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Abstract: This work is devoted to presenting a new four-step iterative scheme for approximating
fixed points under almost contraction mappings and Reich–Suzuki-type nonexpansive mappings
(RSTN mappings, for short). Additionally, we demonstrate that for almost contraction mappings, the
proposed algorithm converges faster than a variety of other current iterative schemes. Furthermore,
the new iterative scheme’s ω2−stability result is established and a corroborating example is given to
clarify the concept of ω2−stability. Moreover, weak as well as a number of strong convergence results
are demonstrated for our new iterative approach for fixed points of RSTN mappings. Further, to
demonstrate the effectiveness of our new iterative strategy, we also conduct a numerical experiment.
Our major finding is applied to demonstrate that the two-dimensional (2D) Volterra integral equation
has a solution. Additionally, a comprehensive example for validating the outcome of our application
is provided. Our results expand and generalize a number of relevant results in the literature.

Keywords: RSTN mapping; almost contraction mapping; ω2−stability; fixed point methodology;
nonlinear integral problem
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1. Prelude and Basic Notions

Nowadays, after the huge amount of valuable papers that include the fixed point (FP)
method, these points have become the mainstay for nonlinear analysis due to the ease
and smoothness of this method, in addition to the numerous and exciting applications in
economics, biology, chemistry, game theory, engineering, physics, etc. [1–5].

A very important branch is the involvement of FPs in approximation by algorithms.
Numerous problems such as convex feasibility problems, convex optimization problems,
monotone variational inequalities, and image restoration problems can be thought of as FP
problems of nonexpansive mappings, hence approximating them has a range of specialized
applications, see [6–12]. Iteration approaches for FP issues of nonexpansive mappings have
received a lot of attention in the literature, for example, see [13–17].

From now on, the symbols R, N, Ξ(=), ∆, and Π, denote the set of real numbers,
natural numbers, FPs of the mapping =, and a nonempty subset of a Banach space
(BS) Π, respectively.

Assume that = : ∆→ ∆ is a self-mapping, then for each v, υ ∈ ∆,

• = is called a contraction if there is ` ∈ [0, 1) so that ‖=v−=υ‖ ≤ `‖v− υ‖.
• = is called nonexpansive if ‖=v−=υ‖ ≤ ‖v− υ‖, i.e., it is a contraction with ` = 1.
• = owns an FP v, if v = =v.
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There are two main categories that can be used to group the main concepts of FP
theory. Finding the prerequisites and requirements necessary for an operator to admit fixed
points is the first step. Another option is to locate these fixed points using certain schematic
methods. The first category is known formally as the existence part, while the second
category is known as the computation or approximation part. Studying the behaviors of
FPs, such as stability and data dependence, is an essential but less well-known topic of
FP theory.

The class of weak contractions that appropriately covers the class of Zamfirescu
operators [18] was supplied by Berinde in [19]. Many authors also refer to this class of
mappings as “almost contraction mappings (ACM)”.

Definition 1. If there are ` ∈ [0, 1) and δ ≥ 0, the inequality below holds

‖=v−=υ‖ ≤ `‖v− υ‖+ δ‖v−=v‖, for all v, υ ∈ ∆. (1)

Then = : ∆→ ∆ is called ACM.

Via the concept of strictly increasing continuous functions (SIC functions), the condi-
tion (1) generalized by Imoru and Olantiwo [20] as follows:

Definition 2. If there is a constant ` ∈ [0, 1) and a SIC function ξ : [0, ∞) → [0, ∞) with
ξ(0) = 0 such that

‖=v−=υ‖ ≤ `‖v− υ‖+ ξ(‖v−=v‖), for all v, υ ∈ ∆. (2)

Then = : ∆→ ∆ is called contractive-like.

Clearly, the inequality (2) reduces to (1), if ξ(τ) = δτ.
Due to its significance in terms of applications, numerous writers have studied nonex-

pansive mappings extensions and generalizations in recent years. Suzuki [20] presented an
intriguing generalization of nonexpansive mappings and attained some results for exis-
tence and convergence. These mappings are frequently referred to as mappings satisfying
condition (C).

Definition 3. If the inequality below is true

1
2
‖v−=v‖ ≤ ‖v− υ‖ ⇒ ‖=v−=υ‖ ≤ ‖v− υ‖, for all v, υ ∈ ∆. (3)

Then = : ∆→ ∆ is said to satisfy condition (C).

In 2019, the class of RSTN mappings was considered by Pant and Pandey [21] as the
following:

Definition 4. If there is a constant ` ∈ [0, 1) so that
1
2
‖v−=v‖ ≤ ‖v− υ‖ ⇒ ‖=v−=υ‖ ≤ `‖v−=v‖+ `‖υ−=υ‖+ (1− 2`)‖v− υ‖, (4)

for all v, υ ∈ ∆. Then = : ∆→ ∆ is called an RSTN mapping.

Surely, every mapping satisfying condition (C) is an RSTN mapping with ` = 0. The
converse, however, is false, as demonstrated in [21].

The analysis of the performance and behavior of algorithms that make significant
contributions to real-world applications is one of the key trends in FP techniques. There-
fore, in order to enhance the functionality and convergence behavior of algorithms for
nonexpansive mappings, several authors tended to develop numerous iterative schemes for
approximating FPs, for example Mann [22], Ishikawa [23], Noor [24], Argawal et al. [25],
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Abbas and Nazir [26], CR [27], Normal-S [28], Picard-S [29], Thakur et al. [30], and M-
iterative [31] schemes.

Recently, Ahmad et al. [32] presented a good iterative method known as the JK-
iterative procedure:

z1 ∈ ∆,
vr = (1− ηr)zr + ηr=zr,
ϑr = =vr,
zr+1 = =((1− γr)=vr + γr=ϑr),

for all r ≥ 1, (5)

where ηr and γr are sequences in (0, 1). For the mappings satisfying condition (C), the au-
thors generated several weak and strong convergence results and also showed numerically
that the iterative method (5) converges quicker than the iteration [25,30].

Very recently, Hasanen et al. [33] presented a novel four-step iterative scheme known
as the HR-iteration: 

z0 ∈ ∆,
vr = (1− ηr)zr + ηr=zr,
ωr = =((1− αr)vr + αr=vr),
ϑr = =((1− γr)=ωr + γr=ωr)
zr+1 = =ϑr,

for all r ≥ 1, (6)

where αi, ηi, and γi are sequences in [0, 1]. Additionally, the authors proved that this
algorithm converges faster than the methods presented in [27,29–31] numerically.

According to the above works, we build a new four-step iterative procedure called
HR*-iteration for obtaining a novel approximation to FPs of ACMs and RSTN mappings
as follows: 

$0 ∈ ∆,
ρr = (1− sr)$r + sr=$r,
ωr = =((1− tr)ρr + tr=ρr),
ϑr = =(=(ωr)),
$r+1 = (1− er)ϑr + er=ϑr,

for all r ≥ 1, (7)

where sr, tr, and er are sequences in (0, 1).
The goal of this manuscript is to show that the iteration (7) converges faster than itera-

tions (5), (6), and Thakur et al.’s [30] iterative scheme. Hence, it is faster than many sober
iterative methods in this direction for ACMs. Additionally, the property of ω2−stability for
the proposed algorithm is shown with a supported example. Moreover, weak and strong
convergence results of the considered method are obtained for RSTN mappings. Ultimately,
we prove that a 2D Volterra integral equation has a solution in BSs using our main findings.

2. Definitions and Auxiliary Lemmas

In this part, we provide some basic definitions and concepts that help us in our desired
goal and also facilitate the reader to understand our manuscript.

Assume that Π∗ is a dual of a BS Π, 〈., .〉 refers to the generalized duality pairing
between Π and Π∗, −→ denotes strong convergence, and ⇀ denotes weak convergence.
For v ∈ Π, the normalized duality mapping Θ : Π → 2Π∗ is a multivalued mapping
defined as

Θ(v) =
{

υ ∈ Π∗ : 〈v, υ〉 = ‖v‖2 = ‖υ‖2
}

.

