
Zuzendaritza
Dirección

Roberto Santana

Intelligent Systems Group

Department of Computer Science and Artificial
Intelligence,

University of the Basque Country UPV/EHU

Evolutionary Computation in Hierarchical Model
Discovery

David Revillas Rojo

Master Tesia
Tesis de Máster

Konputazio Zientziak eta Adimen Artifiziala Saila

Departamento de Ciencias de la Computación e Inteligencia Artificial

Ingeniaritza Konputazionala eta
Sistema Adimentsuak Unibertsitate Masterra

Máster Universitario en Ingeniería Computacional
y Sistemas Inteligentes

Master Degree Thesis:

Evolutionary Computation in Hierarchical Model
Discovery

David Revillas Rojo

Advisors: Roberto Santana
Intelligent Systems Group,

Department of Computer Science and Artificial Intelligence,
University of the Basque Country UPV/EHU,

Paseo Manuel de Lardizabal, 1
Donostia, 20018 Gipuzkoa, Spain

drevillas@pm.me

Abstract. Despite its continuous growth, probabilistic programming is still a great

unknown among scientists, specially those whose research areas involve sampling dis-

tributions, statistical modeling or statistical inference. This Master Thesis provides,

on one hand, a novel procedure to learn and construct probabilistic programs that

serve to model and sample probabilistic distributions. These probabilistic programs are

based on grammatical rules through the potential given by evolutionary algorithms,

concretely, the genetic programming approach. This technique provides a reliable back-

end methodology that has served us to evolve a wide variety of program specifications

and leading us, in a final step, to an optimal set of operations between distributions.

These are visualized as a hierarchy, able to represent accurately any 1-dimensional ten-

sor. On the other hand, the implemented framework offers the possibility of improving

these models by calculating the best set of parameters for these learned models, with

numerical optimization or distribution approximation methods, such as Markov Chain

Monte Carlo techniques.

Keywords: Evolutionary Algorithms, Probabilistic Programming, Genetic Pro-
gramming

Acknowledgments

I am not particularly eloquent when it comes to thanking people for the effort,
desire and trust they have placed in me during this last stage. However, I believe
that not only these people who have been accompanying me during these years
deserve recognition, since, at the end of the day, all the people I have met along
the way have been molding me and have made me what I am.

First and foremost, I would like to thank my parents, Elena and Guillermo,
my brother Pablo, my grandmother and my uncle for giving me so much support,
affection and stability throughout my life. It is clear that without their constant
help I would not have reached the place where I am today.

On the other hand, I can’t help but remember all the teachers from my
school years, each one contributing their bit in my education, such as Cristina,
who taught me to love mathematics as I do today; Roberto, that inveterate
philosopher who had no trouble showing us with just how things are not what
they seem to be; or my good old friend Aitor, who could be looking after the
sheep or accompanying us to play a festival on the other side of the country.

To all those friends who have been passing by along the way, all those who
have stayed and to the Happy Gunners, for the unforgettable moments that
made an overwhelming week be forgotten with music, darts and beer in our
usual place, to my partner Elena for that constant smile and illusion in me and
also to the geeks of Iñaki, Borja and Unai for the scientific talks in the bars of
Donosti.

And of course, thanks to my thesis director, Roberto, a mastodon in con-
stant multitasking mode, for all the advice, help, motivation, opinions and effort
deposited in me all this time, without which, no doubt, this would not have gone
ahead.

2

How can computers learn to solve problems without being explicitly
programmed? In other words, how can computers be made to do
what needs to be done, without being told exactly how to do it?

— Arthur Samuel, 1959

Table of Contents

Master Degree Thesis: . 1

David Revillas Rojo

PART I

Introduction

1 Introduction . 11

PART II

Background

2 Probabilistic programs and Probabilistic Programming Languages 13

2.1 Definition of a probabilistic program . 13

2.2 Inference in Probabilistic Programming Languages 14

2.2.1 Exact inference . 15

2.2.2 Approximate inference . 16

2.3 Pyro . 16

2.4 Graph representation of Probabilistic Programming Languages . . 17

2.5 Probability distributions for Probabilistic Programming
Languages . 18

3 Genetic Algorithms and Genetic Programming . 20

3.1 Definition . 20

3.2 Genetic Programming . 21

3.3 Representation . 22

3.3.1 Terminal set . 23

3.3.2 Function set . 23

3.3.3 Closure . 23

3.4 Genetic Programming operators . 24

3.4.1 Individual generation . 24

3.4.2 Selection . 24

3.4.3 Recombination and mutation . 24

PART III

State of the art

4 Related work . 28
4.1 Automatic programming . 28
4.2 Genetic programming for Machine Learning 29

PART IV

Representing probabilistic programs

5 Specifying probabilistic programs with a grammar. 31
5.1 Proposed grammar . 31

5.1.1 Types implemented . 33
5.1.2 Function set . 35

PART V

Experimental framework

6 Problem definition . 37
7 Program evaluation . 37

7.1 Minimizing the distance between the summary statistics 38
7.1.1 Direct evaluation through moments . 38
7.1.2 Normalized evaluation through moments 39
7.1.3 Structural Similarity Index measure . 40

7.2 Generating inputs . 41
8 Improving the quality of the programs . 42

8.1 Optimizing the inputs . 42
8.2 Finding the a posteriori distribution . 42

9 Experiments . 43
9.1 Motivation . 43
9.2 Use cases . 43

9.2.1 Case #1: Learning simple distributions 44
9.2.2 Case #2: Average Minimum Temperature in Scotland 45
9.2.3 Case #3: Modelling the precipitation 45

5

10 Results . 47
10.1 Learning simple distributions . 47
10.2 Average Minimum Temperature in Scotland 50
10.3 Modelling the precipitation . 51

PART VI

Conclusions

11 Summary . 53
12 Conclusions . 53
13 Future work . 54

Acronyms . 59

Appendices . 60
A Probabilistic Programming in other research areas 62
B Experiment replication . 64

B.1 Case #1: Learning simple distributions . 64
B.2 Case #2: Average Minimum Temperature in Science 64
B.3 Case #3: Modelling the precipitation . 64

6

List of Figures

1 Forward reasoning illustrative example. The first level indicates the
probability that a player bets, while in the second level, if he wins
the bet, he loses it or recovers his investment. 16

2 Graphical representation of a hierarchical model. 18
3 Dependencies between distributions . 19
4 Genetic Programming syntax tree representing (x+x) - (y /

log(4)). x, y and 4 represent the terminal nodes, while -, +, / and
log, the functions. 23

5 Creation of a full tree having maximum depth 2 using the full
method, with terminal set T and function set F defined earlier, (t =
time). 25

6 Creation of a five node tree using the grow initialisation method
with a maximum depth of 2, using terminal set T and function set
F defined earlier, (t = time). 25

7 Example of subtree crossover. The blue-colored subtrees identify
the genetic material shared by the parents in the offspring. 26

8 Example of subtree mutation. The red-colored subtree shows the
mutation point which will be replaced entirely by a randomly
generated subtree. 27

9 Grammar introduced to represent probabilistic programs in Pyro. 32
10 Example individual represented by the derivation tree for the

program Normal(x + y, Exponential(z)). 33
11 Class diagram showing tensor types defined in the implementation. . . . 34
12 Class diagram showing distribution types defined in the implementation. 35

13 Comparison of 8× 8 MNIST “1” images. 41
14 Experimentation workflow used to evolve probabilistic programs

that represent a distribution. 44
15 Distribution samples for Normal and Beta distributions. 44
16 Minimum November temperatures for the 1884 - 2020 period in

Scotland. 45
17 Cumulated rainfall during 24 hours in Punta Galea (Biscay). 46
18 Logbooks for the Normal distribution learning. 47
19 Best evolved model for the Normal distribution learning. 48
20 Sampled values, observed values and summary statistics for the

Normal distribution learning. 48
21 Logbooks for the Beta distribution learning. 49
22 Best evolved model for the Beta distribution learning. 49
23 Sampled values, observed values and summary statistics for the

Beta distribution learning. 49
24 Logbooks for the temperature problem. 50
25 Best evolved model for the temperature problem. 50

7

26 Sampled values, observed values and summary statistics for the
temperature problem. 51

27 Logbooks for the precipitation problem. 52
28 Best evolved model for the precipitation problem. 52
29 Sampled values, observed values and summary statistics for the

precipitation problem. 52

8

List of Tables

1 Distributions used to create probabilistic programs and their
constraints. 18

2 Tensor types. 34
3 Distribution types. 34
4 Unary operators. 35
5 Binary operators. 36

9

List of Algorithms

1 Coin toss probabilistic program. 11
2 Loopy probabilistic program. 14
3 Genetic Algorithm. 21
4 Genetic Programing. 22

Part I

Introduction

1 Introduction

Since the birth of Artificial Intelligence (AI) and more specifically, of Machine
Learning (ML), one of the main objectives pursued by these techniques has been
to analyze the existing data in order to discover hidden patterns or be able to
predict the behavior of the systems or precess that generates the data. When
modeling, it is often necessary to learn both the parameters of the models and
their structure.

The concept of Probabilistic Programming may be new to many scientists
and researchers. In this work, the meaning given to Probabilistic Programming
refers to the area related to programming languages, this is, “usual” programs
with the ability of sampling values at random from given distributions and the
ability to condition values of variables in the presence of observed data [21]. The
main purpose of this kind of programs is to specify a probability distribution. It
also offers practitioners, the opportunity to model the data with a probabilistic
approach, without the need for enough experience in probability theory or ML.
An example of a simple probabilistic program can be seen in Algorithm 1, where
tossing two coins modeled using two Bernoulli distributions and assigning the
outcomes to check Boolean variables c1 and c2.

Algorithm 1 Coin toss probabilistic program.

1: bool c1, c2
2: float x1

3: x1 ← Beta(2, 3)
4: c1 ← Bernoulli(x1)
5: c2 ← Bernoulli(0.5)
6: return c1, c2

However, the term Probabilistic Programming is given a different meaning
in some research areas. In Appendix A, the reader can find a summary of areas
where Probabilistic Programming is given a different meaning and the relation-
ship with the type of approaches we focus on.

In this thesis, we present an automatic framework for the creation of gen-
erative models under the rules of Probabilistic Programming and Genetic Pro-

11

gramming (GP). Since such a program (or individual in GP terms) represents a
generative model procedurally, our goal is to induce the code of these programs,
as they are executed repeatedly, to be able to represent the given observed val-
ues. For this purpose, a similarity measure has been established, using summary
statistics between the generated samples and the observed samples. All the work
has been validated with different use cases, including a simple experiment of local
modeling of precipitation in the Basque Country.

This document is made up of 5 parts. In Part 1, an overview of the problem to
be addressed is given. In Part 2, the two fundamental pillars on which this work
is based are introduced and detailed: Probabilistic programming and GP. Part
3 consists of an analysis of the state of the art and how automatic programming
is being used today in different domains, such as ML. In Part 4, the approach
developed in this work is described as well as the proposed grammar, types and
functions. Part 5 describes in detail the configuration, evaluation and execution
of the experiments carried out, as well as the results obtained. Finally, Part 6
presents the conclusions of the study.

12

Part II

Background

2 Probabilistic programs and Probabilistic Pro-
gramming Languages

2.1 Definition of a probabilistic program

Probabilistic programming offers a constructivist way of describing probabilistic
models, represented as common programs. They are written in any programming
language like C, Python or Java, having the special ability to draw values at
random from the specified distribution and also, the ability to condition values
of variables in a program through observed data. These are not intended to
be executed as a normal piece of code, but to implicitly specify a probability
distribution. Despite of being able to represent probabilistic graphical models [27]
which use graphs to specify conditional dependencies between random variables,
this work does not contemplate that use.

Among others, one can find Probabilistic Programming Languages (PPLs)
such as Church [19], one of the first probabilistic programming languages capable
of representing any computable probability function. Venture [36], an interac-
tive virtual machine designed for a general-purpose use, using a higher-order
probabilistic language descended from Lisp. PyMC3 [49], an open source proba-
bilistic programming framework written in Python, allowing model specification
directly in Python code. Edward [54], a Turing-complete probabilistic program-
ming language integrated into TensorFlow, which gives support to modelling
neural networks and enables distributed training and Graphics Processing Unit
(GPU) integration. Its operations are based on registering all random variables
symbolically and not on execution, which has a considerable impact on mem-
ory usage. WebPPL [20], a lightweight successors to Church for Clojure and
JavaScript. However, the language used in the present work is Pyro [7], as ex-
plained later.

