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1 Introduction

Nowadays the world of finance is increasingly based on mathematical and physical models.
That is why many financial companies hire mathematicians and physicists to build and
analyse those models. The branch of finance that deals with these tasks is known as
quantitative finance.

It is said that quantitative finance was born in 1900 when Louis de Bachelier published
his Ph.D. thesis The theory of speculation. He introduced the concept of Brownian motion
to approximate asset prices random path. The asset could be, for instance, a stock.
From that moment, many other theories have been developed in an attempt to predict
the behaviour of financial markets and instruments. In 1973 Fischer Black and Myron
Scholes introduced the Black-Scholes model to price derivatives within their publication
The pricing of options and corporate liabilities. They were awarded in 1997 with a Nobel
Prize for this work. Although it had certain limitations, The Black-Scholes model became
a reference for many other subsequent models. The constant changes in markets require
the evolution of models and the appearance of new updated ones. The main focus field has
always been to manage the volatility and most of the built models are based on stochastic
processes [1].

This project explores an application of physics to study financial systems. In par-
ticular, we will focus on the physical principles in option pricing. Options are financial
instruments whose price depends on the price of an underlying asset. This means that we
will have to model the behaviour of the underlying asset to be able to model the price of
the option. Some concepts like Brownian motion and diffusion process can be extrapo-
lated to those tasks as we will see. There is more than one model to price options, but we
will only analyse the Black-Scholes model as it can be related to physical concepts. This
model makes certain assumptions that are not very realistic in real markets, but it gives
a good qualitative overview of how options are priced. In fact, many subsequent more
sophisticated models are based on it.

First of all, we will introduce in Section 3 some basic financial notions which are
necessary to understand the rest of the project. It is very important to assimilate what
is an option and how does it work.

In Section 4 we will explain the physical concepts. This includes the definition of
Brownian motion, its relation with diffusion processes, finding a solution to the diffusion
equation and making a mathematical formulation of the Brownian motion (this is known
as a Wiener process). These aspects will be extrapolated later to finance throughout the
project.

Once the financial and physical concepts are clear, we will try to model the behaviour
of the underlying asset price in Section 5. We will assume a random walk model for it.
This model is based on the definition of Wiener process made in Section 4.3. We will find
out that the asset price follows a Geometric Brownian motion and that the probability
density function of its logarithm suffers a diffusion process. However, we will previously
need to introduce a mathematical concept called Itô’s Lemma.

Knowing the behaviour of the underlying asset price, we will be able to build the
Black-Scholes model that leads to the partial differential equation used to price options.
This is done in Section 6.

Our next step will be to find a solution to the Black-Scholes equation to price European
options in Section 7. This is known as the Black-Scholes Formula. We will transform the
Black-Scholes equation into a diffusion equation and use the solution found in Section
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4.2. The problem of valuing the option will be treated as a diffusion process. We will also
analyse a numerical example for the derived solution.

In Section 8 we will study the case of pricing American options. We will see that we
cannot explicitly solve the Black-Scholes equation and that we have to deal with a free
boundary problem. We will transform the free boundary problem into a linear comple-
mentarity problem to eliminate the dependence on the free boundary. After that, we will
write the problem using the finite-difference formulation and the Crank-Nicolson scheme.
An algorithm which includes the LU method will be built to solve the problem. Finally,
we will translate this algorithm into our own Python code and run some simulations.

To finish the project, we will make some conclusions based on the analysed topics.

2 Objectives

The main objective of the project is to establish a connection between physics and pinance,
analysing the physical principles in Option Pricing. Moreover, the projects also has the
following particular objectives:

1. Learn that the asset price behaviour can be modelled with a Brownian motion and
visualize the diffusion process suffered by the probability density function of its
logarithm.

2. Derive the Black-Scholes equation used to price options and solve it as a diffusion
process to price European options.

3. Understand the free boundary problem for American options and solve it using the
Crank-Nicolson formulation and an algorithm based on the LU method.

4. Write our own Python code with the mentioned algorithm and run a simulation
with a numerical example to analyse results.

5. Deepen in mathematical resolutions, understanding the mathematical developments
beyond the level of detail given by the bibliography.
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3 Basic financial concepts

Before we start developing our project, we need to introduce some basic financial concepts
that will help us to understand the rest of the topics.

3.1 What is an option?

An option is a contract between two parties, the holder and the writer, on an underlying
asset. The holder pays a compensation (the premium) to the writer to have the right,
but not the obligation, to buy or sell the underlying asset at an agreed price (the strike
or exercise price) by a specific date (expiration date or maturity) [2]. In case the
holder wanted to exercise his right to buy or sell the underlying asset, the writer would
have the obligation to do the opposite movement, that is, sell or buy it. At the same time,
the holder of the option can sell his right of execution to a third party in exchange of a
premium before the expiration date. The underlying asset is usually a stock or a bond,
but it could also be an index, an interest rate or even commodities. To clarify concepts,
we are going to explain them one by one:

• The option is the contract that depends on the underlying asset, which can be a
stock, a bond,...

• The holder of the option is the one who has the right to execute the option to buy
or sell the underlying asset. The holder can also sell that right to another person.

• The writer of the option is the one who receives a premium for writing the option
but later depends on what the holder decides.

• The premium is the value that has to be paid to acquire the position of holder,
that is, it is the price of the option. Pricing an option means finding the premium.

• The strike or exercise price is the agreed amount of money that the holder
pays/receives when executing the option to buy/sell the underlying asset.

• The expiration date or maturity is the date by which the holder can exercise the
option.

There are various types of options attending to different parameters. The first main
differentiation is made between call and put options. Call options give the holder the
right to buy the underlying asset, whereas put options give the chance to sell it. The
simplest ones are the European call and put options, where the holder can exercise his
right just at expiration date. There are also American call and put options. In this case,
the right to buy or sell the underlying asset can be executed at any time before expiration
date. European and American options are typically called Vanilla options if they have
no other special condition to exercise the option. Apart from Vanilla options, there are
other types of options like Exotic options, where the conditions of execution are different
[3]. However, we are not going to work with them in this project.

3.2 Vanilla options

Vanilla options are the simplest type of options and are usually traded on an exchange
(marketplace where financial instruments are traded). They are divided into call and put
options.
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3.2.1 Call options

As it has been explained before, call options give the holder the right to buy the un-
derlying asset. Depending on whether it is American or European, the purchase can be
done before or just at expiration date. Call options are executed when the price of the
underlying asset is higher than the strike price. This means we are buying it cheaper than
the actual price.

We are now going to see an example to better understand how do call options work.
Let us consider a holder A and a writer B. They agree on an European call option over a
stock whose current price is 100 $. The expiration date is 6 months and the strike price
is also 100 $. The holder pays 5 $ to the writer as the premium for the option. As it is an
European option, there are two possible scenarios at expiration date. If the stock price
goes up to, for instance, 110 $, the holder would execute his right to buy it for 100 $. He
would get a payoff of 10 $ and a profit of 5 $ taking into consideration the 5 $ he had
paid as the premium. If, on the contrary, the stock value goes down to 90 $, the holder
would not buy the stock for 100 $. In that case, he would lose the 5 $ initially paid to
the writer. If the option were American instead of European, it could be exercised at any
time before expiration date, but we will see later that it should only be done at maturity
for call options.

We can deduce and plot in Figure 1.a a general expression for the payoff and profit of
an European call option at maturity from the point of view of the holder [3].

Payoff : max{S(T )−K, 0}, Profit : max{S(T )−K, 0} − C(ti, T,K) (1)

where the 0 represents the case of no execution and

• T is the expiration date or maturity

• K is the exercise or strike price

• S(T) is the price of the underlying asset at maturity

• C(ti,T,K) is the price of the call option (the premium) when it is bought at initial
time ti

Regarding Figure 1.a, we can visualize that the option has to be exercised in some cases
despite the profit is negative. In those situations, exercising the option means reducing
the loss of money.

In our example, we had that K = 100 $, ti=0, T= 0.5 year, C(ti, T,K) = 5 $. If we
consider the first case in which the stock price raised to 110 $, then S(T ) = 110 $ and so
the payoff and profit are

Payoff : max{110− 100, 0} = 10 $, Profit : max{110− 100, 0} − 5 = 5 $ (2)

and, in the other case, where the stock price fell to 90 $,

Payoff : max{90− 100, 0} = 0 $, Profit : max{90− 100, 0} − 5 = −5 $ (3)

We can also define the payoff function in general at a time t for both European and
American call options from the point of view of the holder:

Payoff: max{S(t)−K, 0} (4)

The shape of this payoff function will be the same as the shape of the payoff function
in Figure 1.a, but for another S(t).
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3.2.2 Put options

Put options grant the holder the right to sell the underlying asset. Once again, depend-
ing on if it is American or European, the sale can be done before or at maturity. In this
case, the holder would only sell the underlying asset if its price went below the strike
price.

We can also gather an expression for the payoff and profit of an European put option
at expiration date from the point of view of the holder and plot them in in Figure 1.b [3].

Payoff : max{K − S(T ), 0}, Profit : max{K − S(T ), 0} − P (ti, T,K) (5)

The variables K, T , ti, S(T ) are the same as in the case of the call option and
P (ti, T,K) is the price of the put option (the premium) when it is bought at initial time
ti. For European and American put options, the general payoff function at a time t from
the point of view of the holder would be:

Payoff: max{K − S(t), 0} (6)

Once more, the shape of this payoff function will be the same as the shape of the
payoff function in Figure 1.b, but for another S(t).

(a) Call option (b) Put option

Figure 1: Payoff function and profit function for European option at time T from the
point of view of the holder.

