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A B S T R A C T   

There are always differences between the computer predicted temperatures of a spacecraft thermal model and 
the temperatures measured during the mandatory laboratory thermal tests. As a consequence, the model must be 
correlated before the spacecraft is launched to space, in order to identify the correct parameters that match the 
experimentally measured temperatures. 

A new technique is presented to identify the parameters, based on the minimization of the error of the 
transient equations which governs the heat transfer in the spacecraft. The steady state minimization was pre
sented in a previous work, but the transient techniques presented hereafter enable a better and more extended 
identification of parameters despite the higher complexity of the computational problem. 

The use of a set of available subroutines (TOLMIN), which permits the constrained optimization of a general 
function, makes possible to ensure that the obtained parameters are non-negative, a requirement to have physical 
sense. The gradient function must be calculated for each problem, but this can be done automatically. 

Results show that for small and medium size transient Thermal Mathematical Models (TMM), a good corre
lation of thermal parameters can be achieved even if some of the nodes temperatures are not measured in the 
thermal tests.   

1. Introduction 

All space missions are very demanding from a technological point of 
view. The external conditions that are to be found in space make any 
space mission very challenging. Spacecraft Thermal Control is not an 
exception to this general rule and, as a consequence, all the design, 
fabrication and test phases before launching must be dealt with very 
carefully [1–3]. 

The usual way to design the thermal control subsystem of a space 
mission comprises several activities. One of these tasks is the elaboration 
of the Thermal Mathematical Model (TMM), which represents, from a 
computational point of view, the thermal behaviour of the spacecraft or 
payload under design. Several load cases can be studied with this model 
(hot case, cold case, transient cases …) in such a way that the temper
atures of different parts of the spacecraft can be predicted with 
reasonable accuracy. Then, these predicted temperatures that are fore
seen for different on orbit scenarios, can be compared with the 
maximum or minimum allowable temperatures of the spacecraft 

components. This way the thermal engineers can assess if the thermal 
design is appropriate for the different situations that are to be found [4, 
5]. 

Nevertheless, the computational models (TMMs), even if they are 
carefully constructed, can have errors, or can be poor when predicting 
temperatures in some cases. A thermal test campaign is, for this reason, 
always needed in the thermal control design. 

The different thermal tests try to represent the most extreme thermal 
cases that the spacecraft will find in its mission. Temperatures and other 
parameters are then measured in tests and compared with the results 
predicted by the TMMs. As it could be expected, there are always dif
ferences between both sets of temperatures (measured and computa
tionally calculated ones) and the origin of these mismatches is to be 
investigated and corrected [6–10]. 

It is generally accepted that the origin of the differences can be 
attributed, on the one hand, to the inherent errors of experimental 
measurements and, on the other hand, to some miscalculations on the 
parameters that define the TMMs. Different techniques can be used for 
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parameters identification (Genetic Algorithms, Gradient Based Algo
rithms …) [11–13]. 

In previous works by the authors, gradient based techniques were 
used in steady state parameter identification, with some encouraging 
results for small and medium sized thermal models [14]. However, 
difficulties appeared also when identifying the real thermal parameters 
of the TMMs, as there is not always a unique solution for the minimi
zation problem that gives the real thermal parameters. 

In this paper, we will study the improvements that can be achieved in 
the thermal parameters identification problem when using transient 
thermal tests results and their corresponding transient thermal tem

peratures coming from the TMM’s. 

2. Thermal Mathematical Models (TMM) 

The set of nonlinear equations that describe the temperatures of a 
transient thermal mathematical model for a node i is given by Eq. (1). 

∑j=n

j=1
GL(i, j)

(
Ti − Tj

)
+
∑j=n

j=1
σGR(i, j)

(
T4

i − T4
j

)
+MiCi

dTi

dt
= qi (1)  

where n is the number of nodes of the TMM, GL(i, j) is the conductive 
conductance (W/m) between nodes i and j, σ is the Stefan-Boltzmann 
constant (5.67⋅10− 8 W/(m2⋅K4)), GR(i, j) is the radiative conductance 
(m2) between nodes i and j, Ti and Tj are the temperatures (K) of nodes i 
and j, MiCi is the product of the i node mass (kg) times the heat capacity 
(J/(kg⋅K)) and qi is the power (W) that enters into node i. The subscripts i 
and j go from 1 to n. It is usual to call thermal inertia to the product MiCi 
as it describes the “opposition” to change the temperature of i node 
when subjected to a power input. 

The time derivative of the temperature of node i can be approxi
mated by Eq. (2). 

dTi

dt
=

Ti
t+Δt − Ti

t

Δt
(2) 

For a node i and for a general time step (t+Δt) it is possible to write 
Eq. (3).   

In order to simplify the notation, Eq. (4) will be used, obtaining Eq. 
(5). 

