
Master’s Thesis
Computational Engineering and Intelligent Systems

Understanding the elementary landscape
decomposition of the QAP and its effects on local

search based algorithms

Xabier Benavides

Advisors
Josu Ceberio

Leticia Hernando

July 12th, 2022

Abstract

Elementary landscapes are a special type of combinatorial landscapes that have some
properties that make them particularly suitable for working with meta-heuristic algorithms,
specially local search based methods. In most of the cases a landscape is not elementary,
however, if the neighborhood function meets some conditions, it can be decomposed
into a set of elementary landscapes through a process that is called Elementary Landscape
Decomposition (ELD). This is the case of theQuadratic Assignment Problem (QAP) under the
swap neighborhood, which can be additively decomposed into three elementary landscapes.

This work has two main goals. First, we use the ELD approach to analyze the behaviour
of two local search based meta-heuristics that optimize the QAP. In this sense, we intend
to check whether incorporating the ELD during the optimization process improves the
performance of meta-heuristic algorithms. Second, we propose an additional decomposition
of the elementary landscapes that form the QAP. This decomposition defines a framework
that helps us to characterize what is measured by each elementary landscape, hence giving
us a deeper insight into the ELD of the problem.

i

Contents

Contents iii

List of Figures v

List of Tables vii

Algorithm index ix

1 Introduction 1

2 Basic concepts 5
2.1 Combinatorial Optimization . 5

2.1.1 Quadratic Assignment Problem . 5
2.2 Elementary Landscapes . 6

2.2.1 Elementary Landscape Decomposition of the QAP 8
2.3 Variable Function Search: A modified Tabu Search 10

3 Algorithm comparison 13
3.1 Benchmark of instances . 13
3.2 Experiments and results . 14
3.3 Analysis and discussion . 18

4 Analysis of the Elementary Landscape Decomposition 27
4.1 Decomposition of the elementary components 27
4.2 Theoretical study . 29
4.3 Experimental study . 35
4.4 Implications . 40

5 Conclusions and future work 43

Bibliography 45

iii

List of Figures

3.1 Ranking box plots of the local search algorithms 15
3.2 Simplex plots of the Bayesian signed-rank tests 18
3.3 Distance matrix comparison . 20
3.4 Objective function evolution during the local search algorithms 21
3.5 Elementary function evolution during the local search algorithms 22
3.6 Comparison between the elementary function values 24

4.1 Combinations of locations and facilities that correspond to each auxiliary function 32
4.2 Magnitude of the coefficients in each auxiliary function 33
4.3 Sub-function transition graph . 34
4.4 Sub-function evolution during the local search algorithms (Dre) 36
4.5 Sub-function evolution during the local search algorithms (Tai-e) 37
4.6 Comparison between the sub-function value variations (Dre) 38
4.7 Comparison between the sub-function value variations (Tai-e) 39
4.8 Mean differences between the magnitudes of the sub-function value variations 40

v

List of Tables

2.1 ϕm parameter values in each elementary landscape 9

3.1 Ranking statistics of the local search algorithms 14
3.2 Expected probabilities of the Bayesian signed-rank tests 16

4.1 Expected values of the sub-functions . 34

vii

List of Algorithms

1 Tabu Search pseudocode . 11
2 Variable Function Search pseudocode . 12

ix

CHAPTER 1
Introduction

Combinatorial Optimization Problems (COPs) [1, 2, 3] are generally complex problems.
Their goal is to find the solutions that optimize one or more objective functions in a finite or
numerable infinite discrete search space. Many real world situations that involve discrete
variables can be modelled as COPs, to name a few, route planning [4, 5], community
detection [6] or the analysis of DNA fragments [7, 8] are some illustrative examples.
Therefore, it is easy to see that designing algorithms that efficiently solve this type of
problems is a key objective in many areas.

In the case of NP-hard COPs [9], there is no algorithm capable of solving all instances
of such problems in a polynomial time in the dimension of the instance (unless P = NP).
Some of the most relevant COPs are classified as NP-Hard, such as the Traveling Salesman
Problem (TSP) [10], the Linear Ordering Problem (LOP) [11] or the GraphMatching Problem
(GMP) [12]. When the instance is small, this type of problems can be optimally solved
by some exact algorithms. In this sense, Branch and Bound [13] and Branch and Cut
[14] methods have been extensively used for solving small sized instances. Nevertheless,
these strategies are not feasible for larger instances, since their computational cost grows
exponentially with the problem size. Thus, in such cases, the meta-heuristic approaches
emerge as an interesting alternative.

Meta-heuristic methods [15, 16] are optimization algorithms that do not guarantee to
find the global optimum of the given problem. Instead, they provide good solutions in a
reasonable amount of time, which is usually enough in many real world situations. Over the
last decades, a huge number of different meta-heuristic have been proposed to solve all kind
of combinatorial optimization problems, ranging from local search based algorithms that
rely on neighborhood structures [17, 18, 19, 20] to population based algorithms inspired by
natural processes [21, 22, 23, 24].

In recent years, one of the relevant problems in the combinatorial optimization field is
the Quadratic Assignment Problem (QAP) [25, 26]. This problem has its origin in logistic
planning, but it has applications in many other fields, such as layout design [27], keyboard
configuration [28], backboard wiring [29] or parallel production scheduling [30]. Further-
more, some of the most relevant COPs are just particular cases of the QAP (e.g., the TSP
[31]), which makes this problem one of the most studied COPs in the literature, and will be

1

1. Introduction

the problem of interest in this work.
As the QAP is a NP-hard problem [32], a number of works in the field have been devoted

to developing efficient meta-heuristic algorithms [33]. In particular, Memetic Algorithms
(MA) [34, 35] have arisen as competitive methods for solving the QAP. Memetic algorithms
are just population based algorithms that internally use some kind of local search procedure
to improve the solutions during the search process. Some examples of state-of-the-art
memetic algorithms for the QAP are, for instance, the Breakout Memetic Algorithm (BMA)
[36] or the Improved Hybrid Genetic Algorithm (IHGA) [37]. Both of them are based on
modified versions of the Tabu Search (TS) [19, 38], which has been proven to be one of the
most efficient local search based methods for addressing the QAP [39].

In order to efficiently solve the QAP, a number of papers have shown [40, 41, 42, 43]
that having prior knowledge about the problem is beneficial to propose efficient algorithm
designs. As its NP-hard nature makes it difficult to directly study the characteristics of
the QAP, decomposing the problem into a set of sub-problems that ease the analysis may
be an interesting idea. This way, the decomposed version of the problem can be used to
design new efficient meta-heuristic algorithms. Among all the decomposition strategies
that are available for the QAP, the Elementary Landscape Decomposition (ELD) proposed by
Chicano et al. [44, 31] has provided some interesting insights about the problem structure
[45]. Briefly, the ELD is an additive decomposition method that divides a COP into a set of
landscapes with some properties that are particularly interesting for working with local
search based methods. This decomposition has been successfully used to create a new
multi-objectivization framework for the QAP [46], obtaining a set of solutions that was
much more diverse than the ones obtained by other single objective algorithms. Moreover,
Rockmore et al. [47] discovered that there is a link between the ELD and the Fourier
Decomposition of the problem, which renewed the interest of studying the ELD approach.

One of the drawbacks of the ELD is that it is difficult to understand what each landscape
in the decomposition measures. This interpretability issue makes difficult to continue
studying the ELD and its applications. In this work, we pretend to address this problem
by trying to better understand the ELD approach and its effect on the behaviour of local
search algorithms. With this aim, we focus on two main objectives:

• First, we compare the behaviour of two different local search meta-heuristic, a simple
Tabu Search and a ELD based method proposed in [45]. Our idea is to analyze
which are the advantages and disadvantages of considering the landscapes of the
decomposition during the optimization. This way, we pretend to prove that the ELD
approach can be useful to guide local search processes.

• Second, we propose a decomposition of the components of the ELD that allows us
to analyze what does each landscape exactly measure. This new decomposition is
studied from both theoretical and experimental point of views to better characterize
the components of the ELD.

This document is organized as follows. Chapter 2 explains the basic terms and concepts
related to the QAP and ELD that are necessary to fully understand this work. Chapter
3 shows the comparison between the local search based algorithms, and discusses the
effects of the ELD in the optimization process. The proposed decomposition of the ELD

2

components is described and analyzed in Chapter 4. Finally, the conclusions and future
research lines are presented in Chapter 5.

3

CHAPTER 2
Basic concepts

In this chapter, we present some of the key concepts that will be discussed throughout the
rest of the document. Additional references are also included for the interested reader.

2.1 Combinatorial Optimization

Combinatorial Optimization (CO) is a branch of discrete mathematics in which the objective
is to find the best possible solution over a set of finite or countably infinite discrete solutions.
A Combinatorial Optimization Problem (COP) is defined by two main concepts: the search
space (Ω) and the objective function (f).

• Search space (Ω): A finite or countably infinite set that contains all the feasible
solutions.

• Objective function (f): A function f : Ω→ R that assigns a fitness value to each
solution in Ω. The objective function is used to compare the quality of the solutions.
When a COP has more than one objective function, we say that the problem is
multi-objective.

Considering a single objective COP, the goal is to find the global optima of the problem,
that is, the solutions x∗ ∈ Ω such that f(x∗) = minx∈Ω f(x) (assuming minimization).

2.1.1 Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) is a combinatorial optimization problem that
was presented by Koopmans and Beckmann [25] as a mathematical model for the location
of indivisible economic activities. Given a set of n facilities and n possible locations, the
goal of the QAP is to find the facility-location assignment that minimizes the costs derived
from the communications between facilities. In order to do that, we need the following
information:

• The distances between locations, stored in a distance matrixDn×n = [dij] where dij
is the distance between the location i and the location j.

5

2. Basic concepts

• The work flows between facilities, stored in a flow matrixHn×n = [hpq] where hpq
denotes the work flow between the facilities p and q.

Intuitively, any pair of facilities with a high communication work flow should be
located near each other in order to reduce costs. By contrast, the facilities that have a
low communication work flow should be located far apart from each other. The objective
function that measures the quality of a solution for the QAP is formalized as follows:

f(σ) =
n∑
i=1

n∑
j=1

dijhσ(i)σ(j) (2.1)

where σ is a permutation of size n that represents the facility-location assignment and σ(i)
is the facility assigned to the location i. Thus, the search space of the problem is the set of
all the permutations of size n, denoted as Sn. The goal in the QAP is to find the assignment
σ∗ ∈ Sn that minimizes the objective function f .

2.2 Elementary Landscapes

Given a COP defined by the tuple (Ω, f), a neighborhood operator is defined as a function
N : Ω 7→ P(Ω), where P(Ω) is the power set of Ω. In other words, the neighborhood
operator is a function that assigns to each solution x ∈ Ω a set of solutions N(x) ⊂ Ω
that is known as the neighborhood of x, creating a neighborhood structure (graph) that
interconnects all the solutions in the search space. From now on, we will only consider
symmetric (y ∈ N(x)⇔ x ∈ N(y)) and regular (|N(x)| = d for all x ∈ Ω) neighborhood
functions.

Then, a landscape of a combinatorial optimization problem [48, 49] can be represented
as a triplet (Ω,f ,N), where Ω is the search space of the problem, f is the objective function
andN is a neighborhood operator. Many important concepts in combinatorial optimization
are defined by the landscape, namely:

• Local optima: We define a local minimum as any solution xmin ∈ Ω such that
f(xmin) ≤ f(y) for every y ∈ N(xmin). A local maximum is defined analogously.

• Plateaus: We define a plateau as a set of solutions P ⊂ Ω such that for all x, y ∈ P
satisfies f(x) = f(y) and there is a path (x = a1, a2, ..., ak = y) such that ai ∈ P
and ai+1 ∈ N(ai).

