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Abstract

Reactive systems are systems that continuously interact with the environment. In general,
as they are critical systems, a failure or malfunction can result in serious consequences,
such as loss of human lives or large economic investments. Therefore, correctly modeling
the behavior and verification of the system is crucial and, for this, Linear-time Temporal
Logic (LTL) and Realizabilty and Synthesis problem represent a promising approach for
obtaining confidence in the correctness of a reactive system. The Realizability and Synthesis
problem decides if there is a model that satisfies the given specification under all possible
environmental behaviours. Moreover, it can be seen as a game between two players; the
player who controls the inputs of the system to be synthesized (environment player) and the
player who controls the outputs and tries to satisfy the specification for each environmental
behaviour (system player).

In this Master thesis, we present both a tableau decision method for deciding the
realizability of specifications expressed in a safety fragment of LTL and a prototype that
builds a Realizability Tableau from a safety specification input. The prototype returns
an open tableau (meaning the specification is realizable) or a closed tableau (when the
specification is unrealizable). Finally, we present the future of the work and some of the
improvements that will be implemented.
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CHAPTER 1
Introduction

Traditionally, transformational systems were those that took a set of inputs, manipulated
them and provided a given set of results. In transformational systems the relation of the
input with the output was sufficient to specify the behaviour of the program. However,
in the mid-1980s, the concept of reactive systems emerged after the widespread use of
systems that continuously reacted to events generated by the environment. Consequently,
traditional development techniques and tools used for transformational systems became
deprecated for reactive systems due to fact that they can not be completely characterised in
terms of the relation between input and output. Moreover, as continuously interacts with
the environment they are more prone to errors.

Reactive systems are everywhere, for instance in industrial control systems, in interac-
tive software systems, in avionic systems, in robot controllers, in electronic devices, and
so on. Usually, critical systems are reactive systems and a failure or malfunction can have
serious consequences, such as loss of human lives or large economic investments. Therefore,
correctly modeling the behavior of reactive systems is crucial and, for this, formal methods
such as Linear-time Temporal Logic (LTL) represent a promising approach for obtaining
confidence in the correctness of a reactive system.

Currently, there are different automatic methods for verifying a formal system in the
state of the art, being model-checking, realizability and synthesis the most important.
Model checking tools takes a system model and a formal property as input and decides
if the model satisfies the given property, whereas realizability tools takes only a formal
specification and decides if exists a model that satisfies the given specification under all
possible environmental inputs. Furthermore, when the specification is realizable, if the tool
is able to return an implementation, it is said to solve the synthesis problem.

The problem addressed by this project is deciding whether a formal specification (writ-
ten in temporal logic) is realizable or not by the construction of “Realizabilty Tableaux".
Traditional tableau techniques for testing satisfiability does not directly work for realiz-
ability. As far as we know, tableau techniques has not been yet applied for solving the
realizability problem of temporal formulas, beyond its auxiliary use in automata-based
methods.

1



1. Introduction

To illustrate why traditional tableaux do not work to decide realizability, consider the
following three temporal formulas where e is an environment variable and s is a system
variable: ψ1 = s → e, ψ2 = s ↔ e, ψ3 = s ↔ e. Note that  symbol is a
temporal operator and it refers to the future. For instance, in ψ2, whether s valuates to
True, e must be True in the next instant of time for making the formula satisfiable. Below
will appear another temporal operator,, which indicates that a formula must be satisfied
both in the present and in all the following instants of time.

Figure 1.1: Tableau for(s→ e)

ψ1 specification is realizable due to the
fact that only depends on the truth value of
the system. Actually,(s→ e) = (¬s∨
e) and by the semantics of the temporal for-
mula (we will introduce it in Subsection 2.2.2),
(¬s∨e) = (¬s∨e)∧(¬s∨e).
The tableau on the right applies these equiv-
alences and jumps to the next instant of
time getting a loop with the initial formula,
(s → e). Therefore, a winning strategy
for the system certifying the realizability of
the specification. Such strategy consists of
assigning False to the system variable s all
the time.

Figure 1.2: Tableau for(s↔ e)

ψ2 specification is not realizable, no
matter what the environment does at the
start, any choice of the system variable s
forces the environment value in the next
instant of time. Obviously, as the be-
haviour of the environment cannot be con-
trolled, all branches in the tableau end up
with inconsistencies (see the tableau in Fig-
ure 1.2).

The two previous tableaux are correct for deciding realizability and they are classical
tableaux, but the case ofψ3 is different. Referring to the specificationψ3, every time
the environment establishes a value, the system only has to mimic the same value, being
a winning strategy for the system. Hence, ψ3 is a realizable specification. However,
according to the rules of traditional tableaux, the first and second branch will be closed by
e and ¬e, respectively. The tableau of Figure 1.3 shows this problem. As a consequence,
the classical tableau rules do not provide a correct decision procedure for realizability.

2



Figure 1.3: Tableau for(s↔ e)

To overcome this problem, we define new tableau rules and introduce the "Terse Normal
Form", which prevents these incorrect splittings on formulas that reveal future choices
too early. The following tableau is a correct one forψ3 and is the result of the method
developed in this project.

Figure 1.4: Realizability tableau for(s↔ e)

This master thesis is the continuation of the Computer Science End of Degree Project.
However, it has changed substantially due to the fact that we detect that our tableaux
had a very strong precondition and, therefore, could return that a specification was not
realizable when it was. Consequently, both the rules and the construction of the tableaux
have changed and new definitions have been included, such as the Terse Normal Form
(TNF) or the concept of minimal covering, among others. The objectives of this project
are divided into two groups: firstly, the explanation of all the theory necessary for the
understanding and construction of Realizability Tableaux, and secondly, the briefly and
superficially introduction to the most important aspects of the prototype implementation.

3





CHAPTER 2
Background

2.1 Propositional Logic

Propositional Logic is the branch of logic that studies the truth or falsehood of a proposi-
tional formula. The origins go back to antiquity and are due to Stoic school of philosophy
(3rd century B.C.). However, the real development began in the mid-19th century and was
initiated by mathematician G. Boole and first formulated as a formal axiomatic system by
the logician G. Frege in 1879.

This Section will explain the syntax (SubSection 2.1.1) and semantics (SubSection 2.1.2)
of propositional logic, the sematics tableaux for satisfiability (SubSection 2.1.4), SMT and
SAT solvers (SubSection 2.1.5), the most common Normal Forms for representing boolean
formulas (SubSection 2.1.3) and model minimization with prime implicants (SubSection
2.1.6) .

2.1.1 Syntax

A propositional formula is constructed combining together simple propositions and logic
connectives such as Negation(¬), Conjunction(∧), Disjunction(∨), Implication(→) and
Double-Implication(↔).

The simplest propositional formula, also called atomic formula, proposition or variable,
is denoted as a string in lower case ∈ PROP , where PROP is the set of atomic formulas.
Moreover, each variable has a truth value: True (T ) or False (F ) and literals are either
variables (positive literals) or the negation variables (negative literals).

2.1.2 Semantics

2.1 Definition (Model). Given a propositional formula φ, a model for φ, also called truth
assignment or valuation is a mapping:

ℓ : Prop→ Bool

Given an atomic formula p, when ℓ(p) is the value True (respectively ℓ(p) is the value
False), we write p 7→ T ∈ ℓ (respectively p 7→ F ∈ ℓ).

5



2. Background

The formal semantics is defined by the satisfaction relation |= of a truth valuation ℓ
and a formula φ, inductively defined as follows:

ℓ |= p iff { p 7→ T } ∈ ℓ
ℓ |= ¬p iff { p 7→ F } ∈ ℓ
ℓ |= φ ∧ ψ iff ℓ |= φ and ℓ |= ψ

ℓ |= φ ∨ ψ iff ℓ |= φ or ℓ |= ψ

ℓ |= φ→ ψ iff ℓ ̸|= φ or ℓ |= ψ

ℓ |= φ↔ ψ iff (ℓ |= φ and ℓ |= ψ) or (ℓ ̸|= φ and ℓ ̸|= ψ)

2.2 Definition (Satisfiable, Unsatisfiable and Tautology). A formula φ is said to be:

- Satisfiable iff exists at least one model ℓ such that ℓ |= φ.

- Unsatisfiable or contradiction iff no model ℓ satisfies φ. It is denoted as ̸|= φ

- Tautology or valid iff every model ℓ satisfies φ. It is denoted as |= φ

2.3 Definition (Logical equivalence). Two formulas φ and ψ are logically equivalent if the
formula φ↔ ψ is a tautology (or likewise, if the formula ¬(φ↔ ψ) is unsatisfiable). Note
that sign ≡ is sometimes used instead of↔ for logical equivalence.

2.1 Example. Given the propositional formula, p ∨ q, there are four possible assignments
and three of them are models.

1. {p 7→ T, q 7→ T} |= p ∨ q,

2. {p 7→ F, q 7→ T} |= p ∨ q,

3. {p 7→ F, q 7→ F} ̸|= p ∨ q,

4. {p 7→ T, q 7→ F} |= p ∨ q

We also denote models of a formula as sets of literals or as conjunctions of literals.

Represented as sets of literals:

1. {p, q} |= p ∨ q,

2. {¬p, q} |= p ∨ q,

3. {p,¬q} |= p ∨ q

Represented as conjunction of literals:

1. (p ∧ q) |= p ∨ q,

2. (¬p ∧ q) |= p ∨ q,

3. (p ∧ ¬q) |= p ∨ q

6



2.1. Propositional Logic

2.1.3 Normal Forms

A normal form of a formula is a syntactic restriction. In propositional logic, there are three
important normal forms:

1. Conjunctive Normal Form (CNF), a propositional formula φ is in Conjunctive Normal
Form if φ is a conjunction of disjunction of literals. The disjunction of literals is
called clause.

2.2 Example (CNF). φ≡ (p ∨ q ∨ ¬ r) ∧ (p ∨ ¬ r ∨ t) ∧ (s ∨ q ∨ ¬ n) is in Conjunctive
Normal Form where (p ∨ q ∨ ¬ r), (p ∨ ¬ r ∨ t) and (s ∨ q ∨ ¬ n) are the clauses.

2. Disjunctive Normal Form (DNF), a propositional formula φ is in Disjunctive Normal
Form if φ is a disjunction of conjunction of literals. The conjunction of literals is
called term or implicant.

2.3 Example (DNF). φ≡ (p ∧ q ∧ ¬ r) ∨ (p ∧ ¬ r ∧ t) ∨ (s ∧ q ∧ ¬ n) is in Disjunctive
Normal Form where (p ∧ q ∧ ¬ r), (p ∧ ¬ r ∧ t) and (s ∧ q ∧ ¬ n) are the terms.

3. Negation Normal Form (NNF), a propositional formula φ is in Negation Normal Form
if it does not contain implication or equivalence symbols, and every negation symbol
occurs directly in front of an atom [1]. Moreover, every propositional formula has an
equivalent formula in NNF, which can be obtained by applying the following rules:
Implication Rule

(→)
p→ q

¬p ∨ q

Double Implication Rule

(↔)
p↔ q

(p→ q) ∧ (q → p)

Double negation
(¬¬) ¬¬p

p

Negation propagation rules

(¬∧) ¬(p ∧ q)
¬p ∨ ¬q

(¬∨) ¬(p ∨ q)
¬p ∧ ¬q

2.4 Example (NNF). (¬ p ∨ q ∧ r ∨ m ∨ t) ∧ ¬c ∨ (¬ q ∨ n) is in Negation Normal
Form.

Furthermore, a formula in Negation Normal Form has its equivalent formula in
Conjunctive Normal Form or Disjunctive Normal Form by applying distributivity.

7



2. Background

2.1.4 Semantic Tableaux

One of the most common method to check the satisfiability or unsatisfiability of a proposi-
tional formula are the Semantic Tableaux. They were introduced by Evert William Beth in
1955 [2] and later simplified for classical logic by Raymond Smullyan, who presented the
one-side tableaux [3].

The Semantic Tableaux method is very simple when it applies to NNF-formulas. Any
formula is decomposed into its sub-formulas according to following rules:

And Connectives Rule
(∧) α ∧ β

α, β

Or Connectives Rule
(∨) α ∨ β

α | β

Applying inductively those rules, it results in a tree-like tableau where (∧) rule gener-
ates a single branch and (∨) rule generates two branches. Each branch terminates by a leaf
with a complementary pair of formulas (a closed branch) or by a leaf containing a set of
non-contradictory literals (an open branch).

In the following examples, we represent closed branches by × and open branches by ⊙.
What’s more, when a leaf generates an open branch, that leaf is a model of the formula.

2.5 Example. Open tableau for p ∧ (¬p ∨ q) (i.e. p ∧ (¬p ∨ q) is satisfiable).

p ∧ (¬p ∨ q)

p, (¬p ∨ q)

p,¬p

×

p, q

⊙

(∧)

(∨)

Figure 2.1: Open propositional tableau

8



2.1. Propositional Logic

2.6 Example. Open tableau (with more than one open branch) for p ∨ (¬p ∧ q).

p ∨ (¬p ∧ q)

p

⊙

¬p ∧ q

¬p, q

⊙

(∨)

(∧)

Figure 2.2: Open propositional tableau with more than one open branch

2.7 Example. Closed tableau for (p∨q)∧(¬p∧¬q) (i.e. (p∨q)∧(¬p∧¬q) is unsatisfiable).

(p ∨ q) ∧ (¬p ∧ ¬q)

(p ∨ q), (¬p ∧ ¬q)

p, (¬p ∧ ¬q)

p,¬p,¬q

×

q, (¬p ∧ ¬q)

q,¬p,¬q

×

(∧)

(∨)

(∧) (∧)

Figure 2.3: Closed propositional tableau

2.1.5 SMT/SAT Solvers

SAT Solvers are tools which aims to solve the boolean satisfiability problem. If the SAT
Solver finds a model ℓ that satisfies the given formula φ, (i.e ℓ |= φ) it returns “SAT” and, at
the user’s request, the model ℓ. Otherwise, if it proves that there is no model that satisfies
the formula φ, it returns “UNSAT”.

Research to improve SAT solvers is very popular, every year holds a competition to
identify new challenging benchmarks and present new SAT solvers [4]. For example, one
of the SAT Solvers that has obtained the best results in the last years is “Kissat SAT Solver”
[5]. It is a condensed and improved reimplementation of CaDiCaL [5] in C.

9



2. Background

Figure 2.4: Main track SAT Competition results on 2020 instances

Another tools that allows to verify the satisfiability of a formula are SMT Solvers.
Whereas SAT Solver inputs are propositional boolean formulas, SMT Solvers inputs are
formulas in First-order-logic. In other words, SMT Solver extends from SAT Solvers by
adding some Theory Solvers. Therefore, SMT Solver can solve a SAT problem but a SAT
Solver can not solve a SMT problem.

Figure 2.5: Basic SMT Solver structure

For example, one of the most popular SMT solver is Z3. It is an open source Theorem
Prover and was developed by Research in Software Engineering (RiSE) group at Microsoft
Research with the main target of solving problems in areas of software verification and
software analysis [6].

2.1.6 Prime Implicants

Sometimes the valuation of a variable is irrelevant to the satisfaction of a propositional
formula. For example, in Example 2.1, when {p 7→ T} the assignment of the variable q
is irrelevant, that is, to satisfy the formula, it does not matter if {q 7→ T} or {q 7→ F}.
To some exent, this mean that the models {p 7→ T, q 7→ T} and {p 7→ T, q 7→ F} can be
reduced to a unique model {p 7→ T}
To reduce formula models, we use the well-known concept of prime implicants [7] and
recent tool called BICA [8], which is able to compute the smallest size set of prime implicants
equivalent to a given formula.

2.4 Definition (prime implicants). A model ℓ is a prime implicant of a propositional formula
φ iff seeing ℓ as a set of literal, no subset of ℓ is an implicant of φ.
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2.1. Propositional Logic

2.1 Proposition. Let φ be a propositional boolean formula. The disjunction of all prime
implicants of φ is a logically equivalent to φ.