Ti
t+Δt =Ti ; Ti

t = Ti
t (4)  

∑j=n

j=1
GL(i, j)

(
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)
+
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j=1
σGR(i, j)

(
Ti

4 − Tj
4)+MiCi

(Ti − Ti
t)

Δt
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(5) 

For a general time step (t+Δt) and for one load case, the set of n 
equations that must be solved is shown in (6):   

This set of equations is solved for each time step (t + Δt), taking into 
account the temperature distribution in the previous time step. For the 
first time step, initial temperatures at time 0 are used. 

It is interesting to note that the number of GLs and GRs different from 
0 are less than their maximum number value (n ⋅(n − 1) /2), so the 
number of terms of Eq. (6) that are different from 0 is in general small. It 
has also to be noted that if boundary conditions (temperatures) are 
imposed in NSINK nodes, the corresponding equations disappear from 
the set of non-linear Eq. (6), making a total of (n − NSINK) equations for 
each time step. Finally, in the general approach that has been adopted to 
solve this transient problem, it has been assumed that Δt is constant 
during the whole calculation. This has been done by simplicity, but it is 
not strictly necessary. 

3. TMM correlation methodology 

As explained in Ref. [14], the TMM correlation tries to minimize the 
differences existing between the temperatures predicted by the TMM 
and the temperatures measured in the thermal tests. This is done by 
modifying the thermal parameters, that is, the GLs, GRs and MCs. 

If in the set of Eq. (6) we use the values of the measured temperatures 
T1, T2,… Tn as a data, the values of the GLs, GRs and MCs become the 
unknowns. For a particular time step, and for a particular load case, 
equilibrium equation of node i becomes   
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Eq. (7) must be fulfilled by each node, in each load case and in each 
time step, so the function to be minimized is given by Eq. (8). 

F =

(
∑ncase

icase=1

(
∑nstep

istep=1

(
∑i=n− NSINK

i=1

(
f (xi)

2)
)))

(8)  

subjected to next conditions, needed to have physical sense: 

GL(i, j)≥ 0 GR(i, j) ≥ 0 Ticase
i > 0 MiCi > 0 

It is important to underline that, to have an overdetermined system 
of equations that make the minimization of Eq. (8) possible, the number 
of linear independent equations must be greater than the number of 
unknowns. 

We can calculate the number of equations following Eq. (9). 

nequations= nstep⋅ncase⋅(n − NSINK) (9)  

where nstep is the number of time steps used in the calculations, ncase 
the number of load cases (hot case, cold case …), n is the number of 
nodes and NSINK the number of nodes whose temperature has been 
imposed. 

We can also calculate the number of unknowns following Eq. (10). 

nunknowns=NGL + NGR + NMCP + nstep⋅ncase⋅(n − NSINK − NTC)

(10)  

where NGL is the number of GLs present in the model, NGR the number 
of GRs, NMCP the number of MCs present in the equations 
(NMCP= n − NSINK) and NTC the number of nodes where we have 
measurements of temperatures (NTC stands for number of thermocou
ples). The last term of Eq. (10) (nstep ⋅ncase ⋅(n − NSINK − NTC)) quan
tifies the number of unknown temperatures, as sometimes it will be not 
possible to measure all the temperatures. In an ideal case, if all the 
temperatures of the nodes are measured, n = NSINK+ NTC, so the last 
term becomes 0. 

The key point is to determine ncase, the number of load cases (hot 
case, cold case, stay alive case …) that have to be tested in the labora
tories. 

According to the previous paragraphs it is necessary that: 

nstep ⋅ ncase⋅(n − NSINK) ≥ NGL + NGR + NMCP

+ nstep⋅ncase⋅(n − NSINK − NTC) (11) 

Doing some algebra and taking into account that NMCP = n− NSINK 
we can write 

nstep ⋅ ncase⋅NTC ≥ NGL + NGR + n − NSINK (12) 

And the value of ncase is given by Eq. (13). 

ncase ≥
NGL + NGR + n − NSINK

nstep⋅NTC
(13) 

In a first approach, Eq. (13) should be fulfilled in an easy way, as 
nstep tends to be big and, as a consequence, the number of needed load 
cases ncase should be small. However, it must be remembered that the 
equations must be linearly independent, and this is not fully ensured in 
the present context. 

The set of subroutines TOLMIN developed by M.J.D. Powell [15] and 
freely available in the internet [16] were used to minimize function F 
defined in Eq. (8). TOLMIN demands from the user the writing of a 
subroutine FGCALC which evaluates the function to be minimized F and 
evaluates also the gradient vector of function F with respect to each 
unknown (GLs, GRs, MCs and unknown temperatures). The authors 
wrote a program to automatically write the FGCALC subroutine, as this 
can be extremely time consuming and prone at errors, even if the ther
mal models are not that big. The most challenging part of this writing 
was to correctly take into account the derivatives of F with respect to the 
unknown temperatures, as values of temperatures in different time steps 
appear in the mathematical expressions. 

