
eman ta zabal zazu

Euskal Herriko
Unibertsitatea

Universidad
del País Vasco

Advances in Streaming Novelty Detection

by

Ander Carreño

Supervised by Iñaki Inza and Jose A. Lozano

Donostia - San Sebastián, September 2022

(cc) 2022 Ander Carreño López (cc by 4.0)

In God we trust; all others bring data.
–W. Edwards Deming

This research was carried out at the University of the Basque
Country (UPV/EHU) within the Intelligent Systems Group (ISG) and
has been partially supported by the Basque Government (IT1504-
22, IT1244-19, Elkartek, BERC 2018-2021 and 2022-2025 programs),
and by the Spanish Ministry of Science, Innovation and Universi-
ties trough the BCAM Severo Ochoa accreditation SEV-2017-0718,
PID2019-104966GB-I00, TIN2016-78365-R. Ander Carreño has been
supported by a grant of the Spanish Ministry of Economy and Com-
petitiveness (BES-2017-080016).

iii

Acknowledgments

I would like to start expressing my appreciation to my supervisors,
Iñaki Inza and Jose A. Lozano for their patience and efforts during my
Ph.D. This work would not have been completed without their wise
guidance. Especially, I would like to point out the vast number of times
Iñaki has called me to just ask about my spirit. It has been exceptional
support throughout the entire thesis, particularly, in the most stressful
moments. Besides, I will never forget some of the sentences that Jose A.
has written me these years in his review comments while proofreading
papers: Por aquí pasó María dejando la porquería, efecto globo... or
conejo de la chistera. Thank you for helping me become the scientist I
am today.

I am also taking the opportunity to thank Jesse Read for giving
me the outstanding opportunity to share my ideas and collaborate
with him and his colleagues as a visiting researcher in the Laboraitoré
d’Informatique of the École Polytechnique. Our distended talks have
resulted in great contributions that have suppose a step up in my sci-
entific career. I am not only bringing good research but what I would
like to be a lifetime relationship. All the best for the future!

The number of people that have supported me during my endeavors
as a Ph.D. student could require the length of this dissertation by just
trying to thank them all. Hence, I am forced to do a small selection of
them. Firstly, I dedicate this thesis to who deserves every drop of ink
put in this document, Nerea Martin. I could never have achieved this
without you. You have illuminated me in the darkest moments, toasted
with me in happiest ones, and encouraged me to keep pushing until the
end. Everything I can say is not even close to what you really deserve.
The vast part of this thesis is yours. Thank you very much!

I would like to specially thank Josu Ceberio for his incredible sup-
port even before this Ph.D started. You have planted the seed of science
in me. Thanks for the Skype talks, beers, and astonishing poteos. Please,
never lose that unique sense of humor.

I could not continue this document without sincerely thanking
Verónica Álvarez, Onintze Zaballa, Amaia Abanda, Anton Uranga, and
Ioseba I. Alonso. You have served me as pillars throughout these years

iv

and I would never have achieved this milestone without you. Thanks for
the coffee breaks, lunch times, sports sessions, and for listening when I
really needed it. You deserve the best!

I wish to extend my appreciation to Cristina Galán, Jairo Rojas-
Delgado, Ioar Casado, Lorenzo Nagar, Martin Parga, Santiago Mazue-
las, Leticia Hernando, Aritz Perez, Ekhiñe Irurozki, Fabio Pizzichillo,
Borja Calvo, and Jose Antonio Pascual for diversely helping me along
this way.

Above all, I would like to give thanks to people who did not scien-
tifically contribute to the dissertation but were my companions in this
prolonged journey. Isa, Lucia, Nerea, and Aritz, thanks for helping me
clear my mind in some necessary moments when I would lose hope. You
have always tried to understand me and tried to shed some light on the
foggy pathways.

Quisiera dar las gracias a mi familia: Fransico Javier Carreño,
María Luisa Tobes, Asier, Feli, y Fernando por vuestro apoyo y cariño
incondicional, por haberme educado en la perserverancia, la cultura del
estudio, del esfuerzo y del trabajo, y por haberos preocupado por mi en
los momentos difíciles. Puede que vosotros os sintáis orgullosos de mi,
pero no es comparable a cómo yo os admiro y os agradezco que hayáis
estado y estéis ahí. Parte de esta tesis es también vuestra. No cabe duda
de que también debo agradecer mucho a mi otra familia: Carlos, Tere e
Iker. Gracias por haber sido mi apoyo todos estos años.

As I said, I have had the difficult task of selecting people who ex-
plicitly appear in this section. Nevertheless, if you feel that you should
have been here and you are not, I sincerely apologize, and please, take
a part of this last Thank You.

v

Contents

0 Preface . 1
0.1 Overview of the Dissertation . 4

1 Background . 5
1.1 The Task of Classification . 5
1.2 Main Learning Scenarios . 7
1.3 The Role of Time When Learning Classifiers 8

1.3.1 Influence of Time Among the Features 8
1.3.2 Timely Generated Instances 9

1.4 Learning From Supervised Data . 12
1.5 Learning From Unsupervised Data 16
1.6 Methods for Evaluating Classifiers 22
1.7 Evaluation Measures . 23

2 Analyzing Supervised Classification Terms and
Problems . 27
2.1 Introduction . 27
2.2 Rare Event Detection . 31
2.3 Anomaly detection . 35
2.4 Novelty detection . 36
2.5 The related outlier detection scenario 41
2.6 The proposed assignment of terms and learning scenarios 43
2.7 Validation of the proposed assignment 48
2.8 Conclusions . 53

3 SNDProb: A Probabilistic Approach for Streaming
Novelty Detection . 55
3.1 Introduction . 55
3.2 Proposed method . 60

3.2.1 Offline phase . 60
3.2.2 Online phase . 61

3.3 Experimental study . 70
3.3.1 Performance metrics . 71
3.3.2 Synthetic scenarios . 74
3.3.3 Cover Forest dataset . 85
3.3.4 Poker dataset . 88

3.4 Conclusions and future work . 93

4 Time Series Streaming Novelty Detection with
Emerging New Classes . 95
4.1 Introduction . 96
4.2 Related Work . 100
4.3 Methodology . 101

4.3.1 Offline phase . 101
4.3.2 Online phase . 103

4.4 A Framework of Parallel Universes 105
4.5 Experimental Results and Discussion 106

4.5.1 Results on CBF dataset . 108
4.5.2 Results on BME dataset . 109

4.6 Conclusions . 110

5 General Conclusions and Future Work 113
5.1 Conclusions . 113
5.2 Future Work . 116
5.3 Main Achievements . 119

References . 123

0

Preface

Almost a century ago, machine learning started its endeavors to become
one of the most intensively researched fields that is today. In its source,
it gathered mathematicians, physicists, and statisticians that worked on
pattern recognition and artificial intelligence. Their aim was to build
a mathematical model that could learn from and make predictions on
data.

Nowadays, due to the massive capacity of data storage and process
capabilities; along with the impressive results that machine learning
and artificial intelligence fields have obtained, machine learning is one
of the most competitive fields of science with more than a million papers
published since this thesis started in 2018. In this social and scientific
context, this dissertation tries to provide a humble contribution to the
overwhelming state-of-the-art.

In supervised classification, there are some input variables that have
influence over other output variables. The aim is to build a statistical
model that learns such influence so that it can predict the output given
the input. Commonly, the literature knows the inputs as features, at-
tributes or independent variables; and the outputs as classes, labels or
targets [Hastie et al., 2009, Bishop, 1995].

Suppose building a production chain where screws are being manu-
factured. The raw material would flow throughout several steps until the
final product, the screw, is completed. In several different steps along
the chain, imagine having devices that analyze the process of every sin-
gle screw by means of a variety of sensors. With sensor data (input),

2 0 Preface

some checkpoints can be created so that anomalous, abnormal, rare,
or outlier (output) screws can be eliminated from the chain by an au-
tomatic, intelligent system (statistical model). As a result, an increase
in production and a decrease in costs could be achieved. In order to
create such convenient model, labeled data is needed. This means that,
somehow, the inputs and the outputs must be collected into a dataset,
so that the correlation can be properly learned. Such intelligent system
would be built under the supervised classification paradigm.

The mentioned example is one of the vast majority of applications of
machine learning and supervised classification that is widely approved
by both social and scientific communities. Essentially, in supervised
classification data is composed by multiple examples or instances. Each
training instance is defined by a set of features and its associated la-
bels or targets. In this general context, several situations can occur that
drastically change the task of learning a classifier. For instance, some-
times labeled data is available to learn a statistical model. In other
situations, due to the nature of the problem, the most common case
is to predict that an screw is being normally/properly manufactured.
Often, the input data is not complete due to some errors in the sensors.
Once in a while, there is a type of time correlation between the input
variables; for instance, if the temperature of the manufactured screw
is measured throughout the production chain. The model must con-
sider that the tools used in the manufacturing process suffer from wear,
potentially modifying the correlation between the input and output
variables... Nevertheless, correctly defining such problems is a crucial
task for progress. The first contribution of this dissertation specifically
focuses on this. The key differences among some close, but divergent
problems that have been indistinctly referred to with same terminol-
ogy, hindering the advance of the field have been provided.

As a second contribution, one relevant and challenging problem
that gives name to this dissertation has been studied. Concretely, the
Streaming Novelty Detection (SND) problem. In this learning scenario,
it is considered that new classes can emerge or disappear in a stream
fashion. The problem starts from a given set of classes that evolves dur-
ing time. The task of the classifier is to accurately provide prediction
for the unseen instances considering that new classes can emerge or dis-
appear. Furthermore, the generative distribution of the instances can
change so the model needs to adapt to these changes.

0 Preface 3

Few approaches that deal with the SND can be found in the liter-
ature [Faria et al., 2016, Carreño et al., 2022, Masud et al., 2013, Mu
et al., 2017]. Commonly, these have followed a similar framework that
consist of learning an initial model from a given supervised dataset.
Then, new cases will timely arrive for prediction. Suppose that one of
the samples is widely different from the ones that the model is expect-
ing/has learned. The model would recognize this and store it into a
fixed-sized buffer. When there is a sufficient amount of cases i.e., when
the buffer is full, the model would automatically seek for new emerg-
ing classes among such abnormal instances. At this point, the model
is updated to consider new emerging classes and the predictions of the
buffered instances are output.

Relating this scenario to the brutal COVID-19 pandemic that has
struck the entire world between 2019 an 2021, imagine having a system
capable of predicting the diseases of a patient based on data such as
blood test, electrocardiograms (ECG) and X-ray images. A model would
have been built with data of both healthy people, and patients with
common cold, flu, chickenpox and mononucleosis. Such model could
classify patients among this set of classes. When some COVID-19 pos-
itive patient is analyzed by the model, the system would recognize this
as an abnormal case and, after some time, when a sufficient number
of abnormal cases are gathered, the system would automatically have
discovered COVID-19 disease.

In particular, we have provided a probabilistic modeling approach
for the SND problem based on mixture of Gaussian distributions. For
each class, a Gaussian distribution is learned and the newcomer in-
stances are predicted based on the probability of belonging to each of
the classes. When there is not enough evidence to classify an instance
among the previously learned set of classes, it is stored into a fixed-
sized buffer. When the buffer is full, new classes are sought among the
buffered instances by means of the Expectation Maximization (EM)
algorithm.

As a third contribution, the previous work is extended to treat dif-
ferent type of data, and to account for some of the inherent limitations
of the SND problem. In particular, the case where data are time series
is studied, meaning that there is temporal correlation among the input
variables. Furthermore, since the discovering step is done in an unsu-
pervised manner, the model could get into a non-recoverable state if

a new class concept is wrongly identified in the discovery process. To
overcome this critical issue, we propose to maintain multiple parallel,
inherently different models that an expert could evaluate in hindsight.

I hope you enjoy reading the forthcoming pages about such fasci-
nating ideas and contributions as much as I have delighted in exploring
these years.

