos

pueden comportarse como espejos electrónicos direccionales (donde el electrón es com-

pletamente transmitido a la otra cinta), como un divisor del haz (en el que el electrón es

igualmente transmitido en las dos posibles direcciones sin reflexión), como un filtro de

longitud de onda, etc. Estos datos fueron recogidos en una figura de mérito en la se mues-

tra los distintos reǵımenes de transporte de estos dispositivos, con intención de que sirva

como gúıa para el diseño y optimización de los interferómetros basados en nanocintas

de grafeno para el estudio de la óptica electrónica. El estudio realizado cubre distintas

nanocintas (con distintos bordes, como por ejemplo tipo ‘armchair’ y ‘zigzag’) y distin-

toas alineamientos entre las cintas (AA y AB, existentes con un ángulo de 60◦). Además,

dado que utilizamos un modelo de ‘tight-binding’ general basado en la parametrización

Slater-Koster, donde los elementos de matrix dependen exponencialmente de las distan-

cias entre los pares atómicos, estudiamos el efecto de posibles distorsiones en los cruces,

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.035436
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como diferentes ángulos de cruce, posibles traslaciones de una cinta con respecto a la

otra, diferentes distancias de separación entre las cintas, diferentes potenciales entre las

cintas, etc. Con esto, en este estudio, contribuimos con una caracterización completa

del funcionamiento de dichos dispositivos a la par que estudiamos el efecto de posibles

adversidades a las que se podŕıa enfrentar el resultante dispositivo construido experi-

mentalmente.

En el art́ıculo anterior estudiamos las propiedades de transporte de electrones en

dispositivos formados por nanocintas de grafeno en ausencia de interacción electrónica.

Sin embargo, se conoce que las cintas de grafeno con bordes tipo ‘zigzag’ presentan

estados localizados cerca del nivel de Fermi (bandas planas) que dan lugar a inestabil-

idades magnéticas que originan estados polarizados de esṕın localizados en los bordes,

y la apertura de un gap de correlación alrededor del nivel de Fermi. Teniendo este

fenómeno en mente, en el art́ıculo V (Phys. Rev. Lett. 129, 037701 (2022)) estu-

diamos las propiedades de transporte de dichos dispositivos incluyendo el término de

repulsión electrónica en el Hamiltoniano. Para describir la f́ısica de esṕın en estos sis-

temas utilizamos el modelo de Hubbard en aproximación de campo medio, implementado

en nuestra libreŕıa hubbard. Dado que las cintas son infinitas, pero el sistema carece

de periodicidad, utilizamos el formalismo de funciones de Green fuera del equilibrio para

resolver la ecuación de Schrödinger. En este art́ıculo queda demostrado que estos dispos-

itivos son aún más interesantes, ya que no sólo mantienen sus propiedades de transporte

al incluir la repulsión electrónica (transmisión únicamente en dos de los cuatro brazos

del dispositivo sin reflexión) sino que además pueden funcionar como divisores del haz

que polarizan en esṕın la corriente saliente, ya que las probabilidades de transmisión en

cada una de las posibles direcciones de salida son muy diferentes dependiendo del ı́ndice

de esṕın.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.037701
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Abstract

The drastic advances in the field of electronics in the past few decades have

arisen, to a large extent, from the continuous miniaturization of silicon-based transis-

tors, which have already reached the nanoscale. Nevertheless, this ‘down-scaling’ cannot

continue indefinitely, as some limitations of fundamental scientific and technological

nature start to appear. Since the isolation of graphene there has been a huge effort

to explore the infinite possibilities that this material offers for device designing, that

could be the next generation of electronics. However, while the gapless bandstructure

of graphene prevents its usage as the channel material in field-effect transistor archi-

tectures, nanostructured graphene systems are gaining interest since they can inherit

some of the exceptional properties from graphene while having a tunable electronic

structure. Moreover, magnetic materials are essential for modern technology since they

play the main role in data storage and are also of particular interest for spintronics

and quantum computing applications. While graphene is not magnetic itself, many

of its derivatives have shown magnetic features, opening the doors for carbon-based

magnetism. Now, custom-crafted graphene nanostructures can be synthesized through

chemical reactions of rationally designed precursor molecules assisted by metal surfaces

(on-surface synthesis). Following this line, in the first part of this thesis we provide with

fundamental insights and understanding of the origins of the source of magnetism in

several nanographenes of diradical character with crafted shapes that show interesting

magnetic features. The magnetic exchange coupling can be in fact quite tunable and

versatile, as it highly depends on the relative position between the radicals (unpaired

electrons), the occupying underlying sublattices and their chemical environment.

Another interesting property from graphene comes from the similarities between elec-

trons circulating ballistically in graphene constrictions and photon propagation in wave

guides, which have opened the doors for studying optics-like experiments in graphene

nanostructures, where electrons play the role of photons. One of the most elementary

building blocks necessary to perform electron quantum optics is the electron beam split-

ter, which is the electronic analog of a beam splitter for light. Remarkably, it has been

shown that there is an enhancement in the electron transfer process between two crossed

graphene nanoribbons (GNR) with an intersecting angle close to 60◦ as a consequence

of the symmetry of the honeycomb lattice, since this crossing angle yields a perfect

matching of the bottom and top GNR atomic structures. In this thesis we show that by

tuning the electronic energy of valence and conduction band electrons, and the width

of the ribbons these devices can behave as fundamental blocks for electron quantum

optics experiments, such as, e.g., mirrors, beam splitters (half-transparent mirrors) and
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wavelength filters. Furthermore, GNRs with zigzag edge topology host localized mag-

netic edge states, that give rise to additional interesting features for the charge and spin

transport. In this thesis we also show that such devices can create a spin-polarizing

scattering potential which enables them to operate as a spin-polarizing beam splitter.

We employ the tight-binding (TB) methodology that allowed us to explore a large

number of systems of considerable sizes in a fast and transparent way, where the accuracy

of the description depends on the chosen parametrization. To describe the spin physics

we make use of the Hubbard model within the mean-field approximation backed up with

density functional theory (DFT) calculations. To perform spin and electron quantum

transport calculations we make use of the non-equilibrium Green’s function (NEGF)

formalism to solve the Schrödinger equation for the open quantum systems.

The results presented in this thesis intend to reflect the potential of graphene nanos-

tructures as ideal systems for carbon-based electronics, spintronics, and electron quan-

tum optics with potential applications in next-generation quantum computation.
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1 Introduction

In the past few decades we have witnessed drastic advances in the field of electronics

that have had tremendous impact in applications that affect about every aspect of our

lives. These progresses have arisen, to a large extent, from the continuous ‘down-scaling’

of electronic devices, more specifically of silicon-based transistors, that has led to more

generally efficient and less expensive circuitry [1–4]. Obviously, this device scaling cannot

continue indefinitely. For instance, at the nanometer scale quantum mechanical effects

start to gain importance, as well as other limitations of fundamental scientific and tech-

nological nature, which place limits on the minimum size and performance of silicon

devices. Hence, the approaching end point has inspired a worldwide effort to develop

alternative setups to substitute current silicon-based technologies.

Since the isolation of graphene [5–7], a material that has shown superior electrical

and mechanical properties, graphene-based transistors have developed rapidly and are

now considered as an option for the next-generation post-silicon electronics [8]. One

of the taken approaches in this direction is to replace the conducting channel—a key

component of the device—with carbon nanomaterials while maintaining the operating

principles of the currently used devices, primarily that of the field-effect transistor (FET).

However, the absence of a sizeable and well-defined band gap and the resulting lack of a

pronounced drain-current saturation limits prohibit two-dimensional (2D) graphene as

the channel material in FETs architectures for logic applications [9]. To overcome this

issue, other architectures have been recently proposed: a graphene base transistor [10],

a hot electron transistor with a base contact made of graphene [11], etc. Even bilayer

graphene is still gapless, however if an electric field is applied perpendicular to the bilayer,

a band gap opens and the bands near the K point take on the so-called Mexican-

hat shape [12–15]. Other approaches involve moving away from traditional electron

transport-based electronics, that have no analogue in silicon-based applications: for

example, the development of spin-based devices (spintronics), or even the possibility

to manipulate the valley (energy extrema in the electronic band structure) degree of
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Figure 1.1: On-surface synthesis (OSS) route for the bottom-up fabrication of atom-
ically precise GNRs. Illustration of the basic steps for surface-supported GNR synthe-
sis exemplified with 10,10′-dibromo-9,9′-bianthryl monomers of 7-AGNR. Reproduced
from [18].

freedom, which defines the field of valleytronics, the valley analogue of spintronics [16,17].

Fortunately, a solution to the gapless condition of 2D graphene is to use nanos-

tructured graphene systems, that, while inheriting some of the exceptional properties of

graphene, offer a tunable electronic structure as a consequence of electron confinement.

When it comes to molecular electronics and spintronics, the construction of such de-

vices requires a controlled arrangement of the molecular counterparts by strong covalent

intermolecular connections, enabling efficient electron transport between the molecules

and providing high stability. Since in the case of top-down methods, such as photo-

lithography, the quality of edge structures—which play a crucial role in the properties of

the synthesized materials—are difficult to control at the atomic scale, there has been a

large effort in developing new strategies to obtain cleaner structures experimentally. This
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(a) Total lattice imbalance

(b) Local sublattice imbalance:
zigzag edges

(c) Atomic defects in nanographenes

(d) Topological frustration

Figure 1.2: Possible routes towards magnetism in graphene. (a) Evolution of the
sublattice imbalance and therefore the total spin S of triangular graphene fragments with
the molecular size, as stated by the Lieb’s theorem (extracted from [21]). (b) Appearance
of localized magnetic moments at the zigzag edges and correlation gap opening in its
bandstructure due to the local sublattice imbalance. Figures taken from Ref. [22]. (c)
Atomic defects in nanographene. Image taken from Ref. [23]. (d) Topological frustration
in the Clar’s goblet structure. Panel taken from Ref. [24,25].

is the case of bottom-up OSS [18–20] of self-assembled organic molecules in ultra-high

vacuum (see Fig. 1.1). This technique, which is in a sense an extension of heterogeneous

catalysis whereby the chemical reactants (precursors), the intermediate states, and the

reaction products remain in an adsorbed state, can give clean samples of atomistic pre-

cision, leading to one of the most powerful strategies towards a controllable construction

of functional nanoarchitectures.

Origins of magnetism in sp2 carbon compounds and emergence of π-

magnetism. Magnetic materials are essential for modern technology, they play the

main role in data storage and are also of particular interest for spintronics and quantum

computing applications. The most typical used magnetic atoms involve the elements

belonging to either the d- or the f -block of the periodic table. In fact, among the atomic

elements only the late transition metals, Fe, Co and Ni, are ferromagnets at room tem-

perature. However, while ideal graphene is non-magnetic itself, many of its derivative
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Figure 1.3: Orbital recombination of the highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) ψ± to form singly occupied molecular
orbital (MO) ψA,B that reduce the Coulomb repulsion between electrons and leads to
the open-shell character.

materials and nanostructures show various scenarios of magnetism since an arrangement

of sp2 carbons in a cross-conjugated manner affords a branched π-system that exhibits

magnetism due to the intrinsic appearance of unpaired electrons. For instance, a number

of reports have pointed out that even untreated graphite exhibits ferromagnetism [26,27].

In fact, graphene π-paramagnetism is more delocalized, mobile, and isotropic than con-

ventional magnetism arising from d or f states [28]. For these reasons (among many

others) the field of light-element magnetism and, in particular, of carbon-based mag-

netism is currently gaining increasing importance [29,30]. Furthermore, it was predicted

that the magnetic moments and their correlations in nanographenes can be precisely

engineered through their sizes, edge topology, or chemical doping [31–34]. However, un-

til recently the magnetic properties of such nanosystems were not possible to reproduce

as they rely on the presence of unpaired π-electrons, whose high chemical reactivity ei-

ther hindered their synthesis in solution or impeded their characterization [35]. With

the advent of OSS, one can now design custom-crafted nanostructures that can be both

synthesized and characterized as they are produced under ultra-high vacuum conditions

and can be measured with scanning probe techniques [25, 36–43].

To understand the magnetic ordering in a nanographene one can make use of a set

of rules that predicts the magnetic nature of the ground state. Generally, in polycyclic

aromatic hydrocarbons (PAH) the spin of the ground state can be anticipated using

Ovchinnikov’s rule [44], which states that its spin S is given by S = 1
2
|NA −NB|, where

NA, NB are the number of C atoms in each of the interpenetrating triangular sublattices

that form the honeycomb lattice. This rule was later upgraded into a theorem by E.

H. Lieb [45], who generalized the exact interacting ground state of the Hubbard model
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Figure 1.4: Open-shell character: Understanding the appearance of radicals in the
nanostructures from Clar’s theory. The Clar’s sextets are indicated by C in the molec-
ular geometry. Panels (a) and (b) show the closed-shell and the open-shell scenarios,
respectively. Figure taken from the supplemental information of Ref. [36].

for any bipartite system, where NA, NB now are the number of atoms corresponding

to the existing sublattices. This picture was further completed by R. Ortiz et al. by

providing a set of rules that determine the multiplicity and the open-/closed-shell na-

ture of the lowest energy many-body states for (the previously not-very-well addressed)

nanographenes of diradical character [46]. For instance, this gives a way in which planar

π-conjugated hydrocarbons can be turned magnetic, e.g., by designing a nanographene

with a sublattice imbalance [33], as seen in Fig. 1.2a-b.

Another source of magnetism in graphene is the presence of atomic defects, e.g.,

chemisorpted hydrogen or vacancy defects [21,23,47,48], as shown in Fig. 1.2c, or even

chemical functionalization. For instance, chiral GNRs (chGNRs) oxidize when exposed

to oxygen [49], where the resulting replacement of CH at the edge by a C=O (carbonyl)

group leads to one additional π-electron in the system. However, there is another mech-

anism in which carbon compounds can become magnetic even for systems with low total

spin (S = 0), e.g., topologically frustrated systems [25] as shown in Fig. 1.2d, and sys-

tems where the Lieb’s theorem does not apply [36]. This mechanism is based on the

simple fact that electrons occupying the same MO will suffer from a strong Coulomb

repulsion for highly localized MO. In those cases, if this interaction energy is stronger

than the energy difference between the valence electrons and the first unoccupied states,

then the electron will be promoted to an unoccupied state, as sketched in Fig. 1.3. The

resulting radicals (unpaired electrons) can interact and be magnetically coupled form-

ing a magnetic singlet or triplet depending on the preferred orientation. An alternative
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chemical schematic picture behind the emergence of singly occupied radical states can be

drawn bearing in mind Clar’s aromatic π-sextet rule [50] in which the emergence of two

unpaired electrons is compensated by the energy gain of the creation of more aromatic

rings (Clar’s sextets), see Fig. 1.4.

GNRs as a platfrom for electron quantum optics and spintronics. The similar-

ities between the wave nature of electrons propagating coherently in ballistic conductors

with photon propagation in optical waveguides has sparked the field of electron quantum

optics [52, 53]. For instance, the electron wave nature can manifest itself in a variety

of interference, diffraction, and refraction effects, for example, when transmitted across

a boundary separating regions of different electron density [51, 54, 55], e.g., as shown

in Fig. 1.5. This resemblance makes it possible to manipulate electrons like photons

by using components inspired by geometrical optics, such as mirrors, lenses, prisms,

and beam splitters. A platform with remarkable prospects for electron quantum op-

tics are graphene-based systems, in which several pioneering experiments on electron

beam splitters and related devices have been performed [51, 56]. Recently, semicon-

(a)

(b)

(c)

Figure 1.5: First hints of electron quantum optics in graphene nanoconstrictions. (a)
Sketch of the p-n junction. (b) Real image of the split gate device. (c) Sketch of the
Snell’s law that electrons’ velocity suffers when entering different regions of the p-n
junction with different dopings, leading to different reffractive indices. Images taken
from [51].
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Figure 1.6: Electron beam splitting effect in multiterminal junctions formed of crossed
GNRs. Images taken from [77].

ducting one-dimensional (1D) carbon nanotubes and GNRs have emerged as attractive

candidates for the construction of molecular-scale electronic devices [9,57,58] since they

inherit some of the exceptional properties from graphene while having tunable direct

band gaps [22, 59–64]. Furthermore, it has been established experimentally that elec-

trons can propagate without scattering over large distances of the order of ∼100 nm in

GNRs [65–67]. For instance, ballistic transport in ZGNRs can be rather insensitive to

edge defects because of the dominating Dirac-like physics, that make the current flow

maximally through the center of the ribbon [68]. Moreover, with the advent of bottom-up

fabrication techniques via OSS, long defect-free samples can be chemically synthesized

with both armchair (AGNR) [18] and zigzag (ZGNR) [69] edge topologies. Manipulation

of GNRs with scanning tunneling probes has been also demonstrated [70, 71], opening

the possibility to build two-dimensional multiterminal graphene-based electronic cir-

cuits [72–75]. For instance, it has been recently proposed that the transfer process

between two crossed GNRs is strongly enhanced with negligible reflection when inter-

secting with an angle of 60◦, as a consequence of the honeycomb lattice symmetry. In

fact, such four-terminal devices were found to divide the electron beam into two out of

the four arms with an almost equal transmission probability of 50% [76,77] as shown in

Fig. 1.6.

Among their many possibilities, graphene derivatives have also shown to be an in-

teresting platform for spintronics [78] due to the light mass and the near absence of

nuclear magnetic moments in carbon, which give small spin-orbit interaction and hyper-
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fine couplings—the major sources of spin relaxation and decoherence [28, 31, 78–81]. In

general, materials that enjoy sp-bonding are expected to have high magnitudes of spin-

wave stiffness [82] and long spin coherence lengths [82,83] even at room temperature [84].

Furthermore, ZGNRs develop spin-polarized edge states as theoretically [85] and exper-

imentally [86, 87] demonstrated that can lead to interesting spin transport effects. For

instance, it has been shown that 4-terminal devices with zigzag edges can generate a

spin-polarizing scattering potential [88], and moreover that one rough zigzag edge can

be used to boost spin injection [89].

1.1 General objectives

The objectives of this thesis are the following:

Development of open-source software to describe spin physics in

graphene-based extended structures. In first place, the large systems that are

currently being synthesized brought the need for a software that allows to treat large-

sized Hamiltonians to assist in understanding experimental results. Motivated by this

we developed the hubbard package [90] which is a python-based module that allows

one to find the magnetic ground state of a system within the mean-field Hubbard (MFH)

approximation. The hubbard package aims to provide with an open-source tool easy to

manipulate that quickly obtains the self-consistent solution for many different systems,

that, inspired by the capabilities from siesta/transiesta [91, 92] can solve isolated,

periodic and open boundary conditions. The advantages of it relying on sisl [93, 94]—

an efficient tight-binding (TB) and density functional theory (DFT) interface library—

permits to combine MFH- and DFT-based calculations easily.

Characterization of magnetic exchange interaction in diradical systems.

In second place, by combining and comparing multiple calculations using both the hub-

bard package and siesta we were able to characterize many different systems showing

magnetic fingerprints where the source of magnetism is of different natures. For instance,

we were able to understand and characterize the exchange interaction in diradical systems

in terms of (i) the origin of the spin localization and the role of Hydrogen passivation

in chGNR junctions showing both a Kondo resonance and a singlet-triplet transition

curve [36] (Paper I), (ii) the magnetic nature of triangulene-like nanographenes that

showed underscreened Kondo effect [38] (Paper II), as well as (iii) the chemical envi-

ronment and the relative position of the radicals in chGNRs with ketone functionaliza-

tion [95] (Paper III).

Classification, characterization and proposition of devices for electron and

spin quantum optics in GNR-based architectures. In third place, although pre-
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vious studies revealed the presence of beam splitting effect in crossed GNRs junctions,

there was a lack of generalization and systematic classification of these junctions in terms

of their transport properties. In publication [96] (Paper IV) we provide a complete analy-

sis of the regions in the parameters space where the junctions can act as fundamental

components for electron interferometry, such as mirrors (where the electrons are fully

transferred into the other ribbon), beam splitters (half-transparent mirrors, where the

electrons are transmitted with a 50:50 ratio in two outgoing terminals), and wavelength

filters, in a figure of merit that outline the transport properties of these devices. Fur-

thermore, in the case of ZGNR devices, its performance as a beam splitter had been

only studied for the unpolarized case, while it is known that ZGNRs tend to polarize due

to the magnetic instabilities of the localized edge states when the Coulomb repulsion

term is included in the recipe. In publication [97] (Paper V) we provide an analysis of

the spin transport properties for these devices, and in particular their performance as

spin-polarizing electron beam splitters.

1.2 Organization of this thesis

This thesis is organized as follows: In Chapter 2 the theoretical framework and meth-

ods are explained in detail. Both the methodology for transport calculations (Green’s

function and scattering matrix formalism), and electronic Hamiltonian to describe the

electronic and magnetic properties of graphene-based nanostructures are introduced. In

Chapter 3 the results for magnetism in nanographenes are summarized, and in Chapter

4 the results for electron quantum transport in graphene based nanostructures. Finally,

in Chapter 5 the conclusions and prospects for the future are described.



2 Models and theoretical methods

This chapter is organized as follows: firstly, the non-equilibrium Green’s function

(NEGF) formalism and the definition of the concept of self-energies are explained in

Sec. 2.1. Secondly the scattering matrix formalism and how it can be computed from

the Green’s function is detailed in Sec. 2.2. Then the electronic structure of carbon

compounds is generally introduced in Sec. 2.3, followed by the different frameworks to

calculate it, i.e., the TB method in Sec. 2.4, the MFH model in Sec. 2.5, and DFT in

Sec. 2.6.

2.1 Non-equilibrium Green’s function formalism

and partitioning scheme

To introduce the NEGF formalism we follow the approach of Ref. [98]. Green’s functions

[98–100] give the response at any point (inside or outside the system) due to an excitation

(source) |v〉 at any other. The Green operator can then be defined to express the response

of the system to such perturbation as,

H |ψ〉 = E |ψ〉+ |v〉 ⇒
(H− E) |ψ〉 = |v〉 ⇒
|ψ〉 = G(E) |v〉 .

(2.1)

Where |ψ〉, H and E, are the wave function (WF), the Hamiltonian and the energy of the

system, respectively. In these terms, the quantum mechanical problem can be expressed

in terms of this differential operator G = (H− E)−1. If the excitation is a point-like

pulse, i.e., a Dirac delta-like function, then the Green’s function itself will reveal the WF

(response) of the system. The inverse of a differential operator (integral form) is not

uniquely defined unless the boundary conditions are properly specified. Eq. (2.1) has

two solutions, called the retarded G and advanced G† Green’s functions. The former
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represents incoming waves, while the latter outgoing waves with respect to the placement

of the source. In practice these two solutions are usually obtained by adding in Eq. (2.1)

an infinitesimal imaginary part (η) to the energy. The limit (η → 0+) gives the retarded

solution, while (η → 0−) gives the advanced (usually η is a parameter justified to ensure

the convergence of a Fourier transform) [99,101].

For the matrix representation of the Hamiltonian (and thus the Green’s function),

the equation that gives the Green’s function is given in Eq. (2.2), where I is the identity

matrix of the given dimension.

G = [(E + iη) I−H]−1 ,
(
η → 0+

)
. (2.2)

For the discrete Schrödinger equation, we can start by dividing the Hamiltonian and

WFs into the contacts (H1,2, |ψ1,2〉) and device subspaces (Hd, |ψd〉). In the following

example we consider a simple case where the device connected to only two contacts 1, 2,

which are coupled to the device via the coupling matrices τ 1,2:




H1 τ 1 0

τ †1 Hd τ †2
0 τ 2 H2





|ψ1〉
|ψd〉
|ψ2〉


 = E



|ψ1〉
|ψd〉
|ψ2〉


 . (2.3)

The real interest in calculating the Green’s function is that is easier than solving the

eigenvalue problem and most (all for one-particle systems) properties can be calculated

from it. On the other hand, the Green’s function of the device, Gd, can be calculated

without calculating the whole Green’s function.



EI−H1 −τ 1 0

−τ †1 EI−Hd −τ †2
0 −τ 2 EI−H2






G1 G1d G12

Gd1 Gd Gd2

G21 G2d G2


 = E



I 0 0

0 I 0

0 0 I


 . (2.4)

Selecting the three equations in the second column, we obtain the following system of

equations

(EI−H1)G1d − τ 1Gd = 0 (2.5)

−τ †1G1d + (EI−Hd)Gd − τ †2G2d = I (2.6)

(EI−H2)G2d − τ 2Gd = 0. (2.7)

From Eq. (2.5) and Eq. (2.7) we obtain G1d,2d = g1,2τ 1,2Gd, where g1,2 is the surface

Green’s function of the isolated contacts, which are usually calculated recursively using
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the Lopez-Sancho method [102,103]. With this we can build the definition of the Green’s

function of the device,

Gd = (E −Hd −
∑

α

Σα)−1, (2.8)

where Σα = τ †αgατα is the self-energy for the α-th electrode, which encode the effect of

the contacts on the device. The idea behind this mathematical approach is sketched in

Fig. 2.1.

Lead 1

L
ea

d
2

Lead
3

Lead 4

L
ead

5Device Device

Σ1

Σ
2

Σ
3

Σ4

Σ
5

τ 1

τ 5

τ 4

τ 3

τ 2

(a) (b)

Figure 2.1: (a) Device connected to 5 semi-infinite leads through the coupling matrices,
τ i, i ∈ {1, . . . , 5}, that can be conceptually replaced by the self-energy terms as sketched
in (b).

2.1.1 Wide-band limit approximation

When the bandwidth is large compared to the applied bias, the density of states (DOS)

in the electrodes can be considered fairly constant near the Fermi energy, or, in other

words, the detailed structure of the DOS in the leads is not important for the descrip-

tion of transport in the device. In this limit, the effective wide-band limit (WBL)

approximation can be employed to treat the self-energies of the leads in the nanoscale,

which substantially simplifies computations. For instance, since the eigenspectrum of

the Green’s function does not depend on energy under this approximation, it can be

diagonalized before evaluating the transport properties, dramatically reducing the com-

putational cost [104–107]. Firstly, let’s express the αth electrode’s self-energy by splitting

it into the Hermitian and anti-Hermitian parts,

Σα = Λα(E)− i

2
Γα(E), (2.9)
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where both Λα and Γα are real matrices. Effectively, the former introduces a shift

of the orbital resonances, i.e., affecting the poles of the Green’s function, while the

latter introduces a level broadening. To a first approximation, we can consider Γ to

be independent of energy E and neglect the level-shift Λ, which leads to the WBL

approximation. This yields a self-energy of the form:

ΣWBL
α = − i

2
Γα. (2.10)

An example of the applicability of this approximation are systems with bulk-metal

electrodes, as, e.g., shown in Refs. [104, 106, 107]. In fact, this method was applied

to successfully describe a GNR on a surface lifted by a scanning tunneling microscope

(STM) tip [108, 109]. In these experiments, the STM tip would act as one of the bulk-

metal electrodes and the substrate on which the GNR is standing would be the other

electrode.

This approximation can be quite useful, for example, to understand what is the role

of the surface in the localized spins in a molecule. For this reason, we have implemented

this feature in the hubbard package so one can perform this type of calculations.

2.2 Scattering matrix from Green’s function

In order to see how the scattering region affects the electron transport through a device,

it can be convenient to make use of the scattering matrix (S-matrix), S. By using this

formalism one is able to obtain the outgoing states Ψout from a general input wave Ψin

as

Ψout = SΨin. (2.11)

This matrix can be easily computed from the retarded Green’s function of the device for

a given energy E by means of the generalized Fisher-Lee relations [110]:

Sαβ = −δαβI + iΓ̃T
βGΓ̃α. (2.12)

Where α, β represent incoming and outgoing electrodes, respectively, δαβ is the Kronecker

delta and Γ̃α = diag{√γα}Uα is related to the level broadening matrix resulting from

the coupling between lead α to the device region by

Γα = i
(
Σα −Σ†α

)
= UT

αdiag{γα}Uα. (2.13)
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It is convenient to express the broadening matrices in terms of their eigenvectors Uα,

which physically map into the transverse modes of the electrodes that are coupled to the

device by the eigenvalues {γα}, since now we can use only the modes that are actually

coupled to the device (by neglecting those vectors of Uα associated to γα ' 0). We note

that it is common to see the S-matrix expressed as Sαβ = −δαβI + iΓ
1
2
αGΓ

1
2
β . However,

this identification is somehow misleading, because this expression acts on the Hilbert

space of the device, which is subject to the chosen partitioning scheme (arbitrary size),

as observed in Ref. [111], while Eq. (2.12) acts on the transverse part of the leads.

It is easy to see from Eq. (2.12) that the off-diagonal elements of Sαβ correspond to

the transmission amplitude matrices between leads α 6= β, while the diagonal elements

Sαα correspond to the reflection amplitude matrices. Note that the dimension of Sαβ
is nα × nβ, where nα,β is the number of modes (open channels) in the α-th and β-th

electrodes at a particular energy.

The transmission probabilities can be computed from the S-matrix, recovering the

Landauer-Büttiker transmission formula [112,113] for (ideal) mesoscopic conductors:

Tαβ = Tr
[
S†αβSαβ

]
= Tr

[
GΓαG

†Γβ

]
=
∑

n

Tn, (2.14)

where Tn is the transmission probability of the nth eigenchannel (particular scattering

state with a well-defined transmission probability) [114–117]. In addition to being useful

for analyzing theoretical calculations, the eigenchannel transmissions may be obtained

experimentally (i) with superconducting electrodes connecting the atomic-scale conduc-

tor [118] or (ii) from shot noise measurements, where information about the individual

channel contributions can be obtained from the Fano factor [119].

The reflection probability can be conveniently written as a difference between the

total number of open channels/modes (nα) available at that energy and the scattered

transmission into all the β 6= α electrodes, i.e.,

Rα = Mα −
∑

β 6=α
Tαβ. (2.15)

The net current into lead α can be also obtained from the Landauer-Büttiker formula

[112,113,120]:

Iα = G0

∫ ∞

0

dE
∑

β 6=α
[f(E, µα)− f(E, µβ)]Tαβ (2.16)

where f(E, µα,β) are the Fermi functions with µα,β the chemical potential of leads α, β,

and G0 = 2e2

h
is the conductance quantum.
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Combining S-matrices

In practice it is difficult to handle large conductors because of the size of the matrix that

needs to be inverted. One solution to this problem is to divide the conductor into a few

sections as shown in Fig. 2.2, compute the individual S-matrices and then coherently

combine them to obtain the overall full S-matrix of the composite system [99,121], i.e.,

S = S1⊗S2⊗S3 . . .. We will now describe the rules for combining S-matrices; that is, the

meaning of the symbol ⊗. The full individual S-matrices applying to the corresponding
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L
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d
2 L
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3

Lead 4

Ψin
1

Ψout
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Ψin
5

Ψout
5
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S1 S2

S = S1 ⊗ S2

Figure 2.2: Two obstacles with separated scattering matrices S1,S2 are placed in series,
as represented inside the rectangles with colors light green and light red. Ports 1-4 are
indicated. Lead 5 correspond to the connection between the two scattering areas. Blue
and red wiggly arrows indicate incoming and outgoing waves, respectively.

incoming Ψin with the resulting outgoing waves Ψout in each port follows,
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=

Ψin
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5







Ψout
1

Ψout
2

Ψout
5







r(1) t′(1)

t(1) r′(1)

and

S55 S53 S54

S35 S33 S34

S45 S43 S44







=

Ψout
5

Ψin
3

Ψin
4







Ψin
5

Ψout
3

Ψout
4







r(2) t′(2)

t(2) r′(2)

(2.17)

Note that Ψin
5 (Ψout

5 ) is the incoming (outgoing) wave for the first scattering center whilst

the outgoing (incoming) wave for the second scattering center. To ease the development

of this part we reduce the 3× 3 S-matrices by considering the colored submatrice sepa-
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rations in Eq. (2.17), leading to the following reduced equations:

(
Ψout

1,2

Ψout
5

)
=

(
r(1) t′(1)

t(1) r′(1)

)(
Ψin

1,2

Ψin
5

)
and

(
Ψin

5

Ψout
3,4

)
=

(
r(2) t′(2)

t(2) r′(2)

)(
Ψout

5

Ψin
3,4

)
. (2.18)

Where Ψin
1,2 (Ψout

1,2 ) vector represents the incoming (outgoing) wave amplitudes in all the

various modes in terminals 1 and 2 and similarly for Ψin
3,4 and Ψout

3,4 with terminals 3 and

4. From the above system of equations we can straightforwardly eliminate Ψin
5 and Ψout

5

to get (
Ψin

1,2

Ψin
3,4

)
=

(
r t′

t r′

)(
Ψout

1,2

Ψout
3,4

)
, (2.19)

where

t = t(2)
[
I− r′(1)r(2)

]−1
t(1), r = r(1) + t′(1)r(2)

[
I− r′(1)r(2)

]−1
t(1)

t′ = t′(1)
[
I− r(2)r′(1)

]−1
t′(2), r′ = r′(2) + t(2)

[
I− r′(1)r(2)

]−1
r′(1)t′(2).