The vector of unknowns is composed by the GLs, GRs, MCs and the 
node temperatures unknown in the different time steps. The values of 
the GLs, GRs and MCs are considered constant through the calculations 
(do not vary with time or temperature). If the number of nstep is big, the 
number of temperature unknowns becomes very large. This makes the 
minimization work of TOLMIN more challenging, due to the big number 
of unknowns. At the same time, it must be stressed that the real objective 
of the minimization is the thermal parameter identification (GLs, GRs, 
MCs) and no the unknown temperatures, which could be calculated once 
the thermal parameters are correctly correlated. 

4. Inverse heat transfer problems 

Before showing the results obtained with the previously explained 
methodology, it is important to mention some mathematical issues that 
appear when, as it is our case, we are trying to solve an inverse heat 
transfer problem. Specifically, these points are the existence of the so
lution, uniqueness of the solution and stability of the solution. As it is 
clearly and in depth explained in Refs. [17,18], inverse heat transfer 
problems tend to be ill-conditioned, that is, one or more of these three 
points are not fulfilled. Specifically, when talking about ill posed sys
tems we are underlining the fact that small changes in the data produce 
big changes in the solution. If the problem is linear (which is not our 
case), the conditioning of the problem is measured by the ratio between 
the maximum and minimum eigenvalues of the parameter matrix. If the 
problem is non linear, more complex considerations are to be taken into 
account. 

One of the solutions suggested by Refs. [17,18] is to use regulari
zation techniques, which will help the gradient algorithm to find the real 
solution of the inverse problem (that is, the reals GLs, GRs and MCs). 
This solution has given very good results reducing the impact of the 
noise measurements in the temperatures employed for the algorithms. In 
short, regularization helps to reduce the conditioning number and build 
quasi-solutions less sensitive to measurements errors. 

After careful consideration, we decided not to use these regulariza
tion techniques, mainly because, at this stage of our investigation, we 
are using “exact-reference” temperatures instead of measured temper
atures, so in theory, there are no measurements errors. Also, it would be 
extremely difficult to modify successfully the algorithm TOLMIN, 

Fig. 1. 4 nodes model.  

f (xi)=GL(i, 1)(Ti − T1)+…+GL(i, n)(Ti − Tn)+ σGR(i, 1)
(
Ti

4 − T1
4)+…+ σGR(i, n)

(
Ti
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(Ti − Ti
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Δt
− qi = 0 (7)   
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devised in Ref. [16], and used in our work. Finally, as it will be shown in 
next section, in general we obtained good results both in the parameters 
space and even better in the temperatures space. In any case, this 
question remains open for further investigation in the future. 

5. Results obtained for different case studies 

It is necessary to evaluate the presented methodology with some case 
studies to ascertain its validity. The ideal case would be to have a 
complete set of experimental tests results for different TMMs and load 
cases and apply the correlation methodology explained in the previous 
sections of the paper. However, as a complete set of tests results is not 
available, an equivalent procedure will be used. 

First, we will build a ‘reference’ TMM. This TMM will have the 
thermal parameters considered as correct values. With this reference 
model, different sets of reference temperatures will be obtained for the 
different transient load cases. These reference temperatures would 
represent the ones measured in a perfectly done thermal test. 

Second, we build a ‘base’ TMM. This TMM will be obtained varying a 
certain percentage the thermal parameters of the reference model (GLs, 
GRs and MCs). This base model represents the one that thermal engi
neers would construct with the CAD files, thermal material properties, 
view factors … With this base model, different sets of base temperatures 

will be obtained for the different transient load cases. As it can be ex
pected, the set of base temperatures is somehow different from the set of 
reference temperatures. The differences between both sets are to be 
minimized changing the values of the thermal parameters of the base 
TMM. 

Several transient case studies, formed by three different TMMs (4, 7 
and 16 nodes models), combined with several subcases, have been used 
to evaluate the methodology. The models are based on the steady state 
cases presented in Ref. [14]. 

5.1. 4 nodes model 

A simple 4 nodes model (nodes 1 to 4) has been used for this first 
case. The thermal model, that can be seen in Fig. 1, has 3 linear con
ductances (GLs), 3 radiative conductances (GRs) and 3 thermal inertias 
(MCs). Power is applied in node number 1 and a constant temperature of 
20 ◦C is maintained in sink node 4, for all the load cases. The initial 
temperature for all the nodes is 20 ◦C and the transient case extends 
7200 s (2 h). Time step used is 600 s (10 min). 

5.1.1. 4 nodes model. Correlation with no unknown temperatures and 1 or 
2 load cases 

It is assumed that the reference temperatures of nodes 1, 2 and 3 are 

Table 1 
Parameter values. 4 nodes model. 1 load case.  

