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Abstract

Due to physical constrains of an Electron Microscope, capturing high-resolution scans
of a subject takes a very long time. On the other hand, running a Gravitational N -body
simulation of hundreds of millions of particles, required for state-of-the-art research, takes
millions of CPU hours. Thus, in this work we propose a new Image Super-Resolution
framework based on Generative Adversarial Networks to super-resolve both images scanned
by a microscope and snapshots of gravitational N -body simulations. We incorporate
techniques from residual neural networks to increase the learning capabilities, and introduce
the Wasserstein GAN training method to improve stability. Comparisons have shown that
our model performs equally or better than state-of-the art methods in both of these use
cases, and provides balanced results that are realistic but don’t have much distortion.
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CHAPTER 1
Introduction

1.1 Image Super-Resolution

Image Super-Resolution (SR) is the process of recovering high-resolution (HR) images from
low-resolution (LR) images (see Figure 1.1). It is an important class of image processing
techniques in computer vision which has a wide range of real-world applications such as
medical imaging, surveillance, security, astronomical imaging, among others [1].

Image Super-Resolution is a notoriously challenging ill-posed problem because there
are multiple possible HR reconstructions of an LR image (see Figure 1.2), and the HR space
that we intend to map to the LR input is usually intractable [2].

Image Super-Resolution techniques can be applied to Singe Image Super-Resolution
(SISR), which aims to recover a HR image using a single LR image; Multi Image Super-
Resolution (MISR), which combines the information of multiple images of the same scene to
produce a HR image; or Video Super-Resolution, which can use information from previous
and following frames to reconstruct a HR video. In this thesis we will focus on SISR.

SR
method

Figure 1.1: Basic structure of Image Super-Resolution methods, in which a LR image (left) is
processed in a SR method to create a HR reconstruction of the same image (right).

1



1. Introduction

Figure 1.2: Many high-resolution images can be downsampled to a single low-resolution image.
Super-resolution is thus an ill-posed problem. Source: [3]

1.1.1 Problem de�nition

Image SR aims to recover HR images from LR images. Generally, the LR image z is modelled
like this:

z = D(x; δ), (1.1)

where D is a degradation function, x is the HR image and δ are the parameters of the
degradation function.

In real applications, the degradation process (D and δ) are unknown. However, re-
searchers try to model the degradation mapping in order to easily obtain larger datasets.
Some directly model it as a single downscaling operation:

D(x; δ) = x ↓s, {s} ⊂ δ, (1.2)

where ↓s is a downscaling operator with the scaling factor s.
However, in most real-world applications the LR images are not simple downscaled ver-

sions of the HR counterparts, so the degradation operation can be de�ned as a combination
of multiple operations:

D(x; δ) = (x⊗ κ) ↓s +nς , {κ, s, ς} ⊂ δ, (1.3)

where (x⊗ κ) indicates the convolution between a blur kernel κ and the HR image, and
nς is additive Gaussian noise with variance ς .

2



1.2. Electron microscopy

Finally, in the SR process we want to recover a HR approximation x̃ of the ground truth
x from the LR image z following:

x̃ = F(z; θ), (1.4)

where F is the SR model and θ are the parameters of F .

1.2 Electron microscopy

Electron microscopy (EM) is a technique for obtaining high resolution images of biological
and non-biological specimens (see Figure 1.3). It is used in biomedical research to investigate
the detailed structure of tissues, cells, organelles and macromolecular complexes. The
high resolution of EM images results from the use of electrons (which have very short
wavelengths) as the source of illuminating radiation [4].

(a) Chlamydomonas

(b) Volcanic ash

Figure 1.3: Scanning Electron Microscope images of Chlamydomonas algae (a) and volcanic ash (b).
Source: Dartmouth College: Electron Microscopy Facility.

There are two main types of electron microscope – the transmission EM (TEM) and the
scanning EM (SEM). The transmission electron microscope is used to view thin specimens
(tissue sections, molecules, etc) through which electrons can pass generating a projection
image. However, there is an increasing need for large area imaging or even volume imaging
of biological tissues at nanoscopic resolution comprising billions of pixels [5].

To image surfaces, scanning electron microscopes (SEMs) need to be used, which
depend on the emission of secondary electrons from the surface of a specimen [4]. These
microscopes conventionally acquire an image one pixel at a time, so acquiring large amounts
of data is very time-consuming. As an example, mapping a 1 mm cube of tissue with an
isotropic voxel size of 4 nm will result in almost 16 petabytes of data. Data acquisition at
20 MHz would require a total acquisition time of almost 25 years, even before taking into
account overhead times such as those due to stage movements [5].

3



1. Introduction

An obvious way of increasing a SEM’s throughput would be to increase the data
acquisition rate, therefore taking less time to scan each pixel. However, the signal-to-noise
ratio in an SEM image depends on beam current, pixel dwell time, sample contrast and
detection e�ciency [5]. If we want to lower the time of acquisition by lowering the pixel
dwell time, we would need to increase the electron beam current in order to maintain
signal-to-noise ratio, thus keeping the specimen we want to scan visible. Increasing the
beam current will lead to increasing Coulomb interactions between the electrons, thereby
blurring the electron beam and reducing the resolution.

As it is not possible to increase the throughput of the microscope, and the time that
can be spent using it for each project is limited, there is a need for SR methods in this �eld.
Super-resolution techniques are very important in their work�ow, as they can shorten the
time spent using the microscope by lowering the scanning resolution and then upscaling
the results using SR methods.

1.3 Gravitational N-body simulation

Gravitational N -body simulations are a widely used theoretical tool in astrophysics and
cosmology – the study of the origins of the universe, its large-scale structures and dynamics,
and the ultimate fate of the universe [6].

Cosmologists believe that most of the mass in the universe may be in the form of some
unknown and invisible particles collectively called “dark matter”. Normal nuclear matter
forms the luminous stars produced after matter collapsed into galaxies. The dark matter is
believed to have no signi�cant interactions except gravity, and it is thought to dominate the
mass everywhere except in the stellar cores of galaxies. To achieve a basic understanding
of galaxy formation and clustering it may be su�cient only to follow the gravitational
interactions of dark matter.

The evolution of perturbations in a nonrelativistic collisionless gas, based on the evolu-
tion of the phase space – space of positions, ~x, and momenta, ~p = am · d~x/dt, of particles
in a physical system – distribution, f(~x, ~p, t) is governed by the Vlasov equation [7],

∂f

∂t
+

~p

am
· ∂f
∂~x
− am~∇φ · ∂f

∂~p
= 0 . (1.5)

Herem is the mass of the particle, a is the cosmic scale factor (parameter that measures
its relative expansion) and φ is the gravitational potential. Note that the quantities de�ned
in the last equation refer to “comoving” coordinates – those in which distances do not
change in time due to the expansion of space.

This equation cannot be solved analytically in general. Here is where the N -body
simulations come into play (see Figure 1.4 for a small example of a simulation). They
solve this equation for as many particles as possible. Modern simulations use millions of
particles to follow thousands of galaxies in a large volume of space. These simulations
are traditionally run in 3D boxes with periodic boundary conditions. Keeping the volume
of the box �xed, the amount of particles that are simulated de�ne the resolution of the
simulation. Thus, one particle can represent hundreds of galaxies (if the resolution is low)
or even a tiny part of a galaxy (if the resolution is high). As a rule of thumb, the bigger the

4



1.3. Gravitational N -body simulation

(a) a = 0.01 (b) a = 0.33

(c) a = 0.66 (d) a = 1.00

Figure 1.4: Gravitational N -body simulation in a two-dimensional universe. The dots represent
the particles and the colour is the density �eld that can be reconstructed from the particles: the
darker the color, the higher the density of particles is in that area. The �rst frame (a) is the initial
condition of the simulation, with only a slight perturbation, and those perturbations grow over time
in frames (b-d). a denotes the expansion factor of the universe, where a = 0.01 indicates that the
universe is 100× smaller than what it is today.
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1. Introduction

simulation and the resolution, the better. Note that those two quantities go against each
other, the bigger the simulation, with a �xed number of particles, the smaller the resolution.

