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Long non-coding RNAs (lncRNAs) are involved in several biological processes,

including the immune system response to pathogens and vaccines. The

annotation and functional characterization of lncRNAs is more advanced in

humans than in livestock species. Here, we take advantage of the increasing

number of high-throughput functional experiments deposited in public

databases in order to uniformly analyse, profile unannotated lncRNAs and

integrate 422 ovine RNA-seq samples from the ovine immune system. We

identified 12302 unannotated lncRNA genes with support from independent

CAGE-seq and histone modification ChIP-seq assays. Unannotated lncRNAs

showed low expression levels and sequence conservation across other

mammal species. There were differences in expression levels depending on

the genomic location-based lncRNA classification. Differential expression

analyses between unstimulated and samples stimulated with pathogen

infection or vaccination resulted in hundreds of lncRNAs with changed

expression. Gene co-expression analyses revealed immune gene-enriched

clusters associated with immune system activation and related to interferon

signalling, antiviral response or endoplasmic reticulum stress. Besides,

differential co-expression networks were constructed in order to find

condition-specific relationships between coding genes and lncRNAs. Overall,

using a diverse set of immune system samples and bioinformatic approaches

we identify several ovine lncRNAs associated with the response to an external

stimulus. These findings help in the improvement of the ovine lncRNA catalogue

and provide sheep-specific evidence for the implication in the general immune

response for several lncRNAs.
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Introduction

Long non-coding RNAs (lncRNAs) are a heterogeneous class

of genes that transcribe transcripts longer than 200 nucleotides

lacking protein-coding potential (Ulitsky and Bartel, 2013). They

are consistently transcribed, show lower expression and have less

exons compared to protein-coding genes (PCGs). They are also

more enriched in the nucleus and vary in their epigenetic marks

and splicing efficiency (Derrien et al., 2012; Quinn and Chang,

2016; Melé et al., 2017). They show spatiotemporal-specific

expression and epigenetic regulation, which highlights the

diverse processes in which they are involved (Amin et al.,

2015; Ransohoff et al., 2018). The expression of most

lncRNAs varies greatly between individuals (Derrien et al.,

2012; Kornienko et al., 2016). In the immune system lncRNAs

are expressed in a very cell-specific and dynamic way, even within

lineages of the same cell types (Hu et al., 2013; Ranzani et al.,

2015; Agirre et al., 2019) and this cell-type specificity seems to be

conserved among species (Washietl et al., 2014). Thus, lncRNAs

emerge as potential regulators of immune system cell function

and gene expression regulation, which should be finely

coordinated for the generation of a correct immune response

to external stimuli such as pathogens or vaccines.

Next-generation sequencing has expanded the mammal

transcriptome attributing to thousands of poorly understood

non-protein-coding transcripts the largest share of genes.

There are many lncRNAs that may be involved in immune

processes, but most of them remain functionally

uncharacterised, especially in non-model species. Some

lncRNAs might simply be transcriptional noise, but several

others appear to be functional (Ma et al., 2019; Ramilowski

et al., 2020). LncRNAs do not have a single molecular

mechanism. They can regulate gene expression through

interactions with proteins, RNA or DNA and their functions

can often be directed by their location, sequence or secondary

structure (Marchese et al., 2017). Sometimes the act of

transcription itself has a local functional output, regardless of

sequence, which could explain their low sequence conservation

(Engreitz et al., 2016; Marchese et al., 2017). For instance, IFNG

gene expression is regulated by the gene locus of an antisense

lncRNA, but not by its non-coding product (Petermann et al.,

2019).

The lncRNA catalogues of livestock species remain under-

annotated compared to the mouse or human annotations

(Kosinska-Selbi et al., 2020; Lagarrigue et al., 2021). Publicly

available gene annotations contain more than ten thousand

mouse and human lncRNA genes, while the sheep annotation

contains 2,229 lncRNA genes in Ensembl v.105 and

4,442 lncRNA genes in NCBI Release 104. There is limited

genomic overlap between both sources, most likely reflecting

the highly specific expression of lncRNAs and the

incompleteness of the current annotations (Lagarrigue et al.,

2021). The annotation and functional characterisation of

livestock lncRNAs is essential, since most trait-associated

variants in livestock lie within non-coding genome regions

(Weikard et al., 2017). In sheep, lncRNAs have been profiled

across a multi-tissue dataset (Bush et al., 2018), but there are few

functional studies investigating their involvement in the immune

response and those are difficult to compare due to differences in

naming and data availability (Jin et al., 2018; Bilbao-Arribas et al.,

2021; Chitneedi et al., 2021).

The exponential increase in RNA sequencing datasets in the

last years offers a valuable opportunity for posing novel scientific

questions or improving the statistical significance of the analyses

in a cost-efficient manner (Sielemann et al., 2020). This is

specially suitable for the profiling of lncRNAs, due to their

highly specific expression (Lagarrigue et al., 2021) and for the

profiling of the gene expression signatures of immune responses

(Sparks et al., 2016). There is a great interest in gene expression

meta-analysis methods (Sweeney et al., 2017; Toro-Domínguez

et al., 2021), which have been successfully applied to profile the

transcriptional signatures across respiratory viruses (Andres-

Terre et al., 2015) or vaccines (Li et al., 2014) in human

blood samples. In livestock, few RNA-seq studies have utilized

meta-analysis procedures to date, none of them in sheep (Keel

and Lindholm-Perry, 2022).

In this study, we take advantage of the increasing number of

high-throughput functional experiments deposited in public

databases in order to uniformly analyse, profile unannotated

lncRNAs and integrate 422 publicly available ovine RNA-seq

samples, histone modification chromatin immunoprecipitation

sequencing (ChIP-seq) samples and Cap Analysis of Gene

Expression sequencing (CAGE-seq) samples of blood cells,

lymphoid organs and other immune cells. We expand the

lncRNA catalogue in sheep and identify the common

expression signature of protein coding genes and lncRNAs

during the immune response, evidencing the potential role of

hundreds of lncRNA genes in immune functions.

Materials and methods

Data collection

We selected 929 RNA-seq sequencing runs belonging to

15 BioProjects from NCBI Sequence Read Archive (SRA),

which were merged into 422 samples, by the following

inclusion criteria: Samples from an immune system tissue

(blood, immune cells or lymphoid organs), at least five

samples from a single BioProject, pair-end sequenced using an

Illumina platform and genome mapping rate above 60%. Sample

metadata such as tissue type, age, breed, sex, library type or

experimental treatment was collected from NCBI databases and

published articles. Due to metadata ambiguity, the strandness of

the samples was assessed with Kallisto (Bray et al., 2016) prior to

pipeline execution.
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Most samples originated from functional experiments that

studied the immune response to vaccines or vaccine components

(PRJEB26387, PRJNA454435, PRJNA559411), helminth

infections (PRJNA291172, PRJNA433706, PRJNA268183,

PRJEB33476, PRJEB45790, PRJEB44063), bacterial infection

(PRJEB15872) and pro-inflammatory gene upregulation

(PRJNA631066). Other transcriptomic studies were not related

to the immune response but were used to improve the novel

lncRNA identification and as unstimulated controls

(PRJNA528905, PRJNA485657, PRJNA362606). Besides, we

added samples from the sheep expression atlas (PRJEB19199),

including samples from bone marrow derived macrophages

stimulated with lipopolysaccharide (LPS). All samples were

dichotomized into two treatment-groups: samples from

FIGURE 1
Bioinformatic workflow of the study. The workflow followed in this study can be divided into three sections. (A) First, sequencing data retrieval,
preprocessing and mapping to the sheep genome. (B) Second, identification of unannotated lncRNA transcripts and evidence of expression. (C)
Third, functional analyses between unstimulated samples and samples with an immune stimulation.
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immune-stimulated animals and unstimulated or control

samples.

