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A B S T R A C T

The motion of a Néel-like 180◦ domain wall induced by a time-dependent staggered spin–orbit field in the
layered collinear antiferromagnet Mn2Au is explored. Through an effective version of the two sublattice
nonlinear 𝜎-model which does not take into account the antiferromagnetic exchange interaction directed along
the tetragonal c-axis, it is possible to replicate accurately the relativistic and inertial traces intrinsic to the
magnetic texture dynamics obtained through atomistic spin dynamics simulations for quasistatic processes.
In the case in which the steady-state magnetic soliton motion is extinguished due to the abrupt shutdown
of the external stimulus, its stored relativistic exchange energy is transformed into a complex translational
mobility, being the rigid domain wall profile approximation no longer suitable. Although it is not feasible
to carry out a detailed follow-up of its temporal evolution in this case, it is possible to predict the inertial-
based distance travelled by the domain wall in relation to its steady-state relativistic mass. This exhaustive
dynamical characterization for different time-dependent regimes of the driving force is of potential interest in
antiferromagnetic domain wall-based device applications.
1. Introduction

In those spintronics devices that rely on domain walls (DW) as
information carriers, the objective is to have ultrafast magnetization
dynamics with minimal response times for reasonable external stimuli
in order to optimize its operability. Antiferromagnetic (AFM) magnetic
solitons can move at velocities of the order of tens of km/s in the
special relativity framework [1,2], and superluminal-like regimes can
be accessed for contracted magnetic textures whose extent is compa-
rable to the atomic spacing [3,4]. However, it is not only important
how fast a magnetic texture can move, but also how long it takes
for it to move stably at a certain speed. In particular, AFM show
a low exchange-mediated static DW mass and a weak motion-based
deformation tendency [5,6], therefore it is usually accurate to describe
their dynamics through a Newton-like second-order differential equa-
tion of motion [7,8]. This being the case, in the presence of dissipation
and external forces the precise magnetic soliton positioning is limited
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by inertial effects. In this context, it becomes essential to character-
ize in detail the DW evolution during acceleration and deceleration
processes under different time-dependent stimuli. However, in the cur-
rent literature there is a clear absence of analysis of inertial dynamic
signatures of magnetic solitons in real AFM materials with invariant
spin spaces where the complete set of interactions are taken into
account, as well as certain controversy about the existence of claims
about a hypothetical universal AFM DW-like massless behaviour [9].
Among the most interesting systems, it is possible to highlight the
case of Mn2Au and CuMnAs, two complex layered AFM that can be
excited efficiently through current-induced spin–orbit (SO) fields [10,
11] and whose magnetic state can be characterized combining magne-
toresistance effects with image characterization in real space [12–15].
The experimental observation of DW in these type of materials [16–
18], as well as proposals based on thermoelectric effects to character-
ize their positioning [19,20] and the possibility of extrapolating the
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usual characterization techniques used in ferromagnets (FM), motivates
their theoretical exploration for potential AFM DW-based racetrack
memories, all-spintronics architectures, or memristive-like neuromor-
phic computing approaches [21–23].

In this work, we study the dynamics of a one-dimensional (1D) DW
in one of the FM layers of the AFM Mn2Au by means of staggered
current-induced SO fields. For this purpose, the crystal and magnetic
structure of Mn2Au is introduced in Section 2, as well as all the interac-
tions present in the system. On the other hand, in Section 3 we discuss
how it is possible to reduce the description of the system composed
of four sublattices to a two sublattice nearest neighbours-based model
through the inequivalence in symmetry of the magnetic and crystal-
lographic unit cells. To analyse the magnetic soliton dynamics taking
into account the real magnetic structure and interactions of Mn2Au, we
introduce an effective version of the nonlinear 𝜎-model that does not
take into account the AFM exchange interaction 2 along the tetragonal
crystal axis, which has a null projection along the DW propagation
direction, assumption that is supported by the atomistic spin dynamics
simulations shown in Suppl. Notes I and II. Moreover, we demonstrate
that it is possible, assuming that the magnetic texture behaves as a rigid
entity during its motion, to reduce the Lorentz-invariant formalism to
a Newton-like second-order differential equation of motion. To test our
theoretical formalism, in Section 4 we perform atomistic spin dynamics
simulations that reveal the relativistic and inertial DW traces for SO
field-based quasistatic processes. Notably, when the external stimulus
is turned off abruptly interrupting the simulated steady-state motion,
the magnetic soliton propagates further than expected via the rigid
profile approximation. During the field-free deceleration regime, the
relativistic exchange energy stored by the magnetic texture during its
previous dynamic evolution is transformed into a complex translational
mobility. In this line, we found a reproducible quasilinear correlation
between the after-pulse distance travelled by the DW and its steady-
state relativistic mass. Finally, the conclusions of our work are exposed
in Section 5.