(2.20)

We can get further insight by expanding the above product into a resulting geometrical

series which lead to the famous Feynman paths [99],

t = t(2)
[
I− r′(1)r(2)

]−1
t(1)

= t(2)t(1) + t(2)
[
r′(1)r(2)

]
t(1) + t(2)

[
r′(1)r(2)

] [
r′(1)r(2)

]
t(1) + . . .

(2.21)

where the successive terms have a simple physical interpretation. The first term is the

amplitude for transmission through the obstacles without any reflection, the second term

for transmission with two reflections, the third term for transmission with four reflections

and so on. From Eq. (2.21), it can be seen that if the reflection amplitude is zero, then

the overall transmission amplitude is calculated as t =
∏

i t
(i).

Unitarity of S-matrix

The S-matrix has to be unitary in order to satisfy the current conservation law, which

means that it must fulfill S†S = I. For N terminal case the full S-matrix, S, will be

a N × N matrix of submatrices Sαβ. In terms of the N submatrices, they must fulfill:∑N
ν=1 S†ανSβν = Iαδαβ. To prove that the S-matrix proposed in Eq. (2.12) indeed is

unitary, we will separate in the diagonal and the off-diagonal terms of the dot product

S†S.

(i) Diagonal terms:
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(
S†S

)
αα

=
N∑

β

S†αβSαβ = S†ααSαα +
∑

β 6=α
S†αβSαβ

= I + Γ̃T
α

[
i
(
G† −G

)
+ G

(
N∑

β

Γβ

)
G†
]

Γ̃α

(2.22)

(ii) Off-diagonal terms (α 6= β):

(
S†S

)
αβ

=
∑

ν

S†ανSβν = S†ααSβα + S†αβSββ +
∑

ν 6=α,β
S†ανSβν

= Γ̃T
α

[
i
(
G† −G

)
+ G

(
N∑

ν

Γν

)
G†
]

Γ̃β

(2.23)

Using the definition of the (total) spectral function,

A = GΓG† = −i
(
G† −G

)
, (2.24)

where Γ =
∑

ν Γν is the total broadening matrix due to the coupling of the device to

all the leads, it is easy to see that what is inside the squared brackets in Eq. (2.22) and

Eq. (2.23) vanishes. Therefore it leaves us with the result
(
S†S

)
αα

= I and
(
S†S

)
αβ

= 0.

Provided the results found in (i) and (ii), it has been proved that the S-matrix defined

in Eq. (2.12) is unitary.

Additionally, under time reversal symmetry the condition is further simplified since

the matrix is symmetric, i.e., ST = S, then the conjugate transpose (†) becomes only

conjugate (*) and the unitarity is fulfilled by S∗S = I. In absence of time reversal

symmetry, e.g., in presence of a magnetic field B, the S-matrix is said to be reciprocal,

i.e., ST (−B) = S(B).

2.3 Electronic structure of graphene systems: gen-

eral considerations

The electronic configuration of isolated atomic carbon is 1s22s22p4. In a solid-state

environment the |1s〉 electrons typically remain inert, but the |2s〉 and |2p〉 orbitals

hybridize into new orbitals to form covalent bonding [122], as sketched in Fig. 2.3. The



18 2 Models and theoretical methods
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Figure 2.3: Possible covalent bond hybridization of s, px, py, pz orbitals (a). (b) The sp
hybridization leads to a planar molecular geometry (angle between atoms is 180◦). An
example of this molecular structure is acetylene (C2H2). (c) The sp2 hybridization leads
to a 120◦ planar structure (e.g., benzene C6H6). (d) The sp3 hybridization that leads
to a tetrahedrical molecular structure (e.g., diamond). The angle between atoms in this
geometry is of 109◦.

energy cost of promoting an electron from the |2s〉 to the |2p〉 atomic level (roughly 4

eV) is compensated by the energy gain in subsequently forming chemical bonds. The

superposition of |2s〉 with n |2p〉 orbitals denotes spn hybridization. As a representative

case, in benzene-like structures (such as graphene), carbon atoms hybridize in a sp2

configuration (Fig. 2.3b) to form bonds. The sp2 hybridization leads to a strong planar

bonding in the xy plane (localization of shell electrons) and delocalized electrons that

jump between the pz (atomic) orbitals (π-network).

In a solid, the full electronic Hamiltonian for N electrons is expressed as [123,124]

H =
N∑

m=1

[
−~2∇2

m

2me

+ Ve−n(rm) +
1

2

∑

m 6=m′

V (rm − rm′)

]
, (2.25)
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where me and ~ are the electron mass and the Planck constant, respectively, rm the

position vector and ∇2
m =

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
the Laplace operator for the m-th elec-

tron. Here it has been already taken into account the Born-Oppenheimer approxima-

tion, in which the nuclei behave as stationary particles, since their masses are much

larger than the electron mass. This approximation allows one to decouple the nuclear

and electronic Hamiltonians and deal only with the electronic part of the full Hamil-

tonian by considering the effective potential produced by the nuclei (ionic potential),

Ve−n(rm) =
∑

i Ve−n(rm−Ri), which expresses the interaction between the mth-electron

and all the nuclei located at Ri. The term V (rm − rm′) corresponds to the electron-

electron interaction.

The electronic Hamiltonian of Eq. (2.25) is exact provided we have a complete (and

therefore infinite) basis, but practical calculations require the use of finite basis sets. For

the particular case of carbon-based compounds, it is often sufficient to choose a basis

of localized atomic orbitals of carbon’s valence electrons |φi〉 = {|2s〉, |2px〉, |2py〉, |2pz〉}
[125–127] (called single-ζ in chemical literature).

On the other hand, the difficulty of finding the solution to the many-body Hamil-

tonian Eq. (2.25) arises from the last term V (rm − rm′), since it makes the motion of

particles correlated and couples the corresponding differential equations. Therefore, it

is of great importance to develop approximate methods which provide a simplified form

of the electron-electron interaction and reduces the number of equations needed to be

solved. Among the most accurate methods we find the full configuration interaction

(FCI) [123] in which all Slater determinants obtained by exciting all possible electrons

to all possible virtual orbitals (unoccupied orbitals) in the electronic ground state con-

figuration are considered in the variational problem. However this method is extremely

computational demanding. In fact, because the number of determinants required in the

FCI expansion grows in a factorial fashion with the number of electrons and orbitals,

FCI is only possible for very small molecules. One first step can be to reduce the active

space, as in the complete active space multiconfiguration [128]. Here a certain number

of electrons are allowed to populate the active orbitals in appropriate combinations, de-

veloping a finite-size space of determinants. If the active space is extended to all MOs

then the FCI treatment is recovered. However, this method is still largely resource and

time consuming, so we need to go beyond and take more approximations.

A natural next step would be to treat the Hamiltonian within the Hartree–Fock

method [123], which assumes that the exact N -body WF of the system can be approx-

imated by a single Slater-determinant. Within this framework we find methods such

as DFT and MFH models, where the N coupled equations are solved iteratively within

a self-consistent field (SCF). These two methods are differentiated by the Hamiltonian
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to be solved. A step beyond is to take the independent electrons approximation in

which the electron-electron interactions are fully neglected, as, e.g., in the TB picture or

the nearly-free electrons approximation (NFE). These methods allow to deal with large

scale simulations needed, for instance, to understand many of the systems studied in this

thesis.

2.4 Tight-binding

The TB model [129–134]–also known as linear combination of atomic orbitals (LCAO)

or the Hückel MO theory [135–137] in the context of molecular systems (especially π-

delocalized molecules)–is an effective tool to describe the motion of electrons in a solid

(crystal). In opposition to the NFE approximation, in this model the potential is so

strong that the electron lives mostly bound to the ionic core with a small probability to

jump to a nearby atom. In these terms, we start by replacing the Coulomb interaction

among electrons themselves and between electron and nuclei by an effective one-electron

potential U(r)

Hm =

Hat︷ ︸︸ ︷
−~2∇2

m

2me

+ U(rm) +
∑

Rj 6=0

U(rm −Rj) ≡ Hat + ∆U, (2.26)

where ∆U (∆U → 0 at the center of each atom in the crystal) contains all the corrections

to the atomic potential needed to produce the full potential landscape of the system and

may be treated perturbatively. This TB matrix can be expressed in second quantization

as

H0 =
∑

i

εic
†
ici +

∑

i 6=j
tijc
†
icj, (2.27)

where tij is the hopping integral, i.e., overlap between neighboring orbitals i and j,

tij =

∫
drφ∗i (r−Ri)∆Uφj(r−Rj), (2.28)

and εi = tii is the on-site potential.

The wave WF can then be described as linear combinations of the atomic orbitals

(solutions of the isolated atomic Hamiltonian, Hat) {|φi〉}:

|Ψn〉 =
∑

i

bn,i|φi〉, Hat|φi〉 = εi|φi〉, (2.29)
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where bn,i = 〈φi|Ψn〉 is the projection of state n into the atomic orbital localized at site

i.

The most important feature of the TB approximation is that it is a single-particle

Hamiltonian of non-interacting electrons and the resulting MOs are therefore not depen-

dent on the occupation of other orbitals. The parameters of this Hamiltonian (tij and εi)

are found empirically, typically by adjusting to other more accurate theoretical frames,

or to match the experiment. Although this methodology might seem too simplistic, the

power of this procedure relies on various advantages: (i) on one hand this model can be

actually very descriptive, as the desired level of accuracy is determined by the number

of parameters present in the Hamiltonian. For instance, one can choose an orthogonal

or non-orthogonal basis to describe the atomic orbitals, where the latter includes the

overlap between these WFs, which will provide a better description of the system, while

the former is less costly to compute. (ii) On the other side, it allows for a deep under-

standing on the important physics as a first approximation, especially for π-conjugated

systems [64,125].

2.4.1 Bloch’s theorem: periodic band structure

For periodic systems (crystals), the ionic potential follows U(r) = U(r + R) for a lattice

vector R. The electron WF then must respect the discrete translation symmetry of

the lattice (Bloch’s theorem [138]), i.e., the Bloch Hamiltonian must commute with

the translation symmetry operator TR. In quantum mechanics this discrete symmetry

operator is defined as TR = exp (−ik ·R)→ TRψ(r) = ψ(r+R), where k is the electron

wave vector. This implies that the WF Ψnk with band index n can be expressed as a

linear combination of Bloch waves Φk(r),

Ψnk =
∑

j,o∈j
bn,okΦok(r) =

No∑

j,o∈j
bn,ok

∑

R

eik·Rφo(r−R− rj), (2.30)

where the first summation goes over the existing No atomic orbitals |φo〉 localized at

each lattice (atomic) site rj. Therefore the total dimension of the Hamiltonian will be

Nb×Nb, where Nb = Na×No (number of atoms in the cell times the number of orbitals

per atom).

The graphene lattice is formed of two inequivalent interpenetrating triangular sublat-

tices, here labeled A and B, forming the graphene unit cell [c.f. Fig. 2.4]. The honeycomb

lattice is said to be bipartite since each site in the lattice is surrounded only by atoms
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Figure 2.4: (a) Graphene atomic lattice. a1,2 are the lattice vectors and δ1,2,3 the
vectors defining the nearest neighbors relative positions. The filled (open) circle denotes
the A (B) sublattice. (b) Definition of AGNR (vector a) and ZGNR (vector z) periodic
directions. (c) Graphene 1BZ (hexagon) with b1,2 the reciprocal lattice vectors. The
high-symmetry points of the BZ K,K ′ and Γ are indicated. The 1BZ of graphene is
folded into the embedded rectanglar 1BZ of GNRs, defined by the a∗ and z∗ directions.
This rectangular BZ corresponds in the reciprocal space to the unit cell constructed
using the a and z vectors in real space as illustrated in (b). Vectors inside the purple
and green rectangles are defined following the (x,y) notation.

belonging to the other existing sublattice. The WF can be expressed then as

Ψnk(r) =
∑

o∈A
bn,ok

∑

R

eikRφo(r−R− rA) +
∑

o∈B
bn,ok

∑

R

eikRφo(r−R− rB). (2.31)

The Bloch WF diagonalizes the Bloch Hamiltonian, i.e., HkΨnk = εnkΨnk whose ma-

trix elements Hij,k are found by projecting Eq. (2.26) onto the Bloch waves Hij,k =

〈Φik(r + R)|H|Φjk(r)〉 (ij being orbital indices). Explicitly, the matrix element Hij,k

corresponding to an orbital φi situated at rA with an orbital φj situated at rB is calcu-

lated as following:

Hij,k =
∑

R

eikR
∫
φi(r− rA)Hφj(r−R− rB)dr

︸ ︷︷ ︸
tij(R)

.
(2.32)
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The TB parameters tij [c.f. Eq. (2.27)] can be computed from the Slater-Koster (SK)

bond integrals for graphene Vppπ, Vppσ, Vssσ, Vspσ [139].

Note that the choice of the coefficients bnk is not unique, but they are fixed up to

an overall U(1) phase (gauge symmetry) [140]. Thus, there exists a freedom of choosing

the phases of coefficients connected by nontrivial diagonal unitary transformations that

leads to two forms of the Hamiltonian. In this thesis the used gauge for the k-point

is called the lattice gauge, however, another possible gauge is to use the site distance

between atoms in the unit cell, i.e., dij = (ri − rj), also called the atomic gauge, where

ri,j are the positions of the atomic sites in the unit cell. In this second choice one simply

would have to use the phase factor exp ik(R + rj) in Eq. (2.30) instead of exp (ikR).

The gauge transformation that connects these two possible choices then is performed

by multiplying the above defined Hamiltonian matrix elements Hijk with the following

phase factor H̃ij,k → Hij,k exp (iG · dij), with G the reciprocal lattice vector. See for

instance the implementation in sisl [93]. The chosen gauge can be of importance when

considering topological characterizations, although the physics should be invariant under

these choices, the two gauges define two different Berry curvatures [140]. The same

happens for 1D systems when calculating the Zak phase [141]. The gauge arbitrariness,

however, is present only for systems with more than one atom per unit cell.

In this section we will first revise the electronic structure for periodic 2D graphene

from which we will later derive the electronic properties of 1D graphene nanoribbons. In

the basis of atomic orbitals, the intracell (R = 0) graphene TB Hamiltonian Hij reads

pAz pBz sA sB pAx pBx pAy pBy

pAz εpz t

pBz t∗ εpz

sA εs tss 0 tspx 0 tspy

sB t∗ss εs tspx 0 tspy 0

pAx 0 t∗spx
εpx tpxpx 0 0

pBx t∗spx 0 t∗pxpx
εpx 0 0

pAy 0 t∗spy 0 0 εpy tpypy

pBy t∗spy 0 0 0 t∗pypy
εpy

(2.33)

where t = Vppπ is the hopping element between pz orbitals located at A and B sites.
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Figure 2.5: Calculated bandstructure for the 1NN TB Hamiltonian. The projected
bands at the xz amd yz planes correspond to the projection of the graphene BZ onto
the periodic directions along the AGNR (vector a in Fig. 2.4) and ZGNR (vector z in
Fig. 2.4) directions.

The letters in gray on the left and top sides of the matrix indicate the atomic orbital to

which the Hamiltonian matrix element correspond to. Note that the basis here is defined

such as the px, py and pz orbitals are aligned with the x, y and z axes. For practical

purpuses, in the following development of this section we will only consider one orbital

per atom, |φo〉 = {|2pz〉} (i.e., the first 2× 2 block of matrix of Eq. (2.33) shown in light

blue) since the low-energy electronic properties of nanographenes, to a large extent, are

governed by the π-electrons of the unhybridized |2pz〉 orbitals, whereas the σ-electrons

of the sp2 orbitals form molecular states that lie far in energy with respect to the Fermi

energy [61, 64, 85, 142] as demonstrated experimentally [143]. Nevertheless, there are

some important situations in which the remaining atomic orbitals are necessary to be

taken into account explicitly, for instance, to describe cases in which the π and σ bands

are not decoupled, e.g., if spin-orbit coupling (SOC) is considered [144–146] or in the

case of curved graphene-like lattices [144,147,148].

The dispersion relation for the simplest graphene TB Hamiltonian with first-nearest
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Figure 2.6: (a) The unit cell connected via de lattice vectors (a1, a2). The numbers
inside the parenthesis indicate the corresponding position of the adjacent cells with
respect to the (0, 0) unit cell. The two atomos inside the graphene unit cell are numbered
by red numbers 0 and 1, which correspond respectively to the sublattices A and B. (b)
The piece of code below exemplifies how the graphene TB Hamiltonian is built using
sisl considering only 1NN connections with t.

neighbors (1NN) hopping, can be written

E±(k) = ±t
√

3 + f(k),

f(k) = 2 cos
(√

3kya
)

+ cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
.

(2.34)

Typically |t| ≈ 2.7 eV for graphene [64, 142, 149]. Other more descriptive parametriza-

tions include also hopping parameters between next nearest neighbors, which improve
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the comparison between the TB calculated electronic bands and the ones obtained with

DFT [64,142,149]. For instance, if we include also interactions between second nearest-

neighbors (2NN) through the hopping parameter t′, the dispersion relation from above

is E±(k) = ±t
√

3 + f(k) − t′f(k). We observe that one of the main effects introduced

by the 2NN parameter t′ is the particle-hole symmetry breaking between the valence

(VB) and conduction (CB) bands. In the case of graphene nanostructures other more

accurate parametrizations may also include the edge effect consequence of quantum con-

finement, e.g., as in the case of graphene nanoribbons [22, 142] that has been observed

experimentally [150,151].

Analogously, the existence of two sublattices in real space lead to two nonequiva-

lent “valleys” at the hexagon vertices of the Brillouin zone (BZ), with positions in the

reciprocal space

K =

(
2π

3a0

,
2π

3
√

3a0

)
, K ′ =

(
2π

3a0

,− 2π

3
√

3a0

)
, (2.35)

at which E(k = K) = E(k = K ′) = 0, as shown in Fig. 2.5. Close to these k-points

electrons behave as Dirac fermions since the reciprocal lattice hold linear dispersion

relation. This can be understood by expanding the TB Hamiltonian of graphene around

the K point, using the relative momentum q ≡ k−K. In the vicinity of this symmetry

point, the dispersion relation becomes Dirac-like (linear) E±(q) ≈ ±vFq + O
[
(q/K)2]

[6, 7, 125,152], where the electron Fermi velocity can reach values of vF ∼ 106 m/s.

Computationally, the electronic structure of TB Hamiltonians can be obtained using

the open-source code sisl [93], as exemplified in Fig. 2.6.

GNRs are found by applying hard-wall boundary conditions on both edges of the

confined direction, and periodic boundary conditions along the non-confined direction

[64, 153, 154]. As a consequence, the energy projections are discretized, giving rise to

a set of subbands along the confined direction of the k-vector, i.e., the quantized kn,⊥,

where n is the band index. The number of existing subbands will depend on the width

of the GNR, W (quantum box size).

First of all, let us express the two terms in Eq. (2.31) as Ψnk = ψAnk + ψBnk. For

the armchair shaped GNR the edges are conformed by both A- and B-type atoms,

thus the WF of Eq. (2.31) will have to satisfy ψAnk(y = 0) = ψBnk(y = 0) = ψAnk(y =

W ) = ψBnk(y = W ) = 0. While in the zigzag shaped GNR, as each edge of the ribbon

has either A- or B-type atoms exclusively, the WF must satisfy ψAnk(x = 0) = 0 and

ψBnk(x = W ) = 0 separately. The reciprocal lattice of graphene nanostructures can

be seen as the projection of the 2D graphene dispersion surface along the appropriate

direction as plotted in Fig. 2.4 and explicitly calculated in Fig. 2.5. With this picture it
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becomes clear that the existence of edge states in ZGNRs are actually a consequence of

the quantum confinement and the boundary conditions, as these appear by solving the

following transcendental equation [153,154],

ky =
kn

tan(knW )
. (2.36)

Interestingly, for values of ky larger than a certain critical value kcy, Eq. (2.36) does not

support nodeless solutions, indicating the existence of surface states in this region of the

reciprocal space. On the other hand, in the case for AGNRs, the allowed kn are found

by the following expression

kn =
nπ

W
− 4π

3a0

, (2.37)

which leads to the existence of three families with different electronic characteristics,

given by confinement conditions, depending on the number of carbon atoms along the

confined direction that defines the width of the AGNR, Na = {3p, 3p + 1, 3p + 2} with

p ∈ Z [22,60,64]. At the 1NN theory level the (3p+ 2)-AGNRs are metallic at the Fermi

level. However, at a more sophisticated theory level (such as, e.g., DFT and third-nearest

neighbor (3NN) TB model), even the (3p+ 2)-AGNRs develop a small band gap, whose

origin relies on a geometrical edge effect where the carbon bonds are not equivalent under

the conditions at the edges (no upper carbon to bind) than inside the GNR (where it

preserves the original graphene nature) [22,142,155]. This causes the bonds at the edges

(saturated by hydrogen atoms) to be slightly stronger than those inside the GNR. In the

case of ZGNRs the band gap opening comes from magnetic instabilities of the localized

states at the edges [59, 85,142].

More generally, for chiral GNRs (chGNRs) of arbitrary edge-terminations [156–161],

where the growth (chiral) direction is defined as Ch = la1 + ma2, with l,m two integer

numbers, the WF will have to satisfy the particular implied boundary conditions, and the

1BZ will we found by projecting the hexagonal graphene BZ along a periodic direction

of certain inclination (defined by the chiral angle θch).

2.5 Magnetism in graphene: the mean-field Hub-

bard Hamiltonian

In the previous sections we have ignored both the spin degree of freedom and electron-

electron Coulomb repulsion interactions. One of the simplest models to include electron
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interactions in the description is the Hubbard Hamiltonian [162,163],

H = H0 +

HU︷ ︸︸ ︷∑

i

Uini↑ni↓ . (2.38)

where niσ = c†iσciσ is the number operator at site i for spin index σ and H0 corresponds

to the TB Hamiltonian of Eq. (2.27). The Coulomb parameter (Ui), which accounts for

the repulsion between two electrons occupying site i, is typically found empirically by

fitting to ab-initio calculations or extracted from experimental data, in a similar way as

the TB parameters.

This Hamiltonian can be seen as an extension of the TB Hamiltonian, where a short-

range interaction term is added. In contrast to the non-interacting TB model, the added

term (HU) captures the physics well enough to offer an insight into how the interactions

between electrons give rise to insulating, magnetic, and even novel superconducting

effects in a solid [162–165].

Despite its apparent simplicity, however, the Hubbard Hamiltonian cannot be solved

for most of the cases, since the dimension of the Hilbert space scales as
∑2L

N=0

(
2L
N

)
= 4L,

where N represents the number of electrons that can be distributed in 2L number of

sites [166]. Hence, one way to approach the solution is by approximating the two-particle

operator ni↑ni↓ by the motion of single electrons in the average SCF generated by all the

other electrons in the system,

ni↑ni↓ = (δi↑ + 〈ni↑〉) (δi↓ + 〈ni↓〉) =

= δi↑δi↓ + 〈ni↑〉 δi↓ + δi↑ 〈ni↓〉+ 〈ni↑〉 〈ni↓〉 ≈
≈ 〈ni↑〉ni↓ + 〈ni↓〉ni↑ − 〈ni↑〉 〈ni↓〉 ⇒

⇒ HU ≈
∑

iσ

Ui 〈niσ〉niσ̄ + EU .

(2.39)

In this approximation it is assumed that the electronic density operator is very close to

its expected value, that is niσ ≈ 〈niσ〉. This means that the density fluctuations (defined

as δiσ = niσ − 〈niσ〉) can be considered small compared to its mean value 〈niσ〉. With

this in mind we can neglect the quadratic terms δi↑δi↓ ≈ 0. The constant term that

comes out from the mean-field approximation reads

EU = −
∑

i

Ui〈ni↑〉〈ni↓〉. (2.40)

It can be readily seen that the mean-field approximation reduces the Hubbard Hamil-
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tonian to a one-particle problem of two matrices of N×N with 2N mean-field parameters

(N local densities 〈ni↑〉 and N local densities 〈ni↓〉), which is an enormous advantage.

In fact this method allows to deal with very large systems of thousands of atoms, where

the Hamiltonian can be solved iteratively until the SCF solution for a given magnetic

configuration is achieved. Note also that the WF in this semi-empirical model is just

a simple direct product of two single-particle WFs (one for the spin-up electrons and

another for the spin-down electrons), i.e., |Ψ〉 = |ψ↑〉 ⊗ |ψ↓〉, constituting a single Slater

determinant. This is the basic idea of the Hartree-Fock (HF) approximation, where the

main difference with the Hartree-Fock Hamiltonian is that the exchange interaction is

not taken into account in the Hubbard Hamiltonian.

It is worth mentioning that the expression Eq. (2.38) can be generalized to the

extended Hubbard model which also includes Coulomb repulsion interactions between

particles that are occupying different sites i 6= j as we actually have implemented in

our hubbard library [90], although in the most typical scenario Ui 6=j = 0. In graphene,

for instance, the presence of the non-local interactions can give rise to a rich phase

diagram [167].

The MFH can give good results especially in the case of weakly interacting sys-

tems. It is a powerful method to study large system sizes, compute real-space quantities

and consider systems with complex geometries. In fact, this model has proven to be

particularly suitable especially for π-electron carbon structures [31, 33, 142, 158, 168], as

compared to other more sophisticated theoretical models such as Monte Carlo simu-

lations [169], and DFT [36, 38, 95] and experimental results [36, 38, 95, 161, 170] (more

insight on this will be shown in Chap. 3). However, we should keep in mind, that the

mean-field approximation overestimates the magnetic order [171].

Spin-degenerate calculations

To calculate the closed-shell (CS) solutions when considering Coulomb repulsion, we can

use the MFH model for the spin-degenerate case. This is, the spin densities are equal

for both spin components, i.e., with the constriction 〈ni↑〉 = 〈ni↓〉 = 1
2
〈ni〉. In this

case, instead of dealing with two Hamiltonians and two spin densities we use one single

Hamiltonian. We force in this sense equal occupations of the eigenstates for the two spin

components (i.e., CS solution). Eq. (2.38) becomes then

HCS =
∑

i

Ui〈ni〉+ EU , (2.41)
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with the constant term in this case

EU = −1

4

∑

i

Ui〈ni〉2. (2.42)

Note that in Eq. (2.39) there is a summation over spin indices (which implies a factor 2

when the electron densities are equal for both spin channels).

2.5.1 Measure of error: Spin contamination

The unrestricted form of the MFH Hamiltonian allows the spatial parts of the eigenstates

associated to different spin indices to differ. The consequence is that the eigenstates of

the Hamiltonian no longer diagonalize the spin-squared operator, Ŝ2, and the WF is

usually contaminated to some extent by higher-order spin eigenstates. To compute the

expectation value of Ŝ2 in the MFH context we can use the following expression [172],

〈Ŝ2〉MFH = 〈S2〉exact +Nβ −
occ∑

nn′

|〈ψαn |ψβn′〉|2, (2.43)

where the exact spin-squared expectation value is obtained as

〈Ŝ2〉exact =

(
Nα −Nβ

2

)(
Nα −Nβ

2
+ 1

)
. (2.44)

In this context α refers to the spin index σ = {↑, ↓} that corresponds to Nα ≥ Nβ.

By computing the difference between 〈Ŝ2〉MFH − 〈Ŝ2〉exact one is able to obtain the spin

contamination.

With this (available in the hubbard module) we were able to calculate this error

for the molecules that we studied in this thesis. For example, calculated expectation

value for the SCF ground state for the GNR junction (paper I) is 〈Ŝ2〉MFH = 0.963

for U = 3.5 eV. This means that the MFH state is a mixture of S = 1 (for which

〈Ŝ2〉exact = S(S + 1) = 2) and S = 0 (〈Ŝ2〉exact = 0). In the case of the triangulene-like

molecule of paper I, the calculated expectation value for the SCF ground state (which

is the one with ferromagnetic alignment) is 〈Ŝ2〉MFH = 2.0429 with U = 3 eV, leading to

a spin contamination of 0.0429.

2.5.2 Calculation of spin densities and total energy

As mentioned above, depending on the system and the boundary conditions, e.g., if the

system is isolated, periodic or an open quantum system, both the spin densities 〈niσ〉
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and the total electronic energy Etot will be computed differently. In this section the

expressions are explicitly defined for these three cases.

Periodic Boundary Conditions (PBC) and isolated systems

The occupations 〈niσ〉 are found as the charge with spin σ associated with site i of the

lattice explicitly. For periodic systems they are computed by diagonalizing the Bloch

Hamiltonian in the reciprocal space [c.f. Sec. 2.4.1]. For generality, we consider here the

generalized Bloch Hamiltonian ΨnkHk = εnkSkΨk with the overlap between Bloch waves

Sijk = 〈Φik|Φjk〉. Typically we use an orthogonal basis LCAO set, i.e., Sijk = δij. Once

the Hamiltonian has been diagonalized per k-point, the spin densities can be computed

as:

〈niσ〉 =
∑

k

ωk

∑

n

fnkσ
∑

j

bσn,ikb
σ∗
n,jkSijk, (2.45)

where fnkσ is the occupation number obtained from the Fermi-Dirac distribution function

for electrons in band n at each k point for spin σ and ωk the weight to perform the

discretized integration along the band. bn,ikσ are the coefficients of the Bloch WFs [cf.

Eq. (2.30)]. A similar derivation is found for instance in Ref. [173], to obtain the orbital

charge (Mulliken populations [174]) in the DFT context.

As a practical note, when the orbitals vary smoothly with k, one can sample the BZ

using a finite number of points. Generally, we choose a rectangular grid of dimensions

Mx×My ×Mz in fractional coordinates, spaced evenly throughout the BZ (Monkhorst-

Pack grid) [175].

The total electronic energy, on its side can be calculated as

Etot =
∑

k

ωk

∑

nσ

fnkσεnkσ + EU , (2.46)

where now the summation goes over the occupied bands and the interaction term EU is

calculated as in Eq. (2.40).

For an isolated structure, e.g., a molecule in the gas phase (in absence of a substrate)

there simply is no variation with k (and therefore ωk = 1), and fnσ are either zero or

one (per spin).

Open Boundary Conditions (OBC)

For infinite but non-periodic systems the calculation is slightly more complicated since

Bloch’s theorem is no longer applicable to these systems and the diagonalization of

an infinite matrix is undoable. To properly account for the effect of the semi-infinite
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leads in the device Hamiltonian, the spin densities in equilibrium are computed by an

integration of the Green’s function [c.f. Sec. 2.1]. Numerically, the self-energy matrices

of the electrodes are computed by means of the López-Sancho–López-Sancho recursive

method [102,103] as implemented in sisl [93, 94].

The equilibrium density matrix can be calculated by an integration of the spectral

function

〈niσ〉 =
1

π
Im

[∫ ∞

−∞
dεAσ(ε)nF (ε− µ)

]

ii

, (2.47)

where Aσ is the spectral DOS for σ =↑, ↓ as defined in Eq. (2.24).