In order to runN -body simulations of hundreds of millions of particles (usually required
for state-of-the-art research) millions of CPU hours are needed. Moreover, new cosmological
observations will require to have thousands of such simulations. Hence super-resolution
techniques become very important to help save millions of CPU hours (see, e.g., [8, 9]).
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CHAPTER 2
Objectives

Due to the necessity of powerful super-resolution algorithms in both microscopy and
astrophysics, the main goal of this project is to provide an algorithm that can deal with
both types of images.

The objectives that we will try to ful�l in this project are the following:

1. Study the state of the art of general image super-resolution methods, as well as
methods speci�c to microscopy and N -body simulation images.

2. Explore the available image quality assessment metrics for evaluating the results.

3. Inspired by those state-of-the-art methods, design a solution that can be applied to
both EM and gravitational N -body simulation images.

4. Develop the new solution, train it to super-resolve images from a real microsocpy
dataset and a real gravitational N -body simulation dataset, and compare with state-
of-the-art methods.

7





CHAPTER 3
State of the art

3.1 Super-resolution

There are multiple techniques in the literature for performing image upscaling or super-
resolution. A wide variety of classical methods have been proposed, such as prediction-
based methods [10], edge-based methods [11], etc.

In recent years, with the evolution of deep learning techniques and Convolutional
Neural Networks (CNN), deep learning based SR algorithms have been widely explored
and often achieve state-of-the-art performance on various benchmarks of SR [1].

From the simplest bilinear interpolation to the most complex CNN based algorithms,
all of them have their use cases and limitations.

In this thesis, I will focus in exploring the deep learning algorithms that have been used
for SR tasks, from the early Convolutional Neural Network based methods [12, 13] to the
more recent approaches using Generative Adversarial Networks [14, 15].

3.1.1 Deep CNNs for super-resolution

Since image super-resolution is an ill-posed problem, how to perform upscaling is the key
issue. Depending on the architecture of the network, di�erent variants have been de�ned,
such as:

• Pre-upsampling. These methods upsample the image at the beginning, typically with
a �xed function such as bilinear interpolation, and then re�ne it using the neural
network (see Figure 3.1a).

• Post-upsampling. With this method, the network extracts features in the low-
resolution space and then performs the upscaling at the end using a learnable layer,
for example, transpose convolution. (see Figure 3.1b).

• Progressive upsampling. These methods are based on a cascade of CNNs that pro-
gressively reconstruct higher-resolution images. They perform a smaller upsampling
at each step, upsampling the image step-by-step until the desired upsampling factor
is reached (see Figure 3.1c).

9



3. State of the art

• Iterative up-and-down sampling. This SR framework tries to iteratively apply back-
projection re�nement, i.e., computing the reconstruction error then fusing it back
to tune the HR image intensity. It connects upsampling and downsampling lay-
ers alternately and reconstructs the �nal HR result using all of the intermediate
reconstructions (see Figure 3.1d).
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(d) Iterative up-and-down Sampling SR

Figure 3.1: Super-resolution model frameworks based on deep learning. The cube size represents
the output size. The grey ones denote prede�ned upsampling, while the green, yellow and blue
ones indicate learnable upsampling, downsampling and convolutional layers, respectively. And the
blocks enclosed by dashed boxes represent stackable modules. Source: [1]

The Super-Resolution Convolutional Neural Network (SRCNN), proposed by Dong et
al. [12] (see Figure 3.2 and 3.3), which was among the �rst that used CNNs for SR, uses a pre-
upscaling method (Figure 3.1a). This means that the image is �rst upscaled using a classical,
non-learnable method (in this case, bicubic interpolation). After this pre-processing step,
a CNN is used to re�ne that simple upscaling and add �ner details to the image. Since
the CNN only needs to re�ne coarse images, this approach helps to reduce the learning
di�culty, and the models created can take images with arbitrary resolutions and scaling
factors. However, as most operations are performed with the higher size image, the time
and memory cost are quite high.

To overcome that cost, Fast Super-Resolution Convolutional Neural Network (FSR-
CNN) [13] was proposed, which was a faster version of SRCNN (see Figure 3.3). They
achieved this by removing the pre-processing step from SRCNN and adding a transpose
convolution layer at the end of the network, as a learnable upsampling layer. This post-
upscaling method (Figure 3.1b) greatly reduces the computational cost (it is more than 40
times faster [13]), but higher upscaling factors are di�cult to train, and a new network
would have to be trained for each scaling factor [12].

Following the SRCNN work, Jiwon et al. proposed the Very Deep Super-Resolution
(VDSR) approach [16], which uses a very deep convolutional neural network inspired by
VGG [17]. They use a 20-layer network with small �lters, compared to the three layers used
by SRCNN. However, as deep networks are harder to converge, the network learns residuals
(the di�erence between the low resolution and the high resolution image), inspired by the
popular ResNet architecture (see Figure 3.4).

10



3.1. Super-resolution

feature maps

 Patch extraction 
and representation

Non-linear mapping Reconstruction 

Low-resolution
image (input)

High-resolution
image (output)

of low-resolution image of high-resolution image 
feature maps

Figure 3.2: SRCNN network architecture. Given a low-resolution image, the �rst convolutional
layer extracts a set of feature maps. The second layer maps these feature maps nonlinearly to
high-resolution patch representations. The last layer combines the predictions within a spatial
neighbourhood to produce the �nal high-resolution image. Source: [12]

Patch extraction and 

representation

Non-linear

Mapping
Reconstruction

Original 

low-resolution 

image

Feature extraction Shrinking DeconvolutionMapping Expanding

Bicubic

interpolation

No pre-processing

High-resolution

image

SRCNN

FSRCNN

Figure 3.3: Network structures of the SRCNN and FSRCNN. In FSRCNN, the original low-resolution
image is input without bicubic interpolation, and a deconvolution layer is introduced at the end of
the network to perform upsampling. The non-linear mapping step in SRCNN is replaced by three
steps in FSRCNN, namely the shrinking, mapping, and expanding step. Finally, FSRCNN adopts
smaller �lter sizes and a deeper network structure. Source: [13]

Another method that leverages residual learning is the Residual Channel Attention
Network (RCAN), proposed by Zhang et. al. [18]. This network uses a post-upscaling
architecture, with a residual-in-residual structure. This approach combines long skip
connections over larger parts of the network with short skip connections (see Figure 3.5),
which facilitate learning of very deep networks. On the other hand, in order to make the
network focus on more informative features, they exploit the interdependencies among
feature channels, resulting in a channel attention (CA) mechanism. This is achieved by
scaling each channel by a learnable value.

More recently and based on RCAN, Qiao et. al. proposed a super-resolution method
for optical microscopy called Deep Fourier Channel Attention Network (DFCAN) [19].
This method leverages the frequency content di�erence across distinct features to learn
precise hierarchical representations of high-frequency information about diverse biological
structures.

11



3. State of the art

ILR Conv.1 ReLu.1 HR Conv.D (Residual) Conv.D-1 ReLu.D-1 

x r y 

Figure 3.4: VDSR network architecture. An interpolated low resolution image (x) is passed through
various convolutional layers and is transformed into a residual image (r). The element-wise addition
of this residual image with the low resolution image produces the �nal high resolution image (y).
Source: [16]

Long skip connection

Residual in Residual

RG-1 RG-g RG-G

LR

HR

Residual group
Residual channel  

attention block

Conv Upscale 

module

Element-wise 

sum

FgFg−1

Residual Group

RCAB-1 RCAB-b RCAB-B

Short skip connection

Fg,b−1 Fg,bFg−1 Fg

FDF

Figure 3.5: RCAN network structure. It consists on long skip connections over multiple residual
groups (bottom), and short skip connections within each residual block (top). Source: [18]

3.1.2 Generative Adversarial Networks for Super-Resolution

Generative Adversarial Network (GAN) is a class of machine learning methods where two
neural networks contest with each other in a zero-sum game [20]. In super-resolution, it
is straightforward to use adversarial training: a SR model is trained as a generator, and a
discriminator is de�ned to determine if the input image is generated or not. The generator
then tries to “fool” the discriminator into thinking the fake images are actually real by
making them realistic. In order to make the generated images as close to the original as
possible, the loss function of the generator is usually composed of the weighted sum of the
adversarial loss and a content loss, like such:

LG(Ĩ , I) = αLC(Ĩ , I) + βLD(Ĩ) (3.1)

where LC is the content loss and LD is the adversarial or discriminator loss. In this
framework, the discriminator is trained to maximise its output (LD) for fake images and
minimise it for real images. Hence the generator is trying to create fake images that minimise

12



3.1. Super-resolution

Figure 3.6: Architecture of SRGAN’s Generator and Discriminator Network with corresponding
kernel size (k), number of feature maps (n) and stride (s) indicated for each convolutional layer.
Source: [14]

the discriminator’s output. I and Ĩ are the original HR image and its reconstruction,
respectively. α and β are coe�cients given to both losses.