0.1 Overview of the Dissertation

This document is organized as follows: Chapter 1 provides a self-
explanatory introduction to a variety of base concepts necessary for
understanding the following contributions. Particularly, the task of clas-
sification is described in Section 1.2. In Section 1.3, the role of time
when learning classifiers is deeply discussed. Firstly, the relation of time
among the features is treated. Secondly, the data that is timely gener-
ated is reviewed. Section 1.4 and Section 1.5 describe some literature
techniques that learn a model in supervised and unsupervised learning
scenarios, respectively. Afterwards, the methodologies to assess the va-
lidity of the models are exposed in Section 1.6, and Section 1.7 shows
multiple scores that summarize the performance of a model.

In the following chapters, the main contributions that conform this
dissertation are described. Chapter 2 focuses on a literature review of
some divergent problems that are referred to with same terminology in
the literature and vice-versa. Chapter 3 and 4 consist of two method-
ological contributions to the SND problem. The sooner describes a novel
parametric solution based on a mixture of Gaussian distributions while
the later is based on a deep neural network approach that considers
time series data.

1

Background

This chapter introduces the general notation and framework used in
the rest of the dissertation. It starts by defining the classification task,
followed by the different learning scenarios where the classifiers are
learned. Consequently, a discussion about the role of time when learning
classifiers is given. Finally, multiple algorithms that learn a classifier,
and the evaluation methods and scores are summarized.

1.1 The Task of Classification

In machine learning, classification refers to the problem of predicting
a set of categorical outputs (classes or labels), given a set of inputs
(features). Formally, let X ⊆ Rd, C ⊆ Nk be the feature and label
spaces, respectively; where d represents the number of features and k
is the number of classes. Also, let x ∈ X be a feature vector and c ∈ C
its corresponding label vector. A labeled instance is then defined as the
tuple (x, c) that is assumed to be generated by a probability distribution
p(x, c) [Mitchell, 1997, Duda et al., 2001]. A classifier consists of learning
a function f that maps features to labels defined as f : X → C.

Depending on the length of the label vector c, several major clas-
sification problems can be defined. These can be categorized in two
groups, firstly, single-output classification problems, where k = 1 can
be considered. Secondly, multi-dimensional or multi-output classifica-
tion problems where k > 1 are found. Although there are many multi-

6 1 Background

output classification problems [Read et al., 2011, 2014], single-output
classification has attracted more research [Faouzi, 2022, Sellami and
Tabbone, 2022]. Partially, because a multi-output classification prob-
lem can be dealt with single-output classification approaches [Rivolli
et al., 2020].

Considering the number of values each class variables can take, dif-
ferent categorizations can be made. When k = 1 and the number of
values is two, scenarios where the class variable c is binary are found;
while, on the other hand, problems where c takes more than two values
exist. In the sooner, the problem is known as binary classification while
the latter problem is named as multiclass classification. By combining
these two categorizations, 4 different classification paradigms are found
that are summarized in Figure 1.1. In this dissertation, the scenario
where there is only one class variable and it is binary is treated in the
first contribution shown in Chapter 2. Chapter 3 and 4 assume the
multiclass setting. Henceforth, a labeled instance is defined as the tuple
(x, c).

According to the Bayesian Decision Theory [Duda et al., 2001], clas-
sification can be described by the prior probabilities of the classes p(c)
and the class conditional probability density functions p(x|c). The clas-
sification decision is made according to the posterior probabilities of the
classes, which for class c can be represented as:

p(c| x) = p(c)p(x| c)
p(x) , (1.1)

where p(x) =
∑

c p(c)p(x|c). Assuming that there is an equal cost of
misclassification between the different classes, this classification rule is
optimal. The prediction of an instance x is done as ĉ = arg max

c ∈C
p(c|x).

In supervised classification, the classifier learns the relation between
the features x and the class c by minimizing the expectation of a loss
function over a set of examples. The most common loss is the 0/1 loss
function that is defined as:

L(c, ĉ) =
{

1 if c ̸= ĉ
0 otherwise (1.2)

assuming that c is the true label of the instance x.
In this classification problem the data to learn the classifier is anno-

tated. However, there are situations where obtaining labeled data is not

1.2 Main Learning Scenarios 7

Binary Multiclass

Multi-outputMulti-label k > 1

k = 1

Fig. 1.1: Summary of the different classification problems with respect
to the structure of the class variable.

possible. This issue derives into some different classification paradigms
that are discussed in the following section.

1.2 Main Learning Scenarios

In machine learning data is the key component that allows learning
predictive models. This data is sometimes annotated, meaning that the
features are accompanied with their corresponding classes. However,
gathering this annotated data is not always possible due to time or
cost limitations. Therefore, three different dataset configurations with
respect to the class variable can occur, resulting in three different prob-
lems.

• In supervised classification a fully labeled dataset is available,
defined as Ds = {(x1, c1), (x2, c2), . . . , (xn, cn)} so that Ds ⊆ X ×C.
Therefore, in supervised classification, an instance xi is accompa-
nied with its class value ci, for i = 1, 2, . . . , n .

• In unsupervised classification no labeled data is available to
learn the model. Therefore, the dataset is defined as Du =
{x1, x2, . . . , xn}. The task in this problem consists of finding groups
(clusters) of instances in the provided dataset.

• Somewhat in between the aforementioned learning scenarios, the
weakly-supervised classification problem is found [Hernández-
González et al., 2016]. This setting refers to the lack of complete
supervision in the dataset. There exists some label information but

8 1 Background

it is not complete. From this, the popular semi-supervised problem
can be considered that assumes that there is a mix of labeled and
unlabeled examples in the given dataset Dsm = {Ds ∪ Du}. Nev-
ertheless, weakly-supervised classification refers to a more general
framework where for instance, a set of candidate labels are provided
for a group of instances but the one-to-one correspondence is not
defined, or to problems where multiple subjective labels are sup-
plied for each instance by a group of non-expert annotators (crowd
learning).

As the reader might has been realized already, the number of data
samples available, the distribution of instances of each of the classes, the
amount of the supervised information in a weakly-supervised setting,
or if all the classes are represented in the provided dataset for learning,
is also related to the task of learning a classifier. Referring to these
characteristics enlarges the described taxonomy.

1.3 The Role of Time When Learning Classifiers

Data is constantly being generated. In 2022, more than 2.5×1018 bytes
per day have been created. Unsurprisingly, such data comes in a wide
variety of shapes and formats that range from images and table-shaped
data to sounds and handwritten texts. Furthermore, nowadays the fact
that the data is constantly being generated may imply that there is a
temporal relation between such data.

Time is a key component that needs to be reviewed to understand
the forthcoming pages. On the one hand, the influence of time over the
measured features is discussed. On the other hand, the timely arrival
of instances in an online or stream setting is reviewed.

1.3.1 Influence of Time Among the Features

In this section, two situations are reviewed. On the one hand, data that
does not have a temporal correlation is considered. Formally, an instance
is defined as x = (x1, x2, . . . , xd) where xv ∈ R and v ∈ {1, 2, . . . , d}.
Let σ be the permutation operator so that outputs a permutation of a
given vector and Dσ = {(σ(x1), c1), (σ(x2), c2), . . . , (σ(xn), cn)} be the

1.3 The Role of Time When Learning Classifiers 9

resulting dataset after applying σ to each of the instances of a given
dataset D. Let f also be the classifier learned from D and h a classi-
fier learned in Dσ. When there is no temporal correlation among the
variables, the learned classifiers are the same f = h. This suggests that
changing the order of the features of an instance does not change what
it represents. For example, in a blood test of a patient, the measured
values like cholesterol, glucose or sodium do not have any temporal cor-
relation. Moving the percentage of lymphocytes to the bottom of the
document does not alter what the blood test represents. Hence, the
resulting classifier is the same no matter the order of the features.

On the other hand, data that is timely measured is found. This
data is often referred to as time series [Abanda et al., 2019]. In this
case, there is a temporal correlation among the measured features. For-
mally, an instance is defined as x = [x1, x2, . . . , xd] where xv ∈ R and
v ∈ {1, 2, . . . , d}. Regular supervised classification approaches do not
leverage from the temporal correlation. However, it has been shown
that considering time is crucial for time series classification [Faouzi,
2022, Abanda et al., 2019, Ghassempour et al., 2014, Oates et al., 1999].
Considering that we use algorithms that do leverage from temporal cor-
relation, following the same idea as in the previous case, f ̸= h. This
suggests that, for instance, if a wind sensor timely monitors the wind
speed over a day, the measured values have a temporal correlation, a
temporal order. Moving the wind record of 3 p.m. to after 8 p.m. drasti-
cally changes what the instance represents. Note that, time series may
have an infinite length [Abanda et al., 2019]; however, our definition
only considers fixed-length time series since these are the ones that are
used in this dissertation.

1.3.2 Timely Generated Instances

Similar to the previous section, two scenarios are considered if the in-
stances are timely generated or not.

Firstly, when the instances are not timely generated, we refer to this
scenario as an static or standard classification problem. In this setting
it is assumed that the data comes from a generative distribution that
does not change over time. Therefore, the training set provided to learn
a predictive model comes from the same probability distribution as the
forthcoming test set.

10 1 Background

Secondly, considering that instances timely arrive, the learning sce-
nario drastically changes. This scenario is also known in the literature
as online or stream learning [Lu et al., 2019, Alippi et al., 2017, Sun
et al., 2016, Gomes et al., 2017, Bifet et al., 2018].

In this learning scenario, instances are timely being generated from
a generative distribution that may change over time. In Figure 1.2, an
illustration of how instances are generated in a streaming environment
is found.

p1(x, c)
Unknown

Generative
Distribution

Time

Instance

Generate

x1

Classifier M1

p2(x, c)

Generate

x2

M2

pt(x, c)

Generate

xt

Mt

Fig. 1.2: Graphical representation of how the instances are timely gen-
erated in a streaming classification learning scenario.

In a screw manufacturing process where raw material is transformed
until a screw is obtained, the same sensors record data of screws that are
timely being manufactured. Such sensors clearly suffer from wear over
time. Furthermore, the raw material used to manufacture the screws
may slightly change. This motivating example clearly shows that the
joint generative probability distribution p(x, c) can change over time,
occurring the well known concept drift [Gama et al., 2014]. Such
drift stands for unexpected, and unpredictable changes in the under-
lying generative distribution of the data. Formally, given two different
timestamps t1 and t2, the probability distribution of the data changes
pt1(x, c) ̸= pt2(x, c). Although one might think that such concept drift
is constrained to be smooth, meaning that the changes from t1 to t2
are small, major changes can also be expected. For example, when a
sensor is broken and it needs to be replaced; and the newcomer one
is from a different brand (change in p(x)). Therefore, the classification

1.3 The Role of Time When Learning Classifiers 11

process becomes more challenging since the classifier needs to dynam-
ically adapt to these possible changes in order to maintain accurate
predictions.

The source of the concept drift has been thoroughly researched
[Gama et al., 2014], and it can be summarized as changes in the com-
ponents of Equation 1.1. In other terms,

• the prior probabilities of classes p(c) may change,
• the class conditional probabilities p(x|c) may change, and
• as a result, the posterior probabilities of classes p(c|x) may change

affecting the prediction.

(a) Original data (b) Real concept drift (c) Virtual concept drift

Fig. 1.3: Different types of concept drift according to the relation be-
tween the features and the class variable.

For the task of learning a classifier, these changes are relevant if
they affect to the decision boundary of the classifier. Such changes can
be graphically seen in Figure 1.3. If these changes affect to the decision
boundary, the classifier would need to adapt in order to keep providing
accurate predictions (see Figure 1.3b). Hence, two different types of
concept drift can be defined [Gama et al., 2014]:

• Real concept drift refers to the changes in p(c|x). These changes
can occur with or without changes in p(x) and they force to adapt
the classifier. As can be seen in Figure 1.3b, the decision boundary
needs to be adapted to properly classify the instances.

12 1 Background

• Virtual concept drift happens when there is a change in p(x) but
without a modification in p(c|x). Hence, the decision boundary re-
mains valid and the adaptation is not required. Figure 1.3c shows
that the location of the instances has changed but there is no need
to modify the decision boundary to keep providing accurate predic-
tions.

1.4 Learning From Supervised Data

In this section, the most common supervised classification approaches of
the literature that will take part in the forthcoming pages are reviewed.