By the residue theorem the integral of Eq. (2.47) can be performed in the complex

plane, since all the poles of the retarded Green’s function lie on the real axis, while

the function is analytic elsewhere. The additional term arising from the residues of the

poles of the Fermi function are included within the contour. Numerically, the integral is

performed by Gaussian quadrature, where nF is used as the weight function [176]. The

used energy contour has the shape plotted in Fig. 2.7 for a given finite temperature, as

extracted from transiesta [92, 94]. The black dots represent the points at which the

Green’s function is evaluated to compute the integral.

On the other hand, for equilibrium calculations, the electronic part of the total

energy can be calculated as

Etot =
∑

σ=↑,↓

1

2π

∫
Tr [Aσ(ε)]nF (ε− µ)εdε+ EU . (2.48)
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Figure 2.7: Example of the energy contour in the complex plane for the integration
of the retarded Green’s function in equilibrium extracted from transiesta [92, 94] at
room temperature (kBT = 0.025 eV with kB the Boltzmann constant).
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2.5.3 The hubbard package

In this section the structure of our numerical implementation of the MFH model is

detailed. This development is collected in an open-source Python package called Hub-

bard [90]. Our implementation relies on sisl [93, 94], an open source Python code

that we use to build the geometry and the TB Hamiltonian of the systems of interest.

The idea of this tool is to provide a library of functionalities that allows to perform a

SCF calculation onto a TB Hamiltonian with a fixed Ui for the interaction part (chosen

by the user). As explained in Sec. 2.5, the MFH Hamiltonian is solved iteratively until

the convergence criterion is achieved. The main iterative procedure of the SCF goes as

follows:

1. Set up the TB Hamiltonian and initialize the spin-densities

2. Obtain new spin densities 〈nσ〉 and total electronic energy Etot

3. Pass convergence criterion by evaluating max
(
〈njiσ〉 − 〈nj−1

iσ 〉
)
< tol (for the j-th

iteration)?

4. If not, update the Hamiltonian with new spin-densities and go to step 2 again until

step 3 is achieved

While steps 1, 3 and 4 are common steps of the iterative cycle for all systems,

item 2. will need different implementations depending on the system and the boundary

conditions, as explained in Sec. 2.5.2. In a more pictorial way, this is shown in Fig. 2.8

where item 2. is substituted with methods A, B and C as corresponding to Sec. 2.5.2.

It is important to remark that a SCF solution is not necessarily the ground state. The

ground state will be the SCF solution that minimizes the energy of the system. Given the

possible existing energy barriers, the choice of the initial conditions can be determinant

in the SCF and push one particular solution. Apart from the different spin spatial

distribution that may change with the initial conditions one can also obtain different

magnetic solutions in which there may be an imbalance between the spin components,

i.e., N↑ 6= N↓ (different Sz eigenstates).

As a side note, a usual problem of convergence is the oscillation between two states,

〈niσ〉n → 〈niσ〉n+1 and 〈niσ〉n+1 → 〈niσ〉n. One way to help the code avoid this issue is to

introduce a form of damping by mixing the solution of iteration n with the solution of

the previous iterations {. . . , n− 2, n− 1}. In our case, the mixing scheme can be linear

or Pulay (DIIS) mixing [177,178], as implemented in sisl.

Fig. 2.9 and Fig. 2.10 are pseudo-code representations of how to use the Hubbard

package. The former aims to exemplify how to find the SCF solution for a periodic

https://github.com/dipc-cc/hubbard
https://github.com/dipc-cc/hubbard
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1. Setup

H0, 〈niσ〉

2. Obtain new 〈niσ〉
with A, B or C

5. update H

3. Convergence?
4. Mixing

with previous
iteration(s)

6. Self-consistent
solutionno

yes

A.1 Diagonalize
Hamiltonian

A.2 Eigenvectors
and eigenvalues

A.3 〈niσ〉 =
∑
α fα,σ

∣∣∣bσi,α
∣∣∣
2

B.1 Diagonal-
ize Hamilto-

nian per k-point

B.2 Find Fermi level

B.3 〈niσ〉 =
∑
k ωk

∑
α fα,σ

∣∣∣∣bσi,αk

∣∣∣∣
2

C.1 Build 〈niσ〉
from the inte-
gration of G

C.2 Neutral
device?

C.3 Find de-
vice’s potential

yes

no

A B C

Figure 2.8: Algorithm of the SCF to solve the MFH Hamiltonian depending on the
different systems and boundary conditions, namely (A) isolated systems, (B) periodic
structures and (C) open quantum systems.
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system, while the latter is for an open quantum system. More detailed code examples

can be found in the online documentation.

As it can be seen from the examples shown here, to build the HubbardHamiltonian

object one only has to pass the TB Hamiltonian of the geometry, the desired U (which

can be an array parametrizing different Coulmb repulsion terms at each site) and the

system temperature kT (with k the Boltzmann constant). In the particular case of

periodic systems one should also pass the number of k-points in which the BZ is going

to be sampled along each direction, nkpt=[nkx,nky,nkz]. The larger nkx,nky,nkz are,

the finer the discretization of the BZ but the slower the iteration process will be.

After building the HubbardHamiltonian object, the user should initialize the calcu-

lation with an initial spin-polarization. One way to do this is by using the implemented

function set polarization(sites up, sites dn) which maximizes the spin ↑ (↓) oc-

cupations at sites up (sites dn). Then the convergence process can start by using the

method converge, to which the specific callable to calculate the spin densities has to be

passed, up to a desired tolerance (tol).

On the other hand, whether the calculation corresponds to a spin-polarized

one or to an unpolarized Hamiltonian, is determined by creating the correspond-

ing sisl.Hamiltonian. Then the HubbardHamiltonian class internally determines

Figure 2.9: Pseudo-code representing how to use the Hubbard package to converge a
system with PBC.

https://dipc-cc.github.io/hubbard/docs/latest/examples.html
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Figure 2.10: Pseudo-code representing how to use the Hubbard package to converge
a system with OBC.

which type of calculation corresponds to. A priori, following the sisl docu-

mentation one can build a TB Hamiltonian with several possibilities: spin =

{’unpolarized’, ’polarized’, ’collinear’, ’spinorbit’}. However, currently

the HubbardHamiltonian class is programmed only to accept a polarized or unpolar-

ized Hamiltonian.

In the case of OBC calculations, the first step is to converge the electrodes (once).

Then the MFH converged electrode Hamiltonians are used to obtain the lead self-

energies. As seen in Fig. 2.10 the user has to pass the MFH objects of the electrodes

(MFH elec1 and MFH elec2) to the NEGF class along with their corresponding semi-infinite

directions SI dir1 and SI dir2, which, following sisl notation they can be ’+/-A’,

’+/-B’ and ’+/-C’. The imported libraries needed to run these codes are listed at the

top. Additionally, we have developed a plotting library, based on matplotlib, of func-

tions that allows to post-process calculations with hubbard and graphicate the different

interesting physical quantities that come out from a MFH calculation, such as the spin

polarization, the WFs for the different spin channels, the accumulated charge per atom,
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the PDOS and the LDOS, etc.

2.6 Density functional theory: The SIESTA method

DFT constitutes one of the most commonly used theoretical methods for solving the

correlation problem that arises from the Hartree-Fock Hamiltonian. DFT calculations

can be considered the workhorse of all ab initio methods, as they can provide accu-

rate predictions of structural, electronic, vibrational and magnetic properties for a wide

range of systems. The theoretical framework of DFT is based on the Hohenberg-Kohn

theorems [179], which state that the ground state electron density ρ(r) uniquely defines

the potential of a system and the ground state energy (and therefore all other related

ground-state properties), as these quantities can be written as the minimum of a func-

tional of ρ. By means of the Hohenberg-Kohn theorems, Kohn and Sham developed the

Kohn-Sham (KS) equations (or KS DFT) with which the intractable many-body prob-

lem is reduced to a tractable problem of noninteracting electrons moving in an effective

potential [180]. The energy functional of the KS Hamiltonian [180] is obtained and then

minimized until self-consistency is reached for the ground state charge densities.

There are several available DFT implementations that have been developed over

many years, each of them offers different capabilities, such as the used basis (plane

waves, Gaussian orbitals or LCAO), the possibility or not to use semi-empirical quantum

chemistry methods, etc. In this thesis the siesta [91] and transiesta [92,94] methods

for the DFT were employed. Based on a flexible LCAO basis set, it allows for extremely

fast calculations using small basis sets, and very accurate calculations for larger basis

sets depending on the required precision. The strictly confined basis orbitals go to zero

beyond a certain cutoff radius from their center [181]. The orbitals are of the atomic type,

being the product of a numerical radial function times a spherical harmonic. The angular

momentum of the basis orbitals can be arbitrarily large, and for each atom there can be

one or several orbitals with the same angular shape but different radial shape (multiple-ζ

and polarized bases). As opposed to the case of plane wave approaches, being based on

localized orbitals, siesta is well suited to describe systems with arbitrary dimensionality

(from small clusters or molecules to three-dimensional crystals), since the presence of

vacuum does not involve an extra cost. On the other hand, another important motivation

for using the siesta/transiesta methods comes from the ability to solve the electronic

structure for open systems which allows also to perform transport calculations at the

atomic (quantum) level, an important part of this present thesis.

With regard to the taken approximations, apart from the Born-Oppenheimer ap-

proximation, the most basic approximations concern the treatment of exchange and
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1. Initial guess

ρ(r)

2. Calculate Effective Potential

veff(r) = Ve−n +
∫
dr ρ
|r−r′| + VXC [ρ]

3. Solve Kohn-Sham Hamiltonian[
− h̄2∇2

i

2me
+ veff

]
ψi = εiψi

4. Evaluate electron den-
sity and total energy

ρ(r) =
∑
i |ψi(r)|2 → Etot[ρ]

5. Convergence?

6. Self-consistent solution

ρ(r), Etot[ρ] → Forces, eigenvalues, . . .

no

yes

Figure 2.11: SCF convergence procedure for DFT. It starts with an initial guess for
the electron density, since is required for the calculation of veff(r). Then it follows
the diagonalization of the KS Hamiltonian, and the subsequent evaluation of ρ along
with Etot. The numerical procedure is continued with the last calculated ρ until the
convergence criterion is achieved.

correlation (XC), and the use of pseudopotentials. From the nueclei system forces can

be obtained which are then used to obtain the relaxed geometry by minimizing the forces.

The many-body electronic problem is overcome using the KS ansatz [180], in which the

fully-interacting system is replaced by a non-interacting one solved by a mean-field ap-

proach, where the WF is decomposed into a product of single-electron orbitals ψi(r).

This is done by applying the variational principle to the KS Hamiltonian that includes

an effective potential veff(r), which is produced by the Coulomb forces of all other elec-

trons and nuclei and incorporates the exchange and correlation interactions. Then, the
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electronic total energy functional can be written as

Etot[ρ] = T [ρ] + Ve−n[ρ] + Ve−e[ρ] + EXC [ρ] (2.49)

where T [ρ] is the electron kinetic energies, Ve−n[ρ] the Coulomb interactions between the

electrons and the nuclei and Ve−e[ρ] those between pairs of electrons. The sum of these

three terms constitutes what we call the “known” part. EXC is defined to include all the

quantum mechanical effects that are not included in this “known” part. A schematic

representation of the SCF loop in this numerical method is depicted in Fig. 2.11.

Exchange and correlation are treated within KS DFT [180], where both the local

(spin) density approximation (LDA/LSDA) [182] and the generalized gradient approxi-

mation (GGA) [183] are implemented in siesta, as well as the recently implemented [184]

non-local functional that includes van der Waals interactions (vdW) [185, 186]. To deal

with the core region, standard norm-conserving pseudopotentials [187, 188] treated in

the fully non-local form [189] are used, as well as the included scalar-relativistic effects

and the nonlinear partial-core correction to treat XC in this region [190].



3 Magnetism in nanographenes

3.1 Spin localization and manipulation in GNR

junctions

The nanostructure under study in this section (paper I) is created by coupling two

adjacent (3,1)-chGNRs into a V-shaped junction. For these systems, in the experiment,

we observed two types of clear magnetic fingerprints by measuring the dI/dV spectra

for different samples with the same molecular geometry : (i) some of them displayed a

Kondo-resonance placed at the Fermi level, (ii) while some displayed a singlet-triplet

transition energy. The molecules of the first kind (i) were called type-1 and type-2,

while those of the second kind (ii) were called type-3.

This system displays a pentagon resulting from the fusing process of the two chGNRs.

The presence of the pentagon in the molecular geometry removes the bipartite character

of the system, which prevents us from using the Lieb’s theorem [45] to predict the origin

of its magnetic properties using this simple rule. One way to understand the origin of

the magnetic fingerprints in this nanographene is by looking at the WFs. The highly

localized character of the HOMO reveals that electrons will likely suffer from a large

Coulomb repulsion when occupying this MO, which can be reduced by adopting the

open-shell configuration, where now the two separated electrons lie in singly occupied

MOs (SOMO). These two unpaired electrons will couple magnetically via the exchange

interaction, which explains the dI/dV spectra observed for type-3. The singlet-triplet

transition curve can indicate the singlet character of the ground state (otherwise it

would likely be observed as an underscreened Kondo resonance [38]). The presence of

two unpaired electrons at the mentioned molecular regions was further confirmed by the

addition/removal of hydrogen atoms. The pairing of an extra hydrogen atom to one of

the two radicals (H-passivation) leaves only one localized S = 1/2 spin in the molecule

which was observed as a Kondo resonance (peak at the Fermi level) in the experimental
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Figure 3.1: Singlet-triplet excitations as a function of the length of the molecular arms.
(a) Molecular geometry with the definition of the size of the junction measured in terms
of the number of precursor units in the left (L) and right (R) arms. (b) Experimentally
obtained singlet-triplet excitations plotted as a function of the length of arm R extracted
from a fit of dI/dV spectra. All junctions had arm L > 7. (c) Calculated excitation
energies as a function of the length of arm R within MFH using U = 3.5 eV and the
1NN model for the TB part. Here the length of arm a are fixed as 7 and 10, respectively.
(d) Same as (c) but for the 3NN model. Taken from the supplemental material of paper
I.

dI/dV spectra, explaining the case of type-1 and type-2.

Another interesting result from this project is that the singlet-triplet excitation en-

ergy grows with the molecular size as a consequence of the orbital localization (see

Fig. 3.1), which a priori can be an unintuitive behavior since one would expect that

the gap decreased with the size of the quantum box. Bearing in mind that the exchange

interaction results from an interplay between the Coulomb repulsion and the overlap

between the SOMOs, one can understand this behavior since the SOMOs slightly delo-

calize when the L arm (cf. Fig. 3.1a) goes from 2 to 4 precursor units (PU), resulting

in a larger overlap and lower Coulomb repulsion, and consequently a larger exchange

coupling observed in Fig. 3.1b-d. For more than 4 PU, the localization of these states

remains practically constant.

In this work we computed the spin densities within both DFT and MFH theoretical

frameworks. To analyze the effect of the empirical TB parameters, we compared simu-

lations performed with 1NN and 3NN models. The inclusion of next-nearest neighbor

couplings goes towards a better description of the system as compared to DFT and the

experiment, as can for instance be inferred in Fig. 3.1, where the energies obtained with

the 3NN (Fig. 3.1c) are closer to the experiment (Fig. 3.1a) than the ones obtained with

1NN (Fig. 3.1b). On the other hand, the Coulomb parameter U—that should be in the

https://www.nature.com/articles/s41467-018-08060-6#Sec12
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range U ∼ t in the limit of weak correlations—was taken to reproduce better the DFT

results, and therefore, the experimental results. By comparing several calculations of the

spin density distribution, as well as the (3,1)-chGNR band structure, obtained with the

MFH for different U values with DFT and the experiment, we concluded that the most

suitable value for this parameter was U ∼ 3.5 eV. This value also leads to a reasonable

agreement of the approximate singlet-triplet excitation energy with (albeit larger than)

the experimentally observed peak splitting.

3.2 Triangulene-like nanostructures

As already explained, certain shapes of graphene structures may accommodate a spin

imbalance in the π electron cloud, resulting in graphene nanosystems with a net magnetic

moment, however, the fabrication of such GNFs has been hindered due to their high

reactivity [191]. In paper II, we report the OSS fabrication of a triangulene-like geometry,

called extended-triangulene (ETRI). This nanographene has 19 carbon atoms on one

sublattice and 17 carbon atoms on the other, leading to an expected total spin for this

molecule of S = 1. In this work we also explore the magnetic properties of ETRI dimers.

We simulate the system with the MFH model using U ∼ 3.0 eV for the interaction

term, and the 3NN model to address the kinetic part of the Hamiltonian, as these

parameters successfully described other sp2 carbon systems (as seen in paper I). For

comparison, we also ran calculations with DFT, which showed excellent agreement with

our MFH results. For instance, in Fig. 3.2 we show the SCF solution of different magnetic

states obtained with siesta [91] for three different systems: the ETRI and two possible

geometries for the ETRI dimer (with and without a pentagonal ring). Here we observe

that, according to the Lieb’s theorem [45], the ETRI and the dimer shown in panels

Fig. 3.2a-e (both bipartite lattices) present S = 1 and S = 2 ground states corresponding

to their respective lattice imbalances. In reality, during the cyclodehydrogenation step

in the OSS, an extra pentagonal ring is created between them, reducing the number of

radicals of the dimer from four (without pentagon) to only two. This is also confirmed

by our simulations, where we obtained that the magnetic ground state is the one with

S = 1 for this geometry. Experimentally, the presence of the FM coupled spins system

is observed as a peak at the Fermi energy in the dI/dV spectra, corresponding to the

underscreened Kondo effect [38,192–194]. Further experiments with an applied magnetic

field proved that the ground state indeed reacts as an underscreened spin triplet, shown

in the Supplemental Material of the mentioned paper.

As in the previous section, the S = 1 ground state for the ETRI can be turned into

an uncoupled S = 1/2 state by additional hydrogen atoms attached to one of the radical

https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.124.177201
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−15

−10

−5

0

5

10

15

y
(Å
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(Å
)

(Q↑ −Q↓ = 4.0)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Q
↑
−
Q
↓

(e
)

a b

c d e

f g h

ES0
= 0 eV ES1

= −0.082 eV

ES0 = 0 eV ES1 = −0.013 eV ES2 = −0.122 eV

ES0 = 0 eV ES1 = −0.030 eV ES2 = 0.318 eV

Figure 3.2: (a,b) Spin polarization from siesta of the ETRI monomer with S = 0
(Q↑ − Q↓ = 0) and S = 1 (Q↑ − Q↓ = 2e) respectively. (c,d,e) Spin polarization of the
dimer with fixed S = 0, S = 1, and S = 2, respectively. (f,g,h) Spin polarization of
a ETRI dimer with pentagon, imposing S = 0, S = 1 and S = 2, respectively. The
energy of every state relative to the S=0 state is annotated in each panel. We used the
generalized gradient approximation (GGA) [182] for exchange and correlation, a 400 Ry
cut off energy for the real-space grid integrations, and a double-zeta plus polarization
(DZP) basis. The force tolerance was set to 2 meV/Å and the density was converged to
a criterion of 105. The geometries were first relaxed in the spin degenerate calculations
and then frozen to a specific spin value for the spin-polarized calculations.

sites. Theoretically, we analyzed the magnetic nature of these passivated systems by

removing the corresponding pz orbital (the one bonded to the extra hydrogen atom) and
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Figure 3.3: (a-e) Spin polarization of the extended-triangulene molecule with H-
passivated C-atom sites in five different positions from MFH simulations with U = 3.0
eV. (f) Comparison of total energy differences between the five different configurations
for different U values with the most stable configuration (position 3) as reference. Figure
extracted from the supplemental material from paper II

computing the spin densities.

We also tested different possible positions of the extra hydrogen at the edge sites

of the molecule observing that the most stable one (lowest in energy) is position 3 in

Fig. 3.3, which agrees with the observed experimental statistics of H-passivation for this

molecule. Hereby, it is confirmed that the H-passivation eliminates one of the present

radicals and changes the biradical character of the molecule to a single radical present.

On the other hand, experimentally, the fact that the remaining radical behaves as a

S = 1/2 Kondo resonance further confirms the existance of two radicals in the ETRI

molecule.

3.3 Exchange interaction between radical pairs in

heteroatomic structures

In previous sections we have seen the coupling of spin states in strict sp2 carbon

structures. However, the presence of heteroatoms can play a major role in the ex-

change coupling of such unpaired spins [195]. For instance, replacing a CH at the
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pristine chGNR edge by a C=O (carbonyl group) adds one π-electron to the system.

Figure 3.4: Sketch of the resulting sp2 hy-
bridization of the carbonyl group (C=O).

As a result, the odd number of total

electrons causes the appearance of a π-

radical. The same is applicable for reg-

ularly ketone-functionalized chGNRs, the

other way around. Therefore, in chGNRs,

the coupling between two radical states

will depend on their relative position,

which includes a remarkable dependence

on the chirality, as well as on the nature of

the surrounding ribbon, i.e., with or with-

out ketone functionalization, as explained

in paper III. Since the ketone group is also sp2 hybridized (see sketch in Fig. 3.4), it

contributes with one pz electron to the system and can—to a first approximation—be

considered as an additional pz site on its corresponding sublattice.

A radical pair located at the same/opposite side is expected to be ferromagnetically

(FM)/antiferromagnetically (AFM) aligned since atoms at same edges of the chGNRs

belong to the same sublattice, whereas the atoms at the opposite edge belong to the

other sublattice. The nomenclature of the geometry label is K-/P- for ketone/pristine

chGNRs, S/O for radicals in same/opposite and n for the number of precursor units

between the radicals. All radical pairs match this prediction, except K-S1 which is

AFM as confirmed by DFT calculations with siesta [91] and the experimental dI/dV

measured spectra.

In an attempt to make the simple MFH calculations also applicable to these het-

eroatomic chGNRs, we included modified TB parameters for the oxygen heteroatoms

in what we call the MFH-TB(2) model. By comparing the calculated band structures

obtained from DFT for fully ketone-functionalized chGNRs to those obtained with our

MFH-TB models, we observed an improvement of the TB model with MFH-TB(2) chang-

ing the 1NN hopping and on-site energy values to |t| = 3.8 and εi = −1.5 eV for oxygen

atoms bonded to carbon (maintaining |t| = 2.7 and εi = 0 eV for C−C atoms). Quali-

tatively, the increased hopping amplitude on the C=O bonds can be directly related to

its shorter length and the nonzero on-site energy to the increased electronegativity of

oxygen.



4 Electron quantum optics in GNR-

based architectures

In this chapter we analyze the electron and spin transport properties of four-terminal

devices formed of two crossed GNRs placed one on top of the other with a relative

crossing angle of 60◦, while the distance between them is the typical vdW distance of

graphene layers in graphite, i.e., d = 3.34 Å. This chapter is based on papers IV and

V [96,97].

4.1 Inter-GNR coupling description

To properly account for the coupling between pz orbitals in and out of the plane, we

describe the matrix element tij between orbitals i and j with Slater–Koster type two-

centre π and σ bond integrals between two pz atomic orbitals [139,196]

tij = Vppπ(1− l2) + Vppσl
2, (4.1)

where l is the cosine of the angle formed between the distance vector r̂ij for the ij atom

pair and the unit vector that defines the z-direction, i.e., l = r̂ij · êz/|rij|. The two-

centre integrals Vppπ and Vppσ are expressed in terms of exponential decay functions of

the distance |rij|. The parameters used to describe these integrals were obtained by

fitting to the low-energy band structure of AB-stacked bilayer graphene simulated with

siesta [91] as explained in paper IV.

4.2 Symmetry aspects of crossed GNRs

Because of the symmetry of the honeycomb lattice, when the crossing angle between the

GNRs is 60◦ there is a perfect matching between the bottom and top ribbon lattices,
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which yields an enhancement of the transfer process of electrons between them [76, 77].

At this crossing angle, there are two possible high symmetry configurations which are

the AB- and AA-stackings. Apart from the time-reversal symmetry (Tαβ = Tβα) in

absence of a magnetic field, there are two geometrical symmetry axes: y1 = sin(−60◦)x

and y2 = sin(30◦)x. AB and AA-stacked GNRs can posses either zero, one or the

two of them. As a consequence of the presence of these symmetries, there will exist

some equivalent symmetric electrode combinations leading to some constraints in the

transmission probabilities. Therefore, the 4 × 4 matrix of transmission probabilities

will not have 16 independent elements but less (10, 6 or 4 depending on the degree of

symmetry that a given device displays).

4.3 GNR networks for electron interferometry

To analyze the transport properties for general crossed GNRs, in paper IV we give a

complete classification and characterization of the transport properties of these type

of junctions by varying the edge topology of the GNRs (zigzag or armchair), stacking

sequence (AA or AB), width of the ribbons, and energy for the propagating electrons.

While for the crossed ZGNRs we only found one AA- and AB-stackings (ZGNR-AA

and ZGNR-AB), interestingly, for the crossed AGNRs we found two possible geome-

tries for each of them, which we called: AGNR-AA-1, AGNR-AA-2, AGNR-AB-1 and

AGNR-AB-2. Each of them shows different behavior in terms ef the electron quantum

transport. For this reason, we first classify and collect the transport properties of these

six systems by calculating and analyzing the transmission probability matrix varying

the different parameters that determine the problem: the edge topology of the GNRs

(armchair or zigzag), the precise stacking, width of the ribbons, and energy for the prop-

agating electrons. Interestingly, we discovered that AGNR-AA-1 and AA-2, that show

little geometrical difference, behave very differently from each other in terms of the elec-

tron transport for low-energy electrons. For instance, in the case of AA-1 geometries

electrons are only allowed to turn 60◦, while in the AA-2 case electrons only turn 120◦.

Secondly, focusing on the features that these devices can offer more specifically for

electron quantum optics experiments, we built a figure of merit to find the regions in

which crossed GNRs can perform as fundamental components for electron interferometry

and their quality as such. In these terms, we looked in the parameters space where

these devices would work as mirrors (where electrons are fully transferred into the other

ribbon), beam splitters (where electrons are equally transmitted with a 50:50 ratio in two

outgoing ribbons), and wavelength filters. One important result is that, while AA-stacked

AGNRs could be good candidates for electron quantum optics experiments, AB-stacked
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devices do not show good electron quantum optical features due to the comparatively

larger losses and low inter-GNR transmission. Unfortunately, AA-stacked configurations

are probably harder to realize in practice (not the most stable energetically) compared

to the AB-stacked one [197]. Combined with a generally larger variability of the AGNR

transport behavior, these facts indicate that ZGNRs are more interesting objects for the

considered device applications than AGNRs.

Finally, with the general TB model that we use for the interlayer coupling (Sec.

4.1) we were able to describe a plethora of crossed GNRs geometries of arbitrary relative

positions. Being aware of that precise control of the device geometry is likely a significant

experimental challenge, we analyzed the transport properties of such devices against

possible deviations from the “ideal” 60◦ that was presented. We observed that, although

the intra- and inter-transmission probabilities may suffer from quantitative variations,

these distortions do not affect the needed conditions for the beam splitting effect which

are the zero back-scattering and zero transmission into port 4 in crossed ZGNR devices.

4.4 Spin-polarizing electron beam-splitting effect in

crossed ZGNRs

As ZGNRs tend to polarize, the natural next step is to study the spin transport in

crossed ZGNRs when the Coulomb repulsion between electrons is included in the device

Hamiltonian, as explained in paper V. Since there are four terminals in the device and

there are two possible solutions of equal energy for each electrode, there are in principle

16 spin configurations, although only 8 of them are inequivalent. Some of these 8 spin

configurations involve a grain boundary, in particular those that the spin density distri-

bution of the electrodes belonging to the same ribbon are inverted. The presence of such

boundary increases 200 meV to the total electronic energy. On the other hand, the AA

stacking are less energetically favorable than the AB stacking, as has been also obtained

with DFT [197]. For these reasons, in the main text of paper V we only consider the

two states of lowest energy (labeled ↑↓ and ↑↑ .

The state of lowest energy is found to be the spin configuration with AFM interlayer

coupling, i.e., the atoms that sit on top in the crossing area have opposite spin indices,

which is also inline with results shown in Ref. [198].

To understand the electron and spin quantum transport, it can be very useful to

analyze the symmetries behind these junctions. For instance, apart from the mirror

symmetry axis hosted by the AB-stacked ZGNRs, the spin density distribution adds an

extra spatial component to be taken into account, which will be responsible of the spin
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transport properties of these devices. Depending on the spatial spin distribution, the

symmetry axes can either invert ( ↑↓ ) or conserve ( ↑↑ ) the spin index of each atom.

In the former case, the symmetry protects T σαβ = T σ̄γδ for the electrode combinations

connected by the symmetry axis, while in the latter we have T σαβ = T σγδ. In other words,

in ↑↓ we expect to have a symmetric spin transport behavior, while in ↑↑ we expect

non-symmetrical transport behaviors for the existing spin channels.

On the other hand, the non-polarizing case ( ↑↓ ) is specific for high-symmetry con-

figurations, as this class of electronic devices are generally predicted to create a spin-

dependent scattering potential. To show that, we calculated the spin polarization in the

transmission probabilities for non-symmetrical geometries by applying a translation of

the on-top ribbon with respect to the bottom one along the directions defined by the

graphene lattice vectors. From this result, it can clearly be observed that regardless of the

spin density distribution of this device it can behave as a spin polarizing beam splitter.

Furthermore, the spin polarizing effect can be enhanced by placing several consecutive

crossings, that can lead to outgoing electrons with almost ∼ 100% polarization.

For a more realistic simulation of the device, we also calculated the averaged spin

polarization from a distribution of 107 arrays where the crossing angle, the stacking

registry and the spin configurations where chosen randomly. Fortunately, we observed

that in fact it is not necessary to have a atomistic control over the crossings since the

averaged spin polarization still monotonically grows with the number of present junctions

even in the worst scenario.



5 Conclusions and outlook

Magnetism in graphene nanostructures. We presented a complete electronic and

magnetic characterization of several open-shell graphene nanoflakes. We have funda-

mentally understood the source of magnetism in these structures, supported by our

calculations, and seen that it can be (among others) triggered by the Coulomb repulsion

between electrons, the sublattice imbalance, and due to the presence of heteroeatoms.

For the biradical systems that we have studied, the two unpaired electrons can be mag-

netically coupled in a singlet (S = 0) or a triplet (S = 1) state, which will be observed

experimentally as a singlet-triplet transition curve or as an underscreened Kondo res-

onance in the dI/dV spectra, respectively. On the other hand, we observed that the

magnetic interaction between two unpaired radicals is highly dependent not only on

their relative position (where the chirality and distance between them play a major role)

but it also depends on their chemical environment.

We have also seen that there are ways to manipulate the magnetic state in the sys-

tem. For instance, by adding extra H-atoms to the radical sites one can modify the

biradical character of the molecule from two to a single radical present, which actually

is a reversible process. The creation of pentagon rings may change the nature of the

spin ground state as well. Moreover, the fact that the remaining radical behaves as a

S = 1/2 Kondo resonance further confirms the existence of two radicals in the molecule,

as shown both experimentally and theoretically. In a similar way, the magnetic properties

of graphene-systems can be tuned by chemical functionalization. For instance, an extra

C=O group adds an unpaired π electron to the network, which acts as a radical state.

Furthermore, the electronegativity of the oxygen and the stronger bond created by the

carbonyl can even change the expected FM coupling between two radicals to a preferred

AFM alignment. Strikingly, the encountered magnetic features in graphene nanoribbons

standing on gold surfaces confirm the survival of the spin states even on metallic sur-

faces in spite of the ubiquitous charge screening by the underlying substrate. The rich

structure-dependency relationship in nanographenes allows one to tune the above mag-
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netic properties through a rational design of the shape, size, edge structure and chemical

environment of nanographenes, which makes these systems potentially useful in organic

quantum spintronic devices [199–201], as e.g. spin-logic operations [202].

