

Zuzendaritza
Dirección

A novel Federated Intrusion Detection System

Sistema Adimentsuak Unibertsitate Masterra

Máster Universitario en Ingeniería Computacional

Konputazio Zientziak eta Adimen Artifiziala Saila

Departamento de Ciencias de la Computación e Inteligencia Artificial

GöwFed
A novel Federated Intrusion Detection System

for IoT devices

Aitor Belenguer Rodriguez

Master Tesia
Tesis de Máster

Konputazio Ingeniaritza eta
Sistema Adimentsuak Unibertsitate Masterra

Máster Universitario en Ingeniería Computacional
y Sistemas Inteligentes

Konputazio Zientziak eta Adimen Artifiziala Saila

Departamento de Ciencias de la Computación e Inteligencia Artificial

Javier Navaridas Palma

Konputagailuen Arkitektura eta Teknologia Saila

Departamento de Arquitectura y Tecnología de Computadores

Jose A. Pascual Saiz

Konputagailuen Arkitektura eta Teknologia Saila

Departamento de Arquitectura y Tecnología de Computadores

A novel Federated Intrusion Detection System

Sistema Adimentsuak Unibertsitate Masterra

Máster Universitario en Ingeniería Computacional

Konputazio Zientziak eta Adimen Artifiziala Saila

Departamento de Ciencias de la Computación e Inteligencia Artificial

Konputagailuen Arkitektura eta Teknologia Saila

Departamento de Arquitectura y Tecnología de Computadores

Konputagailuen Arkitektura eta Teknologia Saila

Departamento de Arquitectura y Tecnología de Computadores

Master’s Thesis
Computational Engineering and Intelligent Systems Master’s Degree

GöwFed
A novel Federated Intrusion Detection System

for IoT devices

Aitor Belenguer Rodriguez

Advisors
Jose A. Pascual Saiz

Javier Navaridas Palma

September 2022

Abstract

Intrusion detection systems are evolving into intelligent systems that perform data analysis
while searching for anomalies in their environment. The development of deep learning
techinques paved the way to build more complex and effective threat detection models.
However, training those models may be computationally infeasible in most Internet of
Things devices. Current approaches rely on powerful centralized servers that receive
data from all their parties – violating basic privacy constraints and substantially affecting
response times and operational costs due to the huge communication overheads. Tomitigate
these issues, Federated Learning emerged as a promising approach, where different agents
collaboratively train a shared model, without exposing training data to others or requiring a
compute-intensive centralized infrastructure. This work presentsGöwFed, a novel network
threat detection system that combines the usage of Gower Dissimilarity matrices and
Federated averaging. Three different approaches of GöwFed have been developed based
on state-of the-art knowledge: (1) a vanilla version; (2) an autoencoder version; and (3)
a version counting with an attention mechanism. Furthermore, each variant has been
tested using simulation oriented tools provided by TensorFlow Federated framework. In
the same way, a centralized analogous development of all the Federated systems is carried
out to explore their differences in terms of scalability and performance – across a set of
designed experiments/scenarios. Overall, GöwFed pretends to be the first stone towards the
combined usage of Federated Learning and Gower Dissimilarity matrices to detect network
threats in Internet of Things devices.

i

Contents

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

2 Research questions 3

3 State of the art 5
3.1 Intrusion detection systems . 5

3.1.1 Datasets for evaluating IDS . 5
3.2 Federated Learning . 6

3.2.1 Federated Learning Systems . 7
3.2.2 Federated Learning Frameworks 7

3.3 Employing FL in ID . 8
3.3.1 Relevant approaches . 8

4 Development 11
4.1 Dataset . 11

4.1.1 Analysis of the dataset . 12
4.2 A distance based approach . 13
4.3 Designed systems . 14

5 Implementation details 17
5.1 Matrix elaboration . 17
5.2 Federated Learning . 17

6 Experimental setup 21
6.1 Metrics of interest . 21
6.2 Gower Centralized . 23
6.3 Gower Federated . 23

7 Results 25
7.1 Gower Centralized . 25
7.2 Gower Federated . 26

iii

iv CONTENTS

7.3 Gower Centralized vs Gower Federated . 26

8 Conclusions and future work 33

Appendix 35

Bibliography 39

List of Figures

3.1 A big picture classification of existing Federated Learning Systems presented
by Q.Li et Al. [1]. 7

3.2 Existing Deep Learning Federated Intrusion Detection Systems by model archi-
tecture. 8

4.1 Shap values analysis to explore numerical features influence in the class. . . . 12
4.2 Results of the toy classifier working with exclusively numerical features of

TON_IOT dataset. 13
4.3 Segmentation of generated Gower matrix/matrices to be used in posterior

training stages. 14

5.1 Diagram of the four main components of federated algorithms. 18

6.1 Example of the 2D graphical representation of the predictive performance
metrics with the four illustrative scenarios. 22

6.2 Training dataset partition sizes per agent ID in every GF version. 24

7.1 Results of learned vanilla GC models in the test partition of each experiment. 25
7.2 Results of learned GC AE models in the test partition of each experiment. . . 26
7.3 Results of learned vanilla GF models in the test partition of each agent per

experiment. 27
7.4 Results of learnedGFAEmodels in the test partition of each agent per experiment. 28
7.5 Results of learned GF AM 0.2 models in the test partition of each agent per

experiment. 29
7.6 Results of learned GF AM 0.8 models in the test partition of each agent per

experiment. 30
7.7 Training and validation losses of vanilla GC and GF systems respectively in

each experiment. 31

v

List of Tables

3.1 A summary of public datasets available for the evaluation of IDS. 6

6.1 Configuration parameters used in CNL experiments. 23
6.2 Configuration parameters used in FL experiments. 23

vi

1 Introduction

In the era of digitization, the amount of generated and stored data has increased exponen-
tially. The current trend of storing and analyzing any digital transaction, combined with
the cheapening of storage devices and infrastructures, has caused an outburst of database
sizes. In parallel, the number of (Industrial) Internet of Things ((I)IoT) devices is increasing
due to the establishment of domestic intelligent gadgets, the spread of smart cities and
the rapid advancement of Industry 4.0. Information generated by those devices is highly
appreciated by big data conglomerates, which rely on data analysis for Business Intelligence
and understanding market trends with the ultimate goal of improving products and services.
As a consequence, data has become a highly valuable asset that needs to be protected.

Cybersecurity has become an essential element in order to avoid data leakages, malicious
intrusions, service availability denials and so on. However, the area involving information
security is uncertain and needs to be constantly readjusted in line with the emergence
of new attack patterns. When cybersecurity firstly appeared, the number of computers
was insignificant and they were reserved for professional usage. In those days, fully
sensorized smartphones generating massive network traffic and containing tons of sensitive
information did not exist. In this context of security preservation, Intrusion Detection
Systems (IDS) play an important role by monitoring system activity to proactively detect
potential attacks. The evolution of threat detection systems has evolved in tandem with the
development of new Machine Learning (ML) techniques. The first generation of IDS was
rather rudimentary and simply relied on collating system events against manually updated
tuples of a signature database. However, these methods were quickly found to have severe
limitations, most critically, in terms of flexibility. Primarily, they lacked proactivity in the
sense that they were unable to detect new threats that were not in the signature database.
Secondly, the period from when an attack was first discovered until new signatures were
produced and updated in the IDS was potentially lengthy, leaving the systems vulnerable
for long periods of time.

As a mitigation, second generation IDS started to gradually incorporate some form of
intelligence to detect new threats. This way, they were capable of automatically learning
attack patterns using basic ML models, e.g., Support Vector Machines (SVM), Random
Forests (RF) and so on. The evolution continued with the incorporation of Deep Learning
(DL) techniques, which contributed to the advent of more accurate and sophisticated models,
e.g., Multilayer Perceptrons (MLP), Recurrent Neural Networks (RNN) and others.

As these systems kept improving in terms of accuracy and new threat detection capa-
bilities, the next natural step is to allow them to share information about newly detected
threats so that new attack vectors are promptly recognized by all involved parties and, in

1

1. Introduction

turn, global impact is reduced. One possible way of achieving this is the incorporation
of centralized learning, in which different parties contribute to the training of a complex
model by sending their local data to a centralized computing infrastructure. The whole
training process is typically performed in a data center (cloud) which will then distribute
the new model parameters to all involved parties.

Nonetheless, performing centralized learning could be infeasible due to traditional
information sharing approaches that deal with data in a raw way. That could cause
network traffic flow struggle; especially in cases where low resource IoT devices are the
main communication agents. Moreover, sharing raw data to third parties is generally
discouraged and, indeed, could violate regulations involving data management policies [2].
Therefore, using collaborative learning algorithms with strict data protection policies is
vital to achieve good reliability and scalability, as well as a privacy-friendly infrastructure.

In this context, Federated Learning (FL) has emerged as a promising tool to deal with
the information exchange of different parties and sensitive data exploitation challenges. FL
is an avant-garde ML technique that has gained special interest in IoT computing for its
reduced communication cost and privacy preserving features [3]. First, raw data located in
the end-devices never leaves these devices – following an on-device policy. Instead, it is
used to learn internal models and share local model parameters. Then, local parameters
from agents are aggregated into a global model following some predefined rules – e.g.,
by averaging them as in FedAVG [3]. Finally, the consolidated global parameters are sent
back to each edge party and the process is iterated until convergence is achieved. Thus,
knowledge acquired by collaborating devices is pooled to improve the overall metrics of
each local model and obtain improved training scores.

After analyzing the evolution of IDS, we are convinced that FL will conform the back-
bone of new generation IDS. While FL is a relatively recent technique and its application to
IDS technologies is very limited, the designed system intends to propose a novel FL-IDS
to detect network threats in IoT devices. The innovation comes from the usage of Gower
Distance matrices [4] as the main input for the designed models – in combination with
state-of-the-art FL techniques; FedAVG, Attention Mechanism (AM) [5] and so on.