2. Physical system

We consider the layered collinear AFM Mn2Au. This material is
interesting because it is a good conductor, it has a strong magne-
tocrystalline anisotropy [24–26], and a Néel temperature well above
room temperature [27]. To characterize the considered system, which
is exposed in Fig. 1(a) [28], we write down the interactions that
configure the energy, 𝑤, for the conventional tetragonal unit cell of
Mn2Au [4,29], which is given by

𝑤 = −
∑

⟨𝑖,𝑗⟩
𝑖𝑗 𝒎𝑖 ⋅𝒎𝑗 −𝐾2⟂
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)4

−
𝐾4∥

2
∑

𝑖

[

(

𝒎𝑖 ⋅ 𝒖̂1
)4 +

(

𝒎𝑖 ⋅ 𝒖̂2
)4
]

− 𝜇0𝜇s
∑

𝑖
𝒎𝑖 ⋅𝑯SO

𝑖 , (1)

where the sum ⟨𝑖, 𝑗⟩ runs only over first nearest neighbours whose
atomic positions are labelled by the indices 𝑖, 𝑗, being represented the
unit magnetic moment in the 𝑖th lattice position by 𝒎𝑖. The symbols
𝒙̂, 𝒚̂, 𝒛̂ refer to the unit vectors along the 𝑥-, 𝑦-, and 𝑧th spatial
directions in the Cartesian coordinate system, while the unit vectors 𝒖̂1,2
represent the in-plane 𝑥𝑦-based directions 𝒖1 = [110] and 𝒖2 =

[

11̄0
]

.
Furthermore, as it can be seen in Fig. 1(a), the lattice constant along
the 𝑥- and 𝑦th directions in the basal planes is represented by 𝑎0 = 3.328
Å while the size of the conventional unit cell along the 𝑧th direction
is given by 𝑐 = 8.539 Å [27]. Within the conventional unit cell there
are two Mn atoms per each type of sublattice, A and B, giving rise to a
total of four magnetic atoms. In fact, the magnetic moment of each of
2

Fig. 1. (a) Crystal and spin structure of the Mn2Au tetragonal unit cell along with
the types of atoms and sublattices present in the system, where the magnetic Mn-
based layers are numbered and their corresponding unit magnetization vectors, 𝒎𝑖, and
position vectors, 𝒓𝑖, are indicated. Distribution of the exchange bonds of AFM origin,
1 and 2, and the one of FM nature, 3, as well as the in-plane 𝑥𝑦 basal lattice period
𝑎0 and the out-of-plane height 𝑐 parameters. (b) Sketch of the distribution of the Néel-
like DW magnetization, 𝒎𝑖, and the SO field, 𝑯SO

𝑖 , in each of the magnetic sublattices,
denoted by A and B, together with the definition of two types of Néel order parameters
involving different layers, 𝒍𝛼 =

(

𝒎3 −𝒎2
)

∕2 and 𝒍𝛽 =
(

𝒎1,3 −𝒎2,4
)

∕2. (c) View from the
top of the unit cell along the 𝑧th spatial direction of the distribution of the first nearest
neighbours of the Mn atom of layer 2 located at the position 𝑥𝑖 along the 𝑥th axis,
characterized by 𝒎2(𝑥𝑖). Those neighbours of its same sublattice, at a distance 𝑎0, are
denoted by 𝒎2(𝑥𝑖±1), being mediated by the FM exchange interaction 3, and those
from layer 1, located at an in-plane spacing 𝑎0∕2, are represented by 𝒎1(𝑥𝑖±1∕2), and
are connected through the AFM exchange contribution encoded by 1. (d) Description
of the unit AFM vector, 𝒍 =

(

𝒎A −𝒎B
)

∕2, in terms of the polar out-of-plane 𝜀 and
in-plane azimuthal 𝜑 angles relative to the Cartesian coordinate system.