Algorithm 1 shows a very simple probabilistic program where operators are
only those of sampling from distributions. However, the probabilistic program-
ming paradigm also considers if-else conditionals and loopy programs, as Algo-
rithm 2 shows. This program will return 1 when the while loop is executed an
even number of times and 0 when it is executed an odd number of times.

13

Algorithm 2 Loopy probabilistic program.

1: bool b, c
2: b← 1
3: c← Bernoulli(0.5)
4: while c do
5: b←!b
6: c← Bernoulli(0.5)
7: end while
8: return b

Thus, the expected value of b returned by the program can be seen as the
probability that b is 1, which is equal to the probability that the while loop
executes an even number of times,

E[b] = p(b = 1) = p(even loops)

For instance, the probability that the loops executes 0 times is given by the
Bernoulli distribution in line 3 as

p(0 loops) = p(c = 1) = 0.5

In the same way, the probability that the loop executes 2 times is obtained when,
firstly, c = 1 in line 3, then c = 1 in line 6 the first time entered the loop and
c = 0 the second time, so

p(2 loops) = p(c = 1) · p(c = 1) · p(c = 0) = 0.53

Summing up for all even number of executions, the expected value that the loop
executes an even number of times is obtained as:

E[b] = 0.5 + 0.53 + 0.55 + ... =
2

3

2.2 Inference in Probabilistic Programming Languages

Apart from returning the expected value from the program, it is also possible
to calculate the probability that the program terminates in a particular state.
The expected value thus returned is the Probability Density Function (PDF)
of the distribution of output states, also called posterior distribution. This is
known as probabilistic inference. It is important to mention that exact inference
is undecidable for programs with unbounded domains: exact inference is #P-
complete [48].

A variety of inference techniques have been implemented in the probabilistic
programming systems. These can be classified as:
– Static inference: the approach consists on compiling the program to a prob-

abilistic graphical model and then, performing inference using algorithms
such as belief propagation and its variants [43].

14

– Dynamic inference: another approach is to execute the program several times
using sampling to execute probabilistic statements, observe the values of the
desired variables on valid runs and compute statistics on the observed values
to infer an approximation to the desired distribution.

Algorithm 1 shows a program that contains only three latent variables, x1,
c1 and c2. Each execution of a probabilistic program produces a unique execu-
tion trace. In turn, an execution trace is a mapping of random choices to their
specific values. It completely defines the execution of the probabilistic program.
This implies an infinite number of possible traces in which, at interpretation
time, there is a branch at every random procedure. Given the execution trace, a
probabilistic program becomes deterministic and its probability can be defined.
An example of the execution trace for Algorithm 1 could be x1 = 0.69, c1 = 0
and c2 = 1. As the authors of [59] propose, one can define the probability of an
execution trace as

p̃(y,x) ≡
N∏

n=1

p(yn|θtn ,xn)p̃(xn|xn−1)

where p(yn|θtn ,xn) is the likelihood of the observed output yn where tn is a
random procedure (i.e., Gamma, Poisson, etc.), θtn is its argument (possibly
multidimensional), and xn is the set of all random procedure application re-
sults computed before the likelihood of observation yn is evaluated. ∼ denotes
distributions which can only sample.

2.2.1 Exact inference

As mentioned above, exact inference is undecidable for programs with unbounded
domains, i.e., the computational cost would be unaffordable. However, it can be
useful in bounded problems or even to illustrate this type of inference. One can
find different types of exact inference [11] but the illustrative ones are explained
briefly below.

Forward reasoning This method can be used to construct a tree whose leaves
and intermediate nodes contain the possible actions or values of the domain
associated with a probability. For each level, a forward reasoning process is
performed creating a child for each possible output, generating a unique world
for each path to the leaves. Figure 1 shows an example. The probability of such
a path is given by the product of the probabilities associated to the decisions
made. However, this method needs to enumerate all possible alternatives, which
in practice would be intractable for complex problems.

Backward reasoning This is a widely used inference strategy, and is based
on obtaining the observations or evidence from a query, represented in an appro-
priate data structure, and using backward reasoning calculate the probability of
that structure.

15

bet

win draw lose

¬bet
0.70.3

0.07 0.13 0.8

Figure 1: Forward reasoning illustrative example. The first level indicates the prob-
ability that a player bets, while in the second level, if he wins the bet, he loses it or
recovers his investment.

2.2.2 Approximate inference

To circumvent all the difficulties of exact inference in most real-world problems,
approximate inference arises. Formally, these algorithms can be distinguished
into two categories:

Sampled-based inference This method consists of randomly sampling a
large number of possible events, from which the query is estimated. The most
popular method of all are the Markov Chain Monte Carlo (MCMC) algorithms
(Metropolis Hastings [9] sampling, Gibbs sampling [15, 16], Hamiltonian Monte
Carlo [6] sampling), which instead of generating all decisions from the beginning,
generate sequences of samples by applying random modifications to the previous
sequences. They can provide accurate estimates, but they are usually slow for
programs with a complex structure.

Variational inference Although faster than the MCMCmethods, these meth-
ods calculate an approximate estimate [31]. The idea is to use a small family of
functions (usually parameterized so as to optimize the procedures) instead of
using the entire function space and obtain the posterior. A key issue in these
methods is how to measure the distance between the approximate posterior and
the observed posterior. In practice, the Kullback-Leibler (KL) divergence is used.

2.3 Pyro

The selected PPL to work with in the project was Pyro [7]. Pyro is a flexible
and scalable deep probabilistic programming library built on PyTorch. In turn,
PyTorch provides GPU based tensor computation, unlike the well known NumPy
library. It is also used in Deep Learning (DL) research.

Pyro was designed to be: universal, able to represent any computable dis-
tribution; scalable, able to handle large data sets and high-dimensional models
common in AI research; flexible, to ensure researchers a quick and easy imple-
mentation of the ideas; minimal, sharing most of its syntax and semantics with
existing languages, like in this case, Python.

16

However, Pyro is not the only language intended for these purposes. PyMC3
[49] offers similar functionalities with Aesara as computational backend (formerly
Theano). Google has also its own language under TensorFlow ecosystem, called
TensorFlow Probability [1], which provides integration of probabilistic methods
with deep networks and scalability to large datasets and models via hardware
acceleration and distributed computation.

1 import pyro

2

3 a = pyro.distributions.Beta (0.4, 1)

4 b = pyro.distributions.Poisson (3)

5

6 p = a.sample ([5]) / b.sample ([5])

7 y = pyro.distributions.Bernoulli(p)

Algorithm 1.1: Program example written in Pyro. Latent variables a and b are
represented by a Beta and Poisson distribution, respectively. Then, a simple arithmetic
operation is performed between them, after sampling 5 value each. Finally, the random
variable y, parameterized by the random tensor p of 5 elements, simulates the generative
process returning a binary vector of also 5 elements.

2.4 Graph representation of Probabilistic Programming
Languages

As seen, Algorithm 2 presents a pseudocode of a simple probabilistic program
and Algorithm 1.1 under the Pyro programming language. However, a prior step
to describing these programs in a concrete language is to sketch such probabilistic
models in a mathematical notation. Suppose the following hierarchical model:

µ ∼ N (0, 1)

λ ∼ Poisson(3)

y ∼ Exp(λ+ ϵ)

z ∼ N (µ, y)

where λ, µ and y1 are hyper-parameters, i.e. parameters that influence other
parameters. The use of a very small value ϵ is necessary for the model to be con-
sistent, since the Poisson distribution can sample zeros, while the exponential
distribution requires arguments strictly greater than 0. In this model, a nor-
mal distribution and a Poisson distribution are used to model the hyperprior
exponential distribution and this in turn, the final normal distribution.

However, there is another way of expressing hierarchical models by means of
a graphical representation, as shown in Figure 2.

17

λ ∼ Poisson(3) µ ∼ N (0, 1)

y ∼ Exp(λ+ ϵ)

z ∼ N (µ, y)

z

Figure 2: Graphical representation of a hierarchical model.

2.5 Probability distributions for Probabilistic Program-
ming Languages

It is important to note, that although a probabilistic program is used to represent
distributions, it also needs to use distributions internally. In fact, the values
generated by one distribution are used as parameters of another. Such a process
can be organized by specifying what kind of values a distribution accepts as
parameters, and what kind of values it generates. Since there are a large number
of distributions, both discrete and continuous, this project has considered only
those shown in Table 1.

Distribution Support D. parameters Pyro parameters

1 Bernoulli k ∈ {0, 1} 0 ≤ p ≤ 1 p: probs
2 Binomial k ∈ N0 n ∈ N0, p ∈ [0, 1] n: total count, p: probs
3 Poisson k ∈ N0 λ ∈ (0,+∞) p: rate

4 Beta x ∈ [0, 1] α, β > 0 α: concentration1, β: concentration2
5 Chi-square x ∈ [0,+∞) k ∈ N k: df
6 Exponential x ∈ [0,+∞) λ > 0 λ: rate
7 Normal x ∈ R µ ∈ R, σ > 0 µ: loc, σ: scale

Table 1: Distributions used to create probabilistic programs and their constraints.

Each of the distributions has its own nature. Therefore, it is possible to
construct a graph showing the dependencies between distribution parameters,
as shown in Figure 3, that will provide us a way to generate a probabilistic
program where inputs and outputs of the distribution are consistent. This will
be further discussed in the following chapters.

However, in order not to restrict ourselves to just the dependencies shown in
Figure 3, the proposed method also adds functions to enable filling parameters
between every distribution, as discussed in the next chapters.

18

Pois(λ)

B(n, p) Be(α, β)Bernoulli(p)

χ2(k)Exp(λ)

N (µ, σ2)

n

n

p

p

k = 1

k = 1

k = 1

µ

µ

σ2 : k = 1µ

µ

µ

µ

Figure 3: Dependencies between distributions. Each node of the network represents
a distribution. Each edge represents a relationship with another distribution. This
means that the target distribution allows its parameters to be generated by the source
distribution. For example, when k = 1 in a χ2 distribution, it can be used to generate
the σ2 of a normal distribution or the λ of a Poisson distribution.

19

3 Genetic Algorithms and Genetic Programming

3.1 Definition

Genetic Algorithms (GAs), as a subset of Evolutionary Algorithms (EAs), rep-
resent a set of population-based metaheuristic techniques based on mimicking
the evolution, using the Darwinian principle of reproduction and survival of the
fittest. Its beginnings date back to the works of Holland [24] in the 70’s and later
in the 80’s with his PhD students Koza [28] and Goldberg [17, 18].

The generic GA evolves a population of individuals, with an associated fitness
value. Each iteration of the algorithm is called a generation and each individual,
also known as chromosome, represents a possible solution to a given problem.
Thus, the GA tries to find the best or at least, a very good solution to the
problem by genetically breeding the population over a series of generations. This
is achieved, firstly, by designing the representation scheme of the chromosome.
This representation can play a crucial role in the optimization process in terms
of computation time, memory space and reachability of the global optimum. In
that scheme, each location (a gene) is associated with a particular variable of
the problem, denoting the value of a particular variable (allele). This is usually
composed by binary values, strings or integers.

As mentioned, each individual in the population has a fitness value given by
an objective function, also user-defined. This measure controls how well it fits to
the problem in order to select the best candidates to breed the next generations.

Another important aspect of the evolution process are the choice of the re-
production, mutation and selection operators, and the parameters for controlling
the algorithm itself: population size and the maximum number of generations.
Finally, a termination criterion is required for deciding when to stop the evolu-
tion process.

Once the previous concepts have been defined, the pseudocode of a general
GA is described in Algorithm 3.

Selection Most of the EAs uses a fitness criterion to probabilistically select
individuals. That is, better individuals are more likely to have more descendants.
There are some methods to perform this selection: roulette wheel selection, rank
selection, elitism, tournament selection, etc. Any mechanisms can be used in the
selection. However, it is worth to mention the selection pressure: a system with a
strong selection pressure will favor the fittest individuals, promoting a superindi-
vidual, while a system with a weak pressure will not be so discriminating at the
time of selecting solutions.

