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� TREM-2 expression is upregulated in the livers of patients with PBC
and PSC, and mice with cholestatic liver injury.

� Trem-2-/- mice show an exacerbated inflammatory response to
experimental cholestasis.

� UDCA mediates anti-inflammatory effects in KCs via TREM-2.

� TREM-2 arises as a novel therapeutic target for patients
with cholestasis.
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Background & Aims: Inflammation, particularly that mediated Results: TREM-2 expression was upregulated in the livers of

by bacterial components translocating from the gut to the liver
and binding to toll-like receptors (TLRs), is central to cholestatic
liver injury. The triggering receptor expressed on myeloid cells-2
(TREM-2) inhibits TLR-mediated signaling and exerts a protective
role in hepatocellular injury and carcinogenesis. This study aims
to evaluate the role of TREM-2 in cholestasis.
Methods: TREM-2 expression was analyzed in the livers of pa-
tients with primary biliary cholangitis (PBC) or primary scle-
rosing cholangitis (PSC), and in mouse models of cholestasis.
Wild-type (WT) and Trem-2 deficient (Trem-2-/-) mice were
subjected to experimental cholestasis and gut sterilization. Pri-
mary cultured Kupffer cells were incubated with lipopolysac-
charide and/or ursodeoxycholic acid (UDCA) and inflammatory
responses were analyzed.
words: TREM receptors; cholangiopathies; inflammation; ursodeoxycholic acid;
ate immunity; liver resident macrophages.
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patients with PBC or PSC, and in murine models of cholestasis.
Compared to WT, the response to bile duct ligation (BDL)-
induced obstructive cholestasis or alpha-naphtylisothiocyanate
(ANIT)-induced cholestasis was exacerbated in Trem-2-/- mice.
This was characterized by enhanced necroptotic cell death, in-
flammatory responses and biliary expansion. Antibiotic treat-
ment partially abrogated the effects observed in Trem-2-/- mice
after BDL. Experimental overexpression of TREM-2 in the liver of
WT mice downregulated ANIT-induced IL-33 expression and
neutrophil recruitment. UDCA regulated Trem-1 and Trem-2
expression in primary cultured mouse Kupffer cells and damp-
ened inflammatory gene transcription via a TREM-2-
dependent mechanism.
Conclusions: TREM-2 acts as a negative regulator of inflamma-
tion during cholestasis, representing a novel potential thera-
peutic target.
Lay summary: Cholestasis (the reduction or cessation of
bile flow) causes liver injury. This injury is exacerbated when
gut-derived bacterial components interact with receptors (spe-
cifically Toll-like receptors or TLRs) on liver-resident immune
cells, promoting inflammation. Herein, we show that the anti-
inflammatory receptor TREM-2 dampens TLR-mediated
signaling and hence protects against cholestasis-induced liver
injury. Thus, TREM-2 could be a potential therapeutic target
in cholestasis.
22 vol. 77 j 991–1004
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Introduction
Cholestasis is a multifactorial pathologic condition characterized
by impaired bile flow and subsequent accumulation of bile acids
and other toxic substances within the liver, which trigger liver
damage.1 Primary biliary cholangitis (PBC) and primary scle-
rosing cholangitis (PSC) are the most common chronic chole-
static diseases in adults, characterized by progressive
hepatobiliary injury that may evolve to biliary fibrosis, cirrhosis,
portal hypertension, ductopenia and eventually liver failure and/
or development of liver malignancies.2

The endogenous, choleretic and hepatoprotective bile acid
(BA) ursodeoxycholic acid (UDCA) is the main therapeutic option
for cholestatic diseases.2 UDCA represents the first-line treat-
ment for patients with PBC, yet around 40% of patients have an
incomplete response, which is associated with a higher risk of
progressing to end-stage liver disease and the need for liver
transplantation.3 In patients with PSC, the benefits of UDCA are
still controversial.4 Novel therapeutic strategies to treat patients
with cholestatic liver injury are currently under development.
Among them, nuclear receptor agonists, such as the farnesoid X
receptor (FXR) agonist obeticholic acid (OCA) and the dual
peroxisome proliferator-activated receptors (PPAR)/pregnane X
receptor (PXR) agonist bezafibrate, are currently showing
promising results in clinical trials.5 Interestingly, the activation of
FXR with OCA in cholestatic rats prevented gut barrier
dysfunction and consequent bacterial translocation,6 indicating a
potential role for OCA in the gut-liver axis. Still, cholestatic dis-
eases represent an unmet clinical challenge and further in-
vestigations are needed in order to offer affected patients
effective therapeutic opportunities.