Label Initial value (base model) Reference value (correct value) Correlated value Initial error (%) Final error (%) 

GL(1,2) 2.00 8.00 8.00 75.00 4.6000E-03 
GL(1,3) 1.00 6.00 6.00 83.33 5.2000E-03 
GL(1,4) 4.00 5.00 5.00 20.00 2.0000E-04 
GR(2,3) 0.03 0.04 0.04 25.00 4.8890E-01 
GR(2,4) 0.05 0.08 0.08 37.50 8.3000E-03 
GR(3,4) 0.08 0.03 0.03 166.67 3.2800E-02 
MC(1) 3570.00 3000.00 3000.00 19.00 2.0000E-04 
MC(2) 850.00 2500.00 2500.00 66.00 4.2000E-03 
MC(3) 1600.00 2000.00 2000.00 20.00 3.3000E-03 
Mean Error   56.94 6.0856E-02  

Table 2 
Parameter values. 4 nodes model. 2 load cases.  

Label Initial value (base model) Reference value (correct value) Correlated value Initial error (%) Final error (%) 

GL(1,2) 2.00 8.00 8.00 75.00 3.7300E-02 
GL(1,3) 1.00 6.00 6.00 83.33 4.3400E-02 
GL(1,4) 4.00 5.00 5.00 20.00 1.7000E-03 
GR(2,3) 0.03 0.04 0.04 25.00 9.0000E-04 
GR(2,4) 0.05 0.08 0.08 37.50 3.8000E-02 
GR(3,4) 0.08 0.03 0.03 16.67 4.0900E-02 
MC(1) 3570.00 3000.00 3000.00 19.00 1.0000E-03 
MC(2) 850.00 2500.00 2499.00 66.00 3.7000E-02 
MC(3) 1600.00 2000.00 2001.00 20.00 4.3800E-02 
Mean Error   56.94 2.7111E-02 

Temperatures obtained using the correlated thermal parameters values and the reference temperatures match perfectly well. 

Table 3 
Parameter values. 4 nodes model. 1 load case. 1 temperature unknown.  

Label Initial value (base model) Reference value (correct value) Correlated value Initial error (%) Final error (%) 

GL(1,2) 2.00 8.00 11.25 75.00 40.67 
GL(1,3) 1.00 6.00 2.70 83.33 54.99 
GL(1,4) 4.00 5.00 5.02 20.00 0.41 
GR(2,3) 0.03 0.04 0.03 25.00 34.85 
GR(2,4) 0.05 0.08 0.09 37.50 15.42 
GR(3,4) 0.08 0.03 0.01 16.67 54.88 
MC(1) 3570.00 3000.00 3002.00 19.00 0.06 
MC(2) 850.00 2500.00 3588.00 66.00 43.52 
MC(3) 1600.00 2000.00 900.10 20.00 54.99 
Mean Error   56.94 33.31  
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known (NTC = 3). Therefore, the minimum number of load cases needed 
ideally to make the correlation is 1. The cold case (q1 = 50 W) will be 
used. 

ncase≥
NGL + NGR + N − NSINK

nstep⋅NTC
=

3 + 3 + 4 − 1
12⋅3

= 0.25 

The values obtained for the correlated conductances and thermal 
inertias, as well as the relative errors, the base, and the reference values, 
are collected in Table 1. As can be seen, the values obtained for the 

correlated conductances and thermal inertias fit almost perfectly the 
reference values, going from a mean initial error of 56.94% to almost 
0%. The error values have been calculated following Eq. (14) for 
parameter values, and Eq. (15) for temperature values. 

error =
reference value − predicted value

reference value
x 100 (14) 

Table 4 
Node 2 temperature values. 4 nodes model. 1 load case. 1 temperature unknown.  

Label Initial 
value (base 
model) 

Reference 
value (correct 
value) 

Correlated 
value 

Initial 
error 
(◦C) 

Final 
error 
(◦C) 

T(600, 
2, 1) 

22.26 22.09 22.09 0.17 0.00 

T(1200, 
2, 1) 

24.38 23.88 23.90 0.50 0.01 

T(1800, 
2, 1) 

25.94 25.20 25.23 0.75 0.03 

T(2400, 
2, 1) 

27.02 26.13 26.18 0.89 0.04 

T(3000, 
2, 1) 

27.75 26.80 26.85 0.95 0.05 

T(3600, 
2, 1) 

28.24 27.26 27.32 0.98 0.06 

T(4200, 
2, 1) 

28.58 27.59 27.66 0.98 0.07 

T(4800, 
2, 1) 

28.81 27.83 27.90 0.98 0.07 

T(5400, 
2, 1) 

28.96 28.00 28.07 0.97 0.07 

T(6000, 
2, 1) 

29.07 28.11 28.19 0.96 0.08 

T(6600, 
2, 1) 

29.15 28.20 28.27 0.96 0.08 

T(7200, 
2, 1) 

29.21 28.25 28.33 0.95 0.08 

Mean 
Error    

0.84 0.05  

Table 5 
Parameter values. 4 nodes model. 2 load cases. 1 temperature unknown.  

