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Abstract

In this project, we have studied the state-of-the-art of semantic segmentation of biomedical
images and compared the performance of a new Transformer-based architecture with
the most used convolutional architecture for semantic segmentation of mitochondria in
ElectronMicroscopy (EM) images. This is particularly interesting because both architectures
are quite similar, with the main difference being the use of a Transformer as an encoder
in one of them. For this comparison, we have adapted an existing Transformer-based
architecture used in 3D medical images to perform 2D semantic segmentation, explored
multiple variations in both the convolutional and Transformer parts, and finally performed a
comparison between the two architectures under the same conditions. Furthermore, we also
analyzed the impact of applying different self-supervised learning tasks as a pre-training
strategy for the network.
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CHAPTER 1
Introduction

In recent years, the number of digital images available in different domains has increased
significantly due to advances in multiple image acquisition techniques. The huge amount
of images and the facilities to access them have significantly driven the development of
the field of computer vision in the last decade. One of those imaging methods is electron
microscopy (EM), which in recent years has enabled scientists to study different organelles,
such as nuclei or mitochondria. The study of various organelles with nano-scale precision
plays a crucial role in the detection of serious diseases such as cancer [1], Parkinson [2] or
Alzheimer [1].

Since labeling images is neither easy nor cheap, and certainly not at the rate at which
they are obtained, the need arises to automate the process. In recent years, techniques
based on deep neural networks have dominated a wide range of disciplines, including
several computer vision tasks such as image classification [3]. However, in this project, we
focus on the semantic segmentation task, which aims to classify different elements of an
image. An example can be seen in Fig. 1.1. In recent years, this task [4, 5] as well as other
computer vision tasks such as super-resolution [6], has been dominated by convolutional
neural networks (CNN).

Moreover, in recent years, the Transformer architecture [7] has achieved state-of-the-art
results in many Natural Language Processing (NLP) tasks [8, 9, 10] with very competent
performance in multiple other problems, even when the network has not been trained to
solve those specific tasks [11]. All these results have led to further research in various areas,
such as audio [12], image [13, 14], or even more, multimodal applications [15, 16], where
it has proven to be a very versatile architecture [17]. However, the main potential of this
architecture is scalability, where the bigger the dataset, the better. In that sense, the number
of annotated images is still an open problem in biomedical computer vision [18]. Various
approaches have been proposed to solve this problem, including data augmentation [19,
20, 21, 22], synthetic data generation [22, 23] and transfer learning [24, 25]. But they still
require a large number of task-related annotated images to perform well. Moreover, it
has been shown that models trained over one dataset often struggle to generalize over
other datasets with different distributions. In this sense, several approaches have also been
proposed, such as style transfer or multitask neural networks [26].
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1. Introduction

Figure 1.1: Example of semantic segmentation. From left to right: the input image and its semantic
segmentation. Each class is represented by a color, being navy blue the animal-class, yellow the
border of the animal, and turquoise the rest.

One way to address the data sparsity problem is by self-supervised learning (SSL),
which consists of establishing a pre-training task using unlabeled related images that do
not require expert annotations to train the model, and then using that model as the starting
training point for the downstream (segmentation) task. Although the idea is not new, SSL
has recently resurfaced thanks to its great success in NLP [27, 28, 29, 30] and in other
computer vision applications [31, 32].

In this particular project, we will analyze a very recent Transformer-based segmentation
architecture (UNETR [33]), and compare it with the state-of-the-art in EM image mitochon-
drial segmentation: a U-Net [34] type of architecture. The main difference between the
architectures is that, even if both maintain the same idea, one develops it by using a fully
convolutional neural network, while the other one combines the previous architecture with
a Transformer encoder.

In brief, our main contributions are as follows:

1. We have studied UNETR variants in both the convolutional and Transformer compo-
nents of the architecture.

2. We have compared both the state-of-the-art U-Net-based model and our Transformer-
based model under the same conditions to see the impact of the Transformer in the
biomedical segmentation task across a variety of configurations.

3. We have designed a hybrid model and compared it with the previous approaches.

4. We have analyzed the effect of applying different SSL techniques.

5. Derived from this work, we have designed, implemented and published [26] a new
convolutional model for semantic segmentation using domain adaptation (see Ap-
pendix A).
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CHAPTER 2
Related Work

In this chapter, we will explain the two main architectures we are going to work with. For
a better understanding, some context of related architectures will be also given.

2.1 U-Net and CNN architectures

Following the flow of historical events, the first architecture to be presented is the U-Net [4].
This architecture starts with a very well known encoder, used previously by other famous
networks as AlexNet [35]. The encoder consists of multiple 2D convolutions combined
with pooling layers, where the deeper, the smaller the spatial resolution but bigger the
channel dimension. More precisely, each pooling layer divides by 2 the spatial resolution.
Unlike AlexNet, those fully-connected layers that make up the classification head are not
used. Following a similar idea, but with 2D transposed convolutions instead of pooling
layers, the decoder is formed. This time, the deeper, the bigger the spatial resolution but
smaller the channel dimension. Inversely proportional to the encoder, the spatial resolution
is multiplied by 2 for each transposed convolution. Putting both parts together, we obtain
as a result a fully convolutional autoencoder, where the input and the output keeps the
same exact dimensions. What U-Net does is to incorporate multiple skip-connections
throughout the network. The skip-connections are built layer-wise, passing the signal from
the encoder to the decoder directly, so they always work with the same spatial dimensions
at each symmetric level of the architecture. These skip-connections let the network restore
multiple details that could be lost when reducing the image size in the pooling layers. When
we represent graphically the network (see Fig. 2.1), the U shape appears, this is why the
network is called U-Net.

Even if the U-Net was first presented for biomedical image segmentation, it has been
used for a wide range of tasks. As long as the output keeps the same image size as the
input, this network could be used. For example, in the denoising [36] or inpainting [37]
tasks. Moreover, with few modifications as incorporating an extra decoding layer, other
tasks as super-resolution can be performed [38].

Since the U-Net was introduced, multiple variants have appeared [39, 40, 34], achieving
very competent results. As an example, one of those U-Net variants replaced the simple

3



2. Related Work

Figure 2.1: U-Net architecture [34] example with 3 layers. Each one of the blue boxes corresponds
to a multichannel feature map. The number of channels is indicated on top of each box. The spatial
size is provided at the lower left edge of each box. The white boxes represent copied feature maps.
The arrows represent different operations.

concatenation applied over every skip connection and introduced an attention gate [41].
By using attention gates, the features are scaled with the calculated attention coefficients
in the attention gate. The resultant Attention U-Net and the functioning of attention gates
are shown in Fig. 2.2.
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Figure 2.2: 2D Attention U-Net architecture [34] example with 3 layers. Each one of the blue boxes
corresponds to a multichannel feature map. The number of channels is indicated on top of each box.
The spatial size is provided at the lower left edge of each box. The white boxes represent copied
feature maps. The arrows represent different operations. In the lower right side of the figure, a
detailed description of the attention gates is given. Image obtained from [34]

Also with a shape related naming, the Y-Net is another of the U-Net variants. In this case,
the Y shape comes from placing a second encoder [42] or decoder [43, 26] in the network.
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2.2. Transformer architecture

While the second decoder is placed following an autoencoder approach, the second encoder
could be a pretrained encoder, with useful features already learned. However, despite
so many variants, the U-Net remains a fully competent alternative, with state-of-the-art
results in some tasks such as the one we will be working on in this project: segmentation
of mitochondria in EM images [34].