In this project, tournament selection is used. In tournament selection a num-
ber of individuals are chosen at random from the population and then they are
compared with each other so the best one is chosen as a parent. In the crossover,
two parents are needed, so two selection tournaments are made. This method
automatically rescales fitness in order to make the selection pressure constant.

20

Algorithm 3 Genetic Algorithm.

1: Randomly create an initial poppulation P
′
0

2: k ← 0
3: repeat
4: Assign a fitness value to each individual
5: Select n individuals from P

′
k

6: k ← k + 1
7: for n

2
times do

8: Randomly choose two individuals from the selected ones
9: Cross the individuals with probability pc
10: Mutate the obtained individuals with probability pm
11: Introduce the two new individuals in population P

′
k

12: end for
13: until stopping criteria
14: return best solution

Tournament selection also amplifies small differences between solutions, choosing
a solution even if it is only marginally superior to the others.

Crossover Crossover, also called recombination, is another genetic operator
used to combine genetic information of two individuals to make a third one.
There exist many methods to recombine the information of two chromosomes.
The single-point crossover and the k-points crossover are the best known meth-
ods for chromosomes represented by a bit array. However, there are several more
variants of crossover. Despite the technique used, it is important that the ap-
plied one ensures legal solutions. For example, combining two permutations with
a single point crossover could lead to a solution that is not a permutation.

Mutation Mutation is an operator in charge of maintaining the genetic di-
versity of the population into the next generations, avoiding getting stuck in a
local minima by preventing the population of chromosomes from becoming too
similar to each other. In the simplest cases, it works by flipping a bit at random.
However, it also needs to ensure the validity of a solution.

3.2 Genetic Programming

Any computer program can be graphically depicted as a tree with ordered
branches. However, GP is not typically used to evolve programs in the familiar
Turing-complete languages1 humans normally use for software development. In
fact, GP is not Turing-complete [53, 60]. It is instead more common to evolve
programs (or expressions or formulae) in a more constrained and often domain-
specific language.

1 A Turing-complete language refers to an environment in which a program able to
find a solution can be written, with no guarantees regarding runtime or memory.

21

The overview presented earlier shows a generic approach to any genetic algo-
rithm. As subfield of it, in GP an evolution of computer programs is performed.
Generation by generation, GP stochastically transforms populations of programs
into new ones. In this case, the fitness value is computed by running the program
and comparing the results of it to some ideal.

The search space in GP is the space of all possible computer programs com-
posed of functions and terminals appropiate to the problem domain. When ap-
plying GP, there are some considerations to made before:

1. The set of terminals: these can be viewed as the inputs to the as-yet-
undiscovered computer program.

2. The set of primitive functions: used to generate the mathematical expression
that attempts to fit the given finite sample of data.

3. The fitness measure.

4. The parameters for controlling the execution.

5. The stopping criterion.

A general pseudocode of a GP is presented in Algorithm 4.

Algorithm 4 Genetic Programing.

1: Randomly create an initial poppulation of programs from the available primitives
2: repeat
3: Execute each program and compute its fitness
4: Select one or two program(s) according to a probability based on the fitness
5: Create new program(s) by applying genetic operations according to a predefined

probability
6: until stopping criteria are satisfied
7: return best solution

3.3 Representation

In GP, programs are usually expressed as syntax trees rather than as lines of
code. The variables and constants in the program are leaves of the tree, and
they are called terminals, whilst the arithmetic operations are internal nodes
called functions. The sets of allowed functions and terminals together form the
primitive set of a GP system.

Consider the terminal set T and the function set F defined below:

T = {x, y, 3, 4}
F = {+,−, /, ∗,max,min, log, pow}

A simple example program is shown in Figure 4.

22

-

+

x x

/

y log

4

Figure 4: Genetic Programming syntax tree representing (x+x) - (y / log(4)). x,
y and 4 represent the terminal nodes, while -, +, / and log, the functions.

3.3.1 Terminal set

The terminal set may consist of:

– The program’s external inputs, typically taking the form of named variables.

– Functions with no arguments, such as the rand() function which returns
random numbers.

– Constants, which can be pre-specified or randomly generated.

However, using a primitive such as rand can cause the behaviour of an indi-
vidual program to vary every time. It is preferable to have a set of fixed random
constants that are generated as part of the process of initializing the population.
This is known as an ephemeral random constant. Every time this terminal is
chosen in the construction of a tree, a different random value is generated and
will remain fixed for the rest of the run.

3.3.2 Function set

The function set is typically driven by the nature of the problem. This set may
consist of simple arithmetic functions like +, -, * and /, but it is also possible to
include any other functions encountered in computer programs.

3.3.3 Closure

An important property required for GP to work properly is the closure [29],
which can be defined as type consistency and evaluation safety.

Type consistency Required because subtree crossover can mix nodes arbi-
trarily. Thus, it is necessary that any subtree can be used in any of the argument
positions for every function in the function set. This forces all the functions to
be type consistent, i.e., they all return values of the same type. It is worth to
mention that the system developed in this project is, in fact, strongly typed,
satisfying this first property.

23

Evaluation safety The other component of closure is required because many
commonly used functions can fail at run time. An evolved expression might,
for example, divide by 0. This is typically dealt with by modifying the nor-
mal behaviour of primitives. It is common to use protected versions of numeric
functions that can otherwise throw exceptions, such as division, logarithm, ex-
ponential and square root. If a problem is spotted then some default value is
returned.

An alternative to protected functions is to control exceptions at runtime and
considerably reduce the fitness of programs that generate such errors. This can
also lead to a situation where many individuals generate invalid expressions with
a very high probability, which can cause the entire population to have the same
very poor fitness.

3.4 Genetic Programming operators

3.4.1 Individual generation

There are some approaches to generating individuals, but here only two of the
simplest ones are presented: the full and the grow methods. In both, the full
and grow, the generated individuals do not exceed a user specified maximum
depth. That is, the depth of its deepest leaf. However, there are other methods
like ramped half-and-half [29] that combine both the full and the grow methods
or the ramped uniform initialization [32], that allows the user to specify a range
of initial tree sizes.

The full method In this method, nodes are taken at random from the prim-
itive set until the maximum tree depth is reached. Figure 5 shows a series of
steps of the construction of a full tree of depth 2. Although this method gener-
ates trees where all the leaves are at the same depth, this does not necessarily
mean that all initial trees will have an identical number of nodes.

The grow method This method allows for the creation of trees of more varied
sizes and shapes. Nodes are selected from the whole primitive set until the depth
limit is reached. Once the depth limit is reached only terminals may be chosen.
Figure 6 illustrates this process.

3.4.2 Selection

The most commonly employed method for selecting individuals in GP is tour-
nament selection, as explained earlier in Section 3.1.

3.4.3 Recombination and mutation

In order to cross individuals in GP, there is a need to design sensible ways of
“combining” trees. As explained in the generation of individuals, one can not
simply apply a one-point crossover. Instead, a subtree crossover is applied. Given

24

t = 1

min

t = 2

min

+

t = 3

min

+

x

t = 4

min

+

x x

t = 5

min

+

x x

max

t = 6

min

+

x x

max

y

t = 7

min

+

x x

max

y x

Figure 5: Creation of a full tree having maximum depth 2 using the full method, with
terminal set T and function set F defined earlier, (t = time).

t = 1

+

t = 2

+

pow

t = 3

+

pow

y

t = 4

+

pow

y x

t = 5

+

pow

y x

3

Figure 6: Creation of a five node tree using the grow initialisation method with a
maximum depth of 2, using terminal set T and function set F defined earlier, (t =
time).

two parents, this method randomly selects a crossover point (a node) in each
parent tree and then, it creates the offspring by replacing the subtree rooted at
the crossover point in a copy of the first parent with a copy of the subtree at
the crossover point in the second parent, as shown in Figure 7.

25

min

min{x+ x,max{y, x}}

+

x x

max

Crossover point

y x

+

yx + 3

pow

Crossover point

y x

3

min

min{x+ x, yx}

+

x x

pow

y x

Figure 7: Example of subtree crossover. The blue-colored subtrees identify the genetic
material shared by the parents in the offspring.

Regarding GP mutation, a mutation point is randomly selected in the tree
and it substitutes the subtree rooted there with a randomly generated tree,
as illustrated in Figure 8. When subtree mutation is applied, this involves the
modification of exactly one subtree. Other types of mutation operators can be
applied as explained in [45].

Some comments about the GP implementation A protected version of
the genetic initialization operators genFull(), genHalf() and genHalfAndHalf()
had to be implemented due to a possible bug in the DEAP library code. This
problem arose when a new individual was created and the tree structure at-
tempted to add a primitive type to a node when it should actually add a termi-
nal. This is explained in the GitHub repository issues tracker2.

In any case, it should be made clear that the population initialization mech-
anism used was the previously mentioned ramped half-and-half, which combines
the full and grow methods. For the case of mutations, only the full method has
been used.

About the recombination, the cxOnePoint() crossover and mutUniform()

are applied.

2 https://github.com/DEAP/deap/issues/237#issuecomment-508087233

26

https://github.com/DEAP/deap/issues/237#issuecomment-508087233

+

yx + 3

pow

y x

3

Mutation point
/

Random subtree x2

2

pow

x 2

2

+

yx + x2

2

pow

y x

/

pow

x 2

2

Figure 8: Example of subtree mutation. The red-colored subtree shows the mutation
point which will be replaced entirely by a randomly generated subtree.

27

Part III

State of the art

4 Related work

4.1 Automatic programming

As mentioned in previous chapters, the objective is to learn programs capable of
generalizing observed data through the synthesis of concrete code and specifica-
tions. This is known as Inductive Programming (IP) and addresses the problem
of learning programs from incomplete specifications, such as input/output ex-
amples, traces or constraints, which is a topic of interest in AI research since the
1960s. There exist many approaches to program synthesis distributed over differ-
ent communities, like inductive logic programming [14, 25, 35, 39], evolutionary
programming [29, 42] and functional programming [13, 26, 50].

In the context of probabilistic programming, current approaches to learning
these programs do, basically, know in advance the hierarchical model or the data
distribution, and then proceed with the parameter learning phase. However, the
assumed hierarchy specification could be inaccurate or incomplete.

The approach proposed in [22] turns out to be very interesting and very
similar to the objectives set out in our work. As in this thesis, the goal of the
authors is to determine the appropriate structure of a model based on observed
data, so that this modeling is performed by non-experts. However, their proposal
contemplates what are known as matrix decompositions: common modeling as-
sumptions, which are expressed by a class of probabilistic models. In such a
model, the component matrices are first sampled independently from a small
set of factors and then combined using simple algebraic operations. This is pre-
cisely what the authors of [22] intend to exploit, the structural composition, to
evaluate, infer the decomposition matrix, and automatically search the structure
space.

Similar to the approach followed in this thesis is also the work of Perov
[44], in which the author aims to develop a technique for models, represented as
programs, to be able to generalize from data.

In the work of [34], authors propose a solution based on combinatory logic
to represent complex programs through simpler subprograms. To do so, they
developed a new form of combinators logic, motivated by the need to transform
the program defined in lambda calculus into a variable-free representation. One
of the major problems of lambda calculus is, as they point out, the long-range
dependencies between where a variable is bound (λx) and the places where it is

28

used (x). After defining a proper grammar and its types, the goal is to define
a probabilistic model, i.e., a distribution over combinators (binary trees whose
leaves ares primitive combinators) for each type. Finally, authors of [34] perform
inference to find the posterior distribution of the latent programs as a function
of the training cases, all using the MCMC inference approximation. Thus the
introduced algorithm manages to evolve a program dedicated to perform an
arithmetic task and another program focused on text editing.

In fact, the authors of [8] published 4 years earlier a similar idea, rejecting
the use of lambda calculus in favor of combinatory logic, pushing the idea of de-
veloping these combinatorial expressions as program representations for genetic
programming, since it made evolution possible using simple genetic operators.
In addition, they also suggested that the use of a functional language facilitated
the search more than an imperative language.