Transcriptome assembly and
quantification

We downloaded and analysed the 422 RNA-seq samples with

a uniform workflow using custom Snakemake v.6.15.1 (Köster

et al., 2021) pipelines (Figure 1). 375 reverse stranded samples

were used for transcriptome construction and novel lncRNA

identification, while all samples were used for quantification

based on the new transcriptome. Sequencing runs were

downloaded from NCBI SRA with the SRA Toolkit and were

merged into samples by their experiment ID. Adapter trimming

and quality filtering was performed with cutadapt v.3.5 (Martin,

2011) using Illumina universal adapters and a phred threshold of

30. Reads were aligned to the sheep reference genome

(Oar_rambouillet_v1.0) (Salavati et al., 2020) with STAR

v.2.7.3a (Dobin et al., 2013) guided by the Ensembl (v102)

annotation. StringTie2 v.2.0 (Kovaka et al., 2019)

transcriptome assembler was used to reconstruct the

transcriptome of each individual sample guided by the

Ensembl (v102) annotation and with the--rf option. Then

StringTie2 was applied again with the--merge option using all

the transcriptomes in order to obtain a non-redundant

transcriptome that is comparable between samples.

Quantification of gene expression was performed at

transcript level with Kallisto v.0.48 (Bray et al., 2016)

pseudoaligning the trimmed reads of all samples to the newly

generated transcriptome, generated with GffRead v.0.11.7 (Pertea

and Pertea, 2020). The--rf-stranded option was used with the

375 stranded samples.

LncRNA identification

Potential novel lncRNAs were defined as unannotated

transcripts that were located either in an intergenic region, in

an intron of a known gene or in the antisense strand of a known

gene. GffCompare v.0.11.2 (Pertea and Pertea, 2020) was used to

compare the newly assembled transcriptome with the reference

annotation and extract these transcripts. Single-exon transcripts

longer than 500 nucleotides and shorter than 10kb, and

multiexonic transcripts longer than 200 nucleotides and

shorter than 50 kb were kept. The assessment of the coding

potential of the candidate transcripts was done with three

different tools. The coding potential prediction module of

FEELnc (Wucher et al., 2017), based on a Random Forest

classifier, was trained with sequences of bovine coding genes

and lncRNAs from NONCODE database (Zhao et al., 2021).

Coding-Potential Assessment Tool 3.0.2 (CPAT) (Wang et al.,

2013) is a logistic regression-based tool that we trained and

selected the classification threshold following authors’

instructions using the same bovine coding and non-coding

sequences. HMMER 3.3.2 (Eddy, 2011) was used to detect

Pfam protein domains in our potential lncRNAs, which were

translated into the three possible frames. Transcripts classified as

non-coding by FEELnc and CPAT and without protein domains

detected by HMMER were kept. Transcripts classified by

CuffCompare as a novel isoform of a known gene were also

kept, as transcripts that had passed the coding potential tests

could be legit non-coding isoforms. The selected transcripts were

defined as the final set of novel lncRNAs.

Novel lncRNA transcripts were classified with a custom

Python script (see Data Availability section) based on their

position relative to their closest gene. Transcription start sites

(TSSs) were defined as the start or stop nucleotides, depending on

strandness. Seven classes were defined: 1) antisense, for those

transcripts overlapping a gene in the opposite strand; 2) sense

intronic or antisense intronic, for transcripts fully contained

within an intron; 3) intergenic, for lncRNAs at least 5 kb

away from any known gene; 4) divergent, with TSSs within

5 kb and in the opposite strand; 5) convergent, with

transcription stops within 5 kb and in the opposite strand; 6)

sense upstream, located less than 5 kb upstream of a gene and in

the same strand; and 7) sense downstream, located less than 5 kb

downstream of a gene and in the same strand.

To compare the novel lncRNAs with the recently upgraded

ovine NCBI RefSeq annotation (release 104), which is based on

the ARS-UI_Ramb_v2.0 new reference genome (Davenport et al.,

2022), transcript coordinates were remapped with the NCBI

Genome Remapping Service (https://www.ncbi.nlm.nih.gov/

genome/tools/remap). They were compared with the NCBI

lncRNAs using GffCompare (Pertea and Pertea, 2020).

Transcripts models with codes “ = “, “j”, “c”, “k”, “o”,"m" or

“n" were considered as overlapping, transcripts with codes “c” or

“k” were considered compatible isoforms and transcripts with

code “ = ” were considered exact matches.

CAGE-seq and ChIP-seq data analysis

We downloaded the mapped BAM files of CAGE-seq

experiments of five immune tissues from a multi-tissue

project of sheep TSSs (tonsil, alveolar macrophages, spleen,

mesenteric lymph node and prescapular lymph node) (Salavati

et al., 2020) and analysed them using the same pipeline as the

authors, with some modifications. In short, downloaded BAM

files were converted to bigwig format with bedtools v.2.30.0

(Quinlan and Hall, 2010) and BedGraphToBigWig from

UCSC tools (Kent et al., 2010). The R package CAGEfightR

v.1.12.0 (Thodberg et al., 2019) was used for normalization and

clustering of CAGE tags. CAGE tags <10 read counts were

removed and all the remaining tags from any of the tissues

were kept, to include tissue-specific TSSs. CAGEfightR was also
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used to identify bidirectional clusters. In order to get the genes

supported by CAGE-predicted TSSs we used the BedTools

python implementation pybedtools v.0.8.1 (Dale et al., 2011)

to search for TSSs from the assembled transcriptome within

0.5 kb from them, accounting for strandness.

Sheep ChIP-seq sequencing files from alveolar macrophages

(Massa et al., 2021) were downloaded from the NCBI Sequence

Read Archive (SRA) and were analysed in an uniform way. Reads

were aligned to the sheep genome (Oar_rambouillet_v1.0) with

Bowtie2 v.2.3.5.1 (Langmead and Salzberg, 2012). SAM files were

converted to BAM format with samtools v.1.7 (Danecek et al.,

2021), and were sorted, filtered for quality and removed duplicate

reads with sambamba v.0.6.6 (Tarasov et al., 2015).

MACS2 v.2.2.6 (Zhang et al., 2008) was used to call narrow

peaks for histone modifications with a FDR cut-off of 0.05 and

consensus peaks from the pairs of animals were obtained with

bedtools v.2.30.0 (Quinlan and Hall, 2010). In order to get the

genes supported by ChIP-seq peaks we used pybedtools v.0.8.1 to

search for TSSs from the assembled transcriptome within 0.5 kb

from them.