In terms of implementation, we observed excellent agreement between MFH and DFT

calculations under the correct parametrization for sp2 carbon structures, as generally

seen in many different contexts. The description provided by this model has shown

a very good qualitative representation of the experiment, as confirmed by the works

presented in papers V, II, III and Refs. [43, 161]. We have seen that the presence of

heteroatoms in the structure can be well described with the MFH model and even H-

passivated systems. However, although finding a suitable U parameter for the MFH

model is of great importance, we have seen the cruciality of the TB parametrization in

order to capture a good qualitative picture of the system.

Electron quantum optics in graphene. We presented a full classification and

characterization of the different functionalities that can be found in junctions formed of

crossed GNRs by varying their edge topology (zigzag or armchair), stacking sequence

(AA or AB), width of the ribbons, and energy for the propagating electrons in the

valence or conduction bands. We identified the regions in the parameters space where

the junctions can act as fundamental components for electron interferometry, such as

mirrors (where the electrons are fully transferred into the other ribbon), beam splitters

(half-transparent mirrors, where the electrons are transmitted with a 50:50 ratio in two

outgoing terminals), and wavelength filters, in a figure of merit that outline the transport

properties of these devices. This figure is intended to serve as a guide for the design

optimization for GNR-based electron quantum optical setups.

One very important result is that, while the performance depending on the GNR edge

topology is different, the beam splitting effect (transmission into two outgoing ports

without reflection) is general for crossed AGNRs and ZGNRs devices. Furthermore,

transport properties of crossed ZGNRs are quite robust as it is rather insensitive to

geometrical distortions such as rotations, translations and even strain deformations.

The inclusion of Coulomb repulsion and the spin degree of freedom also does not

change the main important features such as the zero reflection probability and zero

transmission into the undesired port in crossed ZGNRs. However, the spin transport

in these nanodevices is quite interesting as it gives polarized transmission probability,

which can be even further enhanced by placing more consecutive crossing potentially

leading to highly polarized transmitted electrons where one of the two spin components

is filtered away. Importantly, these devices can overcome one of the major challenges

of semiconductor spintronics, which is the fabrication of a controllable source of a spin-

polarized current that operates in the absence of a magnetic field. Among their potential
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applications in this field, these devices could be used to determine the entanglement of

injected pairs of spins.

Prospects for the future

A possible useful extension of the hubbard package could be to implement an exact

treatment of the many-body problem defined by the Hubbard Hamiltonian, so all the

options are collected in a python package. For instance, instead of treating the system

with a mean-field approach, one can use the CAS method, which in this context consists

of splitting the single-particle spectrum into “frozen” low- and high-energy sectors and an

active window which is solved by exact diagonalization to capture the low-energy states

accurately [46, 203]. This method was used, for instance, to understand the magnetic

exchange interaction in nanographenes with diradical character [46], triangulene dimers

[40] and trimers [41]. By having this implementation in the hubbard module, one would

be able to easily compare the obtained solutions with the available frameworks.

Additionally, while the hubbard package is able to solve self-consistently systems

with open boundary conditions, for now it only computes correctly the spin densities for

systems in equilibrium. However, it could be very advantageous to have also the option to

solve the non-equilibrium situation, where the electrodes can have different temperatures

and/or chemical potentials. The implementation to find the self-consistent solution for

an open quantum system out of equilibrium could follow a similar procedure as the one

implemented in transiesta [92,94] for DFT. This tool can be very useful, for example,

to explore the effect of an applied bias on the magnetic exchange coupling between two

localized spins. Furthermore, while in this thesis we have neglected the time dependency

of the Hamiltonian, it could be very interesting to compute electron spin decoherence

and relaxation times due to spin-spin and spin-orbit interactions, which are limiting

factors for quantum operations [28, 31, 78–81]. The time dependent Hamiltonian could

also open the possibility to study how to manipulate electron spins by external means

(current pulses, time-varying fields, etc), as for example shown in Ref. [204].

With respect to the evolution of electron quantum optics in graphene, with the fun-

damental building blocks that we have presented for electron interferometry one would

now be able to build larger electronic GNR networks. For instance, at this stage one

can now construct the electronic analog of the Mach-Zehnder interferometer, consisting

of two beam splitters and two oriented mirrors at the intersection of pairwise parallel

ribbons (as displayed in Fig. 5.1), which has proven to work as a quantum logic proces-

sor [205]. Other two paths setups have demonstrated to act as a manipulable flying qubit

architecture [206] using the Aharonov-Bohm effect [207]. When it comes to electron in-
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terference, it requires clean systems and long phase coherence lengths, for which ZGNRs

provide an outstanding platform for studying electron interference. In the GNR-based

interferometer of Fig. 5.1, we can induce the Aharonov-Bohm effect, for instance, by

applying an external magnetic field parallel to the axis perpendicular to the geometry.

In this scenario the electron transport will have a cosine dependency with the magnetic

flux enclosed by the GNRs, due to the interference term between the two possible paths.

If we consider the spin degree of freedom, these device could also act as a spin-polarizing

interferometer, which can have potential applications in the field of graphene spintronics

(S. Sanz et al., in preparation).

Figure 5.1: Geometry of the 8-terminal Mach-Zehnder interferometer realized with
four crossed GNRs with a relative rotation angle of 60◦. GNRs displayed in red (blue)
lie on top (bottom).
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Turning graphene magnetic is a promising challenge to make it an active material for spin-

tronics. Predictions state that graphene structures with specific shapes can spontaneously

develop magnetism driven by Coulomb repulsion of π-electrons, but its experimental ver-

ification is demanding. Here, we report on the observation and manipulation of individual

magnetic moments in graphene open-shell nanostructures on a gold surface. Using scanning

tunneling spectroscopy, we detect the presence of single electron spins localized around

certain zigzag sites of the carbon backbone via the Kondo effect. We find near-by spins

coupled into a singlet ground state and quantify their exchange interaction via singlet-triplet

inelastic electron excitations. Theoretical simulations picture how electron correlations result

in spin-polarized radical states with the experimentally observed spatial distributions. Extra

hydrogen atoms bound to radical sites quench their magnetic moment and switch the spin of

the nanostructure in half-integer amounts. Our work demonstrates the intrinsic π-para-

magnetism of graphene nanostructures.
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Among the many applications predicted for graphene, its
use as a source of magnetism is the most unexpected one,
and an attractive challenge for its active role in spintronic

devices1. Generally, magnetism is associated to a large degree of
electron localization and strong spin–orbit interaction. Both
premises are absent in graphene, a strongly diamagnetic material.
The simplest method to induce magnetism in graphene is to
create an imbalance in the number of carbon atoms in each of the
two sublattices, what, according to the Lieb’s theorem for bipar-
tite lattices2, causes a spin imbalance in the system. This can be
done by either inserting defects that remove a single pz orbital3–6

or by shaping graphene with zigzag (ZZ) edges7,8. However,
magnetism can also emerge in graphene nanostructures where
Lieb’s theorem does not apply9,10. For example, in π-conjugated
systems with small band gaps, Coulomb repulsion between
valence electrons forces the electronic system to reorganize into
open-shell configurations11 with unpaired electrons (radicals)
localized at different atomic sites. Although the net magnetization
of the nanostructures may be zero, each radical state hosts a
magnetic moment of size μB, the Bohr magneton, turning the
graphene nanostructure paramagnetic. This basic principle pre-
dicts, for example, the emergence of edge magnetization origi-
nating from zero-energy modes in sufficiently wide ZZ12–14 and
chiral15,16 graphene nanoribbons (chGNRs).

The experimental observation of spontaneous magnetization
driven by electron correlations is still challenging, because, for
example, atomic defects and metal impurities in the graphene
structures17–19 hide the weak paramagnetism of radical sites20.
Scanning probe microscopies can spatially localize the source
states of magnetism6,19, but they require both atomic-scale
resolution and spin-sensitive measurements. Here we achieve
these conditions to demonstrate that atomically defined graphene
nanostructures can host localized spins at specific sites and give

rise to the Kondo effect21,22, a many-body phenomenon caused
by the interaction between a localized spin and free conduction
electrons in its proximity. Using a low-temperature scanning
tunneling microscope (STM) we use this signal to map the spin
localization within the nanostructure and to detect spin–spin
interactions.

Results
Formation of GNR nanostructures. The graphene nanos-
tructures studied here are directly created on a Au(111) surface by
cross-dehydrogenative coupling of adjacent chiral GNRs
(chGNRs)23. We deposited the organic molecular precursors 2,2′-
dibromo-9,9′-bianthracene (Fig. 1a) on a clean Au(111) surface,
and annealed stepwisely to 250 °C (step 1 in Fig. 1a) to produce
narrow (3,1)chGNRs, i.e. ribbons that alternate three zig-zag sites
with one armchair along the edge24. They are semiconductors
with a band-gap of 0.7 eV and show two enantiomeric forms on
the surface25. By further annealing the substrate to 350 °C (step 2
in Fig. 1a), chGNRs fuse together into junctions, as shown in
Fig. 1b. The chGNR junctions highlighted by dashed rectangles
are the most frequently found in our experiments. They consist of
two chGNRs with the same chirality linked together by their
termination (Fig. 1c). The creation of this stable nanostructure
implies the reorganization of the carbon atoms around the initial
contact point26 into the final structure shown in Fig. 1d, as
described in Supplementary Note 1.

In Fig. 1b, certain regions of the junctions appear brighter
when recorded at low sample bias, reflecting enhancements of the
local density of states (LDOS) close to the Fermi level.
Interestingly, the precise location of the bright regions is not
unique, but can be localized over the pentagon cove (PC) site
(Type 1, Fig. 1e), over the terminal ZZ site of the junction (Type
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Fig. 1 Formation of GNR junctions. a Model structures of the organic precusor 2,2′-dibromo-9,9′-bianthracene and of the on-surface synthesized (3,1)
chGNR after Ullmann-like C–C coupling reaction and cyclodehydrogenation on Au(111). b Constant-height current images (V= 2mV, scale bar: 2 nm)
showing joint chGNR nanostructures, with an angle of ~50°, obtained after further annealing the sample. A CO-functionalized tip was used to resolve the
chGNR ring structure. Dashed boxes indicate the most characteristic chGNR junctions, whose structure is shown in panels c, d. c Laplace-filtered image of
the junction shown in panel g to enhance the backbone structure, and (d) model structure of the junction. PC labels the pentagonal cove site and the ZZ
the zigzag site. e–g Constant-height current images (V= 8mV, scale bar 0.5 nm) of the three types of chGNR junctions with same backbone structures but
with different LDOS distribution
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2, Fig. 1f), or over both (Type 3, Fig. 1g). Supplementary Note 2
quantifies the probability of finding each type of junction. Despite
these different LDOS distributions in the three types of junctions,
they all have the same carbon lattice arrangement, shown in
Fig. 1d. Such low-energy LDOS enhancements are absent over
bare chGNRs segments due to their semiconductor character, and
only the bare hexagonal backbone is resolved.

Spectral features around zero-bias. To understand the origin of
the enhanced LDOS at the ZZ and PC sites, we recorded differ-
ential conductance spectra (dI/dV) on the three types of junc-
tions. Spectra on the bright sites of Type 1 and 2 junctions show
very pronounced zero-bias peaks (Fig. 2a, b) localized over the
bright sites (spectra 1–4, and 6–8), and vanishing rapidly in
neighbor rings (spectra 5, 9, and 10). These are generally ascribed
as Abrikosov–Suhl resonances due to the Kondo effect, and
named as Kondo resonances21,22. Their observation is a proof of a
localized magnetic moment screened by conduction electrons27,28

(see Supplementary Note 3). The relationship between the
observed peaks and the Kondo effect is proven by measurements
of dI/dV spectra at different temperatures (Fig. 2c) and magnetic
fields (Fig. 2d). The resonance line width increases with tem-
perature following the characteristic behavior of a Kondo-
screened state with a Kondo temperature TK ~ 6 K28,29 (Fig. 2c),
and broadens with magnetic field as expected for a spin-1/

2 system (Fig. 2d). Hence, the bright regions are caused by the
localization of a single magnetic moment.

Junctions with two bright regions (Type 3) show different low-
energy features: two peaked steps in dI/dV spectra at ~±10 meV
(Fig. 2e). The steps appear always symmetric with respect to zero
bias, and at the same energy over the terminal ZZ segment and
over the PC region for a given nanostructure, while vanish
quickly away from these sites. Based on the existence of localized
spins on bright areas of Type 1 and 2 junctions, we attribute such
bias-symmetric peaked steps to the excitation of two exchange
coupled spins localized at each junction site by tunneling
electrons. The exchange interaction tends to freeze their relative
orientation, in this case antiferromagnetically into a singlet
ground state. Electrons tunneling into the coupled spin system
can inelastically excite a spin reversal in any of them when their
energy equals the exchange coupling energy between the spins,
i.e., eV ≥ J. Usually, such singlet–triplet inelastic excitation is
revealed in dI/dV spectra as steps at the onset of spin
excitations30, from which one can directly determine the strength
of the exchange coupling J between the spins. Here, the inelastic
spectra additionally show asymmetric peaks on top of the
excitation onsets, with a pronounced logarithmic fall off for biases
above. Such peaked steps are characteristic of Kondo-like
fluctuations of the spin once the anisotropy energy has been
overcome by tunneling electrons (i.e. out of equilibrium)31–34.
The more pronounced signal for either particle tunneling (over
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Fig. 2 Zero bias spectral features. a, b Kondo resonances over the bright regions of Type 1 and Type 2 junctions, respectively. The zero-bias peaks are
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expression 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αkBTð Þ2þ 2kBTKð Þ2
q

29, which reproduces the experimental results with a Kondo temperature TK ~ 6 K and α= 9.5 (Supplementary Note 3).

d Magnetic field dependence of a Kondo resonance (over the same PC site) at the field strengths indicated in the figure. e Double-peak features around
zero bias over Type 3 junctions. f Split-peak dI/dV features for nanostructures with different sizes, determined by the number of precursor units in each
chGNR, labeled L and R in e. The gap width increases with the length of the ribbons (see Supplementary Fig. 16a in Supplementary Note 8). The red dashed
lines are fits to our spectra using a model for two coupled spin-1/2 systems31. The spectra in c, d were acquired with a metal tip, while the others with a
CO-terminated tip
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ZZ) or for hole tunneling (over PC) indicates the spins system lies
out of particle-hole symmetry point, with EF closer to the
corresponding singly unoccupied or singly occupied (SO) state,
respectively. Hence, the gap between dI/dV peaks in Fig. 2e is a
measure of the interaction strength between the two localized
spins.

Interestingly, the spectral gap in Type 3 junctions increases
with the length of the connecting ribbons. In Fig. 2f we compare
low-energy spectra of two junctions with different chGNR
lengths. Although the atomic structures of both junctions are
identical, the one with shorter ribbons (upper curve; 9 and 2
precursor units) displays a smaller gap than the junction of longer
chGNRs (lower curve; >8 and 7 units). Fitting the spectra with a
model of two coupled spin-1/2 systems31, one obtains the
exchange coupling J= 2.7 (9.9) meV for the upper (lower)
spectrum.

Theory simulations to uncover the origin of spin polarization.
To explain the emergence of localized spins, we simulated the
spin-polarized electronic structure of chGNR junctions using
both density functional theory (DFT) and mean-field Hubbard
(MFH) models (see Supplementary Notes 6 and 7). Figure 3a
shows the spin-polarization of a junction of Fig. 1d. The ground
state exhibits a net spin localization at the ZZ and PC regions
with opposite sign, which is absent in the bare ribbons. The spin
distribution along the edge sites reproduces the distribution of dI/
dV signal measured in Type 3 junctions. This supports that this
signal is an intrinsic effect of junction edge sites, rather than
caused by defects or other atomic species.

The origin of the spontaneous magnetization can be rationa-
lized by considering the effect of Coulomb correlations between

π-electrons as described within a tight-binding (TB) model
(Fig. 3b). The spin distribution is related to the appearance of two
junction states inside the gap of the (3,1)-chGNR electronic
bands, localized at the PC and ZZ sites, respectively (Fig. 3c).
These are split-off states from the VB of the (3,1)-chGNR, which
lies close below EF25. In the absence of electron–electron
correlations, these two states conform the highest occupied
(HO) and lowest unoccupied (LU) molecular states of the
nanostructure. Due to the large degree of localization (Supple-
mentary Figs. 10 and 11), the Coulomb repulsion energy UHH

between two electrons in the HO state becomes comparable with
the energy difference δ between the two localized levels. Hence, in
a simplified picture, the two electrons find a lower-energy
configuration by occupying each a different, spatially separated
in-gap state. These two states become SO, spin-polarized (i.e.,
they have a net magnetic moment), and exchange coupled as
schematically illustrated in Fig. 3b. Similar conclusions regarding
the emergence of radical states at PC and ZZ sites can also be
reached by applying the empirical Clar’s aromatic π-sextet rule to
the close-shell structure of Fig. 1d, as described in the
Supplementary Note 4.

According to both DFT (Fig. 3a) and MFH (Supplementary
Fig. 14) the magnetic moments are antiferromagnetically aligned
into a singlet ground state. Therefore, the inelastic features in dI/
dV spectra found over Type 3 junctions (Fig. 2e) are associated to
singlet–triplet excitations induced by tunneling electrons. In fact,
the smaller excitation energy found for the smaller ribbons in
both theory and experiment (Supplementary Note 8) agrees with
a weaker exchange interaction due to a larger localization of the
spin-polarized states. Alternative scenarios for peaks around EF,
such as single-particle states or Coulomb-split radical states6,
would show the opposite trend with the system size.
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The observation of spin localization in only one of the two
radical regions in Type 1 and 2 junctions implies that one of the
two edge magnetic moments has vanished. Foreign atoms
bonding to a SO pz orbital remove the local spin and suppress
the magnetic signal at this site. Metal atoms can bind to C-sites,
but the interaction is too weak to bind to π-radicals over a metal
substrate35. Instead, H-passivation of radical sites is a highly
probable process occurring on the surface due to the large
amount of hydrogen available during the reaction36. DFT
simulations show that attaching an extra H atom into an edge
carbon in either the ZZ or PC sites leads to its sp3 hybridization

and the removal of a pz orbital from the aromatic backbone. This
completely quenches the magnetic moment of the passivated
region (Fig. 3d), and leaves the junction with a single electron
localized at the opposite radical site (Fig. 3e and Supplementary
Fig. 7). According to this, a Type 1 junction shows Kondo at the
PC site because it has a H atom bonded to the ZZ site that
quenches that magnetic moment, and opposite for Type 2. The
computed wave function amplitude distributions for the two
energetically most favorable adsorption sites (Fig. 3f) are also in
excellent agreement with the extension of the Kondo resonance
mapped in Fig. 2a, b.

Manipulation of the spin state of the nanostructures. The
presence of extra H atoms in Type 1 and 2 junctions was con-
firmed by electron induced H-atom removal experiments.
Figure 4a shows a structure formed by three chGNRs connected
via Type 1 and 2 junctions. Accordingly, their dI/dV spectra
(black curves in Fig. 4b, c) show a Kondo resonance at the PC1

and ZZ2 regions. We placed the STM tip on top of the opposite
sites, ZZ1 and PC2, and raised the positive sample bias well above
1 V. A step-wise decrease of the tunneling current indicated the
removal of the extra H atom (inset in Fig. 4b). The resulting
junction appeared with double bright regions in low-bias images
(Fig. 4d), and the PC1 and ZZ2 spectra turned into dI/dV steps
characteristic of Type 3 junctions (blue curves in Fig. 4b, c). Thus,
the removal of H atoms activated the magnetic moment of the
initially unpolarized ZZ1 and PC2 sites, converting Type 1 and 2
junctions into Type 3, and switching the total spin of the junction
from spin to zero.

Contacting the junctions with the STM tip. The magnetic state
of the junction was also changed by creating a contact between
the STM tip apex and a radical site. π-radicals show some weak
reactivity to bond metallic atoms, that allows their manipulation
with an STM tip37. In the experiments shown in Fig. 5a, the STM
tip was approached to the ZZ sites of a Type 3 junction. A step in
the conductance-distance plot (Fig. 5b) indicated the formation of
a contact. The created tip-chGNR contact could be stretched up
to 3 Å before breaking (retraction step in Fig. 5b), signaling that a
chemical bond was formed.

A reference dI/dV spectrum recorded before the bond
formation (black point in Fig. 5c) shows the split-peak feature
of Type 3 junctions (black spectrum in Fig. 5c). After the bond
formation (blue and red points in Fig. 5b), the spectra changed to
show Kondo resonances (blue and red spectra in Fig. 5c),
persisting during contact retraction until the bond-breaking step,
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where double-peak features are recovered (green spectrum in
Fig. 5c). The formation of a tip–chGNR bond thus removed the
spin of the ZZ site, and the transport spectra reflect the Kondo
effect due to the remaining spin embedded in the junction. If the
STM tip contacts instead the ZZ radical site of a Type 2 junction
(shown in Supplementary Note 5) the initial Kondo resonance
disappears from the spectra, signaling the complete demagnetiza-
tion of the junction. The width of the Kondo resonance in the
contacted junctions (blue and red plots in Fig. 5c) is significantly
larger than in Type 1 and 2 cases, probably because it
incorporates scattering with tip states38,39, and monotonously
narrows as the contact is pulled apart (Fig. 5d). The survival of
the Kondo effect in the contacted Type 3 junctions is a
remarkable outcome of our experiments, which demonstrate
the electrical addressability of localized magnetic moments in
graphene nanostructure devices.

Discussion
Open shell configurations of extended π systems can be stabilized
on-top of insulating layers35,40. The results presented here prove
that the intrinsic open-shell character of a graphene nanos-
tructure can survive on the surface of a metal. This is remarkable
because it proves that key electron–electron correlations needed
for the stabilization of magnetic ground states persist on the
metal, in spite of the ubiquitous charge screening by the under-
lying substrate41. In addition, the adsorption on the Au(111)
substrate has the general trend of hole-doping GNRs42,43, which
in some systems caused depopulation of the mid-gap states37. The
band structure of the (3,1) chGNR and, in particular, the proxi-
mity of the VB to EF, is a crucial aspect to stabilize the electron
population of the GNR junction on the surface and hence, for the
survival of their magnetic ground state.

Methods
Sample preparation and experimental details. The experiments were performed
on two different STMs operating in ultra-high vacuum. A commercial JT STM
(from specs) operated at 1.2 K with a magnetic field up to 3 T was used to measure
the temperature and magnetic field dependence of the Kondo resonance, while
other experiments were done with a home made STM operating at 5 K. Both setups
allow in situ sample preparation and transfer into the STM. The Au(111) substrate
was cleaned in UHV by repeated cycles of Ne+ ion sputtering and subsequent
annealing to 730 K. The molecular precursor (2,2′-dibromo-9,9′-bianthracene) was
sublimated at 170 °C from a Knudsen cell onto the clean Au(111) substrate kept at
room temperature. Then the sample was first annealed at 200 °C for 15 min in
order to induce the polymerization of the molecular precursors by Ullmann cou-
pling, then the sample was annealed at 250 °C for 5 min to trigger the cyclode-
hydrogenation to form chiral graphene nanoribbons (chGNRs). A last step
annealing at 350 °C for 1 min created nanostructure junctions. A tungsten tip
functionalized with a CO molecule was used for high-resolution images. All the
images in the manuscript were acquired in constant height mode, at very small
voltages, and junction resistances of typically 20 MΩ. The dI/dV signal was
recorded using a lock-in amplifier with a bias modulation of Vrms= 0.1 mV
(Fig. 2d, e) and Vrms= 0.4 mV at 760 Hz.

Simulations. We performed calculations with the SIESTA implementation44 of
DFT. Exchange and correlation (XC) were included within either the local (spin)
density approximation (LDA)45 or the generalized gradient approximation (GGA)46.
We used a 400 Ry cutoff for the real-space grid integrations and a double-zeta plus
polarization (DZP) basis set generated with an 0.02 Ry energy shift for the cutoff
radii. The molecules, represented with periodic unit cells, were separated by a
vacuum of at least 10 Å in any direction. The electronic density was converged to a
stringent criterion of 105. The force tolerance was set to 0.002 eV/Å. To complement
the DFT simulations described above we also performed simulations based on the
MFH model, known to provide a good description for carbon π-electron
systems7,8,15,16,47,48.

Data availability
The data that support the findings of this study are available from the corre-
sponding author upon reasonable request.
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Graphene can develop large magnetic moments in custom-crafted open-shell nanostructures such as
triangulene, a triangular piece of graphene with zigzag edges. Current methods of engineering graphene
nanosystems on surfaces succeeded in producing atomically precise open-shell structures, but demon-
stration of their net spin remains elusive to date. Here, we fabricate triangulenelike graphene systems and
demonstrate that they possess a spin S ¼ 1 ground state. Scanning tunneling spectroscopy identifies the
fingerprint of an underscreened S ¼ 1 Kondo state on these flakes at low temperatures, signaling the
dominant ferromagnetic interactions between two spins. Combined with simulations based on the
meanfield Hubbard model, we show that this S ¼ 1 π paramagnetism is robust and can be turned into
an S ¼ 1=2 state by additional H atoms attached to the radical sites. Our results demonstrate that π
paramagnetism of high-spin graphene flakes can survive on surfaces, opening the door to study the
quantum behavior of interacting π spins in graphene systems.

DOI: 10.1103/PhysRevLett.124.177201

In spite of their apparent simplicity, custom-crafted
graphene nanoflakes (GNFs) are predicted to exhibit
complex magnetic phenomenology [1] with promising
possibilities as active components of a new generation of
nanoscale devices [2–4]. As predicted by Lieb’s theorem
for bipartite lattices [5], certain shapes of graphene struc-
tures may accommodate a spin imbalance in the π electron
cloud, resulting in GNFs with a net magnetic moment.
Graphene π paramagnetism is more delocalized, mobile,
and isotropic than conventional magnetism from d or f
states [6] and can be electrically addressed [7,8].
Furthermore, the magnetic moments and their correlations
in GNFs can be precisely engineered through their sizes,
edge topology, or chemical doping [9–12].
The fabrication of such GNFs has been hindered due to

their high reactivity [13]. Because they are open-shell
structures, the presence of unpaired electrons (radicals)
makes the synthesis difficult. Initially, unsubstituted trian-
gulene was synthesized by dehydrogenating precursor
molecules with the tip of a scanning tunneling microscope
(STM) [14]. Very recently, triangular GNFs with larger
sizes have been synthesized through an on-surface syn-
thetic (OSS) approach [15–17], a strategy for fabricating
atomically precise graphene flakes on a metallic surface
[18–21]. Despite such progress in fabrication, the magnetic
properties of triangular GNFs on a surface have not been
demonstrated experimentally.

Here we report the OSS fabrication of triangulenelike
GNFs and demonstrate that the GNFs have a triplet ground
state. The synthesized GNFs have reduced symmetry com-
pared to triangulene, which increases the localization of the
magnetic moments. High-resolution STM images and spec-
troscopy allow us to identify the two spin centers on the
GNFs and map their distribution. Their ferromagnetic
correlations are characterized by the spin-1 Kondo effect
[22–24], which happens due to the incomplete screening of
two coupled spins by conducting electrons of the metal
substrate. Our results also show that the strength of corre-
lations between spins depends on the distance between them.
Figure 1(a) shows the chemical structures of the GNF

characterized in the experiments, named here extended
triangulene (ETRI). This GNF has 19 carbon atoms in one
sublattice (highlighted by red circles) and 17 carbon atoms
in the other (black circles), which results in a total spin
S ¼ 1 according to Lieb’s theorem [5]. For comparison, we
also produced the GNF in Fig. 1(b) [named as double
triangulene (DTRI)], which has 22 carbon atoms in both
sublattices and thus a spin S ¼ 0 ground state. We
synthesized these GNFs by depositing the respective
molecular precursors, shown in Figs. 1(c) and 1(d) [details
in Supplemental Material (SM) [25] ], on a Au(111) surface
at 330 °C. The hot surface activates a simultaneous debro-
mination and cyclodehydogenation step that planarizes
them into their final structures.
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Low-temperature STM overview images of the Au (111)
surface after deposition of precursors 1 and 2 are shown in
Figs. 1(e) and 1(f), respectively. While the reacted pre-
cursor 1, ETRI, appears on the surface mostly as monomers
and dimers in a ratio of approximately 1∶7, nearly all
deposited precursors 2, DTRI, remain as monomer species.
In every case, the monomers adopt a planar configuration,
as expected for the structures in Figs. 1(a) and 1(b).
Furthermore, high-resolution STM current images using
a CO-terminated tip [34,35] [Figs. 1(g) and 1(h)] reproduce
the chemical bond structures of Figs. 1(a) and 1(b),
indicating the successful synthesis of ETRI and DTRI. It
is worth noting that the current image of DTRI shows
merely the backbone structure, as also observed in similar
symmetric systems [36], while the current image of ETRI
shows additional bright features at the edges. Considering
that these images were recorded at 2 mV, the bright features
surrounding the backbone structure indicate an enhance-
ment of the local density of states (LDOS) close to Fermi
level for the ETRI molecule.
The different shape in the images is better manifested in

differential conductance (dI=dV) spectra measured on both
types of GNFs [Fig. 2(a)]. The spectrum on ETRI shows a
pronounced and narrow (FWHM ∼ 1 meV) dI=dV peak
centered at zero bias. The zero-bias peak broadens anoma-
lously fast with temperature [as described in Fig. 2(b)] and
splits with magnetic fields [Fig. 2(c)], demonstrating that it
is a manifestation of the Kondo effect [37]. A (zero-bias)
Kondo-derived resonance reflects the screening of a local

spin by conduction electrons [38] and, hence, is a direct
proof of the presence of localized magnetic moments on
ETRI even when it lies on a metal surface. On the contrary,
the spectra taken on DTRI are featureless. Furthermore,
both wide-bias range spectra and dI=dV maps reveal their
closed-shell ground state (see SM [25]).
The temperature and magnetic field dependence of the