2.2 Transformer architecture

In the years prior to the appearance of the Transformer [7], multiple attention strategies
had been already proposed in the area of NLP [44, 45]. The problem at the time was the
high computational cost of networks, due to such attentions in recurrent neural networks
(RNNs) involve O(n) sequential operations. Nevertheless, the Transformer architecture
proposes the usage of the self-attention (with O(1) sequential operations) to compute
representations of the input and output, without any kind of recursivity or convolutions.
Basically, their proposal is based on the idea that “Attention is all you need”, as the title of
the paper explains. Here we briefly present the architecture proposed in that paper.

The Transformer architecture follows the encoder-decoder scheme (see Fig. 2.3). Origi-
nally, the architecture was proposed for transduction, where the encoder works with the
input signal and the decoder works with the expected signal. As an example, for translation,
the encoder will receive as input the language Li while the decoder will work with the lan-
guage into which it is to be translated Lo. With the passage of time, different variants have
been proposed for multiple other NLP tasks, some based only on multiple encoder-layers
as BERT [9], and others based only on multiple decoder-layers as GPT [46].

Before starting with the encoder and decoder, a positional embedding is added to the
input signal, formed by a sequence of words in the case of NLP tasks. This is a very
important point due to the fact that the Transformer architecture is fully feed forward, so
it has no information about the order, and thus it is necessary to do it explicitly. Once we
have the signal ready, we can start explaining the rest of the architecture.

2.2.1 Encoder-layer

The encoder-layer contain two residual modules: the first one contain the multi-head
attention (MHA) block followed by a skip connection and a normalization layer, the second
one contains a feed-forward block followed by another skip connection and a normalization
layer.

2.2.1.1 Multi-head attention block

The MHA block requires of query, key, and value signals, which are packed together into
Q, K , and V matrices, respectively. In the case of the encoder-layer, these signals come
from exactly the same input signal, which is trifurcated. Each one of the signals is passed
through a linear transformation before self-attention is computed. Using these signals, the
output of a single head can be expressed as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (2.1)

5



2. Related Work

Figure 2.3: Transformer architecture [7]. The left gray box shows how a single encoder layer
is constructed, being the full encoder a stack of N encoder layers. This encoder layer is built by
two residual modules, the first one with a multi-head attention block, and the second one with a
feed-forward block. Similarly, the right gray box shows how a single decoder layer is constructed,
being the full decoder a stack of N decoder layers. This decoder layer is built by three residual
modules: the first one with a masked multi-head attention block, the second one with a multi-head
attention block, and the last one with a feed-forward block. Each of the residual connections are
followed by a layer normalization. In both parts of the network, a positional encoding is added to
the input signals. The output of the encoder is given as Query and Key signals to the multi-head
attention block of the second residual module of the decoder. Finally, at the top of the network, a
classification head has been added. At each time step, a single prediction is given as an output, to
build a full sequence, multiple iterations are needed, where at each time step, previously predicted
values are given as an input to the decoder. Image obtained from [7]

6



2.2. Transformer architecture

where dk refers to the dimensionality of the key and query signals. The attention scores
are first computed by multiplying Q andKT . Then, in order to avoid large values which
could create extremely small gradients after applying the softmax function, the scores are
scaled by 1√

dk
. The outcome of applying a softmax function is an attention matrix with

values between 0 and 1. After calculating the attention for each word, this is applied to the
value signal by multiplying it. This process is repeated for each of the heads (h). A visual
representation of the block is shown in Fig. 2.4.

Figure 2.4: Transformer attention. Left: Scaled Dot-Product Attention [7]. The block starts by
multiplyingQ andK signals. The output is then scaled by 1√

dk
. In the case of the masked multi-head

attention placed on the decoder, now the masking would be performed by replacing the values to
be masked with −∞. In the case of normal multi-head attention block, this masking step is directly
skipped. By applying softmax to the resulting signal, an attention matrix is obtained. Finally, this
matrix is multiplied to the V signal. Right: Multi-Head Attention block [7], with h heads. For
each of the signals, first a linear transformation is applied, and then is passed through the scaled
dot-product attention block which computes the self-attention. This is repeated for each of the h
heads. Finally, the outputs of each of the heads are concatenated and a final linear transformation is
applied. Images obtained from [7].

Each of the computed heads could focus on different aspects of the input signal, such
as paying attention to the adjacent words or tracking certain syntactic relations [47]. Even
though, the heads are learned during training, so we do not know what each head will
learn. Post-training analysis is necessary for this, and even then, the interpretation plays
a very important role, where usually it is not easy to understand what exactly they are
attending at. Although we can not explain what each head does, we can assess their
importance and prune those heads that are less important. Doing it, we can achieve lighter
model without compromising seriously the model’s performance [47]. The MHA design is
specially interesting by the parallelization capability, as each of the heads can be processed
completely independently of the others. Finishing with the MHA block, after each head is
computed, all of them are concatenated and passed through a linear transformation.

2.2.1.2 Feed-forward block

Unlike the MHA block, the feed-forward block is a simple block composed by two linear
transformations with a ReLU activation function between them. The block can also be

7



2. Related Work

defined as follows:

FF (x) = max(0, xW1 + b1)W2 + b2 (2.2)

where W1 and W2 are the weights of the first and second linear transformations,
respectively. And, b1 and b2 are their corresponding biases.

2.2.2 Decoder-layer

The decoder-layer is composed by three residual modules with their respective normal-
ization layers, as the encoder does. The first module is formed by a masked multi-head
attention block, followed by a MHA block, and a feed forward block.

Taking into account that the network only predicts one word at a time, it is necessary
to incorporate the previous predictions into the network. This is exactly what the decoder
receives as an input in the masked multi-head attention block, with their respective po-
sitional embeddings. But since the input size is fixed, and we only have to attend to the
values we already have at any given time, we have to mask out those future values that
the network has yet to predict. Precisely for that purpose, a masking layer is placed in the
MHA block, right after scaling the values. The values belonging to future predictions are
replaced by −∞, which become zeros in the attention matrix after softmax is performed.

The outcome of the first module is delivered as V to the MHA block of the next module,
and as a residual connection as well, while Q and K come from the output of the encoder.
The result is finally given to the last feed-forward module, as we have seen in the encoder.

2.2.3 Stacked layers

So far, we have explained what each of the encoder and decoder layers look like. The
complete encoder is formed by N stacked encoder-layers, and similarly, the complete
decoder is formed by N stacked decoder-layers. Finally, to perform word classification, on
the top of the network, at the end of the decoder, a classification head is placed, formed by
a linear transformation followed by a softmax function, to obtain the output probabilities.

2.2.4 Problems

Over time, Transformer-based models have shown amazing scalability, where the larger
the network size and the dataset, the better the performance [8, 13]. At the moment, one of
the biggest models with state-of-the-art results in many NLP-tasks is GPT-3 with 175 · 109
parameters [8]. But it is not all good, the resources needed to train these models are not
accessible to everyone. As an example, the previous version GPT-2 with 1542M parameters,
requires one week of training on 32 TPUv3 chips, with an estimated cloud computing cost
of between $12,902 and $43,008 [48], which also leads to high CO2 consumption.