σ1

σ2

k = 3

Fig. 1.4: Illustration of a k-Nearest Neighbors (k-NN) algorithm with
k = 3 using Euclidean distance.

The most popular algorithm that fits into this category is the k-
Nearest Neighbors (k-NN). It is a distance based classifier that is
usually referred to as a lazy-classifier since it does not learn any model
from the data. Instead of learning a model from the data, it directly
uses the training set to predict the label of unseen samples. It is based
on the assumption that inputs that are close in the feature space, have
close outputs in the label space. Defining closeness leads to different im-
plementations of this algorithm. The most common similarity measure

1.4 Learning From Supervised Data 13

is the Euclidean distance. Figure 1.4 shows an illustration of a k-NN
algorithm with k set to 3 neighbors. As can be seen, the new instance is
predicted as blue class since the majority of its k = 3 closest neighbors
are from such class. Different values of the k parameter may result on
different predictions for the same instance. Intuitively, a low k value im-
poses a more rigid decision boundary. On the contrary, having a large
k value derives into a smoother decision boundary. This is related to
another widely studied problem called over fitting [Dietterich, 1995].

X1 →Form

X2 →Rotation X2 →Rotation

Straight Rotated Straight Rotated

SquareTriangle

Fig. 1.5: Illustration of a decision tree.

There are methods, founded in information theory [Shannon, 1948],
that consist of finding split values of the features so that they can prop-
erly discriminate between labels. The most common approach is the
decision tree. It learns a variety of split points for the features in a
tree-like model that are then used to discriminate the instances into the
different classes. C4.5 [Quinlan, 2014] is the most common algorithm
that learns a decision tree. The nodes in a decision tree are features
and, in the branches, the corresponding split values are shown. Fig-
ure 1.5 shows an example of a decision tree. Two attributes are used
to discriminate between 4 classes. Decision trees offer the main advan-
tage of interpretation since the tree-like model is easy to understand.
However, decision trees tend to offer unstable classifiers. A change in
the data could imply a major change in the structure of the tree. In
order to account for this limitation, the ensemble based methods have
been proposed. The most popular one is the random forest classi-
fier [Breiman, 2001]; that has offered good results in many scenarios

14 1 Background

[Fernández-Delgado et al., 2014]. The motivating idea of ensemble meth-
ods is to create a large number of base classifiers with high variance so
that their outputs could be combined. In the case of random forests, this
is achieved by using multiple decision trees as base classifiers that are
learned with a different number of feature subsets. Figure 1.6 illustrates
the process of prediction of a random forest classifier.

Gather predictions

Prediction

Combine

Fig. 1.6: Illustration of a Random Forest classifier. The predictions of
the multiple decision trees are combined to provide a single prediction.

Another common learning models are the Support Vector Ma-
chine (SVM) [Cortes and Vapnik, 1995] and its multiple variants [Tax,
2001], and kernel-based learning methods [Moreno et al., 2003]. Briefly,
a SVM finds a linear separation of instance belonging to different labels
in a kernel space. It is common that data is not linearly separable, with
respect to the class variable, in the input feature space. Therefore, this
feature space is enlarged by means of kernel-based methods so that a
hyperplane is found that correctly separates the different labels. This
process is illustrated in Figure 1.7.

Another highly researched models are the (artificial) neural net-
works. In recent years, an overwhelming number of new research has
been developed around these black-box style models that are inspired

1.4 Learning From Supervised Data 15

Fig. 1.7: Example of a SVM model. It enlarges the input feature space
so that a linear (hyperplane) separation is obtained.

in the human brain. In a nutshell, a neural network can be seen as
a multiple chained non-linear functions that are combined to provide
a classification. They are composed by a variety of neurons that are
inspired in the human neurons (see Figure 1.8). A human neuron is
composed by multiple dendrites that receive some stimulus. Such stim-
ulus are processed in the nucleus and then are sent to other neurons
through a link called axon. In order to send the stimulus through the
axon, there is some force that the nucleus produces to allow the output
to arrive to its next destination. In an artificial neuron, the stimulus
are feature values. In the nucleus, these inputs are added to produce an
output. An activation function is used to mimic the force of the neuron
output. Essentially, this is a non-linear function.

Dendrites

Axon

Nucleus

Human Natural Neuron Artificial Neuron

Fig. 1.8: Comparison between the artificial neural network and the nat-
ural human neuron.

Depending on the layout of the artificial neurons, different architec-
tures can be created. The most popular one is the deep feed forward

16 1 Background

neural network shown in Figure 1.9. This architecture is divided in
three main parts. Firstly, the input layer receives the features of each
instance. Secondly, the outputs of the input layer are sent to a set of
hidden layers that are composed by an arbitrary number of artificial
neurons. Finally, the output layer produces a classification. The num-
ber of output neurons corresponds to the number of classes. When these
architectures have several hidden layers, these are also framed under the
deep learning framework [LeCun et al., 2015].

Input layer

Hidden layers

Output layer

Fig. 1.9: Example of an artificial neural network architecture.

In computer vision, convolutional neural networks have achieved
outstanding results when classifying images [Gu et al., 2018]. They are
based on convolution kernels or filters that slide along the input. It has
been discovered that the convolution operations, depending on the ker-
nel selected, extract specific characteristics of the images such as edges.
Therefore, the convolutional layers serve as feature extractors of the
images [Gu et al., 2018]. Then, these features are used as inputs for a
fully connected neural network that outputs a prediction. One of the
most famous architectures is the LeNet neural network [LeCun et al.,
1989] that is illustrated in Figure 1.10.

1.5 Learning From Unsupervised Data

This section focuses on reviewing a subset of unsupervised approaches,
also known as clustering techniques, that have been used in the contri-
butions of this dissertation.

1.5 Learning From Unsupervised Data 17

Convolutional

layer
Pooling

layer

Dense

layer

Convolutional

layer Pooling

layer

Dense

layer Dense

layer

Fig. 1.10: LeNet convolutional neural network.

Learning from unsupervised data is the task of finding similar pat-
terns in an unlabeled dataset. This task is of great importance in sev-
eral applications. For instance, in marketing when trying to find similar
clients based on their shopping interests. Besides, unsupervised classi-
fication techniques have also been successfully used to filter noise in a
data preprocessing step [Carreño et al., 2020].

Defining similarity among two instances is not a trivial task and
multiple algorithms derive from such definition. When referring to dis-
tance based models, the k-Means clustering algorithm can be found
[Forgy, 1965]. It is an iterative method that finds k centroids among
the data instances under the assumption of cohesion and separation.
The pseudocode of the k-Means clustering algorithm is shown in Algo-
rithm 1. Commonly, the Euclidean distance is used as a similarity mea-
sure between the data points. Following this assumption, in Figure 1.11,
k-Means obtains rounded, sphere-like clusters. In certain scenarios this
shape could be a limitation and other approaches that are defined over
other similarity definitions are found.

For instance, if density is used to consider similarity between the
points, the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm comes across [Ester et al., 1996].
It is also an iterative model that starts placing a radius ϵ to each of the
instances. Then, core points are identified if more than minPoints are
inside the specified radius. Instances are added to the clusters defined
by the core points if they are connected to other points of the same

18 1 Background

Fig. 1.11: Illustration of a 3-Means clustering algorithm. The crosses
represent the cluster centroids.

Algorithm 1: Pseudocode of the k-Means algorithm.
Input: Du = {xi}n

i=1, k

Initialize cluster centroids {µ1, µ2, . . . , µk} ∈ Rd randomly
while not converged do

for i ∈ {1, 2,. . . , n} do
ci = arg min

j
||xi − µj ||2

for j ∈ {1, 2, . . . , k} do

µj =
∑

i=1n
1{ci=j}xi∑n

i=1
1{ci=j}

cluster. This process is illustrated in Figure 1.12. If an instance is not
connected to any point, it is considered as outlier.

Another probabilistic method to cluster points is to assume that
they have been generated by a mixture model, particularly from a mix-
ture of Gaussian distributions. In this case, it is possible to learn the
parameters of the model and therefore cluster the data by means of
the Expectation Maximization (EM) algorithm. Suppose that we
are given an unlabeled dataset Du = {xi}n

i=1 where n represents the
number of examples. Suppose that such data is generated from a k

1.5 Learning From Unsupervised Data 19

Outlier

Fig. 1.12: Illustration of DBSCAN algorithm. The starred points are
the core points. In this example, the minPoints are set to 4 and ϵ is
represented with the radius of the drown circles.

component mixture of Gaussian distributions with a density function
defined as

p(xi| ω) =
k∑

j=1
τjfj(xi|ωj), (1.3)

where ω = {ω1, ω2, . . . , ωk} represents the vector of parameters of the
jth mixture ωj = (τj , µj , Σj), τj stands for the weight or the mixing
proportion, µj is the mean and Σj the covariance matrix, and fj is the
probability density function of a multivariate Gaussian distribution,
defined as:

fj(xi|µj , Σj) = 1
(2π)d/2|Σj |1/2 exp

(
−1

2(xi − µj)T Σ−1
j (xi − µj)

)
(1.4)

We wish to model the data by specifying a joint distribution
p(xi, zi) = p(xi |zi)p(zi). Here, zi,j ∼ Uniform(0, 1), and xi|zi,j ∼∑k

j=1 τjN (µj , Σj). Note that the zi,j variables are latent random vari-
ables so they are not observed; otherwise, the problem would be trivial
since zi,j provides the probability of the instance xi being generated
from the mixture component j:

20 1 Background

zi,j = p(xi|ωj) = τjfj(xi|θj)
k∑

l=1
τlfl(xi|ωl)

(1.5)

The estimation of the parameters of a Gaussian mixture is done by
means of maximum likelihood estimation. Therefore, the loglikelihood
function to optimize can be written as:

log L(ω|Du) =
n∑

i=1
p(xi| ω) (1.6)

Computing Equations 1.5 and 1.6 correspond to the Expectation
step of the EM algorithm. We would like to find the parameters of
the Gaussian mixture that maximize the loglikelihood function (see
Eq. 1.6). Hence, the Maximization step corresponds to obtaining the
following parameters values:

τ
(t+1)
j = 1

n

n∑
i=1

z(t)
i (1.7)

µ
(t+1)
j =

N∑
i=1

z(t)
i xi

N∑
i=1

z(t)
i

(1.8)

Σ
(t+1)
j =

n∑
i=1

z(t)
i (xi − µ

(t+1)
j)(xi − µ

(t+1)
j)T

n∑
i=1

z(t)
i

(1.9)

where t represents the tth iteration. The algorithm should run until it
converges. To initialize EM algorithm, there are two options. On the
one hand, random values to the model parameters can be assigned, i.e.
randomly assign values to ω and τ . On the other hand, instances can
be randomly assigned to the different k clusters by randomly assigning
values to z. These two initializations correspond to starting either at
Expectation or Maximization steps. A pseudocode for the EM algorithm
is provided in Algorithm 2.

1.5 Learning From Unsupervised Data 21

Algorithm 2: Pseudocode of the EM algorithm.
Input: Du = {xi}n

i=1, k
Initialize z by randomly sampling from U(0, 1)
while not converged do

/* Maximization Step */
for j ∈ {1, 2, . . . , k} do

τj = 1
n

n∑
i=1

zi

µj =

N∑
i=1

zixi

N∑
i=1

zi

Σj =

n∑
i=1

zi(xi−µj)(xi−µ
(t+1)
j

)T

n∑
i=1

zi

/* Maximization Step */

zi,j = p(xi|ωj) = τj fj (xi|ωj)
k∑

u=1

τlfl(xi|ωl)

log L(ω|Du) =
n∑

i=1
p(xi| ω)

Clustering in high dimensional spaces is a challenging task [Parsons
et al., 2004, Aggarwal and Yu, 2000]. Several techniques try to map the
input space to another lower dimensional feature space in order to ease
the task of clustering data. Afterwards, the aforementioned solutions
could be applied. An approach based on deep learning can be found,
named autoencoder neural networks, that learn an embedded lower
dimensional representation of the data [Kramer, 1991]. An autoencoder
consists of three parts, firstly, the encoder maps the input feature space
into an embedded representation named code or bottleneck. Afterwards,
these embeddings are reconstructed to match the original input data
in the decoder part. In order to guide the learning process, the recon-
struction error between the input and output instances is minimized.
Figure 1.13 shows a graphical representation of an autoencoder. Once
the network is learned, the encoder part serves as a feature compressor.