A BS Π is called smooth if the limit below exists for all v, υ ∈ P

lim
a→0

‖v + aυ‖ − ‖v‖
a

, (8)

where P = {υ ∈ Π : ‖υ‖ = 1}. Here, the norm of Π is called Gâteaux differentiable. Clearly,
if Π is smooth, then Θ is a single-valued mapping. Further, if the limit (8) exists and is
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attained uniformly for υ ∈ Z, then the norm of Π is called Fréchet differentiable for v ∈ P
and the following inequality is true

〈v, Θ(v)〉+ 1
2
‖v‖2 ≤ 1

2
‖v + υ‖2 ≤ 〈υ, Θ(v)〉+ 1

2
‖v‖2 + z(υ),

where z : [0, ∞)→ [0, ∞) is an increasing function so that limυ↓0
z(υ)

υ = 0.

Definition 5. If for each ε ∈ (0, 2], there exists δ > 0 so that ‖υ‖ ≤ 1, ‖υ‖ ≤ 1 and ‖υ−v‖ > ε,
we get

∥∥ υ+v
2

∥∥ < 1− δ for υ, v ∈ Π. Then a BS Π is called a uniformly convex.

Definition 6. If for any sequence {νi} in Π so that υi ⇀ υ ∈ Π, implies

lim sup
r→∞

‖υr − υ‖ < lim sup
r→∞

‖υr −v‖, for all v ∈ Π with ν 6= v.

Then a BS Π is said to satisfy Opial’s condition.

Definition 7. Assume that {υr} is a bounded sequence in a BS Π. For υ ∈ ∆ ⊂ Π, put

<(υ, {υr}) = lim sup
r→∞

‖υr − υ‖.

• The asymptotic radius of {υi} relative to Π is described as

<(Π, {υr}) = inf{<(υ, {υr}) : υ ∈ Π}.

• The asymptotic center of {υi} relative to Π is given by

Z(Π, {υr}) = {υ ∈ Π : <(υ, {υr}) = <(Π, {υr})}.

Clearly, Z(Π, {υr}) consists of exactly one point in a uniformly convex BS.

Definition 8. Assume that ∆ 6= ∅ is a closed convex subset of a BS Π. A self-mapping = : ∆→ ∆
is called demiclosed with respect to v ∈ Π, if for all a sequence {vr} ⇀ ∆ and {=vr} −→ υ
implies =v = υ.

Definition 9 ([34]). Suppose that {sr} and {tr} are two sequences of real numbers that, respec-
tively, converge to s and t. If there is α = limr→∞

‖sr−s‖
‖tr−t‖ . Then

(i) {sr} is converges to s faster than {tr} does to t, if α = 0,
(ii) the two sequences {sr} and {tr} have the same rate of convergence, if α ∈ (0, ∞).

Definition 10 ([34]). Assume that {ϕr} and {φr} are two FP iteration procedures which converge
to the same point υ̃, the error estimates

‖ϕr − υ̃‖ ≤ sr and ‖φr − υ̃‖ ≤ tr, r ∈ N

are accessible, where {sr} and {tr} are defined in Definition 9 and converging to 0. Then, {ϕr}
converges faster to υ̃ than {φr} if {sr} converges faster than {tr}.

Definition 11. For a mapping = : ∆→ ∆, if

lim
r→∞
‖=υr − υr‖ = 0. (9)

Then the sequence {υr} in ∆ is called an approximate FP sequence for a mapping =.
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Definition 12 ([35]). Assume that κ : (0, ∞)→ (0, ∞) is a nondecreasing function with κ(0) = 0
and for each τ > 0, if κ(τ) > 0 so that ‖=v−v‖ ≥ κ(d(v, Ξ(=))), for all v ∈ ∆, where
d(v, Ξ(=)) = infv∗∈Ξ(=)‖v−v∗‖, then the mapping = : ∆→ ∆ is said to satisfy the condition
(I).

Lemma 1 ([36]). Assume that {ξr} and {ζr} are two non-negative real sequences verifying the
inequality below

ξr+1 ≤ (1− θr)ξr + ζr, ∀r ∈ N,

where θr ∈ (0, 1),
∞
∑

r=0
θr = ∞ and limr→∞

ζr
θr

= 0, then limr→∞ ξr = 0.

Lemma 2 ([28]). Suppose that {vr} and {υr} are any sequences of a uniformly convex BS Π such
that the following inequalities hold

lim sup
r→∞

‖vr‖ ≤ h, lim sup
r→∞

‖υr‖ ≤ h and lim sup
r→∞

‖ςrvr + (1− ςr)υr‖ = h,

for some h ≥ 0, where {ςr} is any sequence satisfying 0 < v ≤ ςr ≤ υ < 1. Then limr→∞‖vr − υr‖
= 0.

Lemma 3 ([32]). Assume that = : ∆ → ∆ is a given mapping. If = is an RSTN mapping with
Ξ(=) 6= ∅, then for arbitrary point v ∈ ∆ and v∗ ∈ Ξ(=), we have ‖=v−=v∗‖ ≤ ‖v−v∗‖.
Moreover, if = satisfies condition (C), then = is an RSTN mapping.

Lemma 4 ([37]). Suppose that = : ∆→ ∆ is an RSTN mapping, then for all v, υ ∈ ∆ and some
` ∈ (0, 1), the inequality below holds

‖v−=υ‖ ≤
(

3 + `

1− `

)
‖v−=v‖+ ‖v− υ‖. (10)

We now provide a numerical example that meets the inequality (10) but does not
satisfy condition (C).

Example 1. Assume that R endowed with a usual norm ‖.‖ is a BS and −1 ≤ ∆ ≤ 1. Define a
mapping = : ∆→ ∆ by

=v =


−v

4 , if − 1 ≤ v < 0,
−v, if v ∈ [0, 1]\{ 1

4},
0, if v ∈ { 1

4}.

If we set v = 1
4 and υ = 1, we have

1
2
‖v−=v‖ = 1

2

∥∥∥∥1
4
−=

(
1
4

)∥∥∥∥ =
1
8
≤ 3

4
= ‖v− υ‖.

However,

‖=v−=υ‖ =
∥∥∥∥=(1

4

)
−=(1)

∥∥∥∥ = 1 >
3
4
= ‖v− υ‖.

Therefore, the mapping = : ∆→ ∆ does not satisfy condition (C).
On the other hand, w prove that = fulfills the inequality (10). To reach this result, we suggest

the following positions:

(p1) if −1 ≤ v, υ < 0, we get

|v−=υ| ≤ |v−=v|+ |=v−=υ| = |v−=v|+ 1
4
|v− υ|

≤
(

3 + v

1−v

)
|v−=v|+ |v− υ|.
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(p2) if v, υ ∈ [0, 1]\{ 1
4}, then

|v−=υ| ≤ |v−=v|+ |=v−=υ| = |v−=v|+ |v− υ|.

(p3) if −1 ≤ v < 0 and υ ∈ [0, 1]\{ 1
4}, we have

|v−=υ| = |v + υ| ≤ |v|+ |υ|

≤ 5
4
|v|+ |v− υ| (since v < 0 and υ ≥ 0)

=

∣∣∣∣v−(−v

4

)∣∣∣∣+ |v− υ|

= |v−=v|+ |v− υ|.

(p4) if −1 ≤ v < 0 and υ = 1
4 , one can write

|v−=υ| = |v| ≤ 5
4
|v|+

∣∣∣∣v− 1
4

∣∣∣∣ = |v−=v|+ |v− υ|.

(p5) if v ∈ [0, 1]\{ 1
4} and υ = 1

4 , we obtain

|v−=υ| = |v| ≤ 2|v|+
∣∣∣∣v− 1

4

∣∣∣∣ = |v−=v|+ |v− υ|.

Based on the above cases, we conclude that = fulfills the inequality (10) with
( 3+v

1−v

)
≥ 1.

3. Rate of the Convergence

In this part, we demonstrate analytically that for ACMs, our iterative method (7)
converges faster than the iterative method in (5).

Theorem 1. Let ∆ 6= ∅ be a closed convex subset of a BS Π and = : ∆→ ∆ be ACM. If {$r} is a
sequence iterated by (7). Then {$r} −→ $, where $ is a unique FP of =.