Inflammation plays a crucial role in the progression of
cholestatic diseases, directing cellular cross-talk and orches-
trating the perpetuation of the maladaptive regenerative mech-
anisms.7,8 Recent studies have highlighted the particular
importance of the gut-liver axis during cholestasis.9 In the
presence of persistent hepatobiliary damage, the gut epithelial
barrier is disrupted and dysbiosis occurs, leading to the trans-
location of bacteria and/or bacterial products from the gut to the
liver.9 In line with this, patients with PBC or PSC are character-
ized by bacterial overgrowth and decreased biodiversity of the
gut microbiota.10,11 In the liver, bacterial products bind to toll-
like receptors (TLRs) – which are mainly expressed in resident
Kupffer cells (KCs), monocyte-derived macrophages, and hepatic
stellate cells (HSCs) – thereby exacerbating inflammatory and
fibrogenic responses.12

The family of triggering receptor expressed on myeloid cells
(TREM) receptors were described as modulators of TLR-
mediated signaling.13 Overall, TREM-2 negatively regulates
TLR-mediated inflammatory responses in different tissues and
contexts, while TREM-1 acts as a pro-inflammatory receptor,
thereby amplifying TLR-induced inflammatory gene transcrip-
tion.14 Both receptors signal through the ITAM (immuno-re-
ceptor tyrosine-based activation motif) of the adaptor protein
DAP-12 (DNAX adaptor protein 12).14 The specific ligand(s) for
TREM-2 are still unknown although diverse endogenous and
exogenous factors including anionic molecules, phospholipids,
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proteoglycans, apolipoproteins and heat shock proteins have
been postulated to activate TREM-2-mediated signaling.15 In
the context of hepatocellular diseases, we previously described
that TREM-2 expression is induced in the liver of patients and
mice with diverse forms of hepatocellular injuries and hepa-
tocellular carcinoma (HCC).16,17 Additionally, TREM-2 exerts
multiple protective effects in the liver, dampening inflamma-
tory gene transcription upon TLR activation in KCs and HSCs,
and thus protecting the liver from acute and chronic hepato-
cellular damage and hepatocellular carcinogenesis.16,17 Given
the crucial role for innate immunity and the involvement of the
gut-liver axis in cholestatic diseases, the present study aims to
investigate the role of TREM-2 in the development and pro-
gression of these disorders, as well as in the further under-
standing of the molecular mechanisms triggering the
therapeutic effects of UDCA.

Material and methods
Human samples
Liver tissue samples from patients with PBC (n = 25; 10 with F3-
F4 and 15 with F1-F2 fibrosis score), PSC (n = 10; 6 with fibrosis
scores F3-F4) and cirrhosis of different aetiologies (n = 44), as
well as healthy control liver tissues (n = 26) were used. Patient
characteristics and clinical parameters are presented in Table S1
and S2.

Animal models of cholestasis
Experiments with animals were performed in age-matched male
WT and Trem-2-/- mice on a C57BL/6 genetic background, that
were generated as previously described.18 Thereafter, mice were
bred at the animal facility of the Biodonostia Health Research
Institute (BHRI). All experiments were performed under the
approval of the Animal Experimentation Ethics Committee of
BHRI (CEEA15/001, CEEA15/020, CEEA18/21, CEEA19/002,
CEEA19/004).