One of the problems of this architecture is the per-layer complexity, where self-attention
layer complexity isO(n2 ·d). Where d is the representation dimension also known as hidden
dimension. But the biggest problem is n, which refers to the length of the input sequence. To
solve this, multiple alternatives has appeared over time, with different attention strategies.
But recently it was shown that even if they require less computation, they also achieve

8



2.2. Transformer architecture

lower accuracy values than the regular self-attention in most of the cases [49]. Even so,
they are still an alternative to be considered.

2.2.5 Vision Transformer (ViT) and UNETR

The success of Transformers in many NLP tasks, motivated further research in other areas
like computer vision. However, the quadratic cost with respect to the length of the input
sequence is a serious problem which limited severely the research in this area in its early
stages [50]. A few years later, researchers discovered that one possible approach was to
divide the image into patches, flatten each patch into a vector, apply a linear transformation,
and work with them as if each vector were an embedded word [13]. Hence, the title of the
original paper: “An image is worth 16x16 words: Transformers for image recognition at
scale”. The architecture they used, known as Vision Transformer (ViT) is a stack of multiple
Transformer encoder-layers (see Fig. 2.5). Once more, exploring the idea of increasing
the Transformer size, they propose three different models with different configurations,
presented in Table 2.1.

Figure 2.5: ViT architecture [13]. The input image is first split in fixed-size patches, which are
linearly embedded, then position embeddings are added and fed to a Transformer encoder. In order
to perform classification, an extra learnable “classification token” (also known as [CLS] or [CLASS])
is added to the sequence. Image obtained from [13].

Model Layers Hidden size MLP size Heads Params
ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

Table 2.1: Details of Vision Transformer model variants [13].

Later on, by analyzing the ViT architecture, researchers discovered that spatial infor-
mation is maintained throughout the network [51]. This is specially interesting for tasks
such as object detection or semantic segmentation, which is why further research on the

9
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subject has been initiated. One of those proposals is the UNETR [33] we are going to work
with in this project. The name comes from “UNEt TRansformers”.

Originally, UNETR was presented for 3D biomedical image segmentation. The archi-
tecture takes a U-Net as the base, where instead of 2D operations, 3D ones are performed.
From this 3D U-Net, they replace the original convolutional encoder and place instead 12
Transformer encoder-layers, in a ViT style. But in this case, the Transformer input is a se-
quence of non-overlapping 3D patches instead of 2D ones. At this point, the encoder is like
the ViT with the only change of the extra input token [CLS], designed for the classification
task. Since this network is designed for semantic segmentation, this token is not added.

The skip connection signal of each layer l comes from the output of the 3 · l -th encoder
layer’s output. Where the first layer l = 0, creates a direct skip connection from the
input, with two convolutional blocks. Since the output of each encoder layer has the
same dimensions as the input, the first step is to reshape the signal and restore the three
dimensions. To adjust the resolution of the signal in each layer, several blocks based
on convolution and transpose-convolution are integrated in each skip connection. The
network is visually represented in Fig. 2.6.

Figure 2.6: UNETR architecture [33]. The 3D input volume contains four channels. The input
volume is divided in patches of 16 × 16 × 16 to introduce them later in the Transformer. The
hidden size of the Transformer is 768. The output contains three different classes in the original
segmentation task. Image obtained from [33].
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CHAPTER 3
Methodology

In this chapter, the changes applied to the architectures are presented. In addition, the way
we perform SSL is also explained.

3.1 UNETR-2D

In order to perform a fair comparison between both U-Net and UNETR architectures, the
first step is to adapt the UNETR architecture to perform 2D semantic segmentation. To do
this, first of all we feed the encoder with a sequence of 2D patches, as ViT does. Moreover,
we have adapted the rest of the network to perform 2D operations instead of 3D ones. We
will refer to this architecture as UNETR-2D.

This way, we are contrasting the same architecture, with just two main differences: (1)
while the U-Net uses a convolutional encoder, the UNTER-2D uses a Transformer-based
encoder; and (2) the usage of convolutional blocks and transposed convolutions by the
UNETR-2D on those skip connections coming from the ViT. Notice that the first skip
connection (l = 0) that comes from the input image directly by using two convolutional
blocks becomes similar to the first skip connection of the U-Net, which also comes from
two convolutional blocks. The difference is that U-Net keeps using the signal after applying
a pooling layer, and UNETR instead only uses this signal for the skip connection.

Regarding the hyperparameters, we adapted the hidden dimensionality to our particular
case. Originally, the base model proposed for ViT [13] had 768 hidden dimensions, which
keeps the same number of dimensions for each patch (note that every 16× 16× 3 patch is
flattened). In our case, with just one channel, we set the hidden dimensions of the base
model to 256. For the rest of the Transformer configurations, we scaled all dimensions
proportionally as they do.

3.2 YNETR-2D

Notice the fact that ViT starts to attend more those patches that are close between them
when the model is trained over huge datasets [51]. On the contrary, CNNs have this local
attention implicitly, by the way it works and its perceptive fields. Similarly, given its
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3. Methodology

architecture, the ViT can easily pay attention to every patch (the whole image), while CNNs
usually cannot [51].

Moreover, we have tried a hybrid network. This network, is built with both convolu-
tional and Transformer-based encoders, and only a single decoder, following the Y-Net
approach. We can see this network as a 2D U-Net where a second encoder has been placed,
but this time a Transformer encoder. Making use of the same reshape and convolutional
blocks used for skip connection signals in UNETR-2D, the skip connection signals of both
encoders, are concatenated and passed directly to the decoder, respecting the spatial dimen-
sionality of each layer. After these concatenations, 2D spatial dropout layers are used to
force the network to use both encoders. Experimentally, better results have been obtained
with such dropout. The idea behind the network is to take advantage of the qualities of each
architecture and combine them. From now on, we will refer to this network as YNETR-2D.
The YNETR-2D is visually represented in Fig. 3.1.

Figure 3.1: YNETR-2D architecture overview. Each one of the blue boxes corresponds to a multi-
channel feature map. The white boxes represent copied feature maps. The arrows represent different
operations. This architecture corresponds to the YNETR-2D Base version, with 12 Transformer
layers, which could be changed. Any of the Transformer output signals is first reshaped, like in
UNETR-2D, to recover the shape H

16 × W
16 × 256, in the case of using a patch size of 16× 16 and

256 hidden dimensions. We reduce the spatial resolution by two using max-pooling, while we use
up-scaling or transposed convolutions to increase the spatial resolution also by 2. BN refers to
Batch Normalization.

3.3 Self-supervised learning

This section is specially interesting due to the fact that we can improve the model’s
performance by using data without any label. The way this is performed is by creating
an altered version of each image, and letting the network learn how to recover the image,
using as ground truth the unaltered image. Doing it, we let the network learn features from
the given data that will be useful for future tasks. Once the model is pretrained, we use
that model as starting point for the training in the desired downstream task, in our case,
semantic segmentation.
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3.3. Self-supervised learning

There are many ways to alter images, but this project will explore the followings:

• Cutout [52]: Using a constant value 0, fill per image between one and five areas,
each one having 20% of the corresponding size of the height and width.

• Additive Gaussian Noise: Add Gaussian noise to each image, sampled once per
pixel from a normal distribution N (0, 0.15 · 255).