This type of training has been used in some SR methods, which produce more realistic
looking images [1].

The Super-Resolution Generative Adversarial Network (SRGAN), proposed by Ledig et
al. [14] is a GAN-based framework (see Figure 3.6) that produced photo-realistic images
with a scaling factor of 4×. In this solution, the generator uses a network based on
ResNet with residual-in-residual skip connections. The adversarial loss uses a discriminator
network based on VGG [17] to di�erentiate between the super-resolved images and original
photo-realistic images.

For the content loss, they tested their network with both pixel-wise mean squared
error (MSE) loss and VGG loss. For the VGG loss they extract the image features of both
the super-resolved and original images using a pretrained VGG as described by Simonyan
in [17], and then calculate the MSE between those features. The latter loss produced more
realistic images that achieved better Mean Opinion Scores.

In the literature, there have been multiple improvements over SRGAN’s work. One no-
table example is the Enhanced Super-Resolution Generative Adversarial Network (ESRGAN),
proposed by Wang et. al. [15]. They improved three key components from SRGAN: network
architecture, adversarial loss and perceptual loss. First, they introduce the Residual-in-
Residual Dense Block (RRDB) without batch normalisation as the basic network building
unit. Second, they improve the discriminator using Relativistic average GAN (RaGAN) [21],
which learns to judge “whether one image is more realistic than the other” rather than
“whether one image is real or fake”. Lastly, regarding perceptual loss, they extract the fea-
tures from VGG before activation, instead of after like in SRGAN. All of these improvements
consistently produced better visual quality with more realistic and natural textures than
SRGAN and won the �rst place in the PIRM2018-SR Challenge [22] (see Figure 3.7).
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face from Set14

HR Bicubic SRCNN EDSR

RCAN EnhanceNet SRGANbaboon from Set14

43074 from BSD100

102061 from BSD100

ESRGAN(ours)

（∞ / 3.59） （22.44 / 6.70） （22.73 / 5.73） （23.04 / 4.89）

（23.12 / 4.20） （20.87 / 2.68） （21.15 / 2.62） （20.35 / 1.98）（PSNR / Percpetual Index）

（PSNR / Percpetual Index）

（PSNR / Percpetual Index）

（PSNR / Percpetual Index）

HR Bicubic SRCNN EDSR

RCAN EnhanceNet SRGAN ESRGAN(ours)

（∞ / 5.82） （31.49 / 8.37） （32.33 / 6.84） （32.82 / 6.31）

（32.93 / 6.89） （30.33 / 3.60） （30.28 / 4.47） （30.50 / 3.64）

HR Bicubic SRCNN EDSR

RCAN EnhanceNet SRGAN ESRGAN(ours)

（∞ / 2.12） （25.12 / 6.84） （25.83 / 5.93） （26.62 / 5.22）

（26.86 / 4.43） （24.73 / 2.06） （25.28 / 1.93） （24.83 / 1.96）

HR Bicubic SRCNN EDSR

RCAN EnhanceNet SRGAN ESRGAN(ours)

（∞ / 2.31） （29.29 / 7.35） （29.62 / 6.46） （29.76 / 6.25）

（29.79 / 6.22） （27.69 / 3.00） （27.29 / 2.74） （27.69 / 2.76）

Figure 3.7: Comparison of various SR methods in a picture from Set14 with 4× upscaling. ESRGAN
produces more natural textures and less artefacts. Source: [15]

One more interesting GAN-based approach that can be applied for super-resolution is
SinGAN, proposed by Shaham et. al. [23]. This algorithm can e�ectively learn the mapping
between low-resolution and high-resolution images using just one reference image for
training. In this method, they use an architecture composed of multiple generators and
discriminators that work on di�erent scales. The main idea is to reconstruct the coarser
or low-frequency details in the smallest scale, then upscale and re�ne those images in
subsequent scales, trying to reconstruct higher frequency details (see Figure 3.8). Despite
having been trained with only one image, this approach achieves comparable results to
SRGAN.

RealFake
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Mult-scale Patch  
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Figure 3.8: SinGAN’s multi-scale pipeline. The model consists of a pyramid of GANs, where
both training and inference are done in a coarse-to-�ne fashion. At each scale, Gn (left) learns
to generate image samples in which all the overlapping patches cannot be distinguished from the
patches in the down-sampled training image, xn, by the discriminator Dn (right). When tuning the
network for SR, the low resolution image is also input at the coarser layer, in conjunction with the
noise. Source: [23].

In cosmological N -body simulations, there have been e�orts to produce a higher
resolution simulation from a low resolution one. Li et. al. [24] use a Wasserstein GAN
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with an architcture inspired by StyleGAN2 [25] to enhance the simulation by adding more
particles to an existing simulation and predicting their displacement. This way, what they
generate is a new 3D simulation, instead of projections of the density. In contrast, Kodi
Ramanah et. al. [26] map the distribution of the low-resolution cosmic density �eld to the
space of the high-resolution small-scale structures.

3.2 Wasserstein GAN

In spite of the promising results that GAN-based methods produce, currently the training
process is still di�cult and unstable [1]. GAN-based SR methods usually need more time
to converge and produce good results, and balancing the training of the generator and
discriminator is often di�cult as one of them may over�t or under�t.

One attempt in stabilising the training of Generative Adversarial Networks is Wasser-
stein GAN (WGAN) [27], later revised with WGAN with Gradient Penalty (WGAN-GP) [28].
This paper proposes a new cost function used in the generative model, to replace the more
commonly used in GAN Kullback-Leibler (KL) and Jensen-Shannon (JS) divergences.

Suppose we have a real data distribution p with mean 0, which we assume is Gaussian,
and a few q distributions estimated from the model with means ranging from 0 to 35.
When p = q, the divergency is 0, and as the mean of q increases, the divergency increases.
However, the gradient of this divergency eventually diminishes, which makes gradient-
descent learning very di�cult (see Figure 3.9). In general terms, this means that if the
generator is not doing a good job yet, the gradient for the generator diminishes and the
generator learns nothing.

Figure 3.9: Plot of Kullback-Leibler (KL) and Jensen-Shannon (JS) divergencies for q with means
ranging from 0 to 35. As the mean of q increases, the gradient tends to 0. Source: [29]

Wasserstein GAN proposes a new cost function that uses the Wasserstein distance, or
Earth Mover’s Distance. Informally, if the distributions are interpreted as two di�erent ways
of piling up a certain amount of earth (dirt) over the region, the Earth Mover’s Distance
is the minimum cost of make one pile equal to the other; where the cost is assumed to be
the amount of dirt moved times the distance by which it is moved [30]. The Wasserstein
distance cannot be analytically solved, so the discriminator takes the role of estimating this
distance.
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This way, the weights have a smoother gradient, no matter if the generator is performing
or not (see Figure 3.10).

Figure 3.10: Optimal discriminator and critic when learning to di�erentiate two Gaussians.
Source: [27]

In terms of its implementation, the network design is the same, except the discriminator
does not have an output activation function.

The main di�erence between WGAN and WGAN-GP is in the loss functions of the
discriminator (Equations 3.2a and 3.3a) and generator (Equations 3.2b and 3.3b). In WGAN,
the discriminator is renamed to critic and represented as function f , as its role is now to
estimate the Wasserstein distance.