Proof. Consider $ ∈ Ξ(=). Based on (1) and (7), we have

‖ρr − $‖ = ‖(1− sr)$r + sr=$r −=$‖
≤ (1− sr)‖$r − $‖+ sr‖=$r −=$‖ (11)

≤ (1− sr)‖$r − $‖+ sr[`‖$r − $‖+ δ‖$−=$‖]
= (1− sr(1− `))‖$r − $‖.

From (7) and (12), we get

‖ωr − $‖ = ‖=((1− tr)ρr + er=ρr)−=$‖
≤ `‖(1− tr)ρr + er=ρr − $‖
≤ `[(1− tr)‖ρr − $‖+ er‖=ρr −=$‖] (12)

≤ `[(1− tr(1− `))‖ρr − $‖]
≤ `[(1− sr(1− `))(1− tr(1− `))]‖$r − $‖.

Using (7) and (13), we obtain that

‖ϑr − $‖ = ‖=(=ωr)−=$‖
≤ `‖=ωr − $‖ (13)

≤ `2‖ωr − $‖
≤ `3[(1− sr(1− `))(1− tr(1− `))]‖$r − $‖.
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Finally, from (7) and (14), one can write

‖$r+1 − $‖ = ‖(1− er)ϑr + er=ϑr −=$‖
≤ (1− er)‖ϑr − $‖+ er‖=ϑr −=$‖ (14)

≤ (1− er(1− `))‖ϑr − $‖
≤ `3(1− er(1− `))(1− sr(1− `))(1− tr(1− `))‖$r − $‖.

As ` ∈ (0, 1) and 0 < er, sr, tr < 1, it follows that (1− er(1− `)) < 1, (1− sr(1− `)) < 1
and (1− tr(1− `)) < 1, hence

(1− er(1− `))(1− sr(1− `))(1− tr(1− `)) < 1.

Thus, (15) reduces to
‖$i+1 − $‖ ≤ `3‖$r − $‖.

By induction, one can write

‖$r+1 − $‖ ≤ `3(r+1)‖$0 − $‖ → 0 as r → ∞. (15)

Hence, $r −→ $. The uniqueness $ follows immediately by the definition of =. This
finishes the proof.

Theorem 2. Let ∆ 6= ∅ be a closed convex subset of a BS Π and = : ∆→ ∆ be ACM. If {$r} is
a sequence iterated by (7). Then {$r} converges faster than {zr}, which is made by the iterative
scheme (5).

Proof. Keeping in mind (15) of Theorem 1, we get

‖$r+1 − $‖ ≤ `3(r+1)‖$0 − $‖, r ∈ N.

Additionally, using (5), one can obtain

‖vr − $‖ = ‖(1− ηr)zr + ηr=zr −=$‖
≤ (1− ηr)‖zr − $‖+ ηr‖=zr −=$‖ (16)

≤ (1− ηr(1− `))‖zr − $‖.

From (5) and (17), we have

‖ϑr − $‖ = ‖=vr −=$‖
≤ `‖vr − $‖ (17)

≤ `(1− ηr(1− `))‖zr − $‖.

Again, using (5), (17), and (18), one has

‖zr+1 − $‖ = ‖=((1− γr)=vr + γr=ϑr)−=$‖
≤ `‖(1− γr)=vr + γr=ϑr − $‖
≤ `((1− γr)‖=vr −=$‖+ γr‖=ϑr −=$‖)
≤ `2((1− γr)‖vr − $‖+ γr‖ϑr − $‖)
≤ `2[(1− γr)(1− ηr(1− `))‖zr − $‖+ γr`(1− ηr(1− `))‖zr − $‖]
≤ `2[(1− γr(1− `))(1− ηr(1− `))‖zr − $‖]
≤ `2‖zr − $‖.
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By induction, we have

‖zr+1 − $‖ ≤ `2(r+1)‖zr − $‖. (18)

Dividing (15) by (18), we find that

‖$r+1 − $‖
‖zr+1 − $‖ ≤

`3(r+1)‖$0 − $‖
`2(r+1)‖zr − $‖

= `(r+1) ‖$0 − $‖
‖zr − $‖ → 0, as r → ∞,

which implies that {$r} converges faster than {zr} to $.

Example 2. Assume that Π = R3 and ∆ =
{

v = (v1, v2, v3) : (v1, v2, v3) ∈ [0, 6]3
}

, where(
[0, 6]3 = [0, 6]× [0, 6]× [0, 6]

)
is a subset of Π equipped with the norm ‖v‖ = ‖(v1, v2, v3)‖ =

|v1|+ |v2|+ |v3|. Define a mapping = : ∆→ ∆ by

=v =

{ (v1
3 , v2

3 , v3
3
)
, if (v1, v2, v3) ∈ [0, 3)3,(v1

6 , v2
6 , v3

6
)
, if (v1, v2, v3) ∈ [3, 6]3.

It is clear that = owns a unique FP, it is (0, 0, 0). Now, we shall show that = is a contractive-
like mapping and, hence, ACM. For this, we define the function ξ : [0, ∞)→ [0, ∞) by ξ(v) = v

4 .
Obviously, ξ is a SIC function with ξ(0) = 0. If v ∈ [0, 3)3, we have

‖v−=v‖ =
∥∥∥(v1, v2, v3)−

(v1

3
,

v2

3
,

v3

3

)∥∥∥ =

∥∥∥∥(2v1

3
,

2v2

3
,

2v3

3

)∥∥∥∥,

and

ξ(‖v−=v‖) = ξ

(∥∥∥∥(2v1

3
,

2v2

3
,

2v3

3

)∥∥∥∥)
=

∥∥∥(v1

6
,

v2

6
,

v3

6

)∥∥∥ =
∣∣∣v1

6

∣∣∣+ ∣∣∣v2

6

∣∣∣+ ∣∣∣v3

6

∣∣∣. (19)

Analogously, if v ∈ [3, 6]3, one has

‖v−=v‖ =
∥∥∥(v1, v2, v3)−

(v1

6
,

v2

6
,

v3

6

)∥∥∥ =

∥∥∥∥(5v1

6
,

5v2

6
,

5v3

6

)∥∥∥∥,

and

ξ(‖v−=v‖) = ξ

(∥∥∥∥(5v1

6
,

5v2

6
,

5v3

6

)∥∥∥∥)
=

∥∥∥∥(5v1

24
,

5v2

24
,

5v3

24

)∥∥∥∥ =

∣∣∣∣5v1

24

∣∣∣∣+ ∣∣∣∣5v2

24

∣∣∣∣+ ∣∣∣∣5v3

24

∣∣∣∣. (20)

After that, we discuss the cases below:
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(I) If v, υ ∈ [0, 3)3, then by (19), we get

‖=v−=υ‖ =
∥∥∥(v1

3
,

v2

3
,

v3

3

)
−
(υ1

3
,

υ2

3
,

υ3

3

)∥∥∥
=

∣∣∣v1

3
− υ1

3

∣∣∣+ ∣∣∣v2

3
− υ2

3

∣∣∣+ ∣∣∣v3

3
− υ3

3

∣∣∣
=

1
3
[|v1 − υ1|+ |v2 − υ2|+ |v3 − υ3|]

=
1
3
‖(v1, v2, v3)− (υ1, υ2, υ3)‖ =

1
3
‖v− υ‖

≤ 1
3
‖v− υ‖+

∣∣∣v1

6

∣∣∣+ ∣∣∣v2

6

∣∣∣+ ∣∣∣v3

6

∣∣∣
=

1
3
‖v− υ‖+ ξ(‖v−=v‖).

