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Abstract

Quantum circuits o�er a di�erent approach to process data through quantum
operations and measurements of quantum states. At the same time, the increasing
number of advances in technology has opened a path to turning these quantum
circuits into building blocks of a machine learning model. The transition of data
from classical to quantum and reverting it from quantum to classical o�ers a
presumably much more nuanced and diverse form of learning the data instead of
using two di�erent scenarios separately.

The idea consists on combining these two scenarios meaningfully into a single
hybrid classical quantum model and observe how these two settings may o�er
value instead of only focusing in one or another. Therefore, the challenge consists
on dealing with a machine learning problem using three di�erent means; namely,
quantum models, classical models and hybrid classical quantum models and make
an assessment of the procedure’s design, techniques employed and infrastructures
built.

In particular, the machine learning task belongs to a binary classi�cation prob-
lem of an unbalanced dataset. Given that the drive of the comparison between
classical and quantum means stems from evaluating and comparing their perfor-
mance, the already hard and complex underlying pattern representation from the
features, owing to the presence of unbalanced class distribution, is an adequate
choice. The unbalanced dataset contains a binary classi�cation problem of transac-
tions being either classi�ed as fraud or as valid, the former class being considerably
lower in number.

Apart from the machine learning approach and the di�culty of the task, the
quantum model addition is developed by picturing how the quantum tools brought
to the table can be used to achieve a possibly better representation and pattern
description of such complicate unbalanced data sets. The main focus is exploring
data representation in quantum circuits using di�erent types of embeddings, the
variational quantum classi�er model for classi�cation, the interpretation of an
observable as a Hermitian operator in quantum mechanics and the come and forth
between classical and quantum communication.
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CHAPTER 1
Introduction

In a more than ever connected world where information of every and any kind
is available and accessible, technologies, methodologies and distribution of that
knowledge are key parts to build the current information society. Information of all
kinds is distributed under demand and communication technologies are the norm
causing ripples in education, economy, health, government and, at its very core,
social interactions.

However, analyzing raw data in most cases leads to a di�cult stage of recog-
nizing the nature of the data and the hidden patterns within itself. Understanding
and learning the patterns found in data is the purpose of many machine learning
approaches. However, the complexity of the data, its incomplete or unordered pre-
sentation and in general the lack of any type of convention is a huge impediment.
More often than not the data is presented in unconventional forms that require
some processing before even considering learning from it, since the data is not
necessarily collected thinking about how di�erent machine learning approaches
might handle it or how to bene�t the speci�c architectures using data types that
enhance learning processes. This is generally an afterthought unfortunately and,
as a result, it is often tied to using preprocessing steps such as sampling of cases or
handling noise present in the data.

Amidst the sea of data collections and data sets, some of the hardest types of
these data collections include unbalanced distribution of classes, which means that
there not the same amount of labeled cases of each type and, therefore, the training
process will be fed with more cases of certain classes and few of others unless some
prior steps are taken to handle the situation. These kinds of datasets, specially
when the class distribution is completely unbalanced, can pose to be a challenging
scenario to learn the underlying pattern correctly, often leading to over�tting a
class. Moreover, in unbalanced datasets, if it was not enough with the terrible class
distribution already, the nuance required to separate cases with the given features
does not have enough time to be polished.
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1. Introduction

Pattern recognition of data to later ful�ll a speci�c task is the very soul of
machine learning. Classical computers have achieved excellent performance in
learning from data and choosing wisely a machine learning model or a suitable
algorithm that performs outstandingly or, at least, can provide meaningful results.
Machine learning approaches, specially based on neural networks, are in the eye
of the storm right now, thank to their capability to learn nonlinear and complex
functions from data vectors to improve how the data is processed with optimization
methods (gradient descent methods). In comparison linear or logistic regression
methods fall short for complex data sets with nonlinear underlying functions which
neural networks can tackle with the nonlinearity present in their activation function
for instance.

In this context, the design of a novel approach to the classi�cation task per-
formed on these types of unbalanced datasets has been envisioned. Quantum
computing has opened a path to learning patterns and grasping the logic and be-
haviour of the features through more distinctive methodologies. The achievable
computational performance with the more re�ned and subtle incorporation of
quantum mechanics leads to quantum speedups. As a result, the main focus of the
project is a joint e�ort of both classical and quantum algorithms to create hybrid
classical-quantum classi�ers.

While separately classical algorithms and quantum algorithms already show
promise in their own departments (such as quantum algorithms in simulations),
the intention of blending them into a single model that includes a classical stage
and a quantum stage lies in observing how they can either support one another
for a better classi�cation performance or, on the other hand, hinder that same
performance or not o�er any notable improvement for the time being.
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CHAPTER 2
The aims of the project

The aims of the project are geared towards learning relevant quantum machine
learning methods that can, in theory, be more pro�cient when learning more
complex patterns and when reducing the computational cost associated to classical
machine learning methods. Despite the current in development and growing
quantum industry, some of the already created and constructed quantum algorithms
are showing promising future prospects.

Quantum mechanics allow for a di�erent approach to machine learning. At the
very core, quantum machine learning is sustained by quantum gates that process
quantum data vectors and quantum parameter vectors to learn in conjunction with
unitary operations using the aforementioned parameters that best characterize how
data is processed in a quantum circuit and result in the measurement of the �nal
quantum states. The study of some prime examples of relevant quantum algorithms
such as Boltzmann machines or linear algebra related methods such as quantum
principal component analysis is part of the process to assess the current capabilities,
bene�ts and limitations of quantum machine learning and quantum computing in
general.

The ideal scenario when processing data is to have a meaningful feature space
and well distributed cases over the dataset. However, raw datasets more often than
not have large feature spaces adding complexity but not necessarily having good
quality representations in return. Moreover, the class distribution of the data can
many times be irregular and unbalanced, which leads to di�culties in the training
phase of many machine learning approaches and requires preprocessing techniques
to compensate the issue (which still doesn’t guarantee better performance when
generalizing).

Given the properties of quantum mechanics (quantum superposition or quantum
coherence, for instance) and the amount of data that can be stored and manipulated
thanks to quantum states’ probability amplitude representation, quantum machine
learning approaches that tackle with this kind of problems are the main focus. The
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2. The aims of the project

particular machine learning task to solve is the classi�cation problem of unbalanced
datasets using quantum machine learning algorithms. Among quantum machine
learning algorithms that serve this purpose, the quantum variational algorithm is
the quantum algorithm to showcase a study on and evaluate the performance of.

The �nal step involves going a step further and observing both classical ma-
chine learning approaches for classi�cation, such as neural networks, and quantum
machine learning approaches for classi�cation using the quantum variational algo-
rithm stand against each other. And, to top it o�, a hybrid classi�er combining both
machine learning paradigms for classi�cation purposes is considered. Therefore,
the objective is not only a direct comparison between both classical machine learn-
ing approaches and quantum machine learning approaches, but also an opportunity
to combine and assess the new possibilities the combination of both can deliver.

All in all, the goals of the project can be gathered in the list below:

• The study of notable and relevant quantum algorithms for linear algebra and
machine learning.

• The potential quantum machine learning methods hold, and the construction
of a speci�c design of a quantum variational algorithm to �t the classi�cation
needs.

• The application of the quantum variational algorithm to solve classi�cation
problems as well as including classical machine learning methods.

• The creation of a hybrid classical quantum classi�er that can learn patterns
combining the best of both worlds.

4



CHAPTER 3
Background

Machine learning has produced impressive results when tackling with complex
problems such as natural language processing tasks, image processing tasks, time
series prediction or various AI related operations. In general, building a model that
can learn from data autonomously and solve a speci�c task with stellar performance
is associated usually with machine learning in these times.

The combination of these sophisticated machine learning approaches with
the new and wide-spreading quantum algorithms is the foundation of quantum
machine learning. The main concepts of quantum machine learning are explored
[3] and the immediate application through tensor networks with more classical
systems is presented [4] in this chapter.

3.1 Machine learning scaling from classical to
quantum systems

Statistical patterns recognition in classical systems is the core of the machine learn-
ing process when processing data. Classical systems have proved to be incredibly
capable of achieving high performance when learning from data the particular
scheme behind it, and, actually, generate that same data following the statistical
patterns detected.

However, quantum mechanics show a slightly di�erent behaviour in statistical
pattern recognition. That is, the statistical patterns are more often than no con-
sidered to be irregular and defy the very intuition. Such contrast, in turn, is the
main appeal (or vision) quantum mechanics can provide and make the di�erence
against commonly used methods such as deep neural networks of some speci�c
kind depending on the nature of the data.

Therefore, the pursuit of introducing quantum mechanics in machine learn-
ing stems from the principle which stands that, if quantum processors hold the
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3. Background

possibility to learn statistical patterns labeled computationally di�cult for even
already well performing classical systems, then it is not far fetched to regard the
same statistical patterns as di�cult to recognize with a classical system as well.

Even if the statistical patterns are not that di�cult to recognize to begin with,
whether a classical system or a quantum system is involved, the ease with which
the quantum system computational performance can surpass the classical system
still remains. The interest is in both senses, one for the computational di�culty
reduction, and the other for the di�cult statistical pattern recognition.

Nevertheless, behind the main idea, quantum algorithms for machine learning
that �t this description of e�ciency and performance are required. Quantum
systems that process a number of instructions with the purpose of �nding a solution
to a problem describe a quantum algorithm, which is a fundamental part of the
quantum machine learning process.

Depending on the task at hand, there might be a quantum algorithm that can
�t the data e�ectively and learn statistical pattern unknown, which provide never
before seen insight, or on the contrary, a �tting quantum algorithm might not exist
at all. The potential of quantum algorithm to surpass their classical counterparts
is known as quantum speedup and can be used as a measure to know the level of
improvement of a quantum system over the classical system.

The quantum speedup can be viewed as a formal theorem with mathematical
proof behind to back up from scienti�c perspective, or as a more grounded one,
where a more realistic approach with restricted features in the computer and a
solid scaling advantage is introduced for a few problem sizes. Unfortunately, the
quantum algorithm used in quantum machine learning does not have always the
perfect performing classical algorithm to compare it with. That can be for either the
magnitude of the problem or there is no guarantee that the current best algorithm
can’t actually be improved.

The scaling advantage from a classical system to a quantum system can be
given by a benchmark. The improvements given the quantum speedup could be
witnessed in the accuracy of the solver and the sampling of quantum systems, for
instance. However, in the �eld of machine learning two scaling advantages stand
out: query complexity and gate complexity.

In case of using query complexity to measure the quantum speedup, the amount
of accesses to the data source is taken both for the classical version of the algorithm,
as well as for the quantum version of the algorithm. If the results show a favorable
minor amount of interactions with the source for the quantum algorithm than for
the classical algorithm, then it is concluded that a quantum speedup occurred.

On the other hand, the gate complexity refers to the total amount of quantum
elementary operation involved in the quantum algorithm and, in other words,
the total amount of quantum gates that are included. Ultimately, both methods
are idealized systems for the quanti�cation of the resources needed, that is, the
time required for the handling of the data and the computational cost of quantum
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3.2. Machine learning in classical systems

operations to name a few.
However, in a real world scenario, an idealization is not a viable method with-

out �nding a suitable and down to the ground representation or mapping to the
particular case at hand. Without it, the amount of resources scaling is unfeasible to
grasp and, as a result, they become unreliable methods that are not supported by a
reasonable foundation.

3.1.1 Quantum speedup
In a quantum computer, quantum mechanics allow for impossible phenomenons to
occur while processing and manipulating information in a classical counterpart,
such as quantum entanglement or quantum coherence. The constant evolution
since research about how a quantum computer would operate to the actual birth of
ever improving quantum computers have opened up the opportunity to develop
quantum algorithms that run in these quantum machines.

In result, quantum machine learning makes use of quantum algorithms to work
with data and learn patterns that classical methodologies can’t recognise. This
leads to obtaining a better performance from the quantum machine learning for
certain scenarios and problems, hence the name quantum speedup. Naturally, the
quantum algorithms rely on quantum computers and their features to approach
quantum machine learning in these systems.

Some tasks that show a signi�cant improvement over the classical approach
are the following:

• Unsorted search: Given an unordered database with N entries a quantum
computer is capable of �nding the desired entry in O(

√
N) while a classical

computer requires O(N). The resulting quantum speedup is
√
N .

• Invert matrices and transformations: These operations include Fourier trans-
forms on N points, sparse N × N matrix inversions and �nding out the
eigenvalues and eigenvectors of such matrices in polynomial O(log2N).
In comparison, the best algorithms for these tasks in classical systems are
O(N log2N) in contrast. The resulting quantum speedup is exponential over
the classical counterparts.

3.2 Machine learning in classical systems
Data analysis and machine learning algorithms in classical systems present di�erent
approaches depending the manner and nature of the data itself. On one hand,
classical systems perform data analysis techniques to extract knowledge and make
inference on the data. Some of the major techniques fall into data mining, cluster
analysis or regression analysis, such as polynomial interpolation, multiple linear
regression or hierarchical clustering to name a few.