GAN loss functions [20]:
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WGAN loss functions [27]:

∇w
1

m

m∑
i=1

[
f
(
x(i)
)

+ f
(
G
(
z(i)
))]

(3.3a)
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Here, x is the real, high-resolution image, and z is the downscaled, low-resolution
version. G is the generator, D is the discriminator and f is the critic. m is the batch size.
∇θd and ∇w are the gradients of the weights of the generators, and ∇θg and ∇θ are the
gradients of the weights of the discriminator and critic, respectively.
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In WGAN’s case, f must enforce Lipschitz constraints, therefore the critic’s weights
are clipped after each gradient update, like so:

w ← w + α · RMSProp(w, gw)

w ← clip(w,−c, c)

where α is the learning rate, w is the weight of the critic, gw is the gradient of the weight
and c is the value to which the weights are clipped.

Lastly, the critic is updated ncritic times (5 is recommended by the authors) for every
generator update, in order to train the critic close to convergence.

However, in WGAN this weight clipping was used as it was simple and performant,
but they don’t think it’s a good solution. Quoting from [27]:

Weight clipping is a clearly terrible way to enforce a Lipschitz constraint. If
the clipping parameter is large, then it can take a long time for any weights to
reach their limit, thereby making it harder to train the critic till optimality. If
the clipping is small, this can easily lead to vanishing gradients [. . .]

Because of this, Gulrajani et. al. propose another solution in [28].

A di�erentiable function is 1-Lipschtiz if and only if it has gradients with norm
at most 1 everywhere, so we consider directly constraining the gradient norm
of the critic’s output with respect to its input.

Therefore, to the original critic loss, a gradient penalty is added with coe�cient λ (see
Equation 3.4, [28]), where we calculate the gradients with reference to an interpolated
input. After that, we enforce the 2-norm of the gradient to be equal to 1.

L = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

[
(||∇x̂D(x̂)||2 − 1)2

]
(3.4)

where x̂ is sampled uniformly along a straight line between the generated sample x̃ and
the real sample x:

x̂ = εx̃+ (1− ε)x where 0 ≤ ε ≤ 1

3.3 Image Quality Assessment (IQA)

The best way to assess the quality of an image is perhaps to look at it because human
eyes are the ultimate receivers in most image processing environments [31]. Therefore,
subjective methods based on humans’ perception are more in line with our need.

However, these Mean Opinion Score (MOS) methods are too inconvenient, slow and
expensive for practical usage. Because of that, various objective computational methods
are used for IQA.
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The objective IQA methods are divided into three categories [32]: full-reference metrics
that perform assessment using reference images, reduced-reference metrics based on
comparisons of extracted features, and no-reference metrics without any reference image.

Peak signal-to-noise ratio (PSNR) is one of the most popular full-reference metrics for
IQA. It is de�ned via the maximum pixel value (255 for 8-bit colour images) and the mean
squared error (MSE).

PSNR = 10× log10

(
L2

1
N

∑N
i=1(I(i)− Ĩ(i))2

)
(3.5)

where I is the true image, and Ĩ is the reconstruction; N is the number of pixels in the
image; and L is the maximum pixel value of the images.

Since PSNR only looks at pixel-level MSE, it often leads to poor performance in repre-
senting reconstruction quality in real scenes [1]. However, with the need to compare with
other works in the literature, it is still a widely used IQA metric.

Another widely used IQA metric is the Structural Similarity index (SSIM) [32], which
measures the structural similarity between images based on independent luminance, con-
trast and structure comparisons. This metric measures the perceptual quality better and
thus, it is also popular.

While most super-resolution images are evaluated by full-reference metrics, the ef-
fectiveness is not clear and the required ground-truth images are not always available in
practice. Due to this issue, some no-reference metrics have been developed to evaluate the
perceptual quality of super-resolved images [33, 34].

3.3.1 Perceptual Quality vs. Distortion

Image super-resolution methods, or any image restoration algorithm, are typically evaluated
using some distortion measure (e.g. PSNR, SSIM, etc.) or by human opinion scores that
quantify perceptual quality. However, Blau and Michaeli mathematically proved [35] that
distortion and perceptual quality are at odds with each other.

In that paper, they show that, as distortion decreases, the probability for correctly
discriminating generated and real images increases, thus decreasing perceptual quality.
Therefore, they deem impossible to create an image that has both low distortion and high
perceptual quality (see Figure 3.11).

An example of this phenomenon can be seen in Figure 3.12, where an SR algorithm
may have a lower PSNR value, but it looks better to the human viewer.

Because of this tradeo�, some GAN-based SR methods [14], which often achieve a
higher perceptual quality and higher distortion, combine popular metrics like PSNR and
SSIM with Mean Opinion Score (MSO) [38], or with a perceptual quality metric like Ma et.
al. [33] or Perceptual Index [22], to assess the performance of their solution.
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Figure 3.11: The perception-distortion tradeo�. There exists a region in the perception-distortion
plane which cannot be attained, regardless of the algorithmic scheme. When in proximity of this
unattainable region, an algorithm can be potentially improved only in terms of its distortion or in
terms of its perceptual quality, one at the expense of the other. Source: [35]

(a) comic from Set14

(b) Bicubic
(21/6.73)

(c) SRCNN
(22.52/6.74)

(d) EnhanceNet
(20.64/2.40)

(e) SRGAN
(19.32/2.32)

(f) ESRGAN
(18.87/2.27)

(g) ESRGAN+
(18.06/2.17)

(h) nESRGAN+
(17.76/2.63)

(i) HR
(∞/2.76)

Figure 3.12: Comparison of various state-of-the-art super-resolution methods, with a 4× upscaling
factor using an image from the Set14 dataset [36]. PSNR (left) and Perceptual Index [22] (right)
metrics are shown. The best score for each metric is shown in red, and the second-best is shown in
blue. Source: [37]
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CHAPTER 4
Methodology

In this chapter we will describe our method used to upsample images from two type of
sources: electron microscopy and gravitational N -body simulations. We will explain the
network structure in detail, the loss functions used for optimisation and the steps made in
the training loop.

4.1 Network Architecture

For the network architecture, we decided to go with a GAN approach, because, as we
discussed in Section 3.3.1, they usually produce more realistic and sharper images, albeit at
the cost of a higher distortion. This approach would, in theory, minimise the blurriness or
haziness e�ect that other CNN-based algorithms produce, thus creating an image that looks
better to the human eye.

These GANs are composed of two networks: a generator, which has the role of upsam-
pling the images, and a discriminator (critic in a Wasserstein GAN), which is trained to
discern between generated and real images.

4.1.1 Generator

The generator uses a residual-in-residual model based on the popular ResNet architecture.
The model has N residual blocks composed of a 2D Convolutional (Conv2D) layer with 64
�lters of size 3 × 3, a Parametric ReLU (PReLU) layer (see Equation 4.1, α is a learnable
value), and another Conv2D layer with 64 �lters of size 3× 3, with a short residual skip
connection. There is also a long residual skip connection over all of the residual blocks.

PReLU(x) =

{
x, if x ≥ 0

αx, otherwise
(4.1)

We use a learnable post-upsampling method for upscaling the images. The upsampling
layer is a sub-pixel convolution layer PixelShu�e, originally proposed by Shi et. al. [39],
which aggregates various feature maps into a single layer (see Figure 4.1). Each upsampling
block has a 2× upsampling factor, so we add log2(S) upsample blocks, depending on the
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desired upscaling factor. This also means that the upscaling is �xed and a new network has
to be trained for each factor.

In these upsampling blocks, there is a Conv2D layer with 256 3×3 �lters, the PixelShu�e
layer with an upscaling factor of 2×, which results in 64 feature maps from those 256 in
the input, and a PReLU activation layer.

Figure 4.1: Sub-pixel convolution layer (PixelShu�e) operation. Here, it transforms nine 7 × 7
feature maps into a single 21× 21 image. Source: [39]

We also use an initial convolutional layer with 64 5× 5 �lters to extract features, and
a �nal convolutional layer with one 5× 5 �lter to reconstruct the single-channel output
image. Finally, we use a hyperbolic tangent for the �nal activation.

In Figure 4.2 there is a visual representation of the generator network.

… +

+

Conv2D
PReLU
PixelShuffle
Upsample block
Residual block
Elementwise addition
Hyperbolic tangent

+

Residual block Upsample block

RB0 RBN

5x
5x

64

3x
3x

64
3x

3x
64

3x3x256

5x5x1

Figure 4.2: Generator architecture. It is composed of N residual blocks and log2(S) upsample
blocks, where S is the upscaling factor of the image. S = 2k; k ∈ N. Numbers in Conv2D blocks
indicate [kernel width]x[kernel height]x[number of �lters].