3.3 Interest rate

When borrowing money or depositing it in a bank, there is a charge or benefit for the
operation at the end. The parameter that measures this change of money is the interest
rate. For instance, if an individual introduces an amount of money X(t0) in the bank at
time t0, the money at time t considering a continuous and constant interest rate r will be
[4]:

X(t) = X(t0)e
r(t−t0) (7)

This relation can also be expressed in differential form:

dX

X
= rdt (8)
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The opposite calculation is known as the present value:

X(t0) = X(t)e−r(t−t0) (9)

When an investment has zero risk, the interest rate is called risk-free rate.

3.4 Arbitrage

The concept of arbitrage refers to the possibility of making instantaneous risk-less profit
with an investment. This is obviously not a desirable situation in financial markets. In
fact, most of the financial theories are developed assuming the absence of arbitrage.

It is sometimes possible to make risk-less profit in an investment, for instance, deposit-
ing money in the bank at a risk-free rate (8). However, this is not a situation of arbitrage
since the profit is not instantaneous [4].

3.5 Dividends

Dividends are earnings that someone receives for owning an asset. The typical case is
the company that distributes some of its earnings as dividends between its shareholders.
Dividends are received at a specific time or periodically. In our topic of study, dividends
will be given by the underlying asset.

3.6 Portfolio

A portfolio is a set of financial instruments like options, stocks, bonds or commodities,
which aims to provide benefits. Portfolios typically tend to diversify investments in order
to reduce the risk of loss [5].

3.7 Long position, short position

When talking about options, a long position refers to the situation of being the holder
of an option. By contrast, a short position means that the investor sells the right of
execution of the option.

In the case of stocks, the long position is to buy the stock, but the short position,
which is usually known as short selling, consists on selling a stock that the investor does
not own. The objective of short selling is to benefit from a fall in the price of the stock.
The investor borrows a stock and immediately sells it to another person and, after some
time, pays the lender the price of the stock at that time. If the price of the stock has
fallen, the investor obtains profit [6].
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4 Brownian motion

Once we have the main financial concepts, we are going to explain now several physical
notions that will be used throughout the project. First of all, we need to known what
is a Brownian motion and how does it govern a diffusion process. We will also find a
solution to the diffusion equation. Moreover, we are going to introduce the mathematical
formulation of the Brownian motion, known as the Wiener process.

4.1 Definition

The Brownian motion is the movement of particles in a fluid, which can be a gas or
a liquid. Collisions with the molecules of the fluid make this movement random and
unpredictable.

It was the botanist Robert Brown the first to observe the movement in 1827 when
looking at pollen grains suspended in water. That is why it is called Brownian motion.
He discovered minuscule particles randomly moving in a water drop. From that moment,
many qualitative hypothesis were proposed by scientists, but it was not until 1905 when
Albert Einstein developed a quantitative model. He based his theory in three main
principles [7]:

• The existence of the particles.

• The movement of the particles in a fluid is due to the enormous number of collisions
with the fluid molecules.

• The movement of the molecules is so complex that it can just be probabilistically
described as a result of many independent hits.

As a consequence of the huge number of collisions per unit time that suffers a particle,
Einstein studied the problem as a whole rather than individually for each particle. He
worked with a density function of the particles u(x, τ) and discovered that it satisfied the
diffusion equation [8]:

∂u

∂τ
= D

∂2u

∂x2
(10)

where x is the position variable that follows a Brownian motion and τ is the time. This
equation suggests us that diffusion processes are governed by the Brownian motion. The
density function of the particles suffers a diffusion as a result of the Brownian motion
followed by the particles. The diffusion process can be seen as the macroscopic manifes-
tation of the microscopic Brownian motion of particles in a fluid [9]. We are now going to
analyse the diffusion equation in detail because it will be essential throughout the project.

4.2 Diffusion equation

The diffusion equation is a partial differential equation with several applications in
physics, engineering and even finance as we will see in this work. It is widely used in
physics to model the flow of heat in a continuous medium [4]. That is why it is sometimes
known as the heat equation. The diffusion equation gives the time evolution (τ) of the
probability density function u of a variable x that follows a Brownian motion, as we have
recently seen. We are going to derive a solution for the equation.
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The diffusion equation (10) is a linear, second order and parabolic equation. We
are considering the forward equation in which the system evolves from initial time to
the future. There are several solutions and among them one interesting solution can be
obtained using the Fourier transform. The solution u(x, τ) can be written in terms of the
inverse Fourier transform [10]:

u(x, τ) =
1

2π

∫ ∞

−∞
û(k, τ)e−ikxdk (11)

If we substitute this expression in the diffusion equation (10), we get an ordinary
differential equation in terms of û(k, τ):

∂û(k, τ)

∂τ
= −k2Dû(k, τ) (12)

Integrating equation (12)

û(k, τ) = û0e
−k2Dτ (13)

we reach to an expression for û(k, τ) where û0 is an integration constant. Introducing this
result in the inverse Fourier transform (11), we get a solution u(x, τ):

u(x, τ) =
1

2π

∫ ∞

−∞
û0e

−k2Dτe−ikxdk =
1

2π

∫ ∞

−∞
û0e

−Dτ
[
(k+ ix

2Dτ )
2
+ x2

4D2τ2

]
dk =

=
û0

2π
e−

x2

4Dτ

∫ ∞

−∞
e−Dτ(k+ ix

2Dτ )
2

dk =
û0

2π
e−

x2

4Dτ

√
π

Dτ
=

û0

2
√
πDτ

e−
x2

4Dτ

(14)

To solve the integral we have completed the square in the exponent and later used∫∞
−∞ e−αy2dy =

√
π/α. This solution of the diffusion equation is known as the Green’s

function and is of particular relevance. We are going to denote it G(x, τ) (Ĝ0 is the same
as û0) [10].

G(x, τ) =
Ĝ0

2
√
πDτ

e−
x2

4Dτ (15)

Green’s function is a Gaussian function which spreads out with time since its variance
depends on τ . The variance is 2Dτ , so it also depends on D. This means that the greater
D is, the more the function spreads out. In the limit where τ −→ 0, the Gaussian becomes
a Dirac’s delta:

lim
τ−→0

Ĝ0

2
√
πDτ

e−
x2

4Dτ = δ(x) (16)

These two situations suggest that Green’s function can reflect, for instance, the be-
haviour of heat injected at a single point. When we inject heat at time τ = 0 at a point
x1, the heat is concentrated at that point and the function G(x− x1, τ = 0) is a Dirac’s
delta δ(x− x1). As time goes by, the heat spreads out from x1 according to G(x− x1, τ)
as part of the diffusion process.

If we injected the same amount of heat at two points x1 and x2, the solution to the
diffusion process would be proportional to G(x− x1, τ) +G(x− x2, τ). Another possible
situation could be injecting heat according to a smooth distribution ρ(x′). In this case,
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the solution to the diffusion process, H(x, τ), would be the sum over all points x’ of every
Green’s function, weighted by ρ(x′) [10]:

H(x, τ) =

∫ ∞

−∞
G(x− x′, τ)ρ(x′)dx′ (17)

4.3 Wiener process

Nowadays the Brownian motion is widely used to study stochastic processes. In 1918
Norbert Wiener made a mathematical formulation of the Brownian motion known as the
Wiener process W . He stated that a Wiener process is a stochastic process continuous
in time and that is characterized by the following aspects [11]:

• At initial time W (0) = 0

• For 0 ≤ s ≤ t, W (t)−W (s) is normally distributed with mean value 0 and variance
t− s: W (t)−W (s) ∼ N(0, t− s)

• The increments of W are independent: for any times 0 ≤ t1 < t2 < ... < tn,
W (t2)−W (t1), W (t3)−W (t2), ..., W (tn)−W (tn−1) are independent

• The sample paths W (t) are continuous functions of time t

5 Asset pricing

The first step in our way to price options is to analyse the behaviour of the underlying
asset and the changes in its price. Trying to price an asset has always been one of the
most challenging tasks in the world of finance. In fact, there is no perfect method to do it.
In this context, we have two opposed types of theories that attempt to predict the price of
and asset: deterministic and non-deterministic. Deterministic theories believe that asset
price does not completely follow a random walk and that thanks to past information
of prices, together with some technical analysis, it can be predicted to some extent, for
instance using Machine Learning. Conversely, non-deterministic models maintain that
asset prices evolve according to random walks and that they cannot be predicted [12].
This project develops a random walk model that is widely used for option pricing. It is
based on the definition of Wiener process we have given.

5.1 Random walk model

The random walk model aims to predict the changes in the price of an asset along
time. It is influenced by Bachelier’s Ph.D. thesis The theory of speculation, which, as
we have mentioned before, uses the Brownian motion to approximate asset prices. The
random walk model assumes that the efficient market hypothesis (EMH) is verified. This
means that past data is completely displayed in the price of an asset and that any new
information about the asset is immediately reflected in its price.

It is more interesting to analyze the return of the asset price rather than the absolute
change. The return refers to the relative change in the price, this is, if S is the price of
the asset, dS is the absolute change and dS/S the return.

Let us suppose now that the price of an asset is S(t) at time t. After a small time
interval dt the asset price would become S + dS. We want an expression for the return
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dS/S. This expression can be divided into two parts: one deterministic and the other
non-deterministic [4].

dS

S
= µdt+ σdW (18)

The deterministic part, µdt, reflects the return on money invested in a risk-free bank.
µ is the drift rate or average rate of growth of S. Depending on the case, it is constant
or it can be a function of S and t. This term of the return corresponds to the expression
(8), but this time the rate of growth is an average.

The non-deterministic part of the return, σdW , refers to the external factors that
cannot be predicted. W is the Wiener process or Brownian Motion previously explained.
σ is a parameter to scale the level of randomness generated from the Brownian Motion,
called the volatility.