7



3. Background

On the other hand, machine learning operations depend on the type of data
and learning that is desired, that is, whether the machine learning process will
include a supervised learning or unsupervised learning or a hybrid of both. Apart
from these, reinforcement learning methods also prevail in these systems, which
are often strongly tied with arti�cial intelligence tasks.

Supervised learning consists of building a machine learning model where the
dataset provides features with speci�c information and a corresponding label for
each entry of the dataset. In the training process, the label is predicted from the
features of the entry and compared with the true label of the entry to adjust the
parameters of the model accordingly. Therefore, the machine learning makes
predictions from di�erent cases about the value of the label.

Unsupervised learning covers machine learning models that learn from datasets
whose entries are not broken down in di�erent categories. Instead, each entry
includes a set of features, yet unlabeled. Learning the structure of the data and
often �nding the underlying information about the relationships between data
points is the objective of the unsupervised scheme. In case the data is both labeled
and unlabeled, the learning paradigm is called semi-supervised learning.

On a last note, reinforcement learning presents a di�erent learning system.
These variants of machine learning are based on a reward function for setting the
behaviour and decisions followed in the target environment and speci�c activity.
In consequence, how to react to di�erent inputs to favor the reward and reduce the
error produced. Generally, these methods require continuous training to hone the
wit of the model. For instance, when an agent learns to escape from another agent,
the reward and error function should improve whenever the agent is further in the
distance from the pursuer.

3.3 The importance of linear algebra

Linear algebra is present in a large number of data analysis and machine learn-
ing methods, since these methods are quite often full of matrix operations with
vectors of high dimensional data. For the quantum mechanics department, matrix
operations on vectors from high dimensional vector spaces. Speci�cally, the vector
space in a quantum mechanics based methodology is a complex vector space of
dimension n (|ψ〉 ∈ Cn).

A quantum state of a quantum computer with n qubits. Each quantum bit is a
quantum mechanics system including two possible states and, therefore, represented
as a two dimensional complex vector. Given a quantum system composed of n
qubits, the quantum state of such quantum system when performing a measurement
(collapsing through a projection an instant of the quantum system itself) has the
dimension 2n.

Quantum operations performed in a quantum system rely in these complex
vectors to represent the quantum state. In order to do so with many qubits and cap-
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3.3. The importance of linear algebra

ture the quantum state with a measurement, tensor products are used to represent
the joint state of many qubits, while de�ning the quantum state with a projective
measurement.

Quantum computer are capable of achieving a better performance in many cases
when undergoing basic operations in linear algebra. Evidence can be found with
Fourier transforms, searching for the eigenvalues and eigenvectors and �nding a
solution to linear equations in a complex vector space with dimension 2n. Particu-
larly, these examples can be calculated in polynomial time, which is exponentially
quicker to do compared to classical algorithms.

3.3.1 Fundamental concepts
3.3.1.1 Qubits

Qubits are the minimum quantum information storage, similar to bits in classical
computation. A single qubit is a quantum system composed of two states, the
smallest and most basic quantum system which ful�lls the properties found in
quantum mechanics. While a classical bit is restricted to only represent one state (0
or 1), a quantum bit can be in both states at the same time in a quantum principle
known as quantum superposition. Quantum superposition is one of the key factors
that allow the possibility to store many states into a single state and it’s necessary
to carry out quantum computing processes in many levels.

In order to determine the �nal state of a qubit, that is the outcome, a measure-
ment is performed to collapse the quantum bit into one of the two states (0 or 1).
However, a measurement of a qubit irrevocably changes its quantum state, and the
superposition of the two states is modi�ed in the process.

The qubit state can be represented as a superposition of the computational basis
states or, in other words, a single qubit is de�ned by a linear combination of the |0〉
and |1〉 states.

|ψ〉 = α|0〉+ β|1〉 (3.1)

The arbitrary parameters α and β are complex numbers that correspond to
the probability amplitudes of the qubit. In consequence, the measurement of the
qubit in the standard basis using the Born rule would yield the outcome of state
0 with a probability of |α|2, while it would give the outcome of state 1 with a
probability of |β|2. Therefore, the absolute square of the probability amplitudes are
the probabilities for each of the outcomes and satisfy |α|2 + |β|2 = 1.

A suitable representation of a qubit graphically is the visualization of the qubit in
the Bloch sphere 3.1. Unlike a classical bit which would only be either at one of the
ends top or bottom (where the computational basis states |0〉 and |1〉 are speci�cally).
The surface of the Bloch sphere represents the entire space of quantum states
available for a qubit, which are obtained as linear combinations of computational
basis states.

9



3. Background

Figure 3.1: A Bloch sphere representation of a quantum state from Wikipedia. The Bloch
sphere surface corresponds to quantum states, such as the quantum state |ψ〉.

3.3.1.2 Quantum gates

In quantum computing, in order to apply di�erent types of operations and transfor-
mations on a qubit a speci�c quantum circuit is devised. These quantum circuits
include quantum operators that, similar to how logic gates work in conventional
digital circuits in classical machines, manipulate and transform the initial qubit.
They are called quantum gates in result.

One of the many properties of the quantum gates is their reversible nature.
This occurs owing to the mathematical representation of quantum gates as unitary
operators, speci�cally unitary matrices with a de�ned basis (generally the com-
putational basis is selected). A number of quantum gates can be found in �gure
3.2.

3.3.2 Quantum principal component analysis
PCA (Principal Component Analysis) strives to represent a dataset with new un-
correlated variables (or components in this case) that stem from the original set
of variables. The objective is to extract information from the original variables,
so that the components can bring out the essential information in a much more
compact form. It is a common practice to reduce the number of variables or to
detect correlation between variables. However, the method to achieve this di�ers
in quantum systems to the one employed in classical systems.
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3.3. The importance of linear algebra

Figure 3.2: Standard quantum gates transformations with their corresponding quantum
circuit representation and matrix representation from Wikipedia.

3.3.2.1 Classical methodology

In each variable vector ~vi, the value for each case of the dataset is presented. From
them, the covariance matrix is obtained by Mc =

∑
i ~vi~vi

T , which contains the
correlations between variables of the dataset. For instance, consider the price and
the supply of a product. In case the supply of a product su�ers from a supply scarcity,
specially if its demand is high, the price is bound to increase as well. Therefore,
the correlation between the price of a product and its demand is probably going to
reach a considerable amount of correlation.

The PCA is carried out by diagonalizing the correlation matrix and breaking
down the matrix into its eigenvalues λi and eigenvectors ~vi, so that the correlation
matrix is represented as Mc =

∑
i λi~vi~vi

T . Given the symmetry of the covariance
matrix Mc, the eigenvectors associated to the eigenvalues form an orthonormal
basis (in case the eigenvalues are di�erent across the eigenvectors).

In order to detect which are the principal components among all the eigen-
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3. Background

vectors, an observation is made to how large the eigenvalues associated to the
eigenvectors are. If a minority of the components present a substantially larger
eigenvalues, then the eigenvectors associated to those few eigenvalues constitute
the principal components of the data. The principal components provide insight
about the inner relationships existing among the variables in an endeavour to
capture the largest amount of information in a lower dimension. All in all, classical
approaches to PCA take O(n2) where n is the dimension of the vector space, for
instance Rn.

3.3.2.2 Quantum methodology

For the case of qPCA (quantum principal component analysis) [5] on a standard
dataset, a data vector ~vi (with dimension n) is randomly selected and mapped into
a quantum state |vi〉 with the use of qRAM (quantum random access memory) [6]
method. The resulting quantum state |vi〉 has a total of log n qubits, while the
qRAM requires O(n) operations split into O(log n) steps that work in parallel.

A density matrix of a quantum state provides knowledge about the probability
of an arbitrary outcome occurring when performing a projective measurement
of the quantum system. Particularly, a density matrix is a positive semi-de�nite
Hermitian operator of trace one of the quantum system’s Hilbert space. Considering
the quantum state |ψi〉, whose probability is pi, the probability for an outcome m
with the projective measurement when using projectors Πm is calculated as

p(m) =
∑
i

pi〈ψi|Πm|ψi〉 = Tr

[
Πm

(∑
i

pi|ψi〉〈ψi|

)]
(3.2)

where the density matrix ρ is de�ned as follows:

ρ =
∑
i

pi|ψi〉〈ψi| (3.3)

The data vector ~vi has been randomly selected, as such the density matrix
associated to the quantum state is ρ = ( 1

N
)
∑

i |~vi〉〈~vi| where N is the total amount
of data vectors. This assumes that the quantum state of each of the data vectors is
equally probable. The density matrix bears a striking similarity with the covariance
matrix employed in the classical methodology, with the only di�erence being the
probability factor.

Multiple iterations of sampling the data with density matrix exponentiation
[7] and quantum phase estimation [8] algorithm, which looks for the eigenvalues
and the eigenvectors of a matrix, lead to representing the data vector as a quantum
vector |~v〉 and break it down into the principal components |ck〉. That is the largest
eigenvalues and eigenvectors of the covariance matrix. This quantum algorithm
takes time complexity and query complexity O((log n)2), which is signi�cantly
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3.3. The importance of linear algebra

and exponentially better in performance compared to the standard and classical
approach of calculating PCA.

3.3.3 Quantum support vector machines

The basic methods for supervised machine learning include support vector machine
and perceptrons. In these methods, the objective is to draw hyperplanes in the
variables’ space, so that di�erent classes of data points don’t fall into the same
subspace restricted by the edges and borders of the hyperplanes. In other words,
each subspace should contain mostly (if not only) data points that are labeled with
one class in particular. This allows to identify the class of the data depending of
the subspace it fall into and make an accurate prediction.

These models learn parameters that set the boundaries of the hyperplanes,
that is, the weights are adjusted to separate data points that fall into di�erent
categories. The main appeal of using SVM is the capability to search for nonlinear
hyperplanes through kernel methods. In particular, classi�ers based on SVM are
specially powerful in the image segmentation department as well as in biological
analysis.

3.3.3.1 Classical methodology

From a data set with data points xi and labeled with yi ∈ {−1, 1} for each one of
them, the objective is to �nd the hyperplane following the equation wx− b = 0
that optimally separates the space for the best classi�cation of the data points.
The weight vector, whose weights are yet to be learned in the training process,
correspond to the normal vector of the hyperplane, which when normalized, the
nearest points of di�erent sides and di�erent classes are in the hyperplanes wTx−
b = ±1. This is shown in �gure 3.3.

Actually, the distance from the hyperplane to the closest point (or points in some
cases) in each of the sides is 1

|w| . Given the fact that the objective is to maximize the
distance as much as possible for the sake of spliting the space optimally, the method
equivalently is trying to minimize |w| with the constraint ∀i

[
yi(w

Txi − b) ≥ 1
]
.

The minimazation process is carried out with Lagrange multipliers as follows:

L(w, b, λ) =
1

2
|w|2 −

∑
i

λi
[
yi(w

Txi − b)− 1
]

(3.4)

When calculating the partial derivatives of L with respect to λ equal to 0, end
up being the constraints. For the case of the partial derivatives of L with respect to
w equal to 0 gives the following result:

∂L
∂w

= w −
∑
i

λiyixi = 0 (3.5)
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Figure 3.3: SVM illustration in a two dimensional space. Source: Wikipedia.

Therefore, w will be adjusted according to the support vectors (the closest data
points), as noted when isolating the normal vector of the hyperplane w in the
equation above.

w =
∑
i

λiyixi (3.6)

Lastly, the partial derivative of L with respect to b equal to 0 is obtained:

∂L
∂b

=
∑
i

λiyi (3.7)

These �nding and then placed in the original Lagrange operator, which result
in:

∑
i

λi −
1

2

∑
i

∑
j

λiλjyiyj(xixj) (3.8)

The strategy is to maximize this expression 3.8 by �nding the λi that does it
with the constraint 3.7. The algorithm that follows this strategy is the coordinate
descent based one.

In many cases, however, it is not possible to separate the space into subspaces
that correspond to a speci�c class e�ectively with a hyperplane given how spread is
the data as shown in �gure 3.4. The solution to that problem is to transform every
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Figure 3.4: Kernel function on a data set for a support vector machine. Source: Wikipedia.

data point to a new feature space in which a hyperplane can be placed properly.
This transformation is the kernel function K(xi, xj) that acts on the data points
and replaces the dot product on equation 3.8.

The maximization problem from equation 3.8 is transformed into the following
system of linear equations with some tweaks, where every pair of data points kernel
function is stored as Kij = K(xi, xj):

(
0 1
1 K

)(
b
λ

)
=

(
0
y

)
(3.9)

In order to calculate the time complexity running a support vector machine
algorithm, consider the datapoints xi ∈ Rn from a dataset where 1 ≤ i ≤ m, so
that there are a total of m data points. Each entry Kij takes O(n) and, therefore,
all entries from K take O(m2n) to compute. A system of linear equations takes
time O(m3) to be solved in a classical computer, which in total leads to the entire
process having a time complexity O(m2(n+m)).