(II) If v, υ ∈ [3, 6]3, then by (20), we have

‖=v−=υ‖ =
∥∥∥(v1

6
,

v2

6
,

v3

6

)
−
(υ1

6
,

υ2

6
,

υ3

6

)∥∥∥
=

∣∣∣v1

6
− υ1

6

∣∣∣+ ∣∣∣v2

6
− υ2

6

∣∣∣+ ∣∣∣v3

6
− υ3

6

∣∣∣
=

1
6
[|v1 − υ1|+ |v2 − υ2|+ |v3 − υ3|]

=
1
6
‖(v1, v2, v3)− (υ1, υ2, υ3)‖ =

1
6
‖v− υ‖

≤ 1
6
‖v− υ‖+

∣∣∣∣5v1

24

∣∣∣∣+ ∣∣∣∣5v2

24

∣∣∣∣+ ∣∣∣∣5v3

24

∣∣∣∣
≤ 1

3
‖v− υ‖+ ξ(‖v−=v‖).

(III) If v ∈ [0, 3)3 and υ ∈ [3, 6]3, then by (19), we obtain that

‖=v−=υ‖ =
∥∥∥(v1

3
,

v2

3
,

v3

3

)
−
(υ1

6
,

υ2

6
,

υ3

6

)∥∥∥
=

∥∥∥(v1

3
− υ1

6

)
,
(v2

3
− υ2

6

)
,
(v3

3
− υ3

6

)∥∥∥
=

∥∥∥(v1

6
+

v1

6
− υ1

6

)
,
(v2

6
+

v2

6
− υ2

6

)
,
(v3

6
+

v3

6
− υ3

6

)∥∥∥
≤

∣∣∣v1

6
+

v1

6
− υ1

6

∣∣∣+ ∣∣∣v2

6
+

v2

6
− υ2

6

∣∣∣+ ∣∣∣v3

6
+

v3

6
− υ3

6

∣∣∣
≤

∣∣∣v1

6

∣∣∣+ ∣∣∣v2

6

∣∣∣+ ∣∣∣v3

6

∣∣∣+ ∣∣∣v1

6
− υ1

6

∣∣∣+ ∣∣∣v2

6
− υ2

6

∣∣∣+ ∣∣∣v3

6
− υ3

6

∣∣∣
=

1
6
[|v1 − υ1|+ |v2 − υ2|+ |v3 − υ3|] + ξ(‖v−=v‖)

≤ 1
3
‖(v1, v2, v3)− (υ1, υ2, υ3)‖+ ξ(‖v−=v‖)

=
1
3
‖v− υ‖+ ξ(‖v−=v‖).
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(IV) If υ ∈ [0, 3)3 and v ∈ [3, 6]3, then by (19), one has

‖=v−=υ‖ =
∥∥∥(v1

6
,

v2

6
,

v3

6

)
−
(υ1

3
,

υ2

3
,

υ3

3

)∥∥∥
=

∥∥∥(v1

6
− υ1

3

)
,
(v2

6
− υ2

3

)
,
(v3

6
− υ3

3

)∥∥∥
=

∥∥∥(v1

3
− v1

6
− υ1

3

)
,
(v2

3
− v2

6
− υ2

3

)
,
(v3

3
− v3

6
− υ3

3

)∥∥∥
≤

∣∣∣v1

3
− v1

6
− υ1

3

∣∣∣+ ∣∣∣v2

3
− v2

6
− υ2

3

∣∣∣+ ∣∣∣v3

3
− v3

6
− υ3

3

∣∣∣
≤

∣∣∣v1

6

∣∣∣+ ∣∣∣v2

6

∣∣∣+ ∣∣∣v3

6

∣∣∣+ ∣∣∣v1

3
− υ1

3

∣∣∣+ ∣∣∣v2

3
− υ2

3

∣∣∣+ ∣∣∣v3

3
− υ3

3

∣∣∣
=

1
3
[|v1 − υ1|+ |v2 − υ2|+ |v3 − υ3|] + ξ(‖v−=v‖)

=
1
3
‖(v1, v2, v3)− (υ1, υ2, υ3)‖+ ξ(‖v−=v‖)

=
1
3
‖v− υ‖+ ξ(‖v−=v‖).

Based on the above cases, we conclude that condition (1) is satisfied. Hence, = is a contractive-
like mapping.

4. Stability Analysis

In 1987, Harder [38] rigorously examined the idea of stability of an FP iteration process
in her Ph.D. thesis as follows:

Definition 13 ([38]). Let = : ∆→ ∆ be a given mapping and vr+1 = g(=, vr) be an FP iteration
so that {vr} converges to v ∈ Ξ(=). For a chosen sequence {qr} in Π, define

εr = ‖qr − g(=, qr)‖, for all r ∈ N.

Then, an FP iteration method is called =−stable if the assertion below holds

lim
r→∞

εr = 0 iff lim
r→∞

qr = v.

Several writers have lately examined the idea of stability in Definition 13 for various
classes of contraction mappings, for example, see [39,40]. Because the sequence {qr} is
arbitrarily chosen, Berinde pointed out in [41] that the concept of stability in Definition 13 is
not precise. To get over this restriction, the same author noted that if {qr}were approximate
sequences of {vr}, then the definition would make sense. As a result, any iteration process
will be weakly stable if it is stable, but the converse is not true in general.

Definition 14 ([41]). A sequence {qr} ⊂ ∆ is called an approximate sequence of {vr} ⊂ ∆, if for
any b ≥ 1, there is α = α(b) so that

‖vr − qr‖ ≤ α, for all r ≥ b.

Definition 15 ([41]). Let {vr} be an iterative process defined for v0 ∈ ∆ and

vr+1 = g(=, vr), r ≥ 0, (21)

where = : ∆→ ∆ is a given mapping. Suppose that {vr} converges to an FP v∗ of = and for any
approximate sequence {qr} ⊂ ∆ of {vr}

lim
r→∞

εr = lim
r→∞
‖qr+1 − g(=, qr)‖ = 0 implies lim

r→∞
qr = v∗,

then, Equation (21) is called weakly stable with respect to =, or weakly =−stable.
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By using the more general concept of the equivalent sequence in place of the approxi-
mate sequence in Definition 15, Timis [42] studied a new concept of weak stability in 2012
as follows:

Definition 16 ([43]). The sequences {vr} and {qr} are called equivalent if

lim
r→∞
‖vr − qr‖ = 0.

Definition 17 ([42]). Assume that {vr} is an iterative procedure defined for v0 ∈ ∆ and

vr+1 = g(=, vr), r ≥ 0, (22)

where = : ∆→ ∆ is a self-mapping. Suppose that {vr} converges to an FP v∗ of = and for any
equivalent sequence {qr} ⊂ ∆ of {vr}

lim
r→∞

εr = lim
r→∞
‖qr+1 − g(=, qr)‖ = 0 implies lim

r→∞
qr = v∗,

then, Equation (21) is called weakly ω2−stable with respect to =.

Any analogous sequence is an approximative sequence, as demonstrated with an
example in [42], but the opposite is not true.

Here, we demonstrate that for contractive-like mappings, the HR∗−iterative method
(7) is ω2−stable with respect to =.

Theorem 3. Under the requirements of Theorem 1, the proposed algorithm (7) is ω2−stable with
respect to =.

Proof. Suppose that {qr} ⊂ ∆ is an equivalent sequence of {$r}. Set εr = ‖qr+1 − (1−
er)cr−er=cr)‖, where cr = =(=(dr)), dr = =((1− tr) fr + tr= fr), fr = (1− sr)qr + sr=qr.
Assume that limr→∞ εr = 0. Then, by triangle inequality and (2) and (7), we get

‖qr+1 −v∗‖ ≤ ‖qr+1 − $r+1‖+ ‖$r+1 −v∗‖
≤ ‖qr+1 − (1− er)cr − er=cr‖

+‖(1− er)cr + er=cr − $r+1‖+ ‖$r+1 −v∗‖
= εr + ‖(1− er)cr + er=cr − (1− er)ϑr − er=ϑr‖+ ‖$r+1 −v∗‖
≤ εr + (1− er)‖cr − ϑr‖+ er‖=cr −=ϑr‖+ ‖$r+1 −v∗‖ (23)

≤ εr + (1− er)‖cr − ϑr‖+ er[`‖cr − ϑr‖+ ξ(‖cr −=cr‖)]
+‖$r+1 −v∗‖

≤ εr + (1− (1− `)er)‖cr − ϑr‖+ erξ(‖cr −v∗‖+ ‖=v∗ −=cr‖)
+‖$r+1 −v∗‖

≤ εr + (1− (1− `)er)‖cr − ϑr‖+ erξ((1 + `)‖cr −v∗‖)
+‖$r+1 −v∗‖.