2

2 Research questions

The main objective of this project is to explore the possibility of creating a FL-IDS, having
Gower Distance matrices as inputs. In order to do so, a series of custom FL-IDS are going to
be designed and implemented. Those systems will perform supervised binary classification
of the incoming network traffic – labeling it as normal or malicious. Moreover, the viability
of deploying the designed FL-IDS in low resource, tiny IoT agents needs to be studied.
Following B. Li et al. [6] proposal, those IoT agents will monitor network traffic generated by
several IoT/IIoT devices, learn a local model based on their behavior and average parameters
with other agents of different networks.

However, will the designed systems perform well in comparison to their analogous CNL
approaches? As the next natural step after creating FL-IDS prototypes, experimentation
on a simulated IoT environment will be carried out to measure how similar FLS and CNL
developments are. Nevertheless, beyond statistical metrics involving model evaluation, the
number of rounds to achieve convergence and scalability will be taken into account as well.
Linked to the previous point, a series of best-practice metrics will be proposed to correctly
evaluate the experiments in a standardized way.

Once the feasibility of the designed system is tested; a repository containing all the
implementation details and the experimentation results will be made available. Creating a
well structured and documented system is a top priority to ensure future contributions to
GöwFed’s research branch. Additionally, a modular implementation will be developed to
ease the creation of new system architectures and facilitate debugging.

3

3 State of the art

It is essential to carry out a review of the state of the art to summarize existing knowledge
and facilitate future research by highlighting some limitations of the literature. In order to
have a deeper understating of how current FL-IDS technologies work, we recommend the
lecture of our survey [7]. Nonetheless, the main concepts are summarized in the following
lines.

3.1 Intrusion detection systems

IDS can be classified into Host-based (HIDS) and Network-based (NIDS). HIDS are typically
computing systems that analyze local system data, application registers, log accesses,
system calls and so on in order to detect malicious applications [8]. Meanwhile, NIDS focus
on network traffic with the aim of finding malicious patterns that target the devices inside
a monitored infrastructure [9]. Recent research [10] has extensively shown that leveraging
ML techniques for intrusion detection is a highly successful methodology. In the way of
learning complex relationships in the data and, in turn, build strong IDS – both in the
context of NIDS and HIDS.

3.1.1 Datasets for evaluating IDS

Another important aspect in the life-cycle of advanced IDS is the evaluation of their
detection capabilities. There are many popular datasets available for IDS evaluation and,
indeed, the main datasets discussed in Section IV are gathered together in Table 3.1. The
table uses the following conventions. Raw captures correspond to the availability of the
whole captured datagram; usually stored in pcap files. Payload features are extracted from
the application data in the dataframe and processed using natural language processing,
regular expressions or similar techniques. Single Flow Derived Features (SFD) correspond
to a collection of packets sharing any property on the IP and transport layers. SFD features
are extracted from the aggregation of a packets flow delimited by a given event (e.g., end of
a TCP connection, a timeout and so on). Multiple Flow Derived Features (MFD) correspond
to the aggregation of information belonging to multiple flow records, containing higher
level statistics (e.g., time window delimited flows, last n flows and so on). Finally, dataset
labeling could be done manually (M) by a skillful professional; automatically (A) using
a rule repository and a script; or on a scheduled (S) way, launching specific attacks in
pre-established time windows. It is also possible to merge some of the mentioned methods
(MS, AS).

5

3. State of the art

Table 3.1: A summary of public datasets available for the evaluation of IDS.
Raw Payload Single flow Multi flow Labeling Year of

Dataset captures features features features method 1 Domain capture
AWID3 [11] ✓ - wireless IoT 2020
IOT-23 [12] ✓ ✓ ✓ ✓ A IoT 2020
TON_IOT [13] ✓ ✓ ✓ A IoT/IIoT 2019
CICIDS-2017 [14] ✓ ✓ S application traffic 2017
ISCXTor2016 [15] ✓ ✓ S application traffic (raw/Tor) 2016
ISCXVPN2016 [16] ✓ ✓ S application traffic (raw/VPN) 2016
WSN-DS [17] ✓ S wireless IoT 2016
AWID2 [18] ✓ ✓ M wireless IoT 2015
SEA [19] ✓ A UNIX commands 2001
NSL-KDD [20] ✓ ✓ ✓ MS networking 1998

1M: manually, A: automatically, S: scheduled.

3.2 Federated Learning

With the aim of achieving a greater understanding about state-of-the-art FL-IDS, this
section provides useful background information on FL. Although FL is the main focus of
this project, we also address three additional learning paradigms which are typically used
as baselines for benchmark comparisons within IoT/Edge infrastructures.

1. Self learning (SL)Neither data nor parameters leave the device; training is performed
individually by edge devices. SL can be used as a baseline to measure individual
learning ability when no information is shared.

2. Centralized learning (CNL) Data is sent from different parties to a centralized
computing infrastructure, which is in charge of performing the training with all the
received data. CNL is used as a yardstick of the learning ability when the models are
built using all available data.

3. Collaborative learning (CL) Wraps up custom variants of distributed learning
(including FL) where involved agents benefit from training a model jointly. Paul
Vanhaesebrouck et al. [21] presented a fully decentralized collaborative learning
system, where the locally learned parameters are spread and averaged without being
under the orchestration of a centralized authority – in a P2P network.

According to Chaoyang He et al. [22], the main limitations of FL when compared with
other CNL are concerning statistical heterogeneity, system constraints and trustworthiness.
Those challenges have been addressed using different approaches in the literature. For in-
stance, statistical heterogeneity has been tackled by distributed optimization methods such
as Adaptive Federated Optimizer [23], FedNova [24], FedProx [25] and FedMA [26]. System
constraints, such as communication overheads or high training computation costs [27–33]
are mitigated using gradient sparsification [34] and quantization techniques. Finally, to
tackle trustworthiness issues, Differential Privacy (DP) and secure multiparty computation
(SMPC) privacy mechanisms have been proposed [35–43]. Similarly, new defense tech-
niques to make FL robust against adversarial attacks have been proposed as well [44–53].

6

3.2. Federated Learning

3.2.1 Federated Learning Systems

By definition, FL enables multiple parties to jointly train a ML model without exchanging
local data. It involves distributed systems, ML and privacy research areas [1, 54], and,
since the pioneer FedAVG [3] approach, many new Federated Learning Systems (FLS) have
emerged. A general taxonomy describing the difference of those FLS is presented in [1]
and replicated in Figure 3.1. This classification is multidimensional and includes the most
important aspects of FL architectures including data partitioning, learning model, privacy,
communication characteristics and so on.

Federated Learning Systems

Data Par-
titioning

Machine
Learning Model

Privacy
Mechanism

Communication
Architecture

Scale of
Federation

Motivation
of Federation

Horizontal

Vertical

Hybrid

Linear Models

Decision Trees

Neural
Networks

...

Differential
Privacy

Cryptographic
methods

...

Centralized

Decentralized

Cross-silo

Cross-device

Incentive

Regulation

Figure 3.1: A big picture classification of existing Federated Learning Systems presented by Q.Li et
Al. [1].

3.2.2 Federated Learning Frameworks

There exist many available frameworks and libraries which can be used to develop FL
applications, as thoroughly discussed in [22]. Frameworks can be categorized based on
their main objectives: Simulation-oriented libraries provide multiple development and
benchmark tools, placing the emphasis on extensibility (adding new functionalities) and
evaluation purposes (e.g., using simulation and virtual devices). In contrast, Production-
oriented libraries offer enterprise level solutions, giving support to various FL scenarios, by
focusing on usability and productivity (i.e., facilitating system deployment).

Examples of simulation oriented libraries are TensorFlow-Federated (TFF) [55], PySyft [38],
LEAF [56] and FedML [22]. Conversely, instances of production oriented libraries are
FATE [57] and PaddleFL [58]. Among the APIs mentioned, FedML and PySyft pave the
way for the creation of adaptable systems, providing FLS topology and message exchange
customization. Nonetheless, regarding the disposal of the parties, all the aforementioned
libraries support vanilla FL centralized algorithms (e.g., FedAVG, FedProx). In the same
way, FedML, FATE and PaddleFL exclusively incorporate vertical data partitioning. Bearing
all this in mind, FedML seems to be the most complete research-oriented library, in terms
of supporting multiple FL setups. Additionally, it simplifies codification with a modular
worker/client-oriented architecture.

7

3. State of the art

3.3 Employing FL in ID

The combination of both previously explained technologies (IDS in Section 3.1 and FL
in Section 3.2) has become a hot topic of research. Considering that the overwhelming
majority of IDS rely on DL models, we introduce a taxonomy based on the DL variants
employed by the FL-IDS literature illustrated in Figure 3.2.

The proposed classification is performed taking into account the DL model architecture
used on each edge device. Since vanilla FL is the de facto implementation choice and that
many disjointed custom variants of it exist, it is not possible to perform a tree structure
taxonomy by type of FL algorithm used. Hence, existing FL-IDS are split into two major
groups depending on the NN architecture; Recurrent Neural Networks (RNN) [59] and
Multilayer Perceptrons (MLP) [60]. Each group is respectively divided into two subgroups.
The RNN models are divided based on the neurons architecture into Long Short-Term
Memory (LSTM) [61] and Gated Recurrent Units (GRU) [62]. In contrast, MLP models are
divided by the model architecture. In particular, Autoencoders (AE) [63] is considered an
important subclass because it is commonly employed in the literature.

DNN

RNN

LSTM GRU

MLP

AE Vanilla

[5], [64],
[65], [66]

[6], [67],
[68], [69]

[70],
[71], [72],
[73], [74]

[75],
[76], [77],
[78], [79]

Figure 3.2: Existing Deep Learning Federated Intrusion Detection Systems by model architecture.

3.3.1 Relevant approaches

AEs are the most common FL-IDS architecture [70–74] to perform ID via anomaly detection
due to their input reconstruction abilities. Once the usual network traffic patterns are
learned, anomalies are translated into high reconstruction loss instances. (1) Qin et al. [70]
face the challenge of using high dimensional time series with resource limited IoT devices.
A greedy feature selection algorithm is employed to deal with data dimensionality issues as
well as a sequential implementation of batch learning is applied to an autoencoder. (2) Tian
et al. [74] propose a Delay Compensated Adam (DC-Adam) approach [80] to overcome
gradient delay – inconsistency issues in the learning process. Combined with a pre-shared
data training strategy to avoid model divergence in non-IID data scenarios.