4.1.2 Critic

For the critic, we use a network design inspired by SRGAN [14], which in turn follows the
guidelines of Radford et. al. [40].

This design uses a series of Conv2D layers with a stride of 2, in order to widen the
receptive �eld, and an increasing number of 3 × 3 sized �lters in each step, similar to
VGG [17]. We use Instance Normalisation after each convolutional layer, as proposed
in [41], to improve stability of the learning. Finally, we apply Leaky ReLU as activation
[42].
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In contrast with [14] and [40], instead of �attening the last convolutional layer and
using fully connected layers as a classi�er, we average over the last convolutional layer,
which uses only one �lter, to output a single value per image. In this particular use case,
this produced better results and eased the training.

As this is a critic part of a Wasserstein GAN with Gradient Penalty (WGAN-GP) [28],
instead of classifying the image into true or fake it estimates the Wasserstein distance, or
the earth mover’s distance. This value is not restricted to a de�ned range, such as [0− 1]
in a traditional GAN. Thus, the critic does not have a �nal activation function.

A visual representation of the architecture can be found in Figure 4.3.

Conv2D
Leaky ReLU
InstanceNorm2D
Global Average Pool

WD

3x3x64s2

3x3x128s2
3x3x256s2

3x3x512s2 3x3x1s1

Figure 4.3: Basic architecture of the critic. Numbers below the blocks indicate [kernel width]x[kernel
height]x[number of �lters]s[stride] in the Conv2D layers.

4.2 Loss functions

The loss functions for our GAN are based on WGAN-GP [28], and adapted for the super-
resolution use case.

In case of the loss function of the critic, it has not had any modi�cations from the original
WGAN-GP paper, as the critic’s purpose remains the same, estimating the Wasserstein
distance (see Equation 4.2, [28]).

L =
1

m

m∑
i=1

C(x̃(i))− C(x(i)) + λ
[
(||∇x̂(i)C(x̂(i))||2 − 1)2

]
(4.2)

where C is the critic, x(i), x̃(i) and x̂(i) are the HR image, its reconstruction and an
interpolation between them, respectively, and λ is the gradient penalty coe�cient.

The loss function of the generator, however, has been changed to �t our needs. The
original use-case of GANs was to generate realistic images of a determined style or type
from random noise. Therefore, using just the adversarial loss is su�cient.

In contrast, the input in our network is not noise, but the low resolution version of
the image we want to restore. Therefore, we need the generated image to be as close to
the original as possible, while still looking realistic. Therefore, we add a L1 loss factor to
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the loss function with a set coe�cient (see Equation 4.3). As we will discuss in Chapter 5,
changing this coe�cient value greatly a�ects the image in the output.

L =
1

m

m∑
i=1

−C(x̃(i)) + γL1(x(i), x̃(i)) (4.3)

where C is the critic and L1 is the mean average error. x(i) and x̃(i) are the original HR
image and its reconstruction, respectively. γ is the coe�cient for the L1 loss, and m is the
batch size.

The network was implemented using PyTorch.

4.3 Training strategy

As we are building a Wasserstein GAN with gradient penalty, the training will be similar
to that in the original paper [28].

For each step where we optimise the generator, the critic is optimised ncritic steps. This,
as the authors of the paper suggest, ensures that the critic is close to converging.

In the generator step, we sample a batch of data, x, from the real distribution (the
high-resolution image). Then, we get the low resolution version of those images, z, using a
degradation function D speci�c to each dataset. We then use the generator to generate a
fake high-resolution version from those generated low resolution images, x̃. Finally, we
update the generator with the Adam optimiser based on the loss function in Equation 4.3.
As a last step, we update the learning rate of the generator using the One Cycle learning
rate scheduler [43].

Similarly, for the critic we sample a batch of real data x, degrade it withD to get z, and
get the super-resolved image x̃ using the generator. Then, we generate a random number
0 ≤ ε ≤ 1. We use that to build an interpolated image between the real image and the
generated image: x̂← εx+ (1− ε)x̃. After that we calculate the gradient with respect to
this interpolated image using the critic, and get its 2-norm. Finally, we update the critic
with the Adam optimiser based on the loss function in Equation 4.2. As a last step, we also
update the learning rate of the critic using the One Cycle learning rate scheduler.

The whole training process can be found in Algorithm 1.
The training loop was programmed using PyTorch Lightning.
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Algorithm 1 WGAN with gradient penalty for Super-Resolution.
Require: A degradation functionD, a reconstruction loss functionR, the gradient penalty

coe�cient λ, the reconstruction coe�cient γ, the number of critic iterations per gener-
ator iteration ncritic, the batch size m, number of steps nsteps, Adam hyperparameters
β1, β2.

Require: Initial critic parameters w0, initial generator parameters θ0, inital learning rates
αg0, αg0

1: for s = 1, . . . , nsteps do
2: if s mod ncritic = 0 then . Update Generator
3: for i = 1, . . . ,m do
4: Sample real data x ∼ Pr
5: z ← D(x)
6: x̃← Gθ(z)
7: L(i) ← −Cw(x̃) + γR(x, x̃)
8: end for
9: θ ← Adam(∇θ 1

m

∑m
i=1 L

(i), θ, αg, β1, β2)
10: αg ← OneCycle(αg, s)
11: else . Update Critic
12: for i = 1, . . . ,m do
13: Sample real data x ∼ Pr , a random number ε ∼ U [0, 1].
14: z ← D(x)
15: x̃← Gθ(z)
16: x̂← εx+ (1− ε)x̃
17: L(i) ← Cw(x̃)− Cw(y) + λ(||∇x̂Cw(x̂)||2 − 1)2

18: end for
19: w ← Adam(∇w 1

m

∑m
i=1 L

(i), w, αc, β1, β2)
20: αc ← OneCycle(αc, s)
21: end if
22: end for
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CHAPTER 5
Results

5.1 Electron microscopy

5.1.1 The dataset

The image data used was produced by Lichtman Lab at Harvard University (Daniel R. Berger,
Richard Schalek, Narayanan "Bobby" Kasthuri, Juan-Carlos Tapia, Kenneth Hayworth, Je�
W. Lichtman). Their corresponding biological �ndings were published in [44].

This electron microscopy (EM) dataset is comprised of 100 training images and 100
evaluation images. They are monochromatic images with size 1024× 1024. The training
and evaluation data sets are both 3D stacks of 100 sections from a serial section Scanning
Electron Microscopy (ssSEM) data set of mouse cerebral cortex. The microcube measures
6× 6× 3 microns approx., with a resolution of 6× 6× 30 nm/voxel.

An example of this high-resolution dataset can be found in Figure 5.1.

5.1.2 Preprocessing and data augmentation

The used dataset only has high-resolution versions of the images. Therefore, we need to
create low-resolution images synthetically.

For downsampling the images, we used the EM “crappifying” method from [45] to syn-
thetically degrade the HR images to LR, which approximates the real-world low resolution
images of the same �eld of view.

In this method, we apply a Gaussian blur �lter to the HR image with a standard deviation
of σ = 3, and then scale it down to the desired size with bilinear interpolation. The main
factor that we wanted to explore was 4× downscaling on each axis, but we also ran our
algorithm with 2× and 8× downscaling factors.

A sample of the e�ect of this “crappifying” method is shown in Figure 5.2.
After downscaling, both HR and LR variants of the image were divided into 64 patches

of sizes 128 × 128 and 32 × 32 respectively. This input size has had the best results for
training among the ones we tested. These image patches are used only for training, as the
images used for calculating evaluation metrics are upsampled using the whole image.
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Figure 5.1: Sample image from the electron microscopy dataset.

(a) High-resolution patch (b) Low-resolution patch

Figure 5.2: Sample of a patch in the EM dataset, and its “crappi�ed” low-resolution version, upscaled
to the same size using nearest-neighbour interpolation.
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Finally, to introduce some variation of the dataset in training, we apply a rotation of
the images, with a rotation angle randomly chosen from {0, 90, 180, 270}. They are also
�ipped randomly around the horizontal and vertical axis.