Thus, we can observe that studying the underlying landscape structure is crucial when
analyzing COPs. Among all the possible landscapes, it has been shown in the literature
that those that satisfy the Grover’s wave equation [50], known as elementary landscapes,
have some interesting properties that make them promising candidates for being solved
using local search based algorithms [51, 49]. The Grover’s wave equation is expressed as

avg{f(y)}
y∈N(x)

= f(x) +
k

|N(x)|
(
f̄ − f(x)

)
(2.2)

6

2.2. Elementary Landscapes

where k is a characteristic constant and f̄ represents the average objective function value
of the entire search space of solutions. Equation 2.2 can only be satisfied when the objective
function f is an elementary function, that is, when f is an eigenfunction of the Laplacian
matrix of the graph structure induced by the neighborhood operator N [50, 49].

One of the advantages of elementary landscapes is that the Grover’s wave equation
allows computing the average objective function value of the neighborhood of any solution
x ∈ Ω based on the objective value of that particular solution x. Moreover, the Grover’s
wave equation can also be used to compute the average objective function value of a partial
neighborhood. For example, suppose that we have already explored a subsetM ⊂ N(x) of
the neighborhood of a certain solution x. Then, the average objective function value of the
remaining neighborhood N(x)−M can be computed as

avg{f(y)}
y∈(N(x)−M)

=
1

|N(x)−M |

(
|N(x)|

(
f(x) +

k

|N(x)|
(
f̄ − f(x)

))
−
∑
z∈M

f(z)

)
(2.3)

From a practical point of view, this equation can be really useful when exploring the
search space of an elementary landscape using its neighborhood structure. For example, let
us consider two different solutions x, y ∈ Ω. After exploring some of their neighboring
solutions Mx ⊂ N(x) and My ⊂ N(y), we want to decide which of the remaining
neighborhoods should be explored next. Considering that zx and zy are random solutions
that belong to N(x)−Mx and N(y)−My respectively, we can use the previous equation
to compute the expected values of both random solutions. Thus, if the expected value of
zx is better than the expected value of zy , then it is preferable to continue exploring the
N(x) neighborhood, and vice versa. As the solution evaluation may be pretty costly, this
approach may be useful to create efficient local search based algorithms.

In addition to the potential efficiency improvements, elementary landscapes are also
interesting because of their common properties. In particular, this type of landscapes
always satisfy the following [52]:

1. f(x) < f̄ =⇒ f(x) < avg{f(y)}
y∈N(x)

< f̄

2. f(x) = f̄ =⇒ f(x) = avg{f(y)}
y∈N(x)

= f(y) = f̄

3. f(x) > f̄ =⇒ f(x) > avg{f(y)}
y∈N(x)

> f̄

These properties imply that in an elementary landscape the objective value of any local
minimum is always equal to or lower than the average objective function value f̄ (first
condition), while the opposite happens in the case of the local maxima (third condition).
Additionally, these constraints ensure that, if there exists any solution x ∈ Ω such that
f(x) = f(y) for every y ∈ N(x), the entire landscape is flat, that is, all the solutions in
the search space have the same objective function value (second condition).

Furthermore, the properties above also prove that certain types of plateaus cannot exist
in elementary landscapes. Assuming that Pelem is a plateau of an elementary landscape,

7

2. Basic concepts

due to Equation 2.2, avg{f(z)}
z∈N(x)

= avg{f(w)}
w∈N(y)

for every pair of solutions x, y ∈ Pelem.

Therefore, if there is a solution x ∈ Pelem that only has both equal and worse neighbors,
there cannot be any solution y ∈ Pelem that only has both equal and better neighbors, and
vice versa.

All these limitations on the characteristics of the local optima and plateaus are common
to every landscape that follows the Grover’s wave equation. Therefore, we can observe that
elementary landscapes always have a well-known structure, which is particularly useful
for dealing with COPs. However, many of the most relevant COPs cannot be expressed as
a single elementary landscape. Nevertheless, given a symmetric neighborhood operator,
any landscape that is not elementary can be expressed as a linear combination of a set of
elementary landscapes. This decomposition process is known as the Elementary Landscape
Decomposition (ELD) [44].

2.2.1 Elementary Landscape Decomposition of the QAP

The ELD for the Quadratic Assignment Problem that was proposed in [31] is based on the
swap neighborhood operator, which has been widely used in the literature for solving the
QAP [53]. Given a permutation σ = {σ(1), ..., σ(i), ..., σ(j), ..., σ(n)}, this neighborhood
operator consists in exchanging two items σ(i) and σ(j) in order to obtain a new neighbor
solution σ′ = {σ(1), ..., σ(j), ..., σ(i), ..., σ(n)}. Hence, the original landscape used in the
decomposition is (Sn, f,N), where Sn is the set of all permutations of size n, f is the
objective function of the QAP, and N is the swap neighborhood operator. In what follows,
we denote this landscape as L.

The ELD of L consists of finding a set ofm elementary functions {f1, f2, ..., fm} that
form m elementary landscapes along with the original search space and neighborhood
operator. These elementary functions must satisfy that f(σ) = f1(σ)+f2(σ)+ ...+fm(σ)
for every σ ∈ Sn, so it is easy to see that the goal of the ELD is to decompose the original
objective function f (Equation 2.1) into a set of sub-functions. In order to do that, we first
rewrite f as follows:

f(σ) =
n∑

i,j=1

n∑
p,q=1

di,jhp,qδ
p
σ(i)δ

q
σ(j) (2.4)

where δba represents the Kronocker delta function that returns 1 if a = b, and 0 otherwise.
The function in Equation 2.4 can be easily separated into two different parts: the instance
related part that depends on the distance and flow matrices (ψi,j,p,q = di,jhp,q) and the
problem related part that depends on σ (φ(i,j)(p,q)(σ) = δpσ(i)δ

q
σ(j)). Hence, we have that:

f(σ) =
n∑

i,j=1

n∑
p,q=1

ψi,j,p,qφ(i,j)(p,q)(σ) (2.5)

It is important to remark that the value of ψi,j,p,q does not vary depending on the input
solution, so it is easy to see that f is just a linear combination of φ(i,j)(p,q)(σ). Thus, as
any linear combination of elementary functions (with the same characteristic constant)
is also an elementary function, we can focus on decomposing φ(i,j)(p,q)(σ), that is, the

8

2.2. Elementary Landscapes

problem related part. Taking this into account, f can be decomposed into three independent
elementary functions [31]:

f1(σ) =

n∑
i,j,p,q=1
i ̸=j
p ̸=q

ψi,j,p,q
ϕ1(i,j)(p,q)(σ)

2n
(2.6)

f2(σ) =
n∑

i,j,p,q=1
i ̸=j
p ̸=q

ψi,j,p,q
ϕ2(i,j)(p,q)(σ)

2(n− 2)
(2.7)

f3(σ) =
n∑

i,p=1

ψi,i,p,pφ(i,i)(p,p)(σ) +
n∑

i,j,p,q=1
i ̸=j
p ̸=q

ψi,j,p,q
ϕ3(i,j)(p,q)(σ)

n(n− 2)
(2.8)

where ϕ1(i,j)(p,q), ϕ
2
(i,j)(p,q) and ϕ

3
(i,j)(p,q) are defined as:

ϕm(i,j)(p,q)(σ) =

α if σ(i) = p ∧ σ(j) = q

β if σ(i) = q ∧ σ(j) = p

γ if σ(i) = p⊕ σ(j) = q

ϵ if σ(i) = q ⊕ σ(j) = p

ζ if σ(i) ̸= p, q ∧ σ(j) ̸= p, q

(2.9)

where 1 ≤ i, j, p, q ≤ n and α, β, γ, ϵ, ζ ∈ R. The operator ⊕ stands for the exclusive OR
operator. The parameter values for each of the functionsm = 1, 2, 3 are shown in Table
2.1.

Table 2.1: Specific values of the α, β, γ, ϵ, ζ parameters for each of the elementary landscapes.

α β γ ϵ ζ

ϕ1 n-3 1-n -2 0 -1
ϕ2 n-3 n-3 0 0 1
ϕ3 2n-3 1 n-2 0 -1

As stated before, the ELD is an additive decomposition, so f(σ) = f1(σ)+f2(σ)+f3(σ)
for every σ ∈ Sn. Each of the elementary functions satisfies the Grover’s wave equation
(Equation 2.2) for the search space and the neighborhood operator of L. Thus, they form
three independent elementary landscapes: L1 = (Sn, f

1, N), L2 = (Sn, f
2, N) and

L3 = (Sn, f
3, N). These elementary landscapes are, precisely, the components of the

decomposition of the QAP.
Although the ELD of the problem consists of three components, this does not mean that

all the instances of the QAP are composed of three non-constant elementary landscapes.
For example, [45] proved that the objective function of L1 is constant when at least one of
the matrices that form the QAP is symmetric with respect to the main diagonal. Something
similar happens in the case of the TSP, which, as we have mentioned before, is a special

9

2. Basic concepts

case of the QAP. In TSP-like instances, the objective function of L3 becomes constant for
all the solutions in the search space [31]. Therefore, for practical purposes, the ELD may
be simplified into less than three elementary landscapes depending on the characteristics
of the given instance.

2.3 Variable Function Search: A modified Tabu Search

Regarding the meta-heuristics that solve the QAP, one of the most relevant local search
based algorithms is the Tabu Search (TS) [54, 39]. Similar to a classical hill climbing
algorithm, the TS is a meta-heuristic method that works by moving between solutions in
the search space using neighborhood operators. That is, starting from an initial solution
x0 ∈ Ω, the TS algorithm explores the search space of a problem by visiting a sequence
of solutions (x0, x1, x2, ..., xk) such that xi+1 ∈ N(xi). During each step of the search
process, the algorithm always moves to the best neighboring solution according to the
objective function f , regardless of whether the new solution xi+1 is better than the current
solution xi or not. This means that the TS algorithm allows moving to non-improving
solutions, which is useful to avoid getting stuck in low quality local optima.

One of the disadvantages of this approach is that allowing non-improving movements
could lead to cycles in the search process. In order to avoid this problem, the TS uses
a special data structure to avoid returning to already visited solutions: the tabu list. In
its simplest version, the tabu list is just a short term memory that contains the last T
neighborhood movements. Those movements are considered to be tabu, that is, they cannot
be performed again until they leave the tabu list. Therefore, when the algorithm explores
the neighborhood of a solution, it excludes the tabu movements from the neighbor selection
process. Then, once the new solution is selected, the algorithm moves to that solution and
the tabu list is updated.

Forbidding neighborhood movements during the search process can make us miss
potentially good solutions. For this reason, TS algorithms usually include an aspiration
criterion [55] that allows them to ignore the tabu status of a solution under special circum-
stances. For example, if a tabu neighborhood movement would lead to a solution that is
better than the best solution found until the moment, the tabu status could be ignored to
encourage the exploration of more promising regions of the search space. The pseudocode
of the basic TS algorithm is shown in Algorithm 1.

In addition to the basic Tabu Search, in this work we also analyze the behaviour
of a modified version of the algorithm that uses the ELD of the problem to guide the
search process: the Variable Function Search (VFS) [45]. The main difference between
the TS and the VFS is that the VFS only moves from a solution x ∈ Ω to a neighboring
solution y ∈ N(x) if ∃ f i ∈ F such that f i(y) < f i(x) (assuming minimization), where
F = {f1, f2, ..., fm} is the set of all the elementary functions of the ELD. Apart from this
additional constraint, the VFS is exactly the same as a classical TS, so it is not difficult to
see that the VFS can be potentially incorporated in any tabu search based algorithm.