The utilization of LSTM NNs is interesting due to their ability to process data sequences
[5, 64–66]. If network traffic flow is considered as a time series, it becomes a suitable
input for a NN using LSTM neurons. Similarly GRU architectures are a good candidate for
processing time series [6, 67–69]. In contrast to LSTMs, they do not contain an internal

8

3.3. Employing FL in ID

memory. However, their simpler architecture makes the learning process lighter which, in
turn, renders it suitable for low resource IoT scenarios. (1) DeepFed [6] is an FL-IDS that
introduces the concept of Industrial Agents as network monitoring devices and the usage
of advanced privacy mechanisms based on Paillier cryptosystem [81] during the FedAVG
learning rounds. (2) Dïot [67] also presents relevant advances by identifying device features
connected to a local monitoring agent and maintaining a type specific global anomaly
repository via FL.

Moreover, FL-IDS using customMLP NN architectures are presented in [75–79]. Beyond
the mentioned architectures, those approaches focus on data preprocessing and custom
learning variants. (1) Al-Marri et al. [77] merge the advantages of FL andmimic learning [82]
by training a teacher (private) and a student (public) model per device to then apply FedAVG
and create an IDS. (2) Weinger et al. [75] show how SMOTE [83] and ADASYN [84] data
augmentation techniques could accelerate model convergence – reducing communication
rounds among agents.

9

4 Development

Among the discussed FL frameworks in Section 3.2.2, TensorFlow Federated is selected to
carry on GöwFed’s developments. Although it is not as complete as FedML in terms of
dedicated IoT functionalities, it is extensively documented and has powerful simulation
oriented tools as well. Furthermore, the selected dataset to work in simulated environments
is TON_IOT [13], due to its versatility; wrapping up vanilla network traffic, modbus devices
traffic, raw data captures, well documented datasets as well as its wide usage by state-of-
the-art systems. However, designed FL-IDS should behave in a generic way and equally
work with similar datasets of Table 3.1. That is why, the main objective of Section 4.1 will
not be to excessively focus on the principal components extraction or descriptive analysis
of the selected dataset. Instead, a more general view of it will be given by performing
generic outlier detection and shap values exploration.

Finally, the simulation of a distributed system adds an extra layer of complexity to the
main duty of intrusion detection. Therefore, before creating a FL system, its analogous
CNL implementation is carried out. Nevertheless, the selected TON_IOT dataset requires a
minimum exploration due to its relevance in both implementations.

4.1 Dataset

In this specific task of monitoring network traffic, the Network dataset subset of TON_IOT
(UNSW-IoT20) is chosen – A. Alsaedi et al. [13] give a detailed description of it. The
TON_IOT contains both categorical and numerical data, making the process of learning
more challenging. In spite of not being used, it contains pcap raw network captures,
as shown in Table 3.1, to fully customize input data. A fully detailed description of the
features is provided in the description_stats_Network_dataset1 – available in Appendix 8.
Specifically, all the features are taken into account except the timestamp (ts) which is
discarded, alongside class type (string) – label 0 or 1 (normal or attack record) is the only
used class variable. The main reason to discard the timestamp is because no time trace will
be used in the following development; model architecture is not recurrent nor works with
time series. Equally, a binary classification problem to detect the nature of the datagrams is
enough to this initial system – making the problem multiclass is left as future work.

1https://tiny.cc/ton_iot

11

4. Development

4.1.1 Analysis of the dataset

Some data labeled as numerical should be treated as categorical, as a consequence of not
having any magnitude relationship: src_port, dst_port, dns_qclass, dns_qtype, dns_rcode,
http_trans_depth, http_status_code, http_user_agent – containing network information.
On the other hand, one hot encoding is not a viable option owing to the high amount of
different possible combinations that could make the training infeasible. In order to have a
good understanding of how the true numerical features can influence the binary outcome,
a shap values [85] analysis has been performed, as shown in Figure 4.1.

Figure 4.1: Shap values analysis to explore numerical features influence in the class.

However, the results do not show a particular relationship between the numerical
values and the class. As not enough information is extracted, neither weight addition
is performed nor numerical data is removed – in the possibility of existence of hidden
relationships with other variables.

Outlier detection could be interesting, a priori, in scenarios where reducing the amount
of anomalies is recommended (e.g., to train an AE). That can be applied in both CNL and FL
cases, with the whole dataset or federated subsets of it, respectively. Nevertheless, reducing
the amount of outliers does not necessarily imply a decrease in the anomalous class. In
other words, when the number of normal instances is high among the outliers, ignoring
them could cause a higher false positive rate.

Outlier detection has been performed over the numerical features of the entire dataset,
to evaluate possible correlations with the anomalous class. Before beginning the detection,
the number of anomalous captures was measured at 34.93% of the total. On the one hand,
Isolation Forest (IF) algorithm [86] is applied – 7.38% of the total instances are marked as
outliers, where a 42.58% of them are true anomalous instances. On the other hand, One
Class Classification SVM (OCC) algorithm [87] is applied – 72.09% of the total instances
are marked as outliers, where 28.84% of them are true anomalous instances. The results
show a poor correlation in the outlierness of the malicious class. Moreover, the disparity of
the algorithms in the percentage of the instances detected as outlier is very notorious – the
results of IF are better and more coherent but insufficient as well. Consequently, the outlier
detection approach over the raw numerical dataset features is discarded.

12

4.2. A distance based approach

4.2 A distance based approach

Working with mixed datasets implies complex data relationships. That is reaffirmed after
a few warm up rounds of training a CNL toy classifier2, where no significant learning is
observed – no loss reduction and overall poor performance scores are achieved. Figure 4.2
shows how a toy classifier working with all the dataset instances3 does not learn patterns
in data – no significant loss reduction is observed and recall around 0.5. Therefore, with
the aim of addressing the problem from a different perspective, the idea of calculating the
Gower Distance among TON_IOT instances emerged.

0 2 4 6 8 10 12
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Trn
Vldt

(a) Train and validation loss.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

(b) Position in the PR space.

Figure 4.2: Results of the toy classifier working with exclusively numerical features of TON_IOT
dataset.

As mentioned in Section 4.1, TON_IOT does not only count with numerical features.
Transforming categorical data into numerical is not feasible via techniques such as one-hot
encoding, due to the number of features increasing excessively. Therefore, working with
numerical and categorical data paves the way to the usage of Gower Distance. Using it, we
believe that future models will learn data relationships easier. Thus, Gower Dissimilarity
(GD) is computed in the following way – being GD the Gower Dissimilarity between two
observations i and j.

GDij =
1

n

n∑
f=1

pd
(f)
ij (4.1)

Having each observation n different features, either numerical, categorical or mixed.
For categorical features, the partial dissimilarity (pd) will be 0 if there is a match between
the explored couple of features; 1 if there is not. For numerical features, pd is computed
by the following partial expressions – the absolute of the subtraction between the specific
numerical features divided by the total range of the feature.

pd
(f)
ij =

|xif − xjf |
Rf

(4.2)

Rf = maxf −minf (4.3)

2Uses the same NN hyperparameters of CNL vanilla version.
3Only numerical features due to infeasibility reasons mentioned in Section 4.1

13

4. Development

Figure 4.3: Segmentation of generated Gower matrix/matrices to be used in posterior training
stages.

After random shuffling the dataset, Gower Distance among instances is computed and
sliced as Figure 4.3 shows. In both Gower Centralized (GC) and Gower Federated4 (GF)
systems (Section 4.3), the first k rows and columns (blue) will be used to train the classifier
– last l columns (gray) are discarded for containing test information – k + l = n. Similarly,
the last l instances (red) will be part of the test subset. If an extra validation subset wants
to be added, the test partition may be splitted in an additional subset. In the same thread,
the computational cost of calculating the initial matrix is O(n2). However, in reality, once
the training matrix is achieved, it must not be recalculated. It is contemplated that new
instances will gradually arrive (data streaming), while network monitoring is performed –
adding them to the matrix will have a computation cost of O(n).

Nonetheless, to simulate federated devices, the original dataset is divided into ni sized
disjoint subgroups of instances – an independent Gower Matrix will be computed in each
device. Then, ki ∗K training rows and li ∗K test instances will be used in the learning
process – being delimited by the agent which has the minimum training subset of size K
among all.

4.3 Designed systems

For this point on, every designed variant will use the previously mentioned Gower Distance
matrix (or matrices) as input. The designed systems are: (1) a vanilla GC version; (2) an AE
GC version; (3) a vanilla GF version; (4) an AE GF version; (5) a GF version with an AM.

4GöwFed

14

4.3. Designed systems

Centralized A baseline implementation is performed using TensorFlow Keras to measure
how fast the model is learned. Model architecture5 is composed by 6 hidden layers of 128,
64, 64, 32, 32, 2 neurons, respectively, with a dropout rate of 0.15 between hidden layers 4
and 5. The input training data consists of a single Gower Distance matrix as described in
Section 4.2. System configuration is loaded externally by initialization files, following the
next structure.

• Run name: Name of the current experiment.

• Training dataset size: Number of training instances.

• Test dataset size: Number of test instances.

• Balance dataset: In the GC matrix creation module; balance data to have 50% of
normal and 50% of anomalous instances. The new total number of instances will be
the double of the class with less appearances.

• Epochs: Number of training epochs.

• Learning rate: Hyperparameter to specify model learning speed.

• Batch size: Hyperparameter.

• Seed: Added for replicability.

An AE version is coded as well, where the main device uses only normal instances of
the training subset to train a NN6 composed by 9 hidden layers of 128, 64, 32, 16, 8, 16, 32,
64, 128 neurons, respectively, with a dropout rate of 0.1 between hidden layers 4 and 5.
Then, the average reconstruction Mean Squared Error (MSE) of the normal instances plus
their standard deviation is used to compute a discriminating threshold. As the classifier is
only trained with normal data, when an attack arrives, its reconstruction error is expected
to be higher than the computed normal threshold; and thus, labeled as anomalous.

Federated Learning Previous NN is reimplemented using TFF [55], preserving model
architecture and hyperparameters of the GC version. Equally, system configuration is
loaded externally, following the next structure.