2.8 Example. In reference to Example 2.1, p ∨ q has two prime implicants, {p 7→ T} and
{q 7→ T}.

In the worst case, the number of prime implicants of a propositional formula is expo-
nential with respect to the number of variables of the formula.

2.9 Example. Let φ be the following propositional formula [9]:

φ ≡ (x1 ∧ x2 ∧ · · · ∧ xn ∧ y0) ∨ (¬x1 ∧ x2 ∧ · · · ∧ xn ∧ y1)

∨ (¬x2 ∧ · · · ∧ xn ∧ y2) ∨ · · · ∨ (¬xn ∧ yn)

This formula has at least 2n prime implicants corresponding to:

(b1 ∧ b2 ∧ · · · ∧ bn ∧ y0) where bi can be either xi or yi.

In addition to the n+ 1 prime implicants:

(x1 ∧ x2 ∧ x3 ∧ x4 ∧ y0), (¬x1 ∧ x2 ∧ x3 ∧ x4 ∧ y1),

(¬x2 ∧ x3 ∧ x4 ∧ y2), (¬x3 ∧ x4 ∧ y3), · · · , (¬xn ∧ yn)
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2. Background

2.2 Linear Temporal Logic

Linear Temporal Logic (LTL) is a formal system for reasoning about time. It has found
extensive application in computer science, namely to specify and verify how systems
behave over time. LTL interpretations are limited to transitions which are discrete, reflexive,
transitive, linear and total [10].

Figure 2.6: LTL example

In what follows, we will explain the LTL syntax (Subsection 2.2.1) and semantics
(Subsection 2.2.2) that are similar to [11].

2.2.1 Syntax

LTL formulas are constructed using the classical operators of the propositional logic together
with the temporal operators over a set of propositional formulas PROP .

Temporal operator are:

− Unary temporal operators: Next ( or X), Always ( or G), Eventually ( or F)

− Binary temporal operators: Releases (R ) and Until (U ).

LTL formulas can be formally represented as a transition structure M = (SM, VM),
where SM is a denumerable sequence of states s0, s1, s2 ... and VM is a map VM : SM →
2E . Intuitively, VM(sj) specifies which atomic formulas are necessarily true in state sj .

2.2.2 Semantics

The formal semantics is given by the truth of a formula φ in the state sj of a structure M,
denoted by ⟨M, sj⟩ |= φ, which is inductively defined as follows:

⟨M, sj⟩ |= p iff p is a boolean variable and p ∈ VM(sj)

⟨M, sj⟩ |= ¬φ iff ⟨M, sj⟩ ̸|= φ

⟨M, sj⟩ |= φ ∧ ψ iff ⟨M, sj⟩ |= φ and ⟨M, sj⟩ |= ψ

⟨M, sj⟩ |= φ ∨ ψ iff ⟨M, sj⟩ |= φ or ⟨M, sj⟩ |= ψ

⟨M, sj⟩ |= φ iff ⟨M, sj+1⟩ |= φ

⟨M, sj⟩ |= φU ψ iff there exists k ≥ j such that ⟨M, sk⟩ |= ψ and for every j ≤ i < k
it holds ⟨M, si⟩ |= φ.

⟨M, sj⟩ |= φRψ iff either ⟨M, sk⟩ |= φ holds for all k ≥ j or there exists k ≥ 0 such
that ⟨M, sk⟩ |= φ ∧ ψ and ⟨M, si⟩ |= φ for all j ≤ i < k.
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2.2. Linear Temporal Logic

⟨M, sj⟩ |= φ iff ⟨M, sk⟩ |= φ for all k ≥ j

⟨M, sj⟩ |=φ iff ⟨M, sk⟩ |= φ for some k ≥ j

2.10 Example. Temporal logic operators

1. Next Operator ( or X): given current state Sj ,  p will be satisfied iff in the state
Sj+1 p is satisfied.

Figure 2.7:  p

2. Always Operator ( or G): given current state Sj , p will be satisfied iff in the state
Sj and in the following states p is satisfied.

Figure 2.8:  p

3. Eventually Operator ( or F ): given current state Sj , p will be satisfied iff in the
state Sj and in the following states p is satisfied at least once.

Figure 2.9: p

4. Releases Operator (R or R): given current state Sj , p R q will be satisfied iff p = True
until and including the state where q becomes True.

Figure 2.10: p R q

if q never becomes true, p must be True forever.

Figure 2.11: p R q
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5. Until Operator (U or U ): given current state Sj , q U p will be satisfied iff q hold True
at least until p becomes True. Moreover, p must be True at least once.

Figure 2.12: φ U ψ

2.3 Reactive Systems: Definition, Specification and
Verification

Reactive system concept was first introduced in 1985 by David Harel y Amir Pnueli in “On
the Development of Reactive Systems" [12]. They are systems that maintains a permanent
interaction with its environment and consequently are more prone to error.

Figure 2.13: Reactive system

They can be found everywhere, for instance in industrial control systems (their principal
use), in interactive software systems (such as human-machine interfaces), in avionic systems
(used on airplanes, artificial satellites, and spacecraft), in robot controllers, in electronic
devices (such as mobile phones), and so on.

Figure 2.14: Reactive system examples
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2.3. Reactive Systems: Definition, Specification and Verification

Usually, critical systems are reactive systems and a failure or malfunction can have
serious consequences, such as loss of human lives (Therac-25 radiation therapy machine
kill 6 as a result of high radiation intensities exposure [13]), large economic investments
(Intel’s Pentium bug in floating point division unit [14] and Ariane 5 rocket explosion [15]
due to a conversion of 64-bit real to 16-bit integer). Therefore, correctly modeling the
behavior of reactive systems is crucial. For this, formal methods, in particular temporal logic
such as Computational Tree Logic (CTL) or Linear-time Temporal Logic (LTL), represent a
promising approach for obtaining confidence in the correctness of a reactive system.

Currently, there are different automatic methods for verifying a formal system in the
state of the art, being model-checking and synthesis the most important. On the one hand,
model checking tools takes a system model and a formal property as input and decides if
the model satisfies given property. [16].

Figure 2.15: Model Checking

An example of a model checker is NuSMV [17]. It was developed by ITC-IRST and
UniTN with the collaboration of CMU and UniGE and is the result of the reengineering,
reimplementation, and, to a limited extent, extension of the CMU SMV model checker [18]
which is based on Binary Decision Diagrams (BDDs).

On the other hand, synthesis tools takes only a formal specification and decides if exists
a model that satisfies given specification under all possible environmental inputs [19]. In
addition, when the answer to the synthesis problem is yes, the specification is realizable.
More intuitively, synthesis can be seen as a game between two players; the player who
controls the inputs of the system to be synthesized (environment player) and the player who
controls the outputs and tries to satisfy the specification for each environment behaviour
(system player).

Figure 2.16: Synthesis

The synthesis of reactive systems from formal specifications, first defined by Church
[20], is one of the major challenges of computer science. Every year since 2014 the SYNT-
COMP [21] competition is held to compare different synthesis tools. For instance, some of
those synthesis tools are:
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2. Background

Knorr is a synthesis tool for parity automata developed at the FMT group and it uses a
effective of binary decision diagrams combined with symbolic parity game algorithms.

AbsSynthe [22] is a synthesis algorithm for safety specifications described as circuits.
The algorithm is based on fixpoint computations, abstraction and refinement, it uses
binary decision diagrams as symbolic data structure.

Strix [23, 24] was developed by P. J. Meyer, S. Sickert and M. Luttenberger. It combines
a direct translation of temporal formulas into deterministic parity automata (DPA)
with an efficient multi-threaded explicit state solver for parity games.

Ltlsynt[25] was developed by M. Colange and T. Michaud. They reduce the synthesis
problem to a parity game, and solves the parity game using Zielonka’s recursive
algorithm.

16



CHAPTER 3
Safety Specifications

An important problem in reactive systems is the verification of safety properties which
assert that nothing “bad” happens. They are types of linear time properties, along with
liveness properties. Unlike liveness properties, if a safety property is violated there is
always a finite execution that shows the contradiction. In this Chapter, we will explain the
syntax and semantics for representing those safety properties, an introduction to safety
games and an example of reactive system that will be used as running example to introduce
new concepts along the memory.

3.1 Syntax

Our safety specifications are constructed over two different sets of variables X and Y . On
the one hand, the set of variables denoted as X and marked with e as a subscript are the
variables controlled by the environment (e.g. sensore or pe). On the other hand, the set of
variables controlled by the system is denoted as Y with no subscript (e.g. controllable or c).

We consider a fragment of LTL specifications of the form α ∧ ψ where α is an initial
formula and ψ is a safety formula.

Initial formula α is a boolean formula that captures the initial states of the reactive
system. It is constructed using variables along with the classical boolean connectives
(¬,∧,∨,→,↔). Note that we also consider boolean constants T (for truth) and F (for
falsehood) as atomic formulas. More precisely, the grammar for any boolean formula β is:

a ::= p | T | F
β ::= a |¬β | β ∧ β | β ∨ β | β → β | β ↔ β

In the always formulaψ, the formula ψ is called the safety formula. Safety formulas
are conjunctions of n ≥ 1 temporal formulas in X ∪ Y representing the safety properties.
Temporal formulas are constructed adding to the boolean formulas, the temporal operators
next (), bounded eventually[n,m] and bounded always[n,m] for 0 ≤ n ≤ m. Also,
we abbreviate byi the sequence of i consecutive operators.
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3. Safety Specifications

More precisely,the grammar for any temporal formula η is:

η ::= β |¬η | η | [n,m]η |[n,m]η | η ∨ η | η ∧ η | η → η | η ↔ η

3.2 Semantics

We interpret the semantic of a safety specification in traces on their set of (occurring)
variables V . A trace σ is a denumerable sequence of states σ0, σ1, σ2, . . . where each state
σi is a valuation from X ∪Y to {T, F}. We denote by Val(V) the set of all valuations on V .
For any i ≥ 0, σi denotes the trace σi, σi+1, . . .

Note that any trace σ = σ0, σ1, · · · , according to the semantics defined in subsection
2.2.2, corresponds to a structureM, being σi = ⟨M, si⟩ for all i ≥ 0.

Given a safety specification α∧ψ, its interpretation in a trace σ is defined as follows.

σ |= α ∧ψ iff σ0 |= α and σk |= ψ for all k ≥ 0

The meaning of σ |= ψ for any trace σ is inductively defined as follow.

σ |= p iff σ0(p) = T
σ |= ¬ψ iff σ ̸|= ψ
σ |= φ ∧ ψ iff σ |= φ ∧ σ |= ψ
σ |= φ ∨ ψ iff σ |= φ ∨ σ |= ψ
σ |= φ→ ψ iff σ ̸|= φ ∨ σ |= ψ
σ |= φ↔ ψ iff (σ |= φ ∧ σ |= ψ) ∨ (σ ̸|= φ ∧ σ ̸|= ψ)
σ |= iψ iff σi |= ψ
σ |= [n,m]ψ iff σj |= ψ for all j such that n ≤ j ≤ m
σ |=[n,m]ψ iff there exists j such that n ≤ j ≤ m such that σj |= ψ

Note that[n,m] can be expressed as a disjunction of formulas (e.g[1,3]φ ≡ 1φ ∨
2φ ∨3∨) and[n,m] as conjunction of formulas (e.g[0,2]φ ≡ φ ∧1φ ∧2φ) that
only use as temporal operator.

3.1 Example. Bounded eventually operator ([n,m] or F[n,m]), will be satisfied by the trace
σ = σ0, · · · , σj , · · ·σn, · · ·σm, · · · iff from state σn to σm p is satisfied at least once.

Figure 3.1:[n,m]p

3.2 Example. Bounded always operator ([n,m] or G[n,m]), will be satisfied by the trace
σ = σ0, · · · , σj , · · ·σn, · · ·σm, · · · iff every states form σn to σm p is satisfied.

Figure 3.2: [n,m]p
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3.3. Safety games

3.3 Safety games

LTL realizability and synthesis is usually represented by a game between two players, Eve
and Sally. Eve player, denoted by E, controls the environment and the variables of the set
X while Sally player, denoted by S, controls the system and the variables of the set Y .

3.1 Definition (move, play). A move consists on the following: the player who owns the
current position chooses a successor position. A play is an infinite sequence of moves starting
from some positions within a predetermined set of initial positions.

The outcome of a play of the game is determined as follows. Eve wins if some move
during the play reaches some bad positions for a predetermined subset of bad positions.
Otherwise, Sally wins. In other words, Sally wins a play if she avoids bad positions at all
times during the play.

3.2 Definition. Given a safety specification φ, φ is realizable if and only if exists a winning
strategy for Sally.

Traditional approaches based on automata games to LTL realizability and synthesis
assume that Sally plays first, such as LTL synthesis tool Lily [26], whereas some successful
LTL synthesis tools such as Unbeast [27] and Acacia+ [28] adopt an inverted turn game,
where Eve plays first. Our tableaux for a safety specification φ = α ∧ ψ analyze its
realizability on the basis of a play where Eve play first choosing a move on its variables X
and, then, the system choose its move on its variablesY according to the safety specification.

3.4 Running Example

We consider as running example a variant of a synthesis problem about a simple arbiter
presented in [29]. The arbiter receives requests from two clients, represented by two
environment variables X = {r1e, r2e}, and responds by assigning grants, represented by
two system variables Y = {g1, g2}. Moreover, each request should eventually be followed
by a grant in at most three second and both grants should never be assigned simultaneously.

Note that in this example there is no initial formula due to initially there are neither
requests nor assigned grants, furthermore, an additional requirement is added to hinder
the winning strategy. The safety specification is as follows.

Figure 3.3: Simple arbiter running example

ψ = ((r1e →[0,3]g1)∧(r2e →[0,3] g2) ∧¬(g1 ∧ g2) ∧ ((¬r1e ∧¬r2e) → ¬g2))
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CHAPTER 4
Terse Normal Form

Our tableau branches must represent a real play, so every formulas in nodes should deter-
mine the true strict-future possibilities of the game. Therefore, throughout this chapter
we will introduce a new normal form for safety specifications, Terse Normal Form, which
allows us to associate to any move the formula that any trace must satisfy in the (strict)
future to be coherent with the safety specification.

4.1 Definition

First of all, given a safety specification α∧ψ, we consider two types of basic (sub)formulas
that can be part of the safety formula ψ. Namely, all the formulas of the form ℓ, nη,
[n,m]η or[n,m]η are divided into two different classes of formulas:

1. From-now formulas refer to current state, that is, atomic formulas ℓ and bounded
eventualities/always[0,m]η,[0,m]η with a lower limit equal to 0.

2. From-next formulas refer to strict-future states, that is, next formulas iη and
bounded eventualities/always [n,m]η and [n,m]η with a lower limit greater or
equal than 1.

4.1 Definition (Strict-future and separated formulas). A safety formula is a strict-future
formula if and only if it is a conjunction of from-next formulas. A safety formula is a separated
formula if and only if it is the (possibly empty) conjunction of a set of Boolean literals, denoted
as L(π), and (at most) a strict-future formula, denoted as F(π).

4.2 Definition (TNF). A safety formula γ is in Terse Normal Form (TNF) if and only if it
is a disjunction (

∨n
i=1 πi) such that each πi is a separated formula with L(πi) ̸≡ F and for

every pair of moves πi and πj where 1 ≤ i ̸= j ≤ n there is at least one literal ℓ such that
ℓ ∈ L(πi) and ¬ℓ ∈ L(πj).

4.1 Example. Letφ be a specification, where φ is the safety formula.

φ ≡ ((pe ∧ c ∧c)︸ ︷︷ ︸
π1

∨ (¬pe ∧ (c ∨3s))︸ ︷︷ ︸
π2

)
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4. Terse Normal Form

The safety formula φ is in Terse Normal Form due to is a disjuction of separated formulas,
π1 and π2, and both separated formulas satisfy the required condition, that is, literals of both
separated formulas are consistent, L(π1) ≡ {pe, c} and L(π2) ≡ {¬pe}, and the variable pe
occurs as a positive literal in π1 and as a negative literal in π2.