Expression (18) is a stochastic differential equation (SDE). The first term shows the
general trend of the asset price and the second term reflects the random variations around
that tendency. One interesting way of writing the Brownian motion is:

dW = z
√
dt (19)

where z is a standard normal distribution with mean value 0 and variance 1: z ∼ N(0, 1).
We knew that dW had mean value 0 as it is a Wiener process, so this condition is kept
with the change. The term

√
dt ensures that the variance of dW is dt (another condition

from the definition of W ). Introducing expression (19) into (18), we get that the return
of the asset price is:

dS

S
= µdt+ σz

√
dt (20)

Before we continue with our study of the asset price, we are going to introduce a
mathematical concept that we need to find a solution for the SDE (20). We refer to Itô’s
Lemma.

5.2 Itô’s Lemma

Itô’s Lemma is a rule used to find the differential of a function that depends on time
and a stochastic process. We are going to derive it.

Let us consider a function f(t,X(t)) that depends on time t and a stochastic process
X(t). This process X(t) verifies a general stochastic differential equation

dX = λdt+ βdW (21)

where λ is the drift, β the volatility and W a Brownian motion.
We can write the differential of f(t,X(t)) based on Taylor’s expansion:

df =
∂f

∂t
dt+

∂f

∂X
dX +

1

2

∂2f

∂t2
(dt)2 +

1

2

∂2f

∂X2
(dX)2 +

∂2f

∂t∂X
dtdX + . . . (22)

If we suppose a continuous time model, we can consider that dt −→ 0. In this context,
we can discard some terms in (22). The term of (dt)2 is really small compared to the others
so we can get rid of it. We can manipulate the term of dtdX to analyse its order:

dtdX = dt(λdt+ βdW ) = λ(dt)2 + βdtdW (23)
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Once again we can cancel the term of (dt)2 and, remembering that dW ∼
√
dt, we

have that dtdW ∼ dt
√
dt, so we can also take out the term of dtdW as it is smaller than

the others. After these approximations, the differential of the function is:

df =
∂f

∂t
dt+

∂f

∂X
dX +

1

2

∂2f

∂X2
(dX)2 (24)

If we now calculate (dX)2:

(dX)2 = (λdt+ βdW )2 = λ2(dt)2 + 2λβdtdW + β2(dW )2 (25)

The terms of (dt)2 and dtdW are negligible one more time. For the remaining term,
we switch dW by the expression (19):

(dX)2 = β2(dW )2 = β2(z
√
dt)2 (26)

We now apply the following argument: the variance of dW has to be dt according to
the second feature explained in Section 4.3 for the Wiener process definition. The variance
of dW is also obtained through the formula:

Var[dW ] = E[(dW )2]− E[(dW )]2 (27)

The expected value of dW , E[(dW )], is 0 because the mean value of z is also 0.
Therefore, the variance is:

Var[dW ] = E[(dW )2] = dt (28)

Using this result for relation (25)

(dX)2 = β2dt (29)

and substituting (dX)2 in df (24), we get the following expression:

df =
∂f

∂t
dt+

∂f

∂X
dX +

1

2
β2 ∂

2f

∂X2
dt (30)

This relation is known as Itô’s Lemma and is essential for our next steps.

5.3 Geometric Brownian motion

We are now going to use Itô’s Lemma to find a solution for the SDE (18). Let us consider
a function f(S) = ln(S) that only depends on the asset price S(t). By analogy, S(t)
corresponds to X(t) in the previous derivation. Comparing expressions (18) and (21), we
know that, in this case, λ = µS and β = σS.

If we apply Itô’s Lemma to the function f(S), we have that [4]:

df = 0 +
∂f

∂S
dS +

1

2
σ2S2 ∂

2f

∂S2
dt =

1

S
dS − 1

2
σ2S2 1

S2
dt (31)

We can now introduce relation (18) for dS into (31) and get that the logarithm of the
asset price also has Brownian motion:

df = d(ln(S)) =
1

S
(µSdt+ σSdW )− 1

2
σ2dt =

(
µ− 1

2
σ2

)
dt+ σdW (32)
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If we integrate both sides of this equation for a given time interval t, we reach to:

lnS − lnS0 =

∫ t

0

(
µ− 1

2
σ2

)
dt+

∫ t

0

σdW (33)

where S ≡ St. In case µ and σ are constants, we can obtain an explicit result for the
right-hand side of the expression:

lnS − lnS0 =

(
µ− 1

2
σ2

)
t+ σ(W (t)−W (0)) =

(
µ− 1

2
σ2

)
t+ σ

√
tz(t) (34)

Here we have used relation (19) for W (t)−W (0). As we can see, f − f0 = lnS− lnS0

has a normal distribution. The mean value and the variance are the following:

E

[
ln

S

S0

]
= E

[(
µ− 1

2
σ2

)
t+ σ

√
tz(t)

]
=

(
µ− 1

2
σ2

)
t (35)

Var

[
ln

S

S0

]
= Var

[(
µ− 1

2
σ2

)
t+ σ

√
tz(t)

]
= Var

[
σ
√
tz(t)

]
= σ2t (36)

With this results, we can build the probability density function of f − f0:

ϕ(f − f0, t) =
1√

2πσ2t
e−[f−f0−(µ− 1

2
σ2)t]

2
/2σ2t (37)

Comparing this expression with the solution we found for the diffusion equation, that
is, the Green’s function (15), we can see they have the same form. In fact, (37) is a
Green’s function. This suggests us that the evolution of ϕ(f − f0, t) as the time interval t
grows is like a diffusion process and makes sense because it depends on a variable f = lnS
which, as we have seen in (32), follows a Brownian motion. The variance (36) depends
on time interval t and on the volatility σ. Consequently, the Gaussian probability density
function (37) spreads out as time interval increases and as the volatility increases. On
the other hand, the mean value (35) depends on the average rate of growth µ, on time
interval t and on the volatility σ. In this case, the mean value moves to the right as t
increases, but the volatility contributes oppositely to the movement.

In Figure 2 we can visualize the probability density function (37) for different values
of time interval t and volatility σ. The time is measured in years (0.25 year = 3 months)
and the volatility in 1/

√
year. The average rate of growth is µ = 0.05 (5%) for all

cases. We can see that the greater the time interval and the volatility are, the more
the function ”diffuses” and so it is more difficult to predict the return of the asset price.
This makes sense because it is harder to make predictions in a distant future and with
a greater volatility (level of randomness). For the lateral movement of the function we
cannot deduce a general tendency since time and volatility row in the opposite direction.
However, we can deduce that if the mean value is negative, then the value of the asset
price is expected to decrease after time interval t, and if it is positive, the asset price is
expected to increase.

If the logarithm of the asset price has a normal distribution, then the asset price S
has a lognormal distribution. Equation (34) can also be written in the exponential form:

S = S0e
(µ− 1

2
σ2)t+σ

√
tz(t) (38)
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Figure 2: Probability density function of f − f0 for different values of t and σ and for
µ = 0.1 in all cases.

This expression shows that the asset price follows a Geometric Brownian motion.
The probability density function of S can easily be obtained manipulating the probability
density function of f − f0 (37):

ϕ(f − f0, t)d(f − f0) = ϕ

(
ln

S

S0

, t

)
d

(
ln

S

S0

)
=

=
1√

2πσ2t
e
−
[
ln S

S0
−(µ− 1

2
σ2)t

]2
/2σ2tdS

S
= Ψ(S, t)dS

(39)

Ψ(S, t) =
1

S
√
2πσ2t

e
−
[
ln S

S0
−(µ− 1

2
σ2)t

]2
/2σ2t

(40)

We are going to try to find the meaning of µ and σ. Let us calculate the expected
value of the asset price S:

E[S] =

∫ ∞

−∞
SΨ(S, t)dS =

1√
2πσ2t

∫ ∞

−∞
e
−
[
ln S

S0
−(µ− 1

2
σ2)t

]2
/2σ2t

dS (41)

If we make the transformation y = lnS/S0, then y ∼ N
((
µ− 1

2
σ2
)
t, σ2t

)
and we get:

E[S] = S0

∫ ∞

−∞

1√
2πσ2t

e−[y−(µ−
1
2
σ2)t]

2
/2σ2teydy = S0E[ey] = S0My(1) (42)

My(1) is the moment generating function of y, My(q), with q = 1. Taking into
consideration that given a normal distribution X with mean a and variance b2, the moment
generating function is MX(q) = E[eqX ] = eaqeb

2q2/2, by analogy we reach to:

E[S] = S0My(1) = S0e
(µ− 1

2
σ2)te

1
2
σ2t = S0e

µt (43)

From expression (43) we can state that, as we had seen building the random walk
model, µ is the average rate of growth of the asset price S (remember (7)). On the other
hand, we had obtained before that the variance of the normal distribution of lnS/S0 was
σ2t. This result shows that the square of the volatility, σ2, is the variance per unit time
of the distribution [3].
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6 The Black-Scholes model

Once we have studied the behaviour of the asset price, we are going to apply the Black-
Scholes analysis that leads to the partial differential equation used to price options. The
Black-Scholes model was developed in 1973 by Fischer Black and Myron Scholes and
became a reference for many other subsequent models. They received a Nobel Prize
in 1997 for their work. Nevertheless, as we have said before, the model makes certain
assumptions that are not very realistic in real markets, but qualitatively is a great first
approximation. Before introducing it, we are going to explain the assumptions [4]:

• The underlying asset price follows the Geometric Brownian motion. This does not
mean that the Black-Scholes analysis cannot be applied with any other model that
is not the one of the random walk previously explained.

• The risk-free interest rate r and the volatility σ are known during the life of the
option.

• The underlying asset pays no dividends.

• It is possible to buy or sell a fractional number of the underlying asset and short
selling is allowed.

• There is no possibility of arbitrage.

• There are no transaction costs for buying or selling an option or underlying asset.