Conservation in terms of sequence

Sequence level conservation was performed with standalone

BLASTn (BLAST v.2.9.0) (Camacho et al., 2009) by aligning the

sheep lncRNA transcripts against the lncRNAs annotated in

Ensembl Release 106 from five species: goat, cattle, pig, mouse

and human. Because of the known low sequence conservation

expected in lncRNAs, results were filtered by identity >50, query
coverage >50, E-value > 1e-05 and it was required that the length

differences between each pair of sequences was less than 50%.

Visualization of the genomic context of conserved lncRNAs was

performed with pyGenomeTracks 3.7 (Lopez-Delisle et al., 2021).

The tracks for CAGE-seq data were constructed by merging all

BAM alignment files with samtools (Danecek et al., 2021) into a

single file and then was converted to bigwig format as previously.

The tracks for histone modification ChIP-seq data were the

consensus peaks obtained from MACS2.

Analysis of gene expression

Kallisto abundance estimates were imported to R and

summarized to gene level with IsoformSwitchAnalyzeR

(Vitting-Seerup et al., 2019) in order to set confident gene

identifiers for ambiguous transcripts. Counts of annotated

genes and novel lncRNA genes were kept for further analysis,

discarding potential novel unannotated coding genes. For gene

expression data exploration, we normalized the estimated gene

counts with the variance stabilizing transformation fromDESeq2

(Love et al., 2014) and filtered out genes with less than

0.5 transcripts per million (TPM). The first two components

of the principal component analysis (PCA) and the two first

dimensions of the t-Distributed Stochastic Neighbor Embedding

(t-SNE) were used for visualization. LncRNAs were tagged as

expressed if they could be detected above 0.1 TPM or one TPM in

at least 20% of the samples in a tissue group. Two-sided Mann-

Whitney U tests were performed to compare expression means

between classes.

Differential gene expression (DGE) was performed with

DESeq2 (Love et al., 2014) using the estimated counts of

annotated genes and lncRNA genes expressed in at least half

of each sample groups and exported from

IsoformSwitchAnalyzeR (Vitting-Seerup et al., 2019).

Differential expression was tested separately in a blood and

cell sample dataset on one side, and in a lymph node-only

dataset on the other, because there were not stimulated

samples from other lymphoid organs and that would

unbalance the dataset. The Wald test was applied between

unstimulated samples and stimulated samples using the effect

of the interaction of tissue type and BioProject IDs as covariates

for the lineal regression model, as those were the main drivers of

the groupings seen in the exploratory analysis. Log2 fold change

(log2FC) values from lowly expressed and highly variable genes

were shrunken using the apeglmmethod (Zhu et al., 2019). Genes

with an FDR-adjusted p-value lower than 0.05 and an absolute

log2FC higher than 0.32, which corresponds to a 20% expression

change, were kept. The relatively low log2FC filter was chosen

because the large number of samples and the heterogeneity of the

dataset produced differentially expressed genes with modest

effect sizes and robust p-values.

Gene set enrichment analysis of differentially expressed

genes was done with gProfiler R package (Raudvere et al.,

2019). The statistical domain scope used was the list of all

expressed genes for each tissue, in order to reduce the tissue

type specific expression bias. Benjamini–Hochberg FDR

correction was applied to the p-values and the threshold was

set to 0.05.

Co-expression analyses

Co-expression analyses were performed in the blood and

immune cell dataset and in the lymph node-only dataset

separately. Genes expressed in less than half of the samples

were removed and strong outlier samples were removed in

order to get a better fit to a scale-free topology. We tested two

network construction pipelines: 1) The pipeline proposed by the

authors of Gene Whole co-Expression Network Analysis

(GWENA) (Lemoine et al., 2021), which consists of applying

the variance stabilizing transformation (VST) from DESeq2

(Love et al., 2014) and using spearman correlations, and 2)

counts adjusted with trimmed mean of M-values (TMM)

factors followed by asinh transformation, Pearson correlations

and network transformation by context likelihood of relatedness
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(CLR) (Johnson and Krishnan, 2022). Before creating the

correlation matrices, normalised gene expression was

corrected for covariates with limma’s removeBatchEffect

function (Ritchie et al., 2015) to account for the effect of the

interaction of tissue type and BioProject ID, as those were the

main drivers of the groupings seen in the exploratory analysis.

The 30% less variable genes were removed for network

construction. Co-expression networks were constructed with

GWENA (Lemoine et al., 2021) R package, which implements

the Weighted Correlation Network Analysis (WGCNA)

(Langfelder and Horvath, 2008) R package.

Modules of co-expressed genes were detected with the

threshold power and clustering threshold calculated by

GWENA and a minimum module size of 30. Modules were

merged if their eigengene, the first principal component of the

module, correlation was higher than 0.9. Modules were

associated with overall immune stimulation or specific

stimulation types by correlating their eigengene to those

variables. To calculate the correlation p-value threshold, we

generated 1,000 random gene modules ranging from 30 to

1,000 genes, correlated their eigengenes with the treatment

variable and calculated the false positive rate (FPR). The

p-value threshold with the FPR lower than 0.05 was 1e-02,

but 1e-03 was chosen for more robustness. The genes in each

module were tested for Gene Ontology (GO) term enrichment

with gProfiler (Raudvere et al., 2019) R implementation, setting

the statistical domain scope to all the genes in the co-expression

network and a FDR-adjusted p-value threshold of 0.05.

The differential co-expression analysis was carried out by

calculating the spearman correlations between all genes used in

the co-expression network analysis separately in the

unstimulated and the stimulated samples. The z-score method

implemented in the dcanr v.1.12.0 R package (Bhuva et al., 2019)

was used for testing the statistical differences between

z-transformed correlation coefficients in both conditions. p

values were adjusted for multiple hypothesis testing in order

to select differentially correlated gene pairs. Differential co-

expression networks (DCN) were visualized in Cytoscape

v.3.8.2 (Shannon et al., 2003) by integrating the differential

co-expression results, co-expression modules and differential

expression results. For visualization, genes without gene

names in the Ensembl annotation were named after their

human orthologue according to Ensembl Compara.

Results

Dataset description

We collected and analysed 422 publicly available RNA-seq

samples of tissues related to the immune system (Supplementary

Table S1) using a uniform pipeline (Figure 1). In terms of

immune response induction, 49.1% of the samples had been

stimulated in some way. Blood samples, as whole blood or

PBMCs, represented the 64.5% of the dataset, organs and

lymph nodes the 30.3% and immune cell subsets the 5.2%.

The mean age of the animals was of 1.32 years and 60.1% of

the samples came from male sheep. There are 12 different breeds

in the dataset, with three of them being crossbreed. Library

selection is an important factor for lncRNA profiling because

there are transcripts that are not polyadenylated. Around half of

the samples were polyA-selected and half of the samples

sequenced total RNA. Besides, samples had an average of

45 million reads, summing around 19 billion reads in total

(Supplementary Figure S1). Unique genome mapping rate

with STAR was of 84.6% on average and pseudoalignment

rate to the new transcriptome with Kallisto was of 84.7% on

average (Supplementary Figure S1). The assembled and merged

transcriptome annotation contained 308750 transcripts, of which

41638 were from annotated transcripts and 36067 were from

novel lncRNA transcripts identified by our pipeline. These

transcripts correspond to 63364 genes, including

25472 annotated genes and 21223 novel genes with at least

one lncRNA isoform.