• Run name: Name of the current experiment.

• Node number: Total number of agents in the network.

• Training dataset size: Total number of training instances – summation of all agents’
training datasets.

• Test dataset size: Total number of test instances – summation of all agents test
datasets.

5Fully connected MLPs with a k sized input layer and a 1 sized output layer (sigmoid). Using Adam
Optimizer, Binary Accuracy and Binary Cross-entropy as training hyperparameters

6AE NN architecture with a k sized input layer and a k sized output layer (sigmoid). Using Adam Optimizer
and Mean Squared Error as training hyperparameters

15

4. Development

• Balance dataset: In the GF matrices creation module; balance data to have 50% of
normal and 50% of anomalous instances. The new total number of instances will be
the double of the class with less appearances.

• Total rounds: Total number of communication rounds – averaging rounds.

• Nodes per round: Number of agents taking part in each averaging round.

• Local epochs per round: Number of training epochs in each device between
averaging rounds.

• Server learning rate: Hyperparameter to specify global model learning speed.

• Client learning rate: Hyperparameter to specify local models learning speeds.

• Training batch size: Same hyperparameter for all local models.

• Test batch size: Same hyperparameter for all local models.

• Seed: Added for replicability.

An AE version is coded as well, where each device only uses the normal instances of
the training subset to train a NN, that preserves NN architecture and hyperparameters of
the GC AE version.

Finally, an Attention Mechanism (AM) [5] approach is implemented, using the same
NN architecture of the vanilla version. In this system, only a pre-established percentage
of the agents will contribute to the global model. P agents with the greatest ROC-AUC
values will be selected in each round. Other criteria and their combinations could be used
as well, such as picking the nodes with greater F1 score, accuracy and so on. Although
this mechanism could show generalization issues in scenarios where a small percentage of
agents is selected, it can also be interesting to reduce noise and achieve model convergence
faster. In other words, selecting a suit percentage of agents can make the learning process
easier and improve overall performance. Additionally, this approach is more robust against
model poisoning attacks and divergence caused by highly non-IID split information among
nodes.

Nonetheless, different variants of AM are explored in the state of the art as well. Weigner
et al. [75] proposed the usage of data augmentation to reach a pre-established number of
local instances and boost convergence rates. Similarly, agents not reaching a minimum
threshold of instances will not be allowed to contribute to the averaged model and will
only receive the updated parameters. FedAGRU [69] presents a similar AM to sort and limit
client contributions by their importance, in bandwidth scarcity scenarios. This mechanism
paved the way to advanced implementations of IDS, where agents contributing negatively
to the model could be banned from future apportions [5].

16

5 Implementation details

As mentioned in Chapter 2, creating a well structured code repository1 is one of the main
priorities of this project. Relevant aspects of the implementation are wrapped-up in the
following lines.

5.1 Matrix elaboration

Two modules have been implemented to feed the inputs of GC and GF versions; respectively
create_matrix_cnl and create_matrices_fl. Additionally, those modules are in charge of
balancing the datasets (if required) and distributing the instances among the different FL
agents. Finally, separated files containing training and test Gower Matrix partitions will be
saved – in the case of the GF module, training and test matrices files will be created per
agent.

Gower library is used adding custom methods to elaborate the train/test partitions of
Figure 4.3; gower_matrix_limit_cols and sliced_gower_matrix_limit_cols. In the GC version,
existing gower_matrix function is called, passing as argument just the training instances, to
get the k × k training matrix – cost O(k2). Then, sliced_gower_matrix_limit_cols is called
passing the whole dataset, the number of training instances (to be skipped) and the column
number limitation to get the test partition – cost O((k + l) ∗ k).

On the other hand, in the GF version, the whole dataset is uniformly distributed in
small partitions corresponding to each client – the length of the partition with less number
of training instances is stored for future use. As a consequence, an IID distribution of the
dataset is simulated among the clients – they are expected to have similar local dataset
sizes. Regarding gower library, gower_matrix_limit_cols method is called to generate the
training matrices – limited by the previously stored minimum number of training instances.
Therefore, if no data augmentation is performed, the agent with less training instances
will limit future models’ input sizes and define k. Finally, sliced_gower_matrix_limit_cols
method is called to generate the independent test partitions.

5.2 Federated Learning

Firstly, the datasets (GowerMatrices) have to be adapted to a tff.simulation. datasets.ClientData
federated object type in order to be suitable for TensorFlow Federated simulation. The

1https://github.com/AitorB16/GowFed

17

https://github.com/AitorB16/GowFed

5. Implementation details

federated dataset is represented as a list of client ids, and a function to look up the local
dataset for each client id. Although TFF contains its precompiled testing datasets (EMNIST,
CIFAR. . .), the tff.simulation.datasets.TestClientData class allows the easy creation of custom
toy datasets for simulation proposes. However a series of constraints have to be met before
instantiating the class: (1) load the training and test datasets of each client and transform
them into independent dictionaries, where the keys correspond to the features and the
class of each dataframe; (2) create two global dictionaries, (one for training and the other
for test) where the keys correspond to clients IDs and the values wrap up the dictionaries
of step 1. Once the criteria is met, a couple of TestClientData instances (training and test)
are created by passing the global dictionaries as arguments – in independent calls.

The backbone implementation of all developed FL algorithms is based on the Sim-
pleFederatedAveraging guideline provided by the TFF team – all coded custom vari-
ants follow the same scheme. A TFF federated algorithm is typically represented as a
tff.templates.IterativeProcess. This is a class that contains initialize and next functions. Ini-
tialize is used to instantiate the server, and next will perform one communication round of
the federated algorithm 2 – in an iterative way. The four main components composing the
federated algorithms are described in Figure 5.1:

Figure 5.1: Diagram of the four main components of federated algorithms.

1. A server-to-client broadcast step: The server weights are broadcasted to the
clients taking part in the communication.

2. A local client update step: The local gradient is computed on batches of data and
then aggregated within the received server weights.

3. A client-to-server upload step: The computed local weights are uploaded to the
aggregator server.

2https://tensorflow.google.cn/federated/tutorials/building_your_own_federated_
learning_algorithm

18

https://tensorflow.google.cn/federated/tutorials/building_your_own_federated_learning_algorithm
https://tensorflow.google.cn/federated/tutorials/building_your_own_federated_learning_algorithm

5.2. Federated Learning

4. A server update step: The server model weights are replaced by the average
of clients’ model weights (FedAVG); where the importance of each client during
the averaging process is proportional to its number of local instances – intrinsic
characteristic of developments based on SimpleFederatedAveraging.

In order to manage and customize the orchestration logic of what the server broadcasts
to the client and what the client updates to the server, the Federated Core (FC) API is
used. This API has three relevant elements to be mentioned: (1) Federated data type;
a data structure hosted across the clients, where the federated type and the placement
are defined (e.g., float32@CLIENTS meaning that each client has a float32 type object).
(2) tff.federated_computation; a specification in an internal platform-independent glue
language [88] – functions with well-defined type signatures that can only contain federated
operators. (3) tff.tf_computation; blocks containing TF code without specifying that can be
mapped into federated computations via tff.federated_map method.

Previously mentioned statement about maintaining the same FL skeleton is partially
true, but there are small variations in the AM version. In that case, the next step of the
iterative process is splitted in two rounds. The first one computes the local models of the
selected subset of clients and sends the partial results as well as the computed local weights
to the server. Then, the server picks the k best performing nodes according to the best
ROC-AUC areas and discards the rest n−k agents – the k number of nodes varies according
to the selection percentage specified in the initialization file. Finally, in the second round,
the selected weights are uploaded to the server and FedAVG is performed; modulating the
influence on the global model by the number of instances (as done in the vanilla approach).

19

6 Experimental setup

A series of experiments have been carried out to test GöwFed’s (GF) performance and
scalability. In order to do so, outputs from a series of analogous CNL versions are explored
as well (GC) – contrasting their performance against the FL systems. The experimentation
has been performed in a machine with the following specs: (1) CPU - Intel i9-7920X 4.3Ghz.
(2) RAM - 64GB DDR4 2400MT/s. (3) GPUs - 2x Nvidia RTX 2080 Ti 11GB.

6.1 Metrics of interest

State-of-the-art systems use particular scoring metrics, lacking from unification. Accuracy
is the most common metric, followed by detection rate and F1-score. At any rate, this
variety of metrics makes comparing solutions a complex and non-intuitive process. For
this reason, we strongly believe that standardizing the evaluation process under a reliable
metric is imperative. Assuming the intrusions as the positive class, the use of detection rate
is not a fair practice due to a possible high amount of false positives. Thus, the best-practice
is for it to be accompanied by the false positive rate (FPR).

Among the metrics in the literature, F1-score is the most complete one due to its ability
to wrap up precision and recall. However, as true negatives are not taken into account,
F1- score could be problematic in asymmetric scenarios where the negative class is the
minority (i.e., in a critical scenario where attacks are more common than normal traffic).

Although its utilization is not so popular, kappa statistic [89] is another interesting
metric that quantifies the behavior of a predictive model in contrast to a random chance
detector [90]. It works similarly to a correlation coefficient, rating model performance
between [−1, 1]. A value of 1 represents a complete agreement, 0 means no agreement or
independence and, finally, a negative value implies that the predictive model is worse than
random [91]. The adoption of the kappa statistic over the commonly used metrics is highly
recommended due to its reliability and interpretation simplicity.

At any rate, we advocate the use of 2D graphical metrics contrasting standard statistical
metrics such as positive predictive value (PPV), true positive rate (TPR) or false positive
rate (FPR). Combining the ROC space (TPR vs FPR) [92] and the PR space (PPV vs TPR) [93]
with their corresponding curves and areas under the curves (AUCs) is a solid option to
obtain a richer evaluation of most FL-ID models when compared with the metrics above.
The graphical representation of those 2D metrics delivers complementary information. The
ROC curve gives equal importance to positive and negative classes, whereas the PR curve
is more informative in skewed scenarios, focusing on the positive class by penalizing false

21

6. Experimental setup

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1−Specificity (FPR)

S
e
n

s
it
iv

it
y
 (

T
P

R
)

Rnd S1 S2 S3 S4

(a) ROC space (TPR vs FPR).