Separated formulas represent moves (see Definition 3.1) in a particular play between
Eve and Sally.

4.2 Algorithm

First, any safety formula γ (for simplicity, suppose that γ is in NNF) can be converted into
a disjunctive normal form-like formula, DNF(γ), applying classical logical equivalences
on boolean connectives, as we have seen in Subsection 2.1.3, in addition to the following
equivalences on temporal formulas:

[n,n]β ≡ nβ [n,n]β ≡ nβ

[n,m]β ≡ nβ ∨ [n..m−1]β [n,m]β ≡ nβ ∧ [n..m−1]β

Then, we transform each pair of disjuncts in DNF(γ) with indexes 1 ≤ i ̸= j ≤ n such
that for all literal ℓ ∈ L(πi) it holds that ¬ℓ ̸∈ L(πj) as follows. Let δ = L(πi) ∩ L(πj),
δ1 = L(πi) \ δ and δ2 = L(πj) \ δ. Then, we apply

(δ ∧ δ1 ∧ η1) ∨ (δ ∧ δ2 ∧ η2) ≡ (δ ∧ δ1 ∧ δ2 ∧ (η1 ∨ η2))

∨ DNF(δ ∧ δ1 ∧¬δ2 ∧ η1) (4.1)
∨ DNF(δ ∧¬δ1 ∧ δ2 ∧ η2)

where F(π1) = η1 and F(πj) = η2.
This equivalence is repeatedly applied until every pair (πi, πj) satisfies the required

condition. Moreover, since we only apply logical equivalences to subformulas, by sub-
stitutivity, the resulting formula, denoted as TNF(γ), is logically equivalent to DNF(γ),
consequently, equivalence to γ.

4.1 Proposition. For any safety formula γ there is a logically equivalent formula, called
TNF(γ), that is in TNF.

Remark that the computed TNF from an initial DNF is not unique and the number of
its moves could be exponential in the number of disjoints of the DNF, i.e. O(2|DNF|).

4.3 Examples

4.2 Example. Letψ be a safety specification, where X = {pe}, Y = {s} and DNF(ψ) is
the following formula:

DNF(ψ) ≡ (pe ∧ s ∧s)︸ ︷︷ ︸
π1

∨ (¬s ∧2s)︸ ︷︷ ︸
π2

∨ (¬pe ∧ ¬s ∧3s)︸ ︷︷ ︸
π3
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The process of building a TNF(ψ) could be as follows. First, we choose a pair of movements
that do not fulfil the required conditions, π2 and π3.

( ¬s︸︷︷︸
δ

∧2s︸︷︷︸
η2

) ∨ (¬pe︸︷︷︸
δ3

∧ ¬s︸︷︷︸
δ

∧3s︸︷︷︸
η3

)

Then, after applying the equivalence 4.1 to π2 and π3

(¬s ∧2s) ∨ (¬pe ∧ ¬s ∧3s) ≡ ¬s ∧ ¬pe ∧ (2s ∨3s)

∨ DNF(¬s ∧ pe ∧2s)

we obtain the following formula which is already in TNF

TNF(ψ) ≡ (pe ∧ s ∧s) ∨ (¬s ∧ ¬pe ∧ (2s ∨3s)) ∨ (¬s ∧ pe ∧2s)

4.3 Example. Given the safety specificationψ ≡ ((pe ∧ ((b ∧ (a1 ∨ a2)) ∨ (¬a1 ∧
2c))) ∨ (¬pe ∧ ¬b)), let’s see another TNF construction. First, we obtain the equivalent
DNF(ψ),

DNF(ψ) ≡ (pe ∧ a1 ∧ b) ∨ (pe ∧ a2 ∧ b) ∨ (¬a1 ∧ 2c) ∨ (¬pe ∧ ¬b)

We choose a pair of moves, (pe ∧ a1 ∧ b) and (pe ∧ a2 ∧ b), that do not satisfy the TNF
conditions and then we apply the equivalence,

(pe ∧ a1 ∧ b) ∨ (pe ∧ a2 ∧ b) ≡ (pe ∧ a1 ∧ a2 ∧ b) ∨
(pe ∧ a1 ∧ ¬a2 ∧ b) ∨
(pe ∧ ¬a1 ∧ a2 ∧ b)

obtaining the following formula, which also does not fulfil the conditions,

(pe ∧ a1 ∧ a2 ∧ b) ∨ (pe ∧ a1 ∧ ¬a2 ∧ b) ∨
(pe ∧ ¬a1 ∧ a2 ∧ b) ∨ (¬a1 ∧ 2c) ∨ (¬pe ∧ ¬b)

We apply the equivalence to the underlined formulas,

(pe ∧ ¬a1 ∧ a2 ∧ b) ∨ (¬a1 ∧ 2c) ≡ (pe ∧ ¬a1 ∧ a2 ∧ (b ∨ 2c)) ∨
DNF(¬a1 ∧ ¬(pe ∧ a2) ∧ 2c)

where,

DNF(¬a1 ∧ ¬(pe ∧ a2) ∧ 2c) ≡ (¬a1 ∧ ¬a2 ∧ 2c) ∨ (¬a1 ∧ ¬pe ∧ 2c)

We obtain the following formula, which also does not fulfil the conditions,

(pe ∧ a1 ∧ a2 ∧ b) ∨ (pe ∧ a1 ∧ ¬a2 ∧ b) ∨
(pe ∧ ¬a1 ∧ a2 ∧ (b ∨ 2c)) ∨ (¬a1 ∧ ¬a2 ∧ 2c) ∨

(¬a1 ∧ ¬pe ∧ 2c) ∨ (¬pe ∧ ¬b)
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We apply the equivalence,

(¬a1 ∧ ¬pe ∧ 2c) ∨ (¬pe ∧ ¬b) ≡ (¬a1 ∧ ¬pe ∧ (2c ∨ ¬b)) ∨
(a1 ∧ ¬pe ∧ b)

We obtain the following formula, which also does not fulfil the conditions,

(pe ∧ a1 ∧ a2 ∧ b) ∨ (pe ∧ a1 ∧ ¬a2 ∧ b) ∨ (pe ∧ ¬a1 ∧ a2 ∧ (b ∨ 2c)) ∨
(¬a1 ∧ ¬a2 ∧ 2c) ∨ (¬a1 ∧ ¬pe ∧ (2c ∨ ¬b)) ∨ (a1 ∧ ¬pe ∧ b))

again we apply the equivalence,

(¬a1 ∧ ¬a2 ∧ 2c) ∨ ≡ (¬pe ∧¬a1 ∧¬a2 ∧ (2c ∨ ¬b)) ∨
(¬a1 ∧ ¬pe ∧ (2c ∨ ¬b)) (pe ∧¬a1 ∧¬a2 ∧ 2c) ∨

(¬pe ∧¬a1 ∧ a2 ∧ (2c ∨ ¬b))

and, finally, we obtain the equivalent TNF(ψ):

TNF(ψ) ≡ (pe ∧ a1 ∧ a2 ∧ b) ∨
(pe ∧ a1 ∧ ¬a2 ∧ b) ∨
(pe ∧ ¬a1 ∧ a2 ∧ (b ∨ 2c)) ∨
(¬pe ∧¬a1 ∧¬a2 ∧ (2c ∨ ¬b)) ∨
(pe ∧¬a1 ∧¬a2 ∧ 2c) ∨
(¬pe ∧¬a1 ∧ a2 ∧ (2c ∨ ¬b)) ∨
(a1 ∧ ¬pe ∧ b))

4.4 Example. As mentioned above, TNF of a safety specification may not be unique. Given
the safety specification ψ ≡ (pe ∧ ¬c1 ∧ c2 ∧s) ∨ (¬c1 ∧ b), we calculate the TNF
by applying the equivalence:

(pe ∧ ¬c1 ∧ c2 ∧b) ∨ (¬c1 ∧ s) ≡ (pe ∧ ¬c1 ∧ c2 ∧ (b ∨ s)) ∨
DNF(¬c1 ∧ ¬(pe ∧ c2) ∧ s)

DNF(¬c1 ∧ ¬(pe ∧ c2) ∧ s) not only is equivalent to ((¬c1 ∧ ¬c2 ∧ s) ∨ (¬c1 ∧
¬pe ∧ s)) but also to ((¬c1 ∧ ¬c2 ∧ ¬pe ∧ s) ∨ (¬c1 ∧ ¬c2 ∧ pe ∧ s) ∨ (¬c1 ∧
c2 ∧ ¬pe ∧ s)). Therefore, there are at least two TNF(ψ):

TNF1(ψ) ≡ ((pe ∧ ¬c1 ∧ c2 ∧ (b ∨ s)) ∨ ((¬c1 ∧ ¬c2 ∧ s) ∨
(¬c1 ∧ ¬pe ∧ s)))

TNF2(ψ) ≡ (pe ∧ ¬c1 ∧ c2 ∧ (b ∨ s)) ∨ ((¬c1 ∧ ¬c2 ∧ ¬pe ∧ s) ∨
(¬c1 ∧ ¬c2 ∧ pe ∧ s) ∨ (¬c1 ∧ c2 ∧ ¬pe ∧ s)
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4.5 Example. Letψ be the safety specification of Running Example 3.3, whereX = {pe, re},
Y = {g1, g2} and DNF(ψ) formula be as follows:

DNF (ψ) ≡ (¬g2 ∧ r1e ∧ g1 ∧ ¬r2e) ∨
(¬g2 ∧ r1e ∧ ¬r2e ∧[0,2](g1)) ∨
([0,2](g1) ∧ r2e ∧ ¬g1 ∧[0,2](g2)) ∨
(¬g2 ∧ r1e ∧ g1 ∧[0,2](g2)) ∨
(g2 ∧ r1e ∧ ¬g1 ∧[0,2](g1)) ∨
(¬g2 ∧ ¬r1e ∧ ¬g2 ∧ ¬r2e) ∨
(¬g2 ∧ ¬r1e ∧ r2e ∧[0,2](g2)) ∨
(g2 ∧ ¬r1e ∧ ¬g1 ∧ r2e) ∨
(¬g2 ∧ ¬r1e ∧ ¬g1 ∧ ¬r2e)

After applying the equivalence 4.1 until all pairs satisfy the conditions, we obtain the following
TNF.

TNF(ψ) ≡ (r1e ∧ ¬r2e ∧ ¬g1 ∧ ¬g2 ∧[0,2]g1) ∨
(r1e ∧ r2e ∧ ¬g1 ∧ g2 ∧ (([0,2]g1 ∧[0,2]g2) ∨ ([0,2]g1))) ∨
(r1e ∧ r2e ∧ ¬g1 ∧ ¬g2 ∧ ([0,2]g1 ∧[0,2]g2)) ∨
(r1e ∧ ¬r2e ∧ ¬g1 ∧ g2 ∧[0,2]g1) ∨
(r1e ∧ ¬r2e ∧ g1 ∧ ¬g2 ∧ ([0,2]g1 ∨[0,2]g2 ∨True)) ∨
(r1e ∧ r2e ∧ g1 ∧ ¬g2 ∧[0,2]g2) ∨
(¬r1e ∧ ¬r2e ∧ ¬g1 ∧ ¬g2 ∧ ¬g2) ∨
(¬r1e ∧ ¬r2e ∧ g1 ∧ ¬g2 ∧ ¬g2) ∨
(¬r1e ∧ ¬r2e ∧ ¬g1 ∧ g2 ∧ ¬g2) ∨
(¬r1e ∧ r2e ∧ ¬g1 ∧ ¬g2 ∧ (([0,2]g1 ∧[0,2]g2) ∨ ([0,2]g1))) ∨
(¬r1e ∧ r2e ∧ g1 ∧ ¬g2 ∧[0,2]g2)) ∨
(¬r1e ∧ r2e ∧ ¬g1 ∧ g2 ∧ ([0,2]g1 ∨[0,2]g2 ∨True))

Note that when an implicant does not contain futures, the implicit future that it represents
isTrue. Moreover, the subsumption of strict-future formulas as ([0,2]g1∨[0,2]g2∨
True) ≡ True will be explained in Section 5.1 with the aim of minimizing strict-future
formulas.
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CHAPTER 5
Realizability Tableaux

Our realizability tableaux (from now only tableaux) are AND-OR trees of nodes, where
each node is labeled by a set of formulas. A node is said to be the parent of its successor
nodes, which may have 0, 1 or more successors. In addition, successors can be of two
types, AND-successors or OR-successors. As we can see in Figure 5.1, the main visual
difference representing the type of successors is that AND-successors are represented with
a semicircle embracing all the edges.

AND-node

AND-successor0 · · · AND-successorn

(a) AND-successors

OR-node

OR-successor0 · · · OR-successorn

(b) OR-successor

Figure 5.1: Types of successors

A tableau is constructed from an input safety specification in Terse Normal Form, which
is the root of the tree, by applying a set of rules that determine its development. When no
rule can be applied to a node, it is called leaf. There are two types of leaves:

1. Failure leaves, labelled by inconsistent sets of formulas1, indicates that the branch
from the root to the leaf is failed.

2. Successful leaves, labelled by sets of formulas, are subsumed2 by some previous node
in the branch from the root to the leaf.

5.1 Definition (successful/failed node). A node success (resp. failure) depends on the types of
siblings it generates. An AND-node is successful (resp. failed) whether each successor returns an
open branch (resp. if one successor returns a closed branch), whereas for a successful OR-node
is enough if one of its siblings returns an open branch (resp. every successor returns a closed
branch).

1Subsumption concept is explained below in Section 5.1
2Inconsistency concept is explained below in Section 5.1
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5. Realizability Tableaux

5.2 Definition. A tableau is completed (or finished) when no further rule can be applied to it.

The following definition formalizes our notion of tableau in terms of many concepts
that will be precised below.

5.3 Definition. A tableau for a safety specification φ = α ∧ ψ is a labelled tree Tab(φ) =
(N, τ,R), where:

• N is a set of nodes

• τ is a mapping of the nodes with the set of formulas

• R ⊆ N ×N represents the transition from one node to other,

and such that the following conditions hold:

• The root is labelled by the set {α,ψ}.

• For any pair of nodes (n, n′) ∈ R, τ(n′) is the set of formulas obtained as the result of
the application of one of the tableau rules to τ(n). Given the applied rule is ρ, we term
n′ a ρ-successor of n

• For every success or failure leaf n there is no n′ ∈ N such that (n, n′) ∈ R where:

– A failure leaf is a node such that n ∈ N such that τ(n) is inconsistent.

– A success leaf is a node n ∈ N such that ψ ∈ τ(n) and there exists k ≥ 0,
n0, . . . , nk ∈ N such that (ni, ni+1) ∈ R for all 0 ≤ i < k, (nk, n) ∈ R and
τ(n0)⋖ τ(n)3.

5.1 Subsumptions and Inconsistencies

Our tableaux nodes are labeled using a set of formulas that are subsumption- and inconsis-
tency-free. First of all, we will introduce the subsumption concept in boolean and temporal
formulas.

5.4 Definition (Subsumption in boolean formulas). Given two boolean formulas φ and ψ,
φ subsumes ψ (i.e φ ⊑ ψ) iff all models of ψ satisfies φ. Subsumption is related to logical
implication or logical consequence in the sense that, if φ ⊑ ψ, then |= φ→ ψ or equivalently
φ |= ψ.

In temporal formulas, subsumption concept is slightly different due to the fact that a serie
of requirements must be fulfilled in temporal intervals depending on the temporal operator.
Remark that boolean formulas can be represented as bounded always/eventually with an
interval of [0,0] (e.g. φ ≡ [0,0]φ ≡[0,0]φ), as well as, nexti formulas can be represented
as bounded always/eventually with an interval of [i,i] (e.g. iφ ≡ [i,i]φ ≡ [i,i]φ).
Therefore, subsumptions in temporal formulas (from now only subsumptions), that we will
see in Definition 5.5, includes subsumptions in boolean formulas.