Considering a problem with a known ELD, the value of the original objective function
f for a certain solution x ∈ Ω can be computed as the sum of the values of the elementary
functions of the ELD for that same solution x, that is, f(x) = f1(x) + f2(x) + ...+ fm(x)
for every x ∈ Ω. Therefore, the ELD can be viewed as a multi-objectivization procedure that

10

2.3. Variable Function Search: A modified Tabu Search

Algorithm 1 Tabu Search.
Input:
x - Initial solution (x ∈ Ω)
f - General objective function
N - Neighborhood operator
Tabu - Tabu criterion
Stop - Stopping criterion
Output:
x∗ - Final solution (x∗ ∈ Ω)
1: procedure TS (x, f,N, Tabu, Stop) ▷ Assuming minimization.
2: x∗ ← x
3: while ¬Stop do
4: xaux ← NULL
5: for y ∈ N(x) do ▷ Neighborhood exploration.

6: if ¬Tabu(y) ∨ f(y) < f(x∗) then
7: if xaux = NULL ∨ f(y) < f(xaux) then
8: xaux ← y
9: end if
10: end if
11: end for
12: if xaux ̸= NULL then ▷ Update the current solution x.
13: x← xaux
14: if f(x) < f(x∗) then ▷ Update the best solution x∗.
15: x∗ ← x
16: end if
17: end if
18: end while
19: return x∗ ▷ Return the best solution found.
20: end procedure

transforms a mono-objective problem into a multi-objective problem withm sub-objectives
f1, f2, ..., fm [46]. The VFS exploits this idea by ensuring that at each step of the search
the algorithm always moves to a solution that improves at least one of the sub-objectives
of the problem. This constraint is particularly relevant when the algorithm has to escape
from local optima, that is, when all the solutions in the neighborhood are equal or worse
than the current solution. In such cases, the classical tabu search just moves to the best
neighboring solution according to f , which could worsen the value of all the elementary
functions of the ELD. This greedy strategy is not always optimal [45], since moving to
solutions that are worse than the current local optimum for all the sub-objectives of the
problem (also called dominated solutions [56]) may hinder the optimization process. Thus,
the VFS approach arises as a promising alternative that guarantees that at least one of the
elementary functions is improved even when escaping a local optimum. The pseudocode
of the VFS is shown in Algorithm 2.

11

2. Basic concepts

Algorithm 2 Variable Function Search.
Input:
x - Initial solution (x ∈ Ω)
f - General objective function
FELD - Elementary functions of the ELD {f1, ..., fm}
N - Neighborhood operator
Tabu - Tabu criterion
Stop - Stopping criterion
Output:
x∗ - Final solution (x∗ ∈ Ω)
1: procedure VFS (x, f, FELD, N, Tabu, Stop) ▷ Assuming minimization.
2: x∗ ← x
3: while ¬Stop do
4: xaux ← NULL
5: for y ∈ N(x) do ▷ Neighborhood exploration.

6: if ∃
f i∈FELD

f i(y) < f i(x) ∧
(
¬Tabu(y) ∨ f(y) < f(x∗)

)
then

7: if xaux = NULL ∨ f(y) < f(xaux) then
8: xaux ← y
9: end if
10: end if
11: end for
12: if xaux ̸= NULL then ▷ Update the current solution x.
13: x← xaux
14: if f(x) < f(x∗) then ▷ Update the best solution x∗.
15: x∗ ← x
16: end if
17: end if
18: end while
19: return x∗ ▷ Return the best solution found.
20: end procedure

12

CHAPTER 3
Algorithm comparison

As stated before, one of the main goals of this work is to study if the elementary landscape
decomposition of the QAP can be used as a tool for guiding a local search process to
efficiently solve the problem. For this purpose, we first carry out a comparative analysis
of the behaviour of two different local search based algorithms1: the Tabu Search and the
Variable Function Search.

3.1 Benchmark of instances

The experimental framework used in this chapter consists of a set of instances extracted
from two different sources:

• 177 instances from the QAPLIB library [57], ranging from size 5 to 256.

• 112 instances from the Dre and Tai-e benchmarks proposed in [58], ranging from
size 15 to 175.

In total, 289 instances that have been extensively analyzed in previous works [45, 46, 36,
37], which makes it easier to compare our results which those of the state-of-art methods.
According to the literature [59], these instances can be divided into 4 different groups:

1. Unstructured: Randomly generated unstructured instances. The distance and flow
matrices of these problems are generated based on a uniform distribution. It includes
the Lipa, Rou and Tai-a benchmarks from the QAPLIB library.

2. Grid: Randomly generated instances whose distance matrix is based on the Man-
hattan distance between cells in a grid. It includes the Nug, Scr, Sko, Tho and Wil
benchmarks from the QAPLIB library. We have also considered that the Dre bench-
mark is part of this group.

1The code of the implemented algorithms is available in the following repository: https://github.com/
XB-Repositories/TFM_Algorithms.

13

https://github.com/XB-Repositories/TFM_Algorithms
https://github.com/XB-Repositories/TFM_Algorithms

3. Algorithm comparison

Table 3.1: Statistics of the TS and VFS algorithms. The table shows the median rank in each
benchmark and the number of executions that obtained the first rank in each case (the total amount
of executions is also shown in brackets). The different cell colors represent the four different types
of benchmarks: Unstructured (Blue), Grid (Green), Real-life (Red) and Real-life like (Yellow).

lipa rou tai-a dre nug scr sko tho wil bur chr els esc had kra ste tai-c tai-b tai-e
Median 1.0 1.0 5.0 7.0 1.0 1.0 10.0 10.5 11.0 6.0 4.0 6.5 1.0 1.5 4.0 7.5 5.0 6.0 11.0

TS Nº best 103
(180)

30
(40)

127
(400)

20
(120)

136
(190)

35
(40)

5
(130)

3
(30)

1
(20)

10
(80)

42
(140)

1
(10)

220
(250)

25
(50)

5
(30)

2
(30)

2
(20)

25
(130)

29
(1000)

Median 1.0 1.0 4.5 9.0 1.0 1.0 10.0 9.0 9.0 5.0 3.0 5.5 1.0 1.0 3.0 8.0 5.0 5.0 9.0
VFS Nº best 106

(180)
28
(40)

128
(400)

16
(120)

128
(190)

36
(40)

8
(130)

1
(30)

1
(20)

11
(80)

46
(140)

2
(10)

148
(250)

26
(50)

7
(30)

4
(30)

2
(20)

28
(130)

82
(1000)

3. Real-life: Real-life instances obtained from real-world applications of the QAP. It
includes the Bur, Chr, Els, Esc, Had, Kra, Ste and Tai-c benchmarks from the QAPLIB
library.

4. Real-life like: Randomly generated instances that are created in such a way that
their structure is similar to that of real-life problems. It includes the Tai-b benchmark
from the QAPLIB library. We have also considered that the Tai-e benchmark is part
of this group.

3.2 Experiments and results

In order to measure the performance of the VFS when compared to the basic TS strategy,
we run both algorithms 10 times for each of the QAPLIB, Dre and Tai-e instances. The size
of the tabu list in all cases is equal to the corresponding instance size (n). Regarding the
stopping criterion, a maximum number of solution evaluations has been set: 1,000n2.

For each of the instances, the executions of both algorithms are ranked according to
the resulting objective values, where rank 1 represents the best performing trial and rank
20 the worst. Our goal is to transform the obtained results to a common scale in order to
better visualize the differences between the algorithms in different types of instances. The
rankings obtained for each of the benchmarks are aggregated and summarized as box plots
in Figure 3.1. The general statistics of the obtained results are also shown in Table 3.1.

As can be observed in both the box plots and the table, the performance of the TS and
the VFS varies greatly depending on the benchmark of instances. Although both algorithms
seem to have a similar performance in most cases, the VFS obtains slightly better median
ranks on the Bur, Chr, Els, Had, Kra, Tai-a, Tai-b, Tai-e, Tho andWil benchmarks. These
differences are particularly remarkable in the case of the Tai-e benchmark, in which the
number of first ranks obtained by the VFS is more than twice the number obtained by the
TS.

On the other hand, the TS obtains better median ranks on just the Dre and Ste bench-
marks. If we look at the box plots, however, we can see that the TS appears to perform
generally better on the Esc, Lipa and Rou benchmarks too. Thus, this suggests that, even
though the TS is more promising in some particular cases, the VFS approach may be useful
for solving many types of instances. This seems to be the case of Real-life and Real-life like
types of instances, since the VFS achieves equal or better results than the TS on almost all
the considered benchmarks.

14

3.2. Experiments and results

(a) Unstructured instances.

(b) Grid instances.

(c) Real-life instances.

(d) Real-life like instances.

Figure 3.1: Box plots of the execution rankings for each benchmark of instances.

15

3. Algorithm comparison

Table 3.2: Expected probabilities for each of the possibilities of the Bayesian signed-rank tests.
The option with the highest probability in each test is highlighted in bold. The different cell colors
represent the four different types of benchmarks: Unstructured (Blue), Grid (Green), Real-life (Red)
and Real-life like (Yellow).

lipa rou tai-a dre nug scr sko tho wil bur chr els esc had kra ste tai-c tai-b tai-e
TS 0.24 0.39 0.48 0.55 0.34 0.23 0.51 0.55 0.34 0.07 0.32 0.00 0.72 0.00 0.33 0.44 0.00 0.17 0.06

Rope 0.45 0.33 0.05 0.06 0.35 0.65 0.03 0.03 0.02 0.44 0.10 0.66 0.28 0.96 0.02 0.03 1.00 0.51 0.18
VFS 0.32 0.28 0.47 0.39 0.31 0.11 0.46 0.42 0.64 0.49 0.57 0.34 0.00 0.04 0.64 0.53 0.00 0.32 0.77

In order to check whether the differences found in the execution rankings are actually
significant, we compute a statistical analysis for each benchmark of instances using the
Bayesian signed-rank test [60, 61]. Given a set of performance measures obtained by two
meta-heuristic algorithms, this method estimates the expected probability of each algorithm
being the best for solving the considered test instances. The experimental data used to
compute the statistical analyses consists of the relative errors with respect to the best
known solutions obtained in the previous experimentation.

The Bayesian signed-rank test requires defining the region of practical equivalence
(rope), which is the interval of performance difference under which both algorithms are
considered to be equivalent (tie). Due to the differences in the scale of the relative errors,
in this work the rope interval has been set independently for each benchmark of instances.
In particular, the limits of the rope interval are calculated as ±1% of the average relative
error obtained by both the TS and the VFS in the corresponding benchmark. Taking this
into account, the results of the statistical analyses are shown as simplex plots in Figure 3.2.

Briefly, each point in the simplex plots represents a sample of the posterior distribution
of the probability of win-lose-tie. That is, the closer a point is to a vertex, the higher
the probability of the corresponding option. If the points are closer to the TS vertex, for
example, it means that the TS algorithm has a higher probability of being the best, and the
same happens in the case of the VFS and rope vertices. Moreover, the dispersion of the
point clouds gives us information about the uncertainty of the statistical analysis. If the
points are close together, it means that the results of the analysis have a low uncertainty
(e.g., the lipa and nug cases). In contrast, if the points are far apart, then the uncertainty
of the analysis is higher (e.g., the rou and scr cases). Thus, the Bayesian signed-rank test
allows us to differentiate between the uncertainty of the behaviour of the algorithms and
the uncertainty of the statistical analysis (which is caused by the lack of data).

In order to summarize the results of the statistical analyses, Table 3.2 shows the expected
probabilities of each option (TS-rope-VFS) for each benchmark of instances. The results
obtained in the statistical analyses suggest that there is a difference between the behaviour
of both algorithms. According to the computed expected probabilities, the TS has the
highest chance of being the best candidate algorithm in the dre (0.55), esc (0.72), rou (0.39),
sko (0.51), tai-a (0.48) and tho (0.55) benchmarks. However, it does not seem to perform
much better than the VFS, since the expected probability of the TS option in those cases is
always smaller than 0.6. The sole exception is the esc benchmark, which is a special case
in which only the L2 elementary landscape is non-constant [45].