Mansinghka’s PhD thesis [37] introduces techniques within the field of prob-
abilistic computing, where one can use such tasks for the specification of gener-
ative models for example, as well as generalizing and parallelizing sampling al-
gorithms such as MCMC. Among other things, the thesis also introduces digital
stochastic circuits capable of modeling probabilistic algebra as Boolean circuits
do with Boolean algebra, including how to implement these circuits massively
to process these samplings and efficiently run such algorithms as MCMC with
thousands of variables, even in real time.

4.2 Genetic programming for Machine Learning

Some other works have described applications of other ML problems. We discuss
some of these applications here. Krawiec’s work [30] aims to help ML classifiers
improve their performance while maintaining their readability by humans. To
this end, they present a procedure based on GP for constructing new features.
This process is carried out by deriving new features from the original ones and
searching for a suboptimal set of them. In this case, each individual in the
population represents a set of features defined as LISP expressions. That is to
say, they obtain a symbolic and understandable representation once the evolution
is finished.

Another paper, concerning classification problem solving, is [58]. In this case,
the researchers interpret classification problems as optimization problems and
assume that each instance of the classification problem is an optimization prob-
lem and the solution is found by means of heuristics. The contribution of this
research is based on the development of a set of genetic operators suitable for
this task and new algorithmic concepts, such as Segregative Genetic Algorithm
(SEGA) [2] and its further development Self Adaptive Segregative Genetic Al-
gorithm (SASEGASA) [3].

These ML tasks, as pointed out, often include feature selection and engi-
neering, missing value imputation, model selection, training and validation...
In short, time-consuming tasks. For this, among other reasons, the concept of
Automated Machine Learning (AutoML) arose. The high degree of automation
allows non-expert users to apply models and techniques without much effort.

29

Some developments around this idea may be Tree-based Pipeline Optimization
Tool (TPOT) [41], that automatically designs and optimizes machine learning
pipelines for a given problem domain without any need for human intervention,
using GP.

Conversely, statistical ML concepts have also been introduced into the evo-
lutionary world. The survey [4] presents a wide variety of elements that aim to
improve the evolution of GP systems, such as model selection (validation meth-
ods, analytical methods and feature selection), fitness evaluation (regularization,
fitness functions or sampling methods) or the search for operators and selection
schemes.

Another concept that generates discussion within the ML community is the
explainability of these models. Within a classification task for example, it may
be easy to explain why a k Nearest Neighbor model has made that class pre-
diction for a given instance, or even a Decision Tree. However, there are models
known as black-box, where deriving and explanation for the model behaviour
becomes somewhat complicated, as in Neural Networks. The work described
[12], encompassed within the area of Explainable AI (XAI), proposes the use
of a multi-objective GP method to address these issues, whose objectives are
to propose a simple structure in tree form and explainable, which reconstructs
the prediction scheme of a certain model, maximizing in turn the reconstruction
ability and minimizing the complexity of such trees. According to the authors,
this procedure is applicable to any black-box classifier and without making any
a priori assumptions about them.

In summary, the current uses of GP in ML are numerous and varied. In this
related work section, we have reviewed only a representative number of works.

30

Part IV

Representing probabilistic programs

5 Specifying probabilistic programs with a gram-
mar

5.1 Proposed grammar

As mentioned in previous sections, the GP trees developed in this work use
strongly typed GP, where every terminal has a type and every function has
types for each of its arguments and a type for its return values. The process
that generates the initial, random expressions, and all the genetic operators
are implemented so as to ensure that they do not violate the type system’s
constraints. For example, as the reader may know, a Normal distribution takes
two input arguments: the mean µ and the standard deviation σ. Each of those
arguments has its own restrictions: µ, σ ∈ R and σ > 0. The types defined for
the GP program will be related to the parameters that define a distribution, and
the output of a distribution. Thus, the implementation of a strongly typed GP
system ensures that any value passed to σ argument will be strictly positive,
despite being a value or a function output.

A natural way to express these constraints is via grammars, as expressed in
Figure 9. Each line in the grammar is a production rule. Elements that cannot
be rewritten are known as the terminals3, while symbols that appear on the left
side of a rule are known as non-terminal.

A GP grammar is typically used to ensure that the initial population is made
up of “grammatically correct” programs and to guide the operations of the ge-
netic operators. Thus, with this system, crossover and mutation is restricted
to only swapping subtrees derived from a common non-terminal symbol in the
grammar. For instance, a subtree rooted by a ⟨tensor⟩ node could be only re-
placed by another also rooted by a ⟨tensor⟩.

Figure 10 shows an example of a derivation tree to grammatically represent
the individual (model) Normal(x + y, Exponential(z)).

3 Not to be confused with the terminals in the primitive set of a GP system.

31

⟨tree⟩ ::= D Represents a Pyro distribution object

⟨D⟩ ::= ⟨N01D⟩ x ∈ {0, 1}
| ⟨N0D⟩ x ∈ N, x ≥ 0
| ⟨R01D⟩ x ∈ R, x ∈ [0, 1]
| ⟨RD⟩ x ∈ R
| ⟨RP0D⟩ x ∈ R, x ≥ 0

⟨N01D⟩ ::= ‘Bernoulli(’ ⟨R01T ⟩ ‘)’ Pyro’s Bernoulli distribution

⟨N0D⟩ ::= ‘Binomial(’ ⟨N0T ⟩ ‘,’ ⟨R01T ⟩ ‘)’ Pyro’s Binomial distribution

| ‘Poisson(’ ⟨RPT ⟩ ‘)’ Pyro’s Poisson distribution

⟨R01D⟩ ::= ‘Beta(’ ⟨RPT ⟩ ‘,’ ⟨RPT ⟩ ‘)’ Pyro’s Beta distribution

⟨RD⟩ ::= ‘Normal(’ ⟨tensor⟩ ‘,’ ⟨RPT ⟩ ‘)’ Pyro’s Normal distribution

⟨RP0D⟩ ::= ‘Exponential(’ ⟨RPT ⟩ ‘)’ Pyro’s Exponential distribution

| ‘Chi2(’ ⟨NT ⟩ ‘)’ Pyro’s Chi2 distribution

⟨R01T ⟩ ::= ‘Tensor.abs(’ ⟨tensor⟩ ‘).clip(0, 1)’ x ∈ R, x ∈ [0, 1]

⟨N0T ⟩ ::= ‘Tensor.abs(’ ⟨tensor⟩ ‘).round()’ x ∈ N, x ≥ 0

⟨RPT ⟩ ::= ‘Tensor.abs(’ ⟨tensor⟩ ‘).clip(10e-7)’ x ∈ R, x > 0

⟨NT ⟩ ::= ‘Tensor.abs(’ ⟨tensor⟩ ‘).clip(1).round()’ x ∈ N, x > 0

⟨tensor⟩ ::= ‘Tensor(’ ⟨sample⟩ ‘)’ Converts Pyro’s sample (or any sequence) to tensor

| ‘Tensor(’ ⟨aop⟩ ‘)’ Arithmetic operators

| ‘Tensor(’ ⟨tensor⟩ ‘)’ Another tensor

| ‘Tensor(’ ⟨input⟩ ‘)’ Input tensor

⟨sample⟩ ::= ‘sample(,’ ⟨D⟩ ‘)’ Pyro’s sample

⟨aop⟩ ::= ⟨add⟩ Generic addition

| ⟨sub⟩ Generic substraction

| ⟨mul⟩ Generic product

| ⟨safediv⟩ Protected division

| ⟨safepow⟩ Protected exponentiation

⟨add⟩ ::= ⟨tensor⟩ ‘+’ ⟨tensor⟩

⟨sub⟩ ::= ⟨tensor⟩ ‘-’ ⟨tensor⟩

⟨mul⟩ ::= ⟨tensor⟩ ‘*’ ⟨tensor⟩

⟨safediv⟩ ::= ‘safediv(’ ⟨tensor⟩ ‘,’ ⟨tensor⟩ ‘)’

⟨safepow⟩ ::= ‘safepow(’ ⟨tensor⟩ ‘,’ ⟨tensor⟩ ‘)’

⟨input⟩ ::= x | y | z Input values, i.e. list, tensor

Figure 9: Grammar introduced to represent probabilistic programs in Pyro.

32

Normal(⟨tensor⟩ , ⟨RPT ⟩)

Tensor(⟨aop⟩)

⟨tensor⟩ + ⟨tensor⟩

Tensor(⟨input⟩) Tensor(⟨input⟩)

Tensor(⟨tensor⟩ .clip(10e-7)

Tensor(⟨sample⟩)

sample(, ⟨D⟩)

Exponential(⟨RPT ⟩)

Tensor(⟨tensor⟩ .clip(10e-7)

Tensor(⟨input⟩)

⟨tree⟩

⟨D⟩

⟨RD⟩

x y

z

⟨RP0D⟩

Figure 10: Example individual represented by the derivation tree for the program
Normal(x + y, Exponential(z)).

5.1.1 Types implemented

Figures 11, 12 and tables 2, 3 summarize some of the characteristics of the
introduced grammar.

First, it is necessary to characterize the output of each of the distributions,
i.e., the type of tensor returned and the domain of values for the variables. It is
important to remember that this distribution output is a sample of data. The

33

types shown in Table 2 are implemented in the grammar for this purpose. Figure
11 shows the corresponding class diagram.

Tensor type Represents Domain

RealPositiveTensor torch.Tensor x, x ∈ R, x ∈ (0,+∞)
RealPositive0Tensor torch.Tensor x, x ∈ R, x ∈ [0,+∞)
Real01Tensor torch.Tensor x, x ∈ R, x ∈ [0, 1]
NaturalTensor torch.Tensor x, x ∈ N, x ∈ (0,+∞)
Natural0Tensor torch.Tensor x, x ∈ N, x ∈ [0,+∞)
Natural01Tensor torch.Tensor x, x ∈ N, x ∈ [0, 1]

Table 2: Tensor types.

torch.tensor.Tensor

RealPositive

Tensor

RealPositive0

Tensor

Real01

Tensor

Natural

Tensor

Natural0

Tensor

Natural01

Tensor

Figure 11: Class diagram showing tensor types defined in the implementation.

On the other hand, the type of distribution also had to be determined. For
instance, a sample from a normal distribution will not have the same charac-
teristics as the output of a Beta, since the former will have a support in R and
the latter in [0, 1]. Therefore, in the same way, Table 3 and Figure 12 show the
corresponding type hierarchy.

Distribution type Represents Domain

RealDistribution pyro.Distribution x ∈ R, x ∈ (−∞,+∞)
NaturalDistribution pyro.Distribution x ∈ N, x ∈ (0,+∞)

Natural0Distribution NaturalDistribution x ∈ N, x ∈ [0,+∞)
Natural01Distribution NaturalDistribution x ∈ N, x ∈ [0, 1]
RealPositiveDistribution RealDistribution x ∈ R, x ∈ (0,+∞)
RealPositive0Distribution RealDistribution x ∈ R, x ∈ [0,+∞)
Real01Distribution RealDistribution x ∈ R, x ∈ [0, 1]

Table 3: Distribution types.

However, it is worth noting that these newly created types serve to create an
ecosystem of types to implement the PrimitiveSetTyped of Distributed Evolu-
tionary Algorithms in Python (DEAP). In terms of Python implementation, it is

34

torch.tensor.Tensor

Natural

Distribution

Natural0

Distribution

Natural01

Distribution

Real

Distribution

RealPositive

Distribution

RealPositive0

Distribution

Real01

Distribution

Figure 12: Class diagram showing distribution types defined in the implementation.

not necessary to develop any code regarding these types, it is enough to simply
define the header of the class itself. This is useful for handling the output types
of the functions we define, as well as the distributions and operations between
them.

5.1.2 Function set

Some unary operators have been added to the function set. The function of the
unary operators is to specify not only the output type, but also to transform
the type of the tensor and its values. For example, by applying the function
toNaturalTensor to an arbitrary tensor x, the system will transform it so that
it satisfies that all its values xi ∈ N. This transformation in concrete, is performed
according to ⌊max(1, |x|)⌉. These unary operators are described in Table 4.