WT and Trem-2-/- mice were subjected to bile duct ligation
(BDL)-induced obstructive cholestasis in the presence and
absence of an antibiotic cocktail containing ampicillin (1 g/L),
neomycin (1 g/L), metronidazole (1 g/L) and vancomycin
(500 mg/L).19 Additionally, a model of chemically induced
cholestasis based on ANIT administration was used. Gain-of-
function experiments were performed by overexpressing
TREM-2 in WT mice via intravenous tail vein injection of control
or Trem-2-overexpressing adeno-associated viruses (AAVs),
which was then followed by ANIT administration to induce
cholestasis. A detailed description of the mouse models used is
included in the supplementary information.

Primary cell isolation and experimental conditions
Hepatocytes, cholangiocytes, KCs and HSCs were isolated as
previously reported20,21 and gene expression analyses were
performed in baseline conditions and also after incubation with
lipopolysaccharide (LPS) and UDCA in KCs, as indicated in the
supplementary information.

Statistical analysis
GraphPad Prism 6.00 (GraphPad Software) was used to perform
the statistical analysis, after assessing normality of the data set,
appropriate parametric or non-parametric tests were employed.
A detailed description of the statistical analysis is included in the
supplementary information.
22 vol. 77 j 991–1004
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For further details regarding the materials and methods used,
please refer to the CTAT table and supplementary information.

Results
TREM-2 expression is upregulated in the livers of patients
with PBC and PSC, positively correlating with markers of
disease progression
TREM-2 mRNA levels were found increased in the livers of pa-
tients with PBC or PSC from study cohort 1, compared with
cirrhotic livers (with different etiologic causes) or normal control
liver tissues (Fig. 1A). Moreover, TREM-2 expression positively
correlated with markers of cholestasis and macrophages when
samples of patients with PBC and PSC were grouped together.
Herein, TREM-2 expression correlated with the pro-
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inflammatory cytokines interleukin (IL)6, 8 (IL8) and 33 (IL33),
the macrophage markers CD68 and CD9, as well as the marker of
fibrosis collagen type 1 A 1 (COL1A1) (Fig. 1B).

Further sub-analysis including only livers from patients with
PBC or PSC confirmed the correlations of TREM-2 levels with IL8
and COL1A1 in both diseases when analyzed separately
(Fig. S1A,B). Additionally, positive correlations of hepatic TREM-2
expression with serum levels of markers of liver injury (i.e.,
alanine aminotransferase [ALT] and aspartate aminotransferase
[AST]) and the marker of cholestasis bilirubin were particularly
observed in patients with PBC. Accordingly, a positive correlation
between hepatic TREM-2 expression and the MELD (model for
end-stage liver disease) score was also observed in this subset of
patients (Fig. S1A). Moreover, a positive correlation between
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TREM-2 expression and the levels of IL6, chemokine (C-X-C
motif) ligand 1 (CXCL1), CD9 and the marker of fibrosis COL3A1
was confirmed in a publicly available data repository22 that in-
cludes a gene expression array of liver tissue of patients with
PBC (Fig. S2A).

Next, a comparative analysis of TREM-2 expression was per-
formed according to the liver fibrosis stage (i.e., early (F2) vs.
advanced (F3-F4) fibrosis) in patients with PBC and PSC. Notably,
TREM-2 was similarly upregulated in the livers of patients with
F2 or F3/F4 fibrosis, when compared with normal liver tissues
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(Fig. S2B). Likewise, marked TREM-2 upregulation was found in
the liver of an additional cohort of patients with early-stage PBC
(F1-F2) in comparison to healthy liver tissues and patients with
alcohol-related cirrhosis (Fig. S2C).