3.3.3.2 Quantum methodology

Following the same trend as the classical method, the quantum support vector
machine [9] is a staple quantum machine learning algorithm. The most recent
methods to perform quantum support vector machine lean on using a least-squares
quantum support vector machine that uses the qBLAS subroutines (an open source
quantum basic linear algebra and quantum simulation library) e�ectively.

In the classical methodology, the major computation cost came from both the
calculations for every pair of data points’ kernel function Kij and solving a system
of linear equations. Both of these problems can be tackled with quantum algorithms
to reduce the computational cost.

The dot product of two di�erent data points xi · xj , whose |xi| and |xj| are
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known, can be computed in this form:

xi · xj =
|xi|2 + |xj|2 − |xi − xj|2

2
(3.10)

This trims the problem to calculating the distance |xi − xj|2. In order to accom-
plish this, two quantum states are de�ned |ψ〉 and |φ〉, which require qRAM to be
built and stored on demand.

|ψ〉 =
1√
2

(|0〉|xi〉+ |1〉) (3.11)

|φ〉 =
1√

|xi|2 + |xj|2
(|xi||0〉 − |xj||1〉) (3.12)

The �nal step is to carry out a swap test on both quantum states |ψ〉 and |φ〉 and
make a measurement afterwards, as shown in �gure 3.5. The quantum state after
the swap test is illustrated in equation 3.13, which indicates that the probability of
measuring 1 is 0 if both quantum states |ψ〉 and |φ〉 are equal (which is essential
to ful�ll the requirements every distance function must ful�ll to be regarded as
such). Once the swap test results are obtained, the desired distance is calculated as
pij
√
|xi|2 + |xj|2, where pij refers to the probability of measuring 1 in the swap

test. All in all, the time complexity of calculating this distance is O(log n).

Figure 3.5: Quantum swap test. Source: Wikipedia.

1

2
(|0〉(|φ, ψ〉+ |ψ, φ〉) + |1〉(|φ, ψ〉 − |ψ, φ〉)) (3.13)

In order to solve the system of linear equations, a matrix inversion is required
to the equation 3.9, which is achieved by using the HHL algorithm (through quan-
tum phase estimation and matrix inversion). This algorithm is an indispensable
subroutine to invert systems of equation and �nd solutions to systems of equa-
tions formulated as A~x = ~b in quantum computers. Both vectors are quanti�ed
as quantum states |x〉, |b〉 ∈ Cn with log2 n qubits. The matrix A is assumed to be
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3.4. The problem of loading classical data into quantum computers

Hermitian, in case this is not true, the space is expanded to ensure this fact. The
presented equation A|x〉 = |b〉 is solved multiplying both sides with the inverse of
the matrix A−1.

The HHL algorithm assumes that |b〉 =
∑

n bn|En〉. |En〉 is an eigenvector of A
and its eigenvalue λn ≥ Λ. With quantum phase estimation applied under A, the
eigenvalue λn is calculated. Afterwards, the ancillary qubit is rotated with an angle
of arcsin Λ

λn
and the quantum phase estimation is undone, which results in:

∑
n

bn|En〉

(
Λ

λn
|1〉+

√
1− Λ2

λ2
n

|0〉

)
(3.14)

If the ancillary qubit is measured with observation 1, each of eigenstates is
divided by λn, a�ecting the inverse of the matrix A−1. The state preparation circuit
is required to be applied O(‖A‖

Λ
) times once amplitude ampli�cation is also applied.

The HHL algorithm has computational complexity of O((log n)2) to �nd the |x〉,
while the best classical algorithm in comparison takes O(n log n) to �nd the ~x.

3.4 The problem of loading classical data into
quantum computers

Before a quantum computer starts working the information and data must be loaded
and passed into it. Likewise, when outputting the result, it has to be processed with
classical means. All this leads to certain bottleneck and overhead issues that occur
in certain algorithms and problem scenarios.

Many quantum algorithms such as HHL algorithm, least squares, qPCA, quan-
tum support vector machines and quantum methodologies that require loading
classical data �rst are faced with this problem, that is, loading a large amount of
data beforehand. It can be quite taxing in the before and after algorithm parts in
some cases which can lead to requiring an exponential time [10]. Despite the fact
that qRAM can elude the problem, the shortcomings of its use are too costly to
assume when the amount of data is enormous.

Most of the linear algebra problems, as well as combinatorial optimization
problems depend on using qRAM in large scale to circumvent the input data problem.
One of the exceptions in the linear algebra set of quantum algorithms is the quantum
algorithm to perform a topological analysis of the data [11].

In the output problems side of things, the situation is bleaker. Leaving least
squares �tting and quantum support vector machines aside, linear algebra problems
su�er from output problems. This is can be observed both in the solution vector
|x〉 of the HHL algorithm or the principal components of the qPCA, whose classical
quantities are exponentially di�cult to estimate.
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With all this put into consideration, the optimization of quantum algorithms
is still far from over to ful�ll the necessities the machine learning task requires
to solve. Among these problems, e�ectively estimating the cost of running these
algorithms and building quantum computers according to the needs of the machine
learning problem are specially crucial for o�ering a quantum approach to machine
learning tasks while still being feasible to manage.

3.5 Deep quantum learning

Classically approached neural networks provide unparalleled performance and
methods for machine learning. Deep quantum learning networks are also fol-
lowing the same track. These quantum networks are usually built into quantum
information processors, among which are included quantum annealers (for combi-
natorial optimization problems, for instance) and programmable photonic circuits
[12, 13, 14].

Mainly, the advantage of deep quantum learning over classical means is the lack
of need on vast and general purpose quantum computers. Quantum annealers, as
mentioned above, are excellent examples of quantum processors whose construction
and scale-up potential are easier than the ones found in general purpose quantum
computers. As a result, quantum anneals are candidates to consider when build a
deep quantum neural network and are available to the market. One of the providers
of quantum annealers service is the D-Wave platform for quantum computing.
Their quantum anneals are specially built as trainable transverse Ising models with
the possibility to return the thermal states of both classical and some quantum spin
systems.

The main incentives for developing quantum approached machine learning
algorithms rely on their ability to work with quantum data, which allows a reduced
representation of classical data than can be stored in qRAM based methods and re-
trieved quickly and reliably, and the quantum speedup potential that some methods
have already showcased in contrast to their classical counterpart.

Nevertheless, the are some hindrances that di�cult the path in some cases. The
input and output problem have already been discussed with their costly exponential
estimation on quantities that cause bottlenecks and overheads. Moreover, the
activation function is linear in quantum mechanics, unlike the nonlinear activation
functions that are found usually in classical neural networks.

Another thing to consider is the current limitation of quantum computers
themselves. In classical neural networks �nding deep neural networks with many
connections it is not far fetched, however, such di�cult and complex connections
are sometimes di�cult to �t or embed into the quantum computer itself, which
e�ectively makes the current development in quantum computers a constraint for
more complex quantum neural networks to come to fruition, not to mention the
placement and layout of the qubits themselves in the quantum computer that limits
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the embedding process itself.
Finally, backpropagation is another of the most di�cult stages to implement in a

quantum mechanics based algorithm. In a classical environment, backpropagation
is conducted in every output layer of the network during the training phase. This
goes against one of the properties of quantum mechanics, which is the quantum
superpositions of many qubits being lost in the process.

3.5.1 Quantum feedforward neural networks
Since there are many examples on how to propose a quantum feedforward neural
network, in order to illustrate a working quantum feedforward neural network the
one presented here is used [1] and showed in the �gure 3.6.

Figure 3.6: Quantum feedforward neural network from [1].

In this example, quantum gates substitute the classical neural network layers and
the information processed by the combination of di�erent quantum gates is the input
quantum state |ψ〉 and the ancillary qubit |1〉. The commonly initialized and trained
weights and biases are now changed by the parameters θi of the quantum gates,
which generally refer to how much the quantum state is transformed depending
on the particular type of quantum gates utilized. Finally, the output quantum state
is measured and the class or label (out of two possibilities) corresponding to the
input quantum state is selected. The entire quantum circuit is compressed into an
unitary operation U(θ).

In order to train the quantum feedforward neural network the loss function
proposed is:

C(θ, z) = 1− l(z)〈z, 1|U †(θ)Yn+1U(θ)|z, 1〉 (3.15)

The input to the quantum gate is z and the label function l(z) returns the true
label of the input ±1. If the network labels the input correctly the cost function
return 0 otherwise a larger value is returned. The parameter optimization function
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is stochastic gradient descent (SGD) to minimize the loss function as much as
possible. The process to calculates the gradient di�ers to the standard however,
since no backpropagation is involved in this quantum neural network. Many
iterations are processed to gather enough concluding information to calculate the
partial derivatives, that is, the output is evaluated to have a de�nitive output and,
therefore, ensure a precise gradient.

One of the bene�ts of this particular quantum feedforward neural network lies
in the stability of the gradient and its reluctance to explode, which is a common
issue in many of the classical machine learning neural networks (often solved by
approaching the gradient function more cautiously). Since there is no nonlinear
function, learning the patterns that classify di�erent cases accordingly can be put
into question. However the label function works, despite the requirement to build
a quantum circuit with exponential depth depending on the particular case.

3.5.2 Quantum convolutional neural networks

Convolutional neural network excel in image recognition tasks and image process-
ing or detection. A quantum convolutional neural network has been proposed that
o�ers an interesting quantum application [2] and is show in �gure 3.7.

For the classical version of CNNs, three main layers constitute the foundation
of CNNs. In the convolutional layers (C) the image is processed and read into
feature maps, in the pooling layers (P) the feature maps are reduced according to
the pooling technique applied (max-pooling for example) and �nally the features
obtained from the convolution and pooling layers are processed and classi�ed with
fully connected layers (FC).

For the quantum version of CNNs, the �ltering, the pooling and the classi�cation
are replaced with unitary operations on qubits. In the convolutional layer U , each
�lter i is changed with the unitary operator Ui acting in two qubits simultaneously
across all qubits that are next to each other. In the pooling layer V , each pooling
layer number k is modi�ed after measuring half of the total quibits and applying a
one qubit operation Vk on the rest of the qubits, which is a�ected by the outcome of
the qubit measured next to it. The pooling layers Vk operations include nonlinearity,
which allows for more complex pattern to be detected.

The �nal part of the QCNN is similar to the quantum feedforward neural
network, that is, quantum gates replace the fully connected layers. As in the
previous case, there is no backpropagation and the optimization function is, once
again, stochastic gradient descent.

3.5.3 Quantum Boltzmann machines

Quantum Boltzmann machines are a prime example of quantum neural networks.
One of the strong point for quantum methods is their capacity to cause the system
to have a quadratically faster thermalization [15, 16, 17, 18]. Another improvement
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Figure 3.7: Di�erent approaches to build CNN from [2]. A classical CNN in a, a quantum
CNN in b and QCNN comparison in c.

in the quantum Boltzmann training is the improved method of sampling. The
neuron activation event has a stochastic behaviour in Boltzmann machines, which
requires multiple iterations to �nd successful results. This also has an impact on
how updating weight of the Boltzmann machine a�ect the performance achieved.
In opposition to the limitation classical approaches posses, quantum Boltzmann
machines make use of quantum coherence during the training phase, which drasti-
cally (in a quadratic rate) reduces the number of samples required to improve the
performance. Furthermore, the addition of qRAM provides faster access both in
time and number to the data in contrast to classical means [17].

A classical Boltzmann machine has two type of neurons, either visible (set of
visible neurons V ) or hidden (set of hidden neurons H). These neurons have one
binary value (vi, hi ∈ {0, 1}). The purpose of training a Boltzmann machine is to
learn the probability distribution of the training data and make the visible neurons
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act according to that probability distribution P (V ).

P (V,H) =
1

Z
e−E(V,H) (3.16)

The normalization factor Z is the partition function and the energy function
E(V,H) corresponds to the restricted Boltzmann machine case

E(V,H) =
∑
i

aivi +
∑
i

bihi +
∑
i,j

viWijhj (3.17)

where ai and bi are the bias of each neuron and W is the weight matrix with
visible neurons as rows and hidden neurons as columns. This is the case for the
restricted Boltzmann machines since there are no connections between neurons
of the same type. The objective in the training phase is to approximate the real
probability distribution Pdata(V ) through the probability distribution generated
by the Boltzmann machine PBM(V ). The similarity between both probability
distributions is measured using the Kullback–Leibler divergence for every existing
states of V :

KL =
∑
V

Pdata(V ) ln

(
Pdata(V )

PBM(V )

)
(3.18)

Since the probability distribution generated by the machinePBM(V ), the energy
function described by the weights a�ect the probability distribution. An optimiza-
tion function using a gradient descent algorithm looks for the partial derivative of
KL with respect to each weight of the weight matrix W and subtracts the value of
the partial derivative to the corresponding weight each case.

On the other hand, a quantum Boltzmann machine learns Hamiltonian parame-
ters wi where the input state ρdata for a speci�c set Hi can be approximated with
according to [19, 20]:

σ =
e−

∑
i wiHi

Tr
(
e−

∑
i wiHi

) (3.19)

The quality of the approximation for the visible neurons can be measured using
the quantum relative entropy. This measurement’s upper boundary is the distance
between the two states (when both ρ and σ are equal). Therefore, minimizing this
distance means minimizing the error and therefore improving the performance of
the Boltzmann machine.