• Coarse salt and pepper: Mark 20% of all pixels in a mask to be replaced by salt
and pepper noise. The mask has a size between 4× 4 and 16× 16 pixels. The mask
is then upscaled to the input image size, which leads to large rectangular areas being
marked as to be replaced. These areas are then replaced in the input image by salt
and pepper noise.

• Low resolution emulation: To emulate low resolution images, we used the same
strategy used in [26], which in short consists of using Gaussian noise with µ = 0
and σ = 0.1. Next, the images are downsampled and upsampled again by the same
factor, in both cases using bilinear interpolation. Instead of using a factor of 2, we
have used a factor of 4, which experimentally has given us better results.

• Gaussian filter: Apply a Gaussian filter to each image. The standard deviation
used in the Gaussian kernel is 3. After the application, we kept the range of [0, 255]
values.

• Defocus blur: Emulate the aberration formed in the image when this is out of focus.
This effect can be emulated by the usage of certain kernels (in our case, we use the
kernel obtained with severity = 2).

• Motion blur: Emulate the apparent streaking of moving objects in a photograph.
This effect can be emulated by the usage of certain kernels (in our case, we use a
kernel of size 15× 15 with an angle randomly picked per image).

• Pixel dropout: For each image, sets a random percentage of pixels between 0% and
20% to zero.

For convenience, we work with the imgaug [53] library for the modifications, except for the
low resolution emulation. A visual example of each of the previously mentioned alterations
can be seen in Fig. 3.2.
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3. Methodology

Figure 3.2: Examples of each of the image alteration methods used for SSL.
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CHAPTER 4
Experiments

4.1 Datasets

Every single experiment performed in this project is based on any of the following publicly
available datasets.

4.1.1 Lucchi

The EPFL Hippocampus or Lucchi dataset [54] represents a 5×5×5µm section taken from
the CA1 hippocampus region of a mouse brain, with an isotropic resolution of 5× 5× 5nm
per voxel. The volume contains in total 2048× 1536× 1065 voxels, acquired by the usage
of focused ion beam scanning electron microscopy (FIB-SEM). An example image can be
seen in Fig. 4.1.

(a) (b)

Figure 4.1: (a) Lucchi image example. (b) Kasthuri image example.

Regarding the labels, the mitochondria of two neighboring subvolumes formed by
165 slices of 1024× 768 pixels were manually labeled by experts. This two subvolumes
are usually used as training and test sets. In this project, we will use mainly the labels
of Lucchi++ [55], which has been polished recently by two neuroscientists and a senior
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4. Experiments

biologist. Taking into account that we are going to work with 2D images, we will work
with 165 slices of 1024× 768 for both train and test sets.

4.1.2 Kasthuri++

In a similar way to Lucchi++, Kasthuri++ [55] is the re-labeling of the dataset by Kasthuri
et al. [56]. In this case, the volume is a part of the somatosensory cortex of an adult mouse
and was acquired using serial section electron microscopy (ssEM). The train set volume
dimensions are 85 × 1463 × 1613 voxels, while the test set ones are 75 × 1334 × 1553
voxels, with an anisotropic resolution of 3× 3× 30nm per voxel in both cases. An example
image can be seen in Fig. 4.1.

To work with 2D images, we will use 85 slices of 1463× 1613 for the training set and
75 slices of 1334× 1553 for the test set.

4.2 Evaluation

Recalling that Transformers use a fixed image size, we need to apply any methodology to
measure the segmentation quality under the same exact images as the others.

The first evaluation tested was cropping each image in 256× 256 sequential patches
with no overlapping, pass them through the network and then reconstruct the full size
segmentation. But doing it, several imperfections appears in the reconstructed segmentation.
Those regions with most errors were clearly on the joints between patches. So we discarded
this method.

The second evaluation tested is the one we have chosen and used. The idea is to
reconstruct the full-size segmentation but just using the central 128 × 128 part (for the
sake of simplicity, let’s call it a relevant patch) of each 256× 256 patch. In this way, for
each relevant patch, the outline is available to the network as a context, reducing the errors
we found in the joints with the previous method. Let’s divide it in two cases:

• If the height and width of the given image are divisible by 128, the method starts
by adding 64 pixels of padding to each side of the image. Next we divide the image
in 256 × 256 patches with 128 pixels of overlapping between them. Finally, after
processing with the network, relevant patches are extracted and by concatenating it
full size segmentation is achieved. This method is visually represented in Fig. 4.2.

• If the height and width of the given image are not divisible by 128, instead of adding
64 pixels of padding, the minimum number of padding pixels are added until the
height and width are divisible. As far as possible, the padding is equal on every
side of the image (left-right and top-bottom). Next, we follow the same steps as in
the previous case, with only one change in the last part. This time, border relevant
patches are no longer 128 × 128, for each relevant patch, padding side pixels are
incremented until reaching the original border of the image, i.e., no padding pixel is
used for any relevant-patch. This method is visually represented in Fig. 4.3.

Initially we used zero-padding, but we realized that padding damaged seriously the
prediction. Due to the self-attention, the error was propagated through the whole 256×256
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4.2. Evaluation

Figure 4.2: Illustrated evaluation method, first case: The image height (H) and width (W ) are
divisible by 128. With 64px of mirror padding, the image is first divided intoN patches of 256×256,
with 128px of overlapping between them. After processing them with the network, the colored
128 × 128 relevant patches are cropped from each patch. Finally, by concatenating them while
keeping the place of origin, the complete semantic segmentation is reconstructed.

Figure 4.3: Illustrated evaluation method, second case: The image height (H) and width (W ) are not
divisible by 128. With as little mirror padding as possible to become the image H and W divisible
by 128, the image is first divided into N patches of 256× 256, with 128px of overlapping between
them. After processing them with the network, the colored relevant patches are cropped from each
patch. Those relevant patches, which belong to the edge of the image, will have the height (HR2)
and width (WR2) necessary to cover the whole image. Finally, by concatenating them while keeping
the place of origin, the complete semantic segmentation is reconstructed.
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4. Experiments

patch. It is important to note that these experiments have been carried out with a model
trained with Lucchi++, which does not contain large black elements. Finally, we solved
that by applying mirror-style padding. An example of each method’s result is shown in
Fig. 4.4. Note that, although in the above explanations we have shown the values we have
used in our particular case, this method could perfectly well be used with other parameters.

Figure 4.4: Example of results using each reconstruction method. The predicted images show the
reconstruction of the multiple probability maps, given directly by the trained UNETR-2D network,
with the probability of each pixel belonging to a mitochondrion, where the whiter the pixel, the
higher the probability.

In the case of convolutional neural networks, such as U-Net or Attention U-Net [4,
41, 34], the input size is not limited, and we can make use of a different image size than
the one used during training. Therefore, the evaluation has been carried out by giving
as input the full-size images. Consequently, a full-size segmentation is obtained. Unlike
Transformer-based models, no special processing or assembly technique is required. The
best results have been obtained by this way of working [34].

4.2.1 Metrics

The semantic segmentation task consists on performing pixel-wise classification for a given
image. As an example, if the classes we are working with are 0 for animals and 1 for the
rest of elements, the expected segmentation for a given image, is a mask of the same spatial
resolution, filled with 0 and 1 values, depending on if the given image contains any animal
or not. Where those pixels that are part of any animal in the image should contain 1 value,
and the rest of pixels should contain 0 value.