On the other hand, the expression levels of TREM-1 were not
altered in the livers of patients with PBC or PSC, when compared
with healthy controls or patients with cirrhosis, although a
positive correlation with markers of inflammation and fibrosis
was evident (Fig. S3A,B). Together, these findings suggest an
involvement of TREM-2 in human cholestatic disease.
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Trem-2 is upregulated in the liver of murine models of
cholestasis and is expressed in non-parenchymal KCs
and HSCs
To elucidate whether TREM-2 upregulation is a characteristic
and conserved event in cholestasis, its expression was assessed
in different murine models of cholestasis. Compared with sham-
operated animals, hepatic Trem-2 expression was upregulated in
animals with obstructive cholestasis (BDL) (Fig. 2A). Herein,
Trem-2 positively correlated with different markers of cholestatic
liver injury, including the biliary markers cytokeratin (Ck)19 and
Ck7, as well as the markers of liver fibrosis actin alpha 2 (Acta2)
and Col1a1 (Fig. 2B). Furthermore, in a model of chemically
induced cholestasis based on ANIT administration, Trem-2
expression was upregulated when compared to mice receiving
vehicle (olive oil) (Fig. 2C), positively correlating with Il33 and
the fibrosis marker Col1a1 (Fig. 2D).

Confirming previous data reported by our group,16,17 Trem-2
expression (mRNA) was very low in hepatocytes, but markedly
higher in non-parenchymal liver cells, including KCs and acti-
vated HSCs (Fig. 2E); of note, isolated and cultured mouse
cholangiocytes showed almost undetectable Trem-
2 expression.

TREM-2 protects the liver against obstructive cholestasis
in mice
To elucidate the role of TREM-2 in cholestasis, WT and Trem-2
deficient mice (Trem-2-/-) were subjected to BDL or control sham
operation, and sacrificed 7 days after the surgical procedure
(Fig. 3A). No changes in serum levels of alkaline phosphatase
(ALP), bilirubin, ALT and AST were observed between genotypes
after BDL (Fig. S4). However, H&E staining revealed increased
hepatocellular necrotic areas in the liver of Trem-2-/- compared to
WT mice subjected to BDL (Fig. 3B), which was also confirmed
histologically through independent blinded assessment by an
experienced pathologist (Fig. S5A). Low levels of apoptosis were
observed under BDL in both genotypes, as measured by immu-
nohistochemistry (IHC) and immunoblotting for the marker of
apoptosis, cleaved-caspase 3 (Fig. S5B,C). However, compared to
control animals, post-BDL Trem-2-/- mice showed a marked
tendency towards increased expression of the main marker of
necroptosis, RIP3 (receptor-interacting protein kinase 3), and
significantly higher levels of the phosphorylated form of the
main necroptotic effector, MLKL (mixed lineage kinase domain
like pseudokinase) (Fig. 3C).23

Therefore, the inflammatory response was analyzed in WT
and Trem-2-/- mice upon BDL. H&E staining analysis revealed an
exacerbated inflammatory infiltrate in livers of Trem-2-/- mice
compared to WT mice (Fig. S6A). Additionally, when compared
with controls, post-BDL Trem-2-/- mice exhibited augmented
hepatic transcript levels of Il6, tumor necrosis factor (Tnf) and
Il33 (Fig. 3D). Furthermore, BDL in Trem-2-deficient mice was
associated with enhanced expression of the pro-inflammatory
chemokines monocyte chemoattractant protein 1 (Mcp1) and
Cxcl1 (Fig. 3E), which are involved in hepatic monocyte and
neutrophil recruitment, respectively. Augmented hepatic MCP1
and CXCL1 levels in Trem-2-/- mice were confirmed at the protein
level by Bio-Plex assay (Fig. S6B). Of note, IHC for the neutrophil
marker Ly6G depicted that increased hepatic Cxcl1 expression in
Trem-2-/- mice after BDL was accompanied by augmented
neutrophil recruitment (Fig. 3F). This effect was associated with
increased levels (mRNA) of the oxidative stress markers heme
996 Journal of Hepatology 20
oxygenase (Hmox) and nitric oxide synthase 2 (Nos2) (Fig. S6C).
No differences were observed between WT and Trem-2-/- mice in
the hepatic content of macrophages and T lympho-
cytes (Fig. S6D,E).