All samples were clustered based on gene expression to assess

the coherence of the data. Both clustering methods used clustered

together the samples based on tissue, although intra-tissue

groupings were influenced by the source project (Figures

2A,B). This could be expected as each study was performed in

different conditions, with different breeds, ages, sex and

protocols. Immune stimulation status did not affect much the

clustering probably for the same reasons and because of the

strong influence of tissue type.

Novel lncRNA identification

We identified 21223 unannotated lncRNA genes from the

sheep immune system samples that were assembled, and another

1724 annotated genes had novel non-coding isoforms classified

as lncRNAs by our pipeline. Most of the novel genes with

transcripts fulfilling the requisites to be classified as novel

lncRNAs had all of their isoforms classified as such (17605).

Some of the newly assembled gene models were coding genes

missing from the Ensembl annotation that had non-coding

isoforms, because they had novel transcripts with coding

potential as well as lncRNA transcripts. Those unannotated

genes and the 1724 annotated genes with novel non-coding

isoforms were not considered as lncRNA genes for the gene-

level expression analyses, even if individual transcripts could not

be discarded as bona fide non-coding isoforms. We applied the

same coding potential assessment methods used for novel

transcripts to the annotated lncRNAs and discovered that

there were transcripts potentially coding for a protein. This

bias should be taken into account when comparing between

the features of annotated and unannotated lncRNAs.
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Regarding the characteristics of the novel lncRNAs, novel

transcripts were shorter than the 2,229 lncRNAs annotated in

Ensembl (Figure 2C) and a great proportion of them had two

exons, in contrast to the Ensembl lncRNAs, which are

monoexonic or have more than five exons (Figure 2D). We

classified the novel genes based on position relative to known

genes (Figure 2F, Supplementary Table S1). Intergenic lncRNAs

(lincRNAs) were the most prevalent with 37% of the transcripts,

FIGURE 2
Characteristics of the dataset and the identification of lncRNAs. Exploratory analysis of all the samples included in the study using dimensionality
reduction methods: (A) Principal Component Analysis (PCA) grouped by main tissue, (B) t-SNE plot with samples colored by tissue. (C) Transcript
length distribution of PCGs and lncRNAs. (D) Exon length distribution of PCGs and lncRNAs. (E) Expression levels of PCGs and lncRNAs in blood cell
samples and tissue samples. (F) Classification of lncRNAs into classes by genomic location. (G) Number of detected unannotated lncRNAs
against sequencing depth.
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followed by intronic antisense (22%) and antisense (18%)

transcripts. Among the transcripts adjacent to annotated

genes, the class of divergent lncRNAs was predominant (10%

of all novel genes). The TSS of this kind of lncRNAs are very close

to another gene’s TSS, which indicates that they probably arise

from a single bidirectional promoter and may have implications

in terms of gene expression regulation.

We explored the sequence-level evolutionary conservation of

lncRNAs with other mammal species. Most lncRNAs are known

to be poorly conserved in terms of sequence, but by detecting

mammalian orthologues we provide further strength to the

methods by which all unannotated lncRNAs have been

identified. This analysis found a small number of conserved

lncRNAs (Supplementary Figure S2; Supplementary Table S3).

The biggest fractions of lncRNAs with conserved orthologues

were found when comparing with goat and cattle lncRNA

catalogues, with 11.9% and 7.3% of transcripts with significant

hits, respectively. Comparing with the human and mouse

catalogues, we found much less conserved lncRNAs.

Interestingly, around 3% of novel lncRNAs, corresponding to

746 unique transcripts, matched with 392 unique human

lncRNAs. Among these conserved lncRNAs, widely

characterized lncRNAs such as MALAT1, NEAT1, XIST,

PACERR or FIRRE were successfully detected in sheep

(Supplementary Figure S3). Other conserved lncRNAs were

those located in Hox gene loci, such as HOTAIR, HOXA10-

AS,HOXA-AS2 orHAGLR. Divergent lncRNAs were also among

the conserved ones, like FMNL1-DT, TOB1-AS1, EMSY-DT,

RIPK2-DT, ATP8A1-DT or MAPK6-DT. Despite not showing

enough sequence similarity, we found some sheep transcripts

located in the same divergent promoter as their human

counterparts, for instance the putative orthologues of

HEATR6-DT or NIPBL-DT.

Because of the recent improvement of the ovine NCBI

reference genome and annotation (Davenport et al., 2022), the

NCBI RefSeq lncRNA annotation was compared with the novel

lncRNAs. After remapping to the new genome, out of the

4442 NCBI lncRNA genes, 1961 (44%) overlapped with an

unannotated lncRNA. Exact matches of intron chains

occurred in 571 transcripts, 238 transcripts were intron-

compatible but differed in exon number and 3,679 where

multi-exonic transcripts with at least one intron match. The

overlap between Ensembl and NCBI lncRNAs was virtually

inexistent. Thus, we detected around half of the annotated

NCBI lncRNA genes using only immune-related tissues, even

if most of the transcript models diverged in terms of splice-

junctions.

Expression patterns of lncRNAs

Expression levels of the novel lncRNAs detected in this

study were lower than both protein coding genes and other

annotated lncRNAs in the two main tissue categories

(Figure 2E). In fact, after applying a minimum expression

threshold in each tissue, expressed in at least 20% of the

samples with one TPM, we were left with 2,267 expressed

novel lncRNAs. Besides, we also detected 482 annotated

lncRNAs above the expression threshold. Interestingly, 70%

of the lncRNAs annotated by Ensembl were expressed in all

three main tissue categories, while only 15% of novel lncRNAs

were expressed in the three tissues (Supplementary Figure S4).

Setting a less stringent mean expression threshold of 0.1 TPM

results in 10045 expressed novel lncRNAs, 28% of them in all

three tissues. Most of the novel lncRNAs (87%) and annotated

lncRNAs (93%) could be detected in the set of lymphoid

organs. Overall the overlap was greater between the blood

samples and “immune cell” samples for both lncRNA genes

and protein coding genes, as blood contains most of those cells

(Supplementary Figure S4).

The amount of detected lncRNAs in each sample

significantly correlated with sequencing depth for both

unannotated lncRNAs (Pearson r = 0.75) and annotated

lncRNAs (Pearson r = 0.85). Expression of PCGs was also

correlated (Pearson r = 0.58) with sequencing depth but the

saturation curve showed a flatter slope, meaning that it saturated

earlier than lncRNAs (Supplementary Figure S5). The amount of

lncRNAs expressed above 0.1 or one TPM got saturated above

around 50 million reads, while the overall amount of expressed

lncRNAs at any level did not saturate even at the highest

sequencing depths in the dataset (above 100 million reads)

(Figure 2G).