Because (1− (1− `)er) < 1, for r ≥ 1, then (24) reduces to

‖qr+1 −v∗‖ ≤ εr + ‖cr − ϑr‖+ erξ((1 + `)‖cr −v∗‖) + ‖$r+1 −v∗‖. (24)
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Additionally, one can obtain

‖cr − ϑr‖ = ‖=(=(dr))−=(=(ωr))‖
≤ `‖=dr −=ωr‖+ ξ(‖=(ωr)−=(=(ωr))‖)
≤ `[`‖dr −ωr‖+ ξ(‖ωr −=ωr‖)]

+ξ(`‖ωr −v∗‖+ `‖=(ωr)−v∗‖)
≤ `2‖dr −ωr‖+ `ξ(‖ωr −v∗‖+ ‖=ωr −v∗‖) (25)

+ξ(`‖ωr −v∗‖+ `‖=(ωr)−v∗‖)
≤ `2‖dr −ωr‖+ `ξ(1 + `)‖ωr −v∗‖

+ξ
(
`‖ωr −v∗‖+ `2‖ωr −v∗‖

)
≤ `2‖dr −ωr‖+ `ξ(1 + `)‖ωr −v∗‖+ ξ(`(1 + `)‖ωr −v∗‖.

Analogously, we can write

‖dr −ωr‖ ≤ `2‖ρr − fr‖+ `ξ(1 + `)‖ρr −v∗‖+ ξ(`(1 + `)‖ρr −v∗‖. (26)

Finally, for r ≥ 1, we get

‖ρr − fr‖ = (1− sr)‖$r − qr‖+ sr‖=$r −=qr‖
≤ (1− sr)‖$r − qr‖+ sr`‖$r − qr‖+ srξ(‖$r −=$r‖) (27)

≤ (1− (1− `)sr)‖$r − qr‖+ sr(1 + `)ξ(‖$r −v∗‖)
≤ ‖$r − qr‖+ sr(1 + `)‖$r −v∗‖, since (1− (1− `)sr) < 1.

It follows from (24)–(28) that

‖qr+1 −v∗‖ ≤ εr + `4‖$r − qr‖+ `4srξ((1 + `)‖$r −v∗‖)

`2ξ
(
(1 + `)‖ρr −v∗‖+ `2ξ(`(1 + `)‖ρr −v∗‖

)
(28)

+ξ((1 + `)‖ωr −v∗‖) + ξ(`(1 + `)‖ωr −v∗‖)
+erξ((1 + `)‖cr −v∗‖) + ‖$r+1 −v∗‖.

From Theorem 1, we find that limr→∞‖$r −v∗‖ = 0. Since ξ and is a SIC-functions
with ξ(0) = 0, hence limr→∞‖$r+1 −v∗‖ = 0. Because {$r} and {qr} are equivalent,
we have limr→∞‖$r − qr‖ = 0. Taking the limit of (29) and since limr→∞ εr = 0, we get
limr→∞‖qr −v∗‖ = 0. Hence, the considered algorithm (7) is ω2−stable with respect
to =.

Now, we present the following illustrative example to support the analytical proof of
Theorem 3.

Example 3. Assume that ∆ = [0, 1] and (R, ‖.‖) is a BS equipped with the usual norm. Define
a mapping = : [0, 1] → [0, 1] by =$ = $

8 . Clearly, 0 is a unique FP of = and = fulfills (1) with
` = 1

8 .
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After that, we show that the sequence {$r} produced by (7) converges to 0 ∈ Ξ(=). For this,
assume that sr = tr = er =

1
r+4 and $0 ∈ [0, 1], then by (7), one has

ρr =

(
1− 1

r + 4
+

1
8(r + 4)

)
$r =

(
1− 7

8(r + 4)

)
$r,

ωr =
1
8

(
1− 7

4(r + 4)
+

49

82(r + 4)2

)
$r,

ϑr =
1
83

(
1− 7

4(r + 4)
+

49

82(r + 4)2

)
$r,

$r+1 =
1
83

(
1− 42

8(r + 4)
+

49

82(r + 4)2 +
147

2× 82(r + 4)2 −
343

83(r + 4)3

)
$r

=

(
1
83 −

42
84(r + 4)

+
49

85(r + 4)2 +
147

2× 85(r + 4)2 −
343

86(r + 4)3

)

=

[
1−

(
511
512

+
42

84(r + 4)
− 49

85(r + 4)2 −
147

2× 85(r + 4)2 +
343

86(r + 4)3

)]
$r.

Put πr = 511
512 + 42

84(r+4) −
49

85(r+4)2 − 147
2×85(r+4)2 + 343

86(r+4)3 . Clearly πr ∈ (0, 1) for each

r > 0 and ∑∞
r=0 πr = ∞. Hence, by Lemma 1, we deduce that limr→∞ $r = 0. Additionally, it is

simple to see that limr→∞‖$r‖ = ‖limr→∞ $r‖ = 0. Then, if we consider qr =
1

r+5 for each r > 0,
we have

0 ≤ lim
r→∞
‖$r − qr‖ ≤ lim

r→∞
‖$r‖+ lim

r→∞
‖qr‖ = 0,

which implies that limr→∞‖$r − qr‖ = 0. Hence, the two sequences {$r} and {qr} are equivalent.
Ultimately, assume that εr is the sequence associated with the iterative sequence {$r}, then,

we have

εr =

∥∥∥∥∥qr+1 −
(

511
512

+
42

84(r + 4)
− 49

85(r + 4)2 −
147

2× 85(r + 4)2 +
343

86(r + 4)3

)
qr

∥∥∥∥∥
=

∥∥∥∥∥ 1
r + 6

−
(

511
512

+
42

84(r + 4)
− 49

85(r + 4)2 −
147

2× 85(r + 4)2 +
343

86(r + 4)3

)
qr

∥∥∥∥∥
→ 0, as r → ∞.

Therefore, the proposed Algorithm (7) is ω2−stable with respect to =.

5. Results of the Convergence

This part is devoted to proving the weak and strong convergence theorems for our
iterative procedure (7) for RSTN mappings.

Lemma 5. Assume that ∆ 6= ∅ is a closed convex subset of a BS Π and = : ∆→ ∆ is an RSTN
mapping with Ξ(=) 6= ∅. Suppose that {$r} is a sequence maked by (7), then limr→∞‖$r −v∗‖
exists for each v∗ ∈ Ξ(=).

Proof. Let v∗ ∈ Ξ(=). According to Lemma 3, we get

‖ρr −v∗‖ = ‖(1− sr)$r + sr=$r −=v∗‖
≤ (1− sr)‖$r −v∗‖+ sr‖=$r −=v∗‖ (29)

≤ (1− sr)‖$r −v∗‖+ sr‖$r −v∗‖
= ‖$r −v∗‖,
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‖ωr −v∗‖ = ‖=((1− tr)ρr + tr=ρr)−=v∗‖
≤ ‖(1− tr)ρr + tr=ρr −v∗‖ (30)

≤ (1− tr)‖ρr −v∗‖+ tr‖=ρr −=v∗‖
≤ ‖ρr −v∗‖ ≤ ‖$r −v∗‖,

‖ϑr −v∗‖ = ‖=(=(ωr))−=v∗‖
≤ ‖=(ωr)−v∗‖
≤ ‖ωr −v∗‖ ≤ ‖ρr −v∗‖ ≤ ‖$r −v∗‖,

and

‖$r+1 −v∗‖ = ‖(1− er)ϑr + er=ϑr −=v∗‖
≤ (1− er)‖ϑr −v∗‖+ er‖=ϑr −=v∗‖
≤ ‖ϑr −v∗‖ ≤ ‖ωr −v∗‖
≤ ‖ρr −v∗‖ ≤ ‖$r −v∗‖.

This proves that {‖$r −v∗‖} is a bounded and decreasing sequence of R. Hence,
limr→∞‖$r −v∗‖ exists for each v∗ ∈ Ξ(=).