5.1.3 Evaluation metrics

As we have shown in Chapter 3, it is di�cult to evaluate image quality, as distortion and
perceptual quality are at odds with each other, and both cannot be had at the same time.

For that reason, multiple metrics were used to evaluate the quality of the images, both
full-reference and no-reference metrics. For full-reference, we used PSNR and SSIM, which
are standard in the literature and can be easily compared to other works. These are both
distortion measures, and do not represent perceptual quality well.

For the no-reference metric, we used Perceptual Index (PI) [22], which is a weighted
sum of Ma et. al. [33] and NIQE [34] metrics. Individually, those metrics try to measure
image “realism” by combining various sources of information in the image, such as spatial
and frequency information. This measure, as it is a no-reference metric, can’t be used by
itself to evaluate the reconstruction quality, but it is useful to assess the perceptual quality
of such reconstruction.

Lastly, we also conducted a survey (see Figure 5.3) among people who have experience
with EM images, to rank some of the methods from best to worst. We randomly chose 10
images from the evaluation dataset and super-resolved them with the following methods:

• Our method, γ = 100

• Our method, γ = 50

• ESRGAN+ [15]

• RCAN [18]

• DFCAN [19]

More speci�cally, we cut a 256× 256 patch of the image from the centre, in order to
make it more easy to view all of them at once, in full size, in a computer screen.

We presented all of the images anonymised and in a random order to prevent bias in
the survey.

To extract a score from the survey, we used the average position that a particular
method has had in the ranking, 1 being the best, and 5 being the worst. The survey was
�lled out by 4 people, so each of the MOS was determined by the average over 40 samples.

5.1.4 Results

All the experiments presented in this section were done with a downsampling factor of
4× in each axis. We ran our images through the state-of-the-art methods ESRGAN+,
RCAN and DFCAN for comparison. We also tested our method with various values for its
hyperparameter γ, with values of 200, 100 and 50 shown. Higher and lower values were
also tried during the investigation. With higher values of 500 and 1000, the adversarial
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Figure 5.3: First question of the survey that we conducted in order to evaluate the quality of the
images. Users have to drag the images from the left column to the right column, and place them in
order from best quality to worst quality.
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part of the loss function was almost ignored, and it produced softer images, similar to those
of RCAN (see Section 5.1.4.2). With a small value of γ = 10, we could not get the network
to converge with this data.

5.1.4.1 Quantitative analysis

The results of various SR methods on the EM dataset can be found in Table 5.1.

Loss function PSNR↑ SSIM↑ PI↓ MOS↓
Reference N/A ∞ 1 3.955 -
Bilinear N/A 21.25 0.4180 9.539 -
Our method, γ = 200 Adversarial + L1 25.82 0.7548 4.461 -
Our method, γ = 100 Adversarial + L1 25.15 0.7331 4.335 1.375
Our method, γ = 50 Adversarial + L1 24.79 0.7143 4.126 2.425
ESRGAN+ Adversarial + VGG + L1 22.49 0.6032 3.932 2.35
RCAN L1 27.11 0.8046 6.525 4.075
DFCAN L1 26.44 0.7818 6.871 4.775

Table 5.1: Comparison of various deep CNN-based SR methods’ performance on the EM dataset at
4× upscaling factor, compared with the reference image and simple bilinear upscaling. Measures
are PSNR, SSIM, Perceptual Index (lower is better) and Mean Opinion Score (lower is better). Best
performance on each measure is highlighted in bold. Scores marked with ‘-’ have not been tested.
Hyperparameters used in these experiments are in Table 1.

As we see, the algorithm that produced the best Perceptual Index score has been
ESRGAN+, with 3.932. Note that this is a no-reference metric, and the original HR image
scored worse, 3.955. On the other hand, the PSNR and SSIM of this algorithm are the lowest
among the ones we tested, with 22.49 dB and 0.6032 respectively.

On the other end of the spectrum, the algorithm with the highest PSNR and SSIM score
has been RCAN, with 27.11 dB and 0.8046 respectively, but it also has the second worst
Perceptual Index, at 6.525.

This results further reinforce the point explained in Section 3.3.1: perception and
distortion are at odds with each other. As perceptual quality increases, both PSNR and
SSIM go down, and vice versa. It’s important to �nd the balance between these two in each
use case, as low distortion and higher accuracy might be more important than realism.

In the survey we conducted, four experts ranked 10 images of various super-resolution
methods from best to worst. In that survey, our method, in the γ = 100 variant consistently
got a higher rank than the other methods, with an average rank of 1.375. The next pair of
methods in the ranking, which have a similar score, are ESRGAN+ and our method with
γ = 50, with average ranks of 2.35 and 2.425. The next algorithm with the best ranking
was RCAN, with an average rank of 4.075 and, �nally, DFCAN with an average ranking of
4.775.

After completing the survey, some experts commented that “it was complicated and
nothing was comparable to the reference image. It was di�cult to choose between the
three best because each had its own relevant �aws and advantages.”
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5.1.4.2 Qualitative analysis

If we do a qualitative analysis of the images (see Figure 5.4), we can see that algorithms
that are not GANs (RCAN and DFCAN), produce more blurry and washed out images. This
is the result of optimising towards pixel accuracy through losses such as MSE or MAE,
without taking into account the look of the whole image. On the other hand, these methods,
especially RCAN, preserve the structures of the original image better than some GAN-based
methods, although that might be the result of masking smaller errors with a blurry image.
A good example of this are the membranes of the neurons to the centre-left in Figures 5.4c
and 5.4d (red arrows). In RCAN the lines are blurrier but better represent the structure in
the original high-resolution image (5.4h). ESRGAN+, in contrast, changes the position and
shape of the neurons. This can be veri�ed with the SSIM scores in Table 5.1, as ESRGAN+
has a signi�cantly lower score than the other methods. Lastly, DFCAN can’t clearly de�ne
these neurons in the image.

Comparing the GAN based methods, ESRGAN+ captures the texture of the original
image better, while the others blur the image more, especially in the lightest parts of
the image. Because of that, it got a better Perceptual Index than our method (Table 5.1).
Focusing on the vesicles at the top-centre of the image and towards the bottom-right (blue
arrows), in our method they are very clearly de�ned, especially in the γ = 200 variant
(Figure 5.4g). ESRGAN+ and the γ = 50 variant don’t show all of the circles, and in
ESRGAN+ they are not well de�ned. In contrast, both DFCAN and RCAN aren’t able to
recreate those smaller details.

Lastly, the γ = 50 variant produced some artefacts similar to salt-and-pepper noise,
with some pixels turning close to black or white. We couldn’t identify what caused this
issue.

5.2 Gravitational N-body simulation

5.2.1 The dataset

For the astrophysical data set we use an N -body simulation with the characteristics given
in Table 5.2. The gravitational evolution was carried out with an updated version of
L-Gadget3 [46, 47]

We take this simulation and create N 2D-images of 200×200 Mpc2/h2 (remember
1Mpc ≈ 3.086× 1019km and h refers to the reduced Hubble parameter as stated in Table
5.2) by slicing the 3D box at random points along the axes. Each pixel represents the
overdensity of that small region of the volume, δm(x, y, z) = (ρm(x, y, z) − ρ̄m)/ρ̄m,
where m refers to the matter component and ρ is the density. Thus each pixel is a slice of
this δ.

100 images were created of this simulation, so we will use 80 images for training the
network, and 20 for evaluation.

5.2.2 Preprocessing and data augmentation

In contrast with the EM dataset, the gravitational N -body simulation dataset is not made
of actual images, whose pixels represent light. The pixel values of these images range from
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(a) Bilinear (b) DFCAN (c) RCAN

(d) ESRGAN+ (e) Our method, γ = 50 (f) Our method, γ = 100

(g) Our method, γ = 200 (h) HR

Figure 5.4: Qualitative comparison of various SR methods in an image of the EM dataset with 4×
upscaling in each axis. Red arrows point to neuron membranes, and blue arrows point to vesicles.

0 to around 400, thus we need to transform these values in order to be able to run them
through our network.