Kondo resonances provide further insight on the nature of
the spin state of ETRI. Although the Kondo effect is
frequently described on S ¼ 1=2 systems, it also occurs for
higher spin configurations [23,24]. For S ¼ 1, a zero-bias
resonance reflects a partly screened spin, i.e., with only one
interaction channel with the substrate [42]. Similar to the
spin-1=2 case, the resonance broadens with temperature
[with a Kondo temperature TK ∼ 6 K, after Fig. 2(b); see
SM [25] ] but shows a larger sensitivity to the magnetic
field [23,24]. While the Kondo resonance of a S ¼ 1=2
system in the strong coupling regime (T < TK) splits
linearly with magnetic fields only above a critical field
Bc ≥ 0.5kBTK=gμb [7,43], an underscreened S ¼ 1 con-
serves some magnetic moment, and its zero-bias resonance
splits already with B > 0 [23,24]. In tunneling spectra,
such a peak split should become visible as soon as the
Zeeman energy is greater than the thermal broadening
(kBT), which, at the 1.2 K of our experimental set up
corresponds to fields above 1 Tesla. If the Kondo resonance
in Fig. 2(b) were caused by an S ¼ 1=2 state, it should
appear split in the spectra only for magnetic fields above
3.5 T. However, the peak appears split already at
B ¼ 1.5 T, proving that the ETRI molecule has an
S ¼ 1 in an underscreened Kondo state on the gold
substrate [25].
The S ¼ 1 configuration of the triangular GNFs was

further supported by tip-induced manipulation experi-
ments. Because of their biradical character, the zigzag
sites show some reactivity and are frequently found
passivated by hydrogen atoms produced during the OSS
reactions [7,44]. The passivated carbon sites can be
identified in high-resolution images by their larger bond
length [45] due to the change from sp2 to sp3 hybridiza-
tion. The STM image in Fig. 3(a) shows the bare backbone
structure of an ETRI molecule with its characteristic bright
features missing due to two additional H atoms passivating
the zigzag sites , with its chemical structure shown in
Fig. 3(b). The corresponding dI=dV spectrum is featureless
around zero bias [black curve in Fig. 3(g)], explaining the
absence of bright features in the STM image.
We first cut off one of the passivated H atoms by placing

the STM tip on top of site no. 1 in Fig. 3(a) and ramping up
the sample bias above 1.5 V [7,44]. The H removal was
monitored by a sudden step in the tunneling current [7].
The STM image afterwards appeared with an enhanced
LDOS signal around the no. 1 site [Fig. 3(c)], and the
dI=dV spectrum on site no. 1 presented a pronounced zero-
energy peak [red Fig. 3(g)]. We identify this as S ¼ 1=2
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FIG. 1. Chemical structures and synthetic route of extended
triangulene and double triangulene. (a), (b) Atomic structures of
ETRI and DTRI, which have spin 1 and 0, respectively. Red
(black) open circles denote carbon atoms that belong to different
sublattices, with the total number of carbon atoms indicated
under the structures. (c), (d) Molecular precursors 2,6-dibromo-
10-(2,6-dimethylphenyl)-9,9’-bianthracene (precursor 1) and
2,2’-dibromo-10,10’-bis(2,6-dimethylphenyl)-9,9’-bianthracene
(precursor 2) used to synthesize ETRI and DTRI, respectively.
(e), (f) STM overview images (V ¼ 0.3 V, I ¼ 0.1 nA) of the
formed GNFs from precursors 1 and 2, respectively. The arrows
in (e) indicate the ETRI monomers created. (g), (h) Constant
height current images (V ¼ 2 mV) of ETRI and DTRI with a
CO-terminated tip.
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Kondo resonance [7] resulting from the single radical state
recovered by the removal of the extra H atom at site no. 1
[Fig. 3(d)]. Following a similar process to cleave the second
H-CH bond at site no. 2 recovered bright current features all
around the ETRI backbone, resembling the shape of the
reference biradical structure of Fig. 1(g). The spectrum

measured again over site no. 1 now shows the Kondo
resonance with smaller amplitude and linewidth similar to
the one in Fig. 2(a), agreeing with its underscreened S ¼ 1
state. As quantified in Fig. 3(h), the Kondo resonance of the
doubly dehydrogenated GNFs appeared repetitively with a
linewidth of about HWHM∼0.7 meV, significantly smaller
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FIG. 2. Kondo resonances in extended triangulene. (a) dI=dV spectra of ETRI (blue curve) and DTRI (red curve) measured at the sites
indicated by the colored crosses in the inset. (b) Temperature dependence of the Kondo resonance for an ETRI molecule. The inset plots
the half width at half maximum (HWHM) at each temperature, extracted by fitting a Frota function (red dashed lines) [39] and corrected
for the thermal broadening of the tip [40]. The plot includes the empirical expression
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[41], fitting the results
with TK ∼ 6 K and α ¼ 8.5. The temperature evolution of the zero-bias conductance, shown as SM [25], agrees with a spin-polarized
state in the Kondo regime with energy scale of a few Kelvin. (c) Magnetic field dependence of the Kondo resonance with the field
strength indicated in the figure, measured at T ¼ 1.3 K. The red dashed lines show the simulated curves using a model for a spin-1
system using the code of Ref. [38]. The inset shows the dependence of Zeeman splitting of the Kondo resonance with magnetic fields,
determined from the bias position of steepest slope (indicated on the spectrum at 2.8 T). The dashed line fits the Zeeman splitting with a
g factor of 1.98� 0.07. The spectra in (b), (c) are shifted vertically for clarity.
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than in the singly passivated species hinting at their
different Kondo states. The spin assignment of each species
was further corroborated by comparing their response to a
magnetic field of 2.5 T. While the intermediate S ¼ 1=2
specie did not present any detectable split of the Kondo
resonance, the biradical one exhibited a clear split, as in
Fig. 2(c), demonstrating the larger spin polarization of its
S ¼ 1 underscreened ground state.
The emergence of magnetism in ETRI is reproduced by

both meanfield Hubbard (MFH) and density functional
theory (DFT) simulations (see SM [25]). Similar to the case
of triangulene [1,46], this modified GNF presents two
(singly occupied) zero-energy modes, with a triplet ground
state clearly preferred over a singlet one by more than
60 meV (see Figs. S9 and S16). The spin polarization
[Fig. 3(l)] shows two spin centers localized at opposite
sides of the triangular GNF, with a distribution that
resembles the experimental current maps [Figs. 1(g) and
3(e)]. We note that their ferromagnetic exchange inter-
action is much larger than the Kondo energy scale
(kBTK < 1 meV), thus explaining the S ¼ 1 underscreened
Kondo ground state found in the experiments. MFH
simulations also show that hydrogen passivation of the
radical states quenches the spins sequentially, turning ETRI
into an S ¼ 1=2 doublet [Fig. 3(k)] or completely non-
magnetic [Fig. 3(j)], as demonstrated by the electron-
induced removal of extra H atoms in the experiments.
A paramagnetic ground state was also found on molecu-

lar dimers formed during the OSS process [as shown in
Fig. 1(e)], but their larger size crucially affects their
magnetic properties. Fig. 4(a) shows a high-resolution
image of a dimer. Two ETRI moieties are covalently linked
together [Fig. 4(b)] following the Ullmann-like C-C cou-
pling of their halogenated sites [47]. During the cyclo-
dehydrogenation step, an extra pentagonal ring is created
between them, as highlighted by a red bond in Fig. 4(b),
reducing the number of radicals of the dimer to only two.
The biradical state is experimentally demonstrated in the
SM [25].
The STM image of Fig. 4(a) also reproduces bright

features around the dimer backbone (indicated with dashed
ellipses) corresponding to the localization of the Kondo
effect: dI=dV spectra measured on either of the two show
pronounced peaks centered at zero bias [Fig. 4(c)], which
broaden with temperature [Fig. 4(d)] and magnetic field
[Fig. 4(e)]. However, these Kondo resonances broaden
faster with T than for the S ¼ 1 case of ETRI [both
compared in the inset of Fig. 4(d)] and show no split at
B ¼ 2.7 T, signaling a different magnetic ground state.
Our MFH simulations of ETRI dimers like in Fig. 4(b)

confirm their biradical state, but the energy between triplet
and singlet solutions are now closer (see SM). On a surface,
a magnetic ground state probably behaves as two
noninteracting S ¼ 1=2 spins. This explains the lack of
B-induced split and the faster broadening with T expected

for S ¼ 1=2 Kondo systems [24]. The spin polarization
maps obtained from MFH simulations reproduce the bright
current regions on the dimers well [Fig. 4(f)], further
corroborating that this signal can be associated to the spin
distribution. The origin of such a small magnetic exchange
between the two radical states is related to the presence of a
pentagon between them and to the larger separation
between the two spin centers. In fact, in the absence of
this extra C-C bond, MFH simulations find a robust S ¼ 2
ground state. Thus, pentagonal rings embedded in certain
sites of an open-shell GNF can affect its magnetic state
critically by quenching a radical state and modifying the
total spin (here by ΔS ¼ 1) [48], just as extra hydrogen
atoms do [7], but their placement on a specific site can be
designed precisely during the OSS process.
In summary, we have demonstrated the magnetic ground

state of graphene flakes fabricated deterministically with a
triangularlike shape. The survival of the S ¼ 1 state on the
metal surface is identified first through the observation of a
narrow Kondo resonance, that reacts to magnetic fields as
an underscreened spin triplet. The S ¼ 1 state was further
confirmed through removal of hydrogen atoms by tip
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[41], fitting the results with TK ∼ 7 K with α ¼ 15. For com-
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also shown. (e) Kondo resonance taken at location 2 at different
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manipulation experiments, which revealed the stepwise
emergence of two spins localized at different sides of the
flakes. We note that our findings here contrast with the
absence of magnetic signals in previous studies of larger
triangulene flakes [15,16]. It is therefore an interesting
subject for future work to unveil the precise interplay
between size and symmetry of GNFs for their magnetic
state over a metal surface. Nevertheless, the existence of
GNFs with a net spin on a surface opens the door to new
investigations of their spin dynamics and coherence over
inorganic supports, which are crucial aspects for utilizing
graphene nanosystems [49] in quantum spintronic
applications.
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ABSTRACT: Open-shell graphene nanoribbons have become
promising candidates for future applications, including quantum
technologies. Here, we characterize magnetic states hosted by chiral
graphene nanoribbons (chGNRs). The substitution of a hydrogen
atom at the chGNR edge by a ketone effectively adds one pz
electron to the π-electron network, producing an unpaired π-radical.
A similar scenario occurs for regular ketone-functionalized chGNRs
in which one ketone is missing. Two such radical states can interact
via exchange coupling, and we study those interactions as a function
of their relative position, which includes a remarkable dependence
on the chirality, as well as on the nature of the surrounding ribbon,
that is, with or without ketone functionalization. Besides, we
determine the parameters whereby this type of system with oxygen
heteroatoms can be adequately described within the widely used
mean-field Hubbard model. Altogether, we provide insight to both theoretically model and devise GNR-based nanostructures with
tunable magnetic properties.

KEYWORDS: magnetism, spin interaction, graphene nanoribbon, heteroatom substitution, scanning tunneling microscopy,
density functional theory, mean-field Hubbard model

Magnetic carbon nanostructures exhibit attractive proper-
ties that differentiate them from the conventional

magnetic systems relying on d or f states, like a weaker
spin−orbit coupling and a larger spin delocalization.1−5 The
open-shell character and the corresponding magnetic proper-
ties may appear in graphene nanoflakes (GNFs) and
nanoribbons (GNRs) with certain topologies for a number
of reasons. First, as predicted by Lieb’s theorem6 sublattice
imbalance in a bipartite lattice leads to a net spin inside the
nanographene that occurs, for example, in triangulene.7 Even
with balanced sublattices, topological frustration in GNFs may
hinder the pairing of all pz electrons and result in open-shell
structures.8 In addition, if the Coulomb repulsion between
valence electrons is comparable to the band gap between
molecular frontier orbitals, it can prompt the system to host
singly occupied orbitals.9−13 Finally, a net spin can be
introduced to GNFs and GNRs by simply adding/removing
an odd number of π-electrons into/from the system.14 Besides
charge transfer scenarios,15,16 this can also be achieved by the
insertion of odd-membered rings,17−20 by an sp2 to sp3

rehybridization as driven, for example, by hydrogenation,10,21

or by heteroatom substitutions.22 The former two approaches
have been increasingly employed10,17−20,23 but only few

examples elucidate the latter one24 though with many
theoretical predictions.22,25,26

The synthesis and characterization of graphene π-magnetism
has seen great advances thanks to the recent development of
on-surface synthesis.10,14−16,18,19,21,24,27−37 The topologies of
GNFs and GNRs can be precisely tuned by the rational design
of precursor molecules. Because of their delocalized π-
magnetism, magnetic GNFs and GNRs are ideal candidates
for the construction of interacting electron spin systems. Most
of the reported works are focused on the interactions between
radicals on GNFs,14,37 whereas the engineering of exchange-
coupled spins on extended systems like GNRs, though highly
desired, is more scarce.24,28,38

Here, we report the generation of net spins on chiral GNRs
(chGNRs) by ketone functionalization as shown in Figure 1a.
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Replacing a CH at the pristine chGNR edge by a CO
(carbonyl) adds one π-electron to the system. As a result, the
odd number of total electrons causes the appearance of a π-
radical. The same is applicable for regularly ketone-function-
alized chGNRs39 if a CO is replaced by a CH. The
introduction of a second radical may either maintain the
system’s open-shell character or result in their hybridization
into a closed-shell structure.33,37 On the basis of the above, a
variety of radical pairs with different geometries were analyzed
in our experiments. Combining scanning tunneling microscopy
(STM) with theoretical calculations, we reveal how their
relative location, the chemical structure of the units
surrounding the two radicals and the chirality itself, all
influence the spin interactions.
The generation of radical states in chGNRs is schematically

displayed in Figure 1a and starts from the readily described
synthesis of pristine (P-) and ketone-functionalized (K-)
chGNRs on Au(111).39,40 In the case of K-chGNRs, a few
defective ribbons with one or more missing oxygen atoms
normally coexist with intact ribbons.39 The substitution of an
oxygen by a hydrogen atom makes the total number of pz
electrons an odd number, thus producing an unpaired π-
radical, as indicated by the blue arrow in Figure 1a. In turn, the
addition of an oxygen atom to an otherwise P-chGNRs
effectively adds one pz electron and equally brings in a radical.
This can be achieved either by exposing P-chGNRs to O2 and
postannealing,41 or removing most of the ketones of K-
chGNRs by exposing them to atomic hydrogen and
postannealing.39 Using these procedures, P- and K-chGNRs
with single radicals and with radical pairs were produced.
Unfortunately, attempts to controllably remove ketone groups
by tip manipulation and thereby create radicals at predesigned
positions were unsuccessful. We use the following nomencla-
ture to refer to different radical pairs. Taking the radical
marked with the blue arrow in Figure 1b as reference, the other
labels denote the position of the second radical (Figure 1b). S/
O represents the two radicals of a pair located at the same/
opposite sides of a chGNR. The following number shows how
many precursor units separate a radical pair. A′-mark is used to
distinguish the differing configurations resulting from the
ribbon’s chirality. Finally, P- denotes P-chGNRs in which the
radicals are caused by additional ketones and K- denotes K-
chGNRs with radicals associated with missing ketones. An
example P-O1 radical pair is shown in Figure 1a.
Figure 2a presents the bond-resolving (BR) STM image of a

K-chGNR with a single defect using a CO-functionalized

probe,42 along with the associated chemical structure. At the
low bias value used for BR-STM, the unit cell with a missing
ketone exhibits brighter contrast, implying the existence of
low-energy states. Figure 2b shows the differential conductance
spectrum (dI/dV) taken at the marked position in Figure 2a.
Apart from the highest occupied and lowest unoccupied
molecular orbitals (HOMO and LUMO) of a K-chGNR at
−1.45 and 0.65 V, associated with the reported valence and
conduction band onsets,39 two in-gap states are clearly visible
at −0.47 and 0.25 V. The same local density of states (LDOS)
distribution at these two energies in dI/dV maps supports their
common origin from the singly occupied/unoccupied molec-
ular orbitals (SOMO/SUMO), separated by a 0.72 eV
Coulomb gap.36 In line with the experiments, the spin density
calculated for this structure with density functional theory

Figure 1. Synthesis and nomenclature of radicals and radical pairs. (a) Schematic drawing for the fabrication of magnetic chGNRs. A π-radical is
introduced into chGNRs by the addition/removal of an oxygen into/from P-/K-chGNRs. (b) Labels for the radical pairs in chGNRs. Taking the
radical marked with a blue arrow as the reference, each pair is labeled depending on the position of the second π-radical.

Figure 2. Characterization of single radicals. (a) Constant-height BR-
STM image of a K-chGNR with single defect (V = 5 mV), together
with the corresponding chemical structure. (b) dI/dV spectra at the
marked position in (a, black line) and the bare Au(111) substrate
(gray line), Vrms = 20 mV. (c,d) Constant-height dI/dV maps
recorded at V = −0.47 and 0.25 V, respectively. Vrms = 20 mV. (e)
DFT calculated spin density distribution in K-chGNR with single
defect. (f) Temperature dependence of the Kondo resonance. All of
the spectra are fitted by a Frota function. (g) Extracted HWHM of the
Kondo resonances as a function of temperature, fitted by the Fermi-
liquid model. The inset shows a Kondo map measured at 5 mV. Scale
bars: 0.5 nm.

Nano Letters pubs.acs.org/NanoLett Letter

https://doi.org/10.1021/acs.nanolett.1c03578
Nano Lett. XXXX, XXX, XXX−XXX

B



(DFT) with SIESTA43,44 (Figure 2e and Figure S1 in
Supporting Information) distributes mostly over the “defec-
tive” unit cell but extends slightly to the adjacent ones with a
clear chirality-driven asymmetry. Evidence of this system’s net
spin S = 1/2 is detected as a zero-bias peak in the low-energy
dI/dV spectra (Figure 2f). It broadens anomalously fast with
temperature and can thus be attributed to a Kondo
resonance.14,45 The half width at half-maximum (HWHM)
of the temperature-dependent spectra, as extracted from fits to
a Frota function46 (Figure 2f), are further fitted to the Fermi-
liquid model47 (Figure 2g) and result in a Kondo temperature
of 66 K. The identical spin distribution of the Kondo map
obtained at 5 mV (Figure 2g inset) and of the SOMO/SUMO
(Figure 2c,d) further corroborates the origin of the spin
density in the SOMO.
An equivalent characterization of a single magnetic defect in

P-chGNR is presented in Figure S2. Compared to the K-
chGNR case, the SOMO and the associated spin density in P-
chGNR show a much more limited contribution on the ketone
and mostly distribute over the pristine side of the defective unit
cell. The smaller bandgap of P-chGNR as compared to K-
chGNR (∼0.7 vs ∼2.1 eV),39,48 causes a stronger hybridization
of the radical states with the frontier molecular orbitals,
resulting in a notably more extended distribution into
neighboring unit cells (though with a similar chirality-driven

asymmetry) and consequently a lower Coulomb gap of only
0.35 eV.
Next, we focus on chGNRs with radical pairs. Whereas a

hybridization of the two radicals may result in a closed-shell
ground state with a doubly occupied HOMO, the system can
also remain open-shell with the associated SOMOs, if the
hybridization energy is lower than the Coulomb repulsion
between the corresponding electrons.33,37 Our DFT calcu-
lations (Figure S1) predict two radicals in closest proximity but
opposite GNR sides (i.e., the O0 and O0′ cases in both types
of chGNRs) to hybridize into a closed-shell ground state, while
all of the other radical combinations show open-shell ground
states. The experimentally observed P-O0, P-O0′, and K-O0′
cases confirm their closed-shell character and are displayed in
Figure S3 with HOMOs and LUMOs exhibiting distinct
LDOS distributions as opposed to the similar appearance
expected from SOMO and SUMO.
For the open-shell structures, the exchange interaction

between a radical pair can be experimentally accessed from
inelastic spin-flip excitations in scanning tunneling spectrosco-
py.14 The low-energy dI/dV spectra of radical pairs with a
S = 1 triplet ground state may exhibit three features: an
underscreened Kondo resonance at Fermi level and two side
steps symmetrically positioned around the Fermi level. The
latter are associated with inelastic triplet-to-singlet spin-flip
excitations,15,18 and in contrast to their energetic alignment

Figure 3. Characterizations of radical pairs. (a,d) BR-STM images (V = 5 mV) of experimentally obtained radical pairs at the same (a) and
opposite sides (d) on P- and K-chGNRs, together with the chemical structure and DFT calculated spin-polarized LDOS for each case (ground
states). (b,c) dI/dV spectra measured at the marked positions in STM images (see comparative spectra at the position of the second radical marked
with an x in the Figure S5. The blue solid and black dotted curves refer to radical pairs on P- and K-chGNRs, respectively. P-O1 shows the original
signal and other spectra were vertically shifted to match the positions of STM images. Some of the spectra were additionally scaled as marked. Total
spin and coupling strength are shown for each case, where PM, FM, and AFM stand for paramagnetic, ferromagnetic and antiferromagnetic
coupling, respectively. Lock-in amplitude: 2 mV for P-O1, 1.5 mV for K-S0, 1 mV for other cases. Scale bars: 0.5 nm.
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their intensities may display asymmetries as a result of lacking
particle-hole symmetry (that is, the singly occupied orbital is
closer to EF than the singly unoccupied state or vice versa),
spin-polarized tips, and so forth.10,49 In contrast, the dI/dV
spectra of radical pairs with a S = 0 singlet ground state exhibit
only the two singlet-to-triplet side steps.18,19,36,37 As the
exchange interaction between the radicals becomes sufficiently
weak, equaling singlet and triplet energies, the radicals respond
independently from one another and may display only a
Kondo resonance. The geometries of the experimentally
addressed radical pairs are determined from the BR-STM
images displayed in Figure 3a,d, along with their spin densities
as calculated with DFT. The associated low-energy dI/dV
spectra are shown in Figure 3b,c. In agreement with the above,
further confirmed with fits to the spectra (Figure S5) with a
perturbative approach up to third order for two coupled
S = 1/2 systems using the code from Ternes that is explained
in detail in ref 49, we conclude the exchange coupling energies
and relative alignments for each radical pair as summarized in
Table 1. Table 1 also includes the values obtained from

theoretical calculations. The good match of the DFT results
with the experiments underlines the predictive power of the
calculations on radical pair geometries not accessed exper-
imentally.
Focusing on the exchange coupling J, it scales inversely with

the spatial separation for both P- and K-chGNRs cases. That is,
radical pairs separated by less unit cells show larger J values
due to the greater overlap of the radical states’ wave functions
and the associated spin density (Figure 3a,d). Interestingly, J
shows a remarkable dependence on the chirality, as observed
experimentally with P-O1 and P-O1′ and predicted theoret-
ically also for K-O1 and K-O1′ (Table 1). The chirality-driven
asymmetric extension of the SOMO wave function (and of the
associated spin density) into neighboring unit-cells strongly
affects their overlap. For example, whereas the spin density of
radical states in P-O1 mostly extends toward the central unit

between the radical pairs, it dominantly extends away from
each other in P-O1′ (Figure 3d). As a consequence, the former
shows a much stronger exchange coupling than the latter (42.7
vs 17.5 meV). The exchange coupling strength also varies
substantially with the nature of the surrounding GNR, as
exemplified here with the presence or absence of the edge
functionalization by ketones. Radical states in K-chGNRs
extend much less than those in P-chGNRs, promoting in the
latter a larger overlap and thus larger J for the same radical pair
geometry (Figure 3 and Table 1).
As for the spin’s relative alignment, a generally applicable

assumption that relies on the preferred antiferromagnetic
alignment of electrons in chemical bonds is that, for alternant
graphene nanostructures, each of the two sublattices hosts pz
electrons with spin up or down, respectively. Since the ketone
group is also sp2 hybridized, it adds one pz electron to the
system and can to a first approximation be considered as an
additional pz site on its corresponding sublattice. The atoms at
same edges of the chGNRs belong to the same sublattice,
whereas the atoms at the opposite edge belong to the other
sublattice. A radical pair located at the same/opposite side is
therefore expected to be ferromagnetically (FM)/antiferro-
magnetically (AFM) aligned. All experimentally measured
radical pairs match this prediction, except K-S1 (AFM ground
state; Table 1).
For the conductance spectrum of K-S1, one could argue that

the Kondo peak expected from a FM alignment is not visible
because its intensity is much lower than that of the spin flip
steps (as occurs, e.g., in K-S0, Figure 3b), and its width is
comparable to J. In fact, the spectrum can be fitted using
Ternes’ code49 assuming an FM alignment. However, to do so,
the tip−sample transmission function represented by the T0

2

parameter required an anomalously large value. Since we did
not change the STM tip during the whole experiment and used
comparable tip−sample distances as defined by the STM
feedback parameters, it is natural to expect that T0

2 should be
similar for all the spin-coupling scenarios. As shown in Figure
S6, whereas all the other fits rendered comparable T0

2 values, a
FM alignment for the K-S1 case required a T0

2 value an order
of magnitude higher and clearly out of the dispersion range,
suggesting a preferred AFM alignment of the K-S1 radical pair.
This counterintuitive spin alignment for the K-S1 case is

confirmed with DFT calculations, which predict the AFM
alignment to be energetically favored. We have additionally
performed mean-field Hubbard (MFH) calculations50 on this
same system, given its greater simplicity and successful
application to many open-shell carbon nanostructures.14,37 As
discussed earlier, the extra pz electron on the sp2 hybridized
ketone was first considered as an additional pz site taken to be
identical to a carbon pz orbital. Doing so, MFH calculations
with the third nearest-neighbor tight-binding model (3NN-
TB) predict a FM ground state for K-S1, in line with the
intuitive expectations for radical states on the same ribbon’s
side but against DFT and experiments (henceforth we call this
model MFH-TB(1)). In a counter-experiment, we performed
DFT calculations for another system which is more equivalent
to a simulation performed with MFH-TB(1), namely a chGNR
with methylidene groups (i.e., CCH2) instead of carbonyl
(CO). In this case, the DFT results agree with the intuitive
expectations and with the MFH-TB(1), predicting a preferred
FM alignment and even a comparable J value (CH2-S1 in
Figure 4a). It follows that the surprising AFM alignment is
unequivocally related to the oxygen atom rather than to the

Table 1. Exchange-Interaction Strength J (in meV)
Obtained from Experiments and Theoretical Calculations
for Multiple Radical Pairsa,b

type experiment DFT MFH-TB(1) MFH-TB(2)

P-S0 −31.4 −44 −23.2
P-S1 −13.8 −18.4 −15.5 −12.8
P-S2 −2.3 −11 −7.2 −6.4
P-O0 CS CS CS CS
P-O0′ CS CS 108 CS
P-O1 42.7 35.8 29 28.8
P-O1′ 17.5 28 21.4 20.4
P-O2 5.8 11.3 7.8 6.9
P-O2′ 4.7 11.8 7.8 7.1
K-S0 −13.3 −24 −50.9 −19
K-S1 6.2 6.4 −6.6 2.1
K-S2 0 0.4 −0.5 0.1
K-O0 CS CS CS
K-O0′ CS CS 109.1 CS
K-O1 29.1 14.4 20.9
K-O1′ −0.5 2.7 0
K-O2 0.1 0.9 0.5
K-O2′ 0 0.7 0.3 0

aPositive (negative) J values indicate preferred antiferromagnetic
(ferromagnetic) alignment. bCS denotes closed-shell structure.
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Figure 4. Modeling of radical pairs. (a) Spin-polarized LDOS distribution of radical states as calculated by DFT and J (MFH-TB(2) values are
shown in parentheses) in K-S0, K-S1, and CH2-S1 (all oxygen atoms are replaced by CH2), respectively. (b) Band structures of intact K-chGNR,
acquired from DFT, MFH-TB(1), and MFH-TB(2), respectively. (c) MFH-TB calculated J in K-S0 and K-S1 as a function of oxygen onsite energy
in TB(2). The onsite Coulomb repulsion in MFH was set to U = 3 eV.

Figure 5. (a) STM image (U = −100 mV; I = −1 nA) showing a P-chGNR with three P-S2 radicals in a row, together with the corresponding
chemical structure. The scale bar is 5 Å. (b) Vertically offset dI/dV spectra (solid lines) obtained at the marked positions in (a), along with the
simulated inelastic electron tunneling spectroscopy (dashed lines) for this three-radical spin system. The exchange energy J = −2.3 meV, as derived
from P-S2 in experiments, is used for the simulation.
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mere presence of an extra pz electron there, exposing
insufficient chemical detail in our simple MFH-TB(1)
approach.
In an attempt to make the simple MFH calculations also

applicable to these more complicated systems including
heteroatoms, we have included modified TB parameters
(hopping amplitude and on-site energy) for the oxygen
heteroatoms in what we call the model MFH-TB(2). To
determine the most appropriate parameters, we compare the
calculated band structures obtained from DFT for fully ketone-
functionalized chGNRs to those obtained with our MFH-TB
models (Figure 4b). An improvement of the TB model can be
obtained with MFH-TB(2) maintaining for carbon atoms the
nearest-neighbor hopping amplitude and on-site energies of 2.7
and 0 eV, respectively, but changing the values to 3.8 and −1.5
eV for oxygen atoms bonded to carbon. Qualitatively the
increased hopping amplitude on the CO bonds can be
directly related to its shorter length and the nonzero on-site
energy to the increased electronegativity of oxygen. The
exchange coupling in radical pairs (both strength and sign) is
strongly affected by these two parameters, as depicted for the
on-site energy in Figure 4c for K-S0 and K-S1. Applying this
optimized model now correctly predicts a preferred AFM
alignment for K-S1. Furthermore, MFH-TB(2) also corrects
the other wrong predictions of the MFH-TB(1) model, as is
the open-shell character of the P-O0′ and K-O0′ radical pairs
and provides for all calculated structures J values very similar to
DFT calculations (see Table 1). Altogether, we hereby provide
a simple yet accurate parametrization to model these more
complex systems beyond pure hydrocarbon structures.
It is worth noting that the insight provided in this work

about the pairwise interaction between radicals can be
extended also to systems with an increasing number of spins
and ultimately even to spin chains. By way of example, three P-
S2 radical states in a row (Figure 5a) reveal a clearly broader
zero-bias resonance at the central radical (blue data, HWHM =
9 meV, Figure 5b) as compared to the two outer ones (black
and red data, HWHM = 7 meV). For this geometry, the three
spins are ferromagnetically coupled, leading to a ground state
S = 3/2 with two distinct spin-flip excitations to the S = 1/2
manifold. Theoretical simulations of the corresponding
inelastic dI/dV features (Figure 5b, dashed lines) reveal that
only the high-energy excitation contributes at the central
radical, whereas the outer sites exhibit predominantly the low-
energy steps. Although a clear identification of these inelastic
transitions in our spectra is hindered by the low energies
involved, along with a relatively broad Kondo signal, these
calculations are consistent with the experiment and the broader
peak at the central spin (Figure 5b). This finding is also in line
with the previous work from DiLullo et al.,51 where the central
site on a molecular Kondo chain was found to exhibit a larger
resonance width than those at the termini. Although the spins
in that case were aligned antiferromagnetically, the same
argument actually holds.
In summary, we have characterized the magnetic interactions

between radical pairs of diverse geometries hosted by two
different types of chGNRs, with and without ketone
functionalization at their edges. As confirmed by both
experiments and theoretical calculations, the exchange
coupling between two radicals shows remarkably large
variations depending on their relative location on the same
or opposite sides of the GNRs, on the spatial distance between
them, on the chiral asymmetry, as well as on the structure of

the GNR surrounding the magnetic state. These results thus
provide valuable information on the potential use in the design
of graphene-based spin chains and networks with tunable
magnetic structures. Furthermore, we demonstrated their
modeling by the widely used MFH approximation through a
minimal extension to these systems of increased complexity
including oxygen heteroatoms, which may greatly expedite the
understanding and engineering of GNR-based structures in the
future.
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We analyze theoretically four-terminal electronic devices composed of two crossed graphene nanoribbons
(GNRs) and show that they can function as beam splitters or mirrors. These features are identified for electrons in
the low-energy region where a single valence or conduction band is present. Our modeling is based on pz orbital
tight binding with Slater-Koster-type matrix elements fitted to accurately reproduce the low-energy bands from
density functional theory calculations. We analyze systematically all devices that can be constructed with either
zigzag or armchair GNRs in AA and AB stackings. From Green’s function theory the elastic electron transport
properties are quantified as a function of the ribbon width. We find that devices composed of relatively narrow
zigzag GNRs and AA-stacked armchair GNRs are the most interesting candidates to realize electron beam
splitters with a close to 50:50 ratio in the two outgoing terminals. Structures with wider ribbons instead provide
electron mirrors, where the electron wave is mostly transferred into the outgoing terminal of the other ribbon,
or electron filters where the scattering depends sensitively on the wavelength of the propagating electron. We
also test the robustness of these transport properties against variations in the intersection angle, stacking pattern,
lattice deformation (uniaxial strain), inter-GNR separation, and electrostatic potential differences between the
layers. These generic features show that GNRs are interesting basic components to construct electronic quantum
optical setups.

DOI: 10.1103/PhysRevB.102.035436

I. INTRODUCTION

The similarities between the wave nature of electrons
propagating coherently in ballistic conductors with photon
propagation in optical waveguides has spawned the field of
electron quantum optics [1,2]. In this way several electronic
analogs of optical setups—such as the Mach-Zehnder [3,4]
and Fabry-Pérot [5–7] interferometers, as well as the Hanbury
Brown–Twiss [8–11] geometry to study the Fermion anti-
bunching and the two-particle Aharonov-Bohm [12] effects—
have been implemented. Fundamental components for these
setups include mirrors (Ms), beam splitters (BSs, i.e., partially
transparent mirrors), and wavelength filters. Such control
elements for electron beams are important in the fields of
quantum information and solid-state quantum computation:
By sending a single electron through a BS one can generate
a mode-entangled state that can be used to violate a Bell
inequality [13] or for quantum teleportation [14,15]. A BS
is the central building block of the Hong-Ou-Mandel setup
to test the indistinguishability [16] or the entanglement [17]
of electrons entering in the two input ports. With two BSs
and two oriented Ms the Mach-Zehnder interferometer can be
fully implemented, which has been demonstrated to work as a
quantum logic processor [18].