these Mn atoms, which coincides with the net contribution to each FM
layer in the unit cell, would be given by 𝜇s = 4𝜇B [25], where 𝜇B is the
Bohr magneton. Additionally, as it can be seen in Fig. 1(a), there are
three types of exchange contributions between magnetic moments 𝒎𝑖
and 𝒎𝑗 in the unit cell, which are represented by the exchange integrals
𝑖𝑗 . This set is composed by the 1, 2, and 3 parameters, where the
first two are AFM, being 1 = − (396K) 𝑘B and 2 = − (532K) 𝑘B, and
the third one is FM, being 3 = (115K) 𝑘B [25–27], where 𝑘B is the
Boltzmann constant. On the other hand, it is possible to appreciate that
there are two types of tetragonal anisotropies in the system, given by
𝐾4∥ = 1.8548 × 10−25 J and 𝐾4⟂ = 2𝐾4∥, and another two of uniaxial
origin, denoted as 𝐾2⟂ = −1.303×10−22 J and 𝐾2∥ = 7𝐾4∥ [4,20,24]. The
last term in Eq. (1) is the Zeeman-like contribution, where 𝜇0 denotes
the vacuum permeability and 𝑯SO

𝑖 expresses the staggered SO field
on each 𝑖th lattice site which, because the locally broken inversion
symmetry occurs along the 𝑧th spatial direction, is 𝑯SO

A,B = ±𝐻SO
𝑦 𝒚̂

when the electric current density, 𝒋, is injected along 𝒋 ∥ 𝒙̂, and
𝑯SO

A,B = ∓𝐻SO
𝑥 𝒙̂ when 𝒋 ∥ 𝒚̂ [10].

3. Theoretical framework

In view of the different interactions present in the system, collected
by Eq. (1), the magnetization is constrained in-plane for each Mn-
based 𝑥𝑦 FM layer. Thus, the type of magnetic texture that can be
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stabilized in each of these planes is a 1D 180◦ Néel-like DW, as it is
exposed in Fig. 1(b). When proposing how it is possible to approach the
analytical characterization of the dynamics of a 1D DW in Mn2Au, it is
worth noting that the conventional unit cell consists of four staggered
magnetized layers along the 𝑧th spatial direction connected through
two types of AFM exchange contributions, 1 and 2, which makes
it difficult to define a unique Néel order parameter in the system.
However, it is feasible to reduce its characterization to a two sublattice
single staggered vector-based description due to the symmetric inequiv-
alence of the magnetic and crystallographic unit cells. To carry out this
discussion, let us use the numbering of the Mn planes in accordance
with Fig. 1(a). This being the case, it is possible to differentiate two
crystallographically identical Mn-based groups: one made up of planes
1 and 4, and the other by sheets 2 and 3. We note that, if an inversion
transformation is carried out with respect to the unit cell centre po-
sition, operation which would be characterized through their position
vectors 𝒓𝑖, it is possible to obtain that crystallographically the Mn atoms
of plane 1 are transformed into those of the layer 4, and vice versa
(this is, 𝒓1,4 → −𝒓4,1). This can be extrapolated to the case of those Mn
atoms that reside in the layers 2 and 3 (which would be represented by
𝒓2,3 → −𝒓3,2). However, the crystallographic symmetry is not preserved
if the AFM ordering of the magnetic moments in the Mn sites is taken
into account because the magnetic moments that exist in the planes 1–4
and 2–3 are antiparallel with respect to each other within the exchange
approximation. It is precisely this broken inversion symmetry that gives
rise to the staggered SO field, 𝑯SO

𝑖 , included in Eq. (1), in each type of
magnetic sublattice, which allows to induce the AFM dynamics.

In this line, taking into account that Mn2Au is a magnetically-based
centro-asymmetric AFM, it is possible to introduce four vectors in the
system, one FM vector, 𝒎a, and three AFM vectors, 𝒍𝑖, as linear com-
binations of the four sublattice magnetization vectors, 𝒎𝑖, giving this
as a result: 𝒎a =

(

𝒎1 +𝒎2 +𝒎3 +𝒎4
)

∕4, 𝒍a =
(

𝒎1− 𝒎2 −𝒎3 +𝒎4
)

∕4,
𝒍b =

(

𝒎1 −𝒎2 +𝒎3 −𝒎4
)

∕4, and 𝒍c =
(

𝒎1 +𝒎2 −𝒎3 −𝒎4
)

∕4 [30]. In
fact, one of these AFM vectors, namely 𝒍b, can be chosen as the main
one to define the system due to the specific magnetic symmetry of the
Mn2Au unit cell. At this point, we have to remember that planes 1–3
and 2–4 are magnetically identical, the relative magnetization direction
being parallel to each other. Due to this, we can introduce a two
sublattice model made up of Mn-based layers 2 and 3 (of type B and
A represented in Fig. 1(b), respectively) assuming that 𝒎1 = 𝒎3 and
𝒎2 = 𝒎4. This has a result that the AFM vectors are given now by
𝒍a,c = 0, 𝒍b =