3This concept is formally explained in Definition 5.6.
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5.5 Definition (Subsumption rules). Given two boolean formulas, φ and ψ, the subsumption
rules that apply in our tableau method are the following:

For all n,m, n′,m′ where 0 ≤ n ≤ n′ ≤ m′ ≤ m (note that [n′,m′] ⊆ [n,m]) and
φ ⊑ ψ :

- [n′,m′]φ ⊑[n,m]ψ,

- [n,n]φ ⊑ [n,n]ψ,

- [n,m]φ ⊑ [n′,m′]ψ,

- [n,m]φ ⊑[n′,m′]ψ,

5.1 Example. Given two boolean formulas, a and (a ∨ b), and two intervals [2,3] and [0,5]
where a ⊑ (a ∨ b) and [2,3] ⊆ [0,5]:

- [2,3]a ⊑[0,5](a ∨ b),

- [0,5]a ⊑ [2,3](a ∨ b),

- [0,5]a ⊑[2,3](a ∨ b),

We define the following subsumption-based order relation between sets of formulas for
detecting successful leaves.

5.6 Definition (Order relation). For two given set of formulas Φ and Φ′, we say that Φ⋖Φ′

iff for every formula φ ∈ Φ there exists some φ′ ∈ Φ′ such that φ ⊑ φ′.

5.2 Example. Given the running example TNF(ψ) (see Example 4.5), we apply the following
subsumptions to strict-future formulas sets:

{[0,2]g1} ⋖ {[0,2]g1,[0,2]g2}
{True} ⋖ {[0,2]g1}
{True} ⋖ {[0,2]g2}

Thus, the TNF in Example 4.5 becomes the following formula after applying subsumptions.

TNF(ψ) ≡ (r1e ∧ ¬r2e ∧ ¬g1 ∧ ¬g2 ∧[0,2]g1) ∨
(r1e ∧ r2e ∧ ¬g1 ∧ g2 ∧[0,2]g1) ∨
(r1e ∧ r2e ∧ ¬g1 ∧ ¬g2 ∧ ([0,2]g1 ∧[0,2]g2)) ∨
(r1e ∧ ¬r2e ∧ ¬g1 ∧ g2 ∧[0,2]g1) ∨
(r1e ∧ ¬r2e ∧ g1 ∧ ¬g2 ∧True) ∨
(r1e ∧ r2e ∧ g1 ∧ ¬g2 ∧[0,2]g2) ∨
(¬r1e ∧ ¬r2e ∧ ¬g1 ∧ ¬g2 ∧ ¬g2) ∨
(¬r1e ∧ ¬r2e ∧ g1 ∧ ¬g2 ∧ ¬g2) ∨
(¬r1e ∧ ¬r2e ∧ ¬g1 ∧ g2 ∧ ¬g2) ∨
(¬r1e ∧ r2e ∧ ¬g1 ∧ ¬g2 ∧[0,2]g1) ∨
(¬r1e ∧ r2e ∧ g1 ∧ ¬g2 ∧[0,2]g2)) ∨
(¬r1e ∧ r2e ∧ ¬g1 ∧ g2 ∧True)
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Like subsumptions, inconsistencies of temporal formulas (from now only inconsisten-
cies) are an extension of inconsistencies of boolean formulas.

5.7 Definition (Inconsistencies of boolean formula). Two boolean formulas φ and ψ are
inconsistent iff there is no model that satisfies φ ∧ ψ which is denoted as ̸|= φ ∧ ψ.

5.8 Definition (Inconsistencies). Let the conjunction of φ and ψ be inconsistent, being φ
and ψ boolean formulas. The inconsistent rules that apply our tableau method to temporal
formulas are the following:

• [n,m]φ and[n,m]ψ are inconsistent.

• [n′,m′]φ and [n,m]ψ are inconsistent whenever there exists k such that k ∈
[n′,m′] and k ∈ [n,m].

5.3 Example. Given two inconsistent boolean formulas, a and (¬a ∧ b),

- [1, 3]a and[1, 3](¬a ∧ b) are inconsistent,

- [6, 7]a and[4, 8](¬a ∧ b) are inconsistent,

- [2, 6]a and[4, 8](¬a ∧ b) are inconsistent,

- [7, 10]a and[4, 8](¬a ∧ b) are inconsistent,

Inconsistencies are used to close tableau branches. No rule is applied to a node labelled
by an inconsistent set, and this node is called a failure leaf.

5.9 Definition. A node labelled by a set of formulas is inconsistent iff at least two formulas
of the set are inconsistent.

5.2 Minimal covering

Given a current node {Φ,ψ}, we define the concept of minimal covering as a possible
strategy of the system against environment. In addition, the set of all minimal coverings
represents all system possible strategies. Each move in an strategy contains all the strict-
future possibilities for this move. Formally,

5.10 Definition (X -covering). Given a formula ψ ≡
∨n
i=1 πi in TNF, ψ is a X -covering if

and only if

Val
n⋃
i=1

Valπi(X ) = Val(X ).

5.11 Definition (Minimal X -covering). Given a formula ψ ≡
∨n
i=1 πi in TNF, ψ is a

minimal X -covering iff it holds the following conditions:

• ψ is a X -covering

• for every 1 ≤ j ≤ n,
∨n
i=1,i ̸=j πi is not an X -covering
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5.4 Example. Let TNF(φ) = (pe ∧ s ∧ η1) ∨ (¬pe ∧ s ∧ η2) ∨ (¬s ∧ η3) where
η1, η2, η3 are strict-future formulas and X = {pe}. It contains five X -coverings:

• (pe ∧ s ∧ η1) ∨ (¬pe ∧ s ∧ η2) ∨ (¬s ∧ η3)

• (pe ∧ s ∧ η1) ∨ (¬pe ∧ s ∧ η2)

• (¬s ∧ η3)

• (pe ∧ s ∧ η1) ∨ (¬s ∧ η3)

• (¬pe ∧ s ∧ η2) ∨ (¬s ∧ η3)

two of which are minimal X -coverings:

• (pe ∧ s ∧ η1) ∨ (¬pe ∧ s ∧ η2)

• (¬s ∧ η3)

5.5 Example. Given Example 4.2, TNF(ψ) ≡ (pe ∧ s∧s)∨ (¬s∧¬pe ∧ (2s∨3s))∨
(¬s ∧ pe ∧2s), it contains two minimal X -covering:

• (pe ∧ s ∧s) ∨ (¬s ∧ ¬pe ∧ (2s ∨3s))

• (¬s ∧ pe ∧2s) ∨ (¬s ∧ ¬pe ∧ (2s ∨3s))

5.6 Example. Referring to TNF of the Running Example 4.5, it generates 81 minimal X -
covering due to each four environment valuations has three possible moves. Some of the
minimal X -covering are 4:

C1 ≡ {(r1e ∧ ¬r2e ∧ g1 ∧ ¬g2 ∧True),
(¬r1e ∧ r2e ∧ ¬g1 ∧ g2 ∧True),
(r1e ∧ r2e ∧ ¬g1 ∧ g2 ∧[0,2]g1),

(¬r1e ∧ ¬r2e ∧ ¬g1 ∧ ¬g2 ∧ ¬g2)}

C2 ≡ {((r1e ∧ ¬r2e ∧ ¬g1 ∧ ¬g2 ∧[0,2]g1),

(¬r1e ∧ r2e ∧ ¬g1 ∧ g2 ∧True),
(r1e ∧ r2e ∧ ¬g1 ∧ g2 ∧[0,2]g1),

(¬r1e ∧ ¬r2e ∧ ¬g1 ∧ ¬g2 ∧ ¬g2)}

C3 ≡ {(r1e ∧ ¬r2e ∧ g1 ∧ ¬g2 ∧True),
(¬r1e ∧ r2e ∧ g1 ∧ ¬g2 ∧[0,2]g2)),

(r1e ∧ r2e ∧ ¬g1 ∧ g2 ∧[0,2]g1),

(¬r1e ∧ ¬r2e ∧ ¬g1 ∧ ¬g2 ∧ ¬g2)}
4Whenever convenient, we identify the minimal coverings with set of moves.
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C4 ≡ {(r1e ∧ ¬r2e ∧ g1 ∧ ¬g2 ∧True),
(¬r1e ∧ r2e ∧ ¬g1 ∧ g2 ∧True),
(r1e ∧ r2e ∧ ¬g1 ∧ ¬g2 ∧ ([0,2]g1 ∧[0,2]g2)),

(¬r1e ∧ ¬r2e ∧ ¬g1 ∧ ¬g2 ∧ ¬g2)}

The choice of a good minimal X -covering for the construction of the tableau is very
important, therefore, we introduce the concepts of weaker moves and weaker minimal
covering.

5.12 Definition (weaker moves). Let π1, π2 be two moves such that both contain the same
environment literals, (L(π1) ∩X ) = (L(π2) ∩ X ), and η1 and η2 be their respective strict-
future formulas. If η2 is a logical consequence of η1, η1 → η2, we say that π2 is weaker
than π1.

The relation weaker is a partial order and can be generalized to minimal coverings in
the following sense.

5.13 Definition (weaker minimal coverings). Let Ĉ = (π̂1 ∨ · · · ∨ π̂m) and C = (π1 ∨
· · · ∨ πn) be two minimal coverings. We say that Ĉ is weaker than C , denoted as Ĉ ≤ C , if
for all 1 ≤ i ≤ m exists 1 ≤ j ≤ n such that π̂i is weaker than πj .

Suppose you have a safety specification α ∧ ψ whose minimalX -covering are exactly
C1 and C2 such that C2 is weaker than C1, C2 ≤ C1. Our tableau has to choose one of
the minimal X -covering to start with and the best action is to start with C2 due to the
fact that if the tableau is closed for C2, then, we ensure that the tableau C1 is also closed.
Consequently, we do not need to develop C1.

5.7 Example. Let X = {pe} and Y = {a, b, c}. Let

C1 = (pe ∧¬a ∧¬c) ∨ (¬pe ∧¬a ∧¬c ∧ 2a)

C2 = (pe ∧¬a ∧¬c) ∨ (¬pe ∧ c ∧ a ∧ (¬c ∨ 2a))

For the evaluation of pe to True, the two minimal covering have the same future, True,
and for the evaluation of pe to False, (¬c ∨ 2a) is logical consequence of2a, therefore,
C2 ≤ C1 and our tableau will start with C2. In case of returning a closed tableau for C2 as a
result of its unrealizability, C1 will not be realizable too.

We formalize these ideas in the next propositions.

5.1 Proposition. Let Ĉ = {π̂1, · · · π̂m} and C = {π1, · · ·πn} be two minimal coverings.
Let Ĉ ≤ C . If C is realizable, then Ĉ is realizable.

Proof. Suppose C is realizable, that means, for all 1 ≤ j ≤ n, πj is realizable and, con-
sequently, F(πj) is realizable. Since Ĉ ≤ C , by Definitions (5.12) and (5.13), for all
1 ≤ i ≤ m, exists 1 ≤ j ≤ n such that F(π̂i) is a logical consequence of F(πj). Hence,
for all 1 ≤ i ≤ m, π̂i is realizable and Ĉ is realizable.
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5.2 Proposition. Let α ∧ ψ be a safety specification. Let Ĉ1, · · · , Ĉm be all the weakest
minimal coverings included in TNF(α ∧ ψ). The specification α ∧ ψ is realizable iff there
exists 1 ≤ i ≤ m such that (Ĉi ∧ ψ) is realizable.

Proof. (Backward direction) If there exists a weakest minimal covering such that (Ĉi ∧
ψ) is realizable, in particular exists a minimal covering.

Proof. (Forward direction) Suppose that α ∧ ψ is realizable. Hence, there exists C =
{π1, · · ·πn} a minimal covering included in TNF(α ∧ ψ), such that (C ∧ ψ) is
realizable. If C is a weakest minimal covering we are done. Otherwise, there exists
1 ≤ i ≤ m such that Ĉi < C . Consequently, by Proposition 5.2, Ĉi is realizable and
(Ĉi ∧ ψ) is realizable

Once a minimal covering has been chosen, we are interested in starting to build the
branch with the move that contains the strongest strict-futures formulas.

5.14 Definition (stronger move). Let π1, π2 be two moves of a minimal covering C such
that η1 and η2 are their respective strict-future formulas. If η2 is a logical consequence of
η1, η1 → η2, we say that π1 has stronger strict future formulas than π2, consequently, π1 is
stronger than π2.

5.8 Example. Given the following minimal covering:

C = (pe ∧¬a ∧¬c ∧ 2a)︸ ︷︷ ︸
π1

∨ (¬pe ∧ c ∧ a ∧ (¬c ∨ 2a))︸ ︷︷ ︸
π2

Our tableau will develop first the branch with the move π1 due to the fact that F(π1) is
stronger than F(π2), (i.e. 2a → (¬c ∨ 2a)). Then, if π1 returns a closed tableau
because its not realizable, all the minimal covering C will be not realizable without the need of
developing π2. On the other hand, if π1 returns an open tableau, realizability of C will depend
on π2.
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5.3 SAT-Based TNF Computation

Any tableau for a safety specification, α ∧ ψ, has as its first objective to find a set of
minimal coverings from the TNF(α ∧ ψ).

In Section 4.2, we proposed a theoretical method to achieve the full TNF, nevertheless,
in this section we will explain how to compute it in an efficient way in order to obtain the
weakest minimal coverings in a more direct way.

Given a safety specification, α ∧ ψ, the first step is to interpret each strict-future
formulas as boolean literals in order to calculate a short DNF for (α ∧ ψ), i.e., a DNF
logically equivalent to (α ∧ ψ). This DNF is the representation of all possible moves at
some state of the game.

There are automatic tools that find DNFs for propositional formulas reasonably well,
but this task is not easy: the problem of deciding whether a propositional formula has a
DNF of size is EXPTIME complete [30]. We are using a recent tool called BICA [8], which
is able to compute the minimum (size) prime implicants (see Section 2.4) equivalent to a
propositional formula in an arbitrary form.

Once we have a DNF for (α ∧ ψ), the next step consists in associating with each move
all the possibilities for the (strict) future which are coherent with α ∧ ψ. For that purpose
we construct the TNF(α ∧ ψ). After that, we are in a position to choose a weakest minimal
covering to start with.

5.9 Example. Let be the safety specification of Example 4.3 with the following equivalent
TNF:

TNF(ψ) ≡ (pe ∧ a1 ∧ a2 ∧ b) ∨
(pe ∧ a1 ∧ ¬a2 ∧ b) ∨
(pe ∧ ¬a1 ∧ a2 ∧ (b ∨ 2c)) ∨
(¬pe ∧¬a1 ∧¬a2 ∧ (2c ∨ ¬b)) ∨
(pe ∧¬a1 ∧¬a2 ∧ 2c) ∨
(¬pe ∧¬a1 ∧ a2 ∧ (2c ∨ ¬b)) ∨
(a1 ∧ ¬pe ∧ b))

Now we have to choose a minimal covering. According to Proposition 5.2, any tableau that
decides the realizability of ψ should take a weakest one. In this case,

{(pe ∧¬a1 ∧ a2 ∧ (b ∨ 2c)), (¬pe ∧¬a1 ∧¬a2 ∧ (2c ∨ ¬b))}

Consequently, moves (pe ∧ a1 ∧ a2 ∧ b), (pe ∧¬a1 ∧¬a2 ∧ 2c), (¬pe ∧¬a1 ∧ a2 ∧
(2c ∨ ¬b)), (pe ∧ a1 ∧¬a2 ∧ b), (¬pe ∧ a1 ∧ ¬b) are irrelevant for the tableau.

Previous example clearly shows that some information of TNF is redundant. Hence, it
suggests that a clever process could be find to construct a TNF with only weakest minimal
coverings.