Firstly, we transform the values to a logarithmic scale, using 10-base log. This, on one
hand, enhanced the contrast in the “darker” parts of the image, making the details present
there more visible to the eye (see Figure 5.5) and easier to predict by a neural network. On
the other hand, it lowers the range of values to a range closer to the desired 0 ≤ x ≤ 1
range. As some values in the image are 0, it would result in some values being −∞ after
applying the logarithm, so we add 2× 10−2 to every value of the image beforehand.

After taking the logarithm, we normalise the images to a [0, 1] range, using the same
maximum and minimum values for all images and all SR methods for consistency.
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Parameter Value
Volume (512 Mpc/h)3 ≈ (1.67× 109 lightyears/h)3

Particle number 15363

Mass per particle 0.32× 1010Msun/h
Ωm 0.30964
Ωb 0.04897
ΩΛ 0.69036
h 0.6766
ns 0.9665

Table 5.2: Parameters de�ning the N -body simulation. Mpc stands for “Megaparsecs” and Msun for
solar mass. Ω’s stand for the ratio of the density of each component of the Universe to the critical
density (density that would make the Universe �at): Ωm refers to the amount of cold dark matter,
Ωb to the amount of “baryonic” matter (matter that composes dust, stars, planets,...), and ΩΛ to the
amount of “dark energy”. The reduced Hubble constant h indicates the rate at which the universe is
expanding in units of 100 km/s/Mpc. ns is the so called spectral index.
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Figure 5.5: Sample visualisation of the gravitational N -body simulation dataset before and after
the logarithm is applied to the values of the image.

When this transformations are done, we create the LR images of the desired size by
taking the local mean of the pixels we want to reduce. So, when making images with a 4×
factor, we take the average of each 4× 4 block of the original image and set the mean of
those values as the value in the LR image.

For data augmentation, similarly to the EM dataset, we apply a random rotation to the
images, with angles chosen from {0, 90, 180, 270}. We also �ip the images in both the x
and y axes with a probability of 0.5.

5.2.3 Evaluation metrics

In the gravitational N -body simulations dataset we also used some of the more widely
used evaluation metrics in the literature, both full-reference and no-reference. Similarly
to the EM version, we used PSNR, SSIM and PI for our evaluation metrics, which help us
compare the results with other methods in the literature. These metrics are designed for
images which have a �xed value range, therefore we calculate these metrics after applying
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5.2. Gravitational N -body simulation

the logarithm and normalising the values.
To also evaluate how well the algorithm reconstructs the details of the original image

in all of the spatial frequencies or wavenumbers, we also calculate the power spectrum
of the image. The power spectrum is mathematically de�ned as the spherically averaged
mean squared amplitude of the coe�cients of the Fourier transform of the density �eld.
Power spectra are widely used in dark matter simulations [48, 49, 50], and they tell how
much the image varies at di�erent wavenumbers. If there are more smaller details in the
image, the amplitude of the power spectrum in the higher wavenumbers will be higher.
This is very important as lowering the resolution of an image removes smaller details �rst.

After getting the power spectrum of both the true image and the generated image, we
can compute the MSE of those spectra to get a value we can easily and objectively compare.

As you will see in the next section, the values of this MSE are quite high, so, as well as
the raw MSE, we also provide a score based on this error, following this formula:

s = 1− MSE(P (k)hr, P (k)g)

MSE(P (k)hr, P (k)lr)
, (5.1)

where P (k)hr , P (k)lr , P (k)g are the power spectrum of the HR image, the power spectrum
of the LR image upsampled to the same size as HR using nearest-neighbour, and the power
spectrum of the generated image, respectively. Therefore, a score of 1 would be the perfect
reconstruction, and values below 0 means they performed worse than the LR image directly.

5.2.4 Results

All the experiments presented in this section were done with a downsampling factor of
4× in each axis. ESRGAN+, RCAN and DFCAN were used for comparison. Our method
was trained with γ values of 10, 50 and 100. For this dataset, a higher learning rate in the
critic was required for it to converge, especially in the γ = 10 test. More details about the
hyperparameters used can be found in Table 2.

5.2.4.1 Quantitative analysis

The metrics of the gravitational N -body simulation dataset in various SR methods are
shown in Table 5.3.

Similar to what we saw in Section 5.1.4, the methods that only use a pixel loss for their
loss function, L1 in this case, obtained the best results in regards to PSNR and SSIM metrics.
Between RCAN and DFCAN, the former performed slightly better with 29.4dB and 0.836
in PSNR and SSIM respectively, but the scores are really close.

On the other end, there are the GAN methods that include adversarial loss in their
loss functions. The method that had the worst performance among them, and overall, was
ESRGAN+, with PSNR and SSIM values of 25.85dB and 0.3925. In the case of our method,
these values went up as the value of the hyperparameter γ increased, with values ranging
from 25.89dB to 26.93dB in PSNR, and from 0.4947 to 0.5690 in SSIM.

Taking a look at the perceptual index, GAN methods performed better than RCAN and
DFCAN. The best scoring method was ours, with hyperparameter γ set to 50 and a score
of 2.7024, followed by the γ = 10 variant with 2.7103.
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Loss function PSNR SSIM PI PS MSE Rel. MSE
Reference - ∞ 1 2.6566 0 1
LR - 27.34 0.7843 11.9682 6.2746× 1013 0
Our method, γ = 100 Adversarial + L1 26.93 0.5690 2.9362 4.3991× 1012 0.9298
Our method, γ = 50 Adversarial + L1 26.61 0.5469 2.7024 8.1325× 1012 0.8703
Our method, γ = 10 Adversarial + L1 25.89 0.4947 2.7103 5.2181× 1013 0.1683
ESRGAN+ Adversarial + VGG + L1 25.85 0.3925 2.9873 1.6163× 1014 -1.5759
RCAN L1 29.40 0.8360 5.9558 2.3942× 1013 0.6184
DFCAN L1 29.32 0.8338 5.8925 3.7357× 1013 0.4046

Table 5.3: Comparison of the performance of various SR models in the Gravitational N -body
simulation dataset. Metrics shown are PSNR, SSIM, PI, MSE of the power spectra, and relative MSE
of the power spectra. PSNR, SSIM and PI are calculated after taking the logarithm and normalising
the values to [0, 1]. Hyperparameters used in these experiments are shown in Table 2.

Finally, we need to take a look at the power spectra of these resulting images. The LR
image, when upscaled to the HR size with nearest neighbour, produced a power spectrum
with a MSE of 6.2746× 1013 with respect to the spectrum of the original HR image. We
will use this as a baseline value for the relative MSE of the power spectra. As the raw values
are very high, we will only compare the relative values, but they are still shown in Table
5.3.

Among the ones we tested, the better performing algorithm was our method, in the
γ = 100 variant, with a relative MSE between its power spectrum and the HR’s power
spectrum of 0.9298. The second best score also came from our method, in this case with the
hyperparameter γ = 50, and a score of 0.8703. The next best scoring methods are RCAN
and DFCAN, with scores of 0.6148 and 0.4046 respectively. After those is our method with
the hyperparameter γ = 10, scoring 0.1683. Finally, ESRGAN+ had the worst score among
the ones we tested, with a value of −1.5759. This means that its power spectrum was
further from the original HR spectrum than that of the LR image. A graph of the power
spectra can be found in Figure 5.7.

5.2.4.2 Qualitative analysis

If we do a qualitative analysis of the results (see Figure 5.6), the results share similar
characteristics and artifacts to those in the EM dataset (Section 5.1.4.2). In DFCAN (Figure
5.6b) and RCAN (Figure 5.6c), the images look blurry and washed out and, as a consequence,
many smaller, higher frequency details in the “darker” parts of the image are not present.
In contrast, the other GAN-based methods, ESRGAN+ and our method, produce sharper
images that have a realistic look: they are di�erent to the HR version, but without the
reference they could all be plausible reconstructions.

Among these GAN-based methods it is di�cult to discern signi�cant di�erences in
plain sight, so we will compare their power spectra instead.