Let us suppose that the price of an option V (S, t) (does not matter if it is a call or put
option) depends only on the underlying asset price S and time t. Applying Itô’s Lemma
(30), taking into consideration that X ≡ S, λ ≡ µS and β ≡ σS, we can write [4]:

dV =
∂V

∂t
dt+

∂V

∂S
dS +

1

2
σ2S2∂

2V

∂S2
dt (44)

If we introduce relation (18) for dS into (44), we reach to the expression that gives
the random walk followed by the option price V :

dV =

(
∂V

∂t
+ µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2

)
dt+ σS

∂V

∂S
dW (45)

Now we are going to build a portfolio made up of one option (long position) and the
short sell of ∆ shares of the underlying asset. The value of the portfolio, Π, in this case
is:

Π = V −∆S (46)

and the differential of this value will be:

dΠ = dV −∆dS (47)

Substituting expressions (18) and (45) into (47), we get that the value of the portfolio
Π also follows a random walk:

dΠ =

(
∂V

∂t
+ µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− µ∆S

)
dt+ σS

(
∂V

∂S
−∆

)
dW (48)
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Regarding this expression, we can choose ∆ so that we eliminate the random compo-
nent containing dW :

∆ =
∂V

∂S
(49)

As we can see, in this case ∆ is the rate of change of the option price V with respect
to the underlying asset price S. The result is that the change in the value of the portfolio
is deterministic:

dΠ =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt (50)

We are now going to consider some arguments related to arbitrage. We suppose that
there are no transaction costs for buying or selling an option or underlying asset, as said
before. According to relation (8), when investing an amount Π at a risk-free rate r, the
return of the investment after a time t will be:

dΠ

Π
= rdt (51)

As a result, the change in Π is:

dΠ = Πrdt (52)

The right-hand side of (50) has to be equal to the right-hand side of (52) so that there
is no arbitrage. If it was greater, anyone could borrow an amount Π at a risk-free rate r
and invest it in the portfolio. The result would be a riskless profit because the increment
in the value of the portfolio (right-hand side of (50)) is greater than the amount that has
to be returned for borrowing (right-hand side of (52)). This means that there is arbitrage.
If, in contrast, the right-hand side of (50) was smaller than the right-hand side of (52),
it would be possible to short sell the portfolio (sell the option V and buy ∆ shares of S)
and invest that Π amount in a bank at a risk-free rate r. Once again, there is riskless
profit and, as a result, arbitrage.

As we have stated that there is no place for arbitrage, we must impose that:

Πrdt =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt (53)

Dividing by dt at both sides and introducing expressions (46) and (49) into (53):(
V − ∂V

∂S
S

)
r =

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
(54)

we reach to:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (55)

This is known as the Black-Scholes partial differential equation (PDE). It is a
linear, parabolic and backward in time equation. Any option whose price only depends
on time t and the underlying asset price S, must verify this equation, as long as the
assumptions made so far are verified. Consequently, solving the Black-Scholes equation
gives way to pricing options.
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It is interesting to remark that µ, the average rate of growth of the underlying asset
price S, does not appear in the equation. The only parameter from the stochastic differ-
ential equation (18) that affects the price of the option is the volatility σ. This means
that, although there might be a discrepancy between people in the estimation of µ, the
price of the option would be the same anyway [4].

7 The Black-Scholes formula for European options

7.1 Derivation

We have already found a PDE to price options, so now it is time to look for solutions
that satisfy it. The Black-Scholes formula is a well-known expression that gives price
to European options. It can be obtained solving the Black-Scholes equation (55) with
boundary and final conditions.

We are going to derive the formula for an European put option P (S, t). Remember
that an European put option granted its holder the right to sell the underlying asset only
at expiration date T . We start from the Black-Scholes equation

∂P

∂t
+

1

2
σ2S2∂

2P

∂S2
+ rS

∂P

∂S
− rP = 0 (56)

The equation is backward in time due to the opposite sign of term ∂P/∂t with respect
to the other partial derivatives ∂2P/∂S2 and ∂P/∂S. For that reason, we need a final
condition to solve the equation, this is, a condition at expiration date T . Regarding
expression (5) for the payoff of an European put option, we determine that the option
price at T has to be equal to the payoff to avoid arbitrage [4]:

P (S, T ) = max{K − S, 0} (57)

We also require boundary conditions. According to the final condition (57), when the
asset price is 0 at expiration date T , the price of the option is K: P (0, T ) = K. If we want
to determine P (0, t), we just have to calculate the present value (9) of P (0, T ). Assuming
a constant interest rate r, we get that the first boundary condition is:

P (0, t) = Ke−r(T−t) (58)

On the other hand, when the asset price tends to ∞, the put option is very unlikely
to be exercised, so it loses its value and the second boundary condition is:

P (S, t) −→ 0, as S −→ ∞ (59)

Once we have the final and boundary conditions, we are going to solve the equation.
We are going to make some transformations to try to convert the Black-Scholes equation
for the put option (56) into a diffusion equation(10). The solutions for the forward
diffusion equation are already known for us. However, we have seen that the Black-
Scholes is backward. Since we want to convert it into a forward diffusion equation, we
introduce a new time variable τ = T−t. Let us now assume the following transformations
[10]:

x = ln
S

K
+

(
r − 1

2
σ2

)
τ (60)
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P (S, t) = p(x, τ) (61)

p(x, τ) = e−rτg(x, τ) (62)

With this modifications, we have that

∂P

∂t
= −

(
∂p

∂τ
+

∂p

∂x

∂x

∂τ

)
= −∂ (e−rτg)

∂τ
− ∂ (e−rτg)

∂x

∂x

∂τ

= −e−rτ

[
−rg +

∂g

∂τ
+

(
r − 1

2
σ2

)
∂g

∂x

] (63)

∂P

∂S
=

∂p

∂x

∂x

∂S
= e−rτ ∂g

∂x

1

S
(64)

∂2P

∂S2
=

∂

∂S

(
e−rτ ∂g

∂x

1

S

)
=

∂

∂S

(
e−rτ ∂g

∂x

)
1

S
+ e−rτ ∂g

∂x

(
− 1

S2

)
=

=
∂

∂x

(
e−rτ ∂g

∂x

)
∂x

∂S

1

S
− e−rτ ∂g

∂x

1

S2
=

e−rτ

S2

(
∂2g

∂x2
− ∂g

∂x

) (65)

and so equation (56) becomes

e−rτ

[
−rg +

∂g

∂τ
+

(
r − 1

2
σ2

)
∂g

∂x

]
=

1

2
σ2S2 e

−rτ

S2

(
∂2g

∂x2
− ∂g

∂x

)
+ rS

e−rτ

S

∂g

∂x
− re−rτg

(66)

Simplifying we get:

∂g

∂τ
=

σ2

2

∂2g

∂x2
(67)

We have reached a diffusion equation as we wanted. We had previously found that
Green’s function (15) is a fundamental solution to this equation, so, in this case, we can
write (we take Ĝ0 = 1):

g(x, τ) =
1√

2πσ2τ
e−

x2

2σ2τ (68)

Adding the factor e−rτ given by (62) to this result, we get Green’s function for the
Black-Scholes equation [10]:

G(x, τ) =
1√

2πσ2τ
e−

x2

2σ2τ
−rτ (69)

If we reverse the transformations made, it can be verified that (69) satisfies equation
(56). However, it does not satisfy all the conditions. For instance, the final condition
(57), which turns into an initial condition with the change τ = T − t, is not verified as
G(x, 0) −→ δ(x).

In Section 4.2 we saw that thanks to the linearity of the diffusion equation, there
was another way to obtain a solution using an initial distribution and Green’s function.
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We refer to expression (17). This means that we can turn our problem of valuing a put
option into a diffusion problem where the final condition (57) (initial condition in time
framework τ) is the initial distribution. Green’s function acts as a propagator, backwards
in time t and forward in time τ , of the initial distribution. This initial distribution has
the following expression:

erτmax{K − S, 0}|τ=0 = max{K − S, 0} (70)

The first factor erτ comes from transformation (62) and the second one, which is
max{K − S, 0}, from the final condition. If we introduce a variable x′ = ln(S/K), which
corresponds to x when τ = 0, the initial distribution can be written as

max{K − S, 0} = Kmax{1− S

K
, 0} = Kmax{1− ex

′
, 0} at τ = 0 (71)

Now that we have the initial distribution, we can calculate its time τ evolution inte-
grating the contribution of all points x′ with their Green’s function as in (17). Each point
x′ represents a possible value of S at τ = 0 (at t = T ). Green’s function G(x− x′, τ) acts
as the propagator from x′ to x [10].

p(x, τ) =

∫ ∞

−∞
Kmax{1− ex

′
, 0}G(x− x′, τ)dx′ (72)

Regarding the initial distribution (71), we can see that it can be divided into two
parts: K(1− ex

′
) when x′ < 0 and 0 when x′ > 0. This means that we can just integrate

(72) from −∞ to 0.

p(x, τ) =

∫ 0

−∞
K
(
1− ex

′
)
G(x− x′, τ)dx′ =

∫ 0

−∞
K
(
1− ex

′
) 1√

2πσ2τ
e−

(x−x′)2

2σ2τ
−rτdx′

=
Ke−rτ

√
2πσ2τ

(∫ 0

−∞
e−

(x′−x)2

2σ2τ dx′ −
∫ 0

−∞
e−

(x′−x)2

2σ2τ
+x′

dx′
)

=
Ke−rτ

√
2πσ2τ

(∫ 0

−∞
e−

(x′−x)2

2σ2τ dx′ −
∫ 0

−∞
e−

[(x′−(x+σ2τ)]
2
+x2−(x+σ2τ)2

2σ2τ dx′

)

=
Ke−rτ

√
2πσ2τ

(∫ 0

−∞
e−

(x′−x)2

2σ2τ dx′ − ex+
σ2τ
2

∫ 0

−∞
e−

(x′−x−σ2τ)2

2σ2τ dx′
)

= I1 + I2

(73)

In the second term we have completed the square in the exponent. Before we continue
integrating, we need to introduce the standard normal cumulative distribution function:

N(y) =
1√
2π

∫ y

−∞
e−

1
2
z2dz (74)

This function represents the probability of a random variable Y , which has a normal
distribution, to be less or equal to y. Once we have this expression, we are going to use
it in (73).