Before presenting the improvement algorithm, it is necessary to formalize the definition
of join operator, compatible sets and the notion of extending a move with environment
literals.
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5.15 Definition (join operator and compatible sets). Let Π = {π1, · · · , πn} a set of moves.
The set Π is compatible if for all 1 ≤ i ̸= j ≤ n and for all literal ℓ ∈ L(πi), it holds that
¬ℓ ̸∈ L(πj). The join of moves in a compatible set Π, denoted as join(Π), is a new move with
L(join(Π)) = L(π1) ∪ · · · ∪ L(πn) and F(join(Π)) = F(π1) ∨ F(π2) · · · ∨ F(πn).

5.3 Proposition. Let Π = {π1, · · · , πn} a compatible set of moves. The following holds:

1. The move join(Π) is weaker than any move of Π.

2.
n∨
i=1

πi is a logical consequence of join(Π).

Proof. Item 1. holds by Definition 5.13 and the fact that the disjunction F(π1) ∨ F(π2) ∨
· · · ∨ F(πn) is a logical consequence of each strict-future formula of πi for 1 ≤ i ≤ n.

Proof. Item 2. is based on the process explained in Proposition 4.1. There, Equation (4.1)
can be seen in terms of the join operator.

(δ ∧ δ1 ∧ η1) ∨ (δ ∧ δ2 ∧ η2) ≡ join((δ ∧ δ1 ∧ η1), (δ ∧ δ2 ∧ η2))

∨ DNF(δ ∧ δ1 ∧¬δ2 ∧ η1)

∨ DNF(δ ∧¬δ1 ∧ δ2 ∧ η2)

Here, the formula (δ ∧ δ1 ∧ η1) ∨ (δ ∧ δ2 ∧ η2) clearly is a logical consequence of
join((δ ∧ δ1 ∧ η1), (δ ∧ δ2 ∧ η2)) but not the other way round. Therefore, Π is also a
logical consequence of join(Π).

5.16 Definition (extension of moves with X -literals). Let ℓe be a literal of X and π be a
move. The extension of π with ℓe, ext(π, ℓe), is a new move with F(ext(π, ℓe)) = F(π) and
L(ext(π, ℓe)) = L(π) ∪ {ℓe}.

Note that when¬ℓe ∈ π, then ext(π, ℓe) = False. We can extend the previous definition
in to ways.

5.17 Definition (extension of moves with sets of X ). Let S be a set of X and let π be a
move. The extension of π with S , set_ext(π,S) is the successive extensions of π with the
variables of S and the negation of variables in X \ S . For convenience, we interpret the empty
set of moves as T

When M is a set of moves M = {π1, · · · , πn} and S is a set of X , we define the
extension ofM with S as the set {set_ext(π1,S), · · · , set_ext(πn,S)}.

5.10 Example. Let X = {pe, qe, re} and Y = {a}, when S = {pe, qe} andM = {(pe ∧
a ∧ η1), (re ∧¬a ∧ η2), (a ∧ η4)},

• set_ext(M,S) = {(pe ∧ qe ∧¬re ∧ a ∧ η1), (pe ∧ qe ∧¬re ∧ a ∧ η4)}

• set_ext(M, ∅) = {(¬pe ∧¬qe ∧¬re ∧ a ∧ η4)}

• set_ext(∅,S) = {(pe ∧ qe ∧¬re)}
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Algorithm 1: TNF_Construction(DNF(γ)) returns T
1 % The formula γ is over variables X ∪ Y
2 M := {π : π is a move in DNF(γ)};
3 T := ∅;
4 for any set S ∈ 2X∩var(M) do
5 Calculate the largest compatible sets
6 ΠS

1 , · · ·ΠS
n in ext(M,S);

7 J := {join(ΠS
1 ), · · · , join(ΠS

n)};
8 for 1 ≤ i ̸= j ≤ n do
9 if join(ΠS

i ) is weaker than join(Π
S
j ) then

10 J := J \ {join(ΠS
j )}

11 end
12 end
13 T := T ∪ J ;
14 end
15 return T ;

Algorithm 1 shows the process of building a TNF 5, T , whose minimal coverings are
the weakest ones. The size of T is O(2|X | × |DNF(γ)|).

5.11 Example. We will start with Example 4.2 , where X = {pe}, Y = {s} and DNF(ψ)
≡ (pe ∧ s ∧ s) ∨ (¬s ∧ 2s) ∨ (¬pe ∧ ¬s ∧ 3s). The TNF construction is based on
Algorithm 1 as follows:

In the first iteration, it calculates the biggest compatible sets with {pe}, set_ext(DNF(ψ), {pe}):

Π
{pe}
1 = join(Π

{pe}
1 ) = {(pe ∧ s ∧ s)}

Π
{pe}
2 = join(Π

{pe}
2 ) = {(pe ∧ ¬s ∧2s)}

consequently, the TNF, T , increases with the joins of Π{pe}
1 and Π{pe}

2

T = {(pe ∧ s ∧ s), (pe ∧ ¬s ∧2s)}

In the second iteration, ext(DNF(ψ), ∅) and its corresponding join of two moves is calculated,

Π∅
1 = {(¬pe ∧ ¬s ∧3s), (¬pe ∧ ¬s ∧2s)}

join(Π∅
1) = {(¬pe ∧ ¬s ∧ (3s ∨ 2s)}

increasing T with the join(Π∅
1) and returning

T = {(pe ∧ s ∧ s), (pe ∧ ¬s ∧2s), (¬pe ∧ ¬s ∧ (3s ∨ 2s)}

5.12 Example. Given the DNF of the safety specification of Example 4.3 where X = {pe}:

DNF(ψ) ≡ (pe ∧ a1 ∧ b) ∨ (pe ∧ a2 ∧ b) ∨ (¬a1 ∧ 2c) ∨ (¬pe ∧ ¬b)
5Algorithm is proof and correctness beyond the scope of this Master Thesis
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The execution of Algorithm 1 calculates

Π
{pe}
1 = {(pe ∧ a1 ∧ b), (pe ∧ a2 ∧ b)}

join(Π
{pe}
1 ) = {(pe ∧ a1 ∧ a2 ∧ b)}

Π
{pe}
2 = {(pe ∧ a2 ∧ b), (pe ∧¬a1 ∧ 2c)}

join(Π
{pe}
2 ) = {(pe ∧ a2 ∧¬a1 ∧ (b ∨ 2c))}

Π∅
1 = {(¬pe ∧¬a1 ∧ 2c), (¬pe ∧ ¬b)}

join(Π∅
1) = {(¬pe ∧¬a1 ∧ (2c ∨ ¬b))}

For pe, the move join(Π{pe}
2 ) is weaker than join(Π{pe}

1 ). Hence,

T = {(pe ∧ a2 ∧¬a1 ∧ (b ∨ 2c), (¬pe ∧¬a1 ∧ (2c ∨ ¬b))}

Note that T contains a single (weakest) minimal covering.

5.13 Example. Let X = {pe} and DNF ≡ (pe ∧ ¬c1 ∧ c2 ∧ s) ∨ (¬c1 ∧ b) (see
Example 4.4). Algorithm 1 executes two iterations corresponding to {pe}, ∅ and calculates the
following sets.

Π
{pe}
1 = {(pe ∧ ¬c1 ∧ c2 ∧s) ∨ (pe ∧ ¬c1 ∧ b)}

join(Π
{pe}
1 ) = {(pe ∧ ¬c1 ∧ c2 ∧ (s ∨ b))}

Π∅
1 = {((pe ∧ ¬c1 ∧ b)}

join(Π∅
1) = {(¬pe ∧ ¬c1 ∧ b)}

Returning the following TNF,

T = {(pe ∧ ¬c1 ∧ c2 ∧ (s ∨ b)), (¬pe ∧ ¬c1 ∧ b))}

5.14 Example. Referring to Running Example 4.5, where X = {r1e, r2e}, Y = {g1, g2},
the DNF is as follows.

DNF(ψ) ≡ (r1e ∧ ¬r2e ∧ g1 ∧ ¬g2) ∨
(r1e ∧ ¬r2e ∧ ¬g2 ∧ [0,2](g1)) ∨
(r2e ∧ ¬g1 ∧[0,2](g2) ∧ [0,2](g1)∧) ∨
(r1e ∧ g1 ∧ ¬g2 ∧ [0,2](g2)) ∨
(r1e ∧ ¬g1 ∧ g2 ∧[0,2](g1)) ∨
(¬r1e ∧ ¬r2e ∧ ¬g2 ∧ ¬g2) ∨
(¬r1e ∧ r2e ∧ ¬g2 ∧ [0,2](g2)) ∨
(¬r1e ∧ r2e ∧ ¬g1 ∧ g2) ∨
(¬r1e ∧ ¬r2e ∧ ¬g1 ∧ ¬g2)
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The execution of Algorithm 1 calculates

Π
{r1e,r2e}
1 = {(r1e ∧ r2e ∧ ¬g1 ∧[0,2](g2) ∧ [0,2](g1)∧),

(r1e ∧ r2e ∧ ¬g1 ∧ g2 ∧[0,2](g1))}

join(Π
{r1e,r2e}
1 ) = {(r1e ∧ r2e ∧ ¬g1 ∧ g2 ∧[0,2](g1))}6

Π
{r1e,r2e}
2 = {(r1e ∧ r2e ∧ g1 ∧ ¬g2 ∧ [0,2](g2))}

join(Π
{r1e,r2e}
2 ) = {(r1e ∧ r2e ∧ g1 ∧ ¬g2 ∧ [0,2](g2))}

Π
{r1e}
1 = {(r1e ∧ ¬r2e ∧ g1 ∧ ¬g2), (r1e ∧ ¬r2e ∧ ¬g2 ∧ [0,2](g1)),

(r1e ∧ ¬r2e ∧ g1 ∧ ¬g2 ∧ [0,2](g2))}

join(Π
{r1e}
1 ) = {(r1e ∧ ¬r2e ∧ g1 ∧ ¬g2)}7

Π
{r1e}
2 = {(r1e ∧ ¬r2e ∧ ¬g2 ∧ [0,2](g1)),

(r1e ∧ ¬r2e ∧ g1 ∧ ¬g2 ∧ [0,2](g2))}

join(Π
{r1e}
2 ) = {(r1e ∧ ¬r2e ∧ g1 ∧ ¬g2 ∧ ([0,2](g1) ∨ [0,2](g2))}

Π
{r2e}
1 = {(¬r1e ∧ r2e ∧ ¬g1 ∧[0,2](g2) ∧ [0,2](g1)),

(¬r1e ∧ r2e ∧ ¬g2 ∧ [0,2](g2))}

join(Π
{r2e}
1 ) = {(¬r1e ∧ r2e ∧ ¬g1 ∧ ¬g2 ∧[0,2](g2))}8

Π
{r2e}
2 = {(¬r1e ∧ r2e ∧ ¬g1 ∧[0,2](g2) ∧ [0,2](g1)),

(¬r1e ∧ r2e ∧ ¬g1 ∧ g2)}
join(Π

{r2e}
2 ) = {(¬r1e ∧ r2e ∧ ¬g1 ∧ g2)}9

Π∅
1 = {(¬r1e ∧ ¬r2e ∧ ¬g2 ∧ ¬g2), (¬r1e ∧ ¬r2e ∧ ¬g1 ∧ ¬g2)}

join(Π∅
1) = {(¬r1e ∧ ¬r2e ∧ ¬g1 ∧ ¬g2 ∧ ¬g2)}

In addition, themove join(Π{r1e}
1 ) is weaker than join(Π{r1e}

2 ) and themove join(Π{r2e}
2 )

is weaker than join(Π{r2e}
1 ). Hence, the following TNF is returned

T = {r1e ∧ r2e ∧ ¬g1 ∧ g2 ∧[0,2](g1)),

(r1e ∧ r2e ∧ g1 ∧ ¬g2 ∧ [0,2](g2)),

(r1e ∧ ¬r2e ∧ g1 ∧ ¬g2),
(¬r1e ∧ r2e ∧ ¬g1 ∧ g2),

(¬r1e ∧ ¬r2e ∧ ¬g1 ∧ ¬g2 ∧ ¬g2)}
2{[0,2]g1}⋖ {[0,2]g1,[0,2]g2}
3{True}⋖ {[0,2]g2}
4{[0,2]g2}⋖ {[0,2]g2,[0,2]g1}
5{True}⋖ {[0,2]g2,[0,2]g1}
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which also contains the weakest minimal covering:

C1 = {r1e ∧ r2e ∧ ¬g1 ∧ g2 ∧[0,2](g1)),

(r1e ∧ ¬r2e ∧ g1 ∧ ¬g2),
(¬r1e ∧ r2e ∧ ¬g1 ∧ g2),

(¬r1e ∧ ¬r2e ∧ ¬g1 ∧ ¬g2 ∧ ¬g2)}

C2 = {(r1e ∧ r2e ∧ g1 ∧ ¬g2 ∧ [0,2](g2)),

(r1e ∧ ¬r2e ∧ g1 ∧ ¬g2),
(¬r1e ∧ r2e ∧ ¬g1 ∧ g2),

(¬r1e ∧ ¬r2e ∧ ¬g1 ∧ ¬g2 ∧ ¬g2)}
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5.4 Tableau rules

In this section, we introduce the tableau rules along with the concepts, notations and
properties related with the sets of formulas.

First of all, Always Rules (Figure 5.2) provides a non-deterministic procedure of ana-
lyzing the minimal X -coverings in the TNF(Φ ∧ ψ). The rule (&) is the only rule that
produces AND-successors for splitting the moves of each minimal X -covering.

(False)
Φ,ψ

False,ψ
if τ is not an X -covering

(∥) Φ,ψ∨
i∈J1 πi,ψ | · · · |

∨
i∈Jm πi,ψ

if J1, . . . , Jm is the collection of

all minimal X -covering of τ

(&)

∨
i∈I πi,ψ

π1,ψ & . . . & πn,ψ
if I is a minimal X -covering

Figure 5.2: Always Rules (where τ denotes TNF(Φ ∧ ψ))

Then, we introduce the set of rules that are use in the decomposition of formulas into its
constituents in the usual way that tableau methods perform it with the so-called saturation.
In our method, decomposition of formulas inside the conjunction (or sets) connected by the
operator ∨̈ just performs an unfolding formula. The Saturation Rules in Figure 5.3 are used
to saturate classical connectives ∧ and ∨ (including ∨̈) and temporal operatorsI andI .

(∨) Φ, β ∨ γ

Φ, β | Φ, γ
(∨̈ ∨) Φ, (η ∧ (β ∨ γ))∨̈δ

Φ, (η ∧ β)∨̈(η ∧ γ)∨̈δ

(∧) Φ, β ∧ γ

Φ, β, γ

(<)
Φ, [n,m]β

Φ, nβ | Φ, [n,m−1]β
if n < m

(∨̈<)
Φ, (η ∧[n,m]β)∨̈δ

Φ, (η ∧ nβ)∨̈(η ∧ [n,m−1]β}∨̈δ
if n < m

(=)
Φ, [n,n]β

Φ, nβ
(∨̈=)

Φ, (η ∧[n,n]β)∨̈δ
Φ, (η ∧ nβ)∨̈δ

(<)
Φ, [n,m]β

Φ, nβ, [n,m−1]β
if n < m (=)

Φ, [n,n]β

Φ, nβ

(∨̈<)
Φ, (η ∧ [n,m]β)∨̈δ

Φ, (η ∧ nβ ∧ [n,m−1]β)∨̈δ
if n < m

(∨̈=)
Φ, (η ∧ [n,n]β)∨̈δ
Φ, (η ∧ nβ)∨̈δ

Figure 5.3: Saturation Rules

Before introducing next-state rule, we need to define when a set of formulas is elemen-
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tary and the notation of η↓, where η is strict-future formula.

5.18 Definition (Elementary set of formulas). A set of formulas Φ is elementary if it consists
of a set of literals and one elementary strict-future formula.

5.19 Definition (Down-arrow formulas). For any set Φ of next-formulas, Φ↓ = {β | β ∈
Φ}. Given an elementary strict-future formula η =

∨̈n

i=1

∧m
j=1βi,j , the formula η↓ is

defined to be
∨̈n

i=1

∧m
j=1 βi,j .