On the other hand, the performed statistical analyses show that the VFS is the most
promising algorithm in the bur (0.49), chr (0.57), kra (0.64), ste (0.53), tai-e (0.77) and wil
(0.64) benchmarks. In fact, the VFS option has a particularly high probability (> 0.6) in the

16

3.2. Experiments and results

(a) bur. (b) chr. (c) dre.

(d) els. (e) esc. (f) had.

(g) kra. (h) lipa. (i) nug.

(j) rou. (k) scr. (l) sko.

(m) ste. (n) tai-a. (o) tai-b.

17

3. Algorithm comparison

(p) tai-c. (q) tai-e. (r) tho.

(s) wil.

Figure 3.2: Results of the statistical analyses shown as simplex plots.

kra, tai-e and wil instance sets, which suggests that the VFS is much more effective than
the TS in those cases.

Finally, there are some benchmarks in which the difference between the performance
of the tested algorithms is not significant. Therefore, the rope option is the one that has the
highest probability in those cases: els (0.66), had (0.96), lipa (0.45), nug (0.35), scr (0.65),
tai-b (0.51) and tai-c (1.00).

If we analyze the differences between types of instances, the statistical analyses confirm
that the VFS seems to be particularly effective for solving Real-life and Real-life like instances,
since in such cases the VFS is equal to or better than the TS in 9 out of 10 benchmarks. The
opposite happens in the case of Unstructured and Grid benchmarks, in which the TS seems
to have a higher probability of being the best algorithm. In fact, in those cases the TS is
equal to or better than the VFS in 8 out of 9 benchmarks.

3.3 Analysis and discussion

Once we have compared the performance of the TS and the VFS algorithms on a diverse set
of instances, the next step is to try to understand the reasons for which the performance of
the algorithms varies depending on the instance to be solved. For this purpose, in this section
we analyze the characteristics of two benchmarks of instances in which the behaviour of
the studied algorithms appears to be very different: the Dre and Tai-e benchmarks.

Both the Dre and the Tai-e benchmarks were proposed in [58]. The characteristics of
these benchmarks are complementary to the ones from the QAPLIB library, and they are
specifically designed to be difficult for local search algorithms, particularly the ones that
are based on the swap neighborhood. A summary of the general characteristics of both
benchmarks is shown below. For more information about the generation of the instances,
we refer the interested reader to the original paper.

18

3.3. Analysis and discussion

• Dre: Benchmark composed of symmetric instances2 that are based on a rectangular
grid of size k × l. Each instance is created by generating a random permutation σ∗
of size n = k × l, assigning it to the grid, and then constructing the distance and
flow matrices as follows:

– Non-adjacent facilities are given a 0 work flow, while the adjacent facilities are
given a random work flow between 1 and 10.

– Adjacent locations (cells) are given a 1 distance, while the distance between
non-adjacent locations is randomly generated between 2 and 10.

Thus, it is ensured that σ∗ is the global optimum of the problem. The instances
generated using this technique have a high ruggedness, and the objective function
increases/decreases pretty steeply when moving from one solution to another using
swap neighborhood movements.

• Tai-e: Benchmark composed of symmetric instances in which the distances and
flows are not uniformly generated. Instead, the two matrices that form the problem
have a well defined block structure. Briefly, the distance and flow matrices of this
type of instances are recursively generated as follows:

1. First, t uniformly generated distance and flow matrices of size s× s are created.
2. Then, the generated matrices are inserted into a st× st block diagonal matrix,

where the elements outside the main diagonal are set to small non-negative
values in the case of the flow matrix, and to relatively large positive values in
the case of the distance matrix.

3. The previous two steps are repeated u times, creating the final stu × stu
instance.

The instances generated using this technique can be used to represent the problem of
assigning gates to airplanes in an airport [58, 62]. For example, if an airport is com-
posed of u terminals with t different branches and s gates per branch, we know that
the distances between gates of the same branch are relatively low, distances between
gates located in different branches of the same terminal are more significant, and
distances between gates belonging to different terminals are quite large. Therefore,
in order to find a good solution for the problem, a meta-heuristic algorithm should
match the low distance blocks from the distance matrix with the high work flow
blocks from the flow matrix. As exchanging two blocks of sizem requiresm swap
neighborhood movements, many local search iterations are needed for achieving
significant improvements in the fitness of the solution [58]. Therefore, local search
based algorithms may not be able to escape from low quality local optima, thus being
inefficient for solving this type of instances.

In order to better visualize the different structures of the Dre and Tai-e benchmarks,
Figure 3.3 shows the distance matrices of two representative instances (one from each
benchmark) as heat maps. Notice the block structure of the Tai-e distance matrix in
comparison to the grid based Dre instance.

2An instance is symmetric if both the distance and flow matrices are symmetric with respect to the main
diagonal.

19

3. Algorithm comparison

(a) Dre42 instance. (b) Tai45e01 instance.

Figure 3.3: Distance matrices of two instances from the Dre and Tai-e benchmarks, represented as
normalized heat maps. The color of each cell represents the corresponding value in the distance
matrix.

The experimentation carried out in Section 3.2 shows that the TS algorithm outperforms
the VFS on the Dre benchmark, while the opposite happens in the case of the Tai-e instances.
In order to analyze the reason, we first plot the objective values of the solutions that are
explored during the executions of the previous experimentation. This includes both the
general objective function f and the elementary functions of the ELD f2 and f3. Our goal
is to use the ELD approach to compare the characteristics of the solutions that are visited
during the TS and VFS so that we can better study the behaviour of each local search based
procedure. As both the Dre and Tai-e instances are symmetric, the f1 elementary function
is always constant (Section 2.2.1), and thus, we can ignore it during the analysis. For the
sake of brevity, we consider the following representative instances: dre42, dre72, tai45e01
and tai75e01 (Figures 3.4 and 3.5).

The results shown in Figure 3.4 confirm the previously extracted conclusions. In the
case of the Dre instances, the line that represents the mean objective value of the solutions
explored by the TS is nearly always below the line that corresponds to the VFS. As the
QAP is a minimization problem, this indicates that the TS is exploring generally better
solutions than the VFS during the entire execution of the algorithms. Conversely, in the
case of the Tai-e instances, the mean objective value of the solutions explored by the VFS is
slightly better than the mean of those explored by the TS. Moreover, the size of the standard
deviation intervals in the Tai-e instances suggests that the objective value of the solutions
explored by both algorithms varies greatly between runs.

The differences in the behaviour of the algorithms are not limited to the evolution
of the general objective function value. Instead, it seems like the optimization of each of
the elementary functions also varies depending on the strategy that is used to solve the
problem (Figure 3.5). In the case of the TS algorithm, it inherently focuses on optimizing f2,
while the VFS algorithm also tries to improve f3. As mentioned in [45], the f2 elementary
function is generally the most relevant function in the decomposition, that is, it has the
highest relative contribution to the variance of the objective function f . Therefore, given
that the TS does not explicitly take into account each of the elementary landscapes, it seems
that the algorithm implicitly optimizes the most relevant landscapes of the decomposition,
ignoring those that produce small changes in the solution fitness. This is not the case of

20

3.3. Analysis and discussion

(a) Dre42.

(b) Dre72.

(c) Tai45e01.

(d) Tai75e01.

Figure 3.4: Evolution of the f objective function during the 10 runs of the TS and VFS algorithms.
The solid lines indicate the mean of f in each iteration, while the shaded areas represent the
corresponding standard deviations.

21

3. Algorithm comparison

(a1) f2. (a2) f3.
(a) Dre42.

(b1) f2. (b2) f3.
(b) Dre72.

(c1) f2. (c2) f3.
(c) Tai45e01.

(d1) f2. (d2) f3.
(d) Tai75e01.

Figure 3.5: Evolution of the f2 and f3 elementary functions during the 10 runs of the TS and VFS
algorithms. The solid lines indicate the mean of f2 and f3 in each iteration, while the shaded areas
represent the corresponding standard deviations.

22

3.3. Analysis and discussion

the VFS, since ensuring that every movement of the algorithm improves at least one of the
elementary landscapes causes all elementary functions to be optimized during the search,
regardless of their relevance.

The consequences of these behaviours are different for each of the benchmarks. In the
case of the Dre instances, optimizing the f2 elementary function as much as possible (TS)
produces better results than trying to obtain solutions with a better f3 value (VFS). Just the
opposite happens in the case of the Tai-e instances, in which the f2 elementary function
converges quickly, and therefore, improving f3 is the only way to avoid stagnation in the
search process. Thus, this confirms that some types of instances are more suitable for being
solved using the VFS, and vice versa.

However, the previous analysis is still not enough to answer why the TS and VFS
perform differently on the Dre and Tai-e benchmarks. In order to answer this question, we
need to go one step further and compare the evolution of the f2 and f3 function values
during the execution of the TS and VFS algorithms. This will help us to understand which
is the relationship between the elementary functions, thus, providing a better insight into
the decisions that are made at each step of the algorithms. With this goal, the f2 and f3
function values of all the solutions explored during the execution of the algorithms are
shown as scatter plots in Figure 3.6.

As can be seen in the plots, the structure of the objective function space of both the Dre
and the Tai-e instances is very different. In the case of the Dre instances, all the explored
solutions are grouped into a unique contiguous region of the objective function space.
Moreover, we can see that the solutions that have lower f3 values (Y axis) generally have
higher f2 values (X axis), and vice versa. Therefore, it seems like there is a negative
correlation between both elementary functions. As f2 is the most relevant elementary
function, this could explain why improving f3 is not a good strategy in this case. This
type of problems in which improving one of the objective functions worsens the others are
especially suitable for population based multi-objective algorithms such as the ones in [46].

Regarding the Tai-e instances, the solutions explored during the executions of the
algorithms are grouped into different areas of the objective function space, creating clusters
of solutions with similar f2 and f3 values. This grouping is particularly evident if we focus
on the f2 elementary function, in which two different clusters can be easily distinguished
in both the tai45e01 and the tai75e01 instances. In those cases, it appears that the starting
point of the algorithms determines, to a great extent, the solutions that are visited during
the search process, which could explain the objective value variation observed in Figure
3.4. In fact, none of the TS and VFS executions have been able to transfer from one group
of solutions to the other. This suggests that there are some sub-optimal regions of the
objective function space that are difficult to escape using local search processes, similar to
the funnels or sinks that arise when studying Local Optima Networks (LON) [63, 64]. As
explained at the beginning of this section, this may be due to the block structure of the
Tai-e instances [58]. Finally, we can also observe that there is not a negative correlation
between the f2 and f3 functions in this case, so improving f3 will not necessarily worsen
the f2 value.

Based on the previous conclusions, we now can explain the behaviour of the algorithms
when solving both the Dre and the Tai-e instances.

23

3. Algorithm comparison

(a1) TS. (a2) VFS.
(a) Dre42.

(b1) TS. (b2) VFS.
(b) Dre72.

(c1) TS. (c2) VFS.
(c) Tai45e01.

(d1) TS. (d2) VFS.
(d) Tai75e01.

Figure 3.6: Comparison between the f2 and f3 fitness values obtained during the 10 runs of the TS
and VFS algorithms. Different colors represent different runs, and the size of the points is directly
proportional to the corresponding iteration number.

24

3.3. Analysis and discussion

• In the case of the Dre instances, the negative correlation between the elementary
functions makes it more promising to just focus on improving the most relevant
landscape, or at least doing it jointly. Therefore, the TS algorithm is more suitable
for this type of instances.

• In the case of the Tai-e instances, the f2 elementary function rapidly converges
to local optima due to the block structure of the problem. Thus, focusing just on
the most relevant landscape is not enough in this case. As there is not a negative
correlation between the elementary functions, optimizing f3 may also improve the
general fitness of the problem, and therefore, the VFS algorithm produces generally
better results than the TS.