I1 =
Ke−rτ

√
2πσ2τ

∫ 0

−∞
e−

(x′−x)2

2σ2τ dx′ =
Ke−rτ

√
2π

∫ −x/
√
σ2τ

−∞
e−

z2

2 dz = Ke−rτN

(
− x√

σ2τ

)
(75)
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To solve this term, we have made a change of variable z = x′−x√
σ2τ

. For the second term,

the transformation is z = x′−x−σ2τ√
σ2τ

.

I2 = − Ke−rτ

√
2πσ2τ

ex+
σ2τ
2

∫ 0

−∞
e−

(x′−x−σ2τ)2

2σ2τ dx′ = −Ke−rτex+
σ2τ
2

1√
2π

∫ (−x−σ2τ)/
√
σ2τ

−∞
e−

z2

2 dz

= −Ke−rτex+
σ2τ
2 N

(
−x+ σ2τ√

σ2τ

)
(76)

Joining both terms, we reach:

p(x, τ) = I1 + I2 = Ke−rτN

(
− x√

σ2τ

)
−Ke−rτex+

σ2τ
2 N

(
−x+ σ2τ√

σ2τ

)
(77)

If we now replace x and τ by their original expressions, we get that [10]:

P (S, t) = Ke−r(T−t)N

(
−
ln S

K
+
(
r − 1

2
σ2
)
(T − t)√

σ2(T − t)

)
− SN

(
−
ln S

K
+
(
r + 1

2
σ2
)
(T − t)√

σ2(T − t)

)
(78)

This is the well-known Black-Scholes formula for a put option. It gives price to Eu-
ropean put options as a function of the underlying asset price and time. Remember that
the formula was derived considering constant interest rate r and volatility σ during the
life of the option. For American put options this formula is not valid because they can
be exercised at any time before maturity T and so, as we will see later, the boundary
conditions are not the same.

The Black-Scholes formula for a call option can be obtained following the same process,
but with different boundary and final conditions. The formula in that case is [10]:

C(S, t) = SN

(
ln S

K
+
(
r + 1

2
σ2
)
(T − t)√

σ2(T − t)

)
−Ke−r(T−t)N

(
ln S

K
+
(
r − 1

2
σ2
)
(T − t)√

σ2(T − t)

)
(79)

and the final and boundary conditions are [4]

C(S, T ) = max{S −K, 0} (80)

C(0, t) = 0 C(S, t) ∼ S as S −→ ∞ (81)
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7.2 Numerical example

We are now going to use both Black-Scholes formulas (78)(79) for a numerical example.
We consider the following parameters:

• Risk-free interest rate r=0.08 (8%)

• Volatility σ=0.3
√
year−1 (30%)

• Expiration date T = 0.75 year (9 months)

• Strike price K = 15$

We first plot in Figure 3.a the value of the European call option C as a function of the
price of the underlying asset S for a given time t = 0. The plot also contains the value of
the option at expiration t = T , which according to (80), is equal to the payoff function.
Regarding the curve for t = 0, we can see that when S tends to 0, the option price C also
approaches 0, and as S increases considerably, the value of the option linearly grows with
S with unitary slope. This means that the boundary conditions (81) are verified.

On the other hand, we represent in Figure 3.b the value of the European put option
P as a function of the price of the underlying asset S for a given time t = 0. Once
again, the plot also contains the value of the option at expiration t = T , which is equal
to the payoff function as the final condition (57) enforces. In the case of t = 0, when the
underlying asset price S is 0, the value of the option is slightly smaller that the strike
price K = 15$, particularly Ke−r(T−t). This value is the same as the boundary condition
(58). When S increases significantly, the option price P tends to 0, the same way as in
the other boundary condition (59).

As we have seen, in both cases the final and boundary conditions are satisfied, so the
behaviour of the options value was the expected.

(a) C(S) for t = 0 and t = T (b) P (S) for t = 0 and t = T .

Figure 3: C(S) and P (S) for t = 0 and t = T .
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8 American options

We have solved the Black-Scholes equation for European call and put options, but we still
do not have the way to price American options. We have seen that we can not explicitly
solve the equation for American options due to the possibility of early exercise. It is time
now to analyse the problem of pricing American options and find a solution for it.

8.1 General concepts

American options, unlike European options, can be exercised at any time before expi-
ration date. We are soon going to see that the possibility of early exercise changes the
boundary conditions, so the Black-Scholes formula does not apply to those cases. In fact,
the possibility of early exercise gives the holder more flexibility, so we could expect the
value of an American option to be higher than the value of an European option. This can
be shown using arbitrage arguments.

We are going to analyse the case of a put option. There are values of the underlying
asset price S for which the value of an European put option is less than the payoff function
max{K−S, 0}. As a result, if we consider that the price of an American put option is the
same as the European put option, we can buy an American option for P and immediately
exercise it for K, obtaining a profit of K −S −P without risk. There is arbitrage. As an
example, we consider the case of S = 0. According to the payoff function max{K−S, 0},
the payoff is K. If we remember that S = 0 was a boundary condition (58) with option
valueKe−r(T−t), we can see that the payoff function is greater than the value of the option,
K > Ke−r(T−t) , so we are in the situation described before. This can be visualised in
Figure 3.b. To avoid arbitrage, we must impose the following condition for American put
options [4]:

P (S, t) ≥ max{K − S, 0} (82)

Similarly, for American call options the condition would be:

C(S, t) ≥ max{S −K, 0} (83)

At expiration date, the price of American options has to be equal to the payoff function,
that is, the price of the American options is equal to the price of the European options
given by the Black-Scholes formula.

P (S, T ) = max{K − S, 0} C(S, T ) = max{S −K, 0} (84)

American call options are special since they should never be exercised before maturity
unless they pay dividends. For now, we have always considered options with no dividends
and we are going to continue doing the same. This is just a remark to clarify that American
call options are just exercised at expiration date. The reason for this is that early exercise
requires the immediate payment of the strike price K and it is more profitable to keep
that money, for instance in the bank, with its risk-free interest rate until maturity. This
can shown building two portfolios as it is explained in Ref[13]:

• Portfolio A: American call option C + money in the bank Ke−r(T−t)

• Portfolio B: one share S
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If we exercise the call option in portfolio A at early time tex < T because S > K, the
payoff will be S−K+Ke−r(T−tex), which is smaller than S in portfolio B. If otherwise we
exercise the option at T , the payoff of A will be max(S −K, 0) +K = max(S,K), which
is always greater than or equal to S in B. Consequently, non-dividend paying American
call options should only be exercised at maturity and its price is the same as European
call options.

We are now going to focus on the study of American put options since for them early
exercise is optimal in some cases.

8.2 American put options

As early exercise is possible for American put options, there must also be some values of
S for which the exercise of the option is optimal before maturity. At each time t, there are
two regions for S: one with the values of S for which the option should be exercised and
the other with the values of S for which the option should be hold. The point that marks
the boundary between those two regions at time t is referred as the optimal exercise
price and it is denoted by Sf (t). This optimal exercise price is unknown to us. That is
why the problem of pricing an American put option is called a free boundary problem.
We have to solve a problem divided in two regions where we do not know where is the
boundary. We will have have to find out this boundary as part of the solution.

Free boundary problems are really common in physics. For instance, the Stefan prob-
lem that describes the joint evolution of a liquid and a solid phase is a free boundary
problem [14]. Another typical example is the obstacle problem, which consists in finding
the equilibrium configuration of an elastic membrane whose boundary is held fixed, and
which is constrained to lie above a given obstacle [15].

We are now going to formulate the free boundary problem for American put options.
Let us consider a put option with value P (S, t). As we have seen before, the value of the
option verifies that [4]

P (S, t) ≥ max{K − S, 0} (85)

and the final condition is

P (S, T ) = max{K − S, 0} (86)

An American put option should be early exercised at a time t < T when the value of S
is lower than or equal to the optimal exercise price Sf (t). In those cases, the price of the
option must be P (S, t) = max{K−S, 0}. Conversely, if S > Sf , the option should be hold
since its price is P (S, t) > max{K−S, 0} and it is more profitable to sell the option than
to execute it. When S > Sf , the option price follows the Black-Scholes equation. The
combination of this two facts makes the Black-Scholes equation (56) become an inequality.

We can now analyse how the Black-Scholes equation becomes an inequality. We build
the same portfolio as in (46), with the same value of delta (49). For the put option, it
would be:

Π = P − ∂P

∂S
S (87)
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As early exercise is possible with American options, the arbitrage argument used for
European options, where the return of the portfolio had to be equal to the return of money
deposited in the bank, is not valid. This means that expression (53) is not an equality
anymore. In this case, all we can say is that the return of the portfolio cannot be greater
than the money invested in the bank:

Πrdt ≥
(
∂P

∂t
+

1

2
σ2S2∂

2P

∂S2

)
dt (88)

If we introduce the value of the portfolio (87) into (88), we reach to:

∂P

∂t
+

1

2
σ2S2∂

2P

∂S2
+ rS

∂P

∂S
− rP ≤ 0 (89)

We can see that the Black-Scholes equation has become an inequality for American put
options. The expression is an equality when the option should be hold and an inequality
when the exercise is optimal, so we can write that for the region 0 ≤ S < Sf (t):

P (S, t) = max{K − S, 0} = K − S (90)

∂P

∂t
+

1

2
σ2S2∂

2P

∂S2
+ rS

∂P

∂S
− rP < 0 (91)

and for the other region, Sf (t) < S < ∞:

P (S, t) > K − S (92)

∂P

∂t
+

1

2
σ2S2∂

2P

∂S2
+ rS

∂P

∂S
− rP = 0 (93)

We now need to impose two conditions at the free boundary Sf (t). We suppose that
Sf (t) is smaller than the strike price K so as to have a positive payoff. The first condition
comes from the continuity of P (S, t) at S = Sf (t):

P (Sf (t), t) = max{K − Sf (t), 0} = K − Sf (t) (94)

The second one, from the continuity of the rate of change or delta (49) of P (S, t) at
S = Sf (t):

∂P

∂S

∣∣∣∣
S=Sf

= −1 (95)

To understand the reason for this second condition, we are going to consider the two
other possible scenarios: ∂P/∂S < −1 and ∂P/∂S > −1. In the first case, an increase
in S from Sf (t) implies a decrease of P (S, t) below max{K − S, 0}. According to (85),
P (S, t) cannot be smaller than max{K − S, 0}, so this situation is not possible. In the
second case, a decrease in S from Sf (t) induces a misvalued increment of the option value,
giving rise to possibilities of arbitrage. This is not a desired situation. As a result, the
only possible scenario is that ∂P/∂S = −1 [4].