Label Initial value (base model) Reference value (correct value) Correlated value Initial error (%) Final error (%) 

GL(1,2) 2.00 8.00 8.35 75.00 4.34 
GL(1,3) 1.00 6.00 5.65 83.33 5.90 
GL(1,4) 4.00 5.00 5.00 20.00 0.00 
GR(2,3) 0.03 0.04 0.04 25.00 1.46 
GR(2,4) 0.05 0.08 0.08 37.50 2.11 
GR(3,4) 0.08 0.03 0.03 166.67 5.91 
MC(1) 3570.00 3000.00 3000.00 19.00 0.02 
MC(2) 850.00 2500.00 2618.00 66.00 4.72 
MC(3) 1600.00 2000.00 1882.00 20.00 5.90 
Mean Error   56.94 3.37  

Table 6 
Parameter values. 4 nodes model. 3 load cases. 1 temperature unknown.  

Label Initial value (base model) Reference value (correct value) Correlated value Initial error (%) Final error (%) 

GL(1,2) 2.00 8.00 8.47 75.00 5.87 
GL(1,3) 1.00 6.00 5.52 83.33 7.96 
GL(1,4) 4.00 5.00 5.00 20.00 0.01 
GR(2,3) 0.03 0.04 0.04 25.00 2.23 
GR(2,4) 0.05 0.08 0.08 37.50 2.84 
GR(3,4) 0.08 0.03 0.03 166.67 7.97 
MC(1) 3570.00 3000.00 3001.00 19.00 0.02 
MC(2) 850.00 2500.00 2659.00 66.00 6.37 
MC(3) 1600.00 2000.00 1841.00 20.00 7.96 
Mean Error   56.94 4.58 

For this case, the mean error in the temperatures of node 2 goes from 1.34 ◦C to 0.01 ◦C. 

Fig. 2. 7 nodes model.  

Table 7 
Power values. 7 nodes model.  

Node Q Cold case (W) Q Hot case (W) Q Stay alive (W) Q TEM (W) 

85040 5.59 33.39 20.0 25.0 
85041 1.01 7.61 2.0 6.0 
85070 11.18 1.20 4.0 8.0 
85071 1.83 12.55 10.0 5.0  

Table 8 
Sink temperatures. 7 nodes model.  

Node T Cold case (◦C) T Hot case (◦C) T Stay alive (◦C) T TEM (◦C) 

10000 − 26.95 47.60 25.0 0.0 
99241 − 129.62 − 61.28 − 100.0 − 80.0 
99271 − 156.48 − 110.31 − 120.0 − 110.0  
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error = reference value − predicted value (15) 

If two load cases are used in the correlation, such the hot case (q1 =

120W) and the cold case (q1 = 50W), results improve a little bit as can 
be seen in Table 2. 

5.1.2. 4 nodes model. Correlation with one unknown temperature 
The results showed in the previous section suggest that the meth

odology and the minimization algorithm could be used in the 4 nodes 
model even if one of the temperatures is unknown, for instance, that of 
node 2 (NTC = 3 − 1 = 2). The rest of parameters have been main
tained. 

ncase≥
NGL + NGR + N − NSINK

nstep⋅NTC
=

3 + 3 + 4 − 1
12⋅2

= 0.375 

In this case, theoretically, with only one load case it might be 
possible to obtain good results. The chosen case was the cold case (q1 =

50W). However, as can be seen in Table 3, although results improve, the 
mean error of the parameters is big (33.31%). 

Next, the temperatures of node 2 for the different time steps have 
been calculated using the correlated parameters shown in Table 3. The 
comparison between the reference temperatures and the correlated 
temperatures can be seen in Table 4. Results improve significantly. The 
temperatures have been labelled as T (time, node number, load case). 

A possible solution to improve the results is to make the correlation 
with 2 or 3 load cases. For 2 load cases (cold case q1 = 50 W and hot case 
q1 = 120 W) results improve significantly, as can be seen in Table 5. 

The mean error of the parameters (9 unknowns) goes from 56.94% to 
3.37%. The temperatures obtained for node 2 in the 12 time steps and 
for the 2 load cases (this makes a total of 24 unknowns) also improve, 
from a mean error of 1.36 ◦C with the base model to a 0.01 ◦C with the 
correlated model. 

It is interesting to note that to find the ‘correct’ values of the 9 
thermal parameters, one must also calculate 24 unknown temperatures, 
making a total of 33 unknowns, which increases the elapsed time in the 
computer. These additional temperatures can also be seen as a useful 
information, because they are temperatures of nodes that could not be 
measured in the tests. 

For 3 load cases (cold case q1 = 50 W, hot case q1 = 120 W and stay 
alive case q1 = 80 W) results do not improve, as can be seen in Table 6. 
The authors have not a clear explanation about this fact, although some 
sort of ‘optimal’ load case number seems to exist. 