It is important to remark that this analysis has only taken into account a small set
of instances from two different benchmarks. Thus, a more complete experimentation
should be carried out to confirm the conclusions of this section. However, our goal is not
to explain the behaviour of the algorithms in all possible situations, but to demonstrate
that the TS and VFS algorithms have systematically different performances depending on
the characteristics of the instance to be solved. Therefore, analyzing the problem (and
particularly, its ELD) may give us hints about which algorithm is more promising for solving
each type of instance.

25

CHAPTER 4
Analysis of the Elementary
Landscape Decomposition

Until this point, we have analyzed the behaviour of two different local search based algo-
rithms taking into account the elementary landscapes of the decomposition of the QAP.
However, the main drawback of working with the ELD is that we do not really know the
aspects of the solutions that are being evaluated by each of the elementary landscapes
and their effects on the optimization process. Thus, it is sometimes difficult to decide
which landscapes should be optimized at each step of a local search based algorithm (as the
VFS). In order to address this problem, in this chapter we propose a decomposition of the
components of the ELD that tries to facilitate the analysis of the elementary landscapes.

Before explaining the proposed decomposition, it is important to remark that this
approach focuses on decomposing the objective functions of the elementary landscapes,
that is, the elementary functions. Thus, for the sake of clarity, in this chapter we mainly
talk about the f1, f2 and f3 functions, and not about the landscapes as a whole (which
include also the search space and the neighborhood function). However, the reader should
keep in mind that the landscape concept is always implicitly present.

4.1 Decomposition of the elementary components

First, let us rewrite the elementary functions of the decomposition (Equations 2.6, 2.7, 2.8)
as follows.

f1(σ) =
n−1∑
a=1

n∑
b=a+1

n−1∑
c=1

n∑
d=c+1

g1(a,b),(c,d)(σ)

2n
(4.1)

f2(σ) =

n−1∑
a=1

n∑
b=a+1

n−1∑
c=1

n∑
d=c+1

g2(a,b),(c,d)(σ)

2(n− 2)
(4.2)

f3(σ) =
n−1∑
a=1

n∑
b=a+1

n−1∑
c=1

n∑
d=c+1

g3(a,b),(c,d)(σ)

n(n− 2)
(4.3)

27

4. Analysis of the Elementary Landscape Decomposition

where fm is the elementary function that corresponds to the Lm elementary landscape,
and gm(a,b),(c,d)(σ) = ψa,b,c,dϕ

m
(a,b)(c,d)(σ) + ψb,a,c,dϕ

m
(b,a)(c,d)(σ) + ψa,b,d,cϕ

m
(a,b)(d,c)(σ) +

ψb,a,d,cϕ
m
(b,a)(d,c)(σ). As can be seen, the

∑n
i,p=1 ψi,i,p,pφ(i,i)(p,p)(σ) term has been removed

from the f3 function since its value is 0 when all the elements in the main diagonals of the
distance and flowmatrices are zeros, which happens in virtually all the available benchmark
instances. If we focus on symmetric instances, ψa,b,c,d = ψb,a,c,d = ψa,b,d,c = ψb,a,d,c, so
we can simplify the previous auxiliary function as gm(a,b),(c,d)(σ) = ψa,b,c,d

(
ϕm(a,b)(c,d)(σ) +

ϕm(b,a)(c,d)(σ) + ϕm(a,b)(d,c)(σ) + ϕm(b,a)(d,c)(σ)
)
. Based on Equation 2.9, gm(a,b),(c,d) has three

different possible outcomes when the instance is symmetric:

• If σ(a) = c∧σ(b) = d or σ(a) = d∧σ(b) = c, then gm(a,b),(c,d) = (2αm+2βm)ψa,b,c,d.

• If σ(a) = c⊕σ(b) = d or σ(a) = d⊕σ(b) = c, then gm(a,b),(c,d) = (2γm+2ϵm)ψa,b,c,d.

• If σ(a) ̸= c, d ∧ σ(b) ̸= c, d, then gm(a,b),(c,d) = 4ζmψa,b,c,d.

where the parameters αm, βm, γm, ϵm, ζm depend on the value ofm, that is, the elemen-
tary function that we are referring to. If we consider the three cases separately, we can
decompose gm(a,b),(c,d) as follows:

χm(a,b)(c,d)(σ) =

(2αm + 2βm)ψa,b,c,d if σ(a) = c ∧ σ(b) = d or
σ(a) = d ∧ σ(b) = c

0 Otherwise
(4.4)

ωm(a,b)(c,d)(σ) =

(2γm + 2ϵm)ψa,b,c,d if σ(a) = c ⊕ σ(b) = d or
σ(a) = d⊕ σ(b) = c

0 Otherwise
(4.5)

τm(a,b)(c,d)(σ) =

{
4ζmψa,b,c,d if σ(a) ̸= c, d ∧ σ(b) ̸= c, d

0 Otherwise
(4.6)

Finally, these auxiliary functions χm, ωm and τm can be used to decompose each
elementary function fm into three sub-functions:

fm1 (σ) =
n−1∑
a=1

n∑
b=a+1

n−1∑
c=1

n∑
d=c+1

χm(a,b),(c,d)(σ)

km
(4.7)

fm2 (σ) =

n−1∑
a=1

n∑
b=a+1

n−1∑
c=1

n∑
d=c+1

ωm(a,b),(c,d)(σ)

km
(4.8)

fm3 (σ) =

n−1∑
a=1

n∑
b=a+1

n−1∑
c=1

n∑
d=c+1

τm(a,b),(c,d)(σ)

km
(4.9)

where k1 = 2n, k2 = 2(n − 2), k3 = n(n − 2) and fm(σ) = fm1 (σ) + fm2 (σ) + fm3 (σ)
for every σ ∈ Sn. Note that this decomposition is only valid for symmetric instances in
which all the elements in the main diagonals of the distance and flow matrices are zeros.

28

4.2. Theoretical study

In this work, we only focus on the instances that meet the previous conditions, which are
the vast majority of the available benchmark instances described in Section 3.1. However,
it is important to remark that similar decompositions can be proposed for other types of
instances.

The main advantage of the proposed decomposition is that each of the previous sub-
functions (fm1 , fm2 , fm3) evaluates different aspects of a given solution. For each combination
of values a, b, c and d such that 1 ≤ a < b ≤ n and 1 ≤ c < d ≤ n, we have that:

• The fm1 sub-function only returns the output of gm(a,b),(c,d) when σ(a) = c∧σ(b) = d

or σ(a) = d ∧ σ(b) = c. That is, this function only evaluates the combinations
of locations-facilities in which both current facilities (c and d) are in the current
locations (a and b) in the given solution σ.

• The fm2 sub-function only returns the output of gm(a,b),(c,d) when σ(a) = c⊕σ(b) = d

or σ(a) = d⊕ σ(b) = c. That is, this function only evaluates the combinations of
locations-facilities in which just one of the current facilities (c or d) is in one of the
current locations (a or b) in the given solution σ.

• The fm3 sub-function only returns the output of gm(a,b),(c,d) when σ(a) ̸= c, d∧σ(b) ̸=
c, d. That is, this function only evaluates the combinations of locations-facilities in
which neither of the current facilities (c and d) is in the current locations (a and b) in
the given solution σ.

Thus, it is easy to see that the elementary functions do not only consider information
about the current facility-location assignment (fm1), but also information about the config-
urations that could be reached by modifying the facilities assigned to each pair of locations
(fm2 , fm3). Since the cases β, γ, ϵ and ζ of Equation 2.9 cancel each other out when the
elementary landscapes are combined [31], this additional information is not present in the
original landscape of the QAP, and only arises when the ELD is computed.

4.2 Theoretical study

Once we have defined the decomposition of the elementary functions, we now can use this
new framework to analyze the aspects of the solutions that are being measured by each
elementary landscape. First, let us replace the parameters αm, βm, γm, ϵm and ζm in the
auxiliary functions χm(a,b)(c,d), ω

m
(a,b)(c,d) and τ

m
(a,b)(c,d) with their actual values according to

Table 2.1.

• In the case of the f1 elementary function, α1 = n− 3, β1 = 1− n, γ1 = −2, ϵ1 = 0
and ζ1 = −1. Therefore:

χ1
(a,b)(c,d)(σ) =

−4ψa,b,c,d if σ(a) = c ∧ σ(b) = d or
σ(a) = d ∧ σ(b) = c

0 Otherwise
(4.10)

ω1
(a,b)(c,d)(σ) =

−4ψa,b,c,d if σ(a) = c ⊕ σ(b) = d or
σ(a) = d⊕ σ(b) = c

0 Otherwise
(4.11)

29

4. Analysis of the Elementary Landscape Decomposition

τ1(a,b)(c,d)(σ) =

{
−4ψa,b,c,d if σ(a) ̸= c, d ∧ σ(b) ̸= c, d

0 Otherwise
(4.12)

• In the case of the f2 elementary function, α2 = n− 3, β2 = n− 3, γ2 = 0, ϵ2 = 0
and ζ2 = 1. Therefore:

χ2
(a,b)(c,d)(σ) =

(4n− 12)ψa,b,c,d if σ(a) = c ∧ σ(b) = d or
σ(a) = d ∧ σ(b) = c

0 Otherwise
(4.13)

ω2
(a,b)(c,d)(σ) = 0 (4.14)

τ2(a,b)(c,d)(σ) =

{
4ψa,b,c,d if σ(a) ̸= c, d ∧ σ(b) ̸= c, d

0 Otherwise
(4.15)

• In the case of the f3 elementary function, α3 = 2n− 3, β3 = 1, γ3 = n− 2, ϵ3 = 0
and ζ3 = −1. Therefore:

χ3
(a,b)(c,d)(σ) =

(4n− 4)ψa,b,c,d if σ(a) = c ∧ σ(b) = d or
σ(a) = d ∧ σ(b) = c

0 Otherwise
(4.16)

ω3
(a,b)(c,d)(σ) =

(2n− 4)ψa,b,c,d if σ(a) = c ⊕ σ(b) = d or
σ(a) = d⊕ σ(b) = c

0 Otherwise
(4.17)

τ3(a,b)(c,d)(σ) =

{
−4ψa,b,c,d if σ(a) ̸= c, d ∧ σ(b) ̸= c, d

0 Otherwise
(4.18)

As can be observed, f1, f2 and f3 are just different linear combinations of all the
possible ψa,b,c,d values such that 1 ≤ a < b ≤ n and 1 ≤ c < d ≤ n. The only differences
between the elementary functions are the coefficients that are used in the linear combination
and the value of the km constant. Therefore, analyzing the values of those coefficients can
help us understand which of the sub-functions have a negative or positive contribution
to the objective value of each elementary function. Considering that the values in the
distance and flow matrices of the input instances are non-negative (which, again, happens
in virtually all the benchmark instances), we know that ψa,b,c,d ≥ 0 for all 1 ≤ a < b ≤ n
and 1 ≤ c < d ≤ n. With this information, we can determine that:

• f1: According to Equations 4.10, 4.11 and 4.12, all the auxiliary functions return the
same value when their particular conditions are met. As stated in [45], this means
that the value of f1 is independent of σ, and thus, the f1 elementary function is
constant (due to the symmetry of the distance and flowmatrices). Based on the output
values of the auxiliary functions and the k1 constant, the f11 , f12 and f13 sub-functions
always have a negative contribution to the f1 elementary function value. Thus, the
value of f1 is always equal to or less than 0.

30

4.2. Theoretical study

• f2: The f2 elementary function is composed of just two non-zero sub-functions,
since ω2

(a,b)(c,d) (Equation 4.14) is always 0 regardless of the input solution, and thus,
f22 also equals 0. Regarding the f21 and f23 sub-functions, we can observe that:

– Based on the output values of χ2
(a,b)(c,d) (Equation 4.13) and the k2 constant,

the value of the f21 function is always equal to or greater than 0 if n ≥ 3. In
fact, the exact value of f21 only depends on the sum of all the ψa,b,c,d such that
σ(a) = c ∧ σ(b) = d or σ(a) = d ∧ σ(b) = c. If that sum increases, then the
value of f21 also increases.