Lemma 6. Assume that ∆ 6= ∅ is a closed convex subset of a uniformly convex BS Π and
= : ∆ → ∆ is an RSTN mapping. Let {$r} be a sequence produced by (7). Then Ξ(=) 6= ∅ iff
{$r} is bounded and limr→∞‖=$r − $r‖ = 0.

Proof. Let Ξ(=) 6= ∅ and v∗ ∈ Ξ(=). Based on Lemma 5, we have limr→∞‖$r −v∗‖
exists and {$r} is bounded. Set

lim
r→∞
‖$r −v∗‖ = u. (31)

It follows from (30) and (31) that

lim sup
r→∞

‖ρr −v∗‖ ≤ u and lim sup
r→∞

‖ωr −v∗‖ ≤ u. (32)

Again, using Lemma 3, one has

lim sup
r→∞

‖=$r −v∗‖ ≤ lim sup
r→∞

‖$r −v∗‖ = u.

From (7) and Lemma 5, one can obtain

‖$r+1 −v∗‖ = ‖(1− er)ϑr + er=ϑr −=v∗‖
≤ (1− er)‖ϑr −v∗‖+ er‖=ϑr −=v∗‖
≤ (1− er)‖$r −v∗‖+ er‖ϑr −v∗‖
≤ (1− er)‖$r −v∗‖+ er‖=(=(ωr))−v∗‖
≤ (1− er)‖$r −v∗‖+ er‖=ωr −v∗‖
≤ (1− er)‖$r −v∗‖+ er‖ωr −v∗‖
= ‖$r −v∗‖ − er‖$r −v∗‖+ er‖ωr −v∗‖,

which leads to

‖$r+1 −v∗‖ − ‖$r −v∗‖ ≤ ‖$r+1 −v∗‖ − ‖$r −v∗‖
er

≤ ‖ωr −v∗‖ − ‖$r −v∗‖.
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Hence,
u ≤ lim inf

r→∞
‖ωr −v∗‖. (33)

Using (32) and (33), we deduce that limr→∞‖ωr −v∗‖ = u. Similarly, one can prove
that limr→∞‖ρr −v∗‖ = u. Again, using (7), we have

u = lim
r→∞
‖ρr −v∗‖ = lim

r→∞
‖(1− sr)($r −v∗) + sr(=$r −v∗)‖.

Because sr < 1 for each r ≥ 1, then by Lemma 2, we get

lim
r→∞
‖=$r − $r‖ = 0.

Conversely, assume that {$r} is bounded and limr→∞‖=$r − $r‖ = 0. Let v∗ ∈
Z(∆, {$r}). Based on Lemma 4, we obtain

<(=v∗, {$r}) = lim sup
r→∞

‖$r −=v∗‖

≤
(

3 + `

1− `

)
lim sup

r→∞
‖=$r − $r‖+ lim sup

r→∞
‖$r −v∗‖

= lim sup
r→∞

‖$r −v∗‖ = <(v∗, {$r}).

Thus, =v∗ ∈ Z(∆, {$r}). As Π is uniformly convex, then Z(∆, {$r}) has exactly one
point, hence v∗ = =v∗.

We now prove the weak convergence result. The following lemma will be relevant in
this situation:

Lemma 7. Assume that all requirements of Theorem 4 are satisfied, then limr→∞〈$r, Θ
(
v∗1 −v∗2

)
〉

exists for any v∗1 , v∗2 ∈ Ξ(=) and for each $, q ∈ ∇w($r), limr→∞〈$− q, Θ
(
v∗1 −v∗2

)
〉 = 0,

where ∇w($r) refer to the set of all weak limit points of {$r}.

Proof. The proof follows immediately from Lemma 2.3 [44].

Theorem 4. Assume that ∆, = and {$r} are as in Lemma 6. Let Π be a uniformly convex BS.
Suppose also that the assertions below hold:

(a1) I −= is demiclosed with respect to zero and ∆ satisfies Opial’s condition;
(a2) ∆ has a Fréchet differential norm.

Then the sequence {$r}⇀ x ∈ =, provided that Ξ(=) 6= ∅.

Proof. Based on Lemma 5, we have that limr→∞‖$r −v∗‖ exists. It is now sufficient to
demonstrate that {$r} has a unique weak subsequential limit in Ξ(=). Assume that {$ri}
and {$rj} are two subsequences of {$r} so that {$ri} ⇀ x and {$rj} ⇀ y. If the assertion
(a1) holds, then by Lemma 6, limr→∞‖=$r − $r‖ = 0. Since I − = is demiclosed with
respect to zero, then we obtain that (1− =)x = 0, i.e., x = =x, similarly y = =y. For
uniqueness, as x, y ∈ Ξ(=), then limr→∞‖$r − x‖ and limr→∞‖$r − y‖ exist. If x and y are
distinct, then by Opial’s condition, one has

lim
r→∞
‖$r − x‖ = lim

ri→∞
‖$ri − x‖ < lim

ri→∞
‖$ri − y‖ = lim

r→∞
‖$r − y‖

= lim
r→∞

∥∥∥$rj − y
∥∥∥ < lim

r→∞

∥∥∥$rj − x
∥∥∥ = lim

r→∞
‖$r − x‖,

which is a contradiction. hence x = y. If the assertion (a2) holds, then by Lemma 7,
one can write for all $, q ∈ ∇w($r), limr→∞〈$ − q, Θ

(
v∗1 −v∗2

)
〉 = 0. Thus, ‖x− y‖2 =

〈x− y, Θ(x− y)〉, this leads to x = y.
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The strong convergence results that we now establish are as follows:

Theorem 5. Let ∆, =, and Π be as in Lemma 6. The sequence {$r} produced by HR∗ iter-
ative procedure (7) converges to an element of Ξ(=) iff lim infr→∞ d($r, Ξ(=)) = 0, where
d($r, Ξ(=)) = inf{‖$r −v∗‖ : v∗ ∈ Ξ(=)}.

Proof. Prove the necessity is clear. Contrariwise, assume that lim infr→∞ d($r, Ξ(=)) = 0
and v∗ ∈ Ξ(=). From Lemma 5 , limr→∞‖$r −v∗‖ exists for any v∗ ∈ Ξ(=). It is enough
to demonstrate that the sequence {$r} is Cauchy in ∆. As limr→∞ d($r, Ξ(=)) = 0, then for
given ε > 0, there is θ0 ∈ N so that

d($r, Ξ(=)) < ε

2
and inf{‖$r −v∗‖ : v∗ ∈ Ξ(=)} < ε

2
, for all r ≥ θ0.

Particularly, inf
{∥∥$θ0 −v∗

∥∥ : v∗ ∈ Ξ(=)
}
< ε

2 . Hence, there is v∗ ∈ Ξ(=) so that∥∥$θ0 −v∗
∥∥ <

ε

2
.

Now, for θ, r ≥ θ0, we get

‖$θ+r − $r‖ ≤ ‖$θ+r −v∗‖+ ‖$r −v∗‖
≤

∥∥$θ0 −v∗
∥∥+ ∥∥$θ0 −v∗

∥∥
= 2

∥∥$θ0 −v∗
∥∥ < ε.

This proves that the sequence {$r} is Cauchy in ∆. The closedness of ∆ implies that
there is an element q ∈ ∆ so that limr→∞ $r = q. Additionally, limr→∞ d($r, Ξ(=)) = 0
leads to d(q, Ξ(=)) = 0, that is q ∈ Ξ(=).

If we take the set ∆ as nonempty compact convex (NCC, for short), we have the
following theorem:

Theorem 6. Let = and Π be as in Lemma 6. Assume that ∆ is a NCC subset of Π. If {$r} is an
iterative sequence generated by HR∗ iterative scheme (7), then {$r} −→ q ∈ Ξ(=).

Proof. Based on Lemma 6, limr→∞‖=$r − $r‖ = 0. Because ∆ is a NCC, then there is
a convergent subsequence {$ri} of {$r} so that {$ri} −→ q ∈ Ξ(=). Setting $ri = υ in
Lemma 4, we have

‖$ri −=q‖ ≤
(

3 + `

1− `

)
‖$ri −=$ri‖+ ‖$ri − q‖.