Operator Input Output

toReal01Tensor Converts to R ∈ [0, 1] domain torch.Tensor Real01Tensor

toRealPositiveTensor Converts to R ∈ (0,+∞) domain torch.Tensor RealPositiveTensor

toNaturalTensor Converts to N ∈ (0,+∞) domain torch.Tensor NaturalTensor

toNatural0Tensor Converts to N ∈ [0,+∞) domain torch.Tensor Natural0Tensor

Table 4: Unary operators.

Similarly, basic arithmetic operations have been proposed as binary oper-
ators. These will receive a pair of arbitrary tensors and return a generic ten-
sor. The grammar will then perform the appropriate conversions between tensor
types to continue building a valid program. It is worth mentioning that pro-
tected versions of division have been implemented to avoid dividing by zero, and
of exponentiation, to avoid a negative floating point power. They are described
in Table 5.

It is perhaps worth commenting on the fact that basic functions such as
abs() or rounding have not been implemented, since they are included in the
implementation of the different variants of the conversion to tensors to*Tensor.

35

Operator Input Output

add Python’s standard addition [torch.Tensor, torch.Tensor] torch.Tensor

sub Python’s standard subtraction [torch.Tensor, torch.Tensor] torch.Tensor

mul Python’s standard product [torch.Tensor, torch.Tensor] torch.Tensor

safeDiv Protected division [torch.Tensor, torch.Tensor] torch.Tensor

safePow Protected exponentiation [torch.Tensor, torch.Tensor] torch.Tensor

Table 5: Binary operators.

36

Part V

Experimental framework

6 Problem definition

As discussed in previous chapters, the general objective of this work is to evolve,
using GP, probabilistic programs able to sample complex distributions from
which only a small sample of observed data points is available. To frame our
analysis, we will use the formulation presented by Perov and Wood in their
work [44] to represent the program generation process:

π(X|X̂)p(X̂ |τ , θ)p(τ |θ)p(θ) (6.1)

where:

• θ represents the input parameters of the program τ .
• p(θ) is the probability distribution of θ.
• p(τ |θ) is the distribution of τ given θ.
• X̂ is the data generated by the probabilistic program τ parameterized by θ.
• X is the observed data, e.g. from sensor readings, experiments, etc.
• π(X|X̂) is a distance between the summary statistics computed between X
and X̂ .

The current implementation of GP approach a vector of 3 components to
represent the parameters (θ) for each program τ . The parameter values were
originally sampled from a uniform distribution, but this could be generalized as-
suming the existence of a latent variable β from which the inputs are generated
and defining the conditional distribution of the input parameters given this la-
tent variable, i.e., p(θ|β). For instance, instead of generating θ from the uniform
distribution, we could generate it from N (β, 1), where in the current implemen-
tation β has three components and will generate three columns of parameters.
In the general case, Equation 6 would be modified as follows:

π(X|X̂)p(X̂ |τ , θ)p(τ |θ)p(θ|β) (6.2)

7 Program evaluation

In this thesis, each evolved hierarchy will itself represent a distribution. As the
way to achieve this goal, the current implementation finds a program able to
generate some data X̂ as similar to a given data set X as possible, minimizing

37

π(X|X̂) as the way to maximize the similarity. We address two relevant questions
in this approach:
1. The way π is defined: which statistics are used and the way they have been

computed.
2. The way the inputs of the program are initialized: in principle, the (N = 3)

inputs of θ are generated from a uniform distribution.

7.1 Minimizing the distance between the summary statis-
tics

Regarding the first of the previous two aspects, the most direct and easiest way
to evaluate the quality of the solution is by generating random samples from the
distribution represented by the program and comparing them with the original
data that we want to approximate. However, there is not a unique way to design
this evaluation, in fact, several methods have been devised and in what follows
we discuss some of them.

Moments are widely used in statistics to characterize a distribution. They
can ve computed from the data. In our approach, we used the first four mo-
ments. They were computed both, from the original data, and the sampled data.
The moments computed were: the mean (µ1, µ̂1), the variance (µ2, µ̂2), but also

known as (σ2, σ̂2), the skewness (µ3, µ̂3) and kurtosis (µ4, µ̂4).

7.1.1 Direct evaluation through moments

The method computes the sum of the squared difference of the moments:

4∑
n=1

(µn − µ̂n)
2 (7.1)

In this way, the lower the value of this sum, the more likely will be for the
program to generate a distribution of the same properties that the observed
data, at least in terms of the statistics considered.

Let us consider the next observed values with its corresponding moments

y = [3, 9, 4, 5, 8, 2, 8, 1, 5, 1, 1, 5, 5, 8, 0, 1, 4, 9, 1, 1, 0, 3, 1, 3, 5, 5, 5, 8]

µ1 = 4.0667; µ2 = 7.9956; µ3 = 0.2949; µ4 = −1.1353

and the next Poisson(λ = 2) distribution sample

ŷ = [1, 0, 5, 0, 1, 1, 5, 2, 1, 2, 5, 2, 1, 2, 2, 2, 2, 0, 2, 2]

µ1 = 1.9; µ2 = 2.19; µ3 = 1.0053; µ4 = 0.3301

Finally, the error value for this example is

4∑
n=1

(µn − µ̂n)
2 = 41.0516

38

7.1.2 Normalized evaluation through moments

One of the problems that a direct evaluation such as the one previously de-
scribed can face is the numerical explosion that can occur when the population
is not able to adapt. It has been seen experimentally that when the mean of the
observed data is very large, the evolved programs do not get close to that value,
resulting in a fitness or total sum of the order of 104 or even higher. For example,
consider an observed mean close to 300 and an individual represented by a nor-
mal distribution with parameters µ = 0 and σ = 1, the expected fitness of that
individual can exceed 9 · 104. This is, the evolution will get trapped in a poor
solution or will take many generations to converge to an acceptable solution.

To overcome this obstacle, an option is to normalize the observed data, so
that evolution is limited to using inputs from a bounded interval and thus,
the search for the best individual could be focused on programs that produce
distributions closer to the (normalized) observed data.

Standardization Using this approach, the sample mean is removed by scaling
it until a unit variance is achieved.

It is computed as:

z =
x− µ

σ

where µ and σ are the sample mean and standard deviation, respectively. With
this transformation, the resulting values become independent of the unit, also
having both the same dispersion and the same mean.

Following with the previous example, the new y′ will be computed as

y′ =
y − 4.0667√

7.9956
= [−0.38,−0.38, 1.74,−0.02, 0.33, 1.39,−0.73, 1.39, ...]

µ1 = 2.78 · 10−8; µ2 = 1; µ3 = 0.2949; µ4 = −1.1353

and the ŷ is also standardized

ŷ′ =
ŷ − 1.9√

2.19
= [−0.61,−1.28, 2.09,−1.28,−0.61,−0.61, 2.09, 0.07, ...]

µ1 = 3.12 · 10−8; µ2 = 1; µ3 = 1.0053; µ4 = 0.3301

The error value for the standardized example is

4∑
n=1

(µn − µ̂n)
2 = 2.652

39

Normalization The sample values are transformed to a specific range, in this
case, [0, 1]. This is done by applying the following

x′ =
x−min(x)

max(x)−min(x)

In a similar way but with normalization transformation,

y′ =
y − 0

9− 0
= [0.33, 0.33, 1., 0.44, 0.56, 0.89, 0.22, 0.89, ...]

µ1 = 1.9; µ2 = 2.19; µ3 = 0.2949; µ4 = −1.1353

and the ŷ is also normalized

ŷ′ =
ŷ − 0

5− 0
= [0.2, 0., 1., 0., 0.2, 0.2, 1., 0.4, ...]

µ1 = 0.38; µ2 = 0.0876; µ3 = 1.0053; µ4 = 0.3301

Finally, after applying the normalization, the Equation 7.1.1 is computed to
obtain the error

4∑
n=1

(µn − µ̂n)
2 = 9.3825

7.1.3 Structural Similarity Index measure

So far, all the work developed in the thesis has been related to one-dimensional
input data, i.e., distributions defined on vectors. However, an attempt was also
made to apply this genetic procedure to two-dimensional data. Specifically, an
attempt was made to obtain the hierarchical model underlying the digit “1”
from the Modified National Institute of Standards and Technology database
(MNIST) images [33]. To do so, another way of measuring the quality of a
program had to be considered, since in this case, it was not enough to compute
the statistics of the samples obtained because they did not provide information
on the image structure: the sampled images had to have spatial coherence and
these characteristics could not be obtained with metrics employed for the one-
dimensional case.

Thus, the idea of using the Structural Similarity Index (SSI) [56] measure
was born. This measure is very useful to quantify the visibility of the errors
between a distorted image and a reference image. It is a technique widely used
in television since it takes into account the degradation of images as perceptual
phenomena, including those as illumination and contrast. Figure 13 shows two
small perceptual modifications of the left-most image. However, both of them
with the same Mean Squared Error (MSE) but different SSI.

However, this approach of sampling two-dimensional data was discarded be-
cause the results of the evolution were poor and no valid conclusion was reached.

40

Figure 13: Comparison of 8×8 MNIST “1” images with a small amount of distortions
applied, all with MSE = 0.0002. The image on the left represents the original image.
A random noise has been applied to the one in the center one (SSI = 0.66) while a
constant has been added to the one on the right (SSI = 0.91).

7.2 Generating inputs

As for the generation of program inputs, it is necessary to make rough assump-
tions, as well explained in the paper [44]. The reason for these assumptions is
that our learned program must work for any argument and not just a subset.
Assuming that such a program works well for a few arguments, it is very likely
to generalize to other configurations. Starting from Equation 6, one can account
for this by choosing a finite small number N of parameters θn that yields the
approximate objective:

1

N

N∑
n=1

π(Xn|X̂n, θn)p(X̂n|τ , θn)p(τ |θn) ≈
∫

π(X|X̂ , θn)p(X̂ |τ , θ)p(τ |θ)p(θ)dθ

(7.2)
Notice that we assume that the parameters θ1, ..., θn have been generated from
a given β and therefore we do not include β in Equation 7.2. Also, the parameter
θn is introduced within the distance term to emphasize that the distance, i.e.,
the quality of the program will also depend on the choice of θ.

Therefore, by evaluating the statistics using different parameters we are able
to identify robust programs, able to generalize. However, it is important to take
into account that the input parameters could be generated in a different way. For
example, one can pass many times the same initial parameters (θ1, θ2, θ3). Since
these programs are stochastic generators, even if the same inputs are passed
the programs will generate different outputs. However, these vector is actually
sampled from a N (0, 1) distribution in the current implementation. Each time
the experiment is run, new but constant inputs are generated throughout the
experiment.

41

8 Improving the quality of the programs

Another question also arises once we have obtained the best program capable of
fitting the observed data, and that is, how to refine the accuracy of the model
to represent the underlying target distribution of the data. We distinguish two
ways to address this question:

1. Find the best set of inputs θ for the probabilistic program.
2. Find a posteriori distribution of θ given X .

8.1 Optimizing the inputs

Once an individual has been evolved, such as the best program obtained using
the inputs generated by a Normal distribution, one could try to find the set of
input parameters (θ1, θ2, θ3) such that it maximizes the fitness function.

With this approach, the program is fixed and a numerical optimization in
the space of possible values for (θ1, θ2, θ3) is performed. To evaluate each possi-
ble combination of (θ1, θ2, θ3), one can sample the same program with the three
values many times and use this as input for the fitness function. In order to
optimize the inputs, Bayesian Optimization (BO) [51] could be used. This tech-
nique allows the evaluation of black-box functions that are costly to evaluate.
BoTorch [5] is a library built on top of PyTorch for this purpose and should not
be difficult to use with exactly the same fitness function.

The output of this approach would be an assignment for (θ1, θ2, θ3) that is
more likely to generate data X̂ very similar to X .

8.2 Finding the a posteriori distribution

In this approach, we do not search for a fixed set of parameters θ. Instead, we
would like to know which is a distribution of θ that produces samples similar
to X . We have assumed that this distribution depends on a latent variable β.
Then, since we have the observed data X , we would like to find the value of β
that generates inputs θ such that when passed to our program, it most likely
generates data similar to X . This is an inference problem that can be addressed
with different techniques.