(

𝒎3 −𝒎2
)

∕2, while the FM vector is represented by
𝒎a =

(

𝒎3 +𝒎2
)

∕2. This allows defining for Mn2Au the main AFM
vector as 𝒍𝛼 = 𝒍b =

(

𝒎3 −𝒎2
)

∕2 and the magnetization vector as
𝒎𝛼 = 𝒎a =

(

𝒎3 +𝒎2
)

∕2 [30]. In this way, it is possible to describe the
dynamics in the layered AFM Mn2Au through a two magnetic sublattice
formalism taking into account only the two FM embedded layers 2 and
3, thus excluding from consideration the layers 1 and 4 for this purpose.
We introduce also a more general definition of said variables in terms
of the two types of magnetic layers of the system, A and B, as it is
shown in Fig. 1(b), with which we have that 𝒍 =

(

𝒎A −𝒎B
)

∕2 and
𝒎 =

(

𝒎A +𝒎B
)

∕2, respectively, which is consistent with the 𝒍𝛼 and 𝒎𝛼
characterization.

To address the analytical description of the system, it is necessary to
evaluate how many nearest neighbours exchange-based bonds have an
impact on the inhomogeneous DW transition. For this, as it can be seen
in Fig. 1(c), which shows a top view of the conventional unit cell, we
will focus on the number of relevant first nearest neighbours for a Mn
atom of layer 2 in an arbitrary position 𝑥𝑖 along the 𝑥th spatial direc-
tion, which is characterized by the unit magnetization vector 𝒎2

(

𝑥𝑖
)

. In
this line, it is possible to observe that said atom has four intersublattice
first neighbours on layer 1, at a distance 𝑎0∕2 along the 𝑥th axis, which
are shown through 𝒎1(𝑥𝑖±1∕2), which are mediated by the interaction
characterized by the AFM 1 parameter. Also, the aforementioned
atomic position has two first intrasublattice neighbours along the 𝑥th
3

spatial direction, at a distance 𝑎0, characterized by 𝒎2(𝑥𝑖±1), interacting m
through the FM exchange 3 contribution. It should be noted that both,
the first intrasublattice neighbours in layer 2 along the 𝑦th axis and the
only intersublattice first nearest neighbour, mediated by the exchange
interaction 2, of layer 3 along the 𝑧th axis, are not taken into account
because they do not impose any type of exchange penalty to determine
the static or dynamic DW configuration in each of the sublattices of the
system. In Suppl. Note I it can be found a simulations-based discussion
about the role of the AFM exchange interaction 2 in this regard. On
the other hand, due to the relative order of magnitude of the uniaxial
magnetic anisotropy constants compared to the tetragonal ones, being
given by 𝐾2⟂∕𝐾4⟂ = 351 and 𝐾2∥∕𝐾4∥ = 7, the fourth-order anisotropy
constants will be neglected in the main approximation from now on.

In this way, we readjust the energy given by Eq. (1) for the case
of a two sublattice-based description in terms of the orthogonal set of
unit vectors defined by 𝒍 and 𝒎, which satisfy the conditions 𝒎2+𝒍2 = 1
and 𝒎 ⋅ 𝒍 = 0. We take into account that even though these variables
are constructed in terms of the magnetic sublattice types A and B, as
discussed above, they refer from now on to the two FM embedded
layers 2 and 3, in accordance with the definition of 𝒎𝛼 and 𝒍𝛼 , the
latter being explicitly represented in Fig. 1(b). However, in our case we
are interested in describing the dynamics of a single magnetic texture,
which occurs entirely in a single sublattice of the system. Since the
introduction of the AFM vectors 𝒎 and 𝒍 implicitly assumes that the
motion of a single DW occurs across both magnetic sublattices, we
must halve the resulting magnetic anisotropy and Zeeman-like energies.
Therefore, the energy, 𝑤, can be rewritten, taking into account the
construction of the exchange part of the energy exposed in Suppl. Note
II within an effective version of the nonlinear 𝜎-model framework [31–
33], due to the non-inclusion of the AFM exchange interaction along
the 𝑐-axis of the system encoded by 2, in the exchange limit [34,35],
as follows

𝑤 = 1
2
𝐴𝒎2 + 1

8
𝑎
(

𝜕𝑥𝒍
)2 +𝑤𝑎 (𝒍) − 2𝛾ℏ 𝒍 ⋅𝑯SO, (2)

where we introduced the homogeneous AFM exchange parameter, 𝐴 =
16|

|

1
|

|

, and the inhomogeneous FM-like exchange constant, given by
= 8𝑎20

(

3 + |

|

1
|

|

∕2
)