5.15 Example. Consider the strict-future formula η = a ∨̈ [1,1]a ∨̈ (b ∧ [1,2]b),
then η↓ = a∨̈[1,1]a∨̈(b ∧ [1,2]b).

Finally, Next-state Rule (Figure 5.4) is applied whenever the target set of formulas is
elementary and, consequently, no saturation rules can be applied. This rule allows us to
jump from one state to the next one.

()
Φ, η,ψ
η↓,ψ

if Φ ∪ {η} is elementary and η is strict-future.

Figure 5.4: Next-state Rule

Note that, if there is not an strict-future formula η, the successor of the above rule ()
is justψ.

5.5 A Tableau Algorithm for Realizability

In this section we present a non-deterministic algorithm (see Algorithm 2) for deciding
whether a given safety specification is realizable or not. Algorithm 2 constructs a completed
tableau that analyzes the minimal X -coverings produced by the moves of the input safety
specification TNF at the successive states of the game. For deciding realizability of a safety
specification φ = α ∧ ψ, the initial call Tab(φ) is really Tab({α} ∪ {ψ}).

Algorithm 2 can be seen as a safety game where Eve strategy is represented by χ = ψ
(line 3) and Sally strategy by χ = ψ (line 24). As we mentioned before, tableau
nodes consist of two types of successors, AND-successors and OR-successors. While
OR-successors are generated by Sally with saturation rules (line 27) and by Eve with the
selection of a minimal covering (line 11), AND-successors are only generated by Eve (line
17) with the moves of a specific minimal covering. The result is returned in the boolean
variable is_open. If is_open is False, Eve wins, whereas if Sally wins, is_open is True.

5.20 Definition (open/closed branch). A branch b of a tableau is a finite sequence of nodes
n0, . . . , nk such that n0 is the root and (ni, ni+1) ∈ R for all 0 ≤ i < k − 1.

• If nk is a successful leaf, we say that b is a open branch.

• If nk is a failure leaf, we say that b is a closed branch.

Recursive calls (lines 7, 13, 19 and 23) and the notion of open and closed tableau, are related
with AND-successors, for which we introduce the notion of bunch.
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5.21 Definition. Given a set of branches H of a completed tableau, we say that H is a
bunch if and only if for every b ∈ H and every AND-node n ∈ b, and every n′ that is an
(&)-successor of n, there is b′ ∈ H such that n′ ∈ b′. A completed tableau is open if and
only if it contains at least one bunch such that all its branches are successful. Otherwise, when
all possible bunches of a completed tableau contains a failure branch, the tableau is closed.

Algorithm 2: Tab(Φ ∪ {χ}) returns is_open: Boolean
1 if Φ is inconsistent then
2 is_open := False
3 else if χ = ψ then
4 if Φ0 ⋖ Φ for some Φ0 in the branch of Φ then
5 is_open := True
6 else if TNF(Φ ∧ ψ) is not an X -covering then
7 is_open := Tab({False,ψ});
8 else if TNF(Φ ∧ ψ) is a non-minimal X -covering then
9 Let J1, . . . , Jm be all the minimal X -coverings of TNF(Φ ∧ ψ);

10 i := 0; is_open := False ;
11 while ¬is_open ∧ i < m do
12 i := i+ 1 ;
13 is_open := Tab(Ji ∪ {ψ});
14 end
15 else // TNF(Φ ∧ ψ) =

∨n
i=1 πi is a minimal X-covering

16 i := 0; is_open := True ;
17 while is_open ∧ i < n do
18 i := i+ 1 ;
19 is_open := Tab({πi,ψ});
20 end
21 end
22 else if Φ = Λ ∪ {η} is elementary (η is strict-future) then
23 is_open := Tab({η↓,ψ});
24 else
25 ρ := select_saturation_rule(Φ);
26 Let 1 ≤ k ≤ 2 and Φ1, . . . ,Φk the set of all ρ-children;
27 is_open := Tab(Φ1 ∪ {ψ});
28 if k = 2 ∧ ¬is_open then is_open := Tab(Φ2 ∪ {ψ});
29 end

Algorithm 2 continuous looks for bunches of successful branches as follows:

• First, according to rule (∥), a recursive call is invoke for each minimal X -covering.
If any of these calls return is_open := True, as node successors are OR-successors,
the iteration is finished.

• Next, the construction of the tableau for a specific minimal covering Jk , by rule (&)
and according to lines from 15 to 20, produces a recursive call for each move πi in
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Jk . In addition, (&) rule generates AND-successors, therefore, all moves πi should
return is_open := True to obtain truth for Jk.

• Then, lines 2 and 5 represent two types of terminal nodes which do not produce any
recursive calls because no rules can be applied. Note that line 7 produces a recursive
call that immediately returns failure.

• Finally, line 22 and 23 perform the application of () to change to the next state,
and lines from 24 to 29 the application of saturation rules.

5.6 Examples

In this section, we present some representative examples that illustrate how our tableau
method works.

5.16 Example. Given (pe ↔ s) safety specification, the following figure shows an
open tableau construction.

n1 : (pe ↔ s)

n2 : (pe ∧ s)∨̈(¬pe ∧ ¬s),ψ

n3 : (pe ∧ s)∨̈(¬pe ∧¬s),ψ

n4 : pe ∧ s ∧ (pe ∧ s)∨̈(¬pe ∧ ¬s),ψ

n6 : pe, s, (pe ∧ s)∨̈(¬pe ∧ ¬s),ψ

n8 : (pe ∧ s)∨̈(¬pe ∧¬s),ψ

n5 : ¬pe ∧¬s ∧ (pe ∧ s)∨̈(¬pe ∧ ¬s),ψ

n7 : ¬pe,¬s, (pe ∧ s)∨̈(¬pe ∧ ¬s),ψ

n9 : (pe ∧ s)∨̈(¬pe ∧¬s),ψ

(∥) + (&)

(∥) + (&)

()

() ()

(∧)(∧)

Figure 5.5: Open tableau for(pe ↔ s).

First, we calculate the equivalent TNF of the safety specification that generates one minimal
coverings and, as there are no environment variables taking part in the current state, only a
single AND-successors is generated, n2.

TNF(pe ↔ s) ≡ (pe ∧ s)∨̈(¬pe ∧ ¬s)

Then, no more rules can be applied and we change to the next state. Now, there is an
environment variable taking part in the present, pe, so after calculating the TNF((pe ∧
s)∨̈(¬pe ∧¬s) ∧ ψ), we generate the one and the only following minimal covering:

C1 : (pe ∧ s ∧ (pe ∧ s)∨̈(¬pe ∧ ¬s)) &
(¬pe ∧¬s ∧ (pe ∧ s)∨̈(¬pe ∧ ¬s))

Afterwards, pe ∧ s ∧ (pe ∧ s)∨̈(¬pe ∧ ¬s) move change to the next state
resulting in an open branch between n8 and n3. Finally, n5 node will follow the same strategy
as n4 due to the fact that both have the same strict-future and, therefore, same n4 strategy
will open n5.
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5.17 Example. Given(pe ∧ s∧s)∨ (¬s∧2s)∨ (¬pe ∧¬s∧3s) safety specification we
conclude by the construction of the following closed tableau that is not a realizable specification.

n0 : (pe ∧ s ∧s) ∨ (¬s ∧2s) ∨ (¬pe ∧ ¬s ∧3s)

n1 : (pe ∧ s ∧s) & (¬s ∧ ¬pe ∧ (2s∨̈3s)),ψ

pe, s,s,ψ

s,ψ

n3 : (pe ∧ s ∧s),ψ

: ×

. . .

n2 : (¬s ∧ pe ∧2s) & (¬s ∧ ¬pe ∧ (2s∨̈3s)),ψ

¬s, pe,2s,ψ

s,ψ

n4 : (pe ∧ s ∧ s) & (¬pe ∧ ¬s ∧ ((s ∧ 2s)∨̈(2s ∧ 3s)))),ψ

pe, s,s,ψ

s,ψ

n5 : (pe ∧ s ∧s),ψ

×

. . .

. . .

(∥)

(&) + (∧)

()

(∥)

(False)

(&) + (∧)

()

(∥)

(&) + (∧)

()

(∥)

(False)

Figure 5.6: Closed tableau for(pe ∧ s ∧s) ∨ (¬s ∧2s) ∨ (¬pe ∧ ¬s ∧3s)

The construction of the tableau starts by calculating TNF((pe ∧ s ∧s) ∨ (¬s ∧2s) ∨
(¬pe ∧ ¬s ∧3s) ∧ ψ) and resulting in the following two minimal coverings:

• n1 : (pe ∧ s ∧s) & (¬s ∧ ¬pe ∧ (2s ∨3s)))

• n2 : (¬s ∧ pe ∧2s) & (¬s ∧ ¬pe ∧ (2s ∨3s)

Both minimal covering failed turning into closed branches due to the fact that TNF(s ∧ ψ)
≡ (pe ∧ s ∧s) is not a X -covering. In addition, node n3 causes to fail node n1 because
is AND-successor, in the same way that node n5 provoke the failure of n4 and n2 nodes.
Consequently, as all the minimal coverings of the safety specification fails, its a closed tableau
an a not realizable specification. Referring to the safety games, closed branches represent a
winning strategy for the environment.
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5.18 Example. Let (pe ∧ s ∧ [1,10]t ∧ s) ∨ (¬pe ∧ s ∧ [1,10]t ∧ 2s) ∨ (¬s ∧
[1,10]¬s)be the safety specification, the following tableau shows a winning strategy for the
system and, therefore, an open tableau.

ψ ≡ (pe ∧ s ∧ [1,10]t ∧ s) ∨ (¬pe ∧ s ∧[1,10]t ∧ 2s) ∨ (¬s ∧ [1,10]¬s)

n1: pe,¬s,[1,10]¬s,ψ

n2: [0,9]¬s,ψ

n3: ¬pe,¬s,[1,10]¬s,ψ

n4: [0,9]¬s,ψ

n5: ¬pe,¬s,[1,10]¬s,ψ

n6: [0,9]¬s,ψ

n7: ¬pe,¬s,[1,10]¬s,ψ

n8: [0,9]¬s,ψ

⊙

(∥) + (&) + (∧)

() ()

(∥) + (&) + (∧)

() ()

Figure 5.7: Open tableau for ((pe ∧ s ∧ [1,10]t ∧ s) ∨ (¬pe ∧ s ∧ [1,10]t ∧ 2s) ∨
(¬s ∧ [1,10]¬s)).

Initially, we calculate the TNF(ψ) that results in four minimal covering:

C1 : (pe ∧ ¬s ∧ [1,10]¬s) & (¬pe ∧ ¬s ∧ [1,10]¬s)

C2 : (pe ∧ ¬s ∧ [1,10]¬s) & (¬pe ∧ s ∧ [1,10]t ∧ 2s)

C3 : (pe ∧ s ∧ [1,10]t ∧ s) & (¬pe ∧ ¬s ∧ [1,10]¬s)

C4 : (pe ∧ s ∧ [1,10]t ∧ s) & (¬pe ∧ s ∧ [1,10]t ∧ 2s)

As the minimal covering C1 has less conjunctions as well as the same futures in both
environment valuation moves, we select it. Afterwards, we jump to the next state obtaining a
single minimal covering:

(¬pe ∧ ¬s ∧ [1,10]¬s) & (pe ∧ ¬s ∧ [1,10]¬s)

Both moves generate an open branch when moving to the next state. At this point, n2 has
been successful after detecting cycles between n2 − n4 and n2 − n6 but, we still have to check
node n7. However, n1 and n7 have the same strict-future so both of them will generate the
same tableau branches and n7 will arrives to the success[0,9]¬s node at n8 that will be will
automatically open, ensuring a winning strategy for the system and consequently, an open
tableau and a realizable specification.
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5.19 Example. Let (pe ∧ s ∧ [1,1000]t ∧ s) ∨ (¬pe ∧ s ∧ [1,1000]t ∧ 2s) ∨
(¬s ∧ [1,1000]¬s)be the safety formula, similar to the previous example but increasing the
superior limit of the bounded always interval to 1000. Moreover, the following figure shows a
winning strategy for the system and, therefore, an open tableau.

ψ ≡ (pe ∧ s ∧ [1,1000]t ∧ s) ∨ (¬pe ∧ s ∧[1,1000]t ∧ 2s) ∨ (¬s ∧ [1,1000]¬s)

n1: pe,¬s,[1,1000]¬s,ψ

n2: [0,999]¬s,ψ

n3: ¬pe,¬s,[1,1000]¬s,ψ

n4: [0,999]¬s,ψ

n5: ¬pe,¬s,[1,1000]¬s,ψ

n6: [0,999]¬s,ψ

n7: ¬pe,¬s,[1,1000]¬s,ψ

n8: [0,999]¬s,ψ

⊙

(∥) + (&) + (∧)

() ()

(∥) + (&) + (∧)

() ()

Figure 5.8: Open tableau for ((pe ∧ s ∧ [1,1000]t ∧ s) ∨ (¬pe ∧ s ∧ [1,1000]t ∧ 2s) ∨
(¬s ∧ [1,1000]¬s)).

Comparing with the previous Example 5.7 , increasing superior limit of the bounded always
interval does not affect to tableau construction. Accordingly, we can ensure that if we have
a winning strategy for a specification and we increase superior limit of the bounded always
interval the resulting tableau will be the same in terms of size.

5.20 Example. Consider the safety specification, a ∧ ((a→ c) ∧ (pe →[0,100]¬c) ∧
(¬pe →[0,100]a)).

n1 : a,ψ

n2 : a, pe, c,[0,99]¬c,ψ

n4 : [0,99]¬c,ψ

n5 : C1,ψ

n7 : pe,¬a,¬c,ψ

n9 : ψ

n8 : ¬pe,¬a,¬c,[0,99]a,ψ

n10 : [0,99]a,ψ

n6 : C2,ψ

n3 : a,¬pe, c,ψ

ψ

(∥) + (&)

() ()

()

(∥)

(&)

Figure 5.9: Open Tableau for a ∧ ((a→ c) ∧ (pe →[0,100]¬c) ∧ (¬pe →[0,100]a)).

Firstly, we calculate the equivalent TNF of the safety specification TNF(a ∧ ψ) obtaining
a single minimal covering (pe ∧ a ∧ c ∧ [0,99]¬c) & (¬pe ∧ a ∧ c). Then, we
start developing (pe ∧ a ∧ c ∧ [0,99]¬c) move due to the fact that is stronger than
(¬pe ∧ a ∧ c) and since they are AND-successor, we are interested in fulfill the strongest
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moves. Once we jump to the next state, we need to calculate the TNF([0,99]¬c ∧ ψ) and the
corresponding weakest minimal covering, C1 and C2.

TNF([0,99]¬c ∧ ψ) ≡ (pe ∧ c ∧[0,98]¬c) ∨ (pe ∧ ¬a ∧ ¬c) ∨
(pe ∧ ¬a ∧ c ∧[0,98]¬c) ∨ (¬pe ∧ c ∧ a ∧[0,98]¬c) ∨
(¬pe ∧ c ∧ ¬a ∧[0,99]a ∧[0,98]¬c) ∨ (¬pe ∧ ¬a ∧ ¬c ∧[0,99]a)

C1 = (pe ∧ ¬a ∧ ¬c) ∨ (¬pe ∧ ¬a ∧ ¬c ∧[0,99]a)

C2 = (pe ∧ ¬a ∧ ¬c) ∨ (¬pe ∧ c ∧ a ∧[0,98]¬c)

Afterwards, we develop C1 minimal covering that became a successful node by generating
an open branch with both n9 and n10 nodes. At this point, the system already has a winning
strategy for pe but it need also a winning strategy for ¬pe. Nevertheless, n3 strict-future
formula is True so when we change to the next state we will get the weakest possible node,ψ,
that can generate an open branch with any other higher node, in this case with n1 node.