Divergent lncRNAs showed greater expression levels than

other lncRNAs classes such as intergenic lncRNAs (Mann-

Whitney U test p-value 2.9e-10) or antisense lncRNAs

(Mann-Whitney U test p-value 1.3e-03), and only showed

significantly lower levels than convergent lncRNAs (Mann-

Whitney U test p-value 2.4e-03) (Supplementary Figure S6).

Intronic antisense lncRNAs showed consistently lower

expression than the rest of novel lncRNAs classes, in contrast

with convergent lncRNAs, which were significantly more

expressed than all other classes.

Evidence of transcription by CAGE assays
and histone modifications

Independent datasets of CAGE-seq and histone modification

ChIP-seq were used in order to provide evidence of lncRNA

transcription at RNA and DNA level. The CAGE-seq dataset

contained samples from various lymphoid organs and alveolar

macrophages, so it was used to provide support of expression in

two sample subsets, blood and other immune cells, and lymphoid

tissues. We obtained over two million significant CAGE peaks

and around 30 thousand bidirectional CAGE peaks present in

any of the five tissues.
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In both sample subsets PCGs were more strongly associated

with CAGE peaks than lncRNA genes, but reducing the analysis

to the genes expressed above one TPM instead of 0.1 TPM

increased the support in all gene types (Figure 3). This increase in

support specially happened in lncRNAs. 64% and 50% of the

TSSs of novel lncRNAs expressed above one TPM in the blood

subset and the lymphoid subset, respectively, were located

within500 bp of a CAGE peak. LncRNAs annotated by

Ensembl reached a support level comparable to that of PCGs,

with more than 90% of supported TSSs at one TPM. Bidirectional

CAGE tag clusters are usually used to identify active enhancers

because it is known that bidirectional transcription of short

transcripts, known as enhancer RNAs (eRNAs), is a hallmark

of enhancer activation (Andersson et al., 2014). Considering the

genes expressed above one TPM or 0.1 TPM, novel lncRNAs

were slightly less enriched in bidirectional clusters than PCGs.

Around 11% and 8% of novel lncRNAs in the blood and tissue

datasets, respectively, were transcribed from bidirectional sites

(Figure 3). Some of them could be enhancer associated non-

coding transcripts while others are divergent lncRNAs.

As for the ChIP-seq data, we analysed two histone

modifications that are relevant for lncRNA transcription

from a published dataset: H3K4me3, associated with

promoters (Santos-Rosa et al., 2002), and H3K27ac,

associated with active enhancers and promoters (Creyghton

et al., 2010). The trend of H3K4me3 peaks from alveolar

macrophages and CAGE peaks were similar regarding the

genes expressed in blood and other immune cells, but the

overlap between histone ChIP-seq data with TSSs randomly

located in the genome was much lower (Figure 3). PCGs had

FIGURE 3
Support for transcription of annotated genes and novel lncRNAs. Fractions of expressed genes with detected TSSs or active gene histone
modifications. TSSs were obtained from CAGE-seq peaks from five immune tissues and histone modifications were obtained from ChIP-seq peaks
(H3K4me3 and H3K27ac) from alveolar macrophages. PCG: Protein coding gene, Ens_lnc: Ensembl lncRNA, Novel_lnc: Novel lncRNA.
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the highest proportion of these promoter-associated marks

followed by annotated lncRNAs and novel lncRNAs.

Nevertheless, regarding the H3K27ac modification, the

difference between lncRNAs and PCGs was smaller, which

reflects the origin of many lncRNAs from enhancer-like

regions. The support from this modification was similar in

novel lncRNAs and annotated lncRNAs. 20% of the TSSs of

novel lncRNAs expressed above 0.1 TPM in the blood subset

were associated with H3K27ac. The apparent higher support

for annotated non-coding models is probably linked with their

misannotation.

Providing additional evidence of the transcription of novel

transcripts assembled from short-read RNA-seq reads ensures

that the detected genes are reproducible. We selected

12302 assembled gene models as bona fide lncRNA genes,

those which were supported by at least one of the following:

CAGE tags, histone modification ChIP-seq peaks or expressed

above 0.1 TPM in at least 20% of the samples in a tissue group

(Supplementary Figure S7). In this set, 47% of the lncRNAs had

at least support from CAGE peaks or histone modifications.

Around 1,000 lncRNAs were supported by all assays, including

both histone modifications. The annotation files with all

unannotated lncRNA transcripts, the set of high confidence

transcripts and expression values can be found in a public

repository (Bilbao-Arribas and Jugo, 2022).

Differentially expressed lncRNAs and
PCGs

We performed differential expression analysis between

unstimulated or control samples and samples stimulated with

either vaccines or a pathogen in order to identify common

lncRNAs induced during an immune response. In blood

FIGURE 4
Differential expression results between stimulated samples and unstimulated samples. Analyses were performed in blood cell samples (A) and
lymph node samples (B). For each comparison, a volcano plot using shrunken fold changes and a dot plot with the results of gene ontology
enrichment analysis (GO biological processes) are shown.
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samples there were 716 differentially expressed genes, including

75 novel lncRNAs and 22 annotated lncRNAs (Figure 4A;

Supplementary Table S4). The large number of samples used

in the blood sample dataset 222) and the heterogeneity of the data

produced many differentially expressed genes with modest effect

sizes but robust p-values (Supplementary Figure S8). The most

significant enriched terms among the known genes were

biological processes related to the immune response to

external pathogens such as response to external stimulus (GO:

0009605, FDR = 2.86e-09), response to virus (GO:0009615,

FDR = 6.75e-07) or defense response (GO:0006952, FDR =

1.19e-07). In lymph node samples, there were

365 differentially expressed genes, including 46 novel lncRNAs

and 13 annotated lncRNAs (Figure 4B; Supplementary Table S4).

In this case, among the most significant enriched terms with the

highest quantity of genes were general terms such as response to

stress (GO:0006950, FDR = 2.51e-04) and response to stimulus

(GO:0050896, FDR = 1.21e-03). More specifically, the terms

related to T cell activation, like T cell activation (GO:0042110,

FDR = 3.07e-03) and regulation of T cell activation (GO:0050863,

FDR = 3.37e-03), reflect the critical roles of lymph nodes in

adaptive immunity. Besides, there also were highly significant but

smaller in size enriched terms related to response to endoplasmic

reticulum (ER) stress.

There were 22 differentially expressed genes common to

both datasets, among them an annotated lncRNA and an

unannotated lncRNA. Some of the common PCGs are

directly related with immunity, like IL21, which encodes a

well known cytokine with immunoregulatory activity that

induces proliferation and differentiation in several immune

cell types. Other genes are related to apoptosis and

inflammation (MT2, IKBIP, AEN, OSGIN1) and ER

regulation (WFS1, SELENOS). Despite relatively similar

number of DE genes in both comparisons, there is a big set

of highly significant genes with effect sizes smaller than the

threshold in the blood samples and many statistically

significant but lowly expressed novel lncRNAs did not pass

the fold change threshold because they were shrunken

(Supplementary Figure S8). These results give support for

potential involvement of a fraction of the detected novel

and annotated lncRNAs in both the innate and adaptive

immune responses, following the guilt-by-association

principle.