S(ρdata||σ) = Tr(ρdata log(ρdata)− ρdata log(σ)) (3.20)
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The quantum relative entropy, despite being a fantastic measurement method
for two states, it can be hard to learn in practice. The gradient of the relative
entropy, on the contrary, is simpler to estimate:

∂wiS(ρdata||σ) = Tr(σHi)Tr(ρHi) (3.21)

With gradient descent the weight vector ~w is updated for η > 0:

~wt+1 = ~wt − η∇S(ρ||σ) (3.22)
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CHAPTER 4
Related work

For starters, quantum computing has been a slumbering technology for quite a
while until technological advances and progress in the integration of quantum
computing as an integral and standardized part of computation have been steadily
made. In recent years, di�erent methodologies developed have allowed plenty
of experiments and improvements in the application of quantum computing for
solving machine learning tasks of diverse natures. In this section some of these
methodologies are gathered and brie�y discussed to understand the motivation
behind the sudden raise of quantum computing and explain the intrinsic intention
behind building quantum classi�ers.

4.1 Associated topics
In many works, the progress of quantum machine learning is discussed [21, 3]
and how combining quantum computing with conventional machine learning
techniques may yield important bene�ts in the long run. In the state of the art
part, various quantum approaches already have been presented among which are
included quantum PCA [5], quantum deep learning methods [22] or quantum
support vector machines [23].

These methodologies showcase a leap in attainable performance that might suit
the interest going forward into the future as resources for quantum computing are
more available. In the same line, the idea of building a quantum machine learning
model arises naturally [24]. There is already a number of costly algorithms to
handle through classical means that are explored and o�er better performance when
processed with quantum computing mechanisms reaching exponential advantage
[25, 26].

Another aspect in quantum computing is the representation of the data itself
within the boundaries of quantum mechanics. These representations include �nd-
ing a suitable mapping to quantum environments for features in Hilbert spaces
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[27]. These mappings include embedding techniques such as quantum embedding
kernels [28] or quantum embeddings for machine learning purposes [29]. QUBO
(quadratic unconstrained binary optimization) problems (NP-hard problems) are
already processed in quantum computers using embedding algorithms [30, 31].

Quantum variational classi�ers o�er parameterized quantum circuits to build
a machine learning model from. Quantum variational classi�ers have been used
for learning particle physics [32]. Quantum classi�cation for predicting classes
through measuring an observable in selected quantum states for supervised learning
problems is a particularly robust approach in which quantum variational classi�ers
play a central role [33].

4.2 Contributions
The value of the project, in contrast with the presented work above, is expanding
the notion of variational quantum classi�ers into hybrid classical quantum classi-
�ers. By challenging the quantum variational classi�er with unbalanced data and
representing the quantum classi�er as a quantum circuit, two main possibilities
appear: the quantum variational classi�er can be integrated as a separate quan-
tum layer into hybrid functioning machine learning models in abstract thinking,
and, apart from that, current existing limitations when dealing with complex and
unbalanced data can be determined.

In other words, it is �rstly a combination between observing what quantum
computing o�ers in terms of capabilities in the �eld of machine learning for super-
vised machine learning problems with the current technological limitations and
resource hungry quantum systems and, secondly, whether the discussed improved
pattern recognition of quantum systems mixed together with the current perfor-
mance level of classical systems produces positive results when building a hybrid
classical quantum classi�er following the quantum variational classi�er scheme.
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CHAPTER 5
Variational quantum circuits

In the context of quantum algorithms, one of the most prominent examples of
a quantum algorithm that depends on some free and trainable parameters is the
variational quantum circuit. Variational circuits, often called quantum circuits with
parameters, follow the same common standards of many other quantum circuits,
which feature three fundamental characteristics.

The �rst part consists on the initialization of the quantum state at the beginning
of the quantum circuit. This requires an embedding process of the classical infor-
mation into the quantum information, so that the initial states can be processed by
the quantum circuit.

The second part corresponds to the quantum circuit U(θ) itself. The set of
trainable n parameters of the quantum circuit U(θ) are parameters θi for 0 ≤ i < n,
otherwise called the vector of parameters θ = (θ0, θ1, θ2, ..., θn−1).

Last, the measurement of the �nal quantum state in the quantum circuit. The
observable B̂ is built around the wires or qubits of the quantum circuit and the
selection of the observables is up to the preferred subset of wires without limitation.

The expectation values f(θ) of the parameters for each of the quantum circuits
they are used on are tied to the speci�c observable B̂ and express the cost associated
to solve the pertinent task at hand. Through these expectation values a cost function
is de�ned to assess the performance of the quantum circuit when solving the task.
Afterwards, the free parameters θ = (θ0, θ1, θ2, ..., θn−1) are submitted for tuning
them and, therefore, the parameters can be optimized reducing the cost function. An
example of a cost function f(θ) with vacuum initial states to draw the expectation
values goes as follows:

f(θ) = 〈0|U †(θ)B̂U(θ)|0〉 (5.1)

The training process of a variational quantum circuit di�ers not from classical
optimization algorithms. As such, the classical system sends requests to the quan-
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tum system and receives an output from the quantum side. The quantum reply is
transformed into classical data to optimize through an iterative method the best
possible parameters θ∗ to solve the given task.

Variational quantum circuits are currently shining in popularity given the tech-
nological constraints of quantum devices (the amount of qubits in physical devices
or the lack of �ne control in optimal embedding processes). These quantum circuits
are only capable of short quantum gate sequences when constructed, given the error
of the output when fault tolerance is not included in each of the quantum gates.
The core of every quantum algorithm is broken down into standard elementary
operations being inherently included in quantum systems.

The underlying value of the variational algorithm resides in having the quantum
circuit’s parameters optimized in the classical machine which allows, irrevocably, to
merging the procedure into a single pipeline. In result, the parameters to be tuned
de�ne the quantum algorithm without having to resort to �xed elementary gate
sets. The optimization process also supervises the systematic errors and corrects
them in the process.

5.1 Quantum circuit con�guration
The input information into the quantum circuit for the quantum gates that will be
following the quantum variational algorithm is divided into trainable parameters
θ = (θ0, θ1, θ2, ..., θn−1) and �xed parameters x = (x1, x2, x3, ..., xn). The common
pattern is to use these �xed parameters as the data information. With this taken
into account, the classical information (both θ and x) is transformed into quantum
information given by the quantum state U(x; θ)|0〉.

The quantum information is transformed the other way around into classical
information through the calculation of the expectation value of the observable B̂.

f(x; θ) = 〈B̂〉 = 〈0|U †(x; θ)B̂U(x; θ)|0〉 (5.2)

There is no established rule as to how the quantum gates or the circuit design
are adjusted, except for the parameters θ being the arguments of the quantum gates.
In other words, the variational algorithm allows for great freedom when building a
quantum circuit. The quantum circuit also allows the possibility to include quantum
gates with �xed parameters beyond only data entries if speci�ed.

5.2 Quantum embedding
In order to actually feed data into a quantum circuit a quantum representation of
the data input is required. For that end, a quantum feature map is utilized which
transforms classical data into quantum states in a Hilbert space (as presented in
[34] and [35]). Given a classic data vector x, the data vector is transformed into
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the quantum state |φx〉. This is a crucial step that involves the designing of the
quantum algorithm and its computational power.

Given a dataset D with the corresponding K data points and n variables each

D = {x1, x2, ..., xK}
xi = {xi,1, xi,2, ..., xi,n}

(5.3)

where xi is a data vector and xi,j a feature of the data vector. There are various
methods to embed the data into the quantum system composed of m qubits or
qumodes in case discrete or continuous variables are involved. Some prime examples
are included below.

5.2.1 Basis embedding

Basis embedding, as noted by the naming of the embedding method, consists on
translating the inputs into computational basis states of a qubit system. For this to
work, data of classical nature is required to be adopting the form of binary strings.
The binary string is translated into a quantum state bit-wisely in order to embed it
into the speci�c computational basis of the quantum subsystem. For instance, if
the input data vector x = 110 had to be embedded, then the quantum state |110〉
formed with three qubits would be its representation. In this fashion, one bit of
classical information is encoded into a quantum subsystem for an equivalent one
quantum subsystem.

Let D be considered the classical dataset being embedded with basis embedding
method. The nature of the data points xi are required to be binary strings composed
of n bits each.

xi = {b1, b2, b3, ..., bn} with bi ∈ {0, 1} (5.4)

Given the assumption that every feature is represented with only one bit, each
of the data inputs xi can be embedded into the quantum state |xi〉. Therefore, the
bare minimum of quantum subsystems (qubits for example) described by m is set to
be the number of features (or bits in this case) n in each binary string. The dataset
can be represented in result as the superpositions of the computational basis states:

|D〉 =
1√
K

K∑
k=1

|xk〉 (5.5)

Consider the following two binary strings x1 = 10 and x2 = 01 as the complete
classical dataset. The basis embedding of the classical data is represented using two
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5. Variational qantum circuits

qubits (at the very least) |x1〉 = |10〉 and |x2〉 = |01〉 and the dataset is represented
in the quantum subsystem as

|D〉 =
1√
2
|10〉+

1√
2
|01〉 (5.6)

As long as, the number of data vector K << 2n, the basis embedding of the
dataset will be sparse. The amount of basis states available for n bits is 2n, though.
Moreover, integer spaces are also suitable for basis embedding by representing
the integer value with binary coding and then applying the basis embedding to
their binary representation, which extends the possibilities of the basis embedding
beyond only binary data.

5.2.2 Amplitude embedding

In quantum mechanics, a probability amplitude establishes a relation between
the quantum state vector of a quantum system and the measurements results of
observations made into the quantum system. In mathematical terms, a probability
amplitude refers to a complex number used to explain and de�ne the behaviour
of the quantum systems. In particular, a probability density is de�ned through
applying the squared modulus to the aforementioned probability amplitude, that is,
to the complex number.

The amplitude embedding method is a embedding technique to encode the
classical data into the amplitudes of a quantum state. Given a datapoint x conformed
by M dimensions, the quantum representation is achieved with the amplitudes of a
quantum state |ψx〉 with n qubits as

|ψx〉 =
M∑
i=1

xi|i〉 (5.7)

where M = 2n, xi corresponds to the i-th dimension of the datapoint and
|i〉 is the i-th computational basis state. Unlike with basis embedding, amplitude
embedding allows both integer and �oating point data types, they can even appear
simultaneously. By way of illustration, consider the following four dimensional
data vector with �oating point values x = (2.4, 0.0,−1.4, 4.5) to be embedded via
amplitude embedding. The data vector x must be normalized to x̂:

‖x‖ =
√

2.42 + 0.02 + (−1.4)2 + 4.52 =
√

27.97

x̂ =
1√

27.97
[2.4|00〉 − 1.4|10〉+ 4.5|11〉]

(5.8)
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5.2. Quantum embedding

When embedding the entire dataset D presented at the beginning using ampli-
tude embedding, a convenient way to visualize it is through merging every data
point xK into a single vector as pictured below

α = C{x1
1, ..., x

1
M , x

2
1, ..., x

2
M , ..., x

K
1 , ..., x

K
M} (5.9)

where C corresponds to the normalization constant being used. The dataset
vector is normalized, so that the amplitude vector |α|2 = 1. Once normalized, the
dataset can be represented in terms of the computational basis in this form

|D〉 =
2n∑
i=1

αi|i〉 (5.10)

where αi is the i-th element of the amplitude vector α and |i〉 is the i-th com-
putational basis state. In total, the amount of probability amplitudes to be encoded
is M ×K . Therefore, since 2n amplitudes are administered with a n qubits system,
amplitude embedding needs to meet the requirement

n ≥ log2(MK) (5.11)

Nevertheless, commonly the number of amplitudes to embed won’t be a exact
power of 2. In these cases, M ×K is less than 2n and the leftover amplitudes are
padded to the amplitude vector α to �ll the gap [36].

In order to illustrate the padding technique, consider a datasetD with 2 data vec-
tors and 3 variables each, in consequence there are 2×3 = 6 probability amplitudes
to be embedded. Yet, the minimum amount of qubits to use is dlog2(6)e = 3 qubits
at least. However, with 3 qubits there are 23 = 8 states for amplitude embedding
from which only 6 are required. As a result, 23 − 6 = 2 constants are added at the
end of the amplitude vector to compensate.

5.2.3 Angle embedding
A more geometrical embedding for �oating point data is angle embedding. The angle
embedding consists on encoding �oating point values as if they were parameters
of a standard elementary operation, such as a rotation. Consider the �oating point
value x, the embedding of the value into the quantum state |ψx〉 is achieved through
the following mapping

|ψx〉 = Rj(x)|0〉 = e
−ixσj

2 |0〉 (5.12)

where j ∈ {x, y, z} corresponds to the axis rotation in the Bloch sphere and
σj is the Pauli matrix associated to the half spin rotation of the axis j. Generally,
either the axis j = x or j = y are acceptable choices for rotation with the �rst
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5. Variational qantum circuits

computational basis state. However, the axis j = z is not a viable choice, since the
value x is mapped to the state |0〉 as a result ofRz(θ) operation having a eigenvalue
of 1 for the eigenvector |0〉. Therefore, the value is lost in the mapping process.