22 1 Background

Encoder

Bottleneck

Decoder

Reconstruction Error

Fig. 1.13: Graphical representation of an autoencoder neural network.

1.6 Methods for Evaluating Classifiers

The performance of a classifier is commonly summarized in a evaluation
metric, a real value that provides an estimation of its goodness. How to
compute this value has been thoroughly researched and it is analyzed
in Section 1.7. In this section, some different methodologies to obtain
such value are reviewed.

As a first approach to assess the validity of a learned classifier, the
same data used for learning can be used [Santafe et al., 2015]. How-
ever, this approach is unfair. In this setting, the ability of the model
to remember the labels of the provided examples is tested; not its gen-
eralization capabilities. This approach is known in the literature as a
dishonest evaluation method.

As a second simple approach, the provided data to learn the classifier
is split into two subsets. The first subset that is commonly larger than
the second one is used for learning. This is known as training set. The
second subset, known as test set is used to assess the performance of
the classifier. In this setting, since the model has never seen the test
instances, its ability to generalize from the training set is evaluated.
Note that in some situations, the learned model has some parameter
that needs to be tuned. In order to tune this parameter, the training set
is also split into two subsets, one is used for training a model with some
selected hyperparameters, and the second one is used to evaluate the

1.7 Evaluation Measures 23

learned model with such hyperparameters. Once the model is learned
with some specific hyperparameters, it is tested against the test set.

There are situations where the given training data is scarce. There-
fore, splitting the dataset into two subsets wastes valuable instances.
In order to test the learned classifiers in this scenario, K-Fold Cross
Validation technique was proposed. In a K-Fold Cross Validation set-
ting [Stone, 1974], the dataset is split into k folds. Each fold will be
used interactively to test a classifier that is learned with the rest of the
folds. From each iteration, an score is obtained. This scores are summa-
rized into a single score that represents the validity of the model. This
procedure is illustrated in Figure 1.14.

X1, X2, . . . , Xd C

Fo
ld

1

Fold 3
Fold 2

Train

Test

Train

Test

Train

Test

γ1

γ2

γ3

Perfomance
Score

Fig. 1.14: Graphical representation of a 3-Fold Cross Validation evalu-
ation method.

Another common evaluation method is the stratified K-Fold Cross
Validation. When splitting the initial dataset, the labels may be un-
derepresented in the created folds, the learned classified over the folds
could be biased. In a stratified setting, it is ensured that all the folds
have the same distribution of the classes.

1.7 Evaluation Measures

When evaluating a classifier over a test set, a confusion matrix can be
obtained that shows the performance of a classifier (see Table 1.1). Nev-

24 1 Background

ertheless, the interpretability gets reduced when the number of classes
increases. Also, comparing the performance of different algorithms is
not straightforward from the confusion matrix. Therefore, evaluation
measures or scores have been developed to serve as a summary value of
the performance of a classifier. Most of these evaluation measures were
initially developed for binary classification problems.

Table 1.1: Example of a confusion matrix of a problem with 3 classes.

Predicted
1 2 3

R
ea

l 1 50 10 10
2 30 100 6
3 30 10 45

When performing an evaluation method, a measure is commonly
computed. Depending on the problem, and the importance of misclassi-
fication [Carreño et al., 2020, Ortigosa-Hernández et al., 2016], different
evaluation scores are computed. For instance, in a medical diagnosis,
predicting that a patient has cancer when in fact, he/she has not, is bet-
ter than predicting that the patient is healthy when he/she has cancer
for obvious reasons. Hence, computing a measure that explicitly points
out this behavior is crucial.

Although many different classification measures have been devel-
oped [Carreño et al., 2020, Ortigosa-Hernández et al., 2016], classifica-
tion accuracy is by far the most used one; mainly because its intuitive
interpretation. It essentially averages the number of prediction successes
that a classifier achieves. Interpreting a success as when the predicted
class ĉi matches the real class label ci of a given instance xi, it can be
defined as

Acc = 1
n

n∑
i=1

1(ĉi = ci) (1.10)

As complementary to the accuracy metric, there is the classification
error, that averages the number of errors that a classifier obtains. It
can be defined as:

Error = 1
n

n∑
i=1

1(ĉi ̸= ci) (1.11)

However, there are situation where these evaluation measures are
not representative enough. For instance, in the aforementioned prob-
lem where the aim is to predict patients with cancer. The accuracy and
error scores assume equal misclassification costs and this might not be
true in multiple scenarios. Similarly, when dealing with highly unbal-
anced scenarios [Carreño et al., 2020, Ortigosa-Hernández et al., 2016],
the classifier would get a high accuracy value by only outputting the
majority class; which would derive into a useless assessment score.

In order to try to avoid erroneous interpretations when one of the
described situations occur, some metrics have been proposed. Table 1.3
shows the most common scores that are used to evaluate classifiers.
These are defined over a binary classification setting but they can be
extended to a multiclass setting. In order to do that, the one vs all
approach is commonly used, i.e., considering the class of interest as the
positive class, and considering the rest as the negative class. Neverthe-
less, there are specific metrics for multiclass setting that are beyond the
scope of this section.

Table 1.2: Description of a binary confusion matrix.

Predicted
+ -

R
ea

l + TP FP
- FN TN

Table 1.3: Description of the most common evaluation measures used
when assessing binary classifiers. These can be extended to multiclass
scenarios if considering one vs all approach.

Evaluation
Measure Formula

Accuracy T P +T N
T P +T N+F P +F N

Error F P +F N
T P +T N+F P +F N

True Positive Rate
Recall
or Sensitivity

T P
T P +F N

True Negative Rate
or Specificity

T N
F P +T N

Precision T P
T P +F P

F-measure 2T P
2T P +F P +F N

2

Analyzing Rare Event, Anomaly, Novelty
and Outlier Detection Terms Under the
Supervised Classification Framework

In this chapter, rare event, anomaly, novelty and outlier detection terms
are analyzed under the supervised classification point of view. Associ-
ated to these terms, some widely different problems can be found that
are often interchangeably referred to with the aforementioned terminol-
ogy and vice-versa. Under this hindering situation we propose a one-to-
one assignment of terms and problems that give a short step towards
the standardization of the field. Furthermore, in order to validate our
proposed assignment, we perform a set of experiments by retrieving
papers from Google Scholar, ACM Digital Library and IEEE Xplore
search engines.

2.1 Introduction

Numerous applications require filtering or detecting abnormal obser-
vations in data. For instance, in security, intruders are abnormalities
[Ribeiro et al., 2016, Pimentel et al., 2014, Luca et al., 2016, Phua
et al., 2010, Yeung and Ding, 2001]; in traffic data, road accidents [The-
ofilatos et al., 2016]; in geology, the eruption of volcanoes [Dzierma and
Wehrmann, 2010]; in food control, foreign objects inside food wrappers
[Einarsdóttir et al., 2016]; in economics, bankruptcy of a company [Fan
et al., 2017]; or in neuroscience, an unexperienced stimulus is consid-
ered an abnormality [Kafkas and Montaldi, 2018]. In some situations,
the abnormalities are called rare events, anomalies, novelties, outliers,

28 2 Analyzing Supervised Classification Terms and Problems

exceptions, aberrations, surprises, peculiarities, noise or contaminants
among others. Of these, the most common terms in the literature are
rare event, anomaly, novelty and outlier.

Considering the importance of abnormalities in different areas, a lot
of research has been done, mainly in the last 10 years. However, the fact
that these contributions have been carried out in different knowledge
areas, a mix-up between names and problems has occurred in the liter-
ature. Particularly, when the same term is used in distinct disciplines
but with other meaning and vice versa. Moreover, the terminology has
changed over time and even in the same discipline; a similar problem
has been named differently in different time periods. On the one hand,
different names have been used for similar problems. For instance, Van
Den Eeckhaut et al. [2006] deal with a problem of predicting, in a fixed
period of time, the risk factor of a landslide in an area. The authors
create a landslide susceptibility map in which each area is scored based
on the risk of a landslide. This is done using historical data of either
normal and ground which has suffered a landslide (abnormal). In this
study, the authors refer to landslides as rare events because landslides
seldom occur. In Ribeiro et al. [2016] a similar problem is addressed,
but with a different term. Here, a study in the railway industry is car-
ried out. Train passenger doors have several subsystems in order to keep
them open or closed according to a variety of safety and comfort rules.
In some situations these doors fail due to the deterioration of the sys-
tem. Therefore, the authors predict whether the door is going to fail
in a fixed period of time or not. In order to do that, both normal and
failure historical data is used to learn a model. In this case, the door
failures are referred to as anomalies. As can be seen, both problems
are very similar and different terms have been used to refer to the ab-
normalities. In both problems, temporal data of normal and abnormal
classes is available to build the prediction models.

On the other hand, the same terms have been used to describe widely
different problems. In the following two problems, the authors use the
term novelty to describe the abnormalities. In Luca et al. [2016] a vari-
ety of patients are constantly monitored with a 3D accelerometer. Those
patients eventually suffer an epileptic seizure. Due to abrupt movement
during a seizure, the patient could became injured. Therefore, detect-
ing this behavior as soon as possible is relevant in order to avoid this
harmful situation. In order to predict if a patient is suffering an epilep-

2.1 Introduction 29

tic seizure, a model is built based on the recorded movement data of
several patients. The data consists of 3D accelerometer data divided in
fixed time windows in which whether or not an epileptic seizure has
occurred is annotated. However, notably less abnormal (seizure) data
is available due to the eventuality of these attacks. In the prediction
phase, given new information about a currently monitored patient, the
classifier detects if the patient is suffering an attack at that moment.
Einarsdóttir et al. [2016] detect foreign objects inside food envelopes. A
classifier is learned only from food-images without abnormal objects. In
other words, the model is learned using information of only one class.
However, in the detection phase, the model classifies new instances in
two classes, normal (without foreign objects) and abnormal (with for-
eign objects). While both examples are named with the same term, the
problems are widely different. For instance, the former has both normal
and abnormal data available to train the model, whereas the latter only
learns from a dataset with observations of only one class.

As we have seen in the previous paragraphs, there is an impor-
tant mix-up between terms and problems. Possibly motivated by the
same mix-up detected by us, some papers that present specific learning
methods have made an effort in their introduction section to discuss the
differences between one or two terms, or to clearly define their learning
scenario. However, to the best of our knowledge, no paper in the litera-
ture has treated the four rare event, anomaly, novelty and outlier terms
under the supervised classification point of view. For instance, in Luca
et al. [2016], Dufrenois and Noyer [2016] a brief discussion about the
novelty term and one-class classification framework is made. In Weiss
and Hirsh [1998], the authors clearly define their rare event learning sce-
nario. In Campos et al. [2016], an effort is made to distinguish between
one class classification and outlier detection. Finally, in Ribeiro et al.
[2016], three methods related with outlier, anomaly and novelty detec-
tion learning scenarios are used to solve the same problem. Also, some
insights are given about all these three learning scenarios. However,
none of these papers frame the corresponding terms into the supervised
classification framework.

This confusion calls for the repetition of research and hinders the ad-
vance of the field. Therefore, the aim of this work is to contribute with a
first step in the organization of the area. In order to do that, this work
underlines the differences between each term, and organizes the area

30 2 Analyzing Supervised Classification Terms and Problems

by looking at all these terms under the umbrella of supervised classi-
fication. Particularly, for each term, the most frequently used learning
scenario is associated.

Paper
Reference Brief description of the main

characteristics of the paper
Term used

Van Den Eeck-
haut et al. [2006]

The risk factor of a landslide is pre-
dicted in a fixed period of time. The
data consist of historical landslided
and normal land features.

Rare event

Ribeiro et al.
[2016]

Failure of the train passenger doors
is predicted in a fixed period of
time. The data consist of both nor-
mal and failure temporal instances.

Anomaly detection

Luca et al. [2016] Whether the patient is suffering an
epileptic seizure is predicted. The
data consists of normal and abnor-
mal patient records. The patient
records are timely monitored.