To measure the quality of the predicted segmentation, several metrics can be used,
although not all of them fit well for this problem with highly unbalanced classes. Some of
the most famous metrics used for this task are the Dice coefficient, also known as F1-score
and the intersection over union (IoU ), also known as Jaccard index.

Dice measure two times the intersection between the predicted mask and the ground

18



4.3. Implementation details

truth, and divide it by the sum of both sets. This metric could be also defined as follows:

Dice =
2TP

2TP + FP + FN
(4.1)

where TP are the true positives, FP the false positives and FN the false negatives, being
the foreground the positive class and the background the negative one. This dice coefficient
give us a similarity coefficient in the range [0,1] where 1 means a perfect coincidence or
segmentation, and 0 no coincidence.

On the other hand, IoU measures the overlapping between the predicted mask and the
ground truth, and divide it by the union of both. And the given value is also between [0,1],
where 1 means a perfect coincidence or segmentation, and 0 no coincidence. This metric
is illustrated in Fig. 4.5. Usually this metric is performed for each class individually, and
the final value is just the mean over all classes. In our particular case, the background is
much more likely than the foreground class, where the foreground is the mitochondria and
the background is the rest of the elements. Therefore, we will work with the IoUF value,
which measure the IoU of the foreground class exclusively. Doing it, we avoid any IoU
inflation given by the background class. IoUF can be also defined as follows:

IoUF =
TP

TP + FP + FN
(4.2)

To compare ourselves with others, we will make use of the IoUF metric. To predict
foreground pixels from the probability map provided by the neural network, a threshold
value of 0.5 is applied.

Figure 4.5: Illustration of the intersection over union metric for a single class.

4.3 Implementation details

4.3.1 Data processing

Since UNETR-2D works with Transformers, a fixed input size is needed. To reproduce the
training conditions used in the U-Net [34], which uses patches of 256× 256, we have set
the input size of UNETR-2D to 256× 256× 1 (H ×W ×C), which refers to height, width,
and channel respectively. To obtain the patches of this resolution, extra needed padding
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4. Experiments

is added to each image until getting a H and W multiple of 256, with as little padding
as possible. The padding is applied in a mirror way. If the image H and W was already
multiple of 256, no padding is added. Next, 256 × 256 sequential patches are extracted,
with no overlapping. The data is normalized in the [0, 1] range.

4.3.2 Training setup

We explored a wide range of hyperparameters, with different schedulers, batch sizes, etc.
Table 2 in Appendix B lists all the hyperparameters explored. To be more precise, we
minimize the binary cross-entropy (BCE) loss using the AdamW optimizer [57] with 1e− 5
of weight decay, a cosine decay learning rate schedule, a learning rate of 1e− 4, and batch
size of 6. We train for 360 epochs, with a patience of 60 epochs, monitoring the evolution
of the validation loss. The validation set is formed with the 10% of the training data, where
images are selected at random. During the training process, we also apply the on-the-fly
data augmentation (DA) proposed [34] for this task, namely random rotations, vertical
flips and horizontal flips. The code has been implemented using Python v3.8.10 [58] as
the programming language, and Tensorflow v2.9.1 [59] and Keras v2.9.0 [60] as the main
libraries. To speed up the training process, we used a GPU card, in particular the NVIDIA
GeForce RTX 3090.
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CHAPTER 5
Results

Every result presented in this chapter is the average of 10 repetitions with the same setup
and have been obtained without any kind of test-time data augmentation or post-processing.

5.1 Ablation study

In order to investigate the relevance of each component of our architectures, we con-
ducted an extensive ablation study in which we examined several variations of both the
convolutional and Transformer parts of the networks.

5.1.1 Variations of convolutional parts

Keeping the complete Transformer part intact, we compare the same components that have
been explored with the U-Net [34], also in an incremental way. For this first comparison,
16 initial filters are used in both architectures and the UNETR-2D Base model is selected.
The versions compared are the following:

1. Baseline: four-level 2D U-Net and UNETR-2D with ReLU activations, Glorot uniform
kernel initialization, 16 feature maps in the first level, which is doubled on each level,
and no regularization or DA.

2. Baseline with DA.

3. Adding batch normalization.

4. Adding dropout as normalization in an incremental way. To be specific [0.1, 0.1, 0.2,
0.2, 0.3], which means that in the first level 0.1 dropout probability is applied, in the
second level also 0.1, then 0.2 and so on.

5. Replacing ReLU activation with ELU activation.

6. Replacing Glorot uniform kernel initialization with He normal kernel initializa-
tion [61].
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5. Results

7. Adding attention gates [41].

The results on the Lucchi dataset for each case are shown in Table 5.1. For both
U-Net and UNETR-2D architectures, the use of data augmentation improves the results
significantly, with a notable difference in the case of the UNETR-2D. Then, while the batch
normalization is significantly helpful in UNETR-2D, it is the only discarded element in the
U-Net. In the case of the U-Net, the rest of the elements achieve similar or better results. In
contrast, in the case of the UNETR-2D, only the He normal kernel initialization improved
slightly the previous results. Overall, the U-Net achieves better and more consistent results.
We can see that the effect of the different components is lower in the U-Net than in the
UNETR-2D, even if the U-Net is a fully convolutional architecture, while in the UNETR-2D
we are just modifying the convolutional part.

Foreground IoU
Method U-Net [34] UNETR-2D Base
Baseline 0.739 ± 0.002 0.462 ± 0.024
+ DA 0.871 ± 0.004 0.774 ± 0.012
+ Batch norm. ⋆ 0.869 ± 0.002 0.824 ± 0.011
+ Dropout ♦ 0.881 ± 0.002 0.819 ± 0.008
+ ELU ♦ 0.881 ± 0.002 0.813 ± 0.010
+ He normal 0.881 ± 0.003 0.829 ± 0.017
+ Attention Gates ♦ 0.884 ± 0.002 0.788 ± 0.014
⋆ Discarded on U-Net
♦ Discarded on UNETR-2D

Table 5.1: Ablation study in a contrastive way, comparing U-Net [34] and UNETR-2D Base on
Lucchi test set. From top to the bottom, on each row, components are incrementally applied. Those
components that impair performance have been discarded. The best result for each model is shown
in bold.

Since we know which components are the most suitable, we will continue to use them
from now on. This time we will explore a different number of initial filters. As always, each
layer doubles the previous number of filters. In the case of the U-Net, we already know that
the best assignment is 16 [34]. Therefore, we will only study the case of the UNETR-2D
Base, this time with the Lucchi++ dataset. The results can be found in Table 5.2, where we
found that the best assignment for the UNETR-2D is 32 initial filters. From now on, we
will continue to use the best configuration for each architecture.