The Pauli rotation operations being used are 2π periodic, which encourages
normalizing the data values to the range [0, π) ⊂ R whenever possible. This
prevents encoding two di�erent values as the same quantum state and ensures
therefore a distinction between data values after normalization.

5.3 Processing data

Once the data is embedded into a quantum state, it is time to transform and process
the quantum information. As of now, the current circuit reciprocates the input value,
that is, it’s the identity function f(x) = x. Purposefully including and adding gates
(either with free parameters θ or constant parameters) into the quantum circuit,
the complexity of the function may increase adequately.

As a mean to illustrate the growing complexity of the quantum circuit as more
gates are added into it, consider taking a one dimension data point x0. The data point
x0 is run through a rotation operator with the free parameter θ0. The additional
gate has changed the quantum circuit and the quantum transformation is de�ned
as

f(x0; θ0) = x1 cos(θ0) (5.13)

The endless possibilities to apply di�erent operations in quantum circuits are a
valuable resource. With an embedding process and standard elementary operations,
complex functions can be evaluated with the capabilities quantum circuits provide.
The key idea behind these operations, beyond the simple function evaluated above
that requires no quantum device actually, is that building deeper quantum circuits
and steadily increasing the number of qubits yields a progressively more expensive
and di�cult function to evaluate through classical means. For which quantum
systems are more suitable.

5.4 Measurement

Once the data has been handled and processed in the quantum circuit, there needs
to be a measurement performed on the �nal quantum state of the system or sub-
system that e�ectively describes a behaviour of the quantum system in classical
means. Depending on the problem, qubits, entanglement and choice of operator,
a measurement can be performed upon the quantum system. Two measurement
procedures will be introduced, both of them posses high scalability and provide
great �exibility for interpretation.
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5.4. Measurement

5.4.1 Measuring an observable in a quantum state
Observables are physical quantities that can be measured in a quantum state and
provide a real value. Common observables include position, momentum, angular
moment or time evolution of systems. In quantum physics, an observable appears
as a linear operator on a Hilbert space and represents the quantum state space
of quantum states. The dynamical variable represented by the observable can be
measured having its own eigenvalues which are real numbers (incredibly relevant
for measurement). Therefore, an observable in quantum mechanics provides a
real number as an outcome when measuring a particular quantum system, which
corresponds to the eigenvalue of the operator in regards to the quantum system’s
measured quantum state.

In order to measure an observable in a quantum state, the expectation value of
the operator corresponding to the observable is measured in the �nal quantum state.
There are many possibilities on which operators could be used, which can be any
Hermitian operator in a Hilbert space. For instance, Pauli matrices or the density
operator can be measured in the �nal quantum state for classi�cation problems,
since the eigenvalues of the Pauli matrices are {+1,−1} and the eigenvalues of
the density operator in basis states are {0,+1}. For the particular calculation and
a more in depth explanation, a section is included in 6.5.

5.4.2 Probability vector
A di�erent approach is using a probability density vector extracting the probability
amplitudes of the �nal quantum state by calculating the square modulus of the
probability amplitudes. In particular, given a computational basis {|ci〉}2n

i=1 of the
n-qubit quantum system’s quantum state that has to be measured, the measurement
of the quantum state |ψ〉 provides the probability of measuring the computation
basis state |ci〉 in the current quantum state |ψ〉.

Alternatively, it can be de�ned as calculating the density operator of each of
the computational basis states |ci〉〈ci| and obtaining the expectation value of each
of the density operators 〈ψ|ci〉〈ci|ψ〉 describing one of the computational basis
states. Therefore, in a quantum state |ψ〉, the probability vector would be a vector
of expectation values of the density operators in that precise quantum state.

{〈ψ|c1〉〈c1|ψ〉, 〈ψ|c2〉〈c2|ψ〉, . . . , 〈ψ|c2n〉〈c2n|ψ〉} (5.14)

Therefore, the probability vector is actually the set of expectation values of the
density operators representing computational basis states in a given quantum state.
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CHAPTER 6
Quantum operations

Qubits are represented in quantum state-vector notation when the knowledge
about the quantum state is absolute. This means that the quantum state is de�ned
without uncertainty and the probability of the quantum state is 1. These group of
quantum states are known as pure states, since they can be expressed as a linear
combination of basis states, where each one has an accompanying probability
amplitude associated.

Nevertheless, certain occurrences and practical scenarios impede representing
the quantum state of the n-qubit system through a linear combination of basis
states. Instead, each of the qubits has many possible quantum states describing its
state as a whole, that is, the quantum state is represented as a statistical ensemble of
multiple pure quantum state and each one of them occurs with a certain probability.

Generally, uncertainty of a quantum system is associated to the quantum de-
coherence or natural interference of the ongoing environment, however initial
uncertainty about the quantum system can also lead to this situation. In formal
terms, a mixed quantum state is represented as a probabilistic ensemble of a number
of pure states. In order to tackle having multiple pure quantum states representing
a single mixed state, which can’t be represented with the quantum state-vector
notation used thus far, mixed states are described using a di�erent method called
the density matrix or density operator.

6.1 Superposition and entanglement
Quantum superposition is one of the principles of quantum mechanics, which
states that, in a similar fashion to waves, two or more quantum states can be added
together. Therefore, the resulting valid quantum state will be a superposition of
the previous quantum states. One of the most common representation of quantum
states is in terms of the superposition of the computational basis states. For instance,
any pure quantum state can be expressed as a linear combination of a basis.
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A qubit is represented as a quantum superposition of the basis states |0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
. The measurement of the qubit will collapse the quantum state into

one of the possible outcomes, either 0 or 1. A pure one qubit quantum state |ψ〉
is therefore represented as a linear combination of basis states with probability
amplitudes α0 and α1 as follows

|ψ〉 = α0|0〉+ α1|1〉 (6.1)

where |α0|2 + |α1|2 = 1. Probability amplitudes describe the behaviour of a
quantum system in this case and the squared magnitude of the probability amplitude
is the value of a classical probability density function for that speci�c behaviour. In
the superposition, the probability of measuring state |0〉 is |α0|2 and the probability
of measuring state |1〉 is |α1|2.

Another of the most prominent physical phenomena of quantum systems is
entanglement. A number of particles are said to be entangled as a result of spatial
closeness or interaction among other possibilities when the quantum state of each
of the particles can’t be described independent from the other particles.

The qubit q0 is considered to be entangled with the qubit q1 if measuring the
quantum state of q0 gives some information about the quantum state q1. Two qubits
are said to be in maximal entanglement if measuring the quantum state of one
qubit completely describes the quantum state of the other qubit. In case only one
of the qubits is measured no meaningful information could be measured about the
individual systems, only getting randomly state 0 or 1 as a result. The group of two
qubit maximally entangled quantum states are called Bell states shown below

|Φ+〉 =
|00〉+ |11〉√

2

|Φ−〉 =
|00〉 − |11〉√

2

|Ψ+〉 =
|01〉+ |10〉√

2

|Ψ−〉 =
|01〉 − |10〉√

2

(6.2)

Given that the correlation between the quantum states is absolute, the quantum
states described above are said to be maximally entangled. If one of the qubits is
measured the state corresponding to the other qubit is determined with complete
certainty. A qubit is known to have two complex probability amplitudes, therefore a
quantum state of n qubits has a total of 2n complex probability amplitudes. Consider
the following two qubit quantum system for which the quantum state |ψ〉 of the
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6.1. Superposition and entanglement

two qubits has to be described in a normalized quantum state vector notation as a
linear superposition of the computational basis states.

|ψ〉 = α0|00〉+ α1|01〉+ α2|10〉+ α3|11〉 =


α0

α1

α2

α3


|α0|2 + |α1|2 + |α2|2 + |α3|2 = 1

(6.3)

In order to express the quantum state of two qubits, the Kronecker product ⊗
is used, which is a generalization of the outer product from vectors to matrices.
Given two one qubit quantum states |ψ1〉 and |ψ2〉, the Kronecker product |ψ1ψ2〉
is calculated as follows

|ψ1〉 =

[
α0

α1

]
|ψ2〉 =

[
β0

β1

]

|ψ1ψ2〉 = |ψ1〉 ⊗ |ψ2〉 =

α0

[
β0

β1

]
α1

[
β0

β1

]
 =


α0β0

α0β1

α1β0

α1β1


(6.4)

A quantum system is said not to be entangled if the quantum state representing
the two qubit system or subsystem presents the following equality

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 = |ψ1ψ2〉 (6.5)

for any arbitrary pair of single qubit quantum states |ψ1〉 and |ψ2〉. In order to
prove if a pure quantum state is entangled or not is via the reduced density matrix
6.4 ρ on one of the qubits and tracing out the other. The quantum state is separable
and it is possible therefore to write it in the above form as a Kronecker product if
the reduced density matrix ρ has rank 1. If not, the quantum system is entangled to
some degree. In order to do so, the rank condition is tested evaluating Tr(ρ2) and
checking if the value is 1 (not entangled) or otherwise conclude that the quantum
system is entangled.

ρ1 = Tr2(|ψ〉〈ψ|) = Tr2(|ψ1ψ2〉〈ψ1ψ2|)
= Tr2(|ψ2〉〈ψ2|)|ψ1〉〈ψ1| = 〈ψ2|ψ2〉|ψ1〉〈ψ1| = |ψ1〉〈ψ1|

(6.6)

Tr(ρ2
1) = Tr(|ψ1〉〈ψ1|ψ1〉〈ψ1|) = Tr(|ψ1〉〈ψ1|) = α (6.7)

If α = 1 the quantum system is not entangled, otherwise the quantum system
will be entangled.
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6.2 Pure states

Pure states are completely de�ned quantum states at any given point in time. As
mentioned, they can be expressed in quantum state-vector notation as a linear
combination of the basis states. Consider the single qubit system |ψ〉 initialized in
the state |0〉. Applying a Hadamard gate to the quantum state |ψ〉 the following
quantum state is obtained:

H|0〉 =
1√
2

(
1 1
1 −1

)[
1
0

]
=

1√
2

[
1
1

]
= |+〉 (6.8)

The measurement of this state would be probabilistic, where state |0〉 is mea-
sured with 50% probability and state |1〉 is measured with 50% probability. The
key idea however is not around the measurement itself but around the certainty of
the quantum information at our disposal. It’s absolutely certain that, without inter-
ference of any kind, in an ideal case with exact initialization and no interference in
the Hadamard gate the resulting quantum state will always be the quantum state
|+〉. Given that no uncertainty exist whatsoever about the quantum state itself, the
quantum state |ψ〉 is a pure state.

Following the quantum state-vector notation, a n-qubit system’s quantum state
|ψ〉 is described as

|ψ〉 =


α0

α1

α2
...

α2n−1

 (6.9)

A crucial part is to consider the exponential expansion of the quantum state
vector in terms of the amount of qubits of the said system. Since there are n qubits
in the quantum system, the total amount of possible outcomes for the quantum
system when measured is 2n. For instance, if there are n = 3 qubits, the total
amount of possible outcomes would be 2n = 8. A di�erent approach to describe
the quantum state in the form of a matrix is the density matrix representation. For
pure quantum states, the density operator is calculated as

ρ = |ψ〉〈ψ| (6.10)
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In the above calculation, the outer product |ψ〉〈ψ| is obtained as follows

ρ = |ψ〉〈ψ|

=


α0

α1

α2
...

α2n−1


[
α0 α1 α2 . . . α2n−1

]

=


|α0|2 α0α1 α0α2 . . . α0α2n−1

α1α0 |α1|2 α1α2 . . . α1α2n−1
... ... . . . ...
α2n−1α0 α2n−1α1 α2n−1α2 . . . |α2n−1|2



(6.11)

As a mean to illustrate the density operator calculation, consider the following
two qubit system at the maximal entanglement Bell state |ψ1〉.

|ψ1〉 =
1√
2

(|00〉+ |11〉) =
1√
2


1
0
0
1

 (6.12)

The density operator of the Bell state is computed as

ρ1 = |ψ1〉〈ψ1|

=

 1√
2


1
0
0
1


( 1√

2

[
1 0 0 1

])

=
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


(6.13)

Up to this point, only a di�erent representation for pure quantum states has been
provided. However, since they can already be represented in quantum state-vector
notation, there seems to be no bene�t in using the density matrix representation of
a pure quantum state. The prevalence and importance of density matrices is the
focus of mixed states.
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6.3 Mixed states
Mixed quantum states are quantum states represented by statistical ensembles of
multiple di�erent pure quantum states. The direct consequence of this fact is that
mixed states have no possible representation in terms of linear superpositions of
normalized pure quantum state vectors. For a better understanding, consider the
previous quantum state |ψq0q1〉 of a two qubit quantum system with qubits q0 and
q1 respectively.

|ψq0q1〉 =
1√
2

(|0q00q1〉+ |1q01q1〉) (6.14)

The corresponding circuit that produces the quantum state |ψq0q1〉 is shown
in the quantum circuit 6.1. The �rst wire corresponds to the �rst qubit q0 and the
second wire corresponds to the second qubit q1. At the end of the quantum circuit
the second qubit q1 is measured.