– Based on the output values of τ2(a,b)(c,d) (Equation 4.15) and the k2 constant,
the value of the f23 function is always equal to or greater than 0 if n ≥ 3. In
fact, the exact value of f23 only depends on the sum of all the ψa,b,c,d such that
σ(a) ̸= c, d ∧ σ(b) ̸= c, d. If that sum increases, then the value of f23 also
increases.

• f3: With respect to the f3 elementary function, we can observe that:

– Based on the output values of χ3
(a,b)(c,d) (Equation 4.16) and the k3 constant,

the value of the f31 function is always equal to or greater than 0 if n ≥ 3. In
fact, the exact value of f31 only depends on the sum of all the ψa,b,c,d such that
σ(a) = c ∧ σ(b) = d or σ(a) = d ∧ σ(b) = c. If that sum increases, then the
value of f31 also increases.

– Based on the output values of ω3
(a,b)(c,d) (Equation 4.17) and the k3 constant,

the value of the f32 function is always equal to or greater than 0 if n ≥ 3. In
fact, the exact value of f32 only depends on the sum of all the ψa,b,c,d such that
σ(a) = c⊕ σ(b) = d or σ(a) = d⊕ σ(b) = c. If that sum increases, then the
value of f32 also increases.

– Based on the output values of τ3(a,b)(c,d) (Equation 4.18) and the k3 constant,
the value of the f33 function is always equal to or less than 0 if n ≥ 3. In
fact, the exact value of f33 only depends on the sum of all the ψa,b,c,d such
that σ(a) ̸= c, d ∧ σ(b) ̸= c, d. If that sum increases, then the value of f33
decreases.

In addition to the sign of the sub-functions, studying the coefficients in χm, ωm and
τm can give us information about which sub-functions have a higher relative contribution
to the general objective value of each elementary function. However, we have to take into
account that, for any solution σ ∈ Sn, the amount of combinations of a, b, c and d such
that 1 ≤ a < b ≤ n and 1 ≤ c < d ≤ n that meet the first condition of each auxiliary
function is different. From the total number of possible combinations (n2−n)2

4 , only n2−n
2

combinations satisfy that σ(a) = c ∧ σ(b) = d or σ(a) = d ∧ σ(b) = c (α~β case). On
the other hand, exactly (n2 − n)(n− 2) combinations satisfy that σ(a) = c⊕ σ(b) = d or
σ(a) = d⊕ σ(b) = c (γ~ϵ case). Finally, the remaining (n2−n)((n−2)2−(n−2))

4 combinations
fulfill that σ(a) ̸= c, d ∧ σ(b) ̸= c, d (ζ case). If we look at Figure 4.1, we can observe that
the amount of combinations that meet the first condition of τm increases very fast with
the instance size (O(n4)), while the number of combinations corresponding to χm and ωm
grows slower (O(n2) and O(n3) respectively).

31

4. Analysis of the Elementary Landscape Decomposition

Figure 4.1: Comparison between the number of combinations of a, b, c and d that satisfy the first
condition of each auxiliary function (χm, ωm, τm) as a function of the instance size n.

Thus, if we focus on the summations of Equations 4.7, 4.8 and 4.9, the fm3 sub-function
is the one with the highest amount of “significant” terms (that is, the ones that satisfy the
first condition of the corresponding auxiliary function), followed by fm2 and fm1 (for large
enough values of n). However, this is not enough to analyze which sub-functions have
a higher objective value contribution in each elementary function, since there is another
factor that has to be taken into account: the magnitude of the coefficients in the linear
combination (Figure 4.2). If we look at the output values of the χm, ωm and τm auxiliary
functions, we have that:

• f1: According to Equations 4.10, 4.11 and 4.12, all the auxiliary functions return
−4ψa,b,c,d when their conditions are met. Therefore, every term in the summations
of f11 , f12 and f13 has the same relative contribution to the fitness of the elementary
function f1.

• f2: According to Equations 4.13 and 4.15, the magnitude of the multiplication factor
that is applied to the corresponding ψa,b,c,d value is higher in the case of χ2 when
n > 4. Therefore, the individual terms in the summation of f21 have a higher relative
contribution to the fitness of the elementary function f2 than those in the summation
of f23 .

• f3: According to Equations 4.16, 4.17 and 4.18, theχ3 auxiliary function is the one that
has the multiplication factor with the highest magnitude when n > 2. Conversely,
τ3 has the lowest magnitude factor when n > 4. Therefore, the individual terms in
the summation of f31 have the highest relative contribution to the f3 function value,
followed by f32 and f33 .

Thus, although the summations in fm2 and fm3 have generally more significant terms
than fm1 , the weight of each term in the first sub-function is generally higher.

Based on both the number of significant terms and their corresponding coefficients, we
now can compute the exact average values of the sub-functions of the proposed decompo-
sition. As all the sub-functions are just linear combinations of ψa,b,c,d, the expected values
can be computed considering that E[cX] = cE[X], where X is a random variable (in this
case, ψa,b,c,d) and c is a constant (in this case, the number of significant terms multiplied by

32

4.2. Theoretical study

(a) f1. (b) f2.

(c) f3.

Figure 4.2: Evolution of the magnitude of the coefficients that are used in the auxiliary functions
(χm, ωm, τm) as a function of the instance size.

their coefficient) [65]. The calculated values are shown in Table 4.1. As can be observed in
the table, the fm3 sub-function is the one with the largest absolute expected value in the f1
and f2 elementary functions (O(n3)), and thus, the one with the highest objective value
contribution in those cases. In the case of f3, however, both the f32 and f33 sub-functions
have a similar expected contribution (O(n2)).

Until now, we have analyzed some relevant characteristics of the elementary landscapes
using the decomposition framework that we have proposed. However, we have not yet
studied the effects of these features on local search optimization processes. That is, we still
have to analyze how the elementary functions (and thus, the corresponding sub-functions)
vary when moving from one solution to another in the search space.

As we have mentioned before, the value of each elementary function depends on
the combinations of a, b, c and d that meet the conditions of the fm1 , fm2 and fm3 sub-
functions. When moving between solutions using local search processes, the combinations
that correspond to each of the sub-functions change, modifying the elementary function
values [31]. Considering the swap neighborhood, moving from any solution σ ∈ Sn to
another neighboring solution σ′ ∈ N(σ) produces the following changes (Figure 4.3):

• 2(n− 2) combinations switch from the α~β case (fm1) to the γ~ϵ case (fm2), and vice
versa.

• 2(n− 2)(n− 3) combinations switch from the γ~ϵ case (fm2) to the ζ case (fm3), and
vice versa.

33

4. Analysis of the Elementary Landscape Decomposition

Table 4.1: Expected values of the sub-functions over the entire search space as a function of the
instance size (n). ψ̄ represents the average value of ψa,b,c,d for every 1 ≤ a, b, c, d ≤ n such that
a ̸= b and c ̸= d.

Expected value

f11
−4
2n

n2−n
2

ψ̄ = −(n− 1)ψ̄

f12
−4
2n

(n2 − n)(n− 2)ψ̄ = −2(n− 1)(n− 2)ψ̄f1

f13
−4
2n

(n2−n)((n−2)2−(n−2))
4

ψ̄ = − (n−1)((n−2)2−(n−2))
2

ψ̄

f21
4n−12
2(n−2)

n2−n
2

ψ̄ =
(n−3)(n2−n)

n−2
ψ̄

f22
0

2(n−2)
(n2 − n)(n− 2)ψ̄ = 0f2

f23
4

2(n−2)
(n2−n)((n−2)2−(n−2))

4
ψ̄ =

(n2−n)(n−3)
2

ψ̄

f31
4n−4

n(n−2)
n2−n

2
ψ̄ =

2(n−1)2

n−2
ψ

f32
2n−4

n(n−2)
(n2 − n)(n− 2)ψ̄ = 2(n− 1)(n− 2)ψ̄f3

f33
−4

n(n−2)
(n2−n)((n−2)2−(n−2))

4
ψ̄ = −(n− 1)(n− 3)ψ̄

Figure 4.3: Transition graph that represents the amount of combinations that switch from one case
(sub-function) to another after performing a swap movement.

As can be observed, the fm2 and fm3 sub-functions are the ones that lead to the largest
amount of variations (O(n2)). However, we have to take into account that, as we have
explained before, the magnitude of the significant terms in each of the sub-functions is
very different, and hence, the magnitude of the individual variations that happen after a
swap movement is different too. For example, in the case of the f1 elementary function
(Equations 4.10, 4.11, 4.12), all the sub-functions have the same exact coefficient, so it is
easy to see that the f12 and f13 sub-functions will generally suffer the largest change in
the objective value. On the other hand, if we focus on f2 (Equations 4.13, 4.14, 4.15), the
f21 sub-function has a O(n) coefficient, while f23 has a O(1) coefficient and f22 is always
0. Thus, in this case, it is more difficult to discern which of the sub-functions (f21 or f23)
undergoes a greater objective value variation when moving between neighbor solutions.
Finally, regarding the f3 elementary function (Equations 4.16, 4.17, 4.18), both the f31 and
f32 sub-functions have a O(n) coefficient, which suggests that f32 is the one that suffers the
largest fitness variations.

The sub-functions that undergo a greater objective value variation can give us hints
about what aspects are being considered during the optimization of each elementary
function. For example, if we optimize f3, the sub-function that has the greatest impact on

34

4.3. Experimental study

the neighborhood movement selection (the one with the greatest variation) is f32 , that is,
we are mainly considering the combinations of locations-facilities in which just one of the
current facilities (c or d) is in one of the current locations (a or b) in the given solution. So,
as can be seen, the proposed decomposition provides a better insight into the real meaning
of each of the elementary components and their effect on the optimization process.

4.3 Experimental study

In order to experimentally verify the characteristics of the decomposition discussed in
the previous section, we now consider two representative benchmark instances that were
already used in Section 3.3: dre42 and tai45e01. As a reminder, these two instances are
part of the Dre and Tai-e benchmarks, which contain difficult instances with very different
problem structures [58].

First, let us analyze the effects of the elementary function optimization in the decom-
posed sub-functions. With this aim, we decompose the fitness evolution of the elementary
functions during the TS and VFS executions of Section 3.3 (Figures 4.4 and 4.5). As can be
seen, in this case f1 is also included since its individual sub-functions are not constant.

The first interesting thing that can be observed in Figures 4.4 and 4.5 is that some
sub-functions are not being minimized during the optimization process. That is, even when
the objective value of an elementary function decreases, this does not mean that all the
sub-functions of the decomposition are reduced. As we have seen before, the sign and
optimization direction of the sub-functions depends on the sign of the coefficients, so one
same sub-function could be minimized in one of the elementary functions and maximized
in another. For example, the f11 sub-function is maximized during the optimization of
both the dre42 and tai45e01 instances, while f21 and f31 are minimized during that same
process. If we take into account the information given by the fm1 sub-function and the
sign of its coefficients in each elementary function, we can observe that this phenomenon
means that the local search algorithms are minimizing the sum of all the ψa,b,c,d such that
σ(a) = c ∧ σ(b) = d or σ(a) = d ∧ σ(b) = c. That is, they are minimizing the sum of
the cases in which both current facilities (c and d) are in the current locations (a and b) in
the given solution σ. This is precisely what the original objective function of the QAP (f)
measures [31], so it makes sense because both the TS and VFS are based on minimizing f .
This analysis can be repeated for the fm2 and fm3 sub-functions in order to explore which
combinations of locations and facilities are being minimized or maximized.