Since cholestasis is characterized by intrahepatic accumula-
tion of BAs, we next assessed total BA concentration and quan-
tified the concentration of distinct BA species after BDL in both
mouse genotypes. Under baseline conditions (i.e., control sham
operated), the liver of Trem-2-/- mice exhibited lower content of
total, primary and secondary BAs when compared with WT. As
anticipated, BDL led to an accumulation of total and individual
molecular species of hepatic BAs, which reached the same levels
in both genotypes (Fig. 4A, Fig. S7). Consequently, this increased
total and primary BA concentration (BDL vs. sham) was more
prominent in Trem-2-/- compared to WT mice (Fig. S8A). In line
with this, the baseline expression levels of the rate limiting
enzyme in BA biosynthesis cytochrome P450 family 7 a1
(Cyp7a1) showed an almost statistically significant down-
regulation in Trem-2-/- livers (Fig. 4B), which became significant
when analyzed in a larger control (non-operated) group
(Fig. S8B), thus potentially explaining the baseline decrease in
the liver BA concentration observed in sham-operated Trem-2-/-

vs. WT mice.
In the progression of cholestasis, ductular reaction is trig-

gered as an adaptive event to restore the damaged and lost tissue
and preserve an optimal biliary function.7,8 In line with this
process, Trem-2-/- mice exhibited increased scores of biliary
expansion after BDL (Fig. S9A), which was accompanied by
enhanced expression (mRNA) of the biliary markers Ck19 and
Ck7 in total liver, and by more CK19+ cells on IHC (Fig. 4C,D). In
addition, increased levels (mRNA) of the main marker of HSC
activation Acta2 and of the main fiber accumulating in fibrosis
Col1a1, as well as more peribiliary cells positive for aSMA (pro-
tein encoded by Acta2), were found in the livers of Trem-2-/- mice
compared to WT mice after BDL (Fig. 4E,F). Nevertheless, the
increased Col1a1 mRNA expression was not accompanied by
overall changes in collagen deposition betweenWT and Trem-2-/-

mice (Fig. S9B).

Antibiotic administration abrogates some of the differences
observed between WT and Trem-2-/- mice subjected to
obstructive cholestasis
In order to test the potential contribution of gut microbiota as
one of the triggering factors responsible for TREM-2-mediated
effects after BDL, WT and Trem-2-/- mice were administered an
antibiotic (Abx) cocktail for 4 weeks, and in the third week of
Abx administration, BDL was conducted and mice sacrificed 7
days after the surgical procedure (Fig. 5A). Of note, Abx
administration was able to abrogate the differences observed
between WT and Trem-2-/- mice after BDL in the hepatic
expression of the pro-inflammatory cytokines Il6, Il33 and Tnf,
the chemokine Mcp1, as well as the expression of the oxidative
stress markers Hmox1 and Nos2 (Fig. 5B-D). Interestingly, the
Abx cocktail was also able to abrogate the differences detected
in ductular reaction (i.e., number of CK19+ cells) between WT
and Trem-2-/- mice after BDL (Fig. 5E), as well as neutrophil
recruitment to the liver (Fig. S10). Together, these findings
suggest pathogen-associated molecular patterns (PAMPs)
derived from gut bacteria are upstream triggers for
inflammation-associated ductular reaction, which are damp-
ened by TREM-2.
22 vol. 77 j 991–1004
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TREM-2 protects the liver against ANIT-induced cholestasis
With the aim of exploring the role of TREM-2 in an alternative
setting of experimental cholestasis, WT and Trem-2-/- mice were
administered with a single oral dose of ANIT to induce chemical
cholestasis or with vehicle (olive oil), and sacrificed 48 hours
later (Fig. 6A). ANIT was able to trigger a higher increase in
Journal of Hepatology 20
serum ALP, ALT and AST levels at 2 different doses (i.e., 50 or
75 mg/kg) in Trem-2-/- vs. WT mice (Fig. 6B). Trem-2-/- mice were
also characterized by enhanced necrotic areas in the liver
compared to WT mice, paralleling an augmented expression of
the biliary markers Ck7 and Ck19 and a marked ductular reaction,
(Fig. 6C-E). In agreement with the BDL model, ANIT-exposed
22 vol. 77 j 991–1004 997
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Trem-2-/- mice also exhibited increased expression (mRNA) of the
pro-inflammatory cytokines Il1b, Il6, Tnf and Il33 (Fig. 7A), the
chemokine Mcp1, the oxidative stress markers Hmox1 and Nos2,
as well as the HSC activation marker Acta2 (Fig. S11A-C). This was
also associated with increased neutrophil recruitment and HSC
998 Journal of Hepatology 20
activation in these mice (Fig. 7B and Fig. S11D) while no differ-
ences regarding macrophage and lymphocyte recruitment were
observed (Fig. S11E,F).