As i → ∞, one can find that $ri → =q, this implies that q = =q, i.e., q ∈ Ξ(=). We
conclude from Lemma 5 that limr→∞‖$r − q‖ exists, hence {$r} −→ q ∈ Ξ(=).

The following theorem is obtained in the strong convergence for the sequence {$r} if
the operator =meets condition (I):

Theorem 7. Let ∆, =, and Π be as in Lemma 6. If {$r} is an iterative sequence generated by HR∗

iterative scheme (7), then {$r} −→ q ∈ Ξ(=) if = satisfies condition (I).

Proof. According to Lemma 6, limr→∞‖=$r − $r‖ = 0. Using Definition 12, we get

0 ≤ lim
r→∞

κ(d($r, Ξ(=))) ≤ lim
r→∞
‖$r −=$r‖ implies lim

r→∞
κ(d($r, Ξ(=))) = 0.

Since κ : (0, ∞)→ (0, ∞) is a nondecreasing function with κ(0) = 0 and for all w > 0,
κ(w) > 0, we get limr→∞ d($r, Ξ(=)) = 0. Because all of the prerequisites of Theorem 5
have been demonstrated, then one can infer that the sequence {$r} −→ q ∈ Ξ(=).
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6. Numerical Example

In this part, we provide an illustrative example of an RSTN mapping that does not meet
condition (C). We also assess the convergence of the HR∗ iterative scheme in comparison
to some of the most popular iterative schemes in the literature.

Example 4. Consider (R, ‖.‖) as a BS equipped with the usual norm and ∆ = [3, 5]. Define a
mapping = : ∆→ ∆ by

=v =

{
v+6

3 , if v < 5,
2, if v = 5.

In order to prove that = does not satisfy condition (C), we take v = 4 and υ = 5, hence

1
2
|v−=v| = 1

2
|4−=4| = 1

3
< 1 = |v− υ|.

However,

|=v−=υ| ≤ |=4−=5| =
∣∣∣∣10

3
− 6

3

∣∣∣∣ = 4
3
> 1 = |v− υ|.

Now, to show that = is an RSTN mapping, we consider the cases below:

(I) If v, υ < 5, we get

`|v−=v|+ `|υ−=υ|+ (1− 2`)|v− υ|

=
1
2

∣∣∣∣v−(v + 6
3

)∣∣∣∣+ 1
2

∣∣∣∣υ−(υ + 6
3

)∣∣∣∣
=

1
2

∣∣∣∣2v− 6
3

∣∣∣∣+ 1
2

∣∣∣∣2υ− 6
3

∣∣∣∣
≥ 1

2

∣∣∣∣(2v− 6
3

)
−
(

2υ− 6
3

)∣∣∣∣
=

1
2

∣∣∣∣2v

3
− 2υ

3

∣∣∣∣ = 1
3
|v− υ| = |=v−=υ|.

(II) If v < 5 and υ = 5, we obtain

`|v−=v|+ `|υ−=υ|+ (1− 2`)|v− υ|

=
1
2

∣∣∣∣v−(v + 6
3

)∣∣∣∣+ 1
2
|5− 2|

=
1
2

∣∣∣∣2v− 6
3

∣∣∣∣+ 3
2
=
∣∣∣v

3

∣∣∣+ 1
2

≥
∣∣∣v

3

∣∣∣ = |=v−=υ|.

(III) If υ < 5 and v = 5, we have

`|v−=v|+ `|υ−=υ|+ (1− 2`)|v− υ|

=
1
2
|5− 2|+ 1

2

∣∣∣∣υ−(υ + 6
3

)∣∣∣∣
=

3
2
+

1
2

∣∣∣∣2υ− 6
3

∣∣∣∣ = 1
2
+
∣∣∣υ
3

∣∣∣
≥

∣∣∣υ
3

∣∣∣ = |=v−=υ|.
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• If υ = v = 5, we can write

`|v−=v|+ `|υ−=υ|+ (1− 2`)|v− υ|
= 3 > 0 = |2−=υ| = |=v−=υ|.

Hence, = is RSTN mapping and has a unique FP 3.
Numerically, by using MATLAB R2015a, we found that our iterative scheme converges faster

than both iterations (5) and (6) according to Tables 1 and 2 and Figures 1–6 as follows:

Table 1. Numerical comparison of results of Algorithms (5)–(7).

Number of Iterations

Initial Point (z1) Algorithm (5) Algorithms (6) Algorithms (7)

3.00 16 13 7
3.82 23 18 10
4.44 25 20 10

Table 2. Numerical comparison of results of Algorithms (5)–(7).

Execution Time in Seconds

Initial Point (z1) Algorithm (5) Algorithms (6) Algorithms (6)

3.00 0.00483290000000000 0.00595750000000000 0.000157200000000000
3.82 0.00236760000000000 0.00755520000000000 0.00779860000000000
4.44 0.00705930000000000 0.00946030000000000 0.00744400000000000

0 2 4 6 8 10 12 14 16

Number of Iterations

10-12

10-10

10-8

10-6

10-4

10-2

100

102

Figure 1. A graphical comparison of Algorithms (5)–(7), where z1 = 3.00.
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Figure 2. A graphical comparison of Algorithms (5)–(7), where z1 = 3.00.

0 5 10 15 20 25

Number of Iterations

10-12

10-10

10-8

10-6

10-4

10-2

100

102

Figure 3. A graphical comparison of Algorithms (5)–(7), where z1 = 3.82.
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Figure 4. A graphical comparison of Algorithms (5)–(7), where z1 = 3.82.
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Figure 5. A graphical comparison of Algorithms (5)–(7), where z1 = 4.44.
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1 2 3 4 5 6 7 8 9 10

Elapsed time [sec] 10-3
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100

102

Figure 6. A graphical comparison of Algorithms (5)–(7), where z1 = 4.44.

7. Solving 2D Volterra Integral Equation

In this section, we investigate how our main results can be applied to the nonlinear
2D Volterra integral equation of the form:

κ(λ, δ) = β(λ, δ) +

λ∫
0

δ∫
0

Ω1(r, u,κ(r, u))drdu

+η

λ∫
0

Ω2(δ, u,κ(λ, u))du + γ

δ∫
0

Ω3(λ, r,κ(δ, r))dr, (34)

for all λ, δ, r, u ∈ [0, 1], where κ ∈ Λ×Λ, β : [0, 1]× [0, 1] → R2, Ωi(i = 1, 2, 3) : [0, 1]×
[0, 1]×R2 → R2, η, γ ≥ 0 and Λ = C([0, 1]) is a BS with the maximum norm

‖v− υ‖∞ = max
τ∈[0,1]

|v(τ)− υ(τ)|, for all v, υ ∈ C([0, 1]).

Now, our main theorem here is as follows:

Theorem 8. Assume that f is a nonempty closed convex subset of Λ and = : f→ f described as

=κ(λ, δ) = β(λ, δ) +

λ∫
0

δ∫
0

Ω1(r, u,κ(r, u))drdu

+η

λ∫
0

Ω2(δ, u,κ(λ, u))du + γ

δ∫
0

Ω3(λ, r,κ(δ, r))dr.

Assume also the assertions below are true

(A1) the function κ : Λ×Λ→ R2 is continuous;
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(A2) the functions Ωi(i = 1, 2, 3) : [0, 1]× [0, 1]×R2 → R2 are continuous and there are the
constants `1, `2, `3 > 0 so that

|Ω1(r, u, v1(r, u))−Ω1(r, u, v2(r, u))| ≤ `1|v1 −v2|,
|Ω2(r, u, v1(r, u))−Ω2(r, u, v2(r, u))| ≤ `2|v1 −v2|,
|Ω3(r, u, v1(r, u))−Ω3(r, u, v2(r, u))| ≤ `3|v1 −v2|,

for v1, v2 ∈ R2;
(A3) for η, γ ≥ 0, `1 + η`2 + γ`3 ≤ ξ, where ξ ∈ (0, 1).