One possible solution is to assume that the a posteriori distribution has some
form, e.g.,N (µ, σ2), and find the parameters µ and σ2. If we have the a posteriori
distribution, then we can generate inputs that when passed to our program will
likely generate data similar to X .

The difficulty is that the procedures for finding this a posteriori distributions
are complex, and they do not always converge. Pyro uses guide functions as a
way to propose a family of distributions to which the a posteriori distribution
is expected to belong. However, in many real world problems it is not possible
to know in advance which is the family of distributions.

One way to evaluate the quality of the evolved programs would be, to generate
a number of vectors (θ1, θ2, θ3) from the a posteriori distribution, pass these
parameters to the evolved program and compute the fitness in the usual way,

42

with the samples generated by the programs. Ideally, since the distribution was
learned using X as the observations, we would expect the fitness to be better than
if the input parameters (θ1, θ2, θ3) were selected using an arbitrary distribution.

It is worth commenting that this optimization variant has been implemented,
while the numerical optimization of the input parameters has been left as future
work.

9 Experiments

9.1 Motivation

When facing the experimental part, it becomes necessary to raise the questions
to be answered with these experiments:
– Is it possible to learn a model that approximates the observed data?
– Is it possible to learn a model as good as the already known model?
– Is there a significant improvement in the evolution with the passing of gen-

erations?
To answer these questions, the workflow shown in Figure 14 has been followed

for data ingestion, learning and evaluation.
The methodology that has been followed in all experiments is described in

the next paragraphs.

Preprocessing Despite the variety of the experiments, the observed datasets
are loaded individually in a similar way, ending with a one-dimensional tensor
representing the observed values. Then, holdout is applied at 65% to split the
data at random into train and test instances. The proposed benchmarks run
the same experiments three times: a first one without scaling, one normalizing
and the last one, standardizing the data. Finally, the test instance will be used
together with the values sampled by the evolved programs, to calculate the fitness
of each program, but in no case will this test set be modified or processed.

Evolution The evolution process has been initialized with the following pa-
rameters. The number of individuals in the initial population is 50, evolving
during 250 generations. The crossover and mutation probabilities are set to 0.5
and 0.1 respectively, while the tournament size is 3. Also, some constraints have
been applied to the genetic programs. The minimum and maximum depth of the
three have been set to 1 and 10 respectively.

9.2 Use cases

As an initial baseline, it will be interesting to probe if our system is able to
learn probabilistic programs using data sampled from simple distributions. Also,
several real-world datasets have been considered to test our assumptions. All
these scenarios have been taken from the work in [52]. Our goal when using
these datasets is to model observed data taken from realistic scenarios.

43

1D data

Preprocess
- Raw

- Normalization

- Standardization

Config.
params

Evolution
initializer

Evaluation

Selection

Recombination Mutation

Initial
population

New
population

Logs

Best

Plot and
compare
with

observed

Evaluate
solution

Draw
samples

Save model
specification

[1, 5, 7, 1, 1, 3, ...]

TrainTest

Figure 14: Experimentation workflow used to evolve probabilistic programs that rep-
resent a distribution.

9.2.1 Case #1: Learning simple distributions

The proposed distributions to learn are the N (0, 1) and Beta(2, 2) distributions,
sampling 2500 data points at random, as shown in Figures 15a and 15b.

−4 −3 −2 −1 0 1 2 3
0
1
2
3
4
5
6

·10−2

F
re
q
u
en

cy

Observed

(a) N (0, 1) distribution samples.

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
·10−2

F
re
q
u
en

cy

Observed

(b) Beta(2, 2) distribution samples.

Figure 15: Distribution samples for Normal and Beta distributions.

44

9.2.2 Case #2: Average Minimum Temperature in Scotland

This dataset provides the average minimum temperature in Scotland in month
November for the years 1884 - 2020 and it was retrieved by Met Office National
Climate Information Centre4. Figure 16 shows the histogram of data.

−1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

·10−2

Temperature (°C)

F
re
q
u
en

cy

Observed

Figure 16: Minimum November temperatures for the 1884 - 2020 period in Scotland.

9.2.3 Case #3: Modelling the precipitation

Correctly modeling and understanding meteorological processes can help miti-
gate the effects of climate change and promote the correct use of the planet’s
natural resources. One of them, vital for human survival, is water, and in many
places, having it is a privilege. Much has been studied about the phenomenon
of precipitation, both from the physical and meteorological point of view and
from the statistical point of view [57], being applied to hydrological, agricultural
or ecosystem modeling. Stochastic models are very common in the statistical
approach, known as “weather generators” [57], since they can generate synthetic
data series from observed values.

As a third use case and a more local example, we try to model the precipita-
tion from Biscay, precisely, in Punta Galea. There are exhaustive works that have
already attempted to model precipitation in the Basque Country, such as the
study [40] in which the authors fit a characteristic polynomial for the Cantabrian

4 https://www.metoffice.gov.uk/pub/data/weather/uk/climate/datasets/Tmin/

date/Scotland.txt

45

https://www.metoffice.gov.uk/pub/data/weather/uk/climate/datasets/Tmin/date/Scotland.txt
https://www.metoffice.gov.uk/pub/data/weather/uk/climate/datasets/Tmin/date/Scotland.txt

Basin and the Ebro Basin, taking the daily precipitation from the years 1981
to 1988, or the much more detailed work [38], using pluviometric data from the
years 1961 to 2000 to analyze and reconstruct the series using the reanalysis5

data of the ERA-40 [55], of the European Centre for Medium-Range Weather
Forecasts (ECMWF), and thus compare with the data obtained from different
regional models.

Here, however, in order not to extend the scope of the project, we limit our-
selves exclusively to fit a distribution to the Punta Galea precipitation data, a
cape located near the cities of Sopela and Getxo, distinguished by its cliffs and
famous among surfers. All the data has been scraped and downloaded from the
Basque Meteorological Agency6 and Open Data Euskadi, a government trans-
parency platform.

The data downloaded contains many variables, such as precipitation, tem-
perature, humidity, irradiance and atmospheric pressure, all of them recorded
from a meteorological station placed in Punta Galea every 5 minutes. Only the
accumulated rainfall values over a period of 24 hours instead, from January 2019
to July 2021 has been taken into account. Figure 17 shows the histogram for the
data.

0 10 20 30 40 50 60
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

mm

F
re
q
u
en

cy
(l
o
g
1
0
)

Observed

Figure 17: Cumulated rainfall during 24 hours in Punta Galea (Biscay).

5 In meteorology, reanalysis combines data from numerical forecast models with ob-
servations from around the world into a globally complete and coherent data set
using the laws of physics. This principle, called data assimilation, combines an ear-
lier forecast with newly available observations in an optimal way to produce a new
optimal estimate of the state of the atmosphere, called an analysis, from which an
updated and improved forecast is issued. Reanalysis works in a similar way, but with
a reduced resolution that allows for a data set going back several decades.

6 https://www.euskalmet.euskadi.eus/observacion/datos-de-estaciones

46

https://www.euskalmet.euskadi.eus/observacion/datos-de-estaciones

10 Results

In this section the obtained results are shown, both graphical comparisons and
the best individual evolved with our method. The code used to launch these
experiments is available in Appendix B.

10.1 Learning simple distributions

The first distribution learned in the experiments performed was the Normal
distribution. As already mentioned, the evolution has taken into account 250
generations in which the models have been evolving and improving to fit the data
in an optimal way. It is necessary to emphasize that for this case, it has not been
allowed to learn using the normal distribution, since it would be “facilitating”
the search for the best program and would not demonstrate the capability of the
system. That is, excluding the original distribution of the data forces the genetic
search to actually search for a combination that generates the closest match to
the target distribution, without resorting to the easy solution of using precisely
that distribution as a component of the tree.

This process can be visualized in Figure 18a. This graph shows the fitness
of the run that obtained the best model together with the average size of the
evolved programs. On the other hand, Figure 18b shows the fitness of the 5 runs
of the experiment, where the dotted lines represent each of the repetitions.

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

Generation

F
it
n
es
s

0 100 200
10
15
20
25
30
35
40
45Average Size

(a) Logbook of the best model.

0 50 100 150 200 250
0.0
0.5
1.0
1.5
2.0
2.5

Generation

F
it
n
es
s

(b) Evolution logbook after 5 repetitions. Each
dashed line corresponds to a single run of the evo-
lution. The black solid one, refers to the mean.

Figure 18: Logbooks for the Normal distribution learning.

The best evolved model is shown in Figure 19. It is, after all, a program that
models a Beta distribution. However, the reader may notice that the values sam-
pled by this model are not part of the distribution domain, as Figure 20a points
out. Recall that in each experiment, the data are manipulated in three different
ways: one by using the raw data; another by normalizing to an interval (0, 1);
and finally, by standardizing the data. Thus, when the data were normalized,
evolution was able to choose a Beta distribution within the bounded domain of
normalized values that significantly improved fitness. Then, it is necessary to

47

Beta

−

−

safePow

safeDiv

−0.59 +

mul

−2.71 −2.71

−1.03

−2.71

−2.71

−2.71

−

−

safePow

safeDiv

−0.59 +

mul

−2.71 −2.71

−1.03

−2.71

−0.59

−2.71

Figure 19: Best evolved model for the Normal distribution learning. Intermediate type
conversion steps have been omitted.

rescale to the original domain of the observed values the values sampled by the
distribution, and this is exactly what Figure 20a shows: the Beta sampled values
rescaled to the original domain of the observed data.

−4 −2 0 2
0

2

4

6

8

·10−2

F
re
q
u
en

cy

Observed

Sampled

(a) Comparison between the true N (0, 1) sampled
values (red) and the best model sampled values
(blue).

µ1 µ2 µ3 µ4

−0.2
0.0
0.2
0.4
0.6
0.8
1.0

Observed

Sampled

(b) Evolved model’s summary statistics vs. test
set.

Figure 20: Sampled values, observed values and summary statistics for the Normal
distribution learning.

Figure 20b provides information about the statistics of the observed and
sampled values for the best model for comparison. It is a good approximation
even though there is some difference between the two.

With respect to learning the Beta distribution, as in the previous case, the
Beta distribution has not been allowed in this training. In this case, similar
performance has been achieved, standardizing the values to then learn a Normal
distribution seems to be very efficient and very fast, as seen in Figure 21a, where
all runs fit almost immediately in the first iterations of the evolution. The learned

48

model, Figure 22, turns out to be a simple Normal distribution whose sampled
values resemble the reference values, as drawn in Figure 23a. This is attested by
the statistics in Figure 23b, whose mean (µ1) and variance (µ2) are practically
identical.

0 50 100 150 200 250

0.55

0.60

0.65

0.70

0.75

Generation

F
it
n
es
s

0 100 200

10
12
15
17
20
22
25
27

Average Size

(a) Logbook of the best model.

0 50 100 150 200 250

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Generation

F
it
n
es
s

(b) Evolution logbook after 5 repetitions. Each
dashed line corresponds to a single run of the evo-
lution. The black solid one, refers to the mean.

Figure 21: Logbooks for the Beta distribution learning.

N

0.1190 +

0.0112 0.0112

Figure 22: Best evolved model for the Beta distribution learning. Intermediate type
conversion steps have been omitted.

0.0 0.5 1.0
0
1
2
3
4
5
6
·10−2

F
re
q
u
en

cy

Observed

Sampled

(a) Comparison between the true Beta(2, 2) sam-
pled values (red) and the best model sampled val-
ues (blue).

µ1 µ2 µ3 µ4

−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4

Observed

Sampled

(b) Evolved model’s summary statistics vs. test
set.

Figure 23: Sampled values, observed values and summary statistics for the Beta dis-
tribution learning.

49

It can be seen from these two simple experiments that the system proposed
in this study is quite capable of learning models that mimic arbitrary values, in
this case, the known starting distribution.

10.2 Average Minimum Temperature in Scotland

For the average temperature modeling experiment, we had much less data than
in the previous experiments. However, that did not pose much difficulty to the
system, as Figure 24a shows. In very few iterations it has managed to practically
converge and this is confirmed by the different repetitions of the experiment that
have been carried out, shown in Figure 24b.