Looking at the power spectra in Figure 5.7, we can see that RCAN and DFCAN have a
signi�cantly lower spectrum in the high-frequency areas. This drop can be veri�ed with
the images in Figure 5.6, where these algorithms can’t reproduce higher frequency details
correctly.
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5.2. Gravitational N -body simulation

(a) LR (b) DFCAN (c) RCAN

(d) ESRGAN+ (e) Our method, γ = 10 (f) Our method, γ = 50

(g) Our method, γ = 100 (h) HR

Figure 5.6: Detailed view of an image from the gravitational N -body simulation dataset (h), its LR
downscaled version with a factor of 4× (a), and reconstructions using various SR algorithms (b-g).

Another spectrum that stands out is ESRGAN+, which is lower than the original
HR throughout the whole spectrum. In contrast, all other methods produce a similar
spectrum to the HR in the lower frequencies. This could be because ESRGAN+ produces
results with lower contrast, resulting in a lower general power. In fact, if we multiply the
values in the image produced by ESRGAN+ by 1.1 and then reverse the normalization and
logarithm preprocessing steps, the spectrum produced is more similar to the HR version,
with slightly lower power in the lower frequency area, and higher power amplitude in the
higher frequency area (see Figure 5.8). The average MSE of the spectra if we apply this
transformation is 3.5688× 1013, with a relative value of 0.4312.

If we focus on our method, there are some di�erences in the spectrum with the change
of the hyperparameter γ. When we train the model with γ = 10, the resulting images have
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Figure 5.7: Power spectrum of the results of various SR algorithms on a single image from the
gravitational N -body simulation dataset. Both axes are in logarithmic scale.
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Figure 5.8: Comparison of the ESRGAN+ spectrum when the resulting image is multiplied by 1.1
before calculating the spectrum, and the original image’s spectrum.
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signi�cantly more mid- and high-frequency detail than the original image.
The other 2 variants, with γ values of 50 and 100, are very similar, and both produce

more high-frequency details than the original image, but it’s less noticeable than that of
the γ = 10 variant.
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CHAPTER 6
Conclusions

Electron microscopy, and the Scanning Electron Microscope are an excellent tool that
enables scientist to capture the shapes of objects in three dimensions and high resolution.
However, due to physical limitations of the process, taking high resolution images of large
objects take a very long time. Hence, there is a need for a tool that can enhance faster,
lower-resolution scans and recover small details.

Gravitational N -body simulations are a widely used theoretical tool in astrophysics
and cosmology - the study of the origins of the universe, its large-scale structures and
dynamics, and the ultimate fate of the universe. However, similarly, in order to run N -
body simulations of hundreds of millions of particles (usually required for state-of-the-art
research) millions of CPU hours are needed. Moreover, new cosmological observations will
require to have thousands of such simulations.

Thus, the aim of this project has been to research and create a super-resolution method
that can upscale images taken with an electron microscope and 2D visualisations of the
gravitational N -body simulations.

We have explored the state of the art in SR methods using deep convolutional neural
networks. Two main types of methods were found that provide the most di�erence in the
results they achieve: GANs and CNNs. GANs have a promising solution that provides more
realistic results, but many current evaluation metrics that are used in research aren’t able
to measure that realism. There is a need for a reliable evaluation metric that scores this
characteristic, and it is an interesting topic of research.

For its characteristics, we chose a GAN approach to our solution. We incorporated
Wasserstein GAN technology in our solution in order to stabilise training and produce a
more reliable solution. We also used residual learning for the generator, which improves
training e�ciency as the image we aim to super-resolve is similar to the target image.

In the EM images, we achieved results that correctly reproduce the details that are
present in the original high-resolution image, without diverging too much from the original
image in favour of realism, or producing an image that is blurry and washed out. We
couldn’t �nd any evaluation metric that could correctly evaluate this balance between
perceptual quality and distortion, but experts ranked our method’s results higher than
other state-of-the-art methods. However, some of our results produced some artefacts
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that would need further investigation in order to �nd the source of the issue. Finally, the
experts concluded that none of the methods tested were as close to the original image as
they would like, so further improvements can still be made.

In the gravitational N -body simulation images, GAN approaches are the most appro-
priate solution, as these were the only ones among those that were tested in this project
that could e�ectively reproduce the high-frequency details present in the image. Both the
state-of-the-art ESRGAN+ approach and our method produced realistic images that could
be plausible reconstructions of the original image, albeit not being exactly equal. When
comparing the power spectra, we noticed ESRGAN+ produced images with lower contrast,
resulting in an overall lower power spectrum. Further investigation into the ESRGAN+
implementation could be done in order to �nd the source of this issue. On the other hand,
our method produced results that were closest to the original image’s power spectrum. In
cosmological context, it is generally more important that the reconstructions have correct
statistics such as the spectrum, rather than having a correct reconstruction on the MSE
level. Therefore, GANs are the best option in this case.

Ultimately, our method produced comparable results to other state-of-the-art SR meth-
ods and, in some instances, the balance that we achieved between distortion and perceptual
quality can produce images that are more useful than others, depending on the use case.

As future work, we would like to see how the model performs in real low resolution
images. In this project, all the LR images were synthetically generated from their HR
counterparts. Creating LR images in a real way (with a lower resolution EM scan, and
gravitational simulations with a smaller number of particles) and seeing how they perform
in the models trained with synthetic images would be insightful. On the other hand, it
would also me interesting to create a user-friendly program that microscopy lab researchers
and astrophysicists can use for training and testing the model, so they can more easily
incorporate it into their work�ow.
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Appendix

EM experiment hyperparameters

Network γ Optimizer LRG LRD Scheduler Batch Patch size Down. Factor Steps
15 gen. RB
(1.4M + 1.6M)

200 Adam
β = (0.5, 0.9)

0.0005 0.0005 OneCycleLR 8 128x128 4 108,000
(18,000 gen. steps)

15 gen. RB
(1.4M + 1.6M)

100 Adam
β = (0.5, 0.9)

0.0005 0.0005 OneCycleLR 8 128x128 4 108,000
(18,000 gen. steps)

15 gen. RB
(1.4M + 1.6M)

50 Adam
β = (0.5, 0.9)

0.0005 0.0005 OneCycleLR 8 128x128 4 108,000
(18,000 gen. steps)

RCAN 16
(0.98M)

- RMSProp 0.001 - OneCycleLR 8 128x128 4 21,600

DFCAN 16
(2.4M)

- Adam
β = (0.9, 0.999)

0.0003 - OneCycleLR 8 128x128 4 21,600

ESRGAN+
(16M + 14M)

- Adam
β = (0.9, 0.999)

0.0001 0.0001 MultiStepLR 8 128x128 4 100,000

Table 1: Hyperparameters for various experiments of SR algorithms with the EM dataset. Numbers
in brackets in the network column are the number of trainable parameters in the network, or the
ones in the generator + in the discriminator/critic. LRG and LRD are the learning rates of the
generator and the discriminator/critic (where applicable).

Gravitational N-body simulation experiment
hyperparameters

Network γ Optimizer LRG LRD Scheduler Batch Patch size Down. Factor Steps
15 gen. RB
(1.4M + 1.6M)

100 Adam
β = (0.5, 0.9)

0.0005 0.001 OneCycleLR 8 128x128 4 160,002
(26,667 gen. steps)

15 gen. RB
(1.4M + 1.6M)

50 Adam
β = (0.5, 0.9)

0.0005 0.001 OneCycleLR 8 128x128 4 160,002
(26,667 gen. steps)

15 gen. RB
(1.4M + 1.6M)

10 Adam
β = (0.5, 0.9)

0.0005 0.001 OneCycleLR 8 128x128 4 160,002
(26,667 gen. steps)

RCAN 16
(0.98M)

- RMSProp 0.001 - OneCycleLR 8 128x128 4 8,000

DFCAN 16
(2.4M)

- Adam
β = (0.9, 0.999)

0.0003 - OneCycleLR 8 128x128 4 8,000

ESRGAN+
(16M + 14M)

- Adam
β = (0.9, 0.999)

0.0001 0.0001 MultiStepLR 8 128x128 4 100,000

Table 2: Hyperparameters for various experiments of SR algorithms with the Gravitational N -
body simulation dataset. Numbers in brackets in the network column are the number of trainable
parameters in the network, or the ones in the generator + in the discriminator/critic. LRG and
LRD are the learning rates of the generator and the discriminator/critic (where applicable).
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