. Here the term 𝑤𝑎 (𝒍) encapsulates the uniax-
al anisotropic contributions of the system, 𝑤𝑎 (𝒍) = |

|

𝐾2⟂
|

|

(𝒍 ⋅ 𝒛̂)2 −
𝐾2∥ (𝒍 ⋅ 𝒚̂)2, and 𝜕𝑥 expresses the variation of the order parameter along
he 𝑥th spatial direction. This last statement is because it has been
hosen that the current is injected along 𝒋 ∥ 𝒙̂, so 𝑯SO = 𝐻SO

𝑦 𝒚̂,
nducing the DW motion along the 𝑥th spatial direction. Also, we have
ewritten the Zeeman-like term of Eq. (1) taking into account that
0𝜇𝑠 = 2𝛾ℏ, where 𝛾 represents the gyromagnetic ratio and ℏ is the

reduced Planck constant.
Along the same line, it is possible to introduce how the Landau–

Lifshitz–Gilbert (LLG) equations of the magnetic sublattice magneti-
zation motions look like in the terms of 𝒍 and 𝒎 vectors within the
exchange limit [35,36], which are given by

𝒍̇ = 𝛾𝑯eff
𝒎 × 𝒍, (3)

𝒎̇ =
(

𝛾𝑯eff
𝒍 − 𝛼 𝒍̇

)

× 𝒍, (4)

where 𝑯eff
𝒍,𝒎 refers to the effective magnetic fields associated with

the vector variables 𝒍,𝒎. These effective fields can be expressed as
𝑯eff

𝒍,𝒎 = − 1
2𝛾ℏ

𝛿𝑤
𝛿(𝒍,𝒎) , where 𝛿 represents the functional derivative, 𝛼

the phenomenological Gilbert damping parameter, which accounts for
the dissipation processes, and the dot over a variable points out its
derivative with respect to time, 𝑡. Through Eq. (3), it can be found that
𝒎 = 2ℏ

(

𝒍̇ × 𝒍
)

∕𝐴, expression which can be substituted in Eq. (4) to
obtain a second-order differential equation only in terms of the unit
staggered AFM vector 𝒍, which will be expressed by

𝒍 ×

[

(

𝜕2𝑥 𝒍
)

− 1
𝑣2m

𝒍̈ + 𝒉 − 4
𝑎
𝜕𝑤𝑎 (𝒍)

𝜕𝒍
− 𝜂 𝒍̇

]

= 0, (5)

here 𝑣m represents the maximum magnon group velocity of the
edium, which is given by 𝑣 =

√

𝑎𝐴∕ 4ℏ = 2𝑎
√

2| |

(

 + | |∕2
)

∕
m ( ) 0 | 1| 3 | 1|
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ℏ = 43.39 km/s, 𝒉 encodes the reduced SO field as 𝒉 = 8𝛾ℏ𝑯SO∕𝑎,
and 𝜂 denotes the dissipative parameter expressed as 𝜂 = 8𝛼ℏ∕𝑎.
Interestingly, it has been predicted that an AFM exchange interaction
like 2, perpendicular to the inhomogeneous DW transition, should
govern the value of 𝑣m related to the low-frequency acoustic branch,
contrary to what is demonstrated in Suppl. Notes I, both within and
outside of the standard nonlinear 𝜎-model framework [8,37,38].

In accordance with what it is shown in Fig. 1(d), it is possible to pa-
rameterize through spherical coordinates the unit Néel order parameter
taking into account which is the in-plane easy-axis direction, giving rise
to 𝒍 = (sin𝜑 cos 𝜀, cos𝜑 cos 𝜀,− sin 𝜀), where 𝜑 represents the azimuthal
angle, which accounts for the rotation of the magnetization in the 𝑥𝑦
plane being measured from the 𝑦th axis, while 𝜀 expresses the polar
angle, which describes the out-of-plane canting being characterized
from the 𝑥𝑦 plane. Because we are working on the exchange limit, it
is possible to assume that 𝜀 ≃ 0, whereby the reduced AFM vector can
be expressed as 𝒍 ≃ (sin𝜑, cos𝜑, 0). This being the case, it is possible to
reduce Eq. (5) to a sine-Gordon wave-like equation [39,40], with the
following functional form

1
𝑣2m

𝜑̈ −
(

𝜕2𝑥𝜑
)

+ 1
2𝛥2

0

sin 2𝜑 + ℎ sin𝜑 = −𝜂 𝜑̇, (6)

where 𝛥0 stands for the DW width at rest, which is given by 𝛥0 =
√

𝑎∕
(

8𝐾2∥
)