In this particular case, the evolved program has quickly learned from the
input data and managed to mimic it quite closely, as shown by the statistics in
Figure 26b. After obtaining the best program, it has been sampled and compared
with the original data. It is necessary to comment that the best program has
been achieved by using standardization prior to data ingestion.

0 50 100 150 200 250
0.0

0.1

0.2

0.3

0.4

0.5

Generation

F
it
n
es
s

0 100 200
10
11
12
13
14
15
16
17
18Average Size

(a) Logbook of the best model.

0 50 100 150 200 250
0.0
0.2
0.4
0.6
0.8
1.0

Generation

F
it
n
es
s

(b) Evolution logbook after 5 repetitions. Each
dashed line corresponds to a single run of the evo-
lution. The black solid one, refers to the mean.

Figure 24: Logbooks for the temperature problem.

Normal

Beta

−0.7133 0.3

+

0.3 −0.7133

Figure 25: Best evolved model for the temperature problem. Intermediate type con-
version steps have been omitted.

Again, a fairly good and accurate result is achieved without getting too com-
plex a program, as shown in Figure 25. This is a Normal distribution, whose
parameters mu and sigma are parameterized according to a Beta distribution

50

−4 −2 0 2 4 6
0.00

0.02

0.04

0.06

0.08

0.10

Temperature (°C)

F
re
q
u
en

cy

Observed

Sampled

(a) Comparison between the observed values (red)
and the best model sampled values (blue).

µ1 µ2 µ3 µ4
−0.5
0.0

0.5

1.0

1.5

2.0
Observed

Sampled

(b) Evolved model’s summary statistics vs. test
set.

Figure 26: Sampled values, observed values and summary statistics for the temperature
problem.

and a scalar. Strictly speaking, the program shown in Figure 25 is not quite
correct, since a Beta distribution does not admit negative values among its ar-
guments, as does sigma in the Normal distribution. However, these steps are
omitted in the figure. Strictly, the model would be defined as Equation 10.2.

Y ∼ N (µ, σ)

µ ∼ Beta(a, b)

σ = max(10−7, |0.3− 0.7133|)
a = max(10−7, | − 0.7133|)
b = 0.3

(10.1)

10.3 Modelling the precipitation

As the last problem analyzed, we have the modeling of precipitation. In contrast
to the previous experiments, this evolution has not achieved as good results as
one might expect, although it is quite close. The experiment that has achieved
the best program, as shown in Figure 27a, has converged quickly in the first few
iterations. In contrast, it can be seen that not all runs have done equally well
and in fact, some have produced very poor results as illustrated in Figure 27b.

It is important to understand well the graph in Figure 17 in order not to
mislead. First, it should be noted that the data has been normalized, so that the
frequency of all values adds up to 1 and second, a logarithmic transformation
has been applied to this normalization for one reason: ≈ 73% of the values are
0 (no precipitation has been recorded) and to better visualize the rest of the
frequencies, this transformation has been chosen. However, in the comparison
between the test set and the values sampled by the best program in Figure 29a,
this logarithmic transformation has not been applied. That is why both figures
have different representation.

Moreover, this is the reason why evolution has opted for a χ2 distribution,
model drawn in Figure 28. When the only parameter of this distribution takes
small (natural) values, for example 1, the slope of the probability density function

51

0 50 100 150 200 250

3
4
5
6
7

Generation

F
it
n
es
s

0 100 200

5
6
7
8
9
10
11Average Size

(a) Logbook of the best model.

0 50 100 150 200 250
0

100
200
300
400
500
600
700

Generation

F
it
n
es
s

(b) Evolution logbook after 5 repetitions. Each
dashed line corresponds to a single run of the evo-
lution. The black solid one, refers to the mean.

Figure 27: Logbooks for the precipitation problem.

turns out to be very steep, being very suitable for this problem. Note that in
Figure 28 the type conversion has been omitted, and mathematically, the model
would be equal to Y ∼ χ2(1).

χ2

−

0 0

Figure 28: Best evolved model for the precipitation problem. Intermediate type con-
version steps have been omitted.

0 20 40 60 80
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F
re
q
u
en

cy

Observed

Sampled

(a) Comparison between the observed values (red)
and the best model sampled values (blue).

µ1 µ2 µ3 µ4
0

10

20

30

40

50
Observed

Sampled

(b) Evolved model’s summary statistics vs. test
set.

Figure 29: Sampled values, observed values and summary statistics for the precipita-
tion problem.

Finally, Figure 29b shows the quality of the best individual, for which, as
already mentioned, there are considerable differences between the evolved model
and the observed data.

52

Part VI

Conclusions

11 Summary

This thesis has addressed the problem of learning probabilistic programs from a
given set of observations. In order to do so, we have designed and implemented
methods to carry out such learning using EAs.

In the first part of the thesis, an introduction to the key concepts of the
project has been given, along with an explanation of probabilistic programming
accompanied by some examples and a brief review of the GA and one of its
variants, GP. Then, related research work in these two fields and practical ap-
plication cases (such as TPOT) have been discussed.

Regarding the development of the project and the implementation, a gram-
mar accompanied by types and functions has been proposed for the construction
of syntactically valid programs within the evolutionary environment, as well as
a formal definition of the problem to be addressed, a discussion about the eval-
uation of the programs and possible options to optimize such programs. In the
last part of the thesis, we have evaluated the GP approach on simulated and
real data, analyzing the performance of the evolution and inspecting the best
solutions.

12 Conclusions

Developing models that fit observed data is usually not an easy task. Many
standards have been established over the years by the experience of experts,
such as the use of Weibull and Rayleigh functions to describe the frequency of
wind speed distributions [10], normal distributions following rainfall and river
discharges of long duration (e.g. monthly or annual) [47] or even the use of the
Poisson distribution to model the goals in a soccer match [23]. However, it may
be the case that these models do not perfectly capture all the casuistry or that
new models are better. The study carried out in this thesis aims to take a step
in that direction, trying to discover new models that fit observed data without
the need for any prior knowledge of the data, since the proposed system is in
charge of learning all these relationships.

One of the main objectives of this work was to verify that the theoretical
assumptions about learning probabilistic programs by means of evolutionary al-
gorithms were feasible and close to what was observed or expected. This has been

53

demonstrated in the three experiments presented. Firstly, probabilistic distribu-
tions or programs capable of resembling the observed data is obtained, which
are also learned in a relatively short interval of time, all this without the need to
know beforehand the structure or nature of the data itself. Second, the grammar
developed does not consider all the existing distributions nor all the operations
that may occur between distributions or values, so it is a simple first approxima-
tion of the potential of the work. With a small number of distributions, such as
that of the grammar presented, a modest number of common problems can be
modeled, but moreover, the inclusion of new distributions and operations in the
proposed system would not be difficult, allowing an even greater search space,
enriching the models at the same time that they can be made more complex.

13 Future work

As future work, we identify a number of research directions:
1. The addition of more variables or dimensions in the learning of the problems

can be considered. So far, only one variable has been taken into account
in each experiment and including more information in the learning process
could be useful, although increasing the complexity.

2. It may also be of interest to model the a posteriori distribution with which
we sample the parameters at the beginning of each experiment. In the cur-
rent implementation, we use N (0, 1) to sample the inputs, but it may be
interesting to know which parameters (µ, σ2) are optimal to replace such a
Gaussian by N (µ, σ2).

3. A multi-objective evaluation of the programs can also be considered. In this
study, only the evaluation using the statistics of the generated samples has
been considered, but in turn, a second objective could be added to minimize
the complexity of the trees, such as height.

4. This system could also be used to learn problems of a higher dimensionality,
as we have tried with the example of the MNIST images, or even contemplate
a problem that has some temporal component. For example, within weather
forecasting, numerical models provide information both spatially and tem-
porally, and even at atmospheric levels such as heights and pressures. In
other words, 2D, 3D and 4D data that could be interesting to model with
distributions.

5. Studying other crossover and mutation operators could speed up the learning
process by analyzing the search space they can offer, and provide higher
quality solutions.

6. Another method can be implemented to optimize the input parameters of
the distribution, using BO, as explained in Section 8.1.

54

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on het-
erogeneous systems, 2015. Software available from tensorflow.org.

[2] M. Affenzeller. Segregative Genetic Algorithms (SEGA): A hybrid super-
structure upwards compatible to genetic algorithms for retarding premature
convergence. Int. J. Comput. Syst. Signal, 2(1):16–30, 2001.

[3] M. Affenzeller and S. Wagner. SASEGASA: A new generic parallel evolu-
tionary algorithm for achieving highest quality results. Journal of Heuris-
tics, 10(3):243–267, 2004.

[4] A. Agapitos, R. Loughran, M. Nicolau, S. Lucas, M. O’Neill, and
A. Brabazon. A survey of statistical machine learning elements in ge-
netic programming. IEEE Transactions on Evolutionary Computation,
23(6):1029–1048, 2019.

[5] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson,
and E. Bakshy. BoTorch: A Framework for Efficient Monte-Carlo Bayesian
Optimization. In Advances in Neural Information Processing Systems 33,
2020.

[6] M. Betancourt. A conceptual introduction to Hamiltonian Monte Carlo.
arXiv preprint arXiv:1701.02434, 2017.

[7] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Kar-
aletsos, R. Singh, P. A. Szerlip, P. Horsfall, and N. D. Goodman. Pyro: Deep
Universal Probabilistic Programming. J. Mach. Learn. Res., 20:28:1–28:6,
2019.

[8] F. Briggs and M. O’neill. Functional genetic programming with combi-
nators. In Proceedings of the Third Asian-Pacific workshop on Genetic
Programming, ASPGP, pages 110–127, 2006.

[9] S. Chib and E. Greenberg. Understanding the Metropolis-Hastings algo-
rithm. The American Statistician, 49(4):327–335, 1995.

[10] K. Conradsen, L. Nielsen, and L. Prahm. Review of Weibull statistics for
estimation of wind speed distributions. Journal of Applied Meteorology and
Climatology, 23(8):1173–1183, 1984.

[11] L. De Raedt and A. Kimmig. Probabilistic programming concepts. arXiv
preprint arXiv:1312.4328, 2013.

[12] B. P. Evans, B. Xue, and M. Zhang. What’s inside the black-box? A genetic
programming method for interpreting complex machine learning models.
In Proceedings of the Genetic and Evolutionary Computation Conference,
pages 1012–1020, 2019.

[13] C. Ferri-Ramı́rez, J. Hernández-Orallo, and M. J. Ramı́rez-Quintana. Incre-
mental learning of functional logic programs. In International Symposium
on Functional and Logic Programming, pages 233–247. Springer, 2001.

[14] P. Flener and S. Yıilmaz. Inductive synthesis of recursive logic programs:
Achievements and prospects. The Journal of Logic Programming, 41(2-
3):141–195, 1999.

[15] A. E. Gelfand. Gibbs sampling. Journal of the American Statistical Asso-
ciation, 95(452):1300–1304, 2000.

[16] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, (6):721–741, 1984.

[17] D. E. Goldberg and J. H. Holland. Genetic Algorithms and Machine Learn-
ing. 1988.

[18] D. E. Goldberg, R. Lingle, et al. Alleles, loci, and the traveling sales-
man problem. In Proceedings of an International Conference on Genetic
Algorithms and their Applications, volume 154, pages 154–159. Lawrence
Erlbaum Hillsdale, NJ, 1985.

[19] N. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz, and J. B.
Tenenbaum. Church: a language for generative models. arXiv preprint
arXiv:1206.3255, 2012.

[20] N. D. Goodman and A. Stuhlmüller. The Design and Implementation of
Probabilistic Programming Languages. http://dippl.org, 2014. Accessed:
2021-4-17.

[21] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani. Proba-
bilistic programming. In Future of Software Engineering Proceedings, pages
167–181. 2014.

[22] R. Grosse, R. R. Salakhutdinov, W. T. Freeman, and J. B. Tenenbaum.
Exploiting compositionality to explore a large space of model structures.
arXiv preprint arXiv:1210.4856, 2012.

[23] A. Heuer, C. Mueller, and O. Rubner. Soccer: Is scoring goals a predictable
Poissonian process? EPL (Europhysics Letters), 89(3):38007, 2010.

[24] J. H. Holland et al. Adaptation in Natural and Artificial Aystems: an In-
troductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. MIT press, 1992.