A platform with remarkable prospects for electron quan-
tum optics are graphene-based systems, in which several

*sofia.sanz@dipc.org
†thomas_frederiksen@ehu.eus

pioneering experiments on electron beam splitters and re-
lated devices have been performed [19,20]. More recently,
graphene nanoribbons (GNRs) [21,22] have emerged as at-
tractive candidates for the construction of molecular-scale
electronic devices [23] because they inherit some of the
exceptional properties from graphene while having tunable
electronic properties, such as the opening of a band gap de-
pending on their width and edge topology [24–28]. The elec-
tron coherence length in GNRs can be long, with values of the
order ∼100 nm being reported [29–31]. Furthermore, ballistic
transport can be rather insensitive to edge defects because of
the presence of localized edge states (e.g., in zigzag GNRs)
and the dominating Dirac-like physics, that make the current
flow maximally through the center of the ribbon [32]. With the
advent of bottom-up fabrication techniques, long defect-free
samples can be chemically synthesized with both armchair
(AGNR) [33] and zigzag (ZGNR) [34] edge topologies via
on-surface synthesis. Manipulation of GNRs with scanning
tunneling probes has been also demonstrated [35,36], open-
ing the possibility to build two-dimensional multiterminal
graphene-based electronic circuits [37–41].

Recently, it has been shown theoretically that two crossed
GNRs with a relative angle of 60◦ can behave as a BS for
valence- and conduction-band electrons [42,43], since such
four-terminal devices were found to divide the electron beam
into two out of the four arms with an equal transmission
probability of 50%. In this paper we analyze this possibility
more generally and show that all the mentioned beam-control
elements (BS, M, filters) can be realized with a suitable
choice of two crossed GNRs. More specifically, we compute

2469-9950/2020/102(3)/035436(14) 035436-1 ©2020 American Physical Society



SOFIA SANZ et al. PHYSICAL REVIEW B 102, 035436 (2020)

the electron transport properties of these devices in terms of
the edge topology and width of the GNRs, and the precise
alignment and stacking of the ribbons.

The problem is theoretically approached by means of
tight-binding (TB) modeling, which is known to reproduce
graphitelike systems with sufficient accuracy [44–48] while
allowing one to explore a large number of systems of con-
siderable sizes in a fast and transparent way. For instance,
the geometry of a crossing between two 50-atom-wide GNRs
readily comprises around 10 000 atoms. The main complex-
ity of the modeling lies in the description of the interlayer
couplings, for which we use a Slater-Koster parametriza-
tion [49] that has proven successful for describing the band
structure and velocity renormalization of Dirac electrons in
twisted bilayer graphene [50,51]. The employed technique
can describe arbitrary device geometries and therefore allows
us to also study the robustness of the predicted transport
properties against variations in the intersection angle, stack-
ing pattern, lattice deformation (uniaxial strain), inter-GNR
separation, and electrostatic potential differences between the
layers. With this, we give a complete analysis of the transport
properties of crossed GNRs, highlight their tunability, and
provide quantitative data that can serve as a guide for design
optimization.

This paper is organized as follows: In Sec. II we introduce
the general TB Hamiltonian used to describe the kinetics of
the electrons traveling through the different devices as well
as the scattering formalism used to compute transmission and
reflection probabilities of incoming electron waves from the
different leads. In Sec. III we present a complete analysis
of the transport properties based on the key combinations
of stacking pattern, edge topology, and width of the GNRs.
Finally, the conclusions and remarks are provided in Sec. IV.

II. METHODOLOGY

The general setup of this study, illustrated in Fig. 1(a),
comprises two infinite GNRs crossed with a relative angle θ =
60◦ (see Sec. III A for a discussion of this choice of angle).
The scattering region (intersection) breaks the translational
invariance of the infinite ribbons, for which we will use the
Green’s function formalism to solve the Schrödinger equation
with open boundary conditions.

The system is divided into the device (scattering) region
that contains the intersection between the two ribbons, and
the four semi-infinite GNRs (periodic electrodes), represented
as red rectangles in Fig. 1(a). The total Hamiltonian is corre-
spondingly split into the different parts

HT = Hd +
∑

α

(Hα + Hαd ), (1)

where Hd is the device Hamiltonian, Hα the α-electrode
Hamiltonian, and Hαd the coupling between these two sub-
systems.

A. Tight-binding Hamiltonian

The use of a local basis in combination with Green’s
function techniques provides an efficient way for obtaining
the transport properties in terms of microscopic parameters.

(a)

θ = 60◦1 2
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W W
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FIG. 1. Illustration of the general setup. (a) A four-terminal
device is formed by two crossed 8-ZGNRs with a relative angle
θ = 60◦. The bottom (top) ribbon is drawn in blue (red) with carbon
atoms at each vertex. The four semi-infinite leads, numbered 1–4, are
attached in the contact regions represented with red rectangles. The
ribbons lie out of plane separated by a distance d along the z axis (see
side view). Definition of the width W of (b) ZGNRs and (c) AGNR
in terms of the number of carbon atoms N across the ribbon. The
interatomic distance is denoted by a.

We write the single-particle TB Hamiltonian in an orthogonal
basis as

H =
∑

i

εic
†
i ci +

∑
i j

ti j (c
†
i c j + H.c.), (2)

where c†
i (ci) creates (annihilates) an electron on site i with

energy εi. We further define the Fermi level as EF = εi,
corresponding to half-filled carbon pz orbitals. The matrix
element ti j between orbitals i and j is described by Slater-
Koster-type two-center π and σ bond integrals between two
pz atomic orbitals [49]

ti j = Vppπ (1 − l2) + Vppσ l2, (3)

where l is the cosine of the angle formed between the distance
vector r̂i j for the i j atom pair and the unit vector that defines
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the z direction [cf. Fig. 1(a)], i.e., l = r̂i j · êz/|ri j |. The two-
center integrals are expressed as

Vppπ = −t‖eqπ (1− |ri j |
a ), (4)

Vppσ = −t⊥eqσ (1− |ri j |
d ), (5)

where t‖ (t⊥) is the intra-GNR (inter-GNR) hopping param-
eter between atoms separated by the interatomic (interlayer)
distance fixed to a = 1.42 Å (d = 3.34 Å) in our model
(see Fig. 1). The decay rates of the bond integrals with the
atomic separation, qσ and qπ , are isotropic and therefore
related by qσ /d = qπ/a. This model, characterized by t‖, t⊥
and the decay rate (which can be determined by fixing the
second-nearest-neighbor coupling), successfully describes π

electrons in twisted bilayer graphene [51]. However, it does
not capture many-body effects such as, e.g., the difference in
the nearest-neighbor hopping parameter for different lattice
sites as in the Slonczewski-Weiss-McClure (SWM) model for
graphite [45,52–54].

In this work we use t‖ = 2.682 eV and t⊥ = 0.371 eV.
For the third model parameter we refer to the in-plane next-
nearest-neighbor matrix element t ′ = 0.0027 eV. These pa-
rameters were obtained by fitting to the low-energy band
structure of AB-stacked bilayer graphene simulated with
SIESTA [55] as explained in the Appendix. The satisfactory
agreement between TB and density functional theory (DFT)
(Fig. 14) further justifies that, at least for our purposes, many-
body effects such as in the SWM model can be neglected.

B. Transport calculations

In order to perform transport calculations we use the
nonequilibrium Green’s function (NEGF) method [56–58].
In particular, to obtain the transmission probabilities (Tαβ)
between the different pairs of electrodes (α �= β), we use the
Landauer-Büttiker formula [59],

Tαβ = Tr[�αG�βG†], α �= β, (6)

where �α = i(	α − 	†
α ) is the broadening matrix, related to

the non-Hermitian part of the retarded electrode self-energy
	α , due to the coupling of the αth semi-infinite lead to the
scattering center and α, β = 1, . . . , 4 (cf. Fig. 1). Further,

Gd =
(
IE − Hd −

∑
α

	α

)−1

(7)

is the retarded Green’s function of the device region and I
the identity matrix (orthogonal basis). The dependency on the
electron energy E of these key quantities is implicit.

The reflection probability (Tαα = Rα) can be conveniently
written as a difference between the bulk electrode transmis-
sion Mα (i.e., the number of open channels/modes in electrode
α at a given energy) and the scattered part into the other
electrodes (

∑
β Tαβ ) as

Rα = Mα −
∑
β �=α

Tαβ. (8)

From Eq. (7) we can also obtain the spectral function Aα for
states coupled to electrode α,

Aα = G�αG†. (9)

The diagonal elements Aα (i, i)/2π correspond to the local
density of states (DOS) at sites i of the scattering states
originating from electrode α.

Computationally, we constructed the Hamiltonian matrix
with the SISL package [60,61] and computed transmission
probabilities and spectral DOS with TBTRANS [61].

III. RESULTS

In this section we present results for the electron transport
properties through an extensive set of four-terminal devices
formed by two crossed ribbons. We analyze the role of the
precise stacking and alignment of the crossing area for both
ZGNR- and AGNR-based devices in all their possible config-
urations.

A. Possible device configurations

The symmetry of the honeycomb lattice yields a perfect
matching between the bottom and top GNR lattices for θ =
60◦. In this situation it is expected that the maximized inter-
layer coupling enhances the transfer of electrons between the
ribbons, as shown in Refs. [41–43]. In Fig. S1 in the Supple-
mental Material (SM) [62] we performed transport calcula-
tions for crossed 8-ZGNRs both in the AA and AB stackings
as a function of the crossing angle between the GNRs, where
such behavior is observed for angles approaching 60◦. We
therefore focus the discussion on devices formed by crossed
GNRs with an intersecting angle of θ = 60◦. However, the
inter-GNR transmission is also enhanced for angles within
[50◦, 70◦], which highlights the tunability of our devices. Note
that experiments on twisted bilayer graphene report that the
rotation angle between the layers can be precisely controlled
down to fractions of a degree (0.01◦) [63–65].

For a systematic analysis we begin by considering all the
possible devices that can be built with two crossed AA- or AB-
stacked GNRs with a relative angle of 60◦. These are sketched
Fig. 2. In the case of crossed ZGNRs there exist two con-
figurations, the AB stacking [labeled AB, Fig. 2(a)] and the
AA stacking [labeled AA, Fig. 2(b)]. These two geometries
have different symmetries, indicated by the reflection planes
(dashed lines) in Fig. 2. While AB has only one reflection
symmetry, AA has two. Here, and in the following, we refer
only to symmetries in the xy plane. The additional operation of
reflection in the z direction to interchange the top and bottom
ribbon is physically not important and therefore implicit.

In the case of AGNRs there are two different AA-stacked
configurations [labeled AA-1 and AA-2, Figs. 2(c) and 2(d)],
as well as two different AB-stacked configurations [labeled
AB-1 and AB-2, Figs. 2(e) and 2(f)]. For instance, starting
from AA-1, one can obtain AA-2 by translating the upper
(red) ribbon by −√

3aŷ with respect to the lower one. Simi-
larly, AB-1 (AB-2) can be obtained from AA-1 by translating
the upper (red) ribbon by +ax̂ (−ax̂) with respect to the lower
one. Again, these four generic configurations have different
symmetries as indicated in Figs. 2(c)–2(f).

035436-3



SOFIA SANZ et al. PHYSICAL REVIEW B 102, 035436 (2020)

FIG. 2. Geometries of the different stackings that can be con-
structed from the crossing of two GNRs with a relative angle of
60◦. The bottom (top) ribbon is drawn in blue (red) with carbon
atoms at each vertex. For ZGNR-based devices there exists only
one AA- and one AB-stacked configuration, labeled (a) AB and
(b) AA (exemplified here by 8-ZGNR). For AGNR-based devices
there exist two AA- and two AB-stacked configurations, labeled
(c) AA-1, (d) AA-2, (e) AB-1, and (f) AB-2 (exemplified here by
11-AGNR). The dashed lines show the symmetry (reflection) planes
that preserve the Hamiltonian of each crossing when such operation
is applied to them.

The reflection planes imply that there are operations which
leave the scattering potential (created by the intersection of
the two ribbons) unchanged. This is, if we apply one or
more reflections across the indicated axes, the Hamiltonian of
the new device does not change. Consequently, the Green’s
function, and all the transport properties derived from it,
will also remain unchanged under some particular electrode
permutations.

Let us begin by discussing the properties of these six
different configurations with particular examples constructed
from 8-ZGNRs and 11-AGNRs. In Fig. 3 we show the spectral
DOS of scattering electrons that come in from electrode α = 1
as obtained from Eq. (9) for each configuration at specific
energies. In this real-space representation it is easy to see
where the scattered electron wave propagates after being in-
jected into the device. The large DOS that appears in the input
electrode region does not correspond to the backscattered
electrons, but rather to the DOS of the incoming electrons (as
we will show later on). This is also illustrated in Fig. S2 [62],

(a) (b)

(c) (d)

(e) (f)

ZGNR
AB

ZGNR
AA

AGNR
AA-1

AGNR
AA-2

AGNR
AB-1

AGNR
AB-2

1 2

3

4

FIG. 3. Spectral DOS of scattering electrons incoming from
electrode α = 1 obtained from Eq. (9), for the specific geometries
defined in Fig. 2: (a) 8-ZGNR AB, (b) 8-ZGNR AA, (c) 11-AGNR
AA-1, (d) 11-AGNR AA-2, (e) 11-AGNR AB-1, and (f) 11-AGNR
AB-2. The spectral DOS were calculated at E = 200 meV for
ZGNRs and at E = 0 meV for AGNRs.

where we complement the results shown in Fig. 3 by plotting
the bond currents between nearest-neighbor atoms, where the
arrows indicate the direction of the flowing electrons.

For the ZGNR devices, Figs. 3(a) and 3(b) and Figs. S2(a)
and S2(b) show that an electron injected from α = 1 in both
cases only escapes from the scattering center into electrodes
β = 2, 3, i.e., terminals 1 and 4 are suppressed. This lack of
backscattering (and preferential scattering into only one of the
two arms of the other ribbon) is a very general and robust fea-
ture for ZGNRs which holds for different widths, stackings,
and energies, and it is instrumental for the applications we
have in mind. An explanation, supported by continuum-model
calculations [66,67], is the valley (chirality) preservation in
low-energy bands of ZGNRs. For the two AA-stacked AGNR
devices, Figs. 3(c) and 3(d) and Figs. S2(c) and S2(d) show
that the outgoing terminals β = 1 and β = 3 (β = 4) for
AA-1 (AA-2) are suppressed. These two cases are interesting
since their relative displacement of only

√
3aŷ leads to very

different electron transport: For AA-1 the split electron turns
by 60◦, while for AA-2 the bend is 120◦. Unlike for ZGNR
devices, the suppression of two terminals is not general for
all AGNR widths, and rather depends on the AGNR family, as
shown in Figs. S5–S16 [62]. In the case of the two AB-stacked
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ribbons, Figs. 3(e) and 3(f) show that an electron wave in
these devices is scattered qualitatively (yet not quantitatively)
similarly and into all outgoing electrodes.

B. Symmetry considerations

Since we deal with four-terminal devices, the matrix of
transmission and reflection probabilities, Eqs. (6) and (8), has
the general form

T =

⎛
⎜⎜⎜⎝

R1 T12 T13 T14

T21 R2 T23 T24

T31 T32 R3 T34

T41 T42 T43 R4

⎞
⎟⎟⎟⎠. (10)

However, due to symmetries there are not 16 independent
quantities in this matrix. First, in the absence of a magnetic
field, time reversal symmetry forces Tαβ = Tβα . This reduces
the matrix to ten independent elements, e.g., those with-
out the dark gray background (α > β) in Eq. (10). Second,
the symmetries indicated in Fig. 2 reduce the number of
independent elements of the matrix further. The reflection
plane y = sin(−60◦)x maps the electrode labels (1, 2, 3, 4) ↔
(4, 3, 2, 1) with unchanged transmissions, e.g., which allows
us to consider R3, R4, T24, and T34 as dependent variables [four
of the light gray elements in Eq. (10)]. Similarly, the reflection
plane y = sin(30◦)x implies (1, 2, 3, 4) ↔ (3, 4, 1, 2) and R3,
R4, T23, and T34 as possible dependent variables (four of
the light gray elements). The combination of both reflection
planes further implies (1, 2, 3, 4) ↔ (2, 1, 4, 3) and R2 and
T23 as further dependent variables (i.e., all gray elements in
this case). In summary, depending on the number of symme-
tries, the transmission probabilities of any given device will
be fully characterized by either four, six, or ten independent
matrix elements.

Figure 4 shows the full, energy-resolved transmission ma-
trix [Eq. (10)] obtained numerically for devices formed of
two crossed ZGNRs in the AB configuration for a range
of different ribbon widths W. As ZGNR AB displays only
one reflection plane, the transmission probabilities for these
systems are, in principle, characterized by six independent
quantities. However, qualitatively only four independent ones
are readily identified in Fig. 4. Only upon close inspection of
the data do all the expected differences emerge. The reason
for the seemingly higher symmetry (corresponding to two re-
flection planes) is the fact that the scattering potential created
by the crossings between the GNRs depends exponentially
on the atomic distances between the GNRs, and therefore is
dominated by the closest atom pairs. These atom pairs, shown
in Fig. S3(a) [62], are in fact symmetric with respect to both
reflection planes.

More generally, for all the configurations in Fig. 2 we find
that the scattering potentials are dominated by terms with
at least one reflection plane (Fig. S3). For all practical pur-
poses, the effective symmetry appears higher and it suffices to
describe the transmission probabilities with only four or six
independent quantities.

In the following we will thus only consider it sufficient to
discuss electrons incoming from terminal α = 1. However, for
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FIG. 4. Full transmission probability matrix Tαβ between all the
electrode pairs for ZGNRs crossed in the AB configuration as a
function of the ribbon width W and electron energy E . Only data
for the first subband are shown (white regions correspond to multiple
electronic bands in the ribbons).

completeness we show the full transmission matrices for all
the considered systems in Figs. S4–S16 [62].

C. Beam splitters and mirrors

Looking again at Fig. 4 and focusing on the first row
(electron beam injected from terminal α = 1), we observe
distinct regimes where the devices would present particular
electron quantum optical characteristics. We are especially
interested in geometries for which the transmission matrix
allows us to designate two input and two output electrodes
in the sense that any electron sent in through one of the input
ports is scattered predominantly into the two output ports with
very little reflection or transmission into the other input. For
instance, the green areas in the plots show where the device
behaves as a BS, since they show that the electron beam is
scattered only into two out of the four possible arms with a
transmission probability that lies around T12 ∼ T13 ∼ 0.5. One
can also identify regimes in which the device can work as a M
where T13 ∼ 1. This situation corresponds to the red areas in
Fig. 4, since the electron would enter from terminal α = 1
and turn 120◦ to go out exclusively into terminal β = 3 with
low reflection. The energy dependence of the transmission
functions is very symmetric with respect to the Fermi level, re-
flecting the approximate particle-hole symmetry characteristic
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of a half-filled bipartite lattice. Nevertheless, the presence of
next-nearest-neighbor couplings in our TB model in principle
breaks this symmetry.

On one hand, we note that for energies close to the Fermi
level (|E − EF | < 0.07 eV) in Fig. 4, the electron is scattered
into all four output ports, which makes this small energy
window not very interesting for electron quantum optical pur-
poses. These features probably arise due to the hybridization
of states from the flat bands of the individual ribbons in the
overlapping area. The band structures for both monolayer and
bilayer ZGNRs are shown in Fig. S17 [62]. On the other hand,
we note here that outside the low-energy region (where there
is more than one electronic band) we find for all systems
that reflection and interband scattering play a larger role in
the electron transport through these devices, as the number of
open channels (modes) grows with energy. In other words, it
was not possible to identify conditions for realizing BS or M
at energies with multiple subbands in the GNRs. Therefore
the following discussion is focused on the energy window
corresponding to a single (conduction or valence) band, since
the most interesting physics related to the electron quantum
optical features were identified here.

D. Quality of the realized mirrors and beam splitters

To obtain a qualitative picture across all the possible sys-
tems of the most suitable candidates for BSs or Ms, we con-
struct in the following a figure of merit (FM). On the one hand,
we look for candidate systems where a significant part of the
scattered electron wave can be transferred to the other ribbon,
i.e., that T13 or T14 is large. We encode this property in the
quantity τ ≡ max(T13, T14). On the other hand, for a suitable
BS or M it is important that the reflection and transmission to
a third electrode should be small. This property is encoded as
a “loss” function λ ≡ R1 + min(T12, T13, T14).

Our FM is then defined as

FM = e−20λ tanh

[
1

20

(
1

|τ − 1| − 1

|τ − 1/2|
)]

. (11)

We use a linear color scale where BSs (FM = −1) appear
as black, M’s (FM = 1) as red, and uninteresting systems
(FM = 0) as white. We set FM equal to zero whenever there
is more than one band per GNR at the energy considered (as
it happens, e.g., for large values of |E − EF |). In that case the
sum of all transmission probabilities is equal to the number
of bands and thus larger than 1. This case is not useful for
the devices we have in mind, though a more careful analysis
may show how to also use the systems in this energy range.
In other words, λ determines the intensity of the plots while
τ sets the color. The FM is chosen to be highly selective:
It decays to about 1/2 of the maximum value for losses
(=transmission probability into the undesired output ports) of
about 3%. Similarly, the FM of a loss-free, but unbalanced,
BS is reduced to FM = −1/2 at an imbalance of about 57:43.
Figures 5 and 6 show the FM for ZGNRs and AGNRs from the
metallic 3p + 2 family, respectively, as a function of electron
energy and ribbon width W . Overall, these figures show that
the most interesting systems are those composed by ZGNRs
or AA-stacked AGNRs. For both types of GNRs one can
find devices that behave as BS or as M, respectively. For
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FIG. 5. Figure of merit (FM) for systems composed of ZGNRs in
(a) AB or (b) AA configurations. Black and red regions correspond to
situations where a given device is suitable as a BS or M, respectively.
White regions are unsuitable as BS or M because of large transmis-
sion into the other but the desired output ports.

instance, Fig. 5 reflects that the 8-ZGNR devices shown in
Figs. 2(a) and 2(b) are good candidates for BS, consistent with
the qualitative picture of Figs. 3(a), 3(b) and 4.

For both AA and AB ZGNR devices the transmitted
electron wave to the other ribbon is always bent 120◦ into
electrode 3 (see also the full transmission matrices in Figs. 5
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FIG. 6. Figure of merit (FM) for systems composed of AGNRs
of the 3p + 2 family with (a) AA-1, (b) AA-2, (c) AB-1, and (d) AB-
2 configurations. Black and red regions correspond to situations
where a given device is suitable as a BS or M, respectively. White
regions are unsuitable as BS or M because of large transmission into
the other but the desired output ports.
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and S4 [62]). To obtain a M, where an electron incoming from
electrode 1 is almost entirely transferred to electrode 3, one
should choose wider ZGNRs.

For the AGNRs the situation is a little more complex.
As discussed in Fig. 2, it is possible to form four different
stackings (AA-1, AA-2, AB-1, and AB-2). Further, the band
gap of AGNRs is determined by the overall ribbon width
W , which classifies them into three distinct families 3p,
3p + 1, or 3p + 2 for integer p [24,25,27,28]. This leaves us
with 12 different situations, considered in terms of the full
transmission matrices in Figs. S5–S16 [62]. We find that the
most interesting devices are those built with (3p + 2)-AGNRs
in the AA-stacked configurations. However, compared with
the ZGNRs, the parameter space for desirable devices is more
restricted and the losses are generally larger. Independent of
width, the AB-stacked configurations lead to scattering of the
electron wave into all terminals.

We also note here that the qualitative difference mentioned
in Sec. III A between the 60◦ turn of the transferred electron
wave for AA-1 configuration versus the 120◦ turn for AA-
2 is a robust feature across the different families (Figs. S5–
S16 [62]). Additionally, we also find very thin white regions
that do not correspond to high losses but to T12 ∼ 1, immersed
in red—e.g., seen for W = 10–15 in Fig. 5(b) and for W > 20
in Fig. 6(b). This suggests that crossed GNRs can also work
as energy filters. These T12 (T13) peaks (dips), also plotted in
Fig. S18 for clarification, become narrower as the width of the
ribbons grows, which enhances the energy selection.

E. Robustness of the discussed properties

So far we have discussed the different transport properties
that can be found in the ideal case, that is commensurate
GNRs (AA or AB stacking) with a relative angle of θ = 60◦.
However, precise control of the device geometry is likely a
significant experimental challenge. In this section we there-
fore proceed to test the robustness of the transport proper-
ties against some perturbations of this ideal situation. More
specifically, we explore now the exact roles of the intersection
angle, deviations from the idealized stacking pattern, lattice
deformations via uniaxial strain, variation of the inter-GNR
separation, and electrostatic potential differences between the
two ribbons.

Since we concluded above that ZGNR devices may be the
best candidates for building electron quantum optical setups,
we will focus the following discussion around them. We take
as the reference device the crossing of two AB-stacked 8-
ZGNRs [Fig. 2(a)] and compute the transmission probabil-
ities from terminals α = 1 to β = 1, 2, 3, 4 for each of the
above-mentioned perturbations. The AA-stacked 8-ZGNRs
were found to display qualitatively similar trends as can be
seen from Figs. S19–S23 [62]. We will see that the low-loss
property of these devices is thus preserved for the applied
variations and in some cases the FM is even significantly
enhanced, indicating that almost perfect BS or M could be
obtained by tuning the above-mentioned parameters.

1. Intersection angle

We first discuss the effect of small rotations of the
on-top ribbon starting from the ideal configuration where
θ = 60◦. For instance, the twisting angle between the ribbons

introduces separated domains of weakly and strongly coupled
atoms in the crossing area that might affect the transport
properties of these junctions [68]. To isolate the effect of the
intersection angle from that of the precise stacking pattern
(translation), we apply the rotation around the center of the
scattering region (crossing) indicated with a black dot in
Fig. 7(a). This ensures that the center of the junction remains
unchanged and the effect of the rotation angle perturbs mostly
the edge zones of the crossing.

Figure 8 shows the reflection and transmission probabili-
ties for varying angles δθ = ±2◦. The results for the reference
case of θ = 60◦ are shown as black lines in all panels. We
first note that the reflection probability R1 does not vary much
from its initial value ∼0. The same holds for the (unwanted)
transmission T14. The main effect is the precise distribution
between the transmissions T12 and T13.

This shows that the angle can be a physical knob to tune
the transmission ratio between the two outgoing terminals
of a BS. On the other hand, the approximate particle-hole
symmetry found for the ideal AB or AA stacking goes away
as the lattice mismatch grows. The reflection plane shown
in Fig. 2(a) is also lost for δθ �= 0 (and other geometrical
distortions), however, we still identify only four qualitative
independent elements in T for all cases.

2. Lateral translations

To study the precise lattice matching in the crossing area,
we performed a series of calculations where the top GNR is
translated by x along the x axis with respect to the bottom
GNR [see Fig. 7(b)]. Due to periodicity it is sufficient to con-
sider translation vectors with modulus x � 2a sin(60◦) ≈
2.46 Å.

Figure 9 shows the reflection and transmission probabil-
ities as a function of such translations. Again, the results
for the ideal AB stacking are shown as black lines. As
for small variations in the intersection angle, even though
this geometrical distortion also intensifies the particle-hole
asymmetry as the system goes away from the ideal stacking,
R1 and T14 remain rather unaffected by translation. In other
words, the low-loss situation of these devices is robust with
respect to translations. On the other hand, the inter-ribbon
transfer process of electrons becomes mostly less effective.
We interpret this as due to an overall elongation of interlayer
atom distances. For this reason T13 slightly decreases with the
translating of the on-top ribbon, while T12 slightly increases
with respect to the reference curves (black lines) for most of
the cases.

3. Uniaxial strain

For experimentally grown GNRs it is relevant to consider
the strain-induced deformations, e.g., a lattice mismatch with
the supporting substrate [69]. But strain can also be applied
in a controlled way [70], for example, using a piezoelectric
substrate for shrinking or elongating samples by applying a
bias voltage [71]. In these directions we study here a simpli-
fied scenario of applying the same uniaxial strain ε to both
GNRs in the device as defined in Fig. 7(c). As explained in the
case of variation of the intersecting angle, to isolate the effect
of strain on the transport properties of the device, we apply
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δθ Δx

ε
(a) (b) (c)

FIG. 7. Sketch of the geometrical distortions applied to the AB-stacked 8-ZGNR device. (a) Rotation by some small angle δθ around the
configuration with a relative angle of θ = 60◦. The rotation is performed around the center of the scattering region, indicated by a black dot.
(b) Translation of the on-top ribbon with respect to the lower one by an amount x along the x axis. (c) Strain ε is applied along the periodic
direction of each ribbon while keeping the center of the scattering (black dot) region unchanged.

the strain with respect to the center of the crossing area [as
depicted in Fig. 7(c)]. Otherwise arbitrary lattice mismatches
could further modify the transmission curves. The main effect
of uniaxial strain is that it induces an anisotropy between
the atomic bonds and therefore in the electronic structure
of the individual GNRs. Additionally, a strain induces some
mismatch of the lattices in the crossing region, and therefore
changes the scattering potential. The transport properties of
the devices are therefore expected to be sensitive to strain.
Figure 10 explores uniaxial strain in the range from −1%
(compression) to 1% (stretching). Again, both R1 and T14 are
not affected by the lattice deformation, and remain very close
to zero in the single-channel energy region.

Looking at the intra- and inter-transmissions T12 and T13,
the curves vary smoothly around the reference values (black
lines). The effects of compression and stretching of the GNRs
are quite different: GNR compression causes T12 (T13) to
increase (decrease), while stretching has the opposite effect.
Again, strain can be seen as a physical knob to engineer the
device properties. For instance, a strain of ε ∼ 1% brings
the system closer to the ideal BS with T12 = T13 = 50%,
while keeping both R1 ∼ T14 ∼ 0. In fact, our FM graph of
Fig. 10(e) shows a significant enhancement of the perfor-
mance of the device as a BS when stretching the device.

4. Interlayer separation

The exponential distance dependence of electron transport
in the tunneling regime suggests that the separation between
ribbons may considerably affect the transport properties. Fig-
ure 11 shows the reflection and transmission probabilities as
a function of the GNR separation d within an interval deter-
mined by ±0.15 Å around a typical van der Waals distance
d = 3.34 Å [43,72,73] (black lines in all panels). Apart from
the flat-band energy region very close to E = EF , the loss
channels characterized by R1 and T14 are largely unaffected.

The main effect of varying d is to control the ratio between
the intra- and intertransmissions T12 and T13, which varies
smoothly to almost 0:1 as the ribbon separation d is decreased.
In the other direction, the ratio goes (unsurprisingly) to 1:0
as the ribbon separation is increased and therefore eventually
become decoupled.

The strong variation with the inter-GNR separation sug-
gests that this is a key parameter to tune the transport proper-
ties. An ideal 50:50 BS may thus be obtained by applying an
external force to the junction for d ∼ 3.30 Å, while a perfect
M is found for d < 3.20 Å, as seen in Fig. 11(e), where the
plateaus at FM = 1 show this behavior. The possibility to
use such electromechanical switching has been also proposed
to be used for suspended multilayer graphene [74], crossed
AGNRs [43], and crossed carbon nanotubes [75].

5. Electrostatic potential differences

Here, we discuss the effect of an electrostatic potential
difference between the two ribbons. This could, for instance,
correspond to an experimental situation where a bias voltage
is applied to the GNR electrodes. We consider a potential
difference V that modifies uniformly the on-site energies to
εi − EF = −V/2 (and consequently the chemical potentials of
the electrodes) of the top (red) ribbon and εi − EF = V/2 of
the bottom (blue) ribbon (see Fig. 1).