Figure 6.1: A quantum circuit with Hadamard gate and CNOT gate that produces the Bell
state |ψq0q1〉

The qubits q0 and q1 are entangled, therefore knowing the measurement of q1

immediately collapses the other qubit q0. If the measurement q1 yields the value 0
then the quantum state q0 will be projected into the state |0q0〉. The purpose is to
�nd a representation of the �nal quantum state ψq0 independent and representative
for any arbitrary measurement outcome of q1. After performing a measurement on
q1, the quantum state ψq0 will be either in state |0q0〉 with 50% probability and in
state |1q0〉with 50% probability, however not in a superposition of 1√

2
(|0q0〉+ |1q0〉)

in any case.
Therefore, the quantum state |ψq0〉 has to be represented as a mixed state:

|ψq0〉 = {|0q0〉, |1q0〉} (6.15)

Each one of the possible quantum states for |ψq0〉 has the following associated
probability:

pq0 = {p0, p1} = {0.5, 0.5} (6.16)

With this convenient representation, it is clear that after measuring q1 in
whichever case it falls, the quantum state ψq0 will be either in the state |0q0〉
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6.3. Mixed states

or in the state |1q0〉 with equal classical probability. The ket notation of ψq0 is
omitted since it can’t be represented in quantum state vector notation using the
computational basis in any case.

For a more general de�nition of a mixed state, a mixed state ψ is a quantum
state which is an statistical ensemble of n pure quantum states:

{|ψi〉}ni=1 = {|ψ1〉, |ψ2〉, |ψ3〉, . . . , |ψn〉} (6.17)

Each of the pure quantum states |ψi〉 has a corresponding probability of being
collapsed into it:

{pi}ni=1 = {p1, p2, p3, . . . , pn} (6.18)

The probability of occurrence pi is the classical probability of the quantum
system in quantum state ψqi being projected onto the quantum state |ψi〉. The
number of possible quantum states in the statistical ensemble n is not limited by
the dimension of the underlying Hilbert space.

Despite the given representation being valid, it is by no means practical when
n grows large and many quantum gates are applied, since keeping track of every
possible outcome becomes too complicated. In order to capture the evolution of
the quantum system both reliably and with accurate representation, the density
matrix representation is utilized.

Previously, the density matrix for a pure quantum state was introduced. By all
means, a pure quantum state refers to only one quantum state so it is comparable
to the quantum mixed state case when there is only one pure state (n = 1). The
probability of obtaining that pure state is always 1, since there is no competition.
The general density matrix de�nition for quantum states, both pure or mixed, goes
as follows:

ρ =
∑
i

pi|ψi〉〈ψi| (6.19)

For the presented case of the quantum state ψq0 , there are two quantum states
in the statistical ensemble {|0q0〉, |1q0〉} with their respective probability {0.5, 0.5}.
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The density operator representation of the quantum state ψq0 is built:

ρq0 =
1

2
|0q0〉〈0q0|+

1

2
|1q0〉〈1q0|

=
1

2

[
1
0

] [
1 0

]
+

1

2

[
0
1

] [
0 1

]
=

1

2

[
1 0
0 0

]
+

1

2

[
0 0
0 1

]
=

1

2

[
1 0
0 1

]
(6.20)

An important notion to grasp is that the statistical ensemble of a mixed state
can have any quantum pure state, it is not exclusive to the basis states (like the
ones used in this showcase |0〉 and |1〉).

6.4 Reduced density matrix
One of the main advantages of the density matrix description of quantum systems
comes into play when dealing with composite systems. With the reduced density
matrix, it’s possible to extract the state of each of the quantum subsystems including
when they are entangled. Given a quantum system composed of the quantum
subsystemsQ0 andQ1, for which the density operator ρQ0Q1 describes the quantum
system entirely, the reduced density matrix of the subsystem Q0 is calculated as

ρQ0 = TrQ1(ρQ0Q1) (6.21)

The Tr operation corresponds to the trace operation, which in case of two
quantum states Tr(|ψ1〉〈ψ2|) = 〈ψ2|ψ1〉.

The quantum state describing the composite quantum system entirely for Hilbert
spaces Q1 and Q2 is given by

|ψQ0Q1〉 = Q1 ⊗Q2 (6.22)

For instance, the pure entangled quantum state of the system is described as

|ψQ0Q1〉 =
1√
2

(|0Q00Q1〉+ |1Q01Q1〉) (6.23)

The entire quantum system is constructed with two single qubit systems. The
�rst one qubit subsystem Q0 has basis vectors {|0Q0〉, |1Q0〉} and the second one
qubit subsystem Q1 has basis vectors {|0Q1〉, |1Q1〉}.Through the reduced density
matrix, the description of each of the quantum subsystems Q0 and Q1 can be
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extracted. Therefore, the density matrix ρQ0Q1 of the composite quantum system
|ψQ0Q1〉 is expressed using the outer products of the basis vectors as

ρQ0Q1 = |ψQ0Q1〉〈ψQ0Q1|

=
1

2
[|0Q00Q1〉〈0Q00Q1|

+ |0Q00Q1〉〈1Q01Q1|
+ |1Q01Q1〉〈0Q00Q1|
+ |1Q01Q1〉〈1Q01Q1|]

(6.24)

The reduced density matrix for the subsystem Q1 would be computed as

ρQ1 = TrQ0(ρQ0Q1)

=
1

2
[TrQ0(|0Q00Q1〉〈0Q00Q1|) + TrQ0(|0Q00Q1〉〈1Q01Q1|)

+ TrQ0(|1Q01Q1〉〈0Q00Q1|) + TrQ0(|1Q01Q1〉〈1Q01Q1|)]

=
1

2
[Tr(|0Q0〉〈0Q0|)|0Q1〉〈0Q1|+ Tr(|0Q0〉〈1Q0 |)|0Q1〉〈1Q1|

+ Tr(|1Q0〉〈0Q0|)|1Q1〉〈0Q1|+ Tr(|1Q0〉〈1Q0 |)|1Q1〉〈1Q1|]

=
1

2
[〈0Q0|0Q0〉|0Q1〉〈0Q1|+ 〈1Q0|0Q0〉|0Q1〉〈1Q1|

+ 〈0Q0|1Q0〉|1Q1〉〈0Q1|+ 〈1Q0|1Q0〉|1Q1〉〈1Q1|]

=
1

2
[|0Q1〉〈0Q1|+ |1Q1〉〈1Q1|]

=
1

2

[
1 0
0 1

]

(6.25)

The interpretation to the procedure of obtaining the reduced matrix is that the
density matrix ρQ1 describes the statistical outcomes of the subsystem Q1 when
the measurements results for the subsystem A are taken in average. The concept
of tracing out a quantum subsystem from the quantum systems is the formal
de�nition of this technique. Interestingly, the density matrix ρQ0Q1 represents
a pure quantum state, while the reduced density matrix ρQ1 for the quantum
subsystem Q1 describes the mixed state. This is a precise reason why choosing the
density matrix representation is a much more practical and robust representation,
specially when dealing with mixed quantum states.
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6.5 Expectation value of an observable

The expectation value of an observable refers to the average of all the possible
outcomes from a measurement of a quantum system weighted by their probabilities.
An important aspect is that it does not indicate the most probable outcome by any
means, instead outcomes are evaluated according to the probabilities they have to
occur and an average of that is produced as the expectation value of the observable.

Consider a Hermitian operator Q̂ for which the states {|qi〉}ni=1 constitute a
complete set of eigenstates in regards to an observable Q with non-degenerate
discrete eigenvalues qi (Q̂|qi〉 = qi|qi〉). The expectation value of the observable
Q in a generic quantum state |ψ〉 can be expressed by expanding |ψ〉 as a linear
superposition of the eigenstates and eigenvalues of the operator Q̂.

The quantum state |ψ〉 is expanded as linear superposition of the operator Q̂
with discrete eigenvalues as

|ψ〉 =
n∑
i=1

|qi〉〈qi|ψ〉 =
n∑
i=1

ci|qi〉 (6.26)

where ci = 〈qi|ψ〉. The previous ci = 〈qi|ψ〉 corresponds to the projection of
the quantum state |ψ〉 along the eigenstate |qi〉 of the operator Q̂ with eigenvalue
qi. The probability of a measurement having outcome qi for the physical quantityQ
corresponding to the operator Q̂ is given by |ci|2 = |〈qi|ψ〉|2. With these expansion
and relationships established, the expectation value of the operator Q̂ in the generic
state |ψ〉 is de�ned as

〈Q̂〉ψ = 〈ψ|Q̂|ψ〉 = 〈ψ|Q̂
n∑
i=1

ci|qi〉 =
n∑
i=1

ci〈ψ|Q̂|qi〉

=
n∑
i=1

qici〈ψ|qi〉 =
n∑
i=1

qicic
∗
i =

n∑
i=1

qi|ci|2
(6.27)

A di�erent approach can be taken to resolve the expectation value of the
observable Q by introducing the identity operator Î using the complete set of
eigenstates of the operator Q̂ as terms (Î =

∑n
i=1 |qi〉〈qi|) on the expectation value

calculation.

〈Q̂〉ψ = 〈ψ|Q̂|ψ〉 = 〈ψ|Q̂Î|ψ〉

= 〈ψ|Q̂
n∑
i=1

|qi〉〈qi||ψ〉 = 〈ψ|
n∑
i=1

ciQ̂|qi〉

=
n∑
i=1

ciqi〈ψ|qi〉 =
n∑
i=1

qicic
∗
i =

n∑
i=1

qi|ci|2

(6.28)
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For continuous eigenvalues q, given that the states |q〉 are a complete set of
eigenstates of the operator Q̂ and the identity operator Î in terms of the eigenstates
of the operator Q̂ is Î =

∫ −∞
+∞ |q〉〈q|dq. If the eigenvalue spectrum of Q̂ is discrete,

the expectation value of the observableQ in the quantum state |ψ〉 can be computed
in terms of eigenstates |q〉 and eigenvalues q as

〈Q̂〉ψ =

∫ −∞
+∞

q|〈q|ψ〉|2dq (6.29)

6.5.1 Pauli matrices

In the �eld of quantum computing, the Pauli matrices correspond to three complex
unitary Hermitian matrices of dimension 2× 2. They are conventionally named
as (σ1, σ2, σ3) or (σx, σy, σz) respectively which denotes in which of the axis in
the Bloch sphere each of the Pauli matrices rotates by 180◦. These are the matrix
representation of the Pauli matrices.

σ1 = σx =

(
0 1
1 0

)
σ2 = σy =

(
0 −i
i 0

)
σ3 = σz =

(
1 0
0 −1

) (6.30)

Apart from the Bloch sphere interpretation and matrix representation, another
aspect of interest is the expectation value of Pauli matrices as operators Ĥ1, Ĥ2

and Ĥ3 in a given quantum state |ψ〉. To do so, �rstly it is necessary to calculate
the eigenvalues of the Pauli matrices, which can be observed from the value of the
determinant and trace.

det(σi) = −1

Tr(σi) = 0
(6.31)

The eigenvalues for each of the matrices σi are eigenvalues +1 and −1. The
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corresponding normalized eigenvectors of the matrices are the following

|qx+〉 =
1√
2

[
1
1

]

|qx−〉 =
1√
2

[
1
−1

]

|qy+〉 =
1√
2

[
1
i

]

|qy−〉 =
1√
2

[
1
−i

]

|qz+〉 =

[
1
0

]

|qz−〉 =

[
0
1

]

(6.32)

Consider the matrix σz as the operator with eigenvalues qz ∈ {+1,−1} from
which the expected value 〈σz〉ψ is desired to be measured in a generic one qubit
quantum state |ψ〉. Consider the probability amplitudes of the quantum state |ψ〉
to be α0 = 1√

2
and α1 = 1√

2
. The quantum state |ψ〉 can be written as a linear

superposition of the eigenstates {qz+, qz−} of the operator σz as follows

|ψ〉 =
∑

i∈{+,−}

|qzi〉〈qzi|ψ〉 =
∑

i∈{+,−}

ci|qzi〉

= c+|qz+〉+ c−|qz−〉 =
1√
2

[
1
0

]
+

1√
2

[
0
1

]

c+ = 〈qz+|ψ〉 =
[
1 0

] [ 1√
2

1√
2

]
=

1√
2

c− = 〈qz−|ψ〉 =
[
0 1

] [ 1√
2

1√
2

]
=

1√
2

(6.33)

The expectation value of the operator σz in the generic state |ψ〉 is obtained as
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follows

〈σz〉ψ = 〈ψ|σz|ψ〉 =
∑

i∈{+,−}

qzi|ci|2 = 1

(
1√
2

)2

+ (−1)

(
1√
2

)2

= 0 (6.34)

The expected value 〈σz〉ψ of the operator σz in the generic state |ψ〉 has given
the value 0. This might seem strange at �rst, but it is actually a perfectly possible
value. The expected value 〈σz〉ψ of the operator σz returns the average eigenvalue
after measuring the operator in the quantum state |ψ〉weighted by their probability.
Since the eigenvalues are qz ∈ {+1,−1}, and the probabilities for each of the
eigenvalues are {|c+|2, |c−|2} = {1

2
, 1

2
}, it means that there is the same probability

to either eigenvalue outcome when measuring the operator σz in the quantum state
|ψ〉.