[25] K. Kersting. An inductive logic programming approach to statistical rela-
tional learning. AI Communications, 19(4):389–390, 2006.

[26] E. Kitzelmann, U. Schmid, R. Olsson, and L. P. Kaelbling. Inductive synthe-
sis of functional programs: An explanation based generalization approach.
Journal of Machine Learning Research, 7(2), 2006.

[27] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and
Techniques. MIT press, 2009.

[28] J. R. Koza. Hierarchical genetic algorithms operating on populations of
computer programs. In IJCAI, volume 89, pages 768–774, 1989.

[29] J. R. Koza and J. R. Koza. Genetic Programming: on the Programming of
Computers by Means of Natural Selection, volume 1. MIT press, 1992.

56

http://dippl.org

[30] K. Krawiec. Genetic programming-based construction of features for ma-
chine learning and knowledge discovery tasks. Genetic Programming and
Evolvable Machines, 3(4):329–343, 2002.

[31] A. Kucukelbir, R. Ranganath, A. Gelman, and D. M. Blei. Automatic
variational inference in Stan. arXiv preprint arXiv:1506.03431, 2015.

[32] W. B. Langdon. Size fair and homologous tree genetic programming
crossovers. Genetic programming and Evolvable Machines, 1(1/2):95–119,
2000.

[33] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[34] P. Liang, M. I. Jordan, and D. Klein. Learning programs: A hierarchical
Bayesian approach. In Proceedings of the 7th International Conference on
Machine Learning (ICML-10), pages 639–646, 2010.

[35] D. Lin, E. Dechter, K. Ellis, J. B. Tenenbaum, and S. H. Muggleton. Bias
reformulation for one-shot function induction. Frontiers in Artificial Intel-
ligence and Application, pages 525–530, 2014.

[36] V. Mansinghka, D. Selsam, and Y. Perov. Venture: a higher-order proba-
bilistic programming platform with programmable inference. arXiv preprint
arXiv:1404.0099, 2014.

[37] V. K. Mansinghka et al. Natively Probabilistic Computation. PhD thesis,
Massachusetts Institute of Technology, Department of Brain and Cognitive
Sciences, 2009.

[38] R. Moncho, G. Chust, V. Caselles Miralles, et al. Análisis de la precipitación
del Páıs Vasco en el peŕıodo 1961-2000 mediante reconstrucción espacial.
Nimbus: Revista de climatoloǵıa, meteoroloǵıa y paisaje, (23):149–170, 2009.

[39] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and
methods. The Journal of Logic Programming, 19:629–679, 1994.

[40] J. G. Muñiz, A. Auzmendi, and J. L. Siendones. Regionalización de la
precipitación en el Páıs Vasco: Aplicación del modelo de análisis regional
de lluvias. Geogaceta, 10:128–130, 1991.

[41] R. S. Olson and J. H. Moore. TPOT: A tree-based pipeline optimization
tool for automating machine learning. In F. Hutter, L. Kotthoff, and J. Van-
schoren, editors, Proceedings of the 2016 Workshop on Automatic Machine
Learning, AutoML2016, co-located with 33rd International Conference on
Machine Learning (ICML 2016), New York City, NY, USA, June 24, 2016,
volume 64 of JMLR Workshop and Conference Proceedings, pages 66–74.
JMLR.org, 2016.

[42] R. Olsson. Inductive functional programming using incremental program
transformation. Artificial Intelligence, 74(1):55–81, 1995.

[43] J. Pearl. Probabilistic Reasoning in Intelligent Systems - Networks of Plau-
sible Inference. Morgan Kaufmann series in representation and reasoning.
Morgan Kaufmann, 1989.

[44] Y. N. Perov and F. D. Wood. Learning probabilistic programs. arXiv
preprint arXiv:1407.2646, 2014.

57

[45] R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide to Genetic
Programming. lulu.com, 2008.

[46] A. Prékopa. Probabilistic programming. Handbooks in Operations Research
and Management Science, 10:267–351, 2003.

[47] H. Ritzema. Drainage Principles and Applications, Publication 16. Interna-
tional Institute for Land Reclamation and Improvement (ILRI), Wagenin-
gen, The Netherlands, 3(39):1–47, 1994.

[48] D. Roth. On the hardness of approximate reasoning. Artificial Intelligence,
82(1-2):273–302, 1996.

[49] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck. Probabilistic programming
in Python using PyMC3. PeerJ Computer Science, 2:e55, 2016.

[50] U. Schmid and F. Wysotzki. Induction of recursive program schemes. In
European Conference on Machine Learning, pages 214–225. Springer, 1998.

[51] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization
of machine learning algorithms. Advances in Neural Information Processing
Systems, 25, 2012.

[52] E. Taka, S. Stein, and J. H. Williamson. Increasing Interpretability of
Bayesian Probabilistic Programming Models Through Interactive Repre-
sentations. Frontiers Comput. Sci., 2:567344, 2020.

[53] A. Teller. Turing completeness in the language of genetic programming with
indexed memory. In Proceedings of the First IEEE Conference on Evolu-
tionary Computation. IEEE World Congress on Computational Intelligence,
pages 136–141. IEEE, 1994.

[54] D. Tran, A. Kucukelbir, A. B. Dieng, M. Rudolph, D. Liang, and D. M.
Blei. Edward: A library for probabilistic modeling, inference, and criticism.
arXiv preprint arXiv:1610.09787, 2016.

[55] S. M. Uppala, P. K̊allberg, A. J. Simmons, U. Andrae, V. D. C. Bech-
told, M. Fiorino, J. Gibson, J. Haseler, A. Hernandez, G. Kelly, et al. The
ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society:
A journal of the Atmospheric Sciences, Applied Meteorology and Physical
Oceanography, 131(612):2961–3012, 2005.

[56] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions
on Image Processing, 13(4):600–612, 2004.

[57] D. S. Wilks and R. L. Wilby. The weather generation game: a review of
stochastic weather models. Progress in Physical Geography, 23(3):329–357,
1999.

[58] S. Winkler, M. Affenzeller, and S. Wagner. Advanced genetic programming
based machine learning. Journal of Mathematical Modelling and Algorithms,
6(3):455–480, 2007.

[59] F. Wood, J. W. Meent, and V. Mansinghka. A new approach to probabilistic
programming inference. In Artificial Intelligence and Statistics, pages 1024–
1032. PMLR, 2014.

[60] J. R. Woodward and R. Bai. Why evolution is not a good paradigm for
program induction: a critique of genetic programming. In Proceedings of the
first ACM/SIGEVO Summit on Genetic and Evolutionary Computation,
pages 593–600. 2009.

58

Acronyms

AI Artificial Intelligence.
AutoML Automated Machine Learning.
BO Bayesian Optimization.
DEAP Distributed Evolutionary Algorithms in

Python.
DL Deep Learning.
EA Evolutionary Algorithm.
ECMWF European Centre for Medium-Range Weather

Forecasts.
GA Genetic Algorithm.
GP Genetic Programming.
GPU Graphics Processing Unit.
IP Inductive Programming.
KL Kullback-Leibler.
LP Linear Programming.
MCMC Markov Chain Monte Carlo.
ML Machine Learning.
MNIST Modified National Institute of Standards and

Technology database.
MSE Mean Squared Error.
PDF Probability Density Function.
PPL Probabilistic Programming Language.
SASEGASA Self Adaptive Segregative Genetic Algorithm.
SEGA Segregative Genetic Algorithm.
SSI Structural Similarity Index.
TPOT Tree-based Pipeline Optimization Tool.
XAI Explainable AI.

Appendices

60

A Probabilistic Programming in other research
areas

The first area where the term probabilistic programming has been used refers
to the field of mathematical optimization, similar to the well known Linear Pro-
gramming (LP), where a linear objective function needs to be maximized or
minimized, which are subject to some linear constraints.

Linear programs are problems that can be represented in canonical form as
shown in Equation A.1:

maximize cTx

subject to Ax ≤ b

x ≥ 0

(A.1)

where c and b are given vectors, A is a given matrix and x, a vector whose
components need to be determined, optimizing cTx. Due to the Ax ≤ b and
x ≥ 0 inequalities, the constraints specify a convex polytope over which the
objective function is to be optimized. Geometrically, these define the feasible
region, this is, the set of all points that satisfy the constraints. However, an
optimal solution may not exist due to different reasons: inconsistent constraint
definitions, an unbounded polytope, etc.

The formulation however, for the mathematical optimization techniques known
as Probabilistic Programming [46], replaces the classical constraints with prob-
abilistic ones, as shown in Equation A.2:

maximize cTx

subject to P (Tx ≥ ξ) ≥ p

Ax ≤ b

x ≥ 0

(A.2)

where ξ is a random vector, p are given numbers and T a given matrix.
As pointed by [46], it is possible to find an application of these techniques

in a flood control reservoir system design problem. In the simplest version, two
reservoir sites where capacities x1 and x2 have to be determined in order to
protect a downstream area from flood. If ξ1 and ξ2 are the water amount to
be retained by the reservoirs, then the flood will be retained if and only if
x1+x2 ≥ ξ1+ ξ2, x2 ≥ ξ2 are satisfied, but since ξ1 and ξ2 are random variables,
the fulfilment of these inequalities can be guaranteed only on a probability level
p, chosen by ourselves. This can be modeled as Equation A.3.

minimize c(x1, x2)

subject to P
(x1 + x2 ≥ ξ1 + ξ2

x2 ≥ ξ2

)
≥ p

0 ≤ x1 ≤ V1

0 ≤ x2 ≤ V2

(A.3)

62

where V1 and V2 are upper bounds determined by the local geographic situation.

63

B Experiment replication

The following appendix shows the arguments used to launch each of the exper-
iments described in the paper. All the code is openly available in the following
repository: https://github.com/r3v1/ec-ppl.

B.1 Case #1: Learning simple distributions

1 # Normal distribution

2 python src/benchmark.py --bench normal --repeat 5 --

generations 250 --id svi --loss simple --optimizer svi

3

4 # Beta distribution

5 python src/benchmark.py --bench beta --repeat 5 --generations

250 --id svi --loss simple --optimizer svi

B.2 Case #2: Average Minimum Temperature in Science

1 # Temperature

2 python src/benchmark.py --bench temperature --repeat 5 --

generations 250 --id svi --loss simple --optimizer svi

B.3 Case #3: Modelling the precipitation

1 # Precipitation

2 python src/benchmark.py --bench precipitation --repeat 5 --

generations 250 --id svi --loss simple --optimizer svi

64

https://github.com/r3v1/ec-ppl

	Master Degree Thesis:
	Introduction
	Introduction

	Background
	Probabilistic programs and Probabilistic Programming Languages
	Definition of a probabilistic program
	Inference in Probabilistic Programming Languages
	Exact inference
	Approximate inference

	Pyro
	Graph representation of Probabilistic Programming Languages
	Probability distributions for Probabilistic Programming Languages

	Genetic Algorithms and Genetic Programming
	Definition
	Genetic Programming
	Representation
	Terminal set
	Function set
	Closure

	Genetic Programming operators
	Individual generation
	Selection
	Recombination and mutation

	State of the art
	Related work
	Automatic programming
	Genetic programming for Machine Learning

	Representing probabilistic programs
	Specifying probabilistic programs with a grammar
	Proposed grammar
	Types implemented
	Function set

	Experimental framework
	Problem definition
	Program evaluation
	Minimizing the distance between the summary statistics
	Direct evaluation through moments
	Normalized evaluation through moments
	Structural Similarity Index measure

	Generating inputs

	Improving the quality of the programs
	Optimizing the inputs
	Finding the a posteriori distribution

	Experiments
	Motivation
	Use cases
	Case #1: Learning simple distributions
	Case #2: Average Minimum Temperature in Scotland
	Case #3: Modelling the precipitation

	Results
	Learning simple distributions
	Average Minimum Temperature in Scotland
	Modelling the precipitation

	Conclusions
	Summary
	Conclusions
	Future work

	Acronyms
	Appendices
	Probabilistic Programming in other research areas
	Experiment replication
	Case #1: Learning simple distributions
	Case #2: Average Minimum Temperature in Science
	Case #3: Modelling the precipitation