5.2. 7 nodes model 

This is a reduced 7 nodes model of the Tribolab instrument, a space 
tribometer that was flown on board the International Space Station [19]. 
Three of the nodes are sink nodes: two radiation sink nodes (nodes 
99241 and 99271) and one conduction sink node (node 10000). The 
model consists of 4 linear conductances, 2 radiation conductances, and 4 
thermal inertias which can be seen in Fig. 2. The nodes with temperature 

imposed (sink nodes) do have MC parameters, but their values do not 
appear in the equations, as these equations are deleted from the system 
when the temperatures are imposed. The calculation runs for 86.400 s 
(that is, one day) and time step Δt = 600 s. This makes a total of 144 
time steps. The initial temperature considered for t = 0 is T = 20◦C. 

Powers applied in no sink nodes (85040, 85041, 85070, and 85071) 
are collected in Table 7 for 4 different load cases (cold, hot, stay alive 
and TEM cases), where values are expressed in watts. Sink temperatures 
for these load cases are collected in Table 8, with values expressed in ◦C. 

5.2.1. 7 nodes model. Correlation with no unknown temperatures 
In this case study, it is assumed that reference temperatures in no 

sink nodes are known (NTC = 4). Therefore, the minimum number of 
load cases needed to make the correlation is 1. 

ncase≥
NGL + NGR + N − NSINK

nstep⋅NTC
=

4 + 2 + 7 − 3
144⋅4

= 0.0174 

However, as data were available, 2 load cases were used, to improve 
the chances of convergence to the true thermal parameters. The two load 
cases used in the correlation are the cold and hot cases, whose heat 
fluxes and sink temperatures are included in Tables 7 and 8. The values 
of the base, reference and correlated thermal parameters, as well as the 
relative errors, are collected in Table 9. 

As it can be seen, the correlation is excellent (final mean error 
0.0020%). As a consequence, the correlation with only one load case 
(cold case) was also done. The results are also very good (final mean 
error 0.0065%). 

5.2.2. 7 nodes model. Correlation with 1 unknown temperature 
This case study is equal to the previous case study (section 4.2.1), but 

now one of the inner temperatures (that of node 85040) is considered 
unknown (NTC = 3). Therefore, the minimum number of load cases 
needed to make the correlation is again 1. 

ncase≥
NGL + NGR + N − NSINK

nstep⋅NTC
=

4 + 2 + 7 − 3
144⋅3

= 0.0231 

Using 1 load case, a somehow unexpected result was obtained. It has 

Table 9 
Parameter values. 7 nodes model. Subcase: No unknown temperatures and 2 load cases.  

Label Initial value (base model) Reference value (correct value) Correlated value Initial error (%) Final error (%) 

GL(10000,85040) 0.0416 0.0333 0.0333 25.00 0.0134 
GL(85040,85041) 0.8047 3.2190 3.2190 75.00 0.0004 
GL(85040,85070) 0.8008 0.4883 0.4883 64.00 0.0001 
GL(85070,85071) 7.0910 4.4310 4.4310 60.04 0.0001 
GR(85041,99241) 0.0230 0.0383 0.0383 39.97 0.0002 
GR(85071,99271) 0.0967 0.0612 0.0612 57.92 0.0002 
MC(85040) 5907.0000 4964.0000 4964.0000 19.00 0.0007 
MC(85041) 100.0000 182.3000 182.3000 45.16 0.0021 
MC(85070) 2569.0000 4847.0000 4847.0000 47.00 0.0001 
MC(85071) 125.0000 365.7000 365.7000 65.82 0.0023 
Mean Error    49.89 0.0020  

Table 10 
Number of unknowns and maximum initial error.  

ncase NGL + NGR + N–NSINK +
nstep⋅NNOTC⋅ncase 

Initial base 
average error 

Maximum initial 
average error in 
temperatures 

1 4 + 2+7–3+144⋅2⋅1 = 298 9.29 ◦C 0.929 ◦C 
2 4 + 2+7–3+144⋅2⋅2 = 586 8.01 ◦C 3.2 ◦C 
3 4 + 2+7–3+144⋅2⋅3 = 874 7.58 ◦C 6.14 ◦C 
4 4 + 2+7–3+144⋅2⋅4 = 1162 7.62 ◦C 6.10 ◦C 

Once more, it seems that a maximum number of load cases can be used without 
increasing too much the number of unknowns and having at the same time 
convergence of results. Once this maximum is reached, further adding of load 
cases do not improve the solution. 
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been previously stated that an important difficulty in the optimization 
process is to make sure that the employed equations are linearly inde
pendent. In fact, if only the cold case is used to the correlation, no 
convergence of the thermal parameters is obtained. However, if only the 
hot case is used, convergence is obtained, with no special difficulties and 
a mean error of 0.02% is reached for the parameters, while the mean 
error of the temperatures of node 85040 goes from 6.13 ◦C to 0.0005 ◦C. 
A possible explanation of this fact is that the variations of temperatures 

in the different nodes and timesteps in the cold case is small and the 
independency of equations is not guaranteed, while bigger temperature 
variations are obtained in the hot case, which permits the correct 
functioning of the optimization algorithm. 