Novelty detection

Einarsdóttir et al.
[2016]

The presence of foreign objects in-
side food envelopes is predicted.
The data consist only of images of
food envelopes without foreign ob-
jects.

Novelty detection

Table 2.1: An illustrative example of the mix-up between terms and
problems in the literature.

This chapter is organized as follows. Each section describes a super-
vised learning scenario: Section 2.2 describes rare event detection, Sec-
tion 2.3, anomaly detection and Section 2.4, novelty detection. In each
section, the objective of the classification task, the characteristics of the
input data and the most popular techniques for the described learning
scenario are reviewed. In Section 2.5, the related outlier term is treated.
In Section 2.6, the one-to-one assignment of terms to learning scenarios
is described coupled with a brief discussion about the main evaluation
techniques of each learning scenario. In Section 2.7, the experimental

2.2 Rare Event Detection 31

validation is described. Finally, in Section 2.8, the conclusions of this
work are exposed.

2.2 Rare Event Detection

Almost all the papers that use the term rare event to describe the abnor-
malities of the problem to be solved share the time dimension as a com-
mon characteristic [Theofilatos et al., 2016, Dzierma and Wehrmann,
2010, Heard et al., 2010]. For instance in Theofilatos et al. [2016], a road
accident study in the Attica Tollway (Greece) is performed. The authors
divide the tollway into different sections and they detect the occurrence
of an accident in a certain section of the highway. A model is built
based on recorded data from ground-sensors and traffic-cameras. More
specifically, the data is sliced into one-hour time intervals and manu-
ally labeled by experts. Therefore, given a new one-hour time interval,
the model detects an accident occurrence. In Dzierma and Wehrmann
[2010], a geomorphological study is performed. The authors predict if
a new volcano eruption is going to happen in a fixed period of time.
A Poisson Process is learned with the historical Volcanoes Explosivity
Index (VEI) of two volcanoes. Next, given a new VEI of one of the
two volcanoes, the occurrence of the eruption in a fixed time interval is
predicted.

In the previously described problems, the goal consists on the pre-
diction of occurrence of a rare event in a bound period of time. A
genuine characteristic of the rare event learning scenario, from a super-
vised classification point of view, is that the instances are time series
[Hamilton, 1994]. From this perspective, the objective is to classify new
incoming time series as rare (when the rare event has occurred) or nor-
mal (no event has occurred) using a previously learned model. This
approach is known in machine learning as supervised time series classi-
fication [Esling and Agon, 2012]. However, due to the temporal nature
of the problem, two different classification approaches can be found in
the literature. Firstly, the full length supervised time series classifica-
tion is dealt with. For example, in Murray et al. [2005], the SMART1

dataset is used to detect if a hard-drive is faulty in a fixed period of
1 The SMART dataset is hard-drive self-monitoring recovered data in which

both normal and failure behaviors are collected.

32 2 Analyzing Supervised Classification Terms and Problems

time. The authors learn a model using recorded hard-drive sensor mea-
surements at different times. Then, given new hard-drive sensor data,
failure is detected. In Zhang et al. [2017], a termo-technology dataset
which contains information gathered over time about heating systems
is used. The objective is to detect if the heating system has failed in
a fixed period of time. Secondly, another type of classification of rare
events can be found in the literature, in which the objective is to classify
new observations (time-series) as early as possible, preferably before the
full time series is available. This approach is known as early supervised
time-series classification in machine learning literature [Mori, 2015].
For example, in Ogbechie et al. [2017] a prediction of faulty metal bars
is studied. During the bar melting process, several sensors monitor the
characteristics of each bar. These measurements, recovered from both
normal and faulty bars, are used to learn a model. Next, given infor-
mation about a new bar, the classifier predicts if the bar is going to be
faulty. The early detection of a faulty bar is crucial because, depending
on when it is detected, it can be fixed during the rest of the process.

According to the characteristics of the data, in most of the prob-
lems referred to with the rare event term, instances are time series and
are labeled in two categories: normal (N) and rare (R). Furthermore, in
many papers, the data shows an unbalanced distribution of classes. For-
mally, assuming that the data is generated by a generative mechanism
P (x, c) [Mitchell, 1997], P (C = R) ≪ P (C = N). Considering the in-
stances during the training stage, both normal and abnormal instances
are available to learn the classifier. Therefore, rare event classification
can be formalized as a (highly) unbalanced supervised time series clas-
sification problem [Köknar-Tezel and Latecki, 2011, Cao et al., 2011].
Formally, this scenario can be described as follows:

A time series (TS) is an ordered pair (timestamp, value) of fixed
length m:

TS = {(t1, x1), . . . , (ti, xi), . . . , (tm, xm)}
with ti ∈ N, for i = 1, . . . , m

(2.1)

Time series classification is a supervised data mining task in which
giving a training set of time series, TR = {(TS1, y1), . . . , (TSn, yn)},
in which y represents the label of the corresponding time series, the
objective is to build a classifier that is able to predict the class label
of any new time series as accurately as possible [Mori, 2015]. In the

2.2 Rare Event Detection 33

particular case of a rare event, it is common to have a scenario where
P (C = R) ≪ P (C = N). A common classification process can be seen
in Figure 2.1.

?
NEW INSTANCE

LEARNING
ALGORITHM

MODEL

TRAINING SET

or

PREDICTED CLASS

Fig. 2.1: A flowchart of the supervised time series classification data
mining task (Mori [2015]).

Besides, there are some problems in the literature in which the pre-
diction must be output as soon as possible. This learning scenario is
known as early time series classification [Mori et al., 2018].

However, even though the problem itself has the time dimension as a
key component, in some rare event detection applications, instances are
transformed without considering this genuine characteristic. Therefore,
the approach treats the problem as an unbalanced non-temporal classi-
fication task, similar to those found in the anomaly detection learning
scenario (further described in Section 2.3). For instance in Murray et al.
[2005], the data is composed of several hard drive sensor measurements
at different time intervals. Therefore, for the same drive, many readings
of the same sensors are available. However, the authors do not consider
the order in which the measures have been recorded, and, given new
hard-drive unordered measurements, the model classifies the drive as
faulty or normal. Hence, the temporal nature of the data is not lever-
aged.

Regarding the rare event literature, the objective of most of the
related papers is focused on classifying the rare class. Therefore, in
order to evaluate the performance of the classification task, popular

34 2 Analyzing Supervised Classification Terms and Problems

metrics such as AUC [Zhang et al., 2017, Xu et al., 2016, Ren et al.,
2016] and the recall of the rare class [Zhang et al., 2017, Ren et al.,
2016] have been commonly used.

Among the most frequently used techniques in time series classi-
fication, rare event logistic regression, an adaptation of the logistic
regression for this learning scenario, is a popular choice [Theofilatos
et al., 2016, Van Den Eeckhaut et al., 2006, Ren et al., 2016, King
et al., 2001]. However, techniques such as Kullback-Leibler divergence
to discriminate between rare and normal events [Xu et al., 2016], long-
short term neural networks [Zhang et al., 2017], rule-based classifica-
tion learned with genetic algorithms [Weiss and Hirsh, 1998], multiple-
instance naïve Bayes [Murray et al., 2005], Poisson Processes [Dzierma
and Wehrmann, 2010], support vector data regression with surrogate
functions [Bourinet, 2016], Bayesian networks [Cheon et al., 2009] or
support vector machines [Khreich et al., 2017] have been successfully
adapted for this learning scenario.

Taking into account the unbalanced distribution of classes, most of
the previous methods are coupled with techniques specifically designed
to deal with unbalanced time-series classification. Some of these tech-
niques include: the Structure Preserving Over Sampling (SPO) tech-
nique [Cao et al., 2011], or an adaptation of the classical Synthetic Mi-
nority Over-sampling TEchnique (SMOTE) [Köknar-Tezel and Latecki,
2011].

Finally, another widely different rare event related learning scenario
can be found in the literature. The estimation of the probability of
occurrence of a rare event [Wu et al., 2003, Cadini et al., 2017, Des-
sai and Hulme, 2004, Dueñas-Osorio and Vemuru, 2009, Bedford and
Cooke, 2001]. This approach is mainly used in engineering and physics
and some illustrative examples of rare event probability estimation in-
clude: the estimation of the probability of infrastructure failure in a
fixed period of time [Dueñas-Osorio and Vemuru, 2009], the estima-
tion of the probability of failure of technical systems in a fixed period
of time [Bedford and Cooke, 2001], or the estimation of the probabil-
ity of extreme climate developments in a specific time window [Dessai
and Hulme, 2004]. Since this learning scenario is beyond the supervised
classification framework, it is not considered in this chapter. Among
the most frequently used techniques in order to estimate the rare event
probability, importance sampling, Monte Carlo simulations [Balesdent

2.3 Anomaly detection 35

et al., 2016, Auffray et al., 2014], kriging [Auffray et al., 2014] or first
order reliability method (FORM) [Straub et al., 2016] are found in the
literature.

2.3 Anomaly detection

Most of the problems which describe the abnormalities with the anomaly
term are non-temporal. The data is labeled in two categories: normal
(N) and anomaly (A). For instance, in Miri Rostami and Ahmadzadeh
[2018], the authors detect breast cancer using the Surveillance Epidemi-
ology and End Results (SEER) 1 dataset. This dataset consists of pa-
tients which have been examined for cancer diseases. The patients which
suffer from cancer are described with anomaly term. Hence, the data
consists of cases of both normal and anomalous instances. A model is
then learned which classifies new unseen cases as anomalous or normal.
Fiore et al. [2017] detects credit-card transactions using a public dataset
with legal and notably less fraudulent transactions. A neural network
is learned to classify new incoming transactions as legal or fraudulent.

In anomaly detection learning scenario, anomalous instances are
scarce due to the unbalanced distribution between normal and anomaly
classes [Chandola et al., 2009]. Therefore, this scenario can be formal-
ized as (highly) unbalanced supervised classification. Formally, an in-
stance is defined as x = (x1, . . . , xm). Given a training set TR =
{(x1, y1), . . . , (xn, yn)}, in which y represents the label of the corre-
sponding instance, the objective is to learn a classifier that is able
to predict a new class label of any new instance as accurately as
possible. Regarding the probability distribution of the class variable,
P (A) ≪ P (N). Where A represents the anomaly class label and N the
normal class label. An illustrative example can be seen in Figure 2.2.

In order to evaluate the performance of the classifiers, due to the
(highly) unbalanced distribution of classes, common metrics such as
accuracy are not informative enough. Therefore, authors focus on the
correct classification of abnormalities. A popular evaluation measure
used is the maximization of the recall of the minority class [Ribeiro
et al., 2016, Miri Rostami and Ahmadzadeh, 2018].

1 Available here: https://seer.cancer.gov/data/

https://seer.cancer.gov/data/

36 2 Analyzing Supervised Classification Terms and Problems

?
NEW INSTANCE

LEARNING
ALGORITHM

MODEL

TRAINING SET

or

PREDICTED CLASS

Fig. 2.2: A flowchart of a supervised classification task. This learning
scenario is assigned to the anomaly detection term.

For anomaly detection, popular supervised classifiers have been
adapted obtaining competitive results. For instance, support vector
machines [Zhou et al., 2017], neural networks [Noto et al., 2012] or
Gaussian mixture models [Reynolds, 2015] present genuine algorithms
to deal with anomaly detection domains. Note that, since anomaly de-
tection can be formalized as a (highly) unbalanced supervised classifi-
cation problem, techniques that specifically deal with unbalanced do-
mains can be used for anomaly detection. Similar to the rare event over-
sampling techniques, SMOTE [Miri Rostami and Ahmadzadeh, 2018,
Araujo et al., 2018], is widely used to synthetically generate instances
from the minority class.