Next, we explored whether experimental TREM-2 over-
expression in the liver could protect against ANIT-induced
22 vol. 77 j 991–1004
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cholestasis. Thus, control or Trem-2 overexpressing AAVs were
intravenously injected into WT mice, ANIT (75 mg/kg) was
administered72 hours later andmicewere sacrificed48hours after
ANIT administration (Fig. 7C) As expected, the injection of AAVs
containing Trem-2 produced a marked increase of Trem-2 expres-
sionwithin the liver (Fig. 7D). Interestingly, TREM-2overexpression
Journal of Hepatology 20
was able to selectively downregulate the expression of the pro-
inflammatory cytokine Il33 compared to mice injected with the
control AAV (Fig. 7D), whereas no differences were observed in the
other aforementioned cytokines/chemokines (data not shown).
Notably, a reduction in neutrophil recruitment after TREM-2 over-
expression was also observed (Fig. 7E).
22 vol. 77 j 991–1004 999
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UDCA regulates LPS-triggered inflammatory responses in KCs
via a TREM-2-dependent mechanism
There is still limited knowledge regarding the molecular mech-
anisms of action of UDCA in the liver, particularly in non-
parenchymal liver cells.2 Therefore, we evaluated the effect of
LPS, UDCA or the combination of LPS plus UDCA on Trem-1 and
Trem-2 expression in primary KCs isolated from WT mice. Incu-
bation with LPS upregulated the expression of the pro-
inflammatory receptor Trem-1 while it diminished the expres-
sion of the anti-inflammatory receptor Trem-2 in KCs (Fig. 8A).
Interestingly, UDCA alone exerted the opposite effect, thereby
decreasing Trem-1 and increasing Trem-2 expression. Impor-
tantly, UDCA counteracted the effects induced by LPS on both
Trem-1 and Trem-2 in KCs, decreasing Trem-1 and augmenting
Trem-2 expression compared to KCs incubated with LPS alone
(Fig. 8A). Importantly, this effect was specific for UDCA, since
1000 Journal of Hepatology 20
neither cholic acid (CA) nor taurine-conjugated forms of CA
(taurocholic acid, TCA) or UDCA (tauroursodeoxycholic acid,
TUDCA) impacted LPS-dependent modulation of Trem-1 and
Trem-2 (Fig. S12). Additionally, UDCA did not impact on the
modulation of Trem receptors by LPS in HSCs (Fig. S13). These
data indicate that UDCA might modulate inflammatory re-
sponses specifically in KCs by regulating Trem-1 and Trem-2
expression. To test this hypothesis, primary KCs were isolated
from WT and Trem-2-/- mice, and then incubated with LPS or a
combination of LPS plus UDCA, before inflammatory responses in
these conditions were assessed. As previously reported, LPS
strongly induced the expression of the pro-inflammatory cyto-
kines Il6 and Tnf, as well as the chemokine Cxcl1 in KCs derived
from both mouse genotypes, with more prominent effects in
Trem-2-/- KCs. Notably, the addition of UDCA diminished the
expression of these mediators in WT KCs, whereas no effect was
22 vol. 77 j 991–1004
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observed in Trem-2-/- KCs (Fig. 8B), indicating that UDCA mod-
ulates inflammatory gene transcription in KCs via a TREM-2-
dependent mechanism.