These matrices are particularly important in the classi�cation task using quan-
tum circuits, since they provide an expected value in the range [−1, 1] and therefore
can be used as operators for binary classi�cation problems. The idea behind using
one of these matrices is assigning the expected value +1 to one of the class labels
and assign the expected value−1 to the other one. In a Bloch sphere representation,
it would be trying to improve the model parameters so that the eigenstate |qi〉
with eigenvalue qi is as close in the Bloch sphere to the �nal quantum state being
measured as possible. Mathematically, it would mean that the inner product of the
eigenstate |qi〉 (with the corresponding desired eigenvalue qi associated to the class
label being predicted) with the �nal quantum state |ψ〉 of the system being as close
as possible to 1.
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CHAPTER 7
Experiment and design

With the purpose of assessing the performance of quantum systems by themselves
or together with other classical components, some work�ows have been carried
out where models with selected designs and thoroughly speci�ed properties. For a
better organization of how each work�ow works, each of the stages are separated
to explain the steps involved and establish connections with the already divulged
information (specially in relation to quantum systems).

A general view of a work�ow consists on the following scheme 7.1.

7.1 Environment and packages

All the experiments have been carried out using Python 3.10 version and its pow-
erful libraries for scienti�c research. These libraries include numpy, sklearn and
matplotlib among others. For setting up model architectures and organizing training
and testing grounds tensor�ow and keras have been chosen primarily. Nonetheless,
the quantum circuits used have been deployed through the pennylane library, which
o�ers access to di�erentiable programming of quantum systems, giving access to
training quantum circuits in the same way classical models are approached.

The code of the experiments is accessible from here1. The code is organized in
a package for the models and other functions that help in dealing with the task.
For carrying out experiments however, Jupyter notebooks are included to show the
step by step procedure used for every model and technique employed. Moreover,
in case the experiments are desired to be replicated, some hyperparameters allow
this possibility. Among them, the seed for the initialization of weights, the learning
rate of the optimizer or the choice to save weights from previous experiments
are provided (along with the possibility to load weights from these experiments
themselves).

1https://github.com/Totx/VQC_Hybrid_classi�ers
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7. Experiment and design

Figure 7.1: General work�ow for di�erent models and speci�cations
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One thing to note, however, is that, despite claiming to be using a quantum
circuit built in a quantum system, actually the experiments are run using penny-
lane libraries quantum devices which, as such, are simulating the behaviour of
a quantum system not running in quantum hardware whatsoever. Although not
the focus of the experiments, the discussion between how close a quantum device
simulator approaches quantum hardware is a concerning issue that currently given
the resources available can’t be salvaged in many cases unfortunately. Having
concluded that, the quantum devices simulating quantum hardware still serve as
a good reference when attempting di�erent kinds of quantum operations before
accessing quantum hardware directly, as they provide a good estimation of how
quantum hardware would behave given the circumstances.

7.2 Data management
In order to determine how to manage the data, the nature of the data has to be
described �rst. The dataset belongs to a credit card fraud dataset, where transactions
are split into two possible cases. Namely, the labels of the dataset are valid cases
(label 0) and fraud cases (label 1). The amount of features xi of the dataset is 28 and
every one of the features is within xi ∈ [−1, 1]. There are some other information
regarding the amount or time, however, these are not features themselves and, as
such, they won’t be accounted in the experiments in any manner.

With the presented nature of the data, the task of the machine learning algorithm
is to perform a supervised classi�cation of transactions and decide whether they
are potentially fraudulent or not (binary classi�cation). Moreover, the features
themselves leave no room for interpretability and, therefore, are quite hard to
handle. On that note, the main issue of the dataset is the disparity between the
amount of transactions labeled as fraudulent in contrast with how much are labeled
as valid though. In particular, there are barely 492 fraudulent cases in comparison
with the enormous quantity of 284315 valid cases. However, in practice some of
the valid cases could still contain potential fraudulent cases since there could be
errors in the labelling process of the dataset.

The unbalanced data is a complicate issue in machine learning and to circumvent
that two preprocessing steps have been considered. Nevertheless, with the intention
of having a fair testing data collection that has not been produced externally and
therefore could give false testimony to the actual performance the models could
produce, the data has been divided into a training set and a testing set before any
kind of preprocessing. All the preprocessing steps therefore, refer exclusively to
the training set data, not test data at all.

The �rst step is an oversampling of the minority class (fraud cases) to have more
cases from the minority class to learn from. The oversampling technique applied is
SMOTE which synthetically reproduces through k-nearest neighbours algorithm
new cases from the minority class. It is a particularly powerful technique that
in many cases can reduce the possible over�tting caused by other oversampling

51



7. Experiment and design

techniques such as random oversampling. However, since the newly created cases
are still approximations from the already existing cases and the number of fraud
cases is small, a compromise has been set to prevent over�tting issues by only
creating up to around 10000 cases of this kind.

The second step involves the opposite operation. Given the existing unbalance
in the training set, in order to balance the scales an undersampling technique is
used to reduce cases from the majority class (valid cases). The undersampling
algorithm used is Near Miss, which allows to remove cases from the majority class
by checking the distance to the n minority class cases depending on the heuristic
approach chosen and leaving those that closely follow the heuristic speci�cation
while leaving out the other cases until only the desired number of cases remain. In
this case, the Near Miss 1 undersampling technique has been used together with
computing the average distance of the 3 closest point of the minority class as a
result.

Therefore, the train set presents around 20000 cases, which has incorporated
class balance after using the presented sampling techniques.

7.3 Machine learning models

There are mainly three routes that have been considered and built around in the
model section. The �rst route corresponds to models which are centered around
using almost exclusively quantum circuits with little necessary classical additions.
The second alternative is building a machine learning model that combines both
classical layers with quantum layers without restraints. Finally, there is the standard
classical machine learning model relying only in classical approaches when building
the machine learning model.

7.3.1 Quantum models

The Quantum models are divided into three layers for speci�c purposes. As men-
tioned before, the quantum models haven been reduced to relying as much as
possible only in quantum circuits, since the main interest in these models is to
measure the performance without the aid of the classical counterpart. However,
classical layers help in inputting the data and outputting the data as if it were
communicating with the quantum layer to send information and receive it.

The �rst layer is common to all the quantum models, which is the input layer.
Given that there are 28 variables, the input layer is merely receiving the features.
The second layer is the quantum layer and the core and soul of the quantum models,
for which two di�erent quantum circuits with di�erent data processing approaches
have been proposed. And last, the output layer gathers the output from the quantum
layer and outputs a single scalar.

Before entering into the speci�cs of each of the models, the output layer of the
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model is of great importance. The information output received from the quantum
layer into the dense layer is a collection of one per qubit measurements, where
each of the measurements contains the expectation value of the Pauli operator σz
in the quantum state described by each of the qubits. Therefore the key idea behind
this design choice is to train the model so that the output scalar of the quantum
layer is as close as possible to the eigenvalue qi that represents the label it has been
assigned to. The output layer behaves as any other dense layer, so in a sense it is
helping to somewhat improve the result of the quantum model, for which reason
the activation function has been set to linear.

The σz operator has two possible eigenvalues −1 and +1, which have been
assigned to the label of valid cases and the label of fraud cases. In the case of
quantum layers, 5 qubits operated quantum devices are being used which means
that the operator is measured in each one of the qubits’ quantum state and then
sent to the output layer. The reasoning behind using the expectation value is that it
does not only measure the probability of how close is the quantum system from the
desired quantum state (eigenstate of the operator for the desired label assigned to
an eigenvalue) but also takes into account the probability of how close it is to other
quantum states (eigenstates that don’t correspond to the eigenvalue of the label).
After all, the expectation value returns the average of all possible outcomes, so in
that regard, the model parameters are trained to not only approach the desired
eigenstate of the operator associated to an eigenvalue but also distance themselves
from the other ones.

One of the shortcomings of using the weighted sum of the expectation values of
an operator as the output of a quantum model is that it is a scalar output instead of
the more classical approach of using a softmax layer to obtain the probabilities of a
case belonging to each one of the classes (in multi class classi�cation particularly).
Therefore, the selected loss function of the quantum models is the mean squared
error and the performance metric is the mean absolute error. The class labels of
the dataset haven been converted from {0, 1} to {−1, 1}. Finally, the optimization
algorithm used is Adam with custom learning rate of 0.01.

The mean squared error as a loss function might seem a bit out of place in the task
of binary classi�cation. The purpose however is to try to measure the performance
of quantum circuits without adding nonlinearity a sigmoid-like function brings into
the table, which would help the model gain complexity to a higher degree from
outside the quantum circuit itself.

The quantum circuits are built around two operations primarily, that is to say,
the rotation operations with the parameters or the data itself and the CNOT gates.
The rotation gates are straightforward, they apply the rotation with the given three
parameter values in each one of the axes. The CNOT gates are the main method of
communication between qubits and enable entanglement of the control qubit (blue
dot) with the target qubit (empty dot), so that the qubits are not separated from
each other and actually have e�ect on each other.
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Figure 7.2: The quantum model diagram.

The quantum layers are separated depending on how the features are processed
when entering the quantum layer, which has several implications of interest. The
entire model diagram can be visualized in the �gure 7.2.

7.3.1.1 Quantum models based on amplitude embedding

In order to introduce the data into the quantum circuit, the �rst option given the
�oat type nature of the data is to transform it into the probability amplitudes of the
quantum state of the entire quantum system. The features are normalized so that
the probability amplitudes of the quantum state of the quantum system are equal to
1. The total number of n qubits required to use amplitude embedding on k features
is dlog2(k)e = n and 2n probability amplitudes can be embedded in consequence.

In this case, given that k = 28 the amount of qubits required is dlog2(28)e = 5,
which corresponds to the amount being used. Apart from that, since 25 = 32
probability amplitudes are available, the remaining probability amplitudes are
padded with 0, so that they don’t a�ect in the normalization process of the amplitude
embedding.

The quantum layer’s underlying quantum circuit itself with the already trained
weights after the optimization process is also included in the �gure 7.3. The
inspiration for this quantum circuit architecture with strongly entangling layers
has been drawn from [37].

7.3.1.2 Quantum models based on data reuploading

Another way to bring about classical data into quantum circuits is using the data
reuploading approach to it. Instead of introducing the data through an embedding
process, features are included as arguments to quantum circuits’ quantum gates. For
this case, the rotation operations in quantum gates receive the input data in sets of
three in each of the qubits and apply a rotation. Afterwards, another rotation occurs
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Figure 7.3: The quantum circuit diagram using amplitude embedding.

Figure 7.4: The quantum circuit diagram using data reuploading.

in each of the qubits corresponding to the weights rotations. While embedding
separates quantum gates from using data directly, this encourages the opposite.

The amount of rotations per layer and qubit of the quantum circuit is tied to
the number of features k. Since there are 3 parameters required for each of the
rotations, the amount of values for rotations required in each qubit of each of the
layers is k + (3 − (k mod 3)), which in this case corresponds to 28 + (3 − (28
mod 3)) = 30. Therefore, two extra values are padded to compensate for the lack
of the two missing parameters for the last rotation. The features are used as rotation
parameters in each of the layers.

The quantum layer’s underlying quantum circuit itself with the already trained
weights after the optimization process is also included in the �gure 7.4. Instead of
including ten rotations per layer and qubit, for representation reasons in the given
space, it is considered as if only three features were entering the quantum circuit
with value 0 in each of them.

7.3.2 Classical model

The classical model of choice is akin to a multilayer perceptron in the realm of
deep neural networks. While there are many algorithms which could �t in the
description to be used in binary classi�cation, dense layers presented in these types
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Figure 7.5: Classical model with two dense layers and sigmoid activation function in the
output layer.

of neural networks can be joined with quantum layers for binary classi�cation.
However, as a matter of fact, one of the best supervised learning machine learning
algorithms known to handle the task of binary classi�cation for the dataset is the
random forest algorithm.

The distribution of layers in the classical model consists of four interconnected
layers. The �rst layer corresponds to the input layer where 28 features are loaded in
batches. The second and third layers are dense layers with 32 units each and ReLU
activation function. The �nal layer is a 1 unit layer with the sigmoid activation
function, a suitable choice for the given binary classi�cation problem. Every
classical dense layer’s weights are initialized using random sampling.