= 𝑎0
√

(

3 + |

|

1
|

|

∕2
)

∕𝐾2∥ = 19.17 nm, and where ℎ =
8𝛾ℏ𝐻SO

𝑦 ∕ 𝑎 denotes the reduced scalar SO field.
At this point, it is convenient to consider the magnetic texture

dynamics within the framework of the well-known collective coordi-
nates approach [41]. For this, it is usual to introduce what is known
as Walker-like rigid profile through the angular variable that de-
fines the spatio-temporal evolution of the magnetization, 𝜑 (𝑥, 𝑡) =
2 arctan exp

[

(𝑥 − 𝑞 (𝑡)) ∕𝛥 (𝑡)
]

[42], with 𝑞 being the DW centre position
and 𝛥 being the dynamic DW width. Due to the Lorentz invariance
shown by Eqs. (5) and (6), the magnetic soliton dynamics in AFM shows
emergent special relativity signatures. In particular, the DW width
decreases as the velocity of the magnetic texture, 𝑞̇, increases, which is
given by the expression 𝛥 (𝑡) = 𝛥0 𝛽 (𝑡), where 𝛽 (𝑡) =

√

1 −
(

𝑞̇ (𝑡) ∕𝑣m
)2

epresents the Lorentz factor. In order to avoid the excitation of internal
odes of the magnetic texture, we focus on quasistatic processes, being

ts spatial extent variation governed entirely by the special relativity-
ased Lorentz factor, so we can neglect the time derivatives of the DW
idth 𝛥. In this way, we obtain that

1
𝛥 𝑣2m

𝑞 +
𝜂
𝛥
𝑞̇ − ℎ = 0. (7)

As it can be seen in Eq. (7), we have a Newton-like second-order
differential equation for the time evolution of the DW centre position, 𝑞,
which explicitly shows the inertial nature of the magnetic texture [7,8].
In the particular case in which a constant SO field is applied, it
is possible to access a steady-state-like DW motion regime after the
accommodation of the soliton to its new dynamic state. In this sense, we
can reduce the previous equation to a compact expression that accounts
for the steady-state DW velocity, which we denote from now on as
𝑣 = 𝑞̇, which is given by

𝑣 =
𝑣m

√

1 +
(

𝑣m∕𝑣0
)2

, (8)

here 𝑣0 = ℎ𝛥0∕𝜂.

. Relativistic and inertial domain wall dynamic signatures

To verify the predictions obtained above through our effective
ersion of the nonlinear 𝜎-model, we have performed atomistic spin
ynamics simulations of the real crystallographic and magnetic conven-
ional unit cell of Mn2Au, as it is shown in Fig. 1(a), taking into account
ll interactions of the system, as it is collected in Eq. (1). With this
4

Fig. 2. Comparison of the relativistic signatures for steady-state processes in Mn2Au
obtained through atomistic spin dynamics simulations and theory. (a) Saturation of the
velocity, 𝑣, of the magnetic texture as the SO field, 𝐻SO

𝑦 , increases, being based the
analytical formalism in Eq. (8). (b) DW width, 𝛥, contraction as the speed 𝑣 of the
magnetic soliton increases, the theoretical prediction coming from the combination of
the relativistic expression 𝛥 = 𝛥0 𝛽 and Eq. (8).

objective in mind, the system of the coupled LLG equations of motion
of the local magnetic moments 𝒎𝑖, being given by

(

1 + 𝛼2
)

𝛾
𝒎̇𝑖 = −𝒎𝑖 ×𝑯eff

𝑖 − 𝛼𝒎𝑖 ×
(

𝒎𝑖 ×𝑯eff
𝑖

)

, (9)

is evaluated numerically site by site through a fifth-order Runge–
Kutta method. Here, 𝑯eff

𝑖 represents the effective field at each lattice
position, which depends on the interactions exposed in Eq. (1), as
𝑯eff