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Recall (TPR)

P
re

c
is

io
n
 (

P
P

V
)

Bsln S1 S2 S3 S4

(b) PR space (PPV vs TPR).

Figure 6.1: Example of the 2D graphical representation of the predictive performance metrics with
the four illustrative scenarios.

negatives considerably. Albeit to a lesser extent, the ROC curve penalizes a naïve model
behavior in unbalanced problems, when the majority of positive samples are predicted
as negative. Therefore, it is equally capable of penalizing poor performance of predictive
models in the minority (positive) class.

Figure 6.1 shows how proposed graphical metrics are expected to behave in some
illustrative scenarios, as follows:

• S1: Absence of false negatives and absence of false positives (ideal case).

• S2: Absence of false negatives and abundance of false positives.

• S3: Abundance of false negatives and absence of false positives.

• S4: Only false negatives and only false positives (worst case).

• Dashed line (TPR vs FPR): Random guess.

• Dashed line (PPV vs TPR): Variable baseline.

The penalization difference exposed in previous paragraphs is illustrated in Scenario
S3, as the PR curve shows a greater distance from the default baseline than the ROC curve
from the random guess. That is especially noticeable when the positive is the extremely
minority class. However, relying exclusively on the PR curve is not recommended due
to its asymmetry – not considering true negatives (Scenario S2). Therefore, we believe
that combining both graphical representations should be the best-practice to make richer
interpretations of the results, instead of other more commonly used metrics.

Nonetheless, working with FLS entails the consideration of additional performance
indicators. Measuring the variability of required communication rounds and elapsed
time to achieve model convergence (i.e., until the learning model reaches a predefined
quality threshold under a reliable metric), subject to a changeable number of parties

22

6.2. Gower Centralized

Table 6.1: Configuration parameters used in CNL experiments.

Run Training Test ds Dataset Learning Batch
name 123 ds size size balanced Epochs rate size Seed
GC_SB 10000 2000 ✓ 100 0.0001 64 26
GC_SU 10000 2000 × 100 0.0001 64 26
GC_MB 20000 4000 ✓ 100 0.0001 64 27
GC_MU 20000 4000 × 100 0.0001 64 27
GC_LB 40000 8000 ✓ 100 0.0001 64 28
GC_LU 40000 8000 × 100 0.0001 64 28

1 : GC: Gower Centralized Learning. 2 S: Small; M: Medium; L: Large.
3 B: Balanced; U: Unbalanced.

Table 6.2: Configuration parameters used in FL experiments.
Run Node Training Test Dataset Total Nodes Local Srvr lrng Clnt lrng Training Test
name 123 numbr ds size ds size blnced rounds /round epochs rate rate batch batch Seed
GF_SB 10 30000 5000 ✓ 100 4 10 0.0001 0.00001 128 32 26
GF_SU 10 30000 5000 × 100 4 10 0.0001 0.00001 128 32 26
GF_MB 20 60000 10000 ✓ 100 8 10 0.0001 0.00001 128 32 27
GF_MU 20 60000 10000 × 100 8 10 0.0001 0.00001 128 32 27
GF_LB 40 120000 20000 ✓ 100 16 10 0.0001 0.00001 128 32 28
GF_LU 40 120000 20000 × 100 16 10 0.0001 0.00001 128 32 28

1 GF: Gower Federated Learning – GöwFed. 2 S: Small; M: Medium; L: Large. 3 B: Balanced; U: Unbalanced.

(scalability), is important. In the same way, measuring the time required to perform a
complete communication round in different bandwidth scarcity scenarios is interesting to
evaluate the robustness and resilience of the system.

6.2 Gower Centralized

As mentioned previously, this is a baseline to compare ongoing GF approaches. Table 6.1
summarizes the different run configurations. In the same way, after each experiment,
training and validation losses are stored as well as a copy of the running configuration,
the learned h5 model and a series of overall metrics: accuracy, precision, recall, F1 score
and ROC-AUC. Moreover, following the best-practice metrics proposed in Section 6.1, a
combination of PR space and accuracy plots are used to display the results.

6.3 Gower Federated

The same procedure is followed to test GF performance and scalability. Working with
Gower Dissimilarity matrices requires a high amount of system memory. That is why,
a pseudo-fixed amount of samples is used at each client – obtained as a consequence of
uniformly distributing the dataset as mentioned in Section 4.3. The local dataset sizes per
experiment will be the same of Figure 6.2 in every implemented version. Moreover, the
total number of samples and the number of agents taking part in each averaging round,
will be proportional to the total number of agents. In other words, as the data subset size
in each agent will be similar, when the number of agents increases, the summation of all
their instances will be higher. Specifically, six configurations, with different seeds, have
been tested to measure the scalability of the system. Table 6.2 summarizes the mentioned
configurations.

23

6. Experimental setup

Figure 6.2: Training dataset partition sizes per agent ID in every GF version.

Similarly, per experiment, a series of attributes and metrics are stored containing each
nodes’ information: agent id, agent training dataset size, accuracy, precision, recall, F1
score and ROC-AUC area. Those metrics are obtained by evaluating the averaged global
model against the test subset matrix of each agent – each agent is expected to converge to
the same global model after the SimpleFederatedAveraging emulation. The experimentation
is performed over the three designed systems mentioned in Section 4.3 – AM version is
run twice with different attention percentages. Overall configuration parameters are the
same for each system – specified in Table 6.2.

24

7 Results

After running the simulations, a deep analysis of the results have to be made. On the one
hand, the vanilla and AE versions of the centralized system are explored. On the other
hand, the results obtained in the vanilla, AE and two AM versions of the federated system
are discussed as well as contrasted to their analogous centralized approach.

7.1 Gower Centralized

As Figures 7.1a and 7.1b show, the results obtained by the GC vanilla version are nearly
perfect. PR space shows models trained with more than 40000 instances near the point
[1, 1] as well as an accuracy of around 0.99 for those same experiments. Nevertheless, the
AE version seems to have a really poor performance in experiments SB, MB and LB with
low accuracies – corresponding to the ones with balanced datasets. That could happen
because the AE is being trained with less (normal) instances; learning quality is lost because
the dataset size remains unaltered but the anomalous and normal instances percentage is
the same – described in Section 4.1. Similarly, recall values are nearly 0, whereas precision
is close to 0.9 in experiments GC_SB, GC_MB and GC_LB – close to 0.1 in experiments
GC_SU and GC_MU. Therefore, a very small percentage of the anomalous instances is
being detected (recall near 0), even so among the detected ones, the probability of being a
false positive is low (precision around 0.9) – for the non balanced experiments.

(a) Accuracy.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GC_SBGC_SU

GC_MBGC_MUGC_LBGC_LU

(b) Position in the PR space.

Figure 7.1: Results of learned vanilla GC models in the test partition of each experiment.

25

7. Results

(a) Accuracy.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GC_SB

GC_SU

GC_MB

GC_MU

GC_LB

GC_LU

(b) Position in the PR space.

Figure 7.2: Results of learned GC AE models in the test partition of each experiment.

7.2 Gower Federated

Figure 7.3 shows learned global model performance per agent and experiment in the GF
vanilla version – each bar or point corresponds to a specific agent ID. PR space shows an
overall good performance of the global model in each nodes’ test partition. Those results
are seconded by the accuracies, being around 0.9 and consistent in the experiments with
more than 20 agents. Nevertheless, the AE version seems to have performance issues as its
GC analogous – achieving worse results in experiments with balanced datasets; Figure 7.4.
However, in this case, precision is around 0.5 and recall is close to 0.9 in all the experiments.
Therefore, all the anomalous instances are being detected (recall near 0.9), whereas the
false positive rate is very high (precision around 0.5).

Moreover, the AM development with 0.2 of best performing agents, have very dissimilar
results. As it is expected, some agents never contribute to the averaged model and 0.2
of them are not enough to learn all the threat patterns – the learned model does not
generalize well and bad results are achieved. In other words, the gap between the well
and bad performing agents is accentuated alongside the total number of agents increases
– Figure 7.5 shows the mentioned disparity. However, in the 0.8 best performing nodes
case, the results are overall comparable to the vanilla GF version – with an acceptable
performance of the global model in the majority of the nodes; Figure 7.6. Despite not being
the current scenario, this mechanism could be interesting to ensure convergence in cases
where negatively contributing agents are present. Nevertheless, AM causes decrement of
performance in scenarios where data is IID distributed among nodes – as the current one.

7.3 Gower Centralized vs Gower Federated

As it could be expected, GC slightly outperforms GF in the vanilla version experiments.
However, the comparison is not completely fair due to the number of training rounds that
FL versions could require to achieve the same convergence levels than CNL versions. As
it is described in Tables 6.1 and 6.2, the GC models are trained with 100 epochs and the
GF models with 100 communication rounds – 10 local epochs per round are performed
in each round. Furthermore, an early stopping criteria is used in the GC systems, with
2 rounds of patience, that causes each experiment to have a variable number of training
rounds. GF systems are forced to stop at 100 communication rounds, as a timeout, because
they still continue learning – keep in mind that epochs in FL systems are performed
independently by each agent. Figure 7.7a shows that training and validation losses in each

26

7.3. Gower Centralized vs Gower Federated

(a) Accuracy per node ID.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_SB

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_MB

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_LB

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_SU

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_MU

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_LU

(b) Position in the PR space.

Figure 7.3: Results of learned vanilla GFmodels in the test partition of each agent per experiment.

vanilla GC experiment end up converging into the same values. Nonetheless, training and
validation losses of vanilla GF experiments do not converge equally in the explored number
of rounds – Figure 7.7b. Hence, more communication rounds might be needed to reach
similar convergence rates than those of GC models.

Moreover, the comparison is not strictly fair due to scalability reasons. In the used
machine (Chapter 6), working with CNL Gower Matrices of more than 40000 instances is
computationally infeasible. However, the summation of all agents’ Gower training instances

27

7. Results

(a) Accuracy per node ID.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_SB

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_MB

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr
ec
isi
on

GF_LB

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_SU

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_MU

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_LU

(b) Position in the PR space.