Discussion
Over the last few years, research focused on TREM-2 has
unraveled its essential role in the regulation of inflammatory
Journal of Hepatology 20
responses in different tissues and disease contexts.15 In the liver,
TREM-2 dampens inflammatory responses triggered by TLR
activation in non-parenchymal cells, thereby exerting multifac-
torial protective mechanisms to defend the organ from hepato-
cellular injury and carcinogenesis.16,17 Based on these
observations, we hypothesized that TREM-2 may modulate in-
flammatory responses in cholestasis.
22 vol. 77 j 991–1004 1001
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First, we found that TREM-2 expression is upregulated (and
correlates with markers of disease progression) in the liver of
patients with cholestasis (both early- and late-stage) compared
to control healthy tissue and cirrhotic livers, as well as in the
livers of mice subjected to different models of cholestasis. This
upregulation might be a response mechanism to dampen
inflammation that is maintained under the presence of chronic
injury, like previous reports in other liver disease settings.16,17 In
fact, considering that Trem-2 expression was mainly found in
mouse KCs and activated HSCs, the increased levels of TREM-2 in
the liver upon cholestasis could reflect the recruitment and/or
proliferation of TREM-2-expressing cell populations, as well as an
induced expression in KCs and monocyte-derived macrophages
upon activation as a compensatory mechanism to halt the in-
flammatory burden.17

In experimental models of cholestasis, Trem-2-/- mice exhibit
increased levels of cell death, particularly necroptosis, a type of
cell death previously identified as an important contributor to
injury in patients with PBC and in mice subjected to BDL.24 Un-
derlying this effect, TNF, which is found upregulated in Trem-2-/-

mice after BDL and ANIT, was reported as an important trigger of
necroptosis.25 Consequently, we hypothesize that TREM2
dampens necroptosis, potentially by impacting on TNF expres-
sion and/or secretion.

Cell death favors inflammatory responses in the liver and
necroptosis is particularly regarded as an immunogenic type of
cell death, favoring inflammatory responses.25 Indeed, Trem-
2-/- mice display upregulated Il1b, Il6, Tnf, Il33, Mcp1 and Cxcl1
expression upon BDL and ANIT administration. Enhanced
expression of inflammatory mediators in the liver of Trem-2-/-

mice is associated with increased recruitment of neutrophils to
the liver, which may potentiate the inflammatory response and
sustain the induction of necroptosis, thus favoring disease
worsening and progression. These inflammatory mediators
found upregulated in Trem-2-/- mice are crucial in the pro-
gression of cholestatic diseases in humans and mice.8,26 Their
expression is upregulated in patients with PBC27 and PSC28 and
they are also present in the inflammatory microenvironment
derived from ductular reactive cells.7 Additionally, peripheral
monocytes derived from patients with PBC show an exacer-
bated reaction to LPS, featuring increased secretion of IL1b, IL6,
IL8 and TNF, among others.29 Of note, experimental upregula-
tion of TREM-2 in the livers of WT mice selectively reduced
IL33 expression and neutrophil recruitment after ANIT
administration; IL33 is a pro-inflammatory cytokine that is
elevated in the serum of patients with PBC30 and that pro-
motes cholangiocyte proliferation in mouse models of biliary
injury and repair.31 Notably, the CXCL1-CXCR2 axis, which
drives neutrophil recruitment to the liver, plays a pivotal role
in cholestasis, as Cxcr2-/- mice are protected from BDL-
mediated injury.32 On the other hand, the recruitment of
macrophages was not affected in Trem-2-/- mice after chole-
static injury. Recent studies based on single-cell RNA
sequencing techniques have unraveled specific TREM-2-
expressing macrophage subtypes that accumulate in different
contexts, including obesity, non-alcoholic fatty liver disease
and cirrhosis.33,34 Therefore, although a similar content of the
total macrophages in the liver of both genotypes of mice is
observed, sophisticated techniques describing immune pop-
ulations in detail may unveil differences in the recruitment of
specific macrophage subtypes.
1002 Journal of Hepatology 20
BAs accumulate during cholestasis and promote epithelial cell
death and inflammatory responses.1 Interestingly, under control
conditions, Trem-2-/- mice display lower hepatic BA concentra-
tions compared to livers of WT mice, but reached the same BA
concentration upon BDL. These results are accompanied by
downregulation of Cyp7a1 in Trem-2-/- vs. WT mice under base-
line conditions. Overall, these findings suggest that Trem-2-/-