𝑖 = − 1
𝜇0𝜇s

𝛿𝑤
𝛿𝒎𝑖

, and the damping parameter is 𝛼 = 0.001 [4,20,43].
In this case, the computational domain consists of 60 000 cells along
the 𝑥th propagation direction, one cell width with periodic boundary
conditions along 𝑦th direction, and one cell thick along the 𝑧th direc-
tion [44]. Due to their simple functional forms in terms of intrinsic
parameters of the material, we can test the validity of our analytical
formalism by comparing the values of the DW width at rest, 𝛥0, and
the maximum magnon group velocity of the medium, 𝑣m, with the
simulated ones. This being the case, we have found that the simulated
values are 𝛥0 = 19.78 nm and 𝑣m = 43.3 km/s. The theoretically-
predicted DW width at rest 𝛥0 presents a good correspondence with
the fitted rigid DW profile-based simulated value, differing only by a
3.1%, which possibly comes from the non-inclusion in the analytical
model, for simplicity, of the in-plane tetragonal anisotropy contribution
encoded by 𝐾4∥. On the other hand, the maximum magnon group
velocity 𝑣 obtained analytically and by simulations coincide in a
m
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Fig. 3. (a) Time-dependent staggered SO field-based excitation protocol, 𝐻SO
𝑦 (𝑡), applied in each Mn-based FM layer of Mn2Au for different ramping times, 𝑡r . Dynamic time

volution of the DW velocity 𝑣 (b) and width 𝛥 (c) obtained through atomistic spin dynamics simulations for different ramping times 𝑡r . Comparison of the dynamic time evolution
f the velocity 𝑣 (d) and width 𝛥 (e) of a Néel-like DW for atomistic spin dynamics simulations and the analytical expressions given by Eq. (7) and 𝛥 = 𝛥0 𝛽 for two ramping
imes, 𝑡r = 30 and 60 ps. Each vertical coloured dashed line represents the end of the ramped process for the different ramping times 𝑡r , while the dashed black line denotes the
nstant 𝑡 = 100 ps at which the driving SO field 𝐻SO

𝑦 is abruptly turned off.
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9.93%. With this satisfactory correspondence between the theory and
imulations, which supports the non-inclusion in our formalism of the
FM exchange interaction given by 2, we can explore the emergent
pecial relativity signatures during steady-state DW dynamic processes.
s it can be seen in Fig. 2, the saturation of the magnetic texture
elocity, 𝑣, as it is predicted by Eq. (8), and the contraction of the DW
idth, 𝛥, in correspondence with the expression 𝛥 = 𝛥0 𝛽, as the SO

ield, 𝐻SO
𝑦 , increases are verified.

To explore the inertial signatures on our system, we use the time-
ependent SO field-based excitation regimes represented in Fig. 3(a).
s it can be seen, there are three well differentiated regions. In the

irst one, which covers the interval 𝑡 ∈
[

0, 𝑡r
)

, being 𝑡r the time taken to
each a constant value of the field of 𝐻SO

𝑦 = 60 mT, which we denote as
amping time, the rest state of the magnetic texture is disturbed through

SO field that increases linearly with time. We denote this regime
s region I, and each coloured dashed line in Fig. 3 corresponds to a
ertain 𝑡r that defines the aforementioned domain. Consistently with
q. (7), which implicitly shows the existence of a non-zero DW mass,
he initial response of the magnetic texture to the external stimulus
s fast, but not instantaneous, as it can be seen in Fig. 3(b, c). At the
ime when a constant field value of 60 mT is reached, that is, at 𝑡 = 𝑡r ,
he magnetic soliton tends to a steady-state regime (region II), which
overs the interval 𝑡 ∈

[

𝑡r , 100 ps
)

. This upper limit is denoted by a
lack dashed line when appropriate in Fig. 3. Thus, it is possible to
bserve in Fig. 3(b, c) that, in the region II, after a brief adaptation
eriod to the new dynamic regime, which is a sample of the inertial
ature of the process, the magnetic texture moves steadily at a speed
f 𝑣 = 42.56 km/s. This is very close to the maximum magnon group
elocity of the medium, denoting a 98% of it, while shrinking to a width
f 𝛥 = 4.08 nm, which represents a contraction of 80% with respect to
he simulated DW width at rest. Finally, at a certain moment given by
= 100 ps, the SO field is abruptly switched off. This makes it possible
o observe that the magnetic texture is capable of initiating an after-
ulse displacement in the absence of an external stimulus at the same
ime as its width expands until it stops completely, as it can be seen
n Fig. 3(b, c). We denote this regime as region III, and it covers the
nterval 𝑡 ∈ 100, 140 ps.
5

[ ]
The range of values considered for the ramping time 𝑡r has been
hosen to avoid the excitation of internal DW modes during the accel-
ration process, in such a way that the simulations were comparable
o the scenario exposed in Section 3 through Eq. (7). As it can be seen
n Fig. 3(d, e), in these circumstances there is a great correspondence
etween the simulated and the theoretically-predicted velocity of the
agnetic texture, 𝑣, and its spatial extent, 𝛥, in regions I and II.
owever, if attention is paid to Fig. 3(b, c) in the region III, it is
ossible to appreciate undulations once the SO field 𝐻SO