5.21 Example. Let a ∧ ψ be a safety specification where ψ = (a→ c) ∧ (pe → a) ∧
(¬pe → [2,10]¬c). Figure 5.10 is a closed tableau that proves that a ∧ ψ is unrealizable.

n1 : a,ψ

n2 : pe ∧ a ∧ c ∧ a,ψ

n4 : a,ψ

n3 : ¬pe ∧ a ∧ c ∧ [2,10]¬c,ψ

n5 : ¬pe, a, c,2¬c,[2,9]¬c,ψ

n6 : ¬c,[2,9]¬c,ψ

n7 : pe ∧ c ∧ ¬c ∧ a ∧ [2,9]¬c,ψ

n9 : pe, c,¬c,a,2¬c,[2,8]¬c,ψ

n10 : ¬c, a,¬c,[2,8]¬c,ψ

n11 : #

n8 : ¬pe ∧ c ∧ ¬c ∧ [2,10]¬c,ψ

(∥) + (&)

(∥) + (&)

(∧) (∧) + (<)

()

(∧) + (<)

()

Figure 5.10: Closed tableau for a ∧ ((a→ c) ∧ (pe → a) ∧ (¬pe → [2,10]¬c)).

To start the tableau construction, we have that:

TNF(a ∧ ψ) = (pe ∧ a ∧ c ∧ a) ∨ (¬pe ∧ a ∧ c ∧ [2,10]¬c).

The realizability result depends on the success of n2 and n3 AND-nodes. Once the success
of node n2 is ensured, the tableau goes on with the expansion of node n3. At node n6, we have
that TNF(¬c ∧ [2,9]¬c ∧ ψ) =
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(pe ∧ c ∧ ¬c ∧ a ∧ [2,9]¬c) ∨ (pe ∧¬a ∧ ¬c ∧ a ∧ [2,9]¬c) ∨
(¬pe ∧ c ∧ ¬c ∧ [2,10]¬c) ∨ (¬pe ∧¬a ∧ ¬c ∧ [2,10]¬c)

Hence there are 4 possible minimal X -coverings and it is enough to choose any of them
to decide that the tableau is closed or open because they have the same strict-future formula.
Therefore, the tableau goes on with the AND-nodes n7 and n8, which correspond to the
following minimal X -covering.

(pe ∧ c ∧ ¬c ∧ a ∧ 2¬c ∧ [2,8]¬c)&
(¬pe ∧ c ∧ ¬c ∧ 2¬c ∧ [2,9]¬c)

As the TNF at node n10 is False, this node is a failure leaf. This fact completes the tableau,
since n7 and n8 are AND-siblings.

5.22 Example. The next page Figure 5.11 represents an open tableau for the Running Example
4.5, whose construction starts with C1, the weakest minimal X -covering in TNF(ψ), composed
by the labelled nodes n2, n3, n4 and n5.

At node n8, the weakest minimal X -covering in TNF([0,2] g1 ∧ ψ) is C2, which has the
following four moves:

m1 : (r1 ∧¬r2 ∧ g1 ∧¬g2)
m2 : (¬r1 ∧ r2 ∧ g1 ∧¬g2 ∧ [0,2] g2)

m3 : (r1 ∧ r2 ∧ g1 ∧¬g2 ∧ [0,2] g2)

m4 : (¬r1 ∧¬r2 ∧ g1 ∧¬g2 ∧ ¬g2)

Note that, for simplicity, we groupm2 andm3 in the same node that omits the value of
r1, which is the only difference between both moves. At node n10, C3, is the weakest minimal
X -covering in TNF([0,2] g2 ∧ ψ). It has four movesm′

1,m
′
2,m

′
3,m

′
4 butm

′
2 andm

′
3 has

been grouped. And similarly, at node n13, where TNF(¬g2 ∧ ψ) provides C4, with the moves
m′′

1,m
′′
2,m

′′
3,m

′′
4 . Note that nodesm

′
4,m4 and n5 share the same strict-future formula. Hence,

to save space, we do not depict the expansion of nodesm4 and n5 since it repeats the tableau
behind nodem′

4. All in all, the completed tableau for the input specification is open.
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CHAPTER 6
Implementation

This chapter explains in a simplified and superficial way the structure, development and
implementation of the application prototype.

6.1 Development tools

Application has been developed using python 3 interpreted high-level programming lan-
guage. In addition, Git has been used for application version control, GitHub for Git
repository hosting service and Visual Studio Code as principal code editor.

The application is hosted in a public repository on GitHub where the implementation
can be better understood. Moreover, we will be constantly updating and improving the
prototype, so it may not match exactly what we will explain below with the latest version.

https://github.com/AnderEhu/Realizability-Tableau

Benchmarks will be tested on a laptop with the following specifications:

- Operative system: Linux Mint 20.1 Cinnamon 4.8.6

- CPU: Intel© Core™ i5-6300HQ CPU @ 2.30GHz × 4

- GPU: NVIDIA GM107M [GeForce GTX 950M]

- RAM: 8 GiB

- SSD: Samsung SSD 970 EVO 250GB
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6.2 How to run the prototype?

The prototype can be executed using the following command:

python3 run_tableau.py benchmark.txt

As input parameter you have to specify the benchmark file path you want to run. In
addition, benchmark format is divided into three parts; initial formula, safety formula
and environment global constraints 1. However, if there is neither initial formula nor
environment constraints it must be indicated by means of True formula.

Initial Formula
(temporal formula)

Safety Formula
(temporal formula)
(temporal formula)
(temporal formula)
...

Environment Global Constraints
(temporal formula)
...

Referring to Example 4.5, benchmark input file for the application is:

Initial Formula
True

Safety Formula
r1_e -> F[0,3]g1
r2_e -> F[0,3]g2
-(g1 & g2)
(-r1_e & -r2_e) -> X-g2

Environment Global Constraints
True

The previous benchmark is named as “benchmark6.txt” and is located in “benchmark-
s/Overleaf/realizable/”, so for the execution of the prototype we will run:

python3 run_tableau.py benchmarks/Overleaf/realizable/benchmark6.txt

1It is out of the scope of this project, always represent it with True
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6.3 Prototype structure

The project consists of three packages TemporalFormula, TNF and Tableau together with
the package for the use of Bica [31]. In addition, most of the functions are documented,
and tested through unit tests of the pytest package [32].

Realizability Tableaux/
benchmarks/

Overleaf/...
Automatic/...

Solver/
bica.py
circuit.py

Tableau/
src/

automatic_benchmark_generator.py
minimal_covering.py
tableau_node.py
tableau_rules.py
tableau.py

test/
test_tableau_automatic.py
test_tableau_overleaf.py

TemporalFormula/
src/

temporal_formula.py
test/

test_temporal_formula.py
TNF/

src/
inconsistencies.py
separated_formula.py
subsumptions.py
tnf.py

test/
test_inconsistencies.py
test_separated_formula.py
test_subsumptions.py
test_tnf.py

tools.py
run_tableau.py
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6.4 Temporal Formulas

6.4.1 Syntax

For an efficient manipulation of the temporal formulas we represented it as a list of lists.
We distinguish two types of operators, the binary operators and the unary operators.

Unary operator syntax Binary operator syntax
¬ ≡ !, -, ∼ ∧ ≡ && or &
i ≡ X[i] or X0X1...Xi−1 ∨ ≡ || or |
[n,m] ≡ G[n,m]

[n,m] ≡ F[n,m]

Table 6.1: Prototype operator syntax

On the one hand, binary operators operate on two formulas, while unary operators
operate on one. Therefore, we represent formulas with binary operator as a list of length 3
where the first element correspond to the binary operator and the second and third elements
to the temporal formulas. Whereas the formulas with unary operator are represented as
a list of length 2 where the first element match with the unary operator and the second
element with the temporal formula. Moreover, we represent system variables as a simple
string and environment variable as a string with “_e” at the end

6.1 Example. Let ((X[2]s | F[4,7]s) & (-p_e & G[1,10]c)) be the temporal formula
string so the list of lists representation is as follows:

[“&”,[“|”,[“X[2]”,“s”],[“F[4,7]”,“s”]],[“&”, [“-”,“p_e”],[“G[1,10]”,“c”]]]

6.4.2 Parsing expression grammar

To parse a temporal formula as string to a list of lists we use parsimonious library [33], the
fastest arbitrary-lookahead parser.

First, we apply the following grammar to the input temporal formula string:

Biconditional = (Conditional "<-->" Biconditional) / Conditional
Conditional = (Disyunction "->" Conditional) / Disyunction
Disyunction = (Conjunction ("||" / "|") Disyunction) / Conjunction
Conjunction = (Literal ("&&" / "&") Conjunction) / Literal
Literal = (Atom) / ((Neg / Bounded_Eventually / Next / Bounded_Always ) Literal)
Atom = True / False / Var / Group
Group = "(" Biconditional ")"
Var = ~r"[a-zA-EH-WY-Z0-9][a-zA-Z0-9_]*"
Next = ~r"X[[0-9]+]" / "X"
Bounded_Eventually = ~r"F[[0-9]+,[0-9]+]"
Bounded_Always = ~r"G[[0-9]+,[0-9]+]"
Neg = "!" / "-" / "~"
True = "TRUE" / "True"
False = "FALSE" / "False"

Afterwards, we get an Abstract Syntax Tree that by means of walking through it (with
the function visit of nodes.NodeVisitor subclass), we create the list of lists representation.
Finally, we calculate the equivalent NNF applying the rules seen in Section 2.1.3. Note

54



6.5. DNF and Separated Formulas

that optionally futures can be split into strict-future formulas, for example, [“G[0,4]”,
“s”] splits into [“&”, “s”, [“G[1,4]”, “s”]] and [“F[2,4]”, “s”] splits into [“|”,
[[“X[2]”, “s”], [“G[3,4]”, “s”]]

6.5 DNF and Separated Formulas

We calculate with Bica solver, from a temporal formula in an arbitrary form, its equivalent
DNF formula as list of separated formulas. Separated formulas are implemented as a
dictionary with three keys:

• ’X’: correspond to the set of environment variables

• ’Y’: correspond to the set of system variables

• ’Futures’: correspond to the list of strict-futures sets.

Remark that lists refers to OR-formulas and sets to AND-formulas. For example,
[{’X[1]a’, ’X[1]b’, ’X[1]c’}, {’X[2]a’, ’X[2]b’, ’X[2]c’ }] is equivalent to
’((X[1]a & X[1]b & X[1]c) | (X[2]a & X[2]b & X[2]c))’

6.2 Example. Given a DNF ≡ [{’p_e’, ’a’, X[1]a’, ’X[1]b’, ’X[1]c’}, {’p_e’,
’-a’, ’X[2]a’, ’X[2]b’, ’X[2]c’ }], its list of separated formulas representation is as
follows:

• For {’p_e’, ’a’, X[1]a’, ’X[1]b’, ’X[1]c’} ≡

{’X’: {’p_e’}, ’Y’: {’a’}, ’Futures’: [{’X[1]a’, ’X[1]b’, ’X[1]c’}]}

• For {’p_e’, ’-a’, X[2]a’, ’X[2]b’, ’X[2]c’} ≡

{’X’: {’p_e’}, ’Y’: {’-a’}, ’Futures’: [{’X[2]a’, ’X[2]b’, ’X[2]c’}]}

6.6 TNF

6.6.1 Data Structure

TNF formula data structure is implemented as a dictionary where the key corresponds to a
specific environment valuation and its value is the extension of moves for that environment
valuation.

6.3 Example. Let be the TNF result of Example 5.13:

T = {(pe ∧ a2 ∧¬a1 ∧ (b ∨ 2c), (¬pe ∧¬a1 ∧ (2c ∨ ¬b))}

we will represent it as follows:

T ≡ {’p_e’: [[’a_2’,’-a_1’, [’X[1]b’,’X[2]c’]]], ’-p_e’: [[’-a_1’,
[’X[1]b’,’X[2]c’]]]}
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6.6.2 Algorithm

Our TNF algorithm implementation take as input a DNF represented as a list of separated
formulas. The equivalent TNF is calculate by joining together all the TNFs calculated in
each environment extension of moves.

6.1 Proposition. Given a DNF formula φ, TNF(φ) is equivalent to the conjunction of TNFs
calculated from the extension of moves for each environment valuation.

It should be pointed out that compatible formulas and join operator has been imple-
mented together for efficiency, i.e. we apply the join operator for each compatible formula
as opposed to selecting all compatible formulas and then applying join operator.

We enumerate each formulas with an integer corresponding to its list position and
then, we use a pointer ’i’ that will go through the formulas adding and removing elements
from the following three different stacks:

• literalss represent a stack of literal sets. Moreover, from now on we will refer to the
top of the stack as literalsc.

• futuress represent a stack of the list of futures set corresponding to Futures_stack.
Moreover, from now on we will refer to the top of the stack as futuresc.

• indexs represent a stack that save the list position of the formula that append a new
value to the Literals_stack. Moreover, from now on we will refer to the top of the
stack as indexc.

The first part of the algorithm is the initialization of the variables. In case the length of
formulas is greater than two, we start adding the information of the first formula to the
stacks and setting the pointer i to the second formula.

i = 1
indexs.append(0)
literalss.append(formulas[0]['Y'])
futuress.append(formulas[0]['Futures'])

Next, until i > 0, in each loop is modified stacks according to three different cases.
Note that we denoted the literals and futures of the formula at i position as literali and
futuresi and literalsi ∪ literalsc as union_literals.

if inconsistent(union_literals) or union_literals in Skip:
i++

if literalsi ̸= literalsc:
union_futures = union(futuresi, futuresc)
indexs.append(i)
literalss.append(union_literals)
futuress.append(union_futures)
i++

else:
append_futures(futuresi, futuresc)
i++
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Then, as we increment i, whether all the formulas have already been traversed, we
append to TNF the result of the list composed of literalc and futuresc. In addition, we add
literalc set to skip list in order to avoid adding redundant formulas and then, we select a
new possible value of i by adding 1 to the value at the top of the indexs.

if i == length(formulas):
new_move = [literalsc, futuresc]
append_tnf(TNF, new_move)
append_skip(Skip, literalsc)

i = indexs + 1

literalss.pop()
futuress.pop()
indexs.pop()

i = get_valid_i(i)

Finally, after removing the top element of the stacks, we need to ensure that the new
value for i points to an index of the formulas. However if there is no formula to deal with,
i will be equal to -1 and the algorithm will end returning the current solution of the TNF.
The following function get_valid_i validates the pointer i as follows:

def get_valid_i(i):

Whether i points outside the formulas, i == length(formulas), then i is not a valid index,
so there are two cases to deal with. First one is when there is no element to pop from
indexs, i.e. all formulas have been visited and the algorithm must be end. And the other
one, when indexs is not empty, in this case we select as another possible i the value at the
top of indexs plus 1, we pop the top of indexs, literalss and futuress and recursively we call
with the new possible value of i to validate it.

if i == length(formulas) then:
if not indexs then:

return -1

else:
i = Indexc + 1
literalss.pop()
futuress.pop()
indexs.pop()
return get_valid_i(i)

If i points to a valid index but its corresponding formula system variables valuations
are in the skip list then we increment i in 1. On the other hand, whether indexs is empty
then we push i to indexs, i formula literals to literalss and i formula futures to futuress. In
both cases we call recursively to validate the new possible i.
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else:
if formulas[i]['Y'] in Skip then:

i++
return get_valid_i(i)

elif is_empty(indexs) then:
indexs.append(i)
literalss.append(formulas[i]['Y'])
futuress.append(formulas[i]['Futures']
return get_valid_i(i)

If none of the above cases are fulfilled, the pointer i will be a valid index of formulas.

else:
return i

6.6.3 Verification

To verify that the DNF and the resulting TNF are equivalent in terms of environment
valuations and strict-futures we need to remove the set of system variables from the
moves of both and then apply the logical equivalence seen in Definition 2.3. Consequently,
depending on whether our aim is to verify the equivalence of TNF with DNF or not,
append_futures and append_tnf functions will change. Both the application of weaker
moves and the subsumption of futures will be restricted in the verification in order to
preserve it.