N initial filters IoUF N Params Inference time
(ms)

8 0.822 ± 0.022 44.7M 6.5 ± 7.5
16 0.846 ± 0.008 45.6M 6.8 ± 7.7
32 0.853 ± 0.010 48.7M 7.4 ± 7.7
64 0.850 ± 0.014 60.2M 10 ± 7.4

Table 5.2: Effect of the number of initial filters on UNETR-2D Base’s segmentation performance on
Lucchi++ test set, number of parameters and inference time on 256× 256 patches. The best result
is shown in bold.
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5.1.2 Transformer variants

Using the best convolutional part found in the previous section, we compare different
Transformer versions. Since the Huge and Large Transformer versions do not fit in memory,
we have not been able to train them. On the other hand, we tried with smaller versions
(renamed as Mini and Small). Note that the skip-connections of the UNETR-2D, with 12
encoder layers, come from the output of the 3 · l -th encoder layer (where l is the layer, and
the first layer is l = 0), being the Transformer output l = 4. In each version, we change
the number of layers and consequently the encoder layers from which the skip-connection
signals are taken. For the sake of clarity, from now on we will work with a more general
term Sm, and say that for each skip-connection the output of the encoder layer Sm · l is
used. The specifications of each of the tested variants are given in the Table 5.3.

Model Layers Hidden size MLP size Heads Sm

UNETR-2D Mini 4 64 256 4 1
UNETR-2D Small 8 128 512 8 2
UNETR-2D Base 12 256 1024 12 3

Table 5.3: Specifications of our UNETR-2D Transformer variants: Mini, Small and Base.

5.2 Network comparison

To test how well each network performs, we compare them using both datasets: Lucchi++
and Kasthuri++, keeping the best configuration and hyperparameters found in Lucchi++ for
Kasthuri++ as well. For YNETR-2D, we also used the best configuration and hyperparame-
ters found for UNETR-2D, except for the dropout, which uses not only dropout layers in the
convolutional block, but also 2D spatial dropout layers after each of the concatenations of
the signals from both encoders to force the network to use both encoders. The probabilities
used for these 2D spatial dropout layers are the incremental probabilities mentioned above
[0.1, 0.1, 0.2, 0.2, 0.3]. This configuration has proven useful experimentally and leads to
better results. As for the generalization or cross-dataset performance, this is analyzed in
more detail in the Appendix A.

The results of each network can be seen in Table 5.4. Focusing first on the Transformer
variants, we realized that we can obtain similar or even better results with smaller Trans-
formers, and therefore with fewer parameters than with Base Transformers. This might
be related to the fact that we do not use a massive dataset with several million images
like JFT-300M or ImageNet-21K [62], which are commonly used in ViT papers [51, 13].
Therefore, it is not necessary to use a large number of parameters to work with this kind
of small datasets. Another interesting interpretation of these results is that reducing the
dimensionality by using a smaller hidden size could help to remove the noise from the
image and thus achieve better segmentation with less effort and parameters.

Focusing this time on a more general view of each architecture, we have seen that,
even if UNETR-2D achieves good results, better results can be obtained with the U-Net or
Attention U-Net networks, which are also the smallest and fastest. In the case of YNETR-2D,
the gap with U-Net becomes smaller in both datasets, being even better than U-Net in
the case of Kasthuri++. However, it should be remembered that YNETR-2D is the largest
architecture in terms of parameters.
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Figure 5.1: Qualitative network comparison. Two different cases are shown: a) and b), with exactly
the same distribution. From left to right, the first row contain the input image and the corresponding
ground truth mask. Followed in the next row by the predicted binary mask of U-Net, Attention
U-Net, UNETR-2D Base and YNETR-2D Base respectively. And in the last row, their corresponding
predicted probability maps. Note that multiple gray values can be found in the predicted probability
maps. This would enable further analysis to be carried out.
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Dataset Model Params IoUF
Inference time

(ms)
Lucchi++ 2D U-Net [34] 1.95M 0.903 ± 0.007 2.9 ± 1.1

2D Attention U-Net [34] 1.99M 0.906 ± 0.003 2.9 ± 1.1
UNETR-2D Mini (ours) 4.24M 0.861 ± 0.008 4.7 ± 3.8
UNETR-2D Small (ours) 9.34M 0.857 ± 0.010 5.4 ± 4.8
UNETR-2D Base (ours) 48.7M 0.853 ± 0.010 7.4 ± 7.7
YNETR-2D Mini (ours) 10.3M 0.880 ± 0.024 5.3 ± 4.9
YNETR-2D Small (ours) 15.4M 0.894 ± 0.009 6.1 ± 5.8
YNETR-2D Base (ours) 54.7M 0.892 ± 0.013 8.4 ± 7.2

Kasthuri++ 2D U-Net [34] 1.95M 0.910 ± 0.002 2.5 ± 0.9
2D Attention U-Net [34] 1.99M 0.910 ± 0.001 2.5 ± 0.9
UNETR-2D Mini (ours) 4.24M 0.886 ± 0.004 3.9 ± 3.3
UNETR-2D Small (ours) 9.34M 0.888 ± 0.003 4.6 ± 3.8
UNETR-2D Base (ours) 48.7M 0.887 ± 0.004 6.7 ± 5.4
YNETR-2D Mini (ours) 10.3M 0.917 ± 0.003 4.5 ± 4.5
YNETR-2D Small (ours) 15.4M 0.916 ± 0.001 5.2 ± 4.7
YNETR-2D Base (ours) 54.7M 0.915 ± 0.002 7.5 ± 6.1

Table 5.4: Quantitative comparisons of segmentation performance. The best result for each dataset
is shown in bold. The processing time average and standard deviation of a single 256× 256 patch
is shown in the inference time column.

For a qualitative comparison, see Fig. 5.1. As can be seen, UNETR-2D makes even more
mistakes than U-Net architectures, especially under-segmenting mitochondria. Overall,
U-Net architectures make smoother segmentations of the mitochondria, while UNETR-2D
introduces a bit more noise both inside and outside the mitochondria, on elements that
share some similarity. Although most of this noise disappears in the binary mask, giving
mostly sharpen edges in those conflicting mitochondria. On the other hand, the aliasing
found in UNETR-2D disappears completely in the case of YNETR-2D. But unlike the other
architectures, it makes some new errors. For example, in the upper-right part of the second
case shown, there is a complete mitochondrion that have not been correctly classified.

As mitochondria are mainly small objects, Transformer-based architectures may not be
the best alternative. This is because attention to close details is required, where Transformer-
based architectures may have more difficulties. We have also seen this in the YNETR-2D
where the presence of the convolutional encoder has been helpful. This could also be the
reason why U-Net performs better than UNETR-2D. Perhaps this type of Transformer-based
architectures is better suited to other datasets with long-range dependencies. The use of
YNETR-2D could also be interesting in such datasets, where we can exploit a bit more
the potential of both encoders, both with local attention and with self-attention, which
achieves a more global perspective.

5.3 Self-supervised learning

In this section, we compare the impact of different pretext tasks on semantic segmentation
performance. This way, we can see how much improvement we can achieve without new
data or labels, and also which pretext tasks provide a better result. This could be especially
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Pretext task Modification function IoUF

None - Baseline 0.852 ± 0.015
Denoise Pixel dropout (+0.009) 0.861 ± 0.011

Cutout (+0.015) 0.867 ± 0.010
Defocus blur (+0.015) 0.867 ± 0.008
Additive Gaussian Noise (+0.019) 0.871 ± 0.012
Coarse salt and pepper (+0.020) 0.872 ± 0.008
Gaussian filter (+0.021) 0.873 ± 0.009
Motion blur (+0.022) 0.874 ± 0.005
Low resolution emulation (+0.024) 0.876 ± 0.007

Table 5.5: Quantitative comparison of segmentation performance in Lucchi++ test set among the
usage of different pretext tasks, following the SSL strategy with UNETR-2D Base model. Top to
bottom: techniques are ordered by the IoUF , where highest is at the bottom side and lowest values
in the top side. To the left of each value of IoUF is shown the difference between the means with
respect to the baseline. The best result is shown in bold.

interesting in Transformer-based architectures for using larger unlabeled datasets, or to
squeeze some performance out of the data we already have. As we have already seen, the
use of DA has a critical impact on performance. For every pretext task, we used the same
hyperparameters as for semantic segmentation, with the only exception being the loss
function, where we used the mean squared error (MSE) loss function instead of BCE.