The optimizer choice for the classical model remains being Adam with custom
learning rate of 0.01, while the loss function is changed to binary cross entropy.
The latter is a common choice for binary data classi�cation and, in this case, the
output from the last layer sigmoid activation function is used as the probability pi
for the transaction case xi to be from the positive 1 class (fraud class), while 1− pi
corresponds to the probability for the data vector to be from the negative 0 class
(valid class).

The entire model diagram is presented in �gure 7.5.

7.3.3 Hybrid models
The hybrid models are combinations of the above presented exclusively classical or
quantum approaches respectively. The idea is to combine in di�erent settings the
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nonlinearity present in activation functions of classical dense layers and quantum
circuits’ quantum operations and measurement processes. Two hybrid models have
been considered in total.

As mentioned before, the classical layers present in the hybrid architecture have
the same properties, that is, 32 units and ReLU activation function. The output
layer is once again a 1 unit sigmoid activation function for binary classi�cation.
The quantum circuits follow the same idea of strongly entangled layers discussed,
however the quantum circuits utilized follow the embedding techniques to incor-
porate classical data and process it in every case. Therefore, in quantum circuits
the rotation and CNOT operations remain unchanged.

The optimizer keeps being Adam with custom learning rate 0.01 and the loss
function remains being the binary cross entropy.

7.3.3.1 Sequential model

The �rst one of the models is a straightforward one. The hybrid model has a total of
�ve layers. The �rst layer corresponds to the classic input layer already introduced
for the 28 features, the second layer is the quantum circuit using the quantum
circuit using amplitude embedding presented before and the third and fourth
layers correspond to the classical layers with 32 units each and the ReLU activation
function. The last layer is the output layer of 1 unit with sigmoid activation function.

The amplitude embedding present in the quantum layer is a limiting factor
when building di�erentiable models in the sense that features are not currently
di�erentiable when using it. The direct implication is that it does not allow dif-
ferentiable parameters before the quantum layer. In this case, since it is the �rst
layer with di�erentiable parameters, it does not cause any problem despite being
somewhat a restraint in the design of the model.

The entire model diagram can be found in �gure 7.6, while the quantum circuit
itself corresponds to the one already included 7.3.

7.3.3.2 Functional model

Despite sequential models so far being quite capable themselves, a functional model,
that explores a more complex, enriching and hopefully better representation of
the problem by splitting data and processing it separately to join them afterwards,
has been devised for the binary classi�cation task at hand. The input data is split
into two equivalent portions and introduced into two analogous sequential layer
collections.

A sequential layer collection contains speci�cally four layers, however, unlike
with the sequential hybrid model a di�erent approach is taken in the order of the
classical layers and the quantum layer. The �rst two layers are the classical layers
presented so far with 32 units and ReLU activation function. For the quantum layer
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Figure 7.6: Sequential hybrid model using amplitude embedding.

part, it is still a strongly entangling layer composed of rotation operations and
CNOT gates.

Nevertheless, the amplitude embedding proposed up to this point has been
discarded given the problem presented of not allowing di�erentiable parameters
before it. In change, the angle embedding approach is used to solvent this issue.
The amount of qubits necessary for angle embedding ascends to one qubit per
feature and, since the quantum circuits use quantum devices with 5 qubits, another
classical layer is introduced in the sequential layer after the two classical layers
and before the quantum layer.

The in between classical and quantum classical layer serves as an intermediary
to gather the information into its 5 units from the 32 input values being received
from the previous layer. Another aspect to consider is the ReLU activation choice,
which is particularly helpful for the angle embedding given that it is recommended
that all the values being embedded are xi ∈ [0, π).

The �nal part correspond to joining together the expectation values obtained for
the operator in each of the sequential layers and apply the output layer’s parameters
and sigmoid activation function. The functional model diagram is show in 7.7, while
the angle embedding quantum circuit is also included in 7.8.
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Figure 7.7: Functional hybrid model with sequential layer collections and angle embedding.

Figure 7.8: Quantum strongly entangling layers using angle embedding.
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7.4 Results
There are mainly two ways that have been proposed to envision the capacity of the
models to classify transaction cases either into valid or fraud ones. The �rst one
is through metrics of the entire test set, which includes a fourth part of the entire
dataset. However, while metrics are valuable, the test set is heavily unbalanced
since there are only 120 fraud cases in opposite of the staggering 71082 valid
cases present. Given the circumstances and in order to ensure the validity of the
results for generalization, the test set is processed as such for the calculation of the
performance metrics.

The other approach, albeit not as faithful as the former one, is selecting a subset
of the test set. The subset of the test set incorporates a balanced quantity of both
valid cases and fraud cases in exchange of losing the more accurate representation
of the problem’s settings. Nevertheless, the purpose of this balanced test set is
to visually represent the performance each of the models has in regards to cases
particularly from each of the classes. These results are helping to understand the
metric values of the standard approach and are not substitutes in any case. With
all things considered, the number of class instances is even with 120 from each one
which adds up to a total 240 cases for the subset of the test set.

7.4.1 Metrics’ results
Given the binary classi�cation nature of the problem as well as the unbalanced
nature of the dataset, metrics such as accuracy that can’t capture the intricacies
of the present disparity in class distribution are not suitable. Instead, the chosen
metrics are precision, recall and F1-score for each of the classes, which more
accurately represent the actual performance of the di�erent models. The results for
each of the models are presented in the table 7.1 below.

Fraud (1 label) cases Valid (0 label) cases
Precision Recall F1-score Precision Recall F1-score

Qmodel with amplitude embedding 0.7 0.87 0.77 0.83 0.625 0.71
Qmodel with data reuploading 0.54 0.76 0.63 0.6 0.35 0.45
Hybrid sequential model 0.69 0.83 0.76 0.79 0.64 0.70
Hybrid functional model 0.71 0.93 0.81 0.90 0.63 0.74
Classical dense model 0.62 0.85 0.72 0.99 0.99 0.99

Table 7.1: Results of each and every model presented for the test set.

7.4.2 Balanced test subset results
While the metrics’ results are much more reliable for the assessment of a general
case, there are some graphical results that may aid in understanding how well the
model classi�es data vectors of di�erent classes. Two di�erent approaches have
been taken to illustrates this, namely, a distance plot or classi�cation plot of the
predictions towards the corresponding label and a confusion matrix of the test
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subset to have a glimpse of the meaning and obtain a better grasp of the metrics’
interpretation.

The confusion matrix establishes the relation between the predicted class of the
inputs with the actual class they belong to. For the plots, there are two distinctions
depending on whether the plot corresponds to a quantum model or to a hybrid
model or classical model. For quantum models, the output value of the model
towards the labels +1 and −1 is considered, that is, the distance to the appropriate
label and the opposite as a means to show which eigenvalue follows the closest
each data vector. In case of the hybrid or classical plots, the classi�cation plot
represents what the data vector was classi�ed as in comparison to what it should
have been classi�ed as.

The results for the subset of the test set are gathered in �gures 7.9 for the
quantum model with amplitude embedding, 7.10 for the quantum model with data
reuploading, 7.11 for the hybrid sequential model, 7.12 for the hybrid functional
model and, �nally, 7.13 for the classical model.

Figure 7.9: Quantum model with amplitude embedding distance plot towards correct class
and confusion matrix.

Figure 7.10: Quantum model with data reuploading distance plot towards correct class
and confusion matrix.
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Figure 7.11: Hybrid sequential model classi�cation plot and confusion matrix.

Figure 7.12: Hybrid functional model classi�cation plot and confusion matrix.

Figure 7.13: Classical model classi�cation plot and confusion matrix.

7.4.3 Interpretation and reasoning of the results
The obtained results re�ect the performance of the �ve models with di�erent
con�gurations presented. When designing the characteristics of the models, the
key, to use fully the diversity allowed and compress it, was considering as many
possible combinations and detecting which ones were essential from the more
incidental ones. Therefore, the results represent improvements of taking the better
decisions when selecting the many methodologies and techniques presented.

A general view of the classi�cation problem can be given when observing the
common issue for the quantum models and hybrid models. There is a particularly
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nondeterministic behaviour when dealing with valid cases (0 label) given the dif-
�culty for detecting them accordingly (a bit above 0.6 recall for most quantum
models). The root of the problem may be due to the undersampling technique used
for reducing considerably the number of valid cases and provide a balanced distri-
bution to the train split, which inevitably has reduced the distinctive data points
of valid cases included in the train split following the undersampling technique’s
criteria (Near Miss 1 algorithm) and hampered the parameter optimization process
in retrospective which prevented a better capture of the patterns in the feature
space.

The quantum model using data reuploading has a quite random behaviour
(F1-score 0.63 for label 1 and 0.45 for label 0) when compared to using amplitude
embedding (F1-score 0.77 for label 1 and 0.71 for label 0) when introducing the
data into the quantum circuit. The main issue this time is considering how the
data is processed in the quantum circuit. When including the data as standard
elementary operations (rotations) in each layer in the data reuploading quantum
model, the quantum circuit has a higher di�culty when tuning the parameters.
Instead, amplitude embedding allows the data to be represented as probability
amplitudes, which greatly improves the performance of the quantum circuit over
the alternative. The transition to the sequential part in the hybrid sequential model
doesn’t provide too much bene�t either (F1-score 0.76 for label 1 and 0.70 for label
0) when adding classical layers to the quantum model with amplitude embedding
after the quantum circuit.

The next meaningful step can be found in the hybrid functional model (F1-score
0.81 for label 1 and 0.74 for label 0) in contrast with both the hybrid sequential
model and the quantum model with amplitude embedding. The main advantage
the hybrid functional model presents is the shift from processing the entire data in
a single sequence to instead dividing it, which alleviates the burden to adequate the
quantum circuits’ weights into two even subsets of the feature space. Moreover, the
classical layers are processed before the quantum circuits in the hybrid functional
model unlike in the hybrid sequential model.

Nevertheless, the main reason, for which the order of the classical layers going
before the quantum circuits in the hybrid functional model was selected, has
been the type of embeddings the quantum circuits in the hybrid functional model
include. The change from amplitude embedding to angle embedding has notable
consequences as the results portray, since the data is inserted no longer as a
probability amplitude causing a condensed representation of the input.

The angle embedding only includes one rotation in each of the qubit for each
feature and, while it requires a larger number of qubits to encapsulate the entire
data to one qubit per feature, the classical layer reducing the dimension of input
features to only �ve and the entire input being split into two at the beginning
help greatly in compensating for the reduced dimension of the data features. The
data input entering the quantum circuit, owing to the angle embedding requiring
as many qubits as the input dimension, is represented more broadly than when
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amplitude embedding is selected therefore. Even if there are shortcomings to it.
Another aspect that di�erentiates the hybrid models from the quantum models

is the loss function used. While the hybrid models include a sigmoid activation
function together with the binary cross entropy loss function, the quantum models
provide an expectation value of the operator in each qubit which is used to calculate
the distance in the mean squared error loss function. There does not seem to be too
large of di�erence in this aspect and therefore the expectation values used with the
mean squared error work as intended without relatively hindering the optimization
process in principle.

The last step is to consider whether quantum circuits serve a purpose or provide
a more subtle classi�cation in contrast with directly tackling the classi�cation
task exclusively with classical means. The results show an inclination in quantum
models and hybrid models on classifying more accurately fraud cases in contrast
with the classical model (F1-score 0.72 for label 1). On the contrary, the classical
model obtains a near perfect score (F1-score 0.99 for label 0) when classifying valid
cases while quantum models and hybrid model have more di�culties detecting
these cases correctly.

Therefore, in the present circumstances, there is a slight advantage when using
quantum models and hybrid models if detecting potential fraud cases is a priority,
which, in the scope of this classi�cation task, it is a great priority in many cases.
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CHAPTER 8
Conclusions

The premise of the entire work was to connect both classical and quantum machine
learning capabilities, without disregarding one from another and instead combining
them. This has proved to be particularly insightful in the sense that has inspired
hybrid models that have shown the best of both worlds. On that note, quantum
systems are both highly anticipated yet uncharted territory that will be discussed
for years to come.

The research work carried out on the quantum circuits and merging them
with classical machine learning approaches has provided an important fact, that
is, at this moment understanding the underlying representation of the machine
learning problems, designing a hybrid model according to the speci�cations and
necessities of the data and thoughtfully organizing quantum circuits’ settings is
already a thing of the present. Even when dealing with task that present such
di�cult representations as occurs with unbalanced data and unidenti�able features,
a common issue in the machine learning community and data management teams.

The choice of the linear operator for obtaining the expectation value, the use
of the convenient loss functions to learn from data, adjusting the learning rate
of the right optimizer for the problem, adding nonlinearity with classical and
quantum layers and notably using the proper selection of the type of embedding
to incorporate data into the quantum circuit are some of the most valuable and
enriching qualities of hybrid models.

All in all, with quantum systems already showing promising future, as larger
the amount of resources grows in terms of computational capabilities or quantum
systems magnitude (more qubits) and complexity (more intricate and richer rep-
resentations of problems), the more close the current technology will be for even
more advances. The current performance of quantum models both hybrid and not
together with more quantum approaches to deal with complicate tasks are paving
the way to even more diverse classical-quantum solutions.
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