2.4 Novelty detection

In most of the papers that use the term novelty to describe the ab-
normalities, the model is learned using a dataset that contains only
one class. For instance, in Khreich et al. [2017], system call traces are
classified as novel or normal. A novel instance corres2ponds to an un-
supported or unexpected system call trace. To learn the model, only
normal system call traces which have been gathered in a secure envi-
ronment are used. When a new system call arrives, the classifier predicts
it as normal or novel. Similarly, in Einarsdóttir et al. [2016], a study in
food control is carried out. Specifically, in some cases, foreign objects

2.4 Novelty detection 37

can be found inside food envelopes. Since this situation can result in
bad customer experience and legal issues, the detection of foreign ob-
jects is crucial. The authors learn a classifier using X-ray images only
from normal food (without foreign objects inside). Next, giving a new
unseen X-ray image, the classifier predicts it as novel (with foreign ob-
ject inside) or normal. The novelty term has also been commonly used
in streaming scenarios. Masud et al. [2013] start from a labeled dataset,
where an initial model is learned. This model classifies the new incom-
ing instances either among the normal known classes or as novel (the
instance is not similar to any known class). If this new instance is classi-
fied as novel, it is kept in a buffer because it is considered as a candidate
for a new class. When this buffer is full, new classes are sought in this
buffer. The classifier is updated with new emerging novel classes for
future predictions.

Regarding the two aforementioned problems, two different learning
scenarios can be considered. What we call the static novelty detection
learning scenario is considered. Here, the problem can be cast as a bi-
nary supervised classification problem. Given a dataset composed by
only one class, a model is built. This model learns a decision bound-
ary that isolates the normal behavior. For prediction, when a new in-
stance arrives, it is classified as novel or as normal. In this framework,
the efforts are focused on correctly classifying the normal class [Pi-
mentel et al., 2014, Einarsdóttir et al., 2016, Kafkas and Montaldi,
2018]. Therefore, in order to evaluate the performance of the classifiers,
the recall of the normal class is commonly maximized [Luca et al., 2016,
Swarnkar and Hubballi, 2016]. Formally, the training set is generated
only from P (x|C = N). At the training stage, even though the classifier
is learned using information about only one class (normal class), it is
built considering that another behavior exists which is different that
which is normal.

Formally, an instance is defined as x = (x1, . . . , xm). Given a train-
ing dataset, TR = {(x1, y1 = N), . . . , (xn, yn = N)}, the objective is
to learn a classifier that will be able to predict between normal N and
novel. Note that, in this learning scenario, only one class, the normal
class N , is available to train the model. An illustrative example can be
graphically seen in Figure 2.3.

Besides, what we call dynamic novelty detection is considered. In
some situations, in the literature, it is also known as evolving classes,

38 2 Analyzing Supervised Classification Terms and Problems

?
NEW INSTANCE

LEARNING
ALGORITHM

MODEL

TRAINING SET

or

PREDICTED CLASS

LEARNING
ALGORITHM

Normal

Normal

Normal

Normal

Normal

Normal Novelty

Fig. 2.3: A flowchart of the supervised classification framework task in
which only one class is available to learn the classification model. This
learning scenario is assigned to the the static novelty detection term.

future classes or novel class detection [Faria et al., 2016, Masud et al.,
2013, Mu et al., 2018]. This learning scenario can be formalized as
a supervised classification problem in which the number of labels for
the class variable is unknown. In other words, the generative probabil-
ity distribution dynamically changes during the classification process.
Therefore, the classifier has to adapt to these changes. When a new
instance arrives, the model has to classify among the current classes or
it stores it in a buffer [Masud et al., 2013, Spinosa et al., 2007, Zhu
et al., 2018]. Considering the life-cycle of the classes, these can drift, be
born, die or reappear. Hence, the classifier must be updated for those
changes, considering that the adaptation time is relevant in a streaming
environment. Note that most of the existing approaches consider a dy-
namically (highly) unbalanced supervised classification scenario [Masud
et al., 2013, Spinosa et al., 2007, Zhu et al., 2018, Chen et al., 2008]
since a few instances may constitute a new emerging class (Figure 2.4).
To evaluate the performance of the classifier in this environment, gen-
uine metrics have been proposed. For instance, Masud et al. [2013] use
the percentage of novel class instances classified as a current class; the
percentage of existing class instances falsely identified as novel; and,
the total misclassification error. Zhu et al. [2018] use the average pre-
cision among all classes. Chen et al. [2008] output the evolution of the

2.4 Novelty detection 39

classification error as new events occur: the emergence of a class, dis-
appearance or drift.

The dynamic novelty detection learning scenario can be divided
in two stages. Firstly, the initial learning stage (also known as offline
stage), in which given a labeled training dataset, a model is built. Sec-
ondly, the prediction stage (also known as online stage), in which new
classes may emerge and disappear, and the old classes may also drift.
These two phases are formalized as follows:

(a) Initial training exam-
ple.

(b) Classification of in-
stances.

(c) Class discovery.

Fig. 2.4: Flowchart of the dynamic novelty detection learning scenario.
At the beginning, the given classes are modeled. When new instances
arrive, they are classified among known classes or they are rejected as
not belonging to any existing class (see the crossed instances in Figure
5b). Finally, the new emerging class is sought.

Initial training phase (offline): In the offline phase a classifier
C0 is learned considering a set of labels L0.

Prediction phase (online): The online phase can be described
as a prediction and adaptation stage in which a data stream (DS) is
observed. A DS is a possibly infinite sequence of instances. At time
t, the current classifier Ct predicts a new instance. If the instance is
classified as one of the current labels, the classifier is adapted with this
knowledge to create Ct+1. If the new instance can not be classified in
the current set of labels, it is kept apart in a buffer and the model does
not modify. Once the buffer is full the classifier is updated and the set
of labels Lt modified.

40 2 Analyzing Supervised Classification Terms and Problems

An illustrative flowchart of this learning scenario can be seen in
Figure 2.5.

Fig. 2.5: A flowchart of the dynamic novelty detection problem. In this
problem, the number of labels for the class variable is unknown, and
dynamically changes over time.

According to the techniques used in static novelty detection, one
class classification techniques are those which are the most represen-
tative ones in this learning scenario. For instance, one class SVM
[Dufrenois and Noyer, 2016, Khreich et al., 2017, Erfani et al., 2016],
K-Nearest Neighbors data description [Tax, 2001], graph embedded one
class classifiers [Mygdalis et al., 2016], one class Random Forests [Désir
et al., 2013] and Isolation Forest [Zhang et al., 2011] have been suc-
cessfully applied under the static novelty detection learning scenario.
Besides, in dynamic novelty detection, techniques such as OLINDDA
[Spinosa et al., 2007], a sphere-based novelty detection algorithm, in
which clustering is done with the k-means algorithm; MuENLForest
[Zhu et al., 2018] which discovers new labels in a multi-label classifica-
tion framework by creating an ensemble of Random Forest and Isolation
Forest classifiers to discover emerging new classes; or the ensemble pro-
posed in Masud et al. [2013], which creates an ensemble of decision trees
which, in each leaf node, runs a k-means algorithm to discover sphere-

2.5 The related outlier detection scenario 41

shaped emerging new classes, have been successfully proposed in the
literature.

2.5 The related outlier detection scenario

The outlier term also comes up when seeking related works with rare
event, anomaly and novelty terms. While the term is mainly associ-
ated with an unsupervised framework, the literature shows examples
where the term is used to name other previously explained scenarios
[Hodge and Austin, 2004, Zhang and Zulkernine, 2006, Billor et al.,
2000]. Therefore, it is briefly considered in this section.

In some papers, the term outlier has been related with noise, linking
these observations with incorrect or inconsistent behaviors [Aggarwal,
2017]. Consequently, the outlier detection task forms part of a prepro-
cessing phase [Teng et al., 1990, Rousseeuw et al., 2011]. For instance,
when human errors are introduced retrieving data, these erratic obser-
vations are considered outliers [Barai and Lopamudra, 2017]. In other
situations, the detection of instances with high deviation are considered
outliers [Radovanović et al., 2014, Dang et al., 2014]. In Radovanović
et al. [2014], the authors detect all-star players in an unlabeled dataset
composed by NBA players between 1973 and 2003. The outstanding
NBA players are considered outliers. In order to detect them, cluster-
ing is pursued and those points which deviate significantly from others
are considered outstanding NBA players.

Regarding the characteristics of the data in the outlier detection
scenario, it can be either temporal (time-series) [Gupta et al., 2013] or
non-temporal [Campos et al., 2016, Aggarwal, 2017, Radovanović et al.,
2014].

An outlier detection task can be formalized as an unsupervised clas-
sification problem. Formally, given a dataset D = {x1, . . . , xn}, the
objective is to find the instance that (highly) deviates from others. An
example of an outlier detection task can be seen in Figure 2.6.

42 2 Analyzing Supervised Classification Terms and Problems

Fig. 2.6: An example of unsupervised classification. This learning sce-
nario is assigned to the outlier detection task. As can be seen the outliers
are deviated instances without a clear pattern.

Fig. 2.7: Assignment of terms to learning scenarios. The main charac-
teristics of each learning scenario have been summarized.

2.6 The proposed assignment of terms and learning scenarios 43

2.6 The proposed assignment of terms and learning
scenarios

In this chapter, based in our experience and initial approach to the
literature, we did discover two major issues: a) the existence of a prob-
lematic mix-up between terms and learning scenarios. And b) we realize
that most of these problems can be put in the same learning framework.
Furthermore, we based on the assignment of terms to problems in these
key papers to design our taxonomy. For each paper, we have reviewed
the goal of the paper, the characteristics of the input data and the most
representative techniques used in each rare event, anomaly, novelty and
outlier detection works. Concretely, for each term related paper, the
problem that the authors want to solve, such as, whether it is a time
series classification, has an unbalanced learning characteristic, it is a
classification task or a regression task, which the evaluation measures
are, and, if it is a supervised or unsupervised classification problem has
been reviewed.

In Figure 2.7, the assignment of terms to learning scenarios is graph-
ically explained. As can be seen, each term is associated with one learn-
ing scenario. Moreover, the genuine characteristics of each learning sce-
nario are shown in this figure. Also, an extended summary is exposed
in Table 2.2.

In the case of the rare event term, the most relevant learning scenario
under the supervised classification point of view is the (early) time series
classification. In most of the papers described with the rare event term,
there is a temporal nature in the problem, the classes are unbalanced
and all the classes are represented in the training set.

In the problems described with the anomaly term, the most relevant
learning scenario is the (highly) unbalanced supervised classification. In
this learning scenario, the data is static, the distribution of classes is
unbalanced, and all the classes are represented in the training set.

Regarding the problems described with the novelty term, two dif-
ferent learning scenarios are considered. On the one hand, the static
novelty detection in which the objective is to classify an instance be-
tween novelty or normal based on a model which has been trained with
only the normal class. On the other hand, the dynamic novelty detection
is considered. In this learning scenario, the objective is to discover new
emerging classes in an streaming environment. However, both learn-

44 2 Analyzing Supervised Classification Terms and Problems

ing scenarios share some common characteristics, such as: both of the
learning scenarios are supervised, and, both of them try to discover in-
stances from classes that were not available in the training set. Hence,
both of the learning scenarios do not have all the classes represented
in the training data (in the case of static novelty detection, the novel
class is not available. In the case of dynamic novelty detection, the new
novel classes are neither available in the training set).

Finally, the outlier detection term has been mostly associated with
the unsupervised classification framework in the literature.

All these learning scenarios require specific measures in order to eval-
uate the performance of the classifiers that solve the related problems.
Therefore, depending on the objective of the classification task, differ-
ent measures are commonly computed in the literature. In Table 2.3,
the most common evaluation measures for each term are presented. Re-
garding the evaluation techniques used to validate the performance of
the classifier, in the majority of the papers the k-fold cross validation,
stratified k-fold cross validation and the train and test split are used.

2.6 The proposed assignment of terms and learning scenarios 45

Table 2.2: Summary of the main characteristics of each term along with
the key references of the literature.