The results are shown in Table 5.5. We can see that, although the impact of SSL is not as
great as that of DA, SSL performs better than the baseline in every case and achieves more
stable results. Then, analyzing these techniques, we find that the functions that modify
the image by using the previous values (such as Gaussian filter or motion blur) generally
perform better than those that directly replace some values with other, constant, random
or normally distributed values (such as pixel dropout or cutout). In any case, the IoUF

difference among most of the techniques is quite small. The best pretext task we have
found is denoising with low resolution emulation.
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CHAPTER 6
Conclusions and Future Work

In this project, we have analyzed and compared state-of-the-art U-Net architectures with
novel Transformer-based UNETR-2D architectures for the task of semantic segmentation of
EM images. After exploring several hyperparameters and Transformer variants and making
use of the best configuration found, we have seen that both models achieve close IoUF

values, although U-Net remains above. Next, we combined both architectures in YNETR-2D
and compared it with the previous models. This time, the results are even closer than
before with respect to U-Net, improving the U-Net results for the Kasthuri++ dataset by a
small amount. Finally, we explored the influence of using SSL techniques with UNETR-2D
and found that we could improve the IoUF value by 0.024 using a simple pre-training for
denoising with the low resolution emulation technique. Although we have not tried this for
every model due to time constraints, we can expect similar improvements for all of them.

Considering that the EM image datasets we have used contained a very limited amount
of images, as future work it would be interesting to pre-train the model with a larger
dataset. For instance, we could use denoising as we did for SSL, and then fine-tune for
semantic segmentation with the smaller dataset. This way, we could exploit the potential
of the Transformer-based models a bit more, and see if they are able to outperform U-
Net-like architectures in this task. Another interesting aspect to do would be to analyze
the generalization achieved with Transformer-based architectures, since this is an open
problem in the area [26]. A good dataset to analyze all the above-mentioned could be the
recently published CEM500K [63], with almost 500, 000 unlabeled EM images. Finally,
another interesting way to continue this work would be to repeat the comparison with
other segmentation datasets beyond mitochondria in EM images.
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Appendix A: Unsupervised Domain
Adaptation

In this Appendix, we describe a collateral result derived from this project. In particular, we
have designed, implemented and published [26] a new convolutional model for semantic
segmentation using domain adaptation.

Related work

Here we will explore a little bit about another related task, namely unsupervised domain
adaptation. By domain and style, we refer to the intrinsic feature space and characteristics
of a particular dataset and the distribution from where it is drawn. Domain adaptation
can be seen as a particular type of transfer learning where instead of trying to transfer the
knowledge from task A in domain A to task B in domain B, the tasks are kept the same
while the domains are different. On the other hand, style transfer is mainly focused on
adapting the domain from one dataset to another.

Existing domain adaptation methods can be divided depending on the label availability
during the training process. Thus, they can be supervised, if both source and target
domain labels are available; semi-supervised, if source labels and some target labels are
available; and unsupervised, if only source labels are available while target data is entirely
unlabeled [64]. Moreover, methods can also be categorized based on the learning model
used, i.e., either shallow (usually relying on predefined image features and traditional
machine learning models) or deep (if they use deep learning architectures). We will focus
on the strategy known as deep unsupervised domain adaptation.

The approach is based on multi-task deep neural network architectures that receive
both source and target samples as input. In this case, apart from solving the downstream
task for the source (labeled) data, the model aims to exploit the features of the target domain
to learn the feature shift between domains. Among these types of unsupervised and semi-
supervised domain adaptation methods, we find the Y-Net [43], used for the segmentation of
EM images. Its architecture consists of an encoder-decoder such as a U-Net [4], coupled with
a second decoder in an autoencoder strategy. While one decoder is trained for segmentation,
using the images with available labels, the second decoder is trained to reconstruct all
available images, including the unlabeled ones, in an unsupervised manner. Since both
decoders share the same encoder, the features learned by the autoencoder are used for
segmentation too. Consequently, the model works with unlabeled (target domain) data
features. Following this idea, in combination with adversarial losses, similar models such as
Domain Adaptive Multi-Task Learning network (DAMT-Net) [65] have been proposed. This
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network builds on top of the Y-Net architecture and adds two discriminators during training,
following a Generative Adversarial Network (GAN) approach. The first discriminator uses
the predicted segmentation, while the second discriminator uses the final feature maps of
the network.

To address the problem of domain adaptation between different EM datasets, we present
an approach that reduce the domain shift. Firstly, a cross-domain 2D Attention U-Net and
UNETR-2D Base are introduced, trained only on source domains. Next, a simple histogram
matching between domains is added as pre-processing prior to the use of the 2D Attention
U-Net model. Finally, more sophisticated domain adaptation approaches are presented
based on state-of-the-art domain adaptation multi-task deep neural networks.

Methodology

Histogram matching

A straightforward approach to make the images of one domain look closer to the images
of another domain is histogram matching. Most commonly, this technique is applied to
one source image so that its histogram matches the histogram of a target image [66]. Here
instead, we use as target histogram the mean histogram of the target domain images, so
the histogram of all source images are transformed to match it.

Some images of our datasets present zero-padding surrounding the tissue, which pro-
vokes an artificial high pick at the zero value in their histograms. Since we are only
interested in matching the histogram of the tissue part of the images, we modified the
actual number of zeros with linear regression using the first bins of the original histogram.
We set the value to zero in the absence of initial values or when predicting a negative
number. This process is done for both target and source histograms.

Multi-task neural networks

Following the idea behind Y-Net [43], we have built a similar architecture taking as a
base model the previously mentioned Attention U-Net [34]. We refer to this network as
Attention Y-Net. In short, the architecture consists of the classical encoder-decoder setup,
where a new second decoder is placed. We can see the architecture as the combination of
the Attention U-Net and an autoencoder, where both parts share the same encoder. The
architecture is illustrated in Fig. 1.

The network is trained using a loss function (L) made of two terms: a segmentation
term based on the binary cross-entropy between the predicted and ground truth masks
(LBCE), and a reconstruction term based on the mean squared error between the predicted
and the original grayscale images (LMSE), as given by

L = αLMSE + (1− α)LBCE , (1)

where the weight α is a numeric value between 0 and 1. For those images without
available labels (binary masks), the LBCE value will be 0.

In its original work, the training of the Y-Net [43] was proposed in two sequential
steps. First, the network is trained unsupervised to perform only reconstruction (α = 1).
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Figure 1: Architecture of the proposed Attention Y-Net used for domain adaptation. The architecture
is formed by one encoder and two decoders: one for image reconstruction (without skip connections)
and one for segmentation (with skip connections and attention gates).