On the one hand, to maintain the verification, above-mentioned functions are simple
whose unique purpose is to add an element to a list in order to preserve the equivalence.

def append_futures(list_futures, futures):
if futures not in list_futures:

union_futures.append(futures)

def append_tnf(tnf, new_move):
tnf.append(new_move)

On the other hand, if equivalence checking is not required, append_futures will apply
the order relation according to Definition 5.6 and append_tnf will pursuit weaker moves
according to Definition 5.12 .

6.7 Minimal Covering

Calculating all the minimal coverings is computationally expensive because we need to
apply the Cartesian product between the different moves of each environment valuations.
For example, given 8 environment variables, we obtain 256 different environment valuations
and if each one has only 2 moves, we will need to calculate more minimal covering than
atoms on earth (2256), impossible. Therefore, we arise to a problem due to the fact that
finding weakest minimal coverings is fundamental for the good development of the tableau
algorithm.
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To solve this problem we will make two scoring system, one for each move and the
other for the environment valuation. Given the list of futures set, we will score each move
as follows:

• For each set of futures we will add 1000 to the score because the more sets of futures
a move has the weaker it is likely to be.

• The size of each set of futures we will subtract a score equal to the cube of its length.
We subtract score because sets represent AND-formulas and this makes the move
stronger.

• For each set representing X[1]True we will add the maximum possible score because
it is the weakest future.

Furthermore, the score of the environment valuations will be the sum of each scored
moves.

6.4 Example. Given the following TNF:

T ≡ {
'p_e': [

[{'a_2','-a_1'}, [{'X[1]b', 'X[2]s', 'X[4]s'},{'X[2]c', 'X[3]s'}]],
[{'-a_2','-a_1'}, [{'X[5]s', 'X[6]s'},{'X[2]b', 'X[3]b'}]]

]
'-p_e': [

[{'-a_1'}, [{'X[1]True'}]]
]

}

each move gets the following score:

[{'a_2','-a_1'}, [ {’X[1]b’, ’X[2]s’, ’X[4]s’}︸ ︷︷ ︸
−23

, {’X[2]c’}︸ ︷︷ ︸
−13

]]

︸ ︷︷ ︸
2∗1000

= 1991

[{'-a_2','-a_1'}, [ {’X[5]s’, ’X[6]s’}︸ ︷︷ ︸
−22

, {’X[2]s’, ’X[3]s’}︸ ︷︷ ︸
−22

]]

︸ ︷︷ ︸
2∗1000

= 1992

[{'-a_1'}, [{'X[1]True'\}}]] = 10^12

To calculate minimal covering we will use the Cartesian product of itertools package
[34]. In addition, we will use the iterator returned by the function to calculate and obtain
minimal coverings dynamically.

6.5 Example. Given a TNF with one environment variable X = {pe} and two moves for each
environment valuation, move1 and move2 for pe = True and move3 and move4 for pe =
False, Cartesian product function return the following minimal covering:
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[move1, move2] × [move3, move4] = [(move1, move3)︸ ︷︷ ︸
M1

, (move1, move4)︸ ︷︷ ︸
M2

, (move2, move3)︸ ︷︷ ︸
M3

,

(move2, move4)︸ ︷︷ ︸
M4

]

As you can see in the example above, minimal coverings are calculated on the basis of
the order of the input. Therefore, whether we sort the moves of each environment valuation
based on its score in a descending order and we order the input of the Cartesian function
so that the first positions are the environment valuations with less score, then, we will
obtain the weakest minimal covering dynamically in the first steps of the iterator.

6.6 Example. Given Example 6.5 we order the Cartesian product input base on the following
scores; move1 = -100, move2 = 700, move3 = 800, move4 = 1000 and obtaining [move2, move1]
× [move4, move3] as input and the output result as:

[(move4, move2)︸ ︷︷ ︸
M4

, (move4, move1)︸ ︷︷ ︸
M2

, (move2, move3)︸ ︷︷ ︸
M3

, (move2, move4)︸ ︷︷ ︸
M1

]

It is worth noting that if we did not order in Example 6.5 tableau would have started
to develop the strongest minimal covering. Although in the previous examples we have
calculated all the minimal covering to illustrate the improvement of sorting, but remark that
we will only generate a new one when the current is unrealizable, that is, when minimal
covering fails.

6.7 Example. Given the TNF and the scores of Example 6.4 Cartesian product function input
will be as follows:

[move2, move1] × [move3]

where:

• p_emove1 = [’a_2’,’-a_1’, [’X[1]b’, ’X[2]s’, ’X[4]s’,’X[2]c’, ’X[3]s’]]
(1991 points)

• p_e move2 = [’-a_2’,’-a_1’, [’X[5]s’, ’X[6]s’,’X[2]b’, ’X[3]b’]] (1992
points)

• -p_e move3 = [’-a_1’, [’X[1]True’]] (1012 points)

6.8 Tableau

6.8.1 Tableau Nodes

Tableau nodes (from now only nodes) are represented by a structure that contains the
temporal formula associated to the node, the reference to the predecessor node and the
depth of the tableau at which it is located. However, the safety formula is not included in
the node structure, since it is the same for all nodes so we keep it frozen as an attribute of
the tableau class.

In addition, the nodes contain the following functions:
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• implicate_a_failure_nodes: if the current node is weaker than a previous node
that has failed, automatically is a failure node (see Definition 5.1)

• is_implicated_by_success_nodes: if the current node is stronger than any prede-
cessor node that has been successful, automatically is a successful node (see Definition
5.1).

• has_open_branch: if the current node is stronger than any previous node, there is
an open branch (see Definition 5.20).

6.8.2 Tableau Rules

Saturation rules (see Figure 5.3) will be applied when we parse the formula from a string
to the list of lists representation. Furthermore, (False) always rule (see Figure 5.2) is
associated to the minimal covering object by is_not_X_covering function and the others,
(∥) and (&) always rules (see Figure 5.2), are directly implemented by loops of the
tableau algorithm which will be introduce below. Finally, the next state rule (see Figure 5.4)
will be applied to the node’s formula by means of the next function.

6.8.3 Tableau algorithm

The tableau algorithm is divided into two parts, one related with the environment player
moves and the other with the system player moves.
Environment turn:

Firstly, the environment player will start first

self.initial_node = tableau(self.initial_formula, 1, None)
self.is_open = self.tableau(self.initial_node, ENVIRONMENT_PLAYING, 1)

and every time it starts playing will check whether the current branch is a winner or
a loser branch. It is a winning branch for the environment whether the current node is
weaker or equal than a previously failed node. While it is a loser branch for the environment
either if the current node is stronger than a previously successful node or if one predecessor
node has a stronger formula.

if node.implicate_a_failure_node(self.failure_nodes):
return False

if node. is_implicated_by_success_node(self.success_nodes):
return True

if node. has_open_branch():
return True

Next, the environment extracts information about which of its variables are taking
part in the present in order to calculate the TNF formula of the conjunction of the safety
formula and node formula.

formula_env_vars = get_environment_current_variables(node.formula)
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env_vars_node = self.environment_safety_formula_variables.union(formula_env_vars)
node_tnf = self.calculate_tnf_with_node(node.formula, env_vars_node)

Then, the moves and each environment valuation are scored to generate the iterator of
the minimal coverings, as we have seen in Section 6.7. When a specific minimal covering is
requested, it returns sorted by the environment valuation (from most likely to least likely
to generate an open branch).

if is_not_X_covering(node_tnf):
return False

else:
env_valuations_sorted, minimal_coverings_iterator = sort_minimal_coverings(node_tnf)

In addition, the order will be reversed due to the fact that successors are AND-successors
and with one of them failing the whole minimal covering will fail and, therefore, the
environment player will have won to the system player in this minimal covering. However,
the environment will only win ensuring that the current node is a failed node . Whereas
the current node will become a successful node if for every move of the minimal covering
the environment lose, generating open branches.

for minimal_X_covering in minimal_X_coverings_iterator:
minimal_X_covering.reverse()
env_valuations_sorted.reverse()
is_open = False
for i, environment_move in enumerate(minimal_X_covering):

After selecting a move of a specific environment valuation, we check whether the move
is consistent in strict-futures formulas to avoid cycles between inconsistent nodes. In the
case of a consistent move, the system will start playing, otherwise, the environment will
generate another minimal covering.

env_assignment = env_valuations_sorted[i]
strict_futures_i = delete_inconsistent_sets(environment_move[1])
if not strict_futures_i: break
successor_node = TableauNode(environment_move, depth, node)
is_open = self.tableau(child_node, SYSTEM_PLAYING, depth)

At this point, tableau branch can return four different possibilities:

1. True when is a open branch

if is_open is True: continue

2. False when is a closed branch

if is_open is False: break
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3. A positive integer (resp. negative integer) when searching for an open branch it finds
a success node (resp. failure node) which is stronger (resp. weaker) than one of its
predecessor nodes. In this case, the absolute value indicates the depth where the
weaker (resp. stronger) predecessor node is located.

if depth != abs(is_open): return is_open

4. When a predecessor node became a success or failure node, the tableau must return
to that tableau point. For example, whether it returns -2, the tableau will go back to
depth 2 and convert that node into a failure node, whereas, if it returns 1, the tableau
will go back to depth 1 and convert that node into a success node

if depth == abs(is_open) and is_open > 0:
return True

if depth == abs(is_open) and is_open < 0:
return False

Finally, if a minimal covering is successful for the system, the node that generated it
will be added to the success node list, whereas, if all minimal coverings are successful for
the environment, the node that generated it will be added to the failure node list.

if is_open:
self.success_nodes.append(node.formula)
is_success_previous_node = node.success_previous_node()
if is_success_previous_node:

return is_success_previous_node

else:
return True

else:
try:

apply_next_state_rule (minimal_X_coverings_iterator)

except StopIteration:
self.failed_nodes.add(node.formula)
is_failed_previous_node = node.failed_previous_node()
if is_failed_previous_node:

return is_failed_previous_node * -1

else:
return False

System turn:
The main purpose of the system is to apply the next state rule to all the strict-future

formulas with corresponding saturation rules.

formula_after_next = apply_next_state_rule (node.formula)
successor_node = TableauNode(formula_after_next, depth+1, node.previous_node)
is_open = self.tableau(child_node, ENVIRONMENT_PLAYING, depth+1)
return is_open
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6.9 Automatic benchmark generation

The generation of automatic tests is very important for the verification and testing of the
prototype. In addition, through multiple executions, we can detect areas in which the
prototype can be improved.

The structure of the test will depend on how many environment variables, system
variables and what temporal system interval you want to include in the benchmark.

Number of environment variables = 3
Number of system variables = 2
System temporal interval = [1,10]

Once these parameters have been set, we establish two different AND-formulas; one
for the environment variables and the other for the system formulas.

Environment AND-fomula = (p0_e & p1_e & p2_e)
System AND-formula = (G[1,1000](s0) & G[1,1000](s1) )

And we create an implication between both, being the conjunction system formulas
the logical consequence.

Initial Formula
True

Safety Formula
(p0_e & p1_e & p2_e) -> (G[1,10](s0) & G[1,10](s1) )

Environment Global Constraints
True

At this point, the above specification is realizable and generates an open tableau but we
also need automatic benchmark to test unrealizable specifications. Therefore, we include
the negation of one of the temporal system formulas so that the specification becomes
unrealizable.

Initial Formula
True

Safety Formula
(p0_e & p1_e & p2_e) -> (G[1,10](s0) & G[1,10](s1) )
F[1,10](-s1)

Environment Global Constraints
True

64



6.10. Benchmarking

6.10 Benchmarking

In the following tables we will show the results of testing both the examples used during the
memory (Table 6.2) and some of the automatically generated tests (Table 6.3 and 6.4). Note
that ne refers to number of environment variables and ns to number of system variables.

File Corresponding Example Expected Result Result Time(s)

benchmark1.txt Example 5.5 Open Tableau Open Tableau 1.06 s
benchmark2.txt Example 5.6 Closed Tableau Closed Tableau 2.32 s
benchmark3.txt Example 5.7 Open Tableau Open Tableau 1.69 s
benchmark4.txt Example 5.8 Open Tableau Open Tableau 1.71 s
benchmark5.txt Example 5.9 Open Tableau Open Tableau 1.76 s
benchmark6.txt Example 5.10 Closed Tableau Closed Tableau 5.12 s
benchmark7.txt Example 5.11 Open Tableau Open Tableau 23.16 s

Table 6.2: Memory examples Benchmarks

File ne ns Expected Result Result Time

benchmark_1_1_[1,10].txt 1 1 Open Tableau Open Tableau 1.53 s
benchmark_1_8_[1,10].txt 1 8 Open Tableau Open Tableau 9.86 s
benchmark_5_3_[1,10].txt 5 3 Open Tableau Open Tableau 20.36 s
benchmark_5_5_[1,10].txt 5 5 Open Tableau Open Tableau 46.16 s
benchmark_5_8_[1,10].txt 5 8 Open Tableau Open Tableau 121.98 s
benchmark_8_1_[1,10].txt 8 1 Open Tableau Open Tableau 85.9 s
benchmark_8_8_[1,10].txt 8 8 Open Tableau Open Tableau 1031.55 s

Table 6.3: Realizable Automatic Benchmarks

File ne ns Expected Result Result Time

benchmark_1_1_[1,1000].txt 1 1 Closed Tableau Closed Tableau 0.35 s
benchmark_1_8_[1,1000].txt 1 8 Closed Tableau Closed Tableau 0.44 s
benchmark_5_3_[1,1000].txt 5 3 Closed Tableau Closed Tableau 0.41 s
benchmark_5_5_[1,1000].txt 5 5 Closed Tableau Closed Tableau 0.51 s
benchmark_5_8_[1,1000].txt 5 8 Closed Tableau Closed Tableau 0.44 s
benchmark_8_1_[1,1000].txt 8 1 Closed Tableau Closed Tableau 0.39 s
benchmark_8_8_[1,1000].txt 8 8 Closed Tableau Closed Tableau 0.48 s

Table 6.4: Unrealizable Automatic Benchmarks
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Referring to unrealizable benchmarks, Table 6.4 shows a good performance when the
branch is closed due to an inconsistent node (see Definition 5.1). However, the times
obtained in “benchmark2.txt” and “benchmark6.txt” are higher than expected because in
the AND-nodes (see Definition 5.1a) the system is not able to choose as first option the
successor that fails in the next state and, therefore, the successor that closes the node.
Consequently, as it is an AND-node, we develop branches that will be superfluous when
the node is closed.

Looking at Table 6.3 and the generated traces, we notice that when a node creates
a move mi without environment variables we can improve the prototype performance
because, at this point, we can decide whether the set of formulas inmi is consistent without
using a SAT-solver. Moreover, as our syntax only contains temporal operators we can
ensure the satisfiability by checking the absence of inconsistencies.

In conclusion, although the prototype works well there is a lot of work ahead. Testing
with new and extensive collections of benchmarks will help us to significantly improve the
performance of the prototype.

66



CHAPTER 7
Conclusions and Future work

We have introduced the first tableau method to decide realizability of a safety specificaiton
modelled by a sublanguage of LTL. For that, we have defined a new normal form of temporal
formulas (TNF) which precisely capture the information that each player (environment
and system) has to reveal at each step. Furthermore, in spite of the fact that the objective
of developing a functional prototype for solving LTL realizability and synthesis problem by
a tableau algorithm has been achieved and shows promising results, there is still a lot of
work ahead.

Our most urgent future work is to experiment with a wide collection of benchmarks
in order to improve the performance of the prototype. We want to extend the method to
more expressive languages, including the handling of richer propositional languages (like
numeric variables and enumerates) by combining realizability tableau rules with tableau
reasoning capabilities for these domains. Moreover, we also plan to compare our results
with other state-of-art LTL Realizabity and Synthesis tools like AbySynth.
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