Using 2 load cases (the cold and the hot cases) correct thermal pa
rameters are obtained, with a mean error of 0.005%. The temperatures 
obtained for node 85040 in both cold and hot cases go from a mean error 
of 6 ◦C (using the base model) to a mean error of 0.0001 ◦C. It is 
interesting to note now that in this case we have 298 unknowns just to 
correlate the 10 thermal parameters whose values we are looking for. 10 
unknowns (4 GLs, 2 GR y 4 RMCPs) plus 288 unknowns (1 node ⋅ 2 load 
cases ⋅ 144 time steps). Elapsed computer times increased accordingly. 

5.2.3. 7 nodes model. Correlation with 2 unknown temperatures 
We are now supposing that temperatures of inner nodes 85040 and 

85070 are unknown. As a consequence, NTC = 4 − 2 = 2. Once more, 
the theoretical expression for the needed number of load cases gives us a 
value of 1. 

ncase≥
NGL + NGR + N − NSINK

nstep⋅NTC
=

4 + 2 + 7 − 3
144⋅2

= 0.0347 

Four different optimization problems have been defined, according 
to the number of load cases employed in each problem (1, 2, 3 or 4). 
These cases are collected in Tables 7 and 8. If NNOTC is the number of 
nodes that have no thermocouples (in our case, 2), the total number of 
unknowns that the optimization algorithm has to calculate is NGL+
NGR+ N − NSINK+ nstep⋅NNOTC⋅ncase. Table 10 collects the number of 
unknowns as a function of the ncase load cases used. As it can be seen, 
the number of unknowns has increased dramatically. 

It is convenient to state from the beginning that not a single one of 
these four optimization cases has converged in the usual conditions 
employed as far as now, that is, initial solution for the optimization 

Fig. 3. 16 nodes model.  

Table 11 
Results for the 16 nodes model. Correlation with no unknown temperatures.  

Number of unknown 
temperatures (NNOTC) 

Number of load cases 
considered (ncase) 

Initial average 
error (%) 

Final average 
error (%) 

Number of unknown 
parameters correlated 

Number of improved thermal 
parameters 

0 1 25.87 14.56 58 45/58 
0 2 25.87 3.29 58 54/58 
0 3 25.87 2.35 58 56/58 
0 4 25.87 2.06 58 57/58  

Table 12 
Results for the 16 nodes model. Correlation with unknown temperatures.  

Number of unknown 
temperatures (NNOTC) 

Number of load cases 
considered (ncase) 

Initial average 
error (%) 

Final average 
error (%) 

Number of unknown 
parameters correlated 

Number of improved 
thermal parameters 

T initial 
error (◦C) 

T final 
error (◦C) 

1 (node 85040) 1 25.87 158.8 202 30/58 5.22 0.10 
2 25.87 2.73 346 56/58 3.38 5.62E-05 
3 25.87 2.49 490 57/58 3.58 1.36E-05 

2 (nodes 85040, 85070) 1 25.87 269.17 346 27/58 4.01 0.065 
2 25.87 5.89 634 51/58 2.55 3.56E-05 
3 25.87 3.88 922 56/58 3.68 1.54E-04 
4 25.87 8.70 1210 54/58 3.62 1.11E-04 

3 (nodes 85030, 85040, 
85070) 

2 25.87 No Conv 922 – – – 
3 25.87 4.55 1354 56/58 3.71 4.0E-04 
4 25.87 13.84 1786 54/58 3.71 3.0E-04 

4 (nodes 85030, 85040, 
85050, 85070) 

3 25.87 5.59 1786 52/58 3.65 2.8E-04 
4 25.87 12.18 2362 54/58 3.66 1.8E-04 
5 25.87 25.91 2938 54/58 3.92 2.8E-04 

5 (nodes 85030, 85035, 
85040, 85050, 85070) 

3 25.87 No Conv 2218 – – – 
4 25.87 4.05 2938 54/58 3.64 1.35E-02 
5 25.87 7.46 3658 54/58 3.88 1.10E-03 
6 25.87 7.05 4378 54/58 3.62 1.10E-03 

6 (nodes 85030, 85035, 
85040, 85045, 85050, 
85070) 

3 25.87 No Conv 2650 – – – 
4 25.87 7.15 3514 49/58 3.56 9.8E-03 
5 25.87 No Conv 4378 – – – 
6 25.87 No Conv 5242 – – –  
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process is that of base values, both thermal parameters and unknown 
temperatures. It has been possible to devise alternative initial solutions 
for these four cases. These alternative initial solutions have led to correct 
convergence of the four optimization cases. It has been done linearly 
combining the base and the reference temperatures. The last column of 
Table 10 shows the maximum initial average error that permits to obtain 
convergence. For the 3 and 4 load cases, almost the base value initial 
solution reaches a convergence. 