Co-expression network analyses detect
immune-enriched gene signatures

Gene co-expression networks were constructed providing

valuable information about the expression relationships of

lncRNAs with PCGs and allowing the inference of their

putative functions by guilt-by-association. We tested two

different network construction pipelines and selected the one

proposed by the authors of GWENA (Lemoine et al., 2021), as it

produced networks with better fit to a scale-free topology and

most of the genes could be associated to an expression module.

Covariate correction for tissue type and source project enabled

the construction of unbiased networks (Supplementary Figure

S9.10). Filtering of lowly expressed genes, genes with low

variability and outlier samples that reduced the fit to a scale-

free topology resulted in co-expression networks of 12898 and

13428 genes in blood samples and lymph nodes, respectively. In

the blood dataset, genes with similar expression patterns were

clustered in 33 modules ranging from 54 to 1832 genes

(Figure 5A; Supplementary Table S5), and in the lymph node

dataset genes were clustered in 30 modules ranging from 44 to

1909 genes (Figure 6A; Supplementary Table S5). Most modules

included novel lncRNAs and annotated lncRNAs, and some of

them were even hub genes of their module.

We searched for significant correlations among module

eigengenes, the principal component of the genes in the

module that depicts its dominant trend, and treatment

variables. In the blood sample dataset, 15 modules were

correlated (p-val < 1e-03) with the general treatment variable,

which accounts for any kind of sample stimulation (Figure 5A).

Considering correlations to specific immune stimulations,

helminth infection shared many correlated modules with the

general treatment variable, which meant that it was one of the

main drivers of variability in the dataset. Stimulation with LPS

and with inactivated foot-and-mouth disease virus (iFMDV)

were correlated with specific gene modules different to those

correlated to helminth infection. Other stimulations were also

correlated to somemodules but because of their small sample size

they were not further taken into account.

Gene expression modules were characterised by GO term

enrichment (Supplementary Table S5). Two of the stimulation-

correlated modules (ME16 and ME19) were highly enriched in

biological processes related to the immune response but they

were not correlated with helminth infection. ME16 was

associated with the sum of all treatments and was specially

strongly correlated with LPS stimulation. The most significant

enriched biological process GO terms were related to the general

immune response, like immune system process (GO:0002376,

FDR = 2.27e-07) or immune response (GO:0006955, FDR =

1.15e-05) and to cell migration and locomotion, including the

terms positive regulation of locomotion (GO:0040017, FDR =

1.55e-06) and leukocyte migration (GO:0050900, FDR = 1.16e-

05). ME19 was also associated with the sum of all treatments and

was correlated to iFMDV treatment. It contained a high amount

of immune response genes, for instance, from the 155 genes with

GO annotations, 35 were related to response to virus (GO:

0009615, FDR = 9.59e-25) and 56 to immune system process

(GO:0002376, FDR = 1.56e-10). Besides, terms related to type I

interferon response and signalling were also abundant.

In the lymph node network, the eigengenes of 11 modules

were correlated (p-val < 1e-03) with the combined treatment
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variable (Figure 6A). The two available immune stimulation

conditions, helminth infection and paratuberculosis, were

correlated with a few modules, but several other significant

modules emerged from the combined treatment variable

correlation. The characterisation of gene expression

modules by GO term enrichment revealed up to five

immune-enriched modules: ME15, ME19, ME24, ME27 and

ME28. Among them, the positively correlated modules

showed functions involved in the innate immune response

and general immune terms. For instance, in module ME15 the

terms immune response (GO:0006955, FDR = 2.10e-11) or

innate immune response (GO:0045087, FDR = 5.77e-07) are

highly significant. In contrast, the negatively correlated

modules are enriched in adaptive immune response terms.

FIGURE 5
Co-expression analysis and differential co-expression network results in blood cell samples. (A) Correlations of gene co-expression modules
with all stimulations and with each individual stimulation. Modules enriched in immune genes are highlighted in red. Number of genes in each
module is depicted as a bar plot. (B) The full differential co-expression network. Node size is proportional to connectivity and differential associations
are coloured by gain or loss of correlation strength. The edges of differentially expressed genes are coloured by fold change. (C) Sub-network
with the differentially associated genes in module ME16. (D) Sub-network with the differentially associated genes in module ME19.
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ME19 is enriched in GO terms related with T cell activation

and lymphocyte proliferation while ME27 is enriched in terms

related to B cell activation and proliferation. The lncRNAs

present in the immune-enriched modules from both co-

expression networks were classified as immune response-

related lncRNAs.

In addition to the immune-enriched gene modules,

another big module stood up (ME3), as it was correlated

with both helminth infection and paratuberculosis. Most

of the enriched GO terms were related to endoplasmic

reticulum (ER) stress and protein post-translational

processing, with terms like response to endoplasmic

reticulum stress (GO:0034976, FDR = 2.60e-13),

Golgi vesicle transport (GO:0048193, FDR = 2.42e-07)

or response to unfolded protein (GO:0006986, FDR =

1.72e-06).

FIGURE 6
Co-expression analysis and differential co-expression network results in lymph node tissue samples. (A) Correlations of gene co-expression
modules with all stimulations and with each individual stimulation. Modules enriched in immune genes are highlighted in red. Number of genes in
each module is depicted as a bar plot. (B) The full differential co-expression network. Node size is proportional to connectivity and differential
associations are coloured by gain or loss of correlation strength. The edges of differentially expressed genes are coloured by fold change. (C)
The genes differentially co-expressed with CREB3 transcription factor. (D) Individual examples of statistically significant differential associations
between CREB3 and four genes.
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Differential co-expression networks to
identify regulatory relationships

Gene level differential co-expression, the gain or loss of

correlation between two genes in different biological

situations, indicates changes in regulatory relationships

between those genes, which are often not evident from DGE

results. All gene-pairs used in the co-expression network

construction were tested for significant changes in correlation

between control and stimulated samples and differential co-

expression networks (DCN) were constructed with statistically

significant gene-pairs (Supplementary Table S5). The DCN from

the blood sample dataset contained 1,589 differential associations

(FDR <0.05) among 1,348 genes (Figure 5B) and the DCN from

lymph nodes contained 2,137 differential associations (FDR < 1e-

03) among 1784 genes (Figure 6B). Both networks included

around 60 lncRNAs each. In terms of network topology,

networks showed a small amount of nodes (genes) with many

edges (differential associations), while the rest of the nodes were

more loosely connected to the network. Just around 5% of the

nodes had 10 or more edges. Some very interconnected nodes

formed clusters according to the gene co-expression modules

from the previous analysis, but most of the topology was driven

by a few high-degree nodes.

Specific differential associations were observed by

individually inspecting each DCN. The blood sample

network was centred on two high-degree genes that had

more than 100 differential associations each but did not

have obvious biological relationship with the immune

response: DNAJB4 and GUCY1B1. Among the rest of the

42 high-degree genes, defined as those with more than five

differential associations, there were some lncRNAs and several

immune genes such as BATF2, IDO1, IFI6, IL18BP, NFKBIZ

and various CC chemokines. Focusing on the immune-

enriched co-expression modules, many genes from the

module ME16, most of them immune-related, formed a

very interconnected subnetwork (Figure 5C). Even though

the genes from this subnetwork were already correlated,

they predominantly showed positive z-scores, which means

that the correlations were stronger in the control samples than

in stimulated samples, On the contrary, genes from the

module ME19 did not form a separate cluster, but they

showed negative z-scores, which means that their

expression was correlated in the stimulated samples.