Term Description Key
References

Rare Event

(Early) Supervised Time
Series Classification

• Temporal data
• All classes represented in

the training set
• Unbalanced class distri-

bution
• Supervised classification

Theofilatos et al.
[2016], Dzierma
and Wehrmann
[2010], Heard
et al. [2010],
Hamilton [1994],
Zhang et al.
[2017], Ogbechie
et al. [2017]

Anomaly

(Highly) Unbalanced
Supervised Classification

• All classes represented in
the training set

• Unbalanced classification
• Supervised classification

Miri Rostami
and Ahmadzadeh
[2018], Fiore
et al. [2017],
Chandola et al.
[2009]

Novelty

Supervised Classification
only one class for training

• Possible unbalanced clas-
sification

• Supervised classification

Masud et al.
[2013], Pimentel
et al. [2014],
Luca et al. [2016],
Einarsdóttir et al.
[2016], Kafkas
and Montaldi
[2018], Khreich
et al. [2017],
Swarnkar and
Hubballi [2016],
Spinosa et al.
[2007], Zhu et al.
[2018], Chen
et al. [2008], Ma-
sud et al. [2009]

Continues in the next page.

46 2 Analyzing Supervised Classification Terms and Problems

Table 2.2: Summary of the main characteristics of each term along with
the key references of the literature (cont.).

Term Description Key
References

Outlier

Unsupervised Classification
only one class for training

• Possible temporal data.
• Unsupervised classifica-

tion

Campos et al.
[2016], Hodge
and Austin
[2004], Zhang
and Zulkernine
[2006], Billor
et al. [2000],
Aggarwal [2017],
Teng et al. [1990],
Rousseeuw et al.
[2011], Barai
and Lopamu-
dra [2017],
Radovanović
et al. [2014],
Dang et al.
[2014], Gupta
et al. [2013]

2.6 The proposed assignment of terms and learning scenarios 47

Table 2.3: Summary of the most used evaluation measures of each term
related learning scenario.

Term Evaluation
Measure Formula References

Rare Event Accuracy ηA+ηN
|D|

Zhang et al. [2017], Xu et al.
[2016], Ren et al. [2016]

Recall of
Rare Events

ηA
ηA+ηA→N

Earliness 1
|D|

∑
x∈D

t∗
x

L
· 100% Mori et al. [2018]

Anomaly Accuracy ηA+ηN
|D|

Luca et al. [2016], Swarnkar
and Hubballi [2016]

Recall of
Anomalies

ηA
ηA+ηA→N

Static
Novelty Accuracy ηA+ηN

|D|

Pimentel et al. [2014],
Einarsdóttir et al. [2016],
Kafkas and Montaldi [2018]

Recall of Normal ηN
ηN +ηN →A

Dynamic
Novelty EN_Accuracy A0+An

|D|

Masud et al. [2013], Mu
et al. [2017], Zhu et al.
[2018], Chen et al. [2008],
Masud et al. [2009]

F-measure 2∗P ∗R
P +R

Miss New ηnew→old
ηnew+ηnew→old

False New ηold→new
ηold+ηold→new

Global Error ηnew→old+ηold→new
|D|

Correct Between
Known

Accuracy between
known instances

Outlier Number of outliers detected
Campos et al. [2016],
Radovanović et al. [2014],
Dang et al. [2014]

Definitions of the variables are shown in the next page.

48 2 Analyzing Supervised Classification Terms and Problems

Table 2.4: Description of the variables used in Table 2.3.

Variable Description
|D| Number of instances.
L Length of the Time Series.
t∗
x Time at which the prediction is made.

ηA Number of instances correctly classified from the abnormal class.
ηN Number of instances correctly classified from the normal class.
ηA→N Number of instances from the abnormal class classified as normal.
ηN →A Number of instances from the normal class classified as abnormal.
ηold→new Number of instances from a new class classified as an old class.
ηnew→old Number of instances from an old class classified as a new class.
ηnew Number of instances correctly classified as a new class.
ηold Number of instances correctly classified as an old class.
P Precision of the emerging class.
R Recall of the emerging class.
A0 Number of known instances classified as an old label.
An Number of new instances classified as a new label.

2.7 Validation of the proposed assignment

In order to validate this proposal of assignment, an experiment has been
carried out considering two different scenarios. In the first scenario, the
most cited papers after the year 2000 have been gathered; while in the
second scenario, the first search-results after 2014 have been considered.
In both scenarios, for each paper, two terms are obtained. On the one
hand, that used by the authors to describe the problem, and on the
other hand, that which would have been assigned with our taxonomy.
In this way, a confusion-like matrix has been formed for every scenario.

In order to retrieve these papers, Google Scholar, ACM Digital Li-
brary and IEEE Xplore search engines have been used individually.
Hence, the experiment is replicated for each individual search engine.
In this way, the possible differences between these three communities
have been checked.

The goal of the experiment is two-fold. Firstly, we would like to vali-
date the presented proposal of assignment of terms to learning scenarios,
and check when it matches the majority of the literature papers. Sec-
ondly, we would like to identify the most frequently confused learning

2.7 Validation of the proposed assignment 49

scenarios between pairs of terms. Finally, we have also tested if the con-
fusion varies between different communities and, hence, different search
engines have been considered.

According to the confusion matrix of the most cited papers (Ta-
bles 2.5, 2.7 and 2.9), the terms used to describe the different types of
abnormalities mostly match our proposal of assignment. However, in
some situations, we have found discrepancies. Particularly, the highest
discrepancies are found between the anomaly and rare event terms. In
the case in which the authors use the anomaly term, it is frequently con-
fused with our standardization of the rare event term. After checking
the related literature, we realize that this happens when the problem
has a temporal nature. Therefore, these problems would have been de-
scribed with the rare event term regarding our proposal of assignment
of terms. Similarly, these discrepancies are found in problems described
with the rare event term but on the opposite side. When the novelty
term is used by the authors to refer to the abnormalities of their prob-
lems, a minor set of papers are confused with our concept of anomaly
term. In these works, instances of the novelty class are available during
the training stage. Consequently, according to the presented proposal of
assignment, their learning scenario is associated with the anomaly term.
Finally, considering the outlier term, only a few situations are found in
which the outlier detection learning scenario has been confused with the
novelty detection one. In these mismatched works, a normality model is
learned from labeled data. Then, instances non-conforming the normal
behavior are rejected and considered outliers. Based on our proposal,
this learning scenario corresponds with novelty detection.

In the second scenario with the first search-results of each term after
2014 (Tables 2.6, 2.8 and 2.10), a similar trend can be seen. However,
there is some increase in the discrepancies. The confusion of the use of
the terms novelty and anomaly is noticeable. For instance, the anomaly
and the novelty problem descriptors have been confused in more situ-
ations than in the previous experiment with the subset of most cited
works.

Regarding the different search engines, it can be seen that the mix-
up is more prominent in the ACM community. Particularly, in the first
50 search-results (Table 2.8), it can be seen that the mix-up between the
outlier term is considerably higher than in other communities. However,
this trend can not be seen in the 50 most cited papers (Table 2.7).

50 2 Analyzing Supervised Classification Terms and Problems

Moreover, the novelty term also shows a slightly higher confusion in
this community.

It can be concluded that the proposed assignment of terms to learn-
ing scenarios is supported by the literature. In addition, the confusion
matrices reveal the mix-up between terms and learning scenarios. This
clearly promotes the repetition of works and hinders the progress of the
field. Furthermore, due to the popularity and increase of contributions
in these term-related fields in recent years, this confusion is increasing.
Therefore, we think that the standardization of the field is necessary
and, with this review, we try to take a short step towards the solution
of this mix-up.

Table 2.5: The confusion-like matrix formed from the results obtained
from Google Scholar. For each term, the 50 most cited search-results
(papers) have been analyzed after the year 2000. The terminology used
by the authors is compared with respect to our proposal of assignment
of terms to learning scenarios.

Problem descriptor used in the searched paper
Rare Events Anomaly Novelty Outlier Total

Rare Events 35 15 5 1 56
Our Anomaly 13 24 16 1 54

proposed Novelty 0 7 26 3 36
approach Outlier 2 4 3 45 54

Total 50 50 50 50 200

2.7 Validation of the proposed assignment 51

Table 2.6: The confusion-like matrix formed from the results obtained
from Google Scholar. For each term, the first 50 search-results (papers)
after the year 2014 have been analyzed. The terminology used by the
authors is compared with respect to our proposal of assignment of terms
to learning scenarios.

Problem descriptor used in the searched paper
Rare Events Anomaly Novelty Outlier Total

Rare Events 35 15 5 1 56
Our Anomaly 13 24 16 1 54

proposed Novelty 0 7 26 3 36
term Outlier 2 4 3 45 54

Total 50 50 50 50 200

Table 2.7: The confusion-like matrix formed from the results obtained
from the ACM Digital Library. For each term, the 50 most cited search-
results (papers) have been analyzed after the year 2000. The terminol-
ogy used by the authors is compared with respect to our proposal of
assignment of terms to learning scenarios.

Problem descriptor used in the searched paper
Rare Events Anomaly Novelty Outlier Total

Rare Events 34 10 3 2 49
Our Anomaly 13 24 12 4 53

proposed Novelty 2 6 24 4 36
term Outlier 1 10 11 40 62

Total 50 50 50 50 200

52 2 Analyzing Supervised Classification Terms and Problems

Table 2.8: The confusion-like matrix formed from the results obtained
from the ACM Digital Library. For each term, the first 50 search-results
(papers) after the year 2014 have been analyzed. The terminology used
by the authors is compared with respect to our proposal of assignment
of terms to learning scenarios.

Problem descriptor used in the searched paper
Rare Events Anomaly Novelty Outlier Total

Rare Events 30 15 4 6 55
Our Anomaly 10 23 17 12 62

proposed Novelty 1 3 20 4 28
term Outlier 9 9 9 28 55

Total 50 50 50 50 200

Table 2.9: The confusion-like matrix formed from the results obtained
from the IEEE Xplore search engine. For each term, the 50 most cited
search-results (papers) have been analyzed after the year 2000. The ter-
minology used by the authors is compared with respect to our proposal
of assignment of terms to learning scenarios.

Problem descriptor used in the searched paper
Rare Events Anomaly Novelty Outlier Total

Rare Events 24 15 6 4 49
Our Anomaly 16 25 8 5 54

proposed Novelty 5 2 25 5 54
term Outlier 5 8 11 36 60

Total 50 50 50 50 200

2.8 Conclusions 53

Table 2.10: The confusion-like matrix formed from the results obtained
from the IEEE Xplore search engine. For each term, the first 50 search-
results (papers) after the year 2014 have been analyzed. The terminol-
ogy used by the authors is compared with respect to our proposal of
assignment of terms to learning scenarios.

Problem descriptor used in the searched paper
Rare Events Anomaly Novelty Outlier Total

Rare Events 30 17 8 2 57
Our Anomaly 11 24 11 4 50

proposed Novelty 1 1 21 5 28
term Outlier 8 8 10 39 65

Total 50 50 50 50 200

2.8 Conclusions

In this chapter, we have underlined those genuine characteristics of each
rare event, anomaly, novelty and outlier terms that are shared by the
majority of the papers in the literature and have been assigned to a
learning scenario. In order to do that, we have reviewed the different
aims of each paper, the characteristics of the input data and the most
representative techniques used in each rare event, and anomaly and
novelty detection works. Each term has been accompanied with a set of
illustrative applications to highlight the different learning scenarios. We
have argued that the learning scenarios associated to the reviewed terms
can be formalized under a supervised classification framework. Finally,
we hope that the discussion with the closely related outlier term can
enrich the comprehension of each scenario. Finally, the main charac-
teristics of terms and problems have been summarized in Table 2.11.
In this table, both the features related with the available data and the
characteristics of the problem have been distinguished.

With this work, we take a short step towards the standardization of
the rare event, anomaly, novelty and outlier terms. We think that our
proposed assignment of terms to learning scenarios can help to resolve
the muddle which hinders the progress in the term-related fields. Also,
we think that the standardization of the terms and learning scenarios
can strongly help to improve the progress in the field by letting the

54 2 Analyzing Supervised Classification Terms and Problems

Relative to Characteristics Rare Events Anomaly Novelty Outlier
Data Temporal data Yes No No Possible
Data All classes repre-

sented in training
data

Yes Yes No -

Problem Unbalanced Clas-
sification

Yes Yes Possible -

Problem Supervised Clas-
sification

Yes Yes Yes No

Table 2.11: Summary of the principal characteristics, extracted from
the literature, of the reviewed terms and learning scenarios.

community (and especially young, newcomer researchers) to easily find
what they are looking for, and by avoiding the repetition of works.