Then, the model is fine-tuned to perform segmentation with the available labels (α = 0).
However, we have experienced instability in this step. Namely, quite often, the predicted
reconstruction of the network was a flat grey-value image. Therefore, we propose a new
additional step before the unsupervised pre-training, which combines both tasks using all
the available data. We set α = 0.98, which was experimentally found to help balancing
both loss terms.

With our additional pre-training step, the network consistently outputs improved
results, out of the local minimum achieved with the flat grey-value image. Next, we freeze
the network encoder (blue blocks in Fig. 1). Otherwise, the network forgets the target
domain features in the next step. Experimentally, we observed that the network performs
better if we let the bottleneck and the two decoders unfrozen. Remarkably, as observed with
the self-supervised approach, the performance of the whole process was greatly enhanced
thanks to the use of histogram matching after the first step.

The first step was carried out for 50 epochs. We used an initial learning rate of 1e− 3
that got reduced when reaching plateaus, stochastic gradient descent (SGD) as optimizer
and a patience of 7 epochs over the monitored validation loss. In the second training step,
we train for 40 epochs (with a patience of 6). We use a learning rate of 2e − 4, and a
“reduce on plateau” scheduler once again, but this time with Adam optimizer. Finally, in the
last training step, we train for 100 epochs with a patience of 15 while monitoring source
validation loss. We follow a one-cycle learning rate policy [67] with a maximum learning
rate of 2e − 4, and use Adam as optimizer. For all training steps, the optimal batch size
was found to be 1. The input to the model consists of 1000 random cropped patches of
256× 256 pixels, from which 10% is used for validation. This training configuration was
empirically found.

31



Appendix A: Unsupervised Domain Adaptation

Results

All the methods proposed here were applied to all the possible source-target combinations
of the two EM datasets introduced in section 4.1. Moreover, for a more detailed evaluation
and comparison with the state-of-the-art, we executed as well the same experiments using
the publicly available implementation of DAMT-Net [65]. As it is an extended practice on
EM image processing, we also tested Attention U-Net method on the same image data after
preprocessing them using contrast limited adaptive histogram equalization (CLAHE) [68].
Notice CLAHE is a contrast equalization method, thus not intended to match two intensity
distributions. However, its effect on the image contrast may bring the histogram of our
datasets closer to each other.

As we can see in Table 1, when we try to use the Attention U-Net or UNETR-2D in
a different domain, the performance is drastically lost, from almost 0.9 of IoUF in both
datasets, with supervised training on target directly, to almost 0 of IoUF in both datasets,
when is not trained for that specific domain. Although UNETR-2D shows a little more
generalization capacity, it is not enough in our case. Nevertheless, it is an interesting
feature to keep in mind for future work. Due to time constraints, no further experiments
with Transformer-based models (UNETR-2D or YNETR-2D) have been carried out.

Just by applying CLAHE or histogram matching, we are able to significantly improve
performance. Meanwhile, with Attention Y-Net and histogram matching, we achieve
not only good results, but also more stable under multiple repetitions and under different
datasets, improving significantly results achievedwithDAMT-Net. Nevertheless, as happens
with most of the methods in Table 1, the performance could be better or worse depending
on the datasets used as source and target. If we make use of more datasets, even with
Attention Y-Net we can see variations in the performance. This can be clearly seen in [26],
as well as other proposals for this task and further analysis. Although these proposals
achieve good results, this is only one step in this area, and much work remains to be done
to achieve results similar, or at least close, to the supervised strategies.

Method Source: Lucchi++ Kasthuri++
Target: Kasthuri++ Lucchi++

UNETR-2D Base (ours) 0.023±0.025 0.060±0.027
2D Attention U-Net [34] 0.017±0.008 0.000±0.000
2D Attention U-Net [34] + CLAHE 0.620±0.051 0.433±0.085
2D Attention U-Net [34] + HM (ours) 0.679±0.043 0.268±0.048
2D Attention Y-Net + HM (ours) 0.668±0.020 0.704±0.045
DAMT-Net [65] 0.279±0.078 0.569±0.088

Table 1: Cross-dataset domain adaptation methods evaluation. Results are shown based on the
mean IoUF value (± standard deviation) obtained in the test partition of the target datasets. The
best results of each column are shown in bold. HM refers to Histogram Matching
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Resources

Code availability

The code is publicly available at https://github.com/AAitorG/UNETR_2D.

Data availability

The Lucchi++ and Kasthuri++ datasets can be downloaded from https://sites.google.
com/view/connectomics/.

Hyperparameter search space

This section describes in detail the search we performed for the optimal training configu-
ration and set of hyperparameters in our proposed UNETR-2D Base. The corresponding
search space and best values are summarized in the table below using the following notation:

• (a, b, c): All values set, e.g., dropout(0.1, 0.2, 0.3) in a 3-depth level network indicate
that 0.1 dropout value has been set in the first level, 0.2 dropout in the second level
and 0.3 in the third level.

• choice[a, b, ...]: One value between a, b and so on. E.g. [10, 15, 20, 30, 60] possible
values are: 10 or 15 or 20 or 30 or 60 (but only one).

• a, b, c, ...: All tested values, e.g., flips, rotations.

• BCE: Binary cross entropy.

• SGD: Stochastic gradient descent.

• AdamW: Adam algorithm with weight decay [57].

• Reduce on Plateau: A learning rate policy to reduce the value of the learning rate when
the monitored metric has stopped improving (https://keras.io/api/callbacks/
reduce_lr_on_plateau/).

• OneCycle: One-cycle learning rate policy for super-convergence [67].
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• Cosine Decay: Learning rate decay with cosine annealing [69].

• ReLU: Rectified Linear Unit activation function.

• ELU: Exponential Linear Unit activation function.

• GELU: Gaussian Error Linear Unit activation function [70].

• He normal: He normal [61] as kernel initialization.

• Glorot uniform: Glorot uniform [71] as kernel initialization.

Hyperparameter Search space Best assignment
Data

Validation True True
Random validation True True

% of train as validation 10% 10%
Patch size 256× 256 256× 256

Shuffle train on each epoch True True
Data augmentation flips, rotation_range(180) flips, rotation_range(180)

Training
Number of epochs choice[50, 100, 150, 200, 360] 360

Batch size choice[1, 2, 6, 12] 6
Loss type choice[BCE + Dice, BCE] BCE
Optimizer choice[SGD, Adam, AdamW] AdamW

Weight decay (in AdamW)
choice[1e-7, 1e-6,
1e-5, 1e-4, 1e-3,
1e-2, 5e-2, 0.3]

1e-5

Learning rate 1e-4 1e-4

Scheduler
choice[OneCycle,

Reduce on Plateau,
Cosine Decay, None]

Cosine Decay

Patience
choice[5, 30,
40, 50, 60,

100, 200, 360]
60

Architecture
Initial feature maps choice[8, 16, 32, 64] 32

Dropout type
choice[None,

Spatial Dropout(0.1, 0.1, 0.2, 0.2, 0.3),
Dropout(0.1, 0.1, 0.2, 0.2, 0.3)]

None

Kernel initializer choice[He normal, Glorot uniform] He normal
Convolutional part’s

activation choice[ReLU, ELU, GELU] ReLU

Table 2: Hyperparameter search space for semantic segmentation task using the UNETR-2D Base.
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