In addition to the sign and optimization direction, another interesting characteristic
that has been mentioned during the theoretical analysis is the variation of the sub-function
values when moving between neighbor solutions in the search space. This issue has
been studied by computing the objective value variations between a set of random (swap)
neighbor solutions in the search space of the dre42 and tai45e01 instances. In particular, we
have considered 10,000 random pairs of solutions σ1, σ2 ∈ Sn such that σ2 ∈ N(σ1) per
instance. The objective value variations fmw (σ1)− fmw (σ2) have been computed for each of
the sub-functions in the decomposition (1 ≤ m,w ≤ 3). Then, a comparison between the
fitness variations of the sub-functions that belong to each elementary function has been
carried out. The obtained results are shown in Figures 4.6 and 4.7. The mean magnitude
differences between the variations of the sub-functions are also shown in Figure 4.8.

35

4. Analysis of the Elementary Landscape Decomposition

(a) f1
1 . (b) f1

2 . (c) f1
3 .

(d) f2
1 . (e) f2

2 . (f) f2
3 .

(g) f3
1 . (h) f3

2 . (i) f3
3 .

Figure 4.4: Evolution of the sub-functions of the proposed decomposition during the 10 runs of the
TS and VFS algorithms for the dre42 instance. The solid lines indicate the mean of the sub-functions
in each iteration, while the shaded areas represent the corresponding standard deviations.

First, the point clouds in Figures 4.6 and 4.7 show that the magnitude of the variations
in the sub-functions that belong to each elementary function are pretty different, which is
also confirmed by the mean magnitude differences computed in Figure 4.8. In the case of
f1, for example, both the f12 and f13 sub-functions exhibit a wider range of variation than
f11 in both instances. This means that the f12 and f13 sub-functions have a larger impact
on the neighborhood movement decision process of local search algorithms. Regarding
the rest of the elementary functions, f21 seems to be the most influential sub-function
(the one with the largest variations) in the case of f2, while the f32 sub-function seems
to dominate the decision process when we consider f3. Additionally, if we examine all
the elementary functions at the same time, the magnitude of the fitness variations in f21
seems to be higher than the magnitude of the variations in any other sub-function of the
decomposition, and not only those in f2. Therefore, this particular sub-function seems to
be the most influential one when optimizing the general objective function f using local

36

4.3. Experimental study

(a) f1
1 . (b) f1

2 . (c) f1
3 .

(d) f2
1 . (e) f2

2 . (f) f2
3 .

(g) f3
1 . (h) f3

2 . (i) f3
3 .

Figure 4.5: Evolution of the sub-functions of the proposed decomposition during the 10 runs of
the TS and VFS algorithms for the tai45e01 instance. The solid lines indicate the mean of the sub-
functions in each iteration, while the shaded areas represent the corresponding standard deviations.

searches, at least according to the analyzed instances.
All these experimental results are in line with the conclusions drawn during the the-

oretical analysis. Moreover, they can be confirmed if we look at the shape of the line
plots in Figures 4.4 and 4.5. If we focus on the plots that correspond to f2, we can see
that the evolution of f21 has a very similar shape to the evolution of f2 shown in Figure
3.5. Something similar happens if we look at the f32 and f3 evolution plots. Thus, this
confirms that the behaviour of local search algorithms in each of the elementary functions
is predominantly defined by one of the sub-functions.

Finally, another interesting property that can be seen in Figures 4.6 and 4.7 is that the
variations of the fm2 and fm3 sub-functions are highly correlated, with the only exception of
the f2 case due to f22 being always 0. This suggests that there is an important objective value
relationship between the combinations of facilities and locations that meet the conditions
of the γ~ϵ and ζ cases. This phenomenon should be further studied in the future in order

37

4. Analysis of the Elementary Landscape Decomposition

(a) f1
1 and f1

2 . (b) f1
1 and f1

3 . (c) f1
2 and f1

3 .

(d) f2
1 and f2

2 . (e) f2
1 and f2

3 . (f) f2
2 and f2

3 .

(g) f3
1 and f3

2 . (h) f3
1 and f3

3 . (i) f3
2 and f3

3 .

Figure 4.6: Comparison of the sub-function value variations in 10,000 random pairs of (swap)
neighbor solutions of the dre42 instance. Each axis represents the variation of a different sub-
function, each point represents a pair of neighbor solutions, and the colors of the points indicate the
magnitude difference between the variations of the corresponding sub-functions (absolute value in
the X axis minus absolute value in the Y axis).

38

4.3. Experimental study

(a) f1
1 and f1

2 . (b) f1
1 and f1

3 . (c) f1
2 and f1

3 .

(d) f2
1 and f2

2 . (e) f2
1 and f2

3 . (f) f2
2 and f2

3 .

(g) f3
1 and f3

2 . (h) f3
1 and f3

3 . (i) f3
2 and f3

3 .

Figure 4.7: Comparison of the sub-function value variations in 10,000 random pairs of (swap)
neighbor solutions of the tai45e01 instance. Each axis represents the variation of a different sub-
function, each point represents a pair of neighbor solutions, and the colors of the points indicate the
magnitude difference between the variations of the corresponding sub-functions (absolute value in
the X axis minus absolute value in the Y axis).

39

4. Analysis of the Elementary Landscape Decomposition

(a1) f1. (a2) f2. (a3) f3.

(a) Dre42 instance.

(b1) f1. (b2) f2. (b3) f3.

(b) Tai45e01 instance.

Figure 4.8: Mean differences between the magnitudes of the sub-function value variations in 10,000
random pairs of (swap) neighbor solutions of the dre42 and tai45e01 instances. Blue colors represent
that the sub-function in the Y axis has larger magnitude variations, while red colors represent just
the opposite.

to avoid potential redundancies when using the ELD to analyze the problem.

4.4 Implications

The previous theoretical and experimental analyses can help us understand some particu-
larities of the elementary landscape decomposition of the QAP:

• In [45], they noticed that the f2 elementary function is the one that generally has
the highest influence on the variance of the original objective function of the QAP
when the instance is symmetric. As we have just seen, this may happen because
most of the objective value variation of f2 comes from the f21 sub-function. This
sub-function measures the same combinations of locations and facilities as the f
objective function (α~β case), so it ensures that the variations in the fitness of f2 are
similar to those in f . Moreover, f21 appears to be the sub-function with the highest
magnitude variations in the entire decomposition, which would guarantee that the f2
elementary function has a high contribution to the general objective value variance.
This is not the case if we consider the f3 elementary function, since most of its fitness
variation comes from the f32 sub-function, which measures information that is not
present in the original landscape of the problem (γ~ϵ case).

40

4.4. Implications

• Regarding the local search algorithms that we studied in Chapter 3, the proposed
decomposition can also help us explain the behaviour of the TS and VFS algorithms
in different types of instances. In the case of the Dre instances, for example, we
observed that focusing on optimizing the f2 elementary function seems to be the
best strategy. That is, it seems that optimizing the α~β case is just enough to obtain
good results. In the case of the Tai-e instances, however, optimizing just the α~β
case causes the algorithm to get stuck in low quality local optima. In this situation,
considering information that is not in the original formulation of the problem (that
is, the γ~ϵ and ζ cases) may help to escape the local optima, and thus, optimizing
the f3 elementary function becomes particularly useful.

In short, it is easy to see that the proposed decomposition allows us to delve deeper into
the ELD of the problem and its effects on local search processes. Taking this into account,
future research lines should focus on finding the relationship between the decomposed
landscapes and the characteristics of QAP instances. By doing so, we would be able to
know which aspects of the solution should be optimized in order to find good solutions
for any given instance. This information could then be used to select the most suitable
algorithm for each situation.

41

CHAPTER 5
Conclusions and future work

As observed in this work, the elementary landscape decomposition is a useful tool to better
understand the underlying components that form a particular combinatorial optimization
problem. In the case of the quadratic assignment problem, we have used the elementary
landscape decomposition to try to understand the behaviour of two local search based
algorithms: the Tabu Search (TS) and the Variable Function Search (VFS). Through this
analysis, we have been able to point out the performance differences between the algorithms
in different types of instances, and we have successfully linked those differences with the
elementary landscapes that compose the problem.

In order to go a step further on the analysis of the ELD, we have also proposed an
additional decomposition that allows us to have a deeper insight into the characteristics of
the elementary landscapes. Given a symmetric instance with null main diagonals, we have
proved that the elementary functions of the QAP are composed of three sub-functions that
measure different combinations of locations and facilities in the solutions. The elementary
functions only differ in the coefficients that measure the contribution of each type of
combination of locations and facilities. Therefore, analyzing the properties of the sub-
functions can help us understand which are the components of the solution that have a
larger impact on each of the elementary functions. With this information, the elementary
landscape decomposition could be effectively used to optimize specific characteristics of a
QAP instance.

However, there is still much work to be done in order to fully understand the elementary
landscapes that form the QAP. For example, the proposed additional decomposition is only
valid for a particular type of QAP instances. Although it covers the vast majority of the
benchmark instances that are available online, it would be interesting to propose a more
general decomposition scheme. Moreover, the carried out analysis only focuses on some
general characteristics of the sub-functions and their relationship with the corresponding
elementary function. Thus, a more complete analysis should be performed from both
theoretical and practical point of views. Just as an example, finding closed expressions
for the average fitness variation of the sub-functions when moving between solutions in
the search space could help us understand the optimization process of the elementary
landscapes.

43

5. Conclusions and future work

Another topic that has been left unexplored in this work is the reasons why the charac-
teristics of the ELD vary depending on the instance type. Although previous works have
already discovered that the symmetry of the instances is a key factor that determines the
structure of the ELD [45], we still do not know which other aspects of the input instance
should be considered when analyzing the problem decomposition. For example, in this
work, we have encountered some evidences that suggest that having a block distance or flow
matrix may hinder the optimization of the f2 elementary function. However, we have not
been able to discover why this happens. Thus, it would be interesting to perform additional
comparative studies in order to clarify the relationship between the characteristics of the
instance matrices and the ELD of the problem.

Finally, regarding the practical applications of the elementary landscape decomposition
of the QAP, all the information gathered during the analysis of the elementary landscapes
could be used to create new meta-heuristic algorithms that efficiently solve the problem.
For example, the VFS algorithm could be modified to focus the optimization process on one
landscape or another, depending on the search status of the algorithm. This decision could
be carried out by applying Neural Combinatorial Optimization (NCO) techniques [66, 67]
that automatically decide which elementary landscape is more promising at each step of
the algorithm. Additionally, this idea could be applied to other combinatorial optimization
problems with a known ELD in order to check if this strategy can be extended to different
types of contexts.

44

Bibliography

[1] B. H. Korte, J. Vygen, B. Korte, J. Vygen, Combinatorial optimization, Vol. 1, Springer, 2011.
See page 1.

[2] C. H. Papadimitriou, K. Steiglitz, Combinatorial optimization: algorithms and complexity,
Courier Corporation, 1998. See page 1.

[3] D. Du, P. M. Pardalos, Handbook of combinatorial optimization, Vol. 4, Springer Science &
Business Media, 1998. See page 1.

[4] T. L. Magnanti, Combinatorial optimization and vehicle fleet planning: Perspectives and
prospects, Networks 11 (2) (1981) 179–213. See page 1.

[5] A. A. Bakhtiari, H. Navid, J. Mehri, D. D. Bochtis, Optimal route planning of agricultural
field operations using ant colony optimization, Agricultural Engineering International: CIGR
Journal 13 (4) (2011). See page 1.

[6] X.-S. Zhang, Z. Li, R.-S. Wang, Y. Wang, A combinatorial model and algorithm for globally
searching community structure in complex networks, Journal of combinatorial optimization
23 (4) (2012) 425–442. See page 1.

[7] G. Naseri, M. A. Koffas, Application of combinatorial optimization strategies in synthetic
biology, Nature communications 11 (1) (2020) 1–14. See page 1.

[8] E. Alba, G. Luque, A new local search algorithm for the dna fragment assembly problem, in:
European Conference on Evolutionary Computation in Combinatorial Optimization, Springer,
2007, pp. 1–12. See page 1.