mice may have developed an adaptive mechanism to maintain
low BA concentrations in their livers to mitigate the harmful
effect of toxic BAs. The dramatic increase in BAs induced by BDL
may overwhelm this mechanism, resulting in similar BA levels.
The molecular mechanisms linking TREM-2 and BA metabolism
and their potential implications in liver disease progression are
still far from clear, thus posing an interesting
research opportunity.

Signals derived from bacterial products that translocate from
the gut to the liver are now regarded as crucial mediators of
chronic cholestasis.9 Indeed, gut-derived bacterial products
sensitize hepatocytes to BA-induced injury and are needed to
establish liver damage in experimental models of cholestasis.35

In line with this, antibiotic-based gut sterilization abrogated
some of the differences observed between WT and Trem-2-/-

mice after cholestasis. This is in agreement with our previous
findings in the setting of carbon tetrachloride-induced liver
injury, where TREM-2-mediated effects were shown to be trig-
gered by gut-derived PAMPs.16 By contrast, in the context of
cholestasis, some parameters were not abrogated by the
administration of antibiotics, suggesting TREM-2 may also
modulate TLR signaling due to the binding of ligands beyond
PAMPs, including danger-associated molecular patterns released
from dying epithelial cells. Alternatively, TREM-2 might also
exert protective effects in cholestasis by a TLR-independent
mechanism. Of note, in the setting of liver regeneration after
partial hepatectomy, TLRs do not play a prominent role, as Tlr-/-

mice responded similarly to WT mice after partial hepatec-
tomy,36 but Trem-2-/- mice show increased expression of in-
flammatory mediators and hepatocyte proliferation in
this setting.17

In this study, we report a novel mechanism by which UDCA
may impact inflammatory responses in non-parenchymal liver
cells. Our results suggest that UDCA is able to modulate Trem-1
and Trem-2 expression exclusively on KCs and this impacts on
the inflammatory responses of these cells, as the addition of
UDCA upon LPS incubation downregulated Il6, Tnf and Cxcl1 gene
transcription only in WT KCs, while this effect was abrogated in
Trem-2-/- KCs. Importantly, these inflammatory mediators play a
prominent role in the progression of cholestatic diseases.8,26

These results suggest that the regulation of TREM-1 and TREM-
2 expression may represent a putative mechanism of UDCA
anti-inflammatory action in non-parenchymal liver cells, unrav-
eling a novel important role for UDCA in modulating inflam-
matory responses. In line with this, the anti-inflammatory
properties of a conjugated form of UDCA (ursodeoxycholyl
lysophosphatidylethanolamide or UDCA-LPE) in RAW264.7
macrophages and murine primary KCs were recently reported,37

thus reinforcing the immunomodulatory role of UDCA in non-
parenchymal cells.

In summary, cholestatic damage triggers the wound healing
response, in which epithelial and non-epithelial cells cooperate
in an effort to restore the lost liver parenchyma and its functions.
In this context, bacterial products derived from the intestinal
22 vol. 77 j 991–1004



compartment bind to TLRs in the liver, mainly in KCs and HSCs,
upregulating inflammatory gene transcription. Persistent in-
flammatory mediators act in an autocrine and paracrine fashion,
also promoting cholestasis. In the absence of TREM-2, the natural
break to TLR-mediated signaling disappears, therefore, TLR-
mediated inflammatory gene transcription in KCs and HSCs is
amplified, resulting in an exacerbated response to cholestasis.
Therefore, TREM-2 arises as a novel regulator of inflammatory
responses in cholestasis, and its activation could represent a
promising therapeutic strategy for patients with cholestasis.
Moreover, some of the therapeutic benefits of UDCA supple-
mentation in cholestasis may be mediated by the regulation of
TREM-1 and TREM-2 expression in KCs.
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