We have already formulated the free boundary problem to price American put options.
We have the problem divided into two regions and we have two conditions at the boundary
of the regions. We also have a final condition.
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8.3 Solution to the free boundary problem

Now is time to find a way to solve the free boundary problem. For that, we need to use
numerical analysis. However, first of all we are going to reduce the problem to what is
known as a lineal complementarity problem. It basically consists on rewriting the problem
in such a way that the explicit dependence on the free boundary is eliminated. We solve
the problem without the influence of the free boundary condition and later recover it from
the solution.

It is easier to work with a diffusion equation rather than the Black-Scholes equation
since it has less partial derivative terms. That is why we are going to make again a
transformation to the Black-Scholes equation, but this time is going to be different to the
one used to derive the Black-Scholes formula. We start from equation (56) and we apply
the following modifications [4]:

t = T − τ
1
2
σ2

(96)

x = ln
S

K
(97)

P (S, t) = Kp(x, τ) (98)

With these modifications we have that

∂P

∂t
= K

∂p

∂τ

∂τ

∂t
= −K

2
σ2 ∂p

∂τ
(99)

∂P

∂S
= K

∂p

∂x

∂x

∂S
= e−x ∂p

∂x
(100)

∂2P

∂S2
=

∂

∂S

(
e−x ∂p

∂x

)
=

∂

∂x

(
e−x ∂p

∂x

)
∂x

∂S
=

e−2x

K

(
∂2p

∂x2
− ∂p

∂x

)
(101)

and the Black-Scholes equation becomes

∂p

∂τ
=

∂2p

∂x2
+ (q − 1)

∂p

∂x
− qp (102)

where q = 2r/σ2. We still need to apply one more transformation before we reach the
diffusion equation:

p(x, τ) = eax+bτu(x, τ) (103)

∂p

∂τ
= eax+bτ

(
bu+

∂u

∂τ

)
(104)

∂p

∂x
= eax+bτ

(
au+

∂u

∂x

)
(105)

∂2p

∂x2
=

∂

∂x

[
eax+bτ

(
au+

∂u

∂x

)]
= eax+bτ

(
2a

∂u

∂x
+ a2u+

∂2u

∂x2

)
(106)
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Introducing these terms into (102) we get:

bu+
∂u

∂τ
= a2u+ 2a

∂u

∂x
+

∂2u

∂x2
+ (q − 1)

(
au+

∂u

∂x

)
− qu (107)

We can now choose a and b in such a way the terms of u and ∂u/∂x are canceled:{
b = a2 + (q − 1)a − q

0 = 2a + (q − 1)
(108)

Solving the system of equations we find the values of a and b:

a = −1

2
(q − 1) b = −1

4
(q + 1)2 (109)

For this election of a and b, equation (107) turns into the diffusion equation [4]:

∂u

∂τ
=

∂2u

∂x2
(110)

With all these changes, the optimal exercise price becomes Sf (t) −→ xf (τ). Let us
see what happens with the payoff function:

max{K − S, 0} = Kmax{1− eln
S
K , 0} = Kmax{1− ex, 0} (111)

We have to add to this expression the factor e
1
2
(q−1)x+ 1

4
(q+1)2τ/K given by (98) and

(103) to complete the transformation. As a result, the payoff function is:

f(x, τ) = e
1
4
(q+1)2τmax{e

1
2
(q−1)x − e

1
2
(q+1)x, 0} (112)

Once we have the diffusion equation (110) and the payoff function (112), we can
formulate the free boundary problem after the transformations [4]:

∂u

∂τ
=

∂2u

∂x2
when x > xf (τ) (113)

u(x, τ) = f(x, τ) when x ≤ xf (τ) (114)

The final condition (57) is now an initial condition in τ framework:

u(x, 0) = f(x, 0) = max{e
1
2
(q−1)x − e

1
2
(q+1)x, 0} (115)

We must also remember that the property

u(x, τ) ≥ f(x, τ) = e
1
4
(q+1)2τmax{e

1
2
(q−1)x − e

1
2
(q+1)x, 0} (116)

has to be verified, as well as the continuity conditions of u and ∂u/∂x when x = xf (τ).
The asymptotic behaviour of u(x, τ) is:

lim
x→∞

u(x, τ) = 0 (117)

lim
x→−∞

u(x, τ) = f(x, τ) (118)
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For the first asymptotic behaviour we have to remember what happened when S → ∞
in (59) and for the second one, we known from (114) that when x → −∞, then u = f .

We are going to restrict the problem to a finite interval to have boundary conditions for
the numerical resolution. We consider the problem for values of x within −x− < x < x+,
being −x− and x+ large enough . Now we have the boundary conditions

u(x+, τ) = 0 u(−x−, τ) = f(−x−, τ) (119)

This second boundary condition is different from (58). That is why the Black-Scholes
formula is not valid for American put options.

With all this information, we can already write the problem as a linear complemen-
tarity problem with an initial and boundary conditions [4]:(

∂u

∂τ
− ∂2u

∂x2

)
·
(
u(x, τ)− f(x, τ)

)
= 0 (120)

(
∂u

∂τ
− ∂2u

∂x2

)
≥ 0

(
u(x, τ)− f(x, τ)

)
≥ 0 (121)

The initial condition is

u(x, 0) = f(x, 0) (122)

and the boundary conditions

u(x+, τ) = f(x+, τ) = 0 u(−x−, τ) = f(−x−, τ) (123)

Moreover, u and ∂u/∂x must also be continuous. As we can see, writing the problem
this way, we have eliminated the explicit dependence on the free boundary. The problem
can now be solved without the free boundary condition and later retake it from the
solution. This will make it easier for us to solve the problem using numerical methods,
which is our following step.

8.4 Finite-difference formulation: The Crank-Nicolson method

We are going to apply the finite-difference formulation to the linear complementarity
problem, particularly the one of the Crank-Nicolson method. The Crank-Nicolson
method is a combination of the explicit (or Forward Time Central Space, FTCS) method
and the implicit (or Backward Time Central Space, BTCS) method. It is a widely used
method to solve partial differential equations, as it is the case of the diffusion equation,
and it is interesting due to its unconditional stability. Let us see now how is the method
derived.

First of all, we need to replace the partial derivatives of the diffusion equation by
approximations based on Taylor series. In the explicit method, approximations for the
partial derivatives at a point (x, τ) are forward in time and central in space:

∂u

∂τ
(x, τ) ≈ u(x, τ + δτ)− u(x, τ)

δτ
+O

(
(δτ)2

)
(124)

∂2u

∂x2
(x, τ) ≈ u(x+ δx, τ)− 2u(x, τ) + u(x− δx, τ)

(δx)2
+O

(
(δx)2

)
(125)
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In the implicit method, approximations at point (x, τ) are backward in time and
central in space. In this case, however, we need to write the approximations at point
(x, τ + δτ) instead of (x, τ):

∂u

∂τ
(x, τ + δτ) ≈ u(x, τ + δτ)− u(x, τ)

δτ
+O

(
(δτ)2

)
(126)

∂2u

∂x2
(x, τ + δτ) ≈ u(x+ δx, τ + δτ)− 2u(x, τ + δτ) + u(x− δx, τ + δτ)

(δx)2
+O

(
(δx)2

)
(127)

The approximations for the Crank-Nicolson method at point (x, τ + δτ/2) can be
obtained averaging the approximations for the explicit method at point (x, τ) and the
approximations for the implicit method at point (x, τ + δτ) [16]:

∂u

∂τ

(
x, τ +

δτ

2

)
=

1

2

(
∂u

∂τ
(x, τ) +

∂u

∂τ
(x, τ + δτ)

)
≈ u(x, τ + δτ)− u(x, τ)

δτ
+O

(
(δτ)2

)
(128)

∂2u

∂x2

(
x, τ +

δτ

2

)
=

1

2

(
∂2u

∂x2
(x, τ) +

∂2u

∂x2
(x, τ + δτ)

)
≈ 1

2

(
u(x+ δx, τ)− 2u(x, τ) + u(x− δx, τ)

(δx)2

+
u(x+ δx, τ + δτ)− 2u(x, τ + δτ) + u(x− δx, τ + δτ)

(δx)2

)
+O

(
(δx)2

)
(129)

We can now define the finite-difference mesh. We divide the x-axis into points which
are separated by an equal space δx. We do the same with the τ -axis, but this time the
space separation is δτ . Thus we have turned the (x, τ)-plane into a mesh where the mesh
points have positions (nδx,mδτ). We will only consider the values u(x, τ) at the mesh
points. This can be written as [4]:

um
n = u(nδx,mδτ) (130)

As we have seen earlier, the values of x need to be truncated between a −x− and a
x+. For the case of the finite-difference mesh, this can be done using two integers N−