[9] S. Arora, B. Barak, Computational complexity: a modern approach, Cambridge University
Press, 2009. See page 1.

[10] M. Jünger, G. Reinelt, G. Rinaldi, The traveling salesman problem, Handbooks in operations
research and management science 7 (1995) 225–330. See page 1.

[11] J. Ceberio, A. Mendiburu, J. A. Lozano, The linear ordering problem revisited, European
Journal of Operational Research 241 (3) (2015) 686–696. See page 1.

[12] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, A. J. Smola, Learning graph matching, IEEE
transactions on pattern analysis and machine intelligence 31 (6) (2009) 1048–1058. See page 1.

[13] E. L. Lawler, D. E. Wood, Branch-and-bound methods: A survey, Operations research 14 (4)
(1966) 699–719. See page 1.

[14] J. E. Mitchell, Branch-and-cut algorithms for combinatorial optimization problems, Handbook
of applied optimization 1 (1) (2002) 65–77. See page 1.

[15] S. Voß, Meta-heuristics: The state of the art, in: Workshop on Local Search for Planning and
Scheduling, Springer, 2000, pp. 1–23. See page 1.

[16] E.-G. Talbi, A taxonomy of hybrid metaheuristics, Journal of heuristics 8 (5) (2002) 541–564.
See page 1.

[17] E. Aarts, E. H. Aarts, J. K. Lenstra, Local search in combinatorial optimization, Princeton
University Press, 2003. See page 1.

45

Bibliography

[18] H. R. Lourenço, O. C. Martin, T. Stützle, Iterated local search, in: Handbook of metaheuristics,
Springer, 2003, pp. 320–353. See page 1.

[19] F. Glover, Tabu search: A tutorial, Interfaces 20 (4) (1990) 74–94. See pages 1, 2.
[20] P. J. Van Laarhoven, E. H. Aarts, Simulated annealing, in: Simulated annealing: Theory and

applications, Springer, 1987, pp. 7–15. See page 1.
[21] Z. Beheshti, S. M. H. Shamsuddin, A review of population-based meta-heuristic algorithms,

Int. J. Adv. Soft Comput. Appl 5 (1) (2013) 1–35. See page 1.
[22] S. Sivanandam, S. Deepa, Genetic algorithms, in: Introduction to genetic algorithms, Springer,

2008, pp. 15–37. See page 1.
[23] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE computational intelligence

magazine 1 (4) (2006) 28–39. See page 1.
[24] P. Larrañaga, J. A. Lozano, Estimation of distribution algorithms: A new tool for evolutionary

computation, Vol. 2, Springer Science & Business Media, 2001. See page 1.
[25] T. C. Koopmans, M. Beckmann, Assignment problems and the location of economic activities,

Econometrica: journal of the Econometric Society (1957) 53–76. See pages 1, 5.
[26] E. L. Lawler, The quadratic assignment problem, Management science 9 (4) (1963) 586–599.

See page 1.
[27] A. N. Elshafei, Hospital layout as a quadratic assignment problem, Journal of the Operational

Research Society 28 (1) (1977) 167–179. See page 1.
[28] R. E. Burkard, J. Offermann, Entwurf von schreibmaschinentastaturen mittels quadratischer

zuordnungsprobleme, Zeitschrift für Operations Research 21 (4) (1977) B121–B132. See page
1.

[29] N. W. Brixius, K. M. Anstreicher, The steinberg wiring problem, in: The sharpest cut: the
impact of Manfred Padberg and his work, SIAM, 2004, pp. 293–307. See page 1.

[30] A. M. Geoffrion, G. W. Graves, Scheduling parallel production lines with changeover costs:
Practical application of a quadratic assignment/lp approach, Operations Research 24 (4) (1976)
595–610. See page 1.

[31] F. Chicano, G. Luque, E. Alba, Elementary landscape decomposition of the quadratic assign-
ment problem, in: Proceedings of the 12th annual conference on Genetic and evolutionary
computation, 2010, pp. 1425–1432. See pages 1, 2, 8, 9, 10, 29, 33, and 35.

[32] S. Sahni, T. Gonzalez, P-complete approximation problems, Journal of the ACM (JACM) 23 (3)
(1976) 555–565. See page 2.

[33] G. A. E.-N. A. Said, A. M. Mahmoud, E.-S. M. El-Horbaty, A comparative study of meta-heuristic
algorithms for solving quadratic assignment problem, arXiv preprint arXiv:1407.4863 (2014).
See page 2.

[34] F. Neri, C. Cotta, Memetic algorithms and memetic computing optimization: A literature
review, Swarm and Evolutionary Computation 2 (2012) 1–14. See page 2.

[35] N. Krasnogor, J. Smith, A tutorial for competent memetic algorithms: model, taxonomy, and
design issues, IEEE transactions on Evolutionary Computation 9 (5) (2005) 474–488. See page
2.

[36] U. Benlic, J.-K. Hao, Memetic search for the quadratic assignment problem, Expert Systems
with Applications 42 (1) (2015) 584–595. See pages 2, 13.

[37] A. Misevicius, An improved hybrid genetic algorithm: new results for the quadratic assignment
problem, in: International Conference on Innovative Techniques and Applications of Artificial
Intelligence, Springer, 2003, pp. 3–16. See pages 2, 13.

[38] F. Glover, Tabu search—part i, ORSA Journal on computing 1 (3) (1989) 190–206. See page 2.

46

Bibliography

[39] É. Taillard, Robust taboo search for the quadratic assignment problem, Parallel computing
17 (4-5) (1991) 443–455. See pages 2, 10.

[40] F. Chicano, F. Daolio, G. Ochoa, S. Vérel, M. Tomassini, E. Alba, Local optima networks,
landscape autocorrelation and heuristic search performance, in: International Conference on
Parallel Problem Solving from Nature, Springer, 2012, pp. 337–347. See page 2.

[41] F. Daolio, S. Verel, G. Ochoa, M. Tomassini, Local optima networks of the quadratic assignment
problem, in: IEEE Congress on Evolutionary Computation, IEEE, 2010, pp. 1–8. See page 2.

[42] P. Merz, B. Freisleben, Fitness landscape analysis and memetic algorithms for the quadratic
assignment problem, IEEE transactions on evolutionary computation 4 (4) (2000) 337–352. See
page 2.

[43] M.-H. Tayarani-N, A. Prügel-Bennett, Quadratic assignment problem: a landscape analysis.,
Evol. Intell. 8 (4) (2015) 165–184. See page 2.

[44] F. Chicano, L. D. Whitley, E. Alba, A methodology to find the elementary landscape decom-
position of combinatorial optimization problems, Evolutionary Computation 19 (4) (2011)
597–637. See pages 2, 8.

[45] X. Benavides, J. Ceberio, L. Hernando, On the symmetry of the quadratic assignment problem
through elementary landscape decomposition, in: Proceedings of the Genetic and Evolutionary
Computation Conference Companion, 2021, pp. 1414–1422. See pages 2, 9, 10, 11, 13, 16, 20,
30, 40, and 44.

[46] J. Ceberio, B. Calvo, A. Mendiburu, J. A. Lozano, Multi-objectivising combinatorial optimisation
problems by means of elementary landscape decompositions, Evolutionary computation 27 (2)
(2019) 291–311. See pages 2, 11, 13, and 23.

[47] D. Rockmore, P. Kostelec, W. Hordijk, P. F. Stadler, Fast fourier transform for fitness landscapes,
Applied and Computational Harmonic Analysis 12 (1) (2002) 57–76. See page 2.

[48] C. M. Reidys, P. F. Stadler, Combinatorial landscapes, SIAM review 44 (1) (2002) 3–54. See
page 6.

[49] P. F. Stadler, et al., Towards a theory of landscapes, in: Complex systems and binary networks,
Springer, 1995, pp. 78–163. See pages 6, 7.

[50] L. K. Grover, Local search and the local structure of np-complete problems, Operations Research
Letters 12 (4) (1992) 235–243. See pages 6, 7.

[51] D. Whitley, A. M. Sutton, A. E. Howe, Understanding elementary landscapes, in: Proceedings
of the 10th annual conference on Genetic and evolutionary computation, 2008, pp. 585–592.
See page 6.

[52] B. Codenotti, L. Margara, Local properties of some NP-complete problems, International
Computer Science Institute, 1992. See page 7.

[53] A. Perez, J. Ceberio, J. A. Lozano, Are the artificially generated instances uniform in terms of
difficulty?, in: 2018 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2018, pp. 1–8.
See page 8.

[54] J. Skorin-Kapov, Tabu search applied to the quadratic assignment problem, ORSA Journal on
computing 2 (1) (1990) 33–45. See page 10.

[55] S. Salhi, Defining tabu list size and aspiration criterion within tabu search methods, Computers
& Operations Research 29 (1) (2002) 67–86. See page 10.

[56] M. Voorneveld, Characterization of pareto dominance, Operations Research Letters 31 (1)
(2003) 7–11. See page 11.

[57] R. E. Burkard, S. E. Karisch, F. Rendl, Qaplib–a quadratic assignment problem library, Journal
of Global optimization 10 (4) (1997) 391–403. See page 13.

47

Bibliography

[58] Z. Drezner, P. M. Hahn, É. D. Taillard, Recent advances for the quadratic assignment problem
with special emphasis on instances that are difficult for meta-heuristic methods, Annals of
Operations research 139 (1) (2005) 65–94. See pages 13, 18, 19, 23, and 35.

[59] A. Misevicius, An implementation of the iterated tabu search algorithm for the quadratic
assignment problem, OR spectrum 34 (3) (2012) 665–690. See page 13.

[60] A. Benavoli, G. Corani, J. Demšar, M. Zaffalon, Time for a change: a tutorial for comparing
multiple classifiers through bayesian analysis, The Journal of Machine Learning Research
18 (1) (2017) 2653–2688. See page 16.

[61] B. Calvo, J. Ceberio, J. A. Lozano, Bayesian inference for algorithm ranking analysis, in:
Proceedings of the genetic and evolutionary computation conference companion, 2018, pp.
324–325. See page 16.

[62] U. Dorndorf, A. Drexl, Y. Nikulin, E. Pesch, Flight gate scheduling: State-of-the-art and recent
developments, Omega 35 (3) (2007) 326–334. See page 19.

[63] F. Daolio, S. Verel, G. Ochoa, M. Tomassini, Local optima networks of the quadratic assignment
problem, in: IEEE Congress on Evolutionary Computation, IEEE, 2010, pp. 1–8. See page 23.

[64] S. L. Thomson, F. Daolio, G. Ochoa, Comparing communities of optima with funnels in
combinatorial fitness landscapes, in: Proceedings of the Genetic and Evolutionary Computation
Conference, 2017, pp. 377–384. See page 23.

[65] S. Jukna, Linearity of expectation, in: Extremal Combinatorics, Springer, 2011, pp. 255–278.
See page 33.

[66] I. Bello, H. Pham, Q. V. Le, M. Norouzi, S. Bengio, Neural combinatorial optimization with
reinforcement learning, arXiv preprint arXiv:1611.09940 (2016). See page 44.

[67] A. I. Garmendia, J. Ceberio, A. Mendiburu, Neural combinatorial optimization: a new player
in the field, arXiv preprint arXiv:2205.01356 (2022). See page 44.

48

	Contents
	List of Figures
	List of Tables
	Algorithm index
	Introduction
	Basic concepts
	Combinatorial Optimization
	Quadratic Assignment Problem

	Elementary Landscapes
	Elementary Landscape Decomposition of the QAP

	Variable Function Search: A modified Tabu Search

	Algorithm comparison
	Benchmark of instances
	Experiments and results
	Analysis and discussion

	Analysis of the Elementary Landscape Decomposition
	Decomposition of the elementary components
	Theoretical study
	Experimental study
	Implications

	Conclusions and future work
	Bibliography