Figure 7.4: Results of learned GF AE models in the test partition of each agent per experiment.

in e.g., experiment GF_LU, is 120000; meaning that using Gower Distance approach in
distributed systems is more scalable – total instance limit has not been reached in the
performed experiments. The previous happens because the CNL training matrix will be
squared, whereas the federated ones will have a variable size – Section 4.2. Thus, performed
experiments do not count with exactly equivalent training/test instances for hardware
limitation reasons.

28

7.3. Gower Centralized vs Gower Federated

(a) Accuracy per node ID.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_SB

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_MB

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_LB

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_SU

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_MU

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_LU

(b) Position in the PR space.

Figure 7.5: Results of learned GF AM 0.2models in the test partition of each agent per experiment.

29

7. Results

(a) Accuracy per node ID.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_SB

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_MB

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_LB

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_SU

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_MU

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GF_LU

(b) Position in the PR space.

Figure 7.6: Results of learned GF AM 0.8models in the test partition of each agent per experiment.

30

7.3. Gower Centralized vs Gower Federated

0 2 4 6
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

GC_SB
Trn
Vldt

0 2 4 6
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

GC_MB
Trn
Vldt

0 10 20
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

GC_LB
Trn
Vldt

0.0 2.5 5.0 7.5
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

GC_SU
Trn
Vldt

0 5 10
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

GC_MU
Trn
Vldt

0 2 4
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

GC_LU
Trn
Vldt

(a) 100 Epochs of training each GC model – with early stopping.

0 25 50 75 100
Number of rounds

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

GF_SB
Trn
Vldt

0 25 50 75 100
Number of rounds

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

GF_MB
Trn
Vldt

0 25 50 75 100
Number of rounds

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

GF_LB
Trn
Vldt

0 25 50 75 100
Number of rounds

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

GF_SU
Trn
Vldt

0 25 50 75 100
Number of rounds

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

GF_MU
Trn
Vldt

0 25 50 75 100
Number of rounds

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

GF_LU
Trn
Vldt

(b) 100 Averaging rounds of each GF global model.

Figure 7.7: Training and validation losses of vanilla GC and GF systems respectively in each
experiment.

31

8 Conclusions and future work

The designed system pretends to be an intermediate step before being deployed in real
IoT devices. On the one hand, the modularity of the implementation makes the experi-
mentation with different configurations easier. Similarly, development can be conducted
incrementally and debugging performed trivially. On the other hand, little adaptations
might be necessary to work in real streaming data scenarios, where a single Gower row will
be computed instead of the whole matrix – as mentioned in Section 4.2. However, the devel-
opment is partially adapted with pre-implemented functions 5.1 gower_matrix_limit_cols
and sliced_gower_matrix_limit_cols. At the end of the day, GöwFed is created pursuing the
continuity of new experiments using Gower Distance matrix and advanced Deep Learning
architectures into a Federated Learning framework.

Regarding the achieved results, GC systems perform slightly better than GF systems
in all the explored experiments – except in the AE development. As it was expected, GF
systems add an extra layer of complexity that minimally burdens overall performance.
However, the comparison is not completely fair due to the mentioned scalability issues
that GC versions have. As it is mentioned in Section 7.3, the number of instances used to
create GC and GF system matrices are different due to hardware limitations – e.g., counting
with a total number of 120000 instances for federated and 40000 for centralized versions. In
addition, epochs (CNL) and communication rounds (FL) do not work in a similar way, and
therefore, model convergence rates can not be compared in a raw manner. At this point, it
can be concluded that the usage of independent IoT devices under the GöwFed approach,
makes the system more scalable than its analogous GC development.

The AE implementations of both GC and GF systems are not as promising as the other
variants due to the less favorable results achieved – in comparison to other versions. In
the GC system, high precisions and low recalls are obtained, whereas in the GF system,
low precisions and high recalls are obtained. Consequently, the GC system does not learn
how to correctly detect anomalies, whereas the ones detected are certainly classified. On
the other hand, the GF system is very sensible detecting anomalies, but it misclassifies a
considerable amount of normal traffic – high false positive rate. Furthermore, balancing the
datasets performed in a remarkable bad way in all the AE experiments of both systems. That
could be explained by a reduction in the amount of normal instances as a consequence of
balancing the datasets in favor of the anomalous class – regarding the prevalence of normal
instances, over the anomalous, mentioned in Section 4.1. The solution could possibly come
from the opposite side, by adding more normal instances via capturing new ones or using
data augmentation techniques.

The GF AM version using 0.8 of best performing agents, achieves good results and

33

8. Conclusions and future work

makes the systemmore robust against poisoning attacks. Nonetheless, its potential does not
shine in the elaborated experiments due to the IID data splitting performed among agents
– the results show a general worsening compared to the non-AM version. Additionally,
as mentioned in Section 5.2, non-AM versions count with a weight mechanism that gives
(during the averaging process) more importance to nodes with a higher number of instances.
As a consequence, results of non-AM version are boosted from the beginning. On the other
hand, a small percentage of best performing nodes (0.2) is not enough to learn a model
that generalizes well – achieving bad results in the majority of the agents. Nevertheless,
AM is incorporated to GowFed as part of working with independent model results and
parameters; that can not be easily adapted to GC systems – making them more vulnerable.
In short, AM is a promising approach that needs to be studied in a deeper way – using
other evaluation criteria than ROC-AUC, testing over heterogeneous devices with non-IID
data splitting to make it shine and so on.

After summarizing the results, it can be concluded that the usage of Gower Distance
matrices to create a FL-IDS is feasible and doable. That is seconded by the comparison
between the losses of GöwFed experiments 7.7b and the ones obtained by the toy (non
Gower) classifier 4.2; where GöwFed’s loss decreases drastically – especially in experiments
FL_LB and FL_LU. In the same way, GF versions perform in a similar way to their analogous
GC ones, in terms of performance and capabilities. Therefore, research questions posed in
Chapter 2 are successfully satisfied – obtained results are quite optimistic.

In the future, GöwFed will have to count with an incremental learning version tested
over data streaming scenarios. Because, as mentioned in Chapter 4, current batch learning
version simulates an artificial environment working over the TON_IOT dataset. However,
modifying the implementation to work with real IoT devices should require just some
small adaptations; i.e., making the nodes able to process captured datagrams, update local
matrices and so on.

Similarly, the combined usage of the designed system and input data of different nature
such as time series has not been covered yet – many state-of-the-art approaches work with
temporal relationships and RNN; Section 3.2. In the same way, a fully distributed FL-IDS
has not been developed yet, dispensing with the need of a central orchestration server like
the one in FedAVG – the path opened by P. Vanhaesebrouck et al. [21] could be followed
to accomplish that task. Nevertheless, novel approaches can trigger new convergence
challenges to the nodes. In order to face those incoming challenges, the incorporation of
information pre-sharing mechanisms could prevent divergence of the matrices (and models)
without compromising the privacy of the agents. Tian et al. [74] propose a mechanism to
share a small percentage of local instances among nodes, committing the mentioned privacy
constraint. Linked to convergence, complementarymethods that use data augmentation [83]
could be used to accelerate the convergence rates of the models [75].

34

Appendix

35

1

Description of Network Features

Service profile: Connection activity
ID Feature Type Description

1 ts Time Timestamp of connection between flow identifiers

2 src_ip String Source IP addresses which originate endpoints’ IP addresses

3 src_port Number Source ports which Originate endpoint’s TCP/UDP ports

4 dst_ip String
Destination IP addresses which respond to endpoint’s IP
addresses

5 dst_port Number Destination ports which respond to endpoint’s TCP/UDP ports

6 proto String Transport layer protocols of flow connections

7 service String Dynamically detected protocols, such as DNS, HTTP and SSL

8 duration Number
The time of the packet connections, which is estimated by
subtracting ‘time of last packet seen’ and ‘time of first packet
seen’

9 src_bytes Number
 Source bytes which are originated from payload bytes of TCP
sequence numbers

10 dst_bytes Number
 Destination bytes which are responded payload bytes from TCP
sequence numbers

11 conn_state String
 Various connection states, such as S0 (connection without
replay), S1 (connection established), and REJ (connection attempt
rejected)

12 missed_bytes Number Number of missing bytes in content gaps

Service profile: Statistical activity

ID Feature Type Description

13 src_pkts Number
Number of original packets which is estimated from source
systems

14 src_ip_bytes Number
Number of original IP bytes which is the total length of IP header
field of source systems

15 dst_pkts Number
Number of destination packets which is estimated from
destination systems

16 dst_ip_bytes Number
 Number of destination IP bytes which is the total length of IP
header field of destination systems

2

Service profile: DNS activity
ID Feature Type Description

17 dns_query string Domain name subjects of the DNS queries

18 dns_qclass Number Values which specifies the DNS query classes

19 dns_qtype Number Value which specifies the DNS query types

20 dns_rcode Number Response code values in the DNS responses

21 dns_AA Bool
Authoritative answers of DNS, where T denotes server is
authoritative for query

22 dns_RD Bool
Recursion desired of DNS, where T denotes request recursive
lookup of query

23 dns_RA Bool
Recursion available of DNS, where T denotes server supports
recursive queries

24 dns_rejected Bool DNS rejection, where the DNS queries are rejected by the server

Service profile: SSL activity
ID Feature Type Description

25 ssl_version String SSL version which is offered by the server

26 ssl_cipher String SSL cipher suite which the server chose

27 ssl_resumed Bool
SSL flag indicates the session that can be used to initiate new
connections, where T refers to the SSL connection is initiated

28 ssl_established Bool
 SSL flag indicates establishing connections between two parties,
where T refers to establishing the connection

29 ssl_subject String Subject of the X.509 cert offered by the server

30 ssl_issuer String
 Trusted owner/originator of SLL and digital certificate (certificate
authority)

Service profile: HTTP activity
ID Feature Type Description

31 http_trans_depth Number Pipelined depth into the HTTP connection

32 http_method String HTTP request methods such as GET, POST and HEAD

33 http_uri String URIs used in the HTTP request

35 http_version String The HTTP versions utilised such as V1.1

36 http_request_body_len Number
Actual uncompressed content sizes of the data transferred from
the HTTP client

37 http_response_body_len Number
Actual uncompressed content sizes of the data transferred from
the HTTP server

38 http_status_code Number Status codes returned by the HTTP server

39 http_user_agent Number Values of the User-Agent header in the HTTP protocol

40 http_orig_mime_types String
Ordered vectors of mime types from source system in the HTTP
protocol

41 http_resp_mime_types String
Ordered vectors of mime types from destination system in the
HTTP protocol

3

Service profile: Violation activity
ID Feature Type Description

42 weird_name String
Names of anomalies/violations related to protocols that
happened

43 weird_addl String
 Additional information is associated to protocol
anomalies/violations

44 weird_notice bool It indicates if the violation/anomaly was turned into a notice

Service profile: Data labelling

ID Feature Type Description

45 label Number
Tag normal and attack records, where 0 indicates normal and 1
indicates attacks

46 type String
Tag attack categories, such as normal, DoS, DDoS and backdoor
attacks, and normal records

Bibliography

[1] Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and Bingsheng
He. A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and
Protection. pages 1–44, 2019. See pages v, 7.