Interestingly, many genes were up-regulated in the

differential expression analysis. In the subnetwork

composed by selecting the genes from this module and

their differentially co-expressed pairs, there were

transcription factor coding genes related to the immune

response: BATF2, IRF9 and NFKB2 (Figure 5D). For

instance, BATF2, upregulated in stimulated samples, is a

transcription factor that controls the differentiation of

lineage-specific cells in the immune system and immune-

regulatory networks. There were several interferon-

stimulated genes such as IFI6, MX1, MX2, ADAR, EIF2AK2,

IRF9 or IFIH1, all related to antiviral functions and

upregulated in the stimulated samples.

The DCN obtained from lymph node samples did not

contain many immune-related genes (Figure 6B). There were

187 high-degree genes, including 18 transcription factors coding

genes that were potential drivers of the differential co-

expressions, like HMBOX1, CREB3, NFATC4, NFIB or EBF4.

NFATC4, for instance, is involved in T-cell activation,

stimulating the transcription of IL2 and IL4 cytokine genes.

CREB3, among many other functions, plays a role in the

response to ER stress by promoting cell survival, a process

that was previously found enriched in a co-expression module

of which CREB3 was not part of. CREB3 was a high-degree node,

differentially associated with 27 other genes (Figure 6C), and it

showed mostly positive z-scores, thus, its expression was

correlated in the unstimulated samples but those correlations

were lost upon stimulation by helminth infection and

paratuberculosis. Examples of differentially associated genes

include IL18BP, CTSL, MAPK13 and ADM (Figure 6D).

ADM, which codes for a known lymphangiogenic factor, was

upregulated in stimulated samples and its expression decoupled

from that of CREB3 in those samples. This DCN also contained

several lncRNAs and 12 of them were high-degree nodes

(7 known lncRNAs and 5 novel lncRNAs).

Integration of evidence for lncRNA
expression and function

We used differential gene expression analysis, co-expression

analysis and differential co-expression network analysis for the

functional association of lncRNA genes with the activation of the

immune response. Those three approaches resulted in

320 lncRNAs associated in at least one analysis

(Supplementary Figure S11). The differential expression

between stimulated and unstimulated samples showed the

highest number of immune response-associated lncRNAs.

Interestingly, the histone modification support in differentially

expressed novel lncRNAs was much higher than in the whole set

of novel lncRNA genes, 49% against 19%, and the trend was

similar in the case of CAGE support. A summary of all

transcription evidence and associations in an analysis for each

lncRNA is available as a supplementary file (Supplementary

Table S6).

Discussion

Using 422 RNA-seq samples from ovine immune tissues, we

assembled a project-specific transcriptome and retrieved

17605 unannotated lncRNA loci. Around 70% of those novel

Frontiers in Genetics frontiersin.org14

Bilbao-Arribas and Jugo 10.3389/fgene.2022.1067350

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1067350


genes were expressed in a sufficient number of samples and/or

were supported by histone modifications or TSSs from

independent experiments. LncRNAs are usually annotated

with evidence-based methods, because they lack sequence

features like conservation or complete ORFs (Uszczynska-

Ratajczak et al., 2018), and this evidence mostly comes from

mapping sequencing reads to the genome of interest. Model

organisms have been annotated via manual curation of a variety

of assays, but in the absence of this kind of data in livestock

species, lncRNA annotations usually rely on automated short-

read transcriptome assemblies. Second generation sequencing

short-read RNA-seq is widely used because of its high yield and

low cost (Mudge and Harrow, 2016) and has been used in many

lncRNA annotations (Uszczynska-Ratajczak et al., 2018), but

using this kind of data is challenging, because the nature of short

reads makes it difficult to completely characterize the structure of

non-coding transcripts (Conesa et al., 2016).

For higher confidence on the assembled transcripts, only paired-

end samples were used and additional support was included from

expression levels, CAGE-seq tags and histone modification ChIP-

seq assays. Thus, the confidence in the existence and location of the

more than 12 thousand confident lncRNA loci is high, even though

not all gene boundaries and splice sites might be correct. In fact, the

reproducibility of exact lncRNA short-read transcript models

between samples was shown to be low in another sheep study

(Bush et al., 2018). Related to this, the amount of detected lncRNAs

did not reach saturation at any sequencing depth. It has been

proposed that, because of stochastic sampling, much higher

sequencing depth is needed to reconstruct the vast number of

lowly expressed lncRNA transcript models (Bush et al., 2018). It

should be mentioned that it is expected that a higher number of the

assembled transcripts have independent evidence of expression. On

one side, the signal of CAGE-seq scales with expression, similar to

RNA-seq so, lowly expressed transcripts are also more weakly

represented. On the other, the ChIP-seq dataset used only

comprises a single cell type, while the RNA-seq dataset includes

several tissue-types.

As observed in other livestock studies (Bush et al., 2018; Kern

et al., 2018), the expression levels of lncRNAs were lower than those

of PCGs. The lncRNAs already present in the Ensembl annotation

were more abundant, were expressed in more samples and were

better supported by TSSs and histone modifications, reflecting their

misannotation as lncRNA genes when many of them show coding

potential. The low expression in bulk RNA-seq samples might be

due to their known exceptional cell type, tissue, developmental stage

and disease state specific expression (Cabili et al., 2011; Derrien et al.,

2012) and even to lowered transcriptional burst frequencies in

single-cells (Johnsson et al., 2022). In human and murine T cells

and B cells, lncRNAs are expressed in a very cell-specific and

dynamic way during differentiation within lineages of the same

cell types (Hu et al., 2013; Ranzani et al., 2015; Agirre et al., 2019). In

thismanner, cell or tissue type specific lncRNAs could be involved in

immunological pathways in response to infection and vaccination

(de Lima et al., 2019; Du et al., 2020), even if the perceived bulk

expression was low.

The biological function of most lncRNAs remains unknown,

particularly in non-model organisms. With notable exceptions,

few genes can be assigned a putative function by homology with

human or mouse lncRNAs. Considering sequence similarity,

around 700 novel sheep lncRNA transcripts had orthologues

in human, including some functionally characterised lncRNAs,

and more than 3,000 in goat or cattle, which are mostly

uncharacterised. Because of this, we linked the sheep lncRNAs

with potential broad biological functions and pathways by using

classical analyses like differential gene expression and co-

expression analysis, and alternative methods like differential

co-expression network analysis. In the case of the co-

expression analyses, following the principle of guilt-by-

association (Wolfe et al., 2005), association with the immune

response was assigned via correlation to a group of co-expressed

genes. This approach has been widely used for the functional

profiling of lncRNAs by several studies (Walters et al., 2019; de

Goede et al., 2021). In addition, one of the datasets included in

this study has already been analysed in this way to specifically

search for candidate lncRNAs during an helminth infection

(Chitneedi et al., 2021).