(negative) and N+ (positive) so that

N−δx ≤ nδx ≤ N+δx (131)

In the case of τ , we just need an integer M that verifies

0 ≤ mδτ ≤ Mδτ (132)

If we apply the finite-difference discretization to approximations (128) and (129), we
get the necessary terms for the Crank-Nicolson scheme:

∂u

∂τ

(
x, τ +

δτ

2

)
≈ um+1

n − um
n

δτ
+O

(
(δτ)2

)
(133)
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∂2u

∂x2

(
x, τ +

δτ

2

)
≈ 1

2

(
um
n+1 − 2um

n + um
n−1

(δx)2
+

um+1
n+1 − 2um+1

n + um+1
n−1

(δx)2

)
+O

(
(δx)2

)
(134)

We are now in position to write the linear complementarity problem using the finite-
difference formulation and, more concretely, the Crank-Nicolson method. If we consider
the terms O ((δτ)2) and O ((δx)2) negligible, the inequality ∂u/∂τ − ∂2u/∂x2 ≥ 0 (121)
can be written as [4]:

um+1
n − um

n ≥ α

2

(
um
n+1 − 2um

n + um
n−1 + um+1

n+1 − 2um+1
n + um+1

n−1

)
(135)

where α = δτ/(δx)2. The payoff function (112) can also be expressed using the finite-
difference notation:

fm
n = f(nδx,mδτ) (136)

so the inequality u− f ≥ 0 (121) can be approximated by

um
n − fm

n ≥ 0 (137)

The initial condition (122) is

u0
n = f 0

n (138)

and the boundary conditions (123)

um
N− = fm

N− um
N+ = fm

N+ (139)

Regarding inequality (135), we can see that there are terms which correspond to time
steps m and m+ 1. If we group the terms with m within a variable Cm

n

Cm
n = (1− α)um

n +
α

2

(
um
n+1 + um

n−1

)
(140)

we can write the inequality as

(1 + α)um+1
n − α

2

(
um+1
n+1 + um+1

n−1

)
≥ Cm

n (141)

With all this information, we can say that the linear complementarity equation (120)
can be approximated by(

(1 + α)um+1
n − α

2

(
um+1
n+1 + um+1

n−1

)
− Cm

n

) (
um+1
n − fm+1

n

)
= 0 (142)

Now we need to find a way to solve the problem, that is, to find all um
n . All we can say

for now is that the algorithm will do a sweep across all the values of nδx from N− to N+

for every time step mδτ from 0 to M . When we are calculating the terms at time step
m+1, Cm

n can be explicitly obtained because we already know the terms at time step m.
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8.5 Matrix formulation

Before we introduce the method of resolution, we are going to write equation (142) using
matrices. First of all, we concentrate on the first factor. We denote by um+1 the vector
containing the values of u for all nδx at a specific time step (m+ 1)δτ . We also define a
matrix A and a vector bm so that the factor takes the form (Aum+1 − bm) [4].

A =



1 + α −α
2

0 . . . 0

−α
2

1 + α −α
2

...

0 −α
2

. . . . . . 0

...
. . . . . . −α

2

0 . . . 0 −α
2

1 + α


(143)

um+1 =



um+1
N−+1

...

um+1
0

...

um+1
N+−1


bm =



bmN−+1

...

bm0

...

bmN+−1


=



Cm
N−+1

...

Cm
0

...

Cm
N+−1


+

α

2



um+1
N− = fm+1

N−

0

...

0

um+1
N+ = fm+1

N+


(144)

At first instance, we exclude the terms N− and N+ both in A and um+1 for the
multiplication Aum+1, since they are already known from the boundary conditions (139).
However, we later retake the boundary terms in the second vector of bm for them to
appear in the equations (142) for the steps n = N− +1 and n = N+ − 1. This vector has
dimension (N+ − N− − 1), as well as the first vector of bm and um+1. The matrix A is
squared and tridiagonal and has dimensions (N+ −N− − 1)× (N+ −N− − 1).

For the second factor in equation (142), we already have the vector notation for um+1

and we just need to define the same way fm+1 as the vector containing the values of
the payoff function f for all nδx at a specific time step (m + 1)δτ . The factor becomes(
um+1 − fm+1

)
.

With this matrix formulation, the linear complementarity problem can be written
as follows [4]: (

Aum+1 − bm
) (

um+1 − fm+1
)
= 0 (145)

(
Aum+1 − bm

)
≥ 0 um+1 ≥ fm+1 (146)
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8.6 The LU method

The method we are going to use to solve the problem is known as the LU method.
Ref[4] solves the problem with the Projected SOR method, not the LU. It uses the LU
method with the implicit scheme to price European options. We are going to apply the
same procedure but for American options with the Crank-Nicolson scheme. This method
is used to solve systems of linear equations as (Aum+1 − bm) = 0. It is based on the LU
decomposition, which consists on factorizing a matrix, in this case A, into a product of a
lower triangular matrix L and an upper triangular matrix U, so that A = LU.

A =



1 + α −α
2

0 . . . 0

−α
2

1 + α −α
2

...

0 −α
2

. . . . . . 0

...
. . . . . . −α

2

0 . . . 0 −α
2

1 + α


=



1 0 0 . . . 0

lN−+1 1
. . .

...

0
. . . . . . . . . 0

...
. . . . . . 0

0 . . . 0 lN+−2 1


·



yN−+1 zN−+1 0 . . . 0

0 yN−+2
. . .

...

0
. . . . . . . . . 0

...
. . . . . . zN+−2

0 . . . 0 0 yN+−1


(147)

To determine ln, yn and zn we have to multiply the matrices

LU =



yN−+1 zN−+1 0 . . . 0

lN−+1yN−+1 lN−+1zN−+1 + yN−+2
. . .

...

0
. . . . . . . . . 0

...
. . . . . . zN+−2

0 . . . 0 lN+−2yN+−2 lN+−2zN+−2 + yN+−1


(148)

and equal the result to matrix A. Here we find that

zn = −α

2
ln = − α

2yn
for n = N− + 1, . . . , N+ − 2 (149)

yN−+1 = 1 + α (150)
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yn = (1 + α)− α2

4yn−1

for n = N− + 2, . . . , N+ − 1 (151)

As we can see, we are just interested in the values of yn for n = N− + 1, . . . , N+ − 1.
We can now divide the problem (Aum+1 − bm) = 0 into two sub-problems:

Lwm = bm Uum+1 = wm (152)

This is the same as doing L
(
Uum+1

)
= bm, but with an intermediate vector wm.

Substituting expressions (149), (150) and (151) into the matrices L and U, we have that
the sub-problems are

1 0 0 . . . 0

− α
2yN−+1

1
. . .

...

0
. . . . . . . . . 0

...
. . . . . . 0

0 . . . 0 − α
2yN+−2

1


·



wm
N−+1

...

wm
0

...

wm
N+−1


=



bmN−+1

...

bm0

...

bmN+−1


(153)

and



yN−+1 −α
2

0 . . . 0

0 yN−+2 −α
2

...

0 0
. . . . . . 0

...
. . . . . . −α

2

0 . . . . . . 0 yN+−1


·



um+1
N−+1

...

um+1
0

...

um+1
N+−1


=



wm
N−+1

...

wm
0

...

wm
N+−1


(154)

We begin with the first system (153). We can directly derive the value of wm
N−+1 and

then increasing n from N− + 1, obtain the terms wm
n knowing the previous one wm

n−1.

wm
N−+1 = bmN−+1 (155)

wm
n = bmn +

αwm
n−1

2yn−1

for n = N− + 2, . . . , N+ − 1 (156)

In the second system (154), we directly get um+1
N+−1 and then decreasing n from N+−1,

we can obtain the terms um+1
n knowing um+1

n+1 .

um+1
N+−1 =

wm
N+−1

yN+−1

(157)

um+1
n =

wm
n + α

2
um+1
n+1

yn
for n = N+ − 2, . . . , N− + 1 (158)
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With all these expressions, we can build the algorithm for the LU method to solve our
linear system (Aum+1 = bm) in (145). We suppose that A and bm are already known.
The algorithm has the following steps:

1. Find all the values yn starting from yN−+1 (150) and using (151).

2. Calculate the vector wm starting with the component wm
N−+1 (155) and then using

(156) to obtain the rest.

3. Obtain the vector um+1 starting from um+1
N+−1 (157) and calculating the other com-

ponents with (158).

This is the algorithm that solves the linear system (Aum+1 = bm), but this is just
one part of the resolution of the linear complementarity problem. The algorithm for the
whole problem (145)(146) is the following:

1. In the beginning, we have the matrix A and the initial (138) and boundary condi-
tions (139). With the initial condition, we can obtain u0 (first time step m = 0).

2. We calculate b0 and solve the linear system
(
Au1 = b0

)
using the LU method to

obtain u1. The terms u1
N− and u1

N+ do not appear in the solution of the linear
system but are known from the boundary conditions. According to the expression
um+1 ≥ fm+1, every component of the vector u1 has to be greater than or equal
to the correspondent component of the vector f1. This means that when we are
calculating u1

n using (157) and (158), we have to check whether it is greater than or
equal to f 1

n. In case it was smaller, we would have to force u1
n = f 1

n.

3. Once we have u1, we calculate b1 to be able to solve the system
(
Au2 = b1

)
and

obtain u2. We have to check that u2 ≥ f2 the same way as before and do the
necessary readjustments.