[2] Paul Voigt and Axel von dem Bussche. The EU General Data Protection Regulation (GDPR): A
Practical Guide. Springer Publishing Company, Incorporated, 1st edition, 2017. See page 2.

[3] H. BrendanMcMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. Proceedings of
the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, 54, 2017.
See pages 2, 7.

[4] J. C. Gower. A general coefficient of similarity and some of its properties. Biometrics, 27(4):857–
871, 1971. See page 2.

[5] Yi Liu, Sahil Garg, Jiangtian Nie, Yang Zhang, Zehui Xiong, Jiawen Kang, and M. Shamim
Hossain. Deep Anomaly Detection for Time-Series Data in Industrial IoT: A Communication-
Efficient On-Device Federated Learning Approach. IEEE Internet of Things Journal, 8(8):6348–
6358, 2021. See pages 2, 8, and 16.

[6] Beibei Li, Yuhao Wu, Jiarui Song, Rongxing Lu, Tao Li, and Liang Zhao. DeepFed: Federated
Deep Learning for Intrusion Detection in Industrial Cyber-Physical Systems. IEEE Transactions
on Industrial Informatics, 17(8):5615–5624, 2021. See pages 3, 8, and 9.

[7] Aitor Belenguer, Javier Navaridas, and Jose A. Pascual. A review of federated learning in
intrusion detection systems for iot, 2022. See page 5.

[8] Heikki Topi Carol V. Brown. Is management handbook. CRC Press, 1999. See page 5.

[9] Robert E. Heady, George F. Luger, Arthur B. Maccabe, and Mark Servilla. The architecture of
a network level intrusion detection system. 1990. See page 5.

[10] Borja Molina-Coronado, Usue Mori, Alexander Mendiburu, and Jose Miguel-Alonso. Survey
of network intrusion detection methods from the perspective of the knowledge discovery in
databases process. IEEE Transactions on Network and Service Management, 17(4):2451–2479,
2020. See page 5.

[11] E. Chatzoglou, G. Kambourakis, and C. Kolias. Empirical evaluation of attacks against ieee
802.11 enterprise networks: The awid3 dataset. IEEE Access, 9:34188–34205, 2021. See page 6.

[12] & Maria Jose Erquiaga Sebastian Garcia, Agustin Parmisano. Iot-23: A labeled dataset with
malicious and benign iot network traffic (version 1.0.0) [data set]. Zenodo, 2020. See page 6.

[13] Abdullah Alsaedi, Nour Moustafa, Zahir Tari, Abdun Mahmood, and Adna N Anwar. TON-IoT
telemetry dataset: A new generation dataset of IoT and IIoT for data-driven intrusion detection
systems. IEEE Access, 8:165130–165150, 2020. See pages 6, 11.

39

Bibliography

[14] Ranjit Panigrahi and Samarjeet Borah. A detailed analysis of cicids2017 dataset for designing
intrusion detection systems. International Journal of Engineering & Technology, 7:479–482, 01
2018. See page 6.

[15] Arash Habibi Lashkari, Gerard Draper Gil, Mohammad Mamun, and Ali Ghorbani. Character-
ization of tor traffic using time based features. pages 253–262, 01 2017. See page 6.

[16] Arash Habibi Lashkari, Gerard Draper Gil, Mohammad Mamun, and Ali Ghorbani. Char-
acterization of encrypted and vpn traffic using time-related features. 02 2016. See page
6.

[17] Iman Almomani, Bassam Kasasbeh, and Mousa AL-Akhras. Wsn-ds: A dataset for intrusion
detection systems in wireless sensor networks. Journal of Sensors, 2016:1–16, 01 2016. See
page 6.

[18] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Stefanos Gritzalis. Intrusion
detection in 802.11 networks: Empirical evaluation of threats and a public dataset. IEEE
Communications Surveys Tutorials, 18(1):184–208, 2016. See page 6.

[19] William DuMouchel, Wen-Hua Ju, Alan F. Karr, Matthias Schonlau, Martin Theusan, and
Yehuda Vardi. Computer Intrusion: Detecting Masquerades. Statistical Science, 16(1):58 – 74,
2001. See page 6.

[20] Sathyanarayanan Revathi and A. Malathi. A detailed analysis on nsl-kdd dataset using various
machine learning techniques for intrusion detection. International journal of engineering
research and technology, 2, 2013. See page 6.

[21] Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. Decentralized collaborative learn-
ing of personalized models over networks. 10 2016. See pages 6, 34.

[22] Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi Wang, Xiaoyang Wang,
Praneeth Vepakomma, Abhishek Singh, Hang Qiu, Xinghua Zhu, Jianzong Wang, Li Shen,
Peilin Zhao, Yan Kang, Yang Liu, Ramesh Raskar, Qiang Yang, Murali Annavaram, and Salman
Avestimehr. Fedml: A research library and benchmark for federated machine learning, 2020.
See pages 6, 7.

[23] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub
Konečný, Sanjiv Kumar, and H. Brendan McMahan. Adaptive federated optimization. CoRR,
abs/2003.00295, 2020. See page 6.

[24] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling the
objective inconsistency problem in heterogeneous federated optimization. Advances in Neural
Information Processing Systems, 2020-December, 2020. See page 6.

[25] Anit Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and Virginia Smith. On
the convergence of federated optimization in heterogeneous networks, 12 2018. See page 6.

[26] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris S. Papailiopoulos, and Yasaman
Khazaeni. Federated learning with matched averaging. CoRR, abs/2002.06440, 2020. See page
6.

[27] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J. Dally. Deep gradient compression:
Reducing the communication bandwidth for distributed training. CoRR, abs/1712.01887, 2017.
See page 6.

[28] Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu. Communication compression
for decentralized training. In Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018. See page 6.

[29] Hanlin Tang, Xiangru Lian, Shuang Qiu, Lei Yuan, Ce Zhang, Tong Zhang, and Ji Liu. Deep-
squeeze: Parallel stochastic gradient descent with double-pass error-compensated compression.
CoRR, abs/1907.07346, 2019. See page 6.

40

Bibliography

[30] Constantin Philippenko and Aymeric Dieuleveut. Artemis: tight convergence guarantees for
bidirectional compression in federated learning. CoRR, abs/2006.14591, 2020. See page 6.

[31] Mohammad Mohammadi Amiri, Deniz Gündüz, Sanjeev R. Kulkarni, and H. Vincent Poor.
Federated learning with quantized global model updates. CoRR, abs/2006.10672, 2020. See
page 6.

[32] Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, and Mehrdad Mahdavi.
Federated learning with compression: Unified analysis and sharp guarantees. CoRR,
abs/2007.01154, 2020. See page 6.

[33] Zhenheng Tang, Shaohuai Shi, and Xiaowen Chu. Communication-efficient decentralized
learning with sparsification and adaptive peer selection. In 40th IEEE International Conference
on Distributed Computing Systems, ICDCS 2020, Singapore, November 29 - December 1, 2020,
pages 1207–1208. IEEE, 2020. See page 6.

[34] Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for
communication-efficient distributed optimization, 2017. See page 6.

[35] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, AntonioMarcedone, H. BrendanMcMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
federated learning on user-held data. CoRR, abs/1611.04482, 2016. See page 6.

[36] Robin C. Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A
client level perspective. CoRR, abs/1712.07557, 2017. See page 6.

[37] Tribhuvanesh Orekondy, Seong Joon Oh, Bernt Schiele, and Mario Fritz. Understanding and
controlling user linkability in decentralized learning. CoRR, abs/1805.05838, 2018. See page 6.

[38] Théo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Mancuso, Daniel Rueckert,
and Jonathan Passerat-Palmbach. A generic framework for privacy preserving deep learning.
CoRR, abs/1811.04017, 2018. See pages 6, 7.

[39] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting
unintended feature leakage in collaborative learning. In 2019 IEEE Symposium on Security and
Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, pages 691–706. IEEE, 2019. See page
6.

[40] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui Zhang, and
Yi Zhou. A hybrid approach to privacy-preserving federated learning - (extended abstract).
Inform. Spektrum, 42(5):356–357, 2019. See page 6.

[41] Aleksei Triastcyn and Boi Faltings. Federated learning with bayesian differential privacy. In
2019 IEEE International Conference on Big Data (IEEE BigData), Los Angeles, CA, USA, December
9-12, 2019, pages 2587–2596. IEEE, 2019. See page 6.

[42] Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali Anwar, and Heiko Ludwig. Hybridalpha: An
efficient approach for privacy-preserving federated learning. In Proceedings of the 12th ACM
Workshop on Artificial Intelligence and Security, AISec@CCS 2019, London, UK, November 15,
2019, pages 13–23. ACM, 2019. See page 6.

[43] Aleksei Triastcyn and Boi Faltings. Federated generative privacy. IEEE Intell. Syst., 35(4):50–57,
2020. See page 6.

[44] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under the gan:
Information leakage from collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’17, page 603–618, New York, NY,
USA, 2017. Association for Computing Machinery. See page 6.