Figure 12 shows the reflection and transmission probabil-
ities for the range |V | � 0.5 V. Drastic changes are observed
in the energy range between the electrode chemical potentials
[−V/2,V/2], where valence bands (VBs) and conduction
bands (CBs) of the two GNRs now overlap. In fact, the mixing
of VBs and CBs leads to an interchange of the propagation
direction: A transferred electron in the bias window turns 60◦
instead of 120◦. In fact, our FM [Fig. 12(e)] shows that the
performance of the device is enhanced in the energy win-
dow |E − EF | � V/2, compared to the unbiased case (black
curve). In contrast, the single-channel energy region slightly
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FIG. 8. Variation with respect to the rotation angle between two
AB-stacked 8-ZGNRs. Reflection and transmission probabilities,
(a) R1 (b) T12, (c) T13, and (d) T14, and (e) figure of merit as
a function of the incoming electron energy E − EF , obtained for
different relative angles (θ ) between the ribbons (color lines). The
reference probabilities (θ = 60◦) are plotted in black solid lines.

shrinks, as the chemical potential shifting produces the edge
of the single-mode part of the CB (VB) of the bottom (top)
ribbon to overlap with more than one mode in the top (bottom)
ribbon. The presence of multiple bands in any of the incoming
or outgoing electrodes is responsible for the larger reflection
and transmission into the other output, e.g., as it happens for
energies |E − EF | > 1.0 eV in Figs. 12(a) and 12(d).

Outside the bias window the curves are hardly changed,
reflecting a low variability of the transport properties even
when the elastically transferred electron wave to the other
ribbon is now propagating with a different momentum due to
the energy offsets of their band structures.

IV. CONCLUSIONS AND OUTLOOK

In this paper we studied the electronic transport properties
of four-terminal devices formed by two intersecting GNRs
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FIG. 9. Variation with respect to the relative lateral displacement
between two AB-stacked 8-ZGNRs. Reflection and transmission
probabilities, (a) R1 (b) T12, (c) T13, and (d) T14, and (e) figure of
merit as a function of electron energy E − EF , obtained for different
translation distances along the x axis (x) of the on-top ribbon (color
lines). The reference probabilities (x = 0) are plotted in black solid
lines.

with a nominal crossing angle of θ = 60◦. We presented a
complete classification and characterization of the different
functionalities that can be found in these type of junctions by
varying the edge topology of the GNRs (zigzag or armchair),
stacking sequence (AA or AB), width of the ribbons, and en-
ergy for the propagating electrons in the valence or conduction
bands.

We determined the number of independent transmission
probability matrix elements in Eq. (10) that fully characterize
their transport behavior: 10, 6, or 4 depending on the de-
gree of symmetry that a given device displays. In practice,
however, we found that for low-energy electrons it suffices
qualitatively to describe the transmission probabilities with
only four independent elements. The reason for this is the
fact that the dominant part of the scattering potential contains
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FIG. 10. Variation with respect to the applied uniaxial strain ε

along the periodic direction of each GNR for the two AB-stacked
8-ZGNRs. Reflection and transmission probabilities, (a) R1 (b) T12,
(c) T13, and (d) T14, and (e) figure of merit as a function of electron en-
ergy E − EF , obtained for different uniaxial strain ε applied to both
GNRs along the nonconfined direction (color lines). The reference
probabilities (ε = 0) are plotted in black solid lines.

more symmetries than that of the device geometry as a whole.
Implicitly, this result also means that the strict geometrical
symmetry behind the systems is not critical for the GNR
crossings to function as beam splitters.

Besides the BS property, we also identified other interest-
ing electron quantum optical functionalities of these devices.
For instance, depending on the GNR width and electron
energy the device can also behave as a mirror or an energy
filter.

Interestingly, for AA-stacked AGNRs we discovered that
there exist two different configurations (AA-1 and AA-2) that
show little geometrical difference but behave very differently
from each other in terms of the electron transport for low-
energy electrons. In the particular case of 3p + 2-AGNR
crossings, the electron beam is only allowed to turn 60◦ for
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FIG. 11. Variation with respect to the inter-GNR separation of
two AB-stacked 8-ZGNRs. Reflection and transmission probabili-
ties, (a) R1 (b) T12, (c) T13, and (d) T14, and (e) figure of merit as
a function of electron energy E − EF and inter-GNR separation d
(color lines). The reference probabilities (d = 3.34 Å) are plotted in
black solid lines.

the AA-1 configuration, as opposed to 120◦ for the AA-2
configuration. On the other hand, AB-stacked AGNR devices
do not show good electron quantum optical features due to the
comparatively larger losses and low inter-GNR transmission.
Unfortunately, AA-stacked configurations are probably harder
to realize in practice (not the most stable energetically) com-
pared to the AB-stacked one [76]. Combined with a generally
larger variability of the AGNR transport behavior, these facts
indicate that ZGNRs are more interesting objects for the
considered device applications than AGNRs.

We further tested the robustness of the predicted transport
properties by studying small variations on the intersecting
angle between the ribbons, lattice matching in the crossing
area, uniaxial strain, interlayer separation, and finite potential
differences for devices composed of 8-ZGNRs. While the
overall qualitative behavior was found to be robust under
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FIG. 12. Variation with respect to potential differences V be-
tween the two AB-stacked 8-ZGNRs. Reflection and transmission
probabilities, (a) R1 (b) T12, (c) T13, and (d) T14, and (e) figure of
merit as a function of electron energy E − EF , obtained for different
values of V (colored lines). The reference probabilities (V = 0) are
plotted in black solid lines.

these modifications, a strong quantitative response can be
obtained—indicating the need to control these effects as well
as their potential for tuning the crossed-GNR devices. On the
other hand, in this work we considered the situation of a spin-
degenerate electronic structure. However, ZGNRs have been
predicted to develop spin-polarized states localized along the
edges of the ribbons close to the Fermi level [24]. This
suggests that additional spin-dependent effects could emerge
in these devices. The interplay with the physics discussed here
could become an interesting topic for future research.

For electron quantum optics applications, the central fea-
ture of the considered devices is that they coherently distribute
incoming electrons in the intended output ports. In our model,
with a precisely given unitary scattering matrix and without
considering environmental degrees of freedom, all the consid-
ered devices process the input coherently. The analysis of the

operative decoherence processes in GNR-based devices is an
important task for future work. In particular, a single pure-
state electron injected into one arm of a BS device discussed
here is mapped to an (mode-)entangled state of the output
ports. Such entanglement could be verified experimentally,
for example, by measuring the state’s Bell correlations as
discussed in Ref. [13]. A second basic application of the BS
device is the Hanbury Brown–Twiss setup [8–11], which can
be used to study the indistinguishability of electrons prepared
in different input ports by the observation of antibunching in
the output ports of the BS. A theoretical analysis of these
experiments would include the investigation of the influence
of environmental degrees of freedom (phonons, electrons in
the substrate, or fluctuating perturbations such as the ones
discussed in Sec. III E), and, in the case of the Hanbury
Brown–Twiss setup, also the effect of the interaction between
electrons in the BS. An important prerequisite for all such
experiments are methods to inject single electrons in a well-
defined mode and to reliably detect them.

Finally, we envision that the functionalities presented here
may be interesting as fundamental building blocks in larger
electronic networks based on GNRs. For instance, with four
GNRs one could construct the electronic analog of the Mach-
Zehnder interferometer, consisting of two beam splitters and
two oriented mirrors at the intersection of pairwise parallel
ribbons. Such a versatile setup, sensitive to the relative phase
shift between two spatially separated pathways, has a wide
range of quantum technology applications, e.g., metrology,
entanglement, cryptography, and information processing [18].
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APPENDIX: COMPARISON WITH DFT CALCULATIONS

In this Appendix we compare the results presented in the
main text with DFT, another popular theoretical approach
used in the field of solid state physics. In particular, we choose
to compute the electronic structure of AB-stacked bilayer
graphene as a model system to establish suitable parameters
for the general TB Hamiltonian introduced in Sec. II. We
further simulate the electron transport characteristics of the
specific device geometries shown in Fig. 2 for detailed bench-
marking.

We employ the self-consistent DFT and NEGF methods
as implemented in the SIESTA/TRANSIESTA [55,61,77] pack-
ages. All calculations of this kind used the van der Waals
(vdW) density functional [78] with the modified exchange
by Klimeš et al. [79]. The core electrons were described
with Troullier-Martins pseudopotentials [80] and a double-ζ
basis set defined with a 30 meV energy shift was used to
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FIG. 13. Band structure of AB-stacked bilayer graphene along
the �−K−M−� path of the Brillouin zone, obtained with DFT
(black and gray solid lines) and TB methods (red dashed lines), with
the fitted hopping parameters described in the text. The bond length
is set to a = 1.42 Å and the interlayer separation to d = 3.34 Å.
Black lines correspond to the graphene π bands (formed by the pz

orbitals) while the gray lines show the graphene σ bands absent in
the TB model.

expand the valence-electron wave functions. The fineness of
the real-space integration mesh was defined using a 350 Ry
energy cutoff. All carbon atoms were saturated at the edges
with hydrogen atoms.

Figure 13 shows the calculated electronic bands along the
�−K−M−� path of the Brillouin zone of AB-stacked bilayer
graphene obtained with SIESTA [55]. Given the usage of a
double-ζ basis set, the orthogonal σ and π bands have simple
representations in terms of the {s, px, py} and {pz} basis or-
bitals, respectively. To map the DFT electronic structure onto
the effective TB model in Eqs. (2)–(5), it is thus sufficient
to consider only the pz part of the DFT Hamiltonian. Since
we are interested in the low-energy physics, we fitted the TB
bands inside an energy window of |E − EF | � 2 eV using
nonlinear least squares and obtained the following optimal
hopping parameters used in the main text: t‖ = 2.682 eV,
t ′ = 2.7 meV, and t⊥ = 0.371 eV. The corresponding TB
bands with these parameters are plotted in red dashed lines
in Fig. 13, showing a very good agreement in the energy
range of relevance in this work. Albeit unnecessary for the
purposes here, we note that the significant deviations at the π

band edges can readily be improved with a nonorthogonal TB

FIG. 14. Reflection and transmission probabilities R1 (black), T12

(blue), T13 (green), and T14 (red), obtained with both TB (solid lines)
and DFT (dotted lines) methods, through the devices of Fig. 2: two
crossed 8-ZGNRs in configuration (a) AB and (b) AA, and two
crossed 11-AGNRs in configuration (c) AA-1, (d) AA-2, (e) AB-1,
and (f) AB-2.

model by introduction of additional parameters for the overlap
matrix.

Having fixed the parameters for the TB model, we proceed
to compare it against the derived transport properties from
DFT-NEGF for the six characteristic devices shown Fig. 2.
Figure 14 shows the computed reflection and transmission
probabilities from TB (solid lines) and DFT (dotted lines)
within an energy window of |E − EF | � 1.5 eV. Apart from
different magnitudes of the AGNR band gap (known to be
related to edge effects ignored in this TB modeling [25]), the
two models only show minor numerical differences. Overall,
the two models provide very similar shapes and quantitative
results for the transmission functions. From Figs. 13 and 14
we therefore conclude that the TB method used in the main
text provides an accurate description of the essential physics
in the energy range we are interested in here.
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Junctions composed of two crossed graphene nanoribbons (GNRs) have been theoretically proposed as
electron beam splitters where incoming electron waves in one GNR can be split coherently into propagating
waves in two outgoing terminals with nearly equal amplitude and zero back-scattering. Here we scrutinize
this effect for devices composed of narrow zigzag GNRs taking explicitly into account the role of Coulomb
repulsion that leads to spin-polarized edge states within mean-field theory. We show that the beam-splitting
effect survives the opening of the well-known correlation gap and, more strikingly, that a spin-dependent
scattering potential emerges which spin polarizes the transmitted electrons in the two outputs. By studying
different ribbons and intersection angles we provide evidence that this is a general feature with edge-
polarized nanoribbons. A near-perfect polarization can be achieved by joining several junctions in series.
Our findings suggest that GNRs are interesting building blocks in spintronics and quantum technologies
with applications for interferometry and entanglement.

DOI: 10.1103/PhysRevLett.129.037701

Graphene is an exceptional material with attractive
properties to explore fundamental physics and for use in
technological applications [1]. While ideal graphene is
nonmagnetic, custom-shaped graphene nanostructures can
be designed to exhibit complex magnetic phenomenology
with promising possibilities for a new generation of nano-
scale spintronics devices [2,3]. In fact, graphene π magnet-
ism is more delocalized and isotropic than conventional
magnetism arising from d or f orbitals, which makes it
electrically accessible [4] and stable even at room temper-
ature [5]. The intrinsically weak spin orbit and hyperfine
couplings in graphene lead to long spin coherence and
relaxation times [6] as well as a long spin-diffusion length
that is expected to reach ∼10 μm even at room temperature
[7]. This makes graphene an interesting platform for
designing functionalities such as spin filters [8–11], spin
qubits [12,13], and electron quantum optics setups [14].
Graphene nanoribbons (GNRs) have emerged as par-

ticularly attractive building blocks for molecular-scale
electronic devices because they inherit some of the

exceptional properties from graphene while having tunable
electronic properties, such as the band gap dependency on
theirwidth and edge topology [8].With the advent of bottom-
up fabrication techniques, longdefect-free samples of narrow
GNRs can now be chemically produced via on-surface
synthesis as demonstrated in the seminal works for armchair
[15] and zigzag (ZGNR) [16] ribbons. Furthermore, manipu-
lation of GNRs with scanning tunneling probes [17,18]
opens the possibility to build two-dimensional multiterminal
graphene-based electronic circuits [19], where their spin
properties can be addressed by using spin-polarized tips [20]
and probed by shot noise measurements [21].
Indeed, electron transport in GNR networks has been

theoretically explored with the Landauer-Büttiker formal-
ism [22] for a rich variety of multiterminal device con-
figurations [23–26]. Most recently, crossed GNR junctions
have been proposed as electron beam splitters for electron
quantum optics [27–29]. In these works it was found that
by placing one GNR on top of another with a relative angle
of 60° the electron transfer process between the ribbons is
strongly enhanced. This enables one to split incoming low-
energy electron waves between two outgoing ports with a
tunable ratio and negligible reflection probability, an effect
with roots in valley (chirality) preservation in the low-
energy bands of ZGNRs [30,31]. However, since ZGNRs
develop spin-polarized edge states, as theoretically [32] and
experimentally [5,33] demonstrated, one may expect that

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 129, 037701 (2022)

0031-9007=22=129(3)=037701(7) 037701-1 Published by the American Physical Society



Coulomb repulsion could give rise to additional interesting
features for the charge and spin transport in crossed
ZGNRs. For instance, it has been shown that the intro-
duction of one rough zigzag edge can be used to boost spin
injection [34].
In this Letter, we analyze the electronic structure and

quantum transport properties of junctions composed of two
infinite ZGNRs crossed with a relative angle of 60° using the
mean-field Hubbard (MFH) model in combination with
nonequilibrium Green’s functions (NEGF) to describe the
open quantum systems [35]. We show how the Coulomb
repulsion opens a transport band gap and generates a spin-
dependent scattering potential in the junction, which enables
the devices to be operated as a spin-polarizing beam splitter.
For a transparent analysis and efficient numerics we use

the Hubbard Hamiltonian [36] within the mean-field
approximation, well suited to describe sp2 carbon systems
[2], for both semi-infinite electrodes and device region as
shown in Fig. 1, i.e.,

HMFH ¼
X

ij;σ

tijc
†
iσcjσ þ U

X

i;σ

niσhniσ̄i: ð1Þ

Here ciσ is the annihilation operator of an electron at site i
with spin σ ¼ f↑;↓g and niσ ¼ c†iσciσ the corresponding
number operator. The matrix element tij is computed by a
two-center integral based on a Slater-Koster parametriza-
tion as explained in Ref. [29], and U accounts for the
Coulomb interaction between two electrons occupying
the same pz orbital. We fix U ¼ 3 eV which is in the
typical range that yields a good agreement with ab initio
calculations [2,9,11,37,38]. The open system described
by Eq. (1) is solved self-consistently using the NEGF
method [35,39,40] as detailed in the Supplemental
Material [41]. The corresponding many-electron state
thus takes the form of a single Slater determinant of
the occupied single-particle states from the MFH-NEGF
equations.

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 1. Transport setup and spin-dependent properties for AB-stacked 8-ZGNR devices. (a),(b) Two different self-consistent solutions
for the spin-density distribution in the device region, labeled ↑↓ and ↑↑ , respectively, defined by the spin orientation of the lower edge
of each GNR. The up (down) spin density is shown in red (blue). The lower, horizontal ribbon is plotted in black, while the upper,
intersecting at an angle of 60°, is depicted in gray. Electrodes 1–4 are indicated. The ribbons are separated by a distance d ¼ 3.34 Å
along the z axis, as displayed in the side view [lower part of (b)]. The dashed lines in each configuration indicate a symmetry axis that
maps the device geometry to itself through mirror operations, where the red (black) color of the axis further indicates that the spin index
is inverted (conserved) by the symmetry operation. (c),(d) Spin-resolved density of states of scattering states incoming from electrode 1
for the ↑↓ and ↑↑ spin configuration, respectively, computed at E − EF ¼ 0.5 eV. The dominant spin on each site at this energy is
shown in red for up spins and in blue for down spins. (e),(f) Sketch of incoming and outgoing waves through the scattering center
(represented by the circled cross) and the corresponding transmission probabilities from calculations.
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Figure 1(a) shows the device structure for two AB-stacked
ZGNRs, each with a width of 8 carbon atoms (8-ZGNRs). In
principle, away from the crossing (but within the spin
correlation length), each of the four electrodes can be imposed
one of the two possible symmetry-broken spin configurations
at the edges, leading to 24=2 ¼ 8 unique boundary conditions
for the device region. The self-consistent solutions to this
problem are shown in Figs. S6 and S7 of the Supplemental
Material [41] forAB- andAA-stacked junctions, respectively,
along with the electronic energy differences. The spin
configurations for the two lowest-energy states with AB
stacking are shown in Figs. 1(a) and 1(b). In the followingwe
label these as ↑↓ and ↑↑ , where the first (second) arrow
refers to the spin orientation of the lower edge of the
horizontal (inclined) GNR. Although the electronic energy
of ↑↑ is found to be 82 meV above that of ↑↓ with AB-
stacking, it is interesting to consider both configurations as
this (constant) energy penalty may be compensated by a
(length-dependent) energy preference for a certain polariza-
tion on the extended GNRs through interactions with their
environment.
The spin- and energy-resolved transmission probability

between any pair of electrodes can be computed from
Tσ
αβ ¼ Tr½GσΓασG

†
σΓβσ�, where Gσ is the device Green’s

function and Γασ ¼ iðΣασ − Σ†
ασÞ the broadening matrix

related to the self-energy Σασ from electrode α and for spin
orientation σ [22,39]. Similarly, the site-resolved density of
scattering states can be computed as Aασ ¼ GσΓασG

†
σ.

Figures 1(c) and 1(d) show the spatial distribution of the
scattering states incoming from electrode 1 in the con-
duction band. At each lattice site the disk size is propor-
tional to the density of states (summed over spin) while its
color indicates the local majority spin. The electron energy
is chosen at E ¼ 0.5 eV above the Fermi energy EF ¼ 0,
i.e., slightly away from the window with edge states.
This implies mode propagation involving only a single
GNR subband (Supplemental Material, Figs. S3 and S4
[41] ), as well as robustness against edge disorder [49].
Figures 1(c) and 1(d) also illustrate how the transmitted
wave—for both spin configurations ↑↓ and ↑↑—is split
into electrodes 2 and 3 with negligible reflection and
amplitude in electrode 4, as expected for the beam splitter.
Conceptually, this is expressed with the representation in
Figs. 1(e) and 1(f), along with the computed transmission
probabilities.
Remarkably, ↑↓ and ↑↑ differ substantially when one

considers the spin-resolved transmissions.Whereas ↑↓ does
not polarize the current, since the transmission probabilities
for both spin channels are equal, the ↑↑ configuration leads

to a ratio of T↓
12=T

↑
12 ¼ 0.4, i.e., a spin-filtering effect.

For further quantitative analysis, Fig. 2 reports the spin-
and energy-resolved transmission and reflection probabil-
ities for an electron injected from terminal 1 into the ↑↓

[Figs. 2(a)–2(d)] and ↑↑ [Figs. 2(e)–2(h)] configurations.
For comparison, each panel includes the corresponding
results for the unpolarized device (U ¼ 0, dashed gray
lines) reported previously [29]. The introduction of
Coulomb repulsion has two direct consequences: (i) it
opens a transport gap near zero energy due to polarization
of the edge bands, and (ii) it shifts the states at the Brillouin
zone boundary (Figs. S3 and S4 of the Supplemental
Material [41]) resulting in the formation of two transverse
modes at very low energy. While the beam-splitting effect
in the two-mode energy range is hampered by substantial
scattering and reflection [Figs. 2(d) and 2(h)], it is com-
pletely restored in the energy range with only a single
mode, i.e., 0.4 eV < jEj < 1.3 eV, a condition already
identified for unpolarized devices [29]. In fact, the trans-
mission properties for ↑↓ coincide there with those of the
unpolarized device [Figs. 2(a)–2(d)]. On the other hand, for
the ↑↑ configuration the probabilities T12 and T13 show a
strong spin splitting [Figs. 2(e)–2(h)], revealing that the
spin-filtering effect emphasized in Figs. 1(d) and 1(f) exists
for the whole band.

(a) (e)

(b) (f)

(c) (g)

(d) (h)

FIG. 2. Spin- and energy-resolved transmission probabilities
T12, T13, T14 and reflection R1 for (a)–(d) the ↑↓ and (e)–(h) ↑↑
configurations of Fig. 1. Electrons are injected from electrode 1.
The red (blue) curves correspond to the up (down) spin
components with U ¼ 3 eV. For comparison, the corresponding
calculations for the unpolarized case (U ¼ 0) are indicated by
dashed gray lines.
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This qualitative difference between ↑↓ and ↑↑ can
be understood by considering the different symmetries
that apply to these two configurations. Geometrically,
the considered AB-stacked structure possesses one mir-
ror-symmetry plane as shown by the dashed lines in
Figs. 1(a) and 1(b) [29]. The difference emerges when
one considers symmetry lowering by the spin polarization:
For ↑↓ the spin index maps into the opposite through the
mirror operation (red axis) while for ↑↑ the spin index is
conserved. More specifically for ↑↓ , these spatial sym-
metries impose constraints in the transmission probabilities
between the spin channels, e.g., that Tσ

12 ¼ T σ̄
43, T

σ
13 ¼ T σ̄

42,
etc. Further, considering probability conservation for
injection from electrodes 1 or 2, one has the relations
Tσ
12 þ Tσ

13 ¼ T σ̄
21 þ T σ̄

24 ¼ 1 (valid when Rσ
1 ¼ Tσ

14 ¼
Rσ̄
2 ¼ T σ̄

23 ¼ 0). Together with time-reversal symmetry
(Tσ

ij ¼ Tσ
ji) it follows that Tσ

12 ¼ T σ̄
12 in the case of

↑↓ , i.e., that the transmissions are spin independent.
For ↑↑ no such condition applies, and the spin channels
are decoupled and the transmission probabilities may
be very different. Indeed, this is directly seen in our
calculations.
If we consider junction imperfections the aforemen-

tioned symmetry constraint would be absent and the
spin-polarizing effect no longer symmetry forbidden. To
examine the relationship between geometry and transport

properties we use as a measure the spin polarization in the
transmission between a pair of electrodes:

Pαβ ¼
T↑
αβ − T↓

αβ

T↑
αβ þ T↓

αβ

: ð2Þ

Figure 3 shows P12 at E ¼ 0.5 eV as a function of in plane
translations of one ribbon with respect to the other for both
↑↓ and ↑↑ configurations. The AB- and AA-stacked
geometries are indicated with symbols in the density plots.
Evidently, away from these high-symmetry situations the
spin-polarizing effect is generally present. The same con-
clusion holds true also for a range of twist angles
(Supplemental Material, Sec. S11 [41]).
At this point it should be noted that it may be difficult to

prepare the device in one specific spin configuration, such
as the low-energy states ↑↓ and ↑↑ discussed up to now.
For instance, it is not possible to tune which one is the

FIG. 3. Spin polarization P12 of the current from electrode
1 to 2 as a function of in plane translations of one ribbon with
respect to the other for (a) ↑↓ and (b) ↑↑ configurations
introduced in Fig. 1. The electron energy is in the conduction
band at E ¼ 0.5 eV. The in plane unit cell (dashed lines) has
lattice vectors a1 and a2, where a0 ¼ 2.46 Å is the graphene
lattice constant. The red crosses (green disks) indicate the high-
symmetry configurations with AB (AA) stacking.

(a)

(b)

FIG. 4. (a) Sketch of an array of three consecutive AB-stacked
8-ZGNR crossings to enhance the spin-polarized current at the
output electrode 2. (b) Spin polarization P12ðNÞ (filled symbols)

and majority-spin transmission Tmaj
12 ðNÞ (open symbols) as a

function of the number of crossings N between terminals 1 and 2
in the conduction band at E ¼ 0.5 eV. Two different scenarios
are considered: an ideal arrangement of identical ↑↑ AB cross-
ings (blue circles) as well as a random sampling (orange squares)
over 107 different spin, intersection angle (within 55–65°), and
translation configurations drawn from the data in the Supple-
mental Material, Sec. S11 [41], assuming equal weights. The
average polarization hjP12ðNÞji follows an analytic expression
(black line, Supplemental Material, Sec. S12 [41]) approaching 1
exponentially in

ffiffiffiffi
N

p
. The gray lines indicate the best (1st, 5th,

10th, 25th, 50th) percentiles of the random distribution.

PHYSICAL REVIEW LETTERS 129, 037701 (2022)

037701-4



energetically lower (and thus at low temperatures thermally
stable) state by a homogeneous magnetic field as the
Zeeman energy is the same for both solutions. On the
other hand, transverse electric fields across the individual
electrodes [8] or injection of spin-polarized currents at the
edges from the tip of a STM [50] could potentially be
strategies to control their magnetization. Nevertheless, our
fundamental assumption is that the different collective spin
states of the device are sufficiently long lived and robust to
be probed by a transient current pulse. This assumption is
supported by the fact that our calculations predict that the
electronic energy is increased by about 0.20 eV when a
magnetic domain wall is inserted into an 8-ZGNR
(Supplemental Material, Figs. S6 and S7 [41]), an indica-
tion of a very large barrier even compared to room
temperature.
The spin-polarizing effect of a single junction discussed

above can be enhanced by placing several consecutive
crossings to form an array of scatterers as displayed in
Fig. 4(a). Because backscattering is negligible in the single-
mode energy region, we can approximate the overall
transmission probability across an array of N crossings

as Tσ
12 ≈

Q
N
i TσðiÞ

12 where TσðiÞ
12 is the transmission of the ith

junction. This approximation was tested for the case ofN ¼
3 and shows an excellent agreement compared with a
calculation of the full device (see the Supplemental
Material, Sec. S9 [41]). This idea is exemplified in
Fig. 4(b) for two different scenarios: an ideal arrangement
of identical ↑↑ AB-stacked configurations (blue circles) as
well as a more realistic situation corresponding to random
sampling (orange squares, Supplemental Material, Sec. S12
[41]) over different spin, intersection angle (within 55–65°),
and translation configurations. This shows that with four
crossings the total current polarization can reach P12 ∼
95% with a transmission of T↑

12 ∼ 32% in the ideal case.
Even in the pessimistic case with random junctions, where
partial cancellation can occur due to sign changes in the
individual P12, the spin polarization hjP12ji of the array
approaches 1 exponentially in

ffiffiffiffi
N

p
(black curve,

Supplemental Material, Sec. S12 [41]). The best 1st
percentile (top gray curve) of the sampled arrays still
reaches P12 ∼ 80% for N ¼ 8. Although this statistical
analysis is based on the simplifying assumption of equal
weights of the configurations, it serves to illustrate that
arrays can be interesting even if one does not have precise
control over the individual junctions.
In conclusion, we have analyzed the spin-dependent

transport properties of crossed ZGNRs using MFH and
NEGF theory, and found that the beam-splitting effect
reported previously survives in the presence of Coulomb
repulsions with two distinct modifications: A transport
gap opens at low energies, and a spin-dependent scattering
potential emerges. Except for specific high-symmetry
configurations, this class of electronic devices is generally

predicted to behave as spin-polarizing beam splitters
with interesting possibilities for electron quantum
optics [51]. Such spin-dependent scattering potentials
are also obtained with other edge-polarized nanoribbons
(Supplemental Material, Sec. S13 [41]). By constructing
arrays of junctions the spin-polarizing effect can be
enhanced.
Although the proposed devices are ahead of current

experiments, a rapid progress in bottom-up fabrication and
scanning probe techniques makes it conceivable to assem-
ble nearly defect-free junctions on insulating thin films
[52], to drive coherent electron dynamics [53,54], and to
characterize electron transport by multiprobe setups [55] or
through single-photon emission [56]. Our results add to the
vision of using GNR-based devices for spintronics and
quantum technologies. For instance, two spin-polarizing
beam splitters in combination with a charge detector can be
used to deterministically entangle a moving spin qubit [57].
Conversely, a spin-polarizing beam splitter can also be used
to determine the entanglement of injected pairs of spins
[58]. As an additional application, a high-fidelity spin filter
allows “spin-to-charge” conversion and thus a charge-
measurement-based spin determination.
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SUMMARY OF CONTENT

In this supplementary material we describe our methodology and present additional cal-

culations that may be interesting for a deeper understanding of the reported effects. In

Sec. S1 we explain the details of the calculation with the mean-field Hubbard model (MFH).

In Sec. S2 we show the effect of the Coulomb repulsion on the bands of bilayer and monolayer

graphene nanoribbons, while in Sec. S3 we show the effect that the size of the scattering

region has on the local magnetization of the device. Next in Sec. S4 we plot all the possible

spin configurations resulting from the possible combinations of the spin densities of the four

electrodes. In Secs. S6 and S7 we show the figure of merit, where we analyze the quality of

the device as a spin-beam splitter or mirror, and the spin polarization at a different elec-

tronic energy from the one shown in the main text, respectively. In Sec. S8 we compare

the transport properties for different ribbon widths. In Sec. S9 we show the quality of the

independent scatterers approximation compared to the exact result for a device with three

crossings. In Sec. S10 we compare the spin-averaged transmission probabilities with the

unpolarized case. In Sec. S11 we explore how possible distortions, such as a small twist

angle or a lateral translation of the on-top ribbon with respect to the bottom one, affect

the transport properties of individual crossings. In Sec. S12 we describe the used statistical

sampling and analytical expression for the averaged spin-polarization shown in Fig. 4(b) of

the main text. Finally, in Sec. S13 we analyze the spin-polarizing beam-splitting effect that

can be found in junctions formed with other edge-polarized GNRs, such as those built with

crossed bearded GNRs.

∗ sofia.sanz@dipc.org
† thomas frederiksen@ehu.eus
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S1. SOLVING THE MFH WITH OPEN BOUNDARY CONDITIONS

The Hubbard Hamiltonian in the mean-field approximation model has proven to be

in remarkable agreement with quantum Monte Carlo simulations for ZGNR for moderate

Coulomb interactions [1]. The complete geometry is divided into the relevant parts here

involved: the semi-infinite electrodes and the scattering area (device), where the latter con-

tains the crossing between the two infinite ribbons, HT = Hd+
∑

α (Hα +Hαd) , where Hd is

the device Hamiltonian and Hα, Hαd are the αth electrode Hamiltonian and its coupling to

the device region. The occupation of the electronic states is defined by Fermi-Dirac statistics

with a temperature set to T = 300 K. For our system the band gap opening is of the order

500 meV, i.e., ∼ 25 × kT at this temperature (and k the Boltzmann constant), which im-

plies that the distribution function is basically a step function. Therefore, practically there

is no difference with the results one would obtain at lower temperatures. We also assume an

orthogonal basis of localized atomic orbitals. Further, the qualitative picture presented in

the main text is not affected by the numerical choice for the Coulomb repulsion parameter

U = 3 eV, but only the quantitative results. To show this last statement we have calculated

the transmission probabilities for the ↑↑ device obtained with U = 1.5 eV in Fig. S1.
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FIG. S1. Transmission probability for an incoming electron from terminal 1 of the ↑↑ device

obtained with (a) U = 3 eV and (b) U = 1.5 eV.