4. The process is repeated until we calculate uM .

We have seen that in some cases we have to force the value of um
n to be equal to fm

n .
This suggests us that we have to make some changes in expressions (157) and (158):

um+1
N+−1 = max

(
wm

N+−1

yN+−1

, fm+1
N+−1

)
(159)

um+1
n = max

(
wm

n + α
2
um+1
n−1

yn
, fm+1

n

)
for n = N+ − 2, . . . , N− + 1 (160)

We are now going to build our own Python code for the whole algorithm of resolution.
The algorithm gives us the values of u with respect to x and τ , but we are also going to
calculate the values of P (S, t) reversing the transformations. Moreover, we are going to
try to find the optimal exercise price xf (τ) at every time step and then convert it into
Sf (t). To obtain xf at a time step mδτ , we have to find the value of n for which um

n = fm
n

and which verifies that for n′ > n, um
n′ > fm

n′ , excluding n = N− and n = N+.
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8.7 Python code

We are now going to write our Python code for the algorithm.

import math

import matplotlib.pyplot as plt

class AmericanPut:

def __init__(self, r, sigma, T, K):

self.__r = r

self.__sigma = sigma

self.__T = T

self.__K = K

self.__q = 2 * r / (sigma * sigma)

self.__S = []

self.__t = []

self.__P = [[]]

self.__Sf = []

def get_t(self):

return self.__t

def get_S(self):

return self.__S

def get_P(self):

return self.__P

def get_Sf(self):

return self.__Sf

def payoff(self, x, tau): #Payoff function f(x,tau)

return math.exp(0.25 * (self.__q + 1) * (self.__q + 1) * tau) * \

max(math.exp(0.5 * (self.__q - 1) * x) - math.exp(0.5 * (self.__q + 1) * x), 0.0)

def from_u_to_P(self, u, x, tau): #Transformation from u to P

P = []

for i in range(len(u)):

P.append(self.__K * math.exp(-0.5 * (self.__q - 1) * x[i]

- 0.25 * (self.__q + 1) * (self.__q + 1) * tau) * u[i])

return P

@staticmethod

def find_y(alpha, N): #Method that finds all the y_n

y = [1 + alpha]

for i in range(1, N):

y.append(1 + alpha - alpha * alpha / (4 * y[i - 1]))

return y

def find_b(self, u, x, tau, alpha): #Method that calculates b^m

b = []

for i in range(1, len(u) - 1):

C = (1 - alpha) * u[i] + 0.5 * alpha * (u[i + 1] + u[i - 1])

b.append(C)

b[0] += 0.5 * alpha * self.payoff(x[0], tau)

b[-1] += 0.5 * alpha * self.payoff(x[-1], tau)

return b
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def LU(self, b, y, x, tau, alpha, length): #LU solver

w = [b[0]]

check_sf = True

for i in range(1, length):

w.append(b[i] + 0.5 * alpha * w[i - 1] / y[i - 1])

u = [0 for k in range(length)]

u[length - 1] = max(w[length - 1] / y[length - 1], self.payoff(x[length], tau))

for j in range(length - 2, -1, -1):

u[j] = max((w[j] + 0.5 * alpha * u[j + 1]) / y[j], self.payoff(x[j + 1], tau))

if check_sf and u[j] == self.payoff(x[j + 1], tau):

xf = x[j + 1]

check_sf = False

self.__Sf.append(self.__K * math.exp(xf))

return u

def values(self, dtau, dx, Nmin, Nplus): #Method that gives the values of P(S,t)

alpha = dtau / (dx * dx)

N = Nplus - Nmin + 1

M = int(0.5 * self.__sigma * self.__sigma * self.__T / dtau)

self.__P = [[0 for i in range(N)] for j in range(M)]

self.__t = [self.__T]

x = []

u = []

for l in range(N):

x.append((Nmin + l) * dx)

self.__S.append(self.__K * math.exp(x[l]))

u.append(self.payoff(x[l], 0.0)) # Finding u^0

self.__P[0][:] = self.from_u_to_P(u, x, 0.0)

y = self.find_y(alpha, len(u) - 2)

for i in range(1, M): #Finding u^m from m=1 up to m=M

tau = i * dtau

self.__t.append(self.__T - tau / (0.5 * self.__sigma * self.__sigma))

b = self.find_b(u, x, tau, alpha)

u[1:N - 1] = self.LU(b, y, x, tau, alpha, len(u) - 2)

u[0] = self.payoff(x[0], tau)

u[N - 1] = self.payoff(x[N - 1], tau)

self.__P[i][:] = self.from_u_to_P(u, x, tau)

pass

if __name__ == '__main__':

american_put = AmericanPut(r= , sigma= , T= , K= )

american_put.values(dtau= , dx= , Nmin= , Nplus= )

t = american_put.get_t()

S = american_put.get_S()

P = american_put.get_P()

Sf = american_put.get_Sf()

To create an object that represents an American put option in this code, we need to
set an interest rate r, a volatility σ, an expiration date T and a strike price K. Once the
object is created, we have to call the method values if we want to price the option. The
inputs for this method are the time interval dtau, the x interval dx and the minimum an
maximum numbers for n, that is, Nmin and Nplus. The method applies the algorithm
of resolution and fills the lists t and S and the matrix P with the correspondent values. A
row in P matrix represents a time step and contains the values of the option for all values
of x at that time step. The method also fills the list Sf containing the optimal exercise
price at each time step. The transformations from u(x, τ) to P (S, t) are internally made.
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8.8 Numerical example

We are now going to run the code with a numerical example. We consider an American
put option and the following parameters:

• Risk-free interest rate r=0.03 (3%)

• Volatility σ=0.35
√
year−1 (35%)

• Expiration date T = 0.5 year (6 months)

• Strike price K = 10$

Firstly, we calculate the values of the option with dtau = 0.0005, dx = 0.00125,
Nmin = −4000 and Nplus = 600. The program fills the lists t, S, Sf and the matrix P .
If we were interested in the value of the option for some specific S and t, we could take it
from P . The same for Sf as a function of t.

We are now going to plot some results. On the one hand, we represent in 3D in Figure
4 the value of the option P as a function of the underlying asset price S and time t.
When the asset price S tends to 0, the option value P goes to the strike price K = 10$
the same way as the payoff function (max{K − S, 0}), and as S increases significantly,
P approaches 0. This means that the boundary conditions (123) are verified. The plot
also contains the optimal exercise boundary, which is the red line, for the given the values
of the option. The values of P above the line are cases for which the option would be
executed and the values under the line, for which it would be hold.

Figure 4: 3D plot for P (S, t). The red line represents the optimal exercise boundary.

We are also going to plot the 2D function P (S) for two different times t = 0 and
t = T , as well as the optimal exercise price function Sf (t). The resulting plots are the
ones in Figure 5. In the first one, Figure 5.a, we observe that for t = T , the value of P (S)
is equal to the payoff function (Figure 1.b) as it has to be according to the final condition
(86). When t = 0, the function P (S) is greater than or equal to the payoff function, so
condition (85) is satisfied. From Figures 4 and 5.a and the analysis of the boundary and
final conditions we have made, we can infer that the behaviour of P (S, t) is correct.
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Regarding Figure 5.b, we deduce that when time approaches expiration date, the op-
timal exercise price increases and tends to the strike price K = 10$. This is logical since
at time t = T , P (S, T ) = max{K − S, 0} and exercise should be done only if S < K.
The region behind the line is the exercise region and the region above the line is the
one to hold. As time evolves, we are more predisposed to execute the option and sell
the asset despite obtaining a smaller payoff. The reason for this is that, at early times,
the value of the option is greater than the payoff function for more values of S (it is vi-
sualized in Figure 5.a) and, in those cases, it is better to hold the option than to execute it.

(a) P (S) for t = 0 and t = T (b) Optimal exercise price function Sf (t)

Figure 5: Function P (S) for t = 0 and t = T and optimal exercise price function Sf (t).
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9 Conclusions

In this work we have established a connection between physics and finance. Concretely,
we have analysed some physical concepts in the valuation of options.

First of all, we have learnt some basic financial concepts. It was crucial to understand
what is an option for the rest of the project. We have also introduced some physical
notions related to Brownian motion. We have seen that diffusion processes are governed
by the Brownian motion and we have found different solutions for the diffusion equation
based on Green’s function. Furthermore, we have explained the mathematical formulation
of the Brownian motion, that is, the Wiener process.

With the main financial and physical concepts already assimilated, we have analysed
the behavior of the underlying asset price. We have seen that it can modelled with a
random walk based on a Brownian motion. We have found that in the random walk
model, the asset price follows a Geometric Brownian motion and that the probability
density function of its logarithm suffered a diffusion process. To visualize this diffusion
process, we have plotted some functions.

Our next step has been to pose the Black-Scholes model based on the random walk
model for the underlying asset. We have derived the Black-Scholes partial differential
equation used to price options. Once we had the equation, we have looked for an explicit
solution for European put options. This was the Black-Scholes formula. We have solved
the problem as a diffusion problem with the payoff function playing the role of the initial
distribution. However, first we have had to transform the Black-Scholes equation into
a diffusion equation. Once we had the Black-Scholes formulas for both European call
and put options, we have used them with a numerical example. We have found that the
behaviour of the options was the expected.

In the last section, we have studied the problem of pricing American options. We
have seen that we cannot find an explicit solution and that for American call options,
early exercised is never recommended. We have analysed the free boundary problem for
American put options and transformed it into a linear complementarity problem to obtain
a solution. Once more. we have worked with the Black-Scholes equation transformed into
a diffusion equation. Writing the problem as a linear complementarity one, eliminated
the dependence on the free boundary and made resolution easier. We have used the
finite difference formulation and the Crank-Nicolson scheme with matrices to solve the
problem. We have also built an algorithm that uses the LU method to solve linear systems
of equations and translated it into our own Python code. The last step has been to run this
code with a numerical example and analyse the results. We have seen that the function of
the option value had the right behaviour and we have also obtained the optimal exercise
price function. The value of the optimal exercise price increased and converged to the
strike price as time approached expiration date.

Overall, we have found that there is a relation between physics and finance. Particu-
larly, we have found that the Brownian motion and diffusion equation play an important
role in the valuation of options. The influence of physics in finance is a fact and that is
why many financial lines of investigation involve the use of physics.
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