Then, the 2D Volterra integral Equation (34) has a solution in f×f provided that =
has an FP.

Proof. Let κ,κ∗ ∈ Λ×Λ, then

‖κ −=κ∗‖∞ = max
τ∈[0,1]

|κ(λ, δ)(τ)−=κ∗(λ, δ)|

= max
τ∈[0,1]

∣∣∣∣∣∣κ(λ, δ)(τ)− β(λ, δ)(τ)−
λ∫

0

δ∫
0

Ω1(r, u,κ∗(r, u))drdu

−η

λ∫
0

Ω2(δ, u,κ∗(λ, u))du− γ

δ∫
0

Ω3(λ, r,κ∗(δ, r))dr

∣∣∣∣∣∣
≤ max

τ∈[0,1]


∣∣∣∣∣∣κ(λ, δ)(τ)− β(λ, δ)(τ)−

λ∫
0

δ∫
0

Ω1(r, u,κ(r, u))drdu

−η

λ∫
0

Ω2(δ, u,κ(λ, u))du− γ

δ∫
0

Ω3(λ, r,κ(δ, r))dr

∣∣∣∣∣∣
+

∣∣∣∣∣∣
λ∫

0

δ∫
0

Ω1(r, u,κ(r, u))drdu−
λ∫

0

δ∫
0

Ω1(r, u,κ∗(r, u))drdu

∣∣∣∣∣∣
+η

∣∣∣∣∣∣
λ∫

0

Ω2(δ, u,κ(λ, u))du−
λ∫

0

Ω2(δ, u,κ∗(λ, u))du

∣∣∣∣∣∣
+γ

∣∣∣∣∣∣
δ∫

0

Ω3(λ, r,κ(δ, r))dr− γ

δ∫
0

Ω3(λ, r,κ∗(δ, r))dr

∣∣∣∣∣∣


≤ max
τ∈[0,1]

|κ(λ, δ)(τ)−=κ(λ, δ)|

+`1 max
τ∈[0,1]

λ∫
0

δ∫
0

|κ(r, u)−κ∗(r, u)|drdu + η`2 max
τ∈[0,1]

λ∫
0

|κ(r, u)−κ∗(r, u)|du

+γ`3 max
τ∈[0,1]

δ∫
0

|κ(r, u)−κ∗(r, u)|dr,
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which implies that

‖κ −=κ∗‖∞ ≤ max
τ∈[0,1]

|κ(λ, δ)(τ)−=κ(λ, δ)|

+ max
τ∈[0,1]

`1|κ(r, u)−κ∗(r, u)|+ η`2 max
τ∈[0,1]

|κ(r, u)−κ∗(r, u)|

+γ`3 max
τ∈[0,1]

|κ(r, u)−κ∗(r, u)|

≤ ‖κ −=κ∗‖∞ + (`1 + η`2 + γ`3) max
τ∈[0,1]

|κ(r, u)−κ∗(r, u)|

≤ ‖κ −=κ∗‖∞ + ξ‖κ −κ∗‖∞

≤ ‖κ −=κ∗‖∞ + ‖κ −κ∗‖∞.

Hence, by Lemma 4, = is an RSTN mapping because it fulfills the condition (10) on
f with

(
3+`
1−`

)
= 1. Set f = ∆ and Λ = Π, we find that all requirements of Lemma 6 are

satisfied. Therefore, = has at least one FP. Thus, problem (33) has a solution on f×f.

The following example support Theorem 8:

Example 5. Consider the following 2D Volterra integral equation

κ(λ, δ) =
π

2
λ− δ2

7π
+

λ∫
0

δ∫
0

cosκ(ru)
2

drdu +
2
7

λ∫
0

cosκ(λu)
2

du +
1
7

δ∫
0

cosκ(δr)
2

dr. (35)

It is clear that problem (35) is a special case of (34) with

β(λ, δ) =
π

2
λ− δ2

7π
, Ω1(r, u,κ(r, u)) =

cosκ(ru)
2

,

Ω2(δ, u,κ(λ, u)) =
cosκ(λu)

2
, Ω3(λ, r,κ(δ, r)) =

cosκ(δr)
2

, η =
2
7

and γ =
1
7

.

Then, for any r, u ∈ [0, 1] and v1, v2 ∈ R2, we find that

|Ω1(r, u, v1(r, u))−Ω1(r, u, v2(r, u))| ≤ 1
2
|cos v1 − cos v2|,

|Ω2(r, u, v1(r, u))−Ω2(r, u, v2(r, u))| ≤ 1
2
|cos v1 − cos v2|, (36)

|Ω3(r, u, v1(r, u))−Ω3(r, u, v2(r, u))| ≤ 1
2
|cos v1 − cos v2|,

According to the mean-value theorem, for any v1, v2 ∈ R2 with v1 < v2 there is
b ∈ [v1, v2] so that

cos v1 − cos v2

v1 −v2
= − sin(b), implies

|cos v1 − cos v2|
|v1 −v2|

= |− sin(b)| ≤ 1.

Hence, |cos v1 − cos v2| ≤ |v1 −v2| and (36) reduces to

|Ω1(r, u, v1(r, u))−Ω1(r, u, v2(r, u))| ≤ 1
2
|v1 −v2|,

|Ω2(r, u, v1(r, u))−Ω2(r, u, v2(r, u))| ≤ 1
2
|v1 −v2|,

|Ω3(r, u, v1(r, u))−Ω3(r, u, v2(r, u))| ≤ 1
2
|v1 −v2|,

where `1 = `2 = `3 = 1
2 and `1 + η`2 + γ`3 = ξ = 5

7 < 1. It is easy to see that β(λ, δ) is
continuous on [0, 1].
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Consequently, all conditions of Theorem 8 are satisfied. Therefore, there exists a
solution to the problem (36).

8. Conclusions and Future Works

In this study, a four-step iterative scheme known as the HR∗−iterative scheme (7)
is presented for approximating the fixed points of contractive-like mappings and RSTN
mappings. Analytically, it has been demonstrated that the new iterative scheme converges
faster than the iterative method (5) for contractive-like mappings. Furthermore, we have
shown numerically that for contractive-like mappings, our novel iterative method con-
verges faster than several popular iterative schemes in the literature. Additionally, the
ω2−stability result of the HR∗−iterative scheme (7) has also been obtained. To clarify
the idea of ω2−stability of the considered algorithm with regard to =, we have given an
example. Additionally, we have demonstrated a number of weak and strong convergence
theorems for RSTN mappings in uniformly convex BSs. In order to compare the conver-
gence behavior of the proposed algorithm (7) with certain well-known iterative schemes, a
novel example of RSTN mappings has been supplied. As a practical application, we proved
that a 2D Volterra integral equation has a solution. Additionally, we provided an engaging
example to explain the outcome of our application. Finally, as future work for this paper,
we suggest the following:

(1) If we define a mapping = in a Hilbert space ∆ endowed with inner product space,
we can find a common solution to the variational inequality problem by using our
iteration (7). This problem can be stated as follows: find ℘∗ ∈ ∆ such that

〈=℘∗,℘− ℘∗〉 ≥ 0 for all ℘ ∈ ∆,

where= : ∆→ ∆ is a nonlinear mapping. Variational inequalities are an important and
essential modeling tool in many fields such as engineering mechanics, transportation,
economics, and mathematical programming, see [45–47].

(2) We can generalize our algorithm to gradient and extra-gradient projection meth-
ods, these methods are very important for finding saddle points and solving many
problems in optimization, see [6].

(3) We can accelerate the convergence of the proposed algorithm by adding shrinking
projection and CQ terms. These methods stimulate algorithms and improve their
performance to obtain strong convergence, for more details, see [7].

(4) If we consider the mapping = as an α−inverse strongly monotone and the inertial
term is added to our algorithm, then we have the inertial proximal point algorithm.
This algorithm is used in many applications such as monotone variational inequalities,
image restoration problems, convex optimization problems, and split convex feasi-
bility problems, see [48–50]. For more accuracy, these problems can be expressed as
mathematical models such as machine learning and the linear inverse problem.

(5) We can try to determine the error of our present iteration.
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