The computational setup begins by solving the electrodes, where the spin densities 〈ni,σ〉
are found by diagonalization of the infinite ZGNR’s unit-cell at each k-point over the Bril-

louin zone. The spin-densities will be used to update the Hamiltonian of Eq. (1) in each
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iteration, until the convergence criterion is achieved, as implemented in our Python pack-

age Hubbard [2]. To properly account for the effect of the semi-infinite leads in the device

Hamiltonian, the spin densities in equilibrium are computed by an integration of the Green’s

function along a predefined energy contour in the complex plane [3] that we obtained from

TranSiesta [4],

〈ni,σ〉 =
1

2π

[∫ ∞

−∞
Aσ(ε)nF (ε− µ)dε

]

ii

, (S1)

where nF (ε − µ) is the Fermi distribution with µ the electrochemical potential, Aσ =

i
(
Gσ −G†σ

)
is the spectral function and G−1

σ = (ε + iη)I − HC,σ −
∑

α Σα,σ is the re-

tarded Green’s function for each spin component σ. Σα,σ is the self-energy matrix that

accounts for the coupling between the αth semi-infinite lead with spin component σ to the

scattering region. The self-energy matrices are converged with the Lopez-Sancho recursive

method [5] as implemented in the open source, Python-based SISL package [4, 6] using a

small broadening of η = 1 meV. For clarification, the flow diagram of the self-consistent

cycle is plotted in Fig. S2.

For equilibrium calculations the electronic contribution to the total energy can be calcu-

lated as

Etot =
∑

σ=↑,↓

1

2π

∫
Tr [Aσ(ε)]nF (ε− µ)εdε− U〈n↑〉〈n↓〉, (S2)

where the left term of Eq. (S2) is the integration of the occupied states while the right term

comes from the interaction term of the Hamiltonian. To perform the numerical transport

calculations we have used the free and open-source code TBtrans [4].
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FIG. S2. Convergence process of the MFH model with open boundary conditions.
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S2. EFFECT OF U IN THE BAND STRUCTURE OF MONO- AND BILAYER

ZGNRS

In this section we show the band structures for periodic mono- and bilayer w-ZGNRs for

widths of w = 8, 16 carbon atoms across. The geometries of the AA- and AB-stacked ZGNRs

are shown in Fig. S3(a,b). In Fig. S3(c-h) we show the band structures for the unpolarized

(black dashed lines) and polarized (color lines) Hamiltonians with U = 3 eV. The main effect

of the interaction term on the electronic structures of these systems is the opening of the

correlation gap around EF . While the larger hybridization in the AA-stacking pushes the

edge states further in energy for the unpolarized case (panels (e,f)), which competes with

the Coulomb repulsion parameter, in the AB-stacking case the presence of the flat bands

(edge states) give rise to the opening of a correlation gap around EF . The spin distribution

of the bilayer ZGNRs (of lowest energy) is composed of two polarized monolayer ZGNRs

(antiferromagnetic alignment between the edges of the ribbons) while the atoms that are

vertically aligned are also antiferromagnetically aligned. These results are in line with DFT

calculations [7].

In Fig. S4 we plot the polarization represented by the center of mass of the wavefunctions

ψ↑nk, calculated as
∫
y|ψ↑nk|2dy, for the case of the monolayer 8-ZGNR. For an unpolarized

wave the center of mass of the wave coincides with the geometrical center of the unit cell,

given the inversion symmetry of the ZGNR unit cell. However, for the polarized ZGNR, this

is not necessarily the case given the symmetry breaking between the two spin components.

We observe a large polarization of the wave especially in the valence and conduction

bands. We also find an interesting behavior of the spin-wave distribution, where the center

of mass of the wave transitions from the lower half of the unit cell to the upper half as k

goes from Γ to X. This explains the spin majority on the different sublattices depending on

the electron energy.
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FIG. S3. Band structures of mono- and bilayer w-ZGNRs of different widths. (a,b) Geometry of

the AA- and AB-stacked bilayer 8-ZGNRs. Band structure along the Γ–X path for (c,d) monolayer

and (e,f) bilayer AA-stacked and (g,h) bilayer AB-stacked 8-ZGNRs. Black dashed lines show the

band structures for U = 0 and colored lines those obtained after convergence with U = 3 eV.
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FIG. S4. (a) Band structure for the periodic unpolarized (black dashed lines) and polarized (red

solid lines) 8-ZGNR. We also show the position of the center of mass of the wave functions ψ↑nk

plotted as a “fat-band” analysis, where the size of the error bars is computed as
∣∣∣
∫
y|ψ↑nk|2dy

∣∣∣. We

plot the fat-bands in grey for the valence and conduction bands and blue for the remaining bands.

(b,c) Spatial distribution of the Bloch wave functions ψ↑n,k along the conduction (CB) and (d,e)

valence bands (VB) computed at k = Γ,X respectively. The black solid line indicates the center

of mass of the electron wave, while the dashed-dotted line indicates the geometrical center of the

unit cell. These k-points are indicated in red dots (diamonds) along the VB (CB) in panel (a).
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S3. DISTANCE FROM THE SCATTERING CENTER TO THE ELECTRODES

Here we show results for the crossed 8-ZGNRs with different GNR lengths, i.e., different

distances from the scattering center to the leads. We performed calculations for the same

crossing with the same spin configuration (↑↑ ) and compare the spin densities to that

corresponding to the perfect (periodic) ribbon solution, i.e., uncoupled ribbons. To do so

we plot in real space the difference between the local magnetization, defined as

mi = 〈ni↑〉 − 〈ni↓〉 , (S3)

for the self-consistent solution of the full device calculation and the local magnetization

corresponding to the periodic ribbons, m0
i .

In order to preserve the bulk nature for the electrodes, there must be a sufficient distance

separating the scattering center from the leads. However, the highly localized Coulomb

repulsion term seems to prevent the spin density of the device from being affected by this

size effect as Fig. S5 shows that the spin polarization of the coupled ribbons is essentially

unaffected by the position of the electrodes. In other words, the inter-GNR coupling induces

changes in the electronic structure only in the near vicinity to the crossing.
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FIG. S5. Convergence study with respect to the size of the device region for AB-stacked 8-ZGNRs

in the ↑↑ configuration. (a-c) Difference between the calculated spin polarization for the 4-terminal

device (mi) and the spin polarization for decoupled ribbons (m0
i ) plotted in real space for different

device sizes. We compare three cases, (a) one with a repetition of 16 (∼ 38 Å), (b) another with

20 (∼ 48 Å) and the last one with (c) 28 (∼ 68 Å) ZGNR unit cells. The latter corresponds to

the size of the device shown in the main text. (d-f) Profile of mi −m0
i along the ribbon axis for

different positions across the perpendicular direction (confinement direction). The legend on the

left side indicates the transverse position of each profile.
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S4. ALL INEQUIVALENT SPIN CONFIGURATIONS AND TRANSMISSION

CURVES FOR AB- AND AA-STACKINGS

Here we show all the unique spin configurations for AA- and AB-stacked 8-ZGNRs and

the corresponding transmission and reflection probabilities for each spin component. We

also list the electronic energy according to Eq. (S2) of each configuration. As mentioned in

the main text, each spin configuration for this open quantum system is found by fixing spin

density distribution of the 4 electrodes, leading to 24/2 = 8 unique solutions to the imposed

boundary conditions (excluding the trivial global inversion of the spin). To show these

solutions we plot the difference between the spin densities for the ↑ and ↓ spin components,

i.e., 〈n↑〉 − 〈n↓〉, in Figs. S6 and S7 for the AB- and AA-stacking, respectively.

In Tab. S1 we compare the relative electronic energies for the AA- and AB-stacked devices

with the 8 unique spin-configurations (a-h) that arise from imposing the spin-densities in

the electrodes.

a ↑↓ b ↑↑ c d e f g h

AB 0.000 0.082 0.387 0.398 0.202 0.202 0.203 0.203

AA 0.583 0.425 0.847 0.939 0.623 0.623 0.622 0.622

TABLE S1. Electronic energies Etot according to Eq. (S2) for different spin configurations of

the AB- (Fig. S6) and AA-stacked (Fig. S7) crossed 8-ZGNRs devices. The energies (in eV) are

compared to the configuration of minimum energy corresponding to AB-stacked ↑↓ in Fig. S6(a).

The first observation is that we find the AA-stacked devices to have larger electronic

energy than the AB-stacked ones for all spin configurations (see Tab. S1). This result is in

line with other results of this kind [8]. The second observation is that the ground state is

the configuration with antiferromagnetic (AFM) alignment between layers, i.e., the atoms

that lie one on top of the other have opposite spin index, in line with results published in

Ref. [9]. On the other hand, some of the spin configurations involve the presence of domain

walls (grain boundaries), if the spin densities of the electrodes belonging to the same ribbon

are inverted.

We observe that for configurations that have a single grain boundary, the domain wall

moves along the ribbons to leave the scattering area (crossing) with the spin density distri-
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bution that corresponds to the ground state configuration [cf. Figs. S6 and S7]. For instance,

for the AB-stacked device, the grain boundary in Fig. S6(e-h) moves along the ribbons to

leave the crossing with the spin density distribution of Fig. S6(a). Similarly, for the AA-

stacked devices, the grain boundary moves along the ribbons to leave the crossing with the

spin density distribution of Fig. S7(b). We find that, for the two cases without grain bound-

aries, the spin configuration of each ribbon deviates very little from that corresponding to

the perfect (translationally invariant) 8-ZGNR, showing the weak coupling between them.

On the other hand, Fig. S8 and Fig. S9 shows the transmission and reflection probabilities

for the AB- and AA-stacked devices with the different possible spin distributions. As it can

be seen in these figures, and following the argument and discussion from the main text, the

only systems that have T σij 6= T σ̄ij are those that only display black symmetry axes (break the

symmetry between the spin indices). The transmission probability is computed as mentioned

in the main text, while the reflection probability can be computed by subtracting the total

outgoing transmission probability to the number of channels/modes existing at a certain

energy, Mα,

Rσ
α = Mσ

α −
∑

β 6=α
T σαβ. (S4)

We observe that both Rs
1 and T s14 are zero for energies lying in the single-band energy region

for both stackings and all spin configurations, according to the unpolarized case [10].
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FIG. S6. Spin configurations for the AB-stacked 8-ZGNRs. The electronic energy Etot (in eV) of

each configuration (relative to AB-stacked ↑↓ in panel a) is noted in the bottom left corner in each

panel. Red and black dashed lines indicate the symmetry axes.
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FIG. S7. As Fig. S6 but for the the AA-stacked 8-ZGNRs. The electronic energy Etot (in eV)

of each configuration (relative to AA-stacked ↑↑ in panel b) is noted in the bottom left corner in

each panel.
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13 are the transmission probabilities between terminals 1 → 2 and

1→ 3 for the unpolarized device.
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S5. ELECTRONIC TOTAL ENERGY AND MAGNETIZATION

Fig. S10 shows the electronic part of the total energy of each device compared to the

energy of the uncoupled system, E0, as a function of the translation of the on top ribbon

with respect to the bottom one starting with the geometry of the AB-stacked device. This

energy can be understood as a binding energy between the ribbons. We note that this

energy lacks some contributions that are not taken into account in this approximation, e.g.,

the change in the Van der Waals forces as the two ribbons are translated with respect to

each other which determines the precise inter-GNR separation, etc. Here, the geometrical

distortion is only encoded through the Slater-Koster parametrization [10].

As mentioned above, the closest stackings to the AB pattern lie in a global minimum. The

AA-stacking is a local minimum but more energetic than the AB-stacking. One interesting

result is that the plots Fig. S10(a,b) are very similar, showing that the largest contribution to

the electronic energy comes from the geometry and that the relative spin density distribution

of the ribbons plays a minor role in this physical quantity.

Fig. S10(c,d) show the sum of local magnetization changes induced by the inter-GNR

interaction, defined as
∑

i |mi| − |m0
i |. This shows that the magnetization of the device

is always lower than that corresponding to the uncoupled ribbons. This last statement

makes sense since the effect of the hopping amplitude between the GNRs goes “against”

the localization of the electrons, and thus the local magnetization of the system. Therefore

the local magnetization of the coupled ribbons will be lower than the magnetization of the

uncoupled ribbons, especially in the coupled area. Fig. S10(c,d) also shows that for the

configurations with FM inter-layer coupling (AB in Fig. S6b and AA in Fig. S7a, i.e., the

atoms that are vertically aligned have equal spin indices), the magnetization decreases more

with respect to the perfect 8-ZGNR than configurations with AFM inter-layer coupling (AB

in Fig. S6a and AA in Fig. S7b, i.e., the atoms that are vertically aligned have opposite spin

indices).

In panels Fig. S10(e,f) we show the maximum backscattering for configurations ↑↓ and

↑↑ as a function of the translation of the on-top ribbon with respect to the other one. We

hereby see that the low reflection is general for the crossed ZGNRs.
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FIG. S10. (a,b) Electronic part of the total energy Etot relative to the energy of the uncoupled
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∑
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system
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crosses and green circles indicate the AB- and AA-stacking, respectively.
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S6. FIGURE OF MERIT

Fig. S11 shows the quality of the beam splitting or mirror effect per spin channel in the

junctions, following the idea of [10], in a figure of merit defined as

FM = e−20λ tanh

[
1

20

(
1

|τ − 1| −
1

|τ − 1/2|

)]
, (S5)

that was firstly used and defined in the reference from above (the parameters λ, τ and their

definition can be found there). Black areas show where the device behaves as a good beam

splitter (T s12 ∼ T s13 ∼ 0.5). Red areas would show where the device behaves as a good mirror

(T s13 ∼ 1), however the device is not wide enough to show this behavior (see ref. [10]). White

areas indicate devices with almost perfect transmission (T s12 ∼ 1, since losses (Rσ + T s14) are

less than 2% for all geometries) that are not of interest for our purposes.
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FIG. S11. (a,b) [(c,d)] Figure of merit (FM) for σ =↑ [σ =↓] as function of the translation of the

top ribbon along the graphene periodicity vectors a1, a2 with respect to the bottom one for the

two possible spin configurations (↑↑ and ↑↓ , respectively). Red crosses and green circles indicate

the AB- and AA-stacking, respectively.
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S7. SPIN POLARIZATION FOR ELECTRONS AT OTHER ENERGY VALUES

In the main text we show the scattering states (spectral density of states) for an incoming

electron with an energy of E ∼ 0.5 eV for the AB-stacking four-terminal device. However,

the polarization in the transport properties is an energy dependent quantity (as seen for

instance in Fig. 2 of the main text). Therefore, for completeness we show in Fig. S12 the

spectral density of states for E ∼ 1.0,−0.5,−1.0 eV. One interesting observation is that

panels (b,e) have opposite spin orientation at the edges of the ribbon with respect to panels

(c,f). This can be understood from Fig. S4, where the center of mass of the waves changes

sign (goes to zero) between −0.5 (+0.5) and −1.0 (+1.0) eV for the VB (CB).

Additionally we also show in Fig. S13 the polarization and the figure of merit for an

incoming electron with energy E ∼ 0.5 eV.
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FIG. S12. Scattering states A = A↑ + A↓ for the (a-c) ↑↓ and (d-f) ↑↑ spin configuration

computed at E = −1.0, E = −0.5, and E = 1.0 eV (electrons incoming from the left electrode

1). The dominant spin on each site at this energy is shown in red for up-spins and in blue for

down-spins.
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green circles indicate the AB- and AA-stacking, respectively.
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S8. ROLE OF RIBBON WIDTH

In this section we compute the spin polarization distribution and transmission and re-

flection probabilities as a function of the electron energy for different ribbon widths for the

same crossing and spin configuration (AB-↑↑ ). We see that the different transport behavior

for the two different spin channels is general for this crossing. On the other hand, we see

that the inter-transmission probability (T s13) grows with the ribbon width, while the opposite

behavior is found for the intra-transmission probability (T s12). Furthermore, losses (Rs
1 +T s14)

remain absent independently of the width of the ribbon. These results are in line with the

transport properties found for the unpolarized case [cf. Ref [10]].
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FIG. S14. Transmission coefficients for different ribbon widths. (a-c) Spin polarization for the 4-

terminal device formed of two AB-stacked crossed 6-ZGNRs, 8-ZGNRs and 10-ZGNRs, respectively.

(d-f) Transmission and reflection probabilities for an incoming electron from terminal 1 for the 6-

ZGNRs, 8-ZGNRs and 10-ZGNRs device, respectively.
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S9. INDEPENDENT-SCATTERERS APPROXIMATION

To test the independent-scatterers approximation used in the main text (Fig. 4), where

we consider each crossing as if it was independent from the others, we chose an array of

3 crossings. For simplicity we consider the unpolarized case although these results can be

extrapolated to the polarized device since reflection is absent for this case too. In Fig. S15

we compare the exact transmission probabilities obtained for the full device with TBtrans

[4] with the same transmission probabilities obtained within the independent-scatterers ap-

proximation (Eqs. (S6-S12)). This approximation would be exact if one obtained the overall

transmission probabilities by coherently combining the scattering matrices of the successive

sections using the Feynman paths [11]. Given the fact that there is no reflection for elec-

trons with energies in the single-channel energy region there is no interference between the

incoming waves and the reflected ones. Thus, in our approximation we only take the first

term of the Feynman path (direct multiplication of the corresponding scattering matrices).

Naming the single crossing transmission probabilities with lowercase letters t12, t13 and t14,

we obtain the transmission probabilities for the full device (named with upper case Tij) as

following:

T12 = t312 (S6)

T13 = t13 (S7)

T14 = t14 (S8)

T15 = t12t13 (S9)

T16 = t12t14 (S10)

T17 = t212t13 (S11)

T18 = t212t14. (S12)

We observe in Fig. S15 that the independent-scatterers approximation is practically exact

in the single-channel energy region (where there is only one available mode). The reason for

this excellent agreement, as mentioned above, comes from the fact that there is no reflection

for these energy values, therefore the interference terms between the backscattered waves

disappear. This is not the case outside the single-channel energy region.
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FIG. S15. (a) Geometry of the device with three consecutive crossings. All 8 terminals are indicated
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incoming electron in terminal 1 as a function of the electron energy. Solid lines represent the

transmission probability for the full device, while open circles represent the obtained transmission

probability using the independent-scatterers approximation.
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S10. AVERAGED TRANSMISSION PROBABILITIES

In this section we compute the averaged transmission probabilities, calculated as T̄ij =

(T ↑ij + T ↓ij)/2, for both spin configurations ↑↑ and ↑↓ compared to the unpolarized case in

Fig. S16. By comparing these results and the ones shown in the main text, it can be seen

that while the spin-averaged transmission of the device reproduces our earlier results [10]

(i.e., it is affected very little by inclusion of the mean-field Coulomb interaction), we find

a strong spin-dependence of the transmission, something that is completely absent in the

non-interacting case.
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S11. ROLE OF CROSSING GEOMETRY FOR THE SPIN-POLARIZING TRANS-

PORT EFFECT

We note that there are some experimental challenges to realize the proposed devices, for

example to control the stacking registry and the twist angle. These parameters were already

assessed in Ref. [10] for unpolarized devices, showing that the beam splitting effect remained

largely unaffected by these perturbations, however in that analysis the Coulomb repulsion

was not included. For this reason, in this section we study the behavior of the spin transport

properties of the crossed ZGNRs for different spin configurations (↑↑ and ↑↓ ), intersection

angles (within 55-65◦), and stacking registries at the crossing. In Fig. S17 we show both P12

and the maximum reflection probability R>
1 as a function of the in-plane translation of the

top ribbon with respect to the lower one for different intersection angles and the two spin

configurations ↑↓ and ↑↑ . Here we observe that both ↑↓ and ↑↑ configurations still show

spin-polarized current generally for different angles and translations. Even in the case of ↑↓ ,

which diminishes its polarization to P12 ≤ 10% for angles θ > 64◦, we find that this effect is

reverted for E = −0.5 eV, where the polarization grows with the angle and only diminishes

for θ < 56◦ (not shown here). We also observe that backscattering remains rather small

for crossed ZGNRs regardless the stacking configuration. This result extends to the whole

single-mode energy region (not shown here).
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FIG. S17. (a) Spin polarization P12 of the current from electrode 1 to 2 and (b) maximum of

reflection probability, R>1 = max(R↑1, R
↓
1) as function of in-plane translations of one ribbon with

respect to the other for the ↑↑ and ↑↓ spin configurations at different intersection angles. The

electron energy is fixed at E = 0.5 eV. The unit cell, defined by the lattice vectors of the two

ribbons (forming the angle θ), is indicated by the black parallelogram.
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S12. STATISTICAL ANALYSIS OF RANDOM ARRAY DEVICES

In this section we provide a description of the statistical analysis behind the results

presented in Fig. 4(b) of the main text. We begin with a derivation of the analytic expression

of the average absolute spin polarization of arrays 〈|P12|〉.
Starting from Eq. (2) of the main text for the polarization P12 of a single junction, we

can express the polarization P12 of an array of N junctions as

P12(N) =
1− eλ(N)

1 + eλ(N)
, (S13)

where

λ(N) =
N∑

i=1

λi, (S14)

λi = ln
T ↓12(i)

T ↑12(i)
. (S15)

Assuming independent and identical distribution (iid) of the configuration (angle and dis-

placement) of each crossing, it follows from the multiplicative central limit theorem that the

ratio eλ(N) follows a log-normal distribution with parameters µ = µN and w = w
√
N , where

µ and w2 are the mean and variance, respectively, of λ for an individual crossing.

In the unbiased (worst) case, µ = 0, as for the present systems, this allows us to write

the absolute value averages

〈|λ(N)|〉 =

∫ ∞

−∞
ds |s| N (s, 0, w2) = w

√
2

π
= w

√
2N

π
= Λ
√
N, (S16)

〈e−|λ(N)|〉 =

∫ ∞

−∞
ds e−|s| N (s, 0, w2) = ew

2/2 erfc

[
w√
2

]
= ew

2N/2 erfc

[
w

√
N

2

]

= eπΛ2N/4 erfc

[
Λ

√
πN

2

]
, (S17)

〈|P12(N)|〉 =

∫ ∞

−∞
ds

∣∣∣∣
1− es
1 + es

∣∣∣∣ N (s, 0, w2), (S18)

where 〈· · · 〉 denotes the statistical average, Λ ≡ 〈|λ1|〉 the average for a single junction, and

N (s, µ, w2) the normal distribution. Note that these expressions are only strictly relevant

in our case for N →∞, where the use of the normal distribution is fully justified. Fig. S19
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average 〈|P12(N)|〉 against the direct numerical evaluation (orange squares) from the generated

random data set, from which one also obtains the parameter Λ ≡ 〈|λ1|〉 = 0.22602.

below shows the actual convergence of the distribution for λ as N increases.

From Eq. (S16) and Eq. (S17) we can write two approximate expressions for the average

absolute polarization:

〈|P12|〉 ≈
1− e−〈|λ(N)|〉

1 + e−〈|λ(N)|〉 =
1− e−Λ

√
N

1 + e−Λ
√
N
, (S19)

〈|P12|〉 ≈
1− 〈e−|λ(N)|〉
1 + 〈e−|λ(N)|〉

. (S20)

A comparison of the different statistical averages based on the assumption of a normal

distribution is shown in Fig. S18 against the direct numerical evaluation of the average for

the generated data set. The approach to 1 exponentially in
√
N according to Eq. (S16)

suggests the intuitive interpretation of the spin filtering mechanism in terms of 1D random

walk as at each crossing a step λi of random length and direction on the real line is added

to λ. Note that the approximation Eq. (S16) fits the curve for 〈|P12|〉 surprisingly well. This

is partially accidental and, as seen in Fig. S18, the fit is systematically worse for larger N

(as the variance of λ(N) increases).

Let us next turn to the actual statistical sampling procedure. The data set behind

Fig. 4b in of the main text relies on an unbiased sampling of 107 different spin-, intersection
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angle, and translation configurations for each N drawn from the actual realizations behind

Fig. S17. The angle is sampled uniformly within the range θ ∈ [55◦, 65◦] in steps of 1◦, while

the translations are sampled over the unit cell on a 10 × 10 uniform grid. In Fig. S19 and

Fig. S20 we show the histograms for the quantities λ(N) and |P12|. Our assumption of equal

probability weight for all configurations is to keep things simple, although in reality the

commensurate structures may be energetically favored. The main point of this statistical

analysis is to show that a microscopic control over the individual crossings is not necessary

to obtain a spin-polarizing array.
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S13. A SPIN-POLARIZING BEAM SPLITTER WITH BEARDED GNRS

In this section we analyze the transport properties of intersecting bearded GNRs. The

band structure and geometry of this structure is shown in Fig. S21. Although, to our

knowledge, these systems have not yet been synthesized, we discuss these devices to complete

our analysis on spin polarizing beam splitters formed by two crossed general GNRs. This

type of GNRs are oriented along the zigzag direction but display different physical edges

than ZGNRs. However, they present similar spin-polarized edge states as seen in Fig. S21.

In Fig. S22 we plot both the self-consistent solutions ↑↑ and ↑↓ and the scattering states

for this device, while in Fig. S23 we show the more detailed transmission probabilities for

an incoming electron into terminal 1 as a function of the electronic energy. Figures S22 and

S23 supports that both the beam splitting effect and the spin-polarizing scattering potential

are general features of junctions with edge-polarized GNRs.
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FIG. S21. (a) Band structure for the bearded GNR calculated with U = 0 (dashed black lines)

and U = 3 eV (solid red lines). (b) Spin density for the periodic structure (U = 3 eV).
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Pignedoli, K. Müllen, P. Ruffieux, A. Narita, and R. Fasel, “Large magnetic

exchange coupling in rhombus-shaped nanographenes with zigzag periphery”, Nat.

Chem. 13, 581–586 (2021).

https://link.aps.org/doi/10.1103/PhysRevLett.99.177204
https://link.aps.org/doi/10.1103/PhysRevLett.99.177204
https://doi.org/10.1021/ja210822c
https://doi.org/10.1021/ja210822c
https://doi.org/10.1021/acs.chemrev.9b00260
https://doi.org/10.1021/acs.chemrev.9b00260
https://doi.org/10.1038/s41467-018-08060-6
https://doi.org/10.1038/s41467-018-08060-6
https://doi.org/10.1021/acs.nanolett.9b00883
https://doi.org/10.1021/acs.nanolett.9b00883
https://link.aps.org/doi/10.1103/PhysRevLett.124.177201
https://link.aps.org/doi/10.1103/PhysRevLett.124.177201
https://link.aps.org/doi/10.1103/PhysRevLett.124.177201
https://link.aps.org/doi/10.1103/PhysRevLett.125.146801
https://link.aps.org/doi/10.1103/PhysRevLett.125.146801
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202002687
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202002687
https://doi.org/10.1038/s41586-021-03842-3
https://doi.org/10.1038/s41586-021-03842-3
https://doi.org/10.1038/s41557-021-00678-2
https://doi.org/10.1038/s41557-021-00678-2
https://doi.org/10.1038/s41557-021-00678-2


142 BIBLIOGRAPHY

[43] J. Hieulle, S. Castro, N. Friedrich, A. Vegliante, F. R. Lara, S. Sanz, D. Rey,

M. Corso, T. Frederiksen, J. I. Pascual, and D. Peña, “On-surface synthesis and

collective spin excitations of a triangulene-based nanostar”, Angew. Chem. Int.

Ed. 60, 25 224–25 229 (2021).

[44] A. A. Ovchinnikov, “Multiplicity of the ground state of large alternant organic

molecules with conjugated bonds”, Theor. Chim. Acta 47, 297–304 (1978).

[45] E. H. Lieb, “Two theorems on the Hubbard model”, Phys. Rev. Lett. 62,

1201–1204 (1989).

[46] R. Ortiz, R. A. Boto, N. Garćıa-Mart́ınez, J. C. Sancho-Garćıa, M. Melle-

Franco, and J. Fernández-Rossier, “Exchange rules for diradical π-conjugated

hydrocarbons”, Nano Lett. 19, 5991–5997 (2019).

[47] R. R. Nair, M. Sepioni, I.-L. Tsai, O. Lehtinen, J. Keinonen, A. V. Krasheninnikov,

T. Thomson, A. K. Geim, and I. V. Grigorieva, “Spin-half paramagnetism in

graphene induced by point defects”, Nat. Phys. 8, 199–202 (2012).

[48] K. M. McCreary, A. G. Swartz, W. Han, J. Fabian, and R. K.

Kawakami, “Magnetic moment formation in graphene detected by scattering of

pure spin currents”, Phys. Rev. Lett. 109, 186604 (2012).

[49] A. Berdonces-Layunta, J. Lawrence, S. Edalatmanesh, J. Castro-Esteban,

T. Wang, M. S. G. Mohammed, L. Colazzo, D. Peña, P. Jeĺınek, and
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[68] L. P. Zârbo and B. K. Nikolić, “Spatial distribution of local currents of massless

Dirac fermions in quantum transport through graphene nanoribbons”, EPL 80,

47001 (2007).

[69] P. Ruffieux, S. Wang, B. Yang, C. Sánchez-Sánchez, J. Liu, T. Dienel, L. Talirz,

P. Shinde, C. A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Müllen,

and R. Fasel, “On-surface synthesis of graphene nanoribbons with zigzag edge

topology”, Nature 531, 489 (2016).

[70] M. Koch, F. Ample, C. Joachim, and L. Grill, “Voltage-dependent conductance of

a single graphene nanoribbon”, Nat. Nanotechnol. 7, 713–717 (2012).

[71] S. Kawai, A. Benassi, E. Gnecco, H. Söde, R. Pawlak, X. Feng, K. Müllen,
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[113] M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, “Generalized many-

channel conductance formula with application to small rings”, Phys. Rev. B 31,

6207–6215 (1985).

[114] M. Buttiker, “Coherent and sequential tunneling in series barriers”, IBM J. Res.

Dev. 32, 63–75 (1988).

[115] N. Kobayashi, M. Brandbyge, and M. Tsukada, “First-principles study of

electron transport through monatomic Al and Na wires”, Phys. Rev. B 62,

8430–8437 (2000).

[116] J. Taylor, M. Brandbyge, and K. Stokbro, “Conductance switching in a

molecular device: The role of side groups and intermolecular interactions”, Phys.

Rev. B 68, 121101 (2003).

[117] M. Paulsson and M. Brandbyge, “Transmission eigenchannels from nonequilib-

rium Green’s functions”, Phys. Rev. B 76, 115117 (2007).
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[138] F. Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern”, Z.

Phys. 52, 555–600 (1929).

https://link.aps.org/doi/10.1103/PhysRev.71.622
https://link.aps.org/doi/10.1103/PhysRev.71.622
https://www.sciencedirect.com/science/article/pii/0022369783900641
https://www.sciencedirect.com/science/article/pii/0022369783900641
https://link.aps.org/doi/10.1103/PhysRevB.57.6493
https://link.aps.org/doi/10.1103/PhysRevB.57.6493
http://www.sciencedirect.com/science/article/pii/0301010480800450
http://www.sciencedirect.com/science/article/pii/0301010480800450
http://www.sciencedirect.com/science/article/pii/0301010480800450
https://doi.org/10.1088/0034-4885/60/12/001
https://doi.org/10.1088/0034-4885/60/12/001
https://www.sciencedirect.com/science/article/pii/S0927025698000275
https://www.sciencedirect.com/science/article/pii/S0927025698000275
https://doi.org/10.1007/BF01339530
https://doi.org/10.1007/BF01339530
https://doi.org/10.1007/BF01341953
https://doi.org/10.1007/BF01341953
https://doi.org/10.1007/BF01341936
https://doi.org/10.1007/BF01341936
https://doi.org/10.1007/BF01339455
https://doi.org/10.1007/BF01339455
https://doi.org/10.1007/BF01339455


150 BIBLIOGRAPHY

[139] J. C. Slater and G. F. Koster, “Simplified LCAO method for the periodic potential

problem”, Phys. Rev. 94, 1498–1524 (1954).
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