𝑦 is turned
ff. These ripples observed in the simulated DW velocity and width in
he region III cause longer decay times than those predicted through a
imple Newton-like pseudoparticle behaviour. Therefore, we avoid the
nalytical evaluation of this region through Eq. (7) because the mag-
etic soliton is no longer fulfilling the imposed rigid profile constraint.
owever, the after-pulse displacement that the magnetic texture expe-

iences in region III is related to the increase in the exchange-based
elativistic DW mass obtained during the acceleration process in region
while its width shrinked. This is a purely inertial phenomenon, which

s consistent with the massive pseudoparticle behaviour captured by
q. (7), in which the higher is the dynamic DW mass after turning off
he external stimulus, the greater is the braking distance travelled by
t. Interestingly, it is the fact that the magnetic soliton moves along
particular direction which sets how this stored relativistic exchange

nergy is transformed into a translational displacement, manifesting
ts massive particle-like behaviour rather than being dissipated in a
reather-like fashion or through the emission of spin waves without
rolonging its mobility. For different values of the SO field during
egion II, we have found through simulations that there is a quasilinear
elationship between the after-pulse distance travelled by the magnetic
exture, 𝑥, normalized to the its steady-state DW width, 𝛥, and its
teady-state DW mass, 𝑚DW, normalized to its rest state value, 𝑚0

DW,
his is, 𝑚DW∕𝑚0

DW = 1∕𝛽 according to Eq. (7), which can be seen in
ig. 4 and can be expressed as

𝑥
𝛥

= 𝑏
𝑚DW

𝑚0
DW

+ 𝑐, (10)

where 𝑏 and 𝑐 are two fitting-dependent parameters, which are given,
accompanied by their associated uncertainties, by 𝑏 = 13.81(27) and
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Fig. 4. Quasilinear correspondence between the normalized relativistic DW mass,
𝑚DW∕𝑚0

DW, where 𝑚DW and 𝑚0
DW represent the aforementioned mass in steady-state and

at rest, respectively, and the normalized braking distance, 𝑥, travelled by the magnetic
texture once the SO field is turned off abruptly, 𝑥∕𝛥, in terms of the steady-state DW
width, 𝛥, characterized by a linear fitting where 𝑏 and 𝑐 represent the adjustment
parameters, together with their corresponding uncertainties.

𝑐 = −13.92(89). It is remarkable that the DW is capable of undertaking
exchange-based after-pulse displacements of the order of 4 to 11 times
greater than the DW width at rest, 𝛥0, for SO fields between 10–60
mT. This accurate prediction of the braking distance experienced by the
magnetic soliton opens the door to implement low-energy consumption
processes.

5. Conclusions

We addressed the theoretical characterization of the dynamic evo-
lution of a 1D Néel-like DW in one of the FM sublattices of the
layered collinear AFM Mn2Au driven by the current-induced SO fields.
Despite the complexity of the system, we have exploited the symmetric
inequivalence between the crystallographic and the magnetic unit cell
to reduce its description to a two-sublattice problem. Since the AFM
exchange interaction directed along the 𝑐-axis of the system, which is
encoded through 2, has a null projection along the 1D inhomogeneous
magnetic texture transition, it has no impact on the temperature-
independent standard nonlinear 𝜎-model. Because of this, we have
worked on within an effective theory framework avoiding its inclusion,
methodology which can be extrapolated to layered multisublattice AFM
with different exchange-oriented contributions. In the rigid profile
approximation, we have shown that it is possible to reduce the dy-
namic description to a Newton-like second-order differential equation
of motion. Comparing our formalism with atomistic spin dynamics
simulations, we have been able to replicate with a high degree of
precision the relativistic and inertial signatures of the magnetic texture
motion during quasistatic dynamic processes within the framework of
our effective model. After the abrupt shutdown of the SO field in sim-
ulations, the rigid DW profile approach is no longer supported and our
analytical formalism fails to describe the after-pulse inertial dynamic
regime. Interestingly, during the deceleration process the relativistic
exchange energy accumulated during the previous dynamic evolution
of the magnetic texture is converted into translational mobility, rather
than being released in a breather-like fashion or through the emission of
spin waves with non-associated displacement. We have found a quasi-
linear relationship that allows us to predict, for the range of simulated
SO fields, the value of the braking distance travelled by the DW through
the knowledge of its relativistic mass before turning off the external
stimulus. This detailed dynamic characterization of the 1D magnetic
texture in the complex multisublattice antiferromagnet Mn2Au is of
potential interest for AFM DW-based technology applications.
6
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