[45] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust dis-
tributed learning: Towards optimal statistical rates. In Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
5650–5659. PMLR, 10–15 Jul 2018. See page 6.

41

Bibliography

[46] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019. See page 6.

[47] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep
learning: Passive and active white-box inference attacks against centralized and federated
learning. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019, pages 739–753. IEEE, 2019. See page 6.

[48] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong Qi. Beyond
inferring class representatives: User-level privacy leakage from federated learning. In 2019
IEEE Conference on Computer Communications, INFOCOM 2019, Paris, France, April 29 - May 2,
2019, pages 2512–2520. IEEE, 2019. See page 6.

[49] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin B. Calo. Analyzing
federated learning through an adversarial lens. In Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pages 634–643. PMLR, 2019. See page 6.

[50] Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh. Mitigating sybils in federated learning
poisoning. CoRR, abs/1808.04866, 2018. See page 6.

[51] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How
to backdoor federated learning. In The 23rd International Conference on Artificial Intelligence
and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy], volume 108 of
Proceedings of Machine Learning Research, pages 2938–2948. PMLR, 2020. See page 6.

[52] Wenqi Wei, Ling Liu, Margaret Loper, Ka Ho Chow, Mehmet Emre Gursoy, Stacey Truex,
and Yanzhao Wu. A framework for evaluating gradient leakage attacks in federated learning.
CoRR, abs/2004.10397, 2020. See page 6.

[53] Chien-Lun Chen, Leana Golubchik, and Marco Paolieri. Backdoor attacks on federated
meta-learning. CoRR, abs/2006.07026, 2020. See page 6.

[54] Peter Kairouz et al. Advances and open problems in federated learning. Foundations and
Trends in Machine Learning, 14(1-2):1–210, 2021. See page 7.

[55] Alex Ingerman Krzys Ostrowski. Tensorflow federated. Google, 2019. See pages 7, 15.

[56] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečný, H. Brendan McMahan, Virginia Smith,
and Ameet Talwalkar. LEAF: A benchmark for federated settings. CoRR, abs/1812.01097, 2018.
See page 7.

[57] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu. Federated Learning.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2019. See page 7.

[58] Yanjun Ma, Dianhai Yu, Tian Wu, and Haifeng Wang. Paddlepaddle: An open-source deep
learning platform from industrial practice. Frontiers of Data and Domputing, 1(1):105, 2019.
See page 7.

[59] Sajid A. Marhon, Christopher J. F. Cameron, and Stefan C. Kremer. Recurrent Neural Networks,
pages 29–65. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. See page 8.

[60] Fionn Murtagh. Multilayer perceptrons for classification and regression. Neurocomputing,
2(5):183–197, 1991. See page 8.

[61] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, nov 1997. See page 8.

[62] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling, 2014. See page 8.

[63] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders, 2021. See page 8.

42

Bibliography

[64] Truong Thu Huong, Ta Phuong Bac, Dao Minh Long, Tran Duc Luong, Nguyen Minh Dan,
Le Anh Quang, Le Thanh Cong, Bui Doan Thang, and Kim Phuc Tran. Detecting cyberat-
tacks using anomaly detection in industrial control systems: A Federated Learning approach.
Computers in Industry, 132:103509, 2021. See page 8.

[65] Ruijie Zhao, Yue Yin, Yong Shi, and Zhi Xue. Intelligent intrusion detection based on federated
learning aided long short-term memory. Physical Communication, 42:101157, 2020. See page 8.

[66] Kuang Yao Lin and Wei Ren Huang. Using Federated Learning on Malware Classification.
International Conference on Advanced Communication Technology, ICACT, 2020:585–589, 2020.
See page 8.

[67] Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Hossein Fereidooni, N. Asokan, and
Ahmad Reza Sadeghi. DÏoT: A federated self-learning anomaly detection system for IoT.
Proceedings - International Conference on Distributed Computing Systems, 2019-July:756–767,
2019. See pages 8, 9.

[68] Viraaji Mothukuri, Prachi Khare, Reza M. Parizi, Seyedamin Pouriyeh, Ali Dehghantanha, and
Gautam Srivastava. Federated Learning-based Anomaly Detection for IoT Security Attacks.
IEEE Internet of Things Journal, 4662(c):1–10, 2021. See page 8.

[69] Zhuo Chen, Na Lv, Pengfei Liu, Yu Fang, Kun Chen, and Wu Pan. Intrusion Detection for
Wireless Edge Networks Based on Federated Learning. IEEE Access, 8:217463–217472, 2020.
See pages 8, 16.

[70] Y. Qin and M. Kondo. Federated Learning-Based Network Intrusion Detection with a Feature
Selection Approach. In 3rd International Conference on Electrical, Communication and Computer
Engineering, ICECCE 2021, 2021. See page 8.

[71] Davy Preuveneers, Vera Rimmer, Ilias Tsingenopoulos, Jan Spooren, Wouter Joosen, and
Elisabeth Ilie-Zudor. Chained anomaly detection models for federated learning: An intrusion
detection case study. Applied Sciences (Switzerland), 8(12):1–21, 2018. See page 8.

[72] Ana Cholakoska, Bjarne Pfitzner, Hristijan Gjoreski, Valentin Rakovic, Bert Arnrich, and
Marija Kalendar. Differentially Private Federated Learningfor Anomaly Detection in eHealth
Networks. (Ml):514–518, 2021. See page 8.

[73] Burak Cetin, Alina Lazar, Jinoh Kim, Alex Sim, and Kesheng Wu. Federated Wireless Network
Intrusion Detection. Proceedings - 2019 IEEE International Conference on Big Data, Big Data
2019, pages 6004–6006, 2019. See page 8.

[74] Pu Tian, Zheyi Chen, Wei Yu, and Weixian Liao. Towards asynchronous federated learning
based threat detection: A DC-Adam approach. Computers and Security, 108:102344, 2021. See
pages 8, 34.

[75] Brett Weinger, Jinoh Kim, Alex Sim, Makiya Nakashima, Nour Moustafa, and K. John Wu.
Enhancing IoT anomaly detection performance for federated learning. Proceedings - 2020 16th
International Conference on Mobility, Sensing and Networking, MSN 2020, pages 206–213, 2020.
See pages 8, 9, 16, and 34.

[76] Ekaterina Khramtsova, Christian Hammerschmidt, Sofian Lagraa, and Radu State. Federated
learning for cyber security: SOC collaboration for malicious URL detection. Proceedings -
International Conference on Distributed Computing Systems, 2020-Novem:1316–1321, 2020. See
pages 8, 9.

[77] Noor Ali Al-Athba Al-Marri, Bekir S. Ciftler, and Mohamed M. Abdallah. Federated Mimic
Learning for Privacy Preserving Intrusion Detection. 2020 IEEE International Black Sea Confer-
ence on Communications and Networking, BlackSeaCom 2020, 2020. See pages 8, 9.

[78] Sawsan Abdul Rahman, Hanine Tout, Chamseddine Talhi, and Azzam Mourad. Internet of
Things intrusion Detection: Centralized, On-Device, or Federated Learning? IEEE Network,
34(6):310–317, 2020. See pages 8, 9.

43

Bibliography

[79] Ying Zhao, Junjun Chen, DiWu, Jian Teng, and Shui Yu. Multi-task network anomaly detection
using federated learning. PervasiveHealth: Pervasive Computing Technologies for Healthcare,
pages 273–279, 2019. See pages 8, 9.

[80] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. See
page 8.

[81] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
volume 5, pages 223–238, 05 1999. See page 9.

[82] Ahmed Shafee, Mohamed Baza, Douglas A. Talbert, Mostafa M. Fouda, Mahmoud Nabil, and
Mohamed Mahmoud. Mimic learning to generate a shareable network intrusion detection
model. In 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC),
pages 1–6, 2020. See page 9.

[83] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote:
Synthetic minority over-sampling technique. J. Artif. Int. Res., 16(1):321–357, jun 2002. See
pages 9, 34.

[84] Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling
approach for imbalanced learning. In 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), pages 1322–1328, 2008. See
page 9.

[85] Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions, 2017.
See page 12.

[86] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth IEEE
International Conference on Data Mining, pages 413–422, 2008. See page 12.

[87] Larry M. Manevitz and Malik Yousef. One-class svms for document classification. J. Mach.
Learn. Res., 2:139–154, mar 2002. See page 12.

[88] Tensorflow Federated Google. Building Your Own Federated Learning Algorithm.
https://tensorflow.google.cn/federated/tutorials/building_your_own_
federated_learning_algorithm, 2022. [Online; accessed 04-September-2022]. See
page 19.

[89] WilhelmKirch, editor. Kappa CoefficientKappa coefficient, pages 821–822. Springer Netherlands,
Dordrecht, 2008. See page 21.

[90] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20(1):37–46, 1960. See page 21.

[91] Yinglin Xia. Chapter eleven - correlation and association analyses in microbiome study
integrating multiomics in health and disease. In Jun Sun, editor, The Microbiome in Health and
Disease, volume 171 of Progress in Molecular Biology and Translational Science, pages 309–491.
Academic Press, 2020. See page 21.

[92] Francisco Melo. Area under the ROC Curve, pages 38–39. Springer New York, New York, NY,
2013. See page 21.

[93] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In
Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, page 233–240,
New York, NY, USA, 2006. Association for Computing Machinery. See page 21.

44

https://tensorflow.google.cn/federated/tutorials/building_your_own_federated_learning_algorithm
https://tensorflow.google.cn/federated/tutorials/building_your_own_federated_learning_algorithm

	Contents
	List of Figures
	List of Tables
	Introduction
	Research questions
	State of the art
	Intrusion detection systems
	Datasets for evaluating IDS

	Federated Learning
	Federated Learning Systems
	Federated Learning Frameworks

	Employing FL in ID
	Relevant approaches

	Development
	Dataset
	Analysis of the dataset

	A distance based approach
	Designed systems

	Implementation details
	Matrix elaboration
	Federated Learning

	Experimental setup
	Metrics of interest
	Gower Centralized
	Gower Federated

	Results
	Gower Centralized
	Gower Federated
	Gower Centralized vs Gower Federated

	Conclusions and future work
	Appendix
	Bibliography