5.3. 16 nodes model 

A 16 nodes model was selected to validate the proposed transient 
correlation methodology. It is called Tribolab compact model, because 
the model represents in a more accurate way the real geometry and 
thermal behaviour of Tribolab. The number of nodes is N = 16 and, 
between them, there are 22 linear conductances (NGL = 22) and 25 
radiative conductances (NGR = 25). There is also one conductive sink 
node (node 10000, the ISS) and one radiative sink node (node 99292, 
the Space). Taking into account the thermal inertias (N − NSINK = 14), 
the total number of thermal parameters to be correlated are 61 (NGL+
NGR+ N − NSINK). However, as 3 of the MCs are 0 (correspond to 
nodes composed of MLI), their value will be maintained constant and the 
total number of thermal parameters will be 58. 

The model is shown in Fig. 3, where the red dots represent the nodes, 
the dash lines the radiative conductances (GRs), the solid thin lines the 
conductive conductances (GLs) and the solid thick lines represent the 
presence of conductive and radiative conductances (GLs and GRs) be
tween the nodes. 

5.3.1. 16 nodes model. Correlation with no unknown temperatures 
In this case study, it will be assumed that all the reference temper

atures of Tribolab are known, that is, NTC = 16 − 2 = 14. As a 
consequence, a minimum of 1 load case is needed. However, considering 
the results obtained in the case studies of the 7 nodes model, the cor
relation has been also performed using 2, 3 and 4 load cases. 

ncase≥
NGL + NGR + N − NSINK

nstep⋅NTC
=

22 + 25 + 16 − 2
144⋅14

= 0.0303 

The obtained results are, in general terms, quite good for the thermal 
parameters, if the number of load cases considered at the same time is 2 
or bigger. Table 11 summarizes the initial and final mean error in 
thermal parameters values, the number of unknowns correlated and the 
number of thermal parameters whose value improves with the correla
tion (out of 58). 

Once the thermal parameters were obtained with the correlations 
techniques already described, these values were used in the thermal 
models instead of the base values. The obtained temperatures match 
extremely well with the reference temperatures, as it could be expected 
for the different load cases. 

Table 11 shows also that the best correlations are obtained when a 
higher number of different load cases are used for the correlation. 

5.3.2. 16 nodes model. Correlation with unknown temperatures 
This final case study is equal to the previous case study (section 

4.3.1), but in this occasion some of the inner temperatures of Tribolab 
will be unknown. Specifically, correlations with 1, 2, 3, 4, 5 or even 6 
inner unknown temperatures were attempted, with some interesting and 
encouraging results. It is good to remember that the corresponding 
number of measured temperatures would be 13, 12, 11, 10, 9 or 8 
respectively (N − NSINK = 16 − 2 = 14). Different number of load cases 
were used in each situation and results are summarized in Table 12. Two 
columns (the last two) have been added in this Table 12, if it is compared 
with Table 11. These columns reflect the improvement in the unknown 
values of the temperatures. 

In general terms, convergence has been reached in all the cases, 
sometimes with any number of load cases considered. Convergence has 

been more difficult in those cases where the number of nodes whose 
temperatures were unknown is high. 

It is interesting to note the capacity of the method to improve 
dramatically the expected values of the nodes whose temperatures are 
not measured, when compared with the foreseen results predicted by the 
base model. 

Finally, it is also interesting to note the high number of variables that 
must be correlated (sometimes, more than 4.000) in order to have good 
values for the 58 thermal parameters, real objective of our work. 

6. Conclusions 

A methodology to optimize the values of spacecraft thermal models 
parameters has been presented. This methodology is based on the 
thermal transient equations that govern the heat transfer process and on 
the transient measurements of temperatures done in thermal tests. 

The methodology has been implemented using a gradient based set 
of minimization subroutines called TOLMIN, freely available in internet. 
The methodology is based on a previously developed steady state 
technique. In the transient version, the thermal inertias of the models 
can also be optimized. As a bonus, some temperatures in nodes with no 
test measurements can be predicted with accuracy. 

The number of theoretically minimum number of needed load cases 
for the optimization has been derived. However, this minimum number 
seems to be insufficient for real calculations, as the equations present 
seem to be no linearly independent. It can be stated also that if addi
tional load cases are used, in general, the values found for the thermal 
parameters will be more correct. 

The vector of unknowns in the optimization process can have not 
only linear and radiative conductances and thermal inertias but also 
unknown temperatures for the different load cases used. The TOLMIN 
algorithm deals well with these different types of parameters to be 
identified: absolute values are quite different, but it seems that the al
gorithm is robust enough to cope with this difficulty. 

Three case studies of increasing complexity have been presented and 
solved to test the accuracy and power of the designed methodology. In 
general terms, the results are really good, with some points which will 
need further studies to make the methodology fully operational. 
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