Regarding the results from the blood cell dataset, with samples

from whole blood, PBMCs and other cells like macrophages, all

analyses resulted in the identification of genes linked to the innate

immune response. Many genes were part of the interferon (IFN)-

mediated immune response, which provides a first line of defence

against pathogens, from viruses to parasites (Schneider et al., 2014).

Upon pathogen detection and IFN stimulation, the transcription of

several genes termed as IFN-stimulated genes (ISGs) is activated,

which control pathogen infection by targeting pathways necessary

for pathogen life cycles. Up to 21 of the most important antiviral

ISGs were upregulated in the differential expression analysis,

including ADAR, APOBEC3Z1, BST2, RSAD2, MX1, MX2, IFI6,

IRF9 or orthologues of the OAS gene family. These genes were part

of the iFMDV-associated co-expressionmodule andmany were also

part of the DCN. The IFN response was mostly driven by the

inactivated vaccine (Braun et al., 2018; Jouneau et al., 2020) and the

LPS stimulation datasets (Bush et al., 2020), while the helminth

infection (Fu et al., 2016; Niedziela et al., 2021) and other smaller

datasets (Varela-Martínez et al., 2018; Wang et al., 2019; Guo et al.,

2020) produced a different expression profile, as seen in the

stimulation-correlated co-expression modules. In the same

manner as known ISGs, lncRNAs can also be induced by IFN

and have important roles in controlling pathogen infection and

resolution of the immune response, or they can regulate the IFN

mediated host defence (Meng et al., 2017; Qiu et al., 2018). For

instance, in human, NRIR is a negative regulator of IFN antiviral

response (Kambara et al., 2014) and IFNG-AS1, located near the

IFNG locus, regulates its expression (Petermann et al., 2019).

Considering that differentially expressed lncRNAs have been

proposed to function as negative or positive regulators in various
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critical steps of antiviral response (Ouyang et al., 2016), some of the

ovine transcripts detected in this study could also be related to those

processes.

The fact that the lymph node dataset was dominated by

helminth infection experiments (McRae et al., 2016; Chitneedi

et al., 2018; Naranjo-Lucena et al., 2021), except for a single

bacterial infection experiment (Gossner et al., 2017), greatly

marked the type of genes involved in the general analysis. The

different analyses revealed important immune-related genes and

biological pathways, but there were many other processes involved.

Parasite infections produce a different response than viral or

bacterial infections and are usually associated with a non-

inflammatory Th2-biased response in both parasites present in

the datasets: Teladorsagia circumcincta and Fasciola hepatica

(O’Neill et al., 2000; Venturina et al., 2013; Karrow et al., 2014).

In a human gene expression meta-analysis with different helminth

species, they found upregulated immune regulatory genes while

down-regulated genes were mainly involved in metabolic processes,

and showed that the response was similar between species and

tissues (Zhou et al., 2016). To date, there are very few studies linking

lncRNAs to helminth infection in mammals. In sheep, one of the

datasets included in this study (Chitneedi et al., 2018) has been

analysed for this purpose to specifically search for candidate

lncRNAs during T. circumcincta infection (Chitneedi et al.,

2021). It remains greatly important to identify novel gene

candidates for this disease, as it is a source of economic loss and

animal welfare deterioration (Karrow et al., 2014).

Integration of several RNA-seq datasets and different

bioinformatic analyses allows us to better characterise patterns

that could have been overlooked in individual experiments. One

of the processes consistently appeared associated with all the

analyses in lymph nodes was the response to ER stress, which is

an endogenous source of cellular stress that arises in the ER of cells

following the accumulation of misfolded proteins during protein

synthesis (Todd et al., 2008; Hetz and Papa, 2018). In the immune

system, this response is particularly important for resolving secretory

stress and survival of highly secretory cells such as immunoglobulin

producing plasma cells (Todd et al., 2008), cytokine producing

Th2 cells (Pramanik et al., 2018) and other immune cells (Hetz and

Papa, 2018). Among the ER stress response-related dysregulated

genes, the two most important members of the IRE1a-XBP1

pathway (ERN1 and XBP1) were upregulated in the lymph node

samples (Hetz and Papa, 2018) and a co-expression module

enriched in ER stress response genes was correlated with both

helminth infection and paratuberculosis. This process was

enriched in the sets of DEGs in the original analyses of the

paratuberculosis dataset (Gossner et al., 2017) and one helminth

infection dataset (Fu et al., 2016), but were not further discussed in

their respective publications. Furthermore, while belonging to a non-

associated co-expression module and not being differentially

expressed, the ER localized transcription factor CREB3 was

differentially co-expressed with several other genes. CREB3 has

been implicated in the ER and Golgi stress response and

regulation of genes in secretory pathways (Sampieri et al., 2019).

LncRNAs have also been linked to proliferation and apoptosis

during ER stress (Zhao et al., 2020).

The DCN analyses revealed the involvement of other PCGs

and lncRNAs in the ovine immune system activation. Compared

to the widely employed co-expression methods, differential co-

expression have the advantage of detecting condition-dependent

interactions between genes (Savino et al., 2020). For instance, the

gain or loss of co-expression between a transcription factor (TF)

and its targets can be due to expression changes or post-

translational modifications of the TF (Bhuva et al., 2019). Apart

from the mentioned CREB3 transcription factor in lymph nodes,

in blood cell samples IDO1 seemed to be differentially regulated.

IDO1 is a rate-limitingmetabolic enzyme that converts tryptophan

into downstream kynurenines, which have immunosuppressive

roles, and is known to be interferon-inducible (Zhai et al., 2018).

Similarly to the general differential expression analysis in this

study, the original analysis of LPS effect on macrophages did not

find an induction of IDO1 expression, even if it was expected (Bush

et al., 2020). Interestingly, we found that IDO1 was part of a co-

expression module associated with immune stimulation and

enriched in ISGs, and was differentially correlated with several

genes. In stimulated samples its expression was independent from

other genes, but upon immune stimulation it gained correlations

with genes like the ISG DDX58. All in all, the constructed DCNs

revealed several lncRNAs with stimulation-dependent associations

that could have immune regulatory roles, and this approach could

be useful to find novel gene candidates in each pathogen infection

or vaccine component.

Conclusion

Multiple processes are involved in the immune response to

infection and vaccination and lncRNAs might play different roles

in these processes. The goals of this work were 1) to detect

unannotated ovine lncRNAs from publicly available RNA

sequencing datasets from immune tissues and then 2) define a

lncRNA gene expression signature of the general immune

activation. Poor sequence conservation and low expression,

general features found in other mammal studies, were also

features of ovine lncRNAs. Adding support from CAGE

sequencing and histone modifications, we obtained a shortlist

of more than 12 thousand unannotated high-confidence ovine

lncRNAs. The functional analyses performed with immune-

stimulated samples revealed hundreds of known and novel

lncRNAs with specific expression patterns during an infection

or vaccination. These genes make up a prioritized set of potential

candidates for deeper experimental analyses. Taken together,

these results should help completing the sheep non-coding RNA

gene catalogue, and most importantly, they give evidence of

immune state-specific lncRNA expression patterns in a livestock

species.
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