3

SNDProb: A Probabilistic Approach for
Streaming Novelty Detection

In this chapter we focus on the Streaming Novelty Detection (SND)
problem. In SND, new classes may emerge and disappear throughout
a stream. Hence, the model must provide accurate predictions to the
newcomer instances and also, discover new emerging classes. We propose
a new methodological solution based on probability distributions that
deals with the Streaming Novelty Detection (SND) problem. Concretely,
we propose a novel solution based on a Gaussian mixture distributions
in which each mixture component models one class.

3.1 Introduction

With the rapid growth of the Internet of Things (IoT), massive sen-
sor data are available, creating new demanding problems for both re-
searchers and engineers. Many of these problems have a temporal nature
and evolve during time. For instance, in agriculture, plants are con-
stantly monitored by a large variety of sensors. These sensors gather
information about the moisture, air pressure and temperature, among
other factors. The plants can be affected by some well-known plagues.
However, in some situations, a certain plague can change (drift), be
eradicated (disappear) and a new one can be discovered (emerge). This
evolving learning scenario is known in the literature as streaming nov-
elty detection, evolving classes or concept evolution [Masud et al., 2013,
Mu et al., 2017, 2018, Haque et al., 2016a,b].

56 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

In streaming novelty detection, a model is initially learned from a
fully-labeled dataset. Afterwards, instances arrive in a streaming fash-
ion. The model classifies the instances among the learned classes. At
the same time, the model is updated with the newcomer instances and
their newly made predictions. Once in a while, an instance does not
belong to any learned class and it is inserted into a buffer. When the
buffer is full, an update process that searches for new classes is run. At
this point, the model is updated with the new class or classes and the
predictions of the buffered instances are output. A general pipeline of
the framework can be seen in Figure 3.1.

Fig. 3.1: General pipeline of a streaming novelty detection algorithm.

3.1 Introduction 57

Streaming novelty detection can be seen as a combination of different
learning scenarios such as streaming classification and novelty detection.
In streaming classification unlabeled instances arrive either in batches
or one by one, and not necessarily in equally-spaced time intervals. The
aim is to classify these instances considering that changes may occur
during the stream, the so-called concept drift [Lu et al., 2019, Alippi
et al., 2017]. Therefore, the model needs to adapt to those changes in
order to give accurate predictions Gomes et al. [2019]. In static novelty
detection [Carreño et al., 2020, Pimentel et al., 2014, Khan and Madden,
2014], the problem consists of discarding the observations that do not
follow a given (learned) pattern. Briefly, given a fully labeled dataset, a
model is learned. At the prediction stage, instances are either classified
as a known class or discarded 1.

Note that in Masud et al. [2013], Sun et al. [2016], Masud et al.
[2009], Abdallah et al. [2016], a problem similar to the one tackled in
this chapter is presented. However, at some point of the stream, true
labels of the predicted instances are supplied, and the model is updated
accordingly. This scenario is called class incremental learning in the lit-
erature, and it is different to the streaming novelty detection approached
here. Besides, other works such as Haque et al. [2016a,b], Abdallah et al.
[2016] address a semi-supervised streaming novelty detection problem
where a limited amount of labeled instances to maintain and update
the classification model are provided. Finally, approaches can be found
from the fuzzy set theory. Particularly, da Silva et al. [2018] and da Silva
and de Arruda Camargo [2020] propose an extension of the MINAS ap-
proach [Faria et al., 2016], in the fuzzy paradigm. In da Silva et al.
[2018] and da Silva and de Arruda Camargo [2020], the micro clus-
ters are learned using a Fuzzy C-Means clustering technique. Hence,
the newcomer instances are associated to more than one micro-cluster,
resulting on more flexible decision boundaries. These algorithms are
compatible with the streaming novelty detection problem presented in
this chapter. In spite of the solid results of these fuzzy algorithms, our
choice is to remain in the supervised classification paradigm instead of
moving to the fuzzy framework.

Other key works are related to the streaming novelty detection sce-
nario addressed in this chapter. For instance in Tan et al. [2011], half-

1 Note that the discarded instances can be used to some other specific ob-
jective such as failure detection or intrusion detection.

58 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

space trees are used to learn a model that assigns an anomaly score to
newcomer instances. The model is continuously updated without any
true label. In Lee et al. [2013], anomaly data is detected and over-
sampled. Then a PCA analysis is done to discover the direction of the
anomaly data in the feature space and hence, properly discover the new-
comer anomalous points. In Deng [2016], outliers are detected using a
combination of PCA techniques. However, none of these approaches
discover new emerging classes. In this learning scenario addressed in
this chapter it is assumed that the anomalous points have enough en-
tity to be recognized as new classes. On the contrary to the aforemen-
tioned works, where these anomalous points are not subject to form
new classes.

In order to deal with streaming novelty detection, the literature has
commonly divided the solution into the following phases. The offline
phase refers to the stage in which, given a fully-labeled dataset, an
initial predictive model is learned. In the online phase, new instances
arrive and the model classifies these instances either as a known class, or
as a new class candidate. The new class candidate instances are stored
in a fixed-sized buffer. As part of the online phase, a two-fold update
process is run. On the one hand, it uses the classified instances as a
known class to update the current models. In this way, the concept
drift is tackled. On the other hand, when the buffer is full, the update
process searches for new classes among the buffered instances.

This learning scenario presents a variety of challenges. For instance,
the problem starts from a supervised classification problem at the offline
phase, and, as long as the stream flows, only unsupervised data arrives.
With these unsupervised data, new classes are discovered. Therefore,
there is a transition from supervised to unsupervised classification. Be-
sides, when a new class emerges, the number of instances that represent
that class may be low with respect to the rest of classes. Therefore, while
the predictions for a known class are supported by a possibly larger
number of instances, the predictions for the new class are supported by
fewer instances [Sun et al., 2016].

Two different methodologies can be seen in the literature that deal
with streaming novelty detection. On the one hand, approaches that
rely on a single classification model that is dynamically updated [Faria
et al., 2016, Mu et al., 2017]. On the other hand, approaches that use an
ensemble of classifiers have been developed [Masud et al., 2013, 2009,

3.1 Introduction 59

Garcia et al., 2019]. In this second strategy, a variety of models are used
to represent the existing classes. Regarding the model update, at some
point of the stream, the ensemble becomes outdated and a new model is
learned to replace the outdated one. Both aforementioned approaches
share a similar drawback. In order to speed up the computations, a
compression of the data points is pursued. Particularly, clustering is
carried out and the classes are represented by the union of (many) clus-
ter boundaries. Each cluster is denoted by a center and a radius. In
order to predict the class of an unlabeled instance, a (large) number of
Euclidean distances are computed between the instance and the center
of each cluster to check whether or not the instance belongs to any
of the classes. Instances that do not belong to any class are stored in
a fixed-sized buffer. In order to discover new classes, clustering is per-
formed over the buffered instances when the buffer reaches its maximum
capacity.

As previously explained, literature approaches are based on the idea
of spherical clusters. These clusters are generated by leveraging the
concept of cohesion and separation between classes. This methodology
has some drawbacks. For example, it does not allow overlapping between
classes. In addition, some literature works, such as Masud et al. [2013],
Mu et al. [2017], do not consider the emergence of multiple classes in
the same buffer.

In order to overcome these limitations, a parametric approach is pro-
posed. The model consists of a mixture of Gaussian distributions. Each
class is represented by a mixture component. No instances are kept
throughout the stream except those stored in the fixed-sized buffer.
These instances consists of observations that the model can not classify
as any known class, i.e., unexplainable examples by the current model.
In the offline phase, given a fully labeled dataset, a mixture of Gaus-
sian distributions is learned. In the online phase, newcomer instances
are predicted based on the probability of belonging to each class. The
instances classified as a known class are used by the update process
to update the parameters of the known mixture components. Besides,
instances that can not be classified as any known class are stored in a
fixed-sized buffer. When the buffer is full, new classes are sought among
the buffered instances. If a new class is discovered, new components are
added to the mixture and, at the same time, the existing mixture com-
ponents are allowed to update their parameters. If no class is discovered,

60 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

the parameters of the mixture are updated with the buffered instances.
This process is done using the Expectation Maximization (EM) algo-
rithm. However, both probability distributions and data are available at
this point. In order to deal with this unusual situation, the probability
distributions are weighted. This weighting process is done by a meta-
regression model, which outputs an adequate weights for each mixture
component.

This chapter is organized as follows: Section 3.2 refers to the pro-
posed method. In Section 3.3, the experimental results are discussed.
Finally, in Section 3.4, the conclusions are exposed.

3.2 Proposed method

In streaming novelty detection, instances arrive in an infinite stream
fashion DS = {(x1, c1), . . . , (xt, ct), . . .}, where t represents the times-
tamp in which an instance arrives. Commonly, the literature has ad-
dressed this problem by dividing it into two different phases. The offline
phase and the online phase. The later is then divided into the prediction
and the update process.

3.2.1 Offline phase

In the offline phase, denoted as time t = 0 for simplicity, a proba-
bility distribution is learned from the data to create the initial clas-
sifier. In order to do that, a supervised set of observations S0 =
{(x1, c1), . . . , (xm, cm)} is available. The learned probability distribu-

tion consists of a mixture of Gaussian distributions
|C0|∑
j=1

ϕjfj(µj , Σj),

where µj and Σj represent the mean and covariance matrix of the jth

mixture component fj at time t = 0, respectively; ϕj is the prior, or
the mixing proportion, of the jth mixture component; and |C0| repre-
sents the number of classes at time t = 0. A graphical representation
of this phase can be seen in Figure 3.2, and the pseudocode for this
phase is exposed in Algorithm 3 (uj represents the number of instances
belonging to class j).

The computational complexity of the offline phase is O(|C0|md2),
where m represents the number of observations of the training set, |C0|

3.2 Proposed method 61

Algorithm 3: Pseudocode of the offline phase.
Input: DS={(x1, c1), . . . , (xm, cm)}
for j ∈ {1, . . . , |C0|} do

µj = 1
uj

uj∑
i=1

xi

Σj = 1
uj

uj∑
i=1

(xi − µj)2

Fig. 3.2: Flowchart of the offline phase of the proposed parametric
framework. A mixture of Gaussian distributions is learned from a la-
beled dataset.

are the number of classes at time t = 0, and d are the number of features.
The memory complexity of this phase corresponds to: O(d2|C0|).

3.2.2 Online phase

In the online phase, a sequence of unsupervised instances arrives, one
instance at a time, and not necessarily in equally-spaced time intervals.
For each instance xt, it is decided whether there is enough evidence to
classify it as one of the current known classes or, otherwise, to insert into
a buffer. Considering the proposed probabilistic framework, it is decided
that an instance can not be classified if, for each mixture component
Nj(µj , Σj), the instance is out of the sets Ωj = {x|fj(x) ≥ rα} such
that p(Ωj) = 1 − α, for j = 1, . . . , |C0|; i.e., if the instance has a low
probability of belonging to any mixture component, it is inserted in a
buffer. This threshold α is a user parameter. The computation of the
Ωj set is generally a complex task. However, in the case of the Gaussian
distribution, it can be computed using the Mahalanobis distance. Hence,
the set can be equivalently rewritten as Ωj = {x|d2

M (x, Nj(µj , Σj)) ≤
hα} where the Mahalanobis distance is defined as:

62 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

d2
M (x, Nj(µj , Σj)) = (x − µj)T Σ−1

j (x − µj) (3.1)

Fig. 3.3: Flowchart of the online phase of the proposed parametric
framework. A stream of instances arrive, and for each instance a la-
bel is predicted. If the instance is predicted as novel, it is stored in
the buffer. Otherwise, the instance, its predicted class and the current
model are used to update the model for the next iteration.

Considering d2
M as a function of a Gaussian random variable, then

d2
M ∼ χ2

d, where d represents the number of dimensions. Hence, com-
puting the hα is performed as hα = χ2

d,1−α.
When an instance is inside Ωj , we assume that there is enough

evidence to classify it as a known class, for some j. Hence, the prediction
is made by assigning the ct = arg maxj{fj(xt), ∀j / xt ∈ Ωj}. This can
be computed using the Mahalanobis distance as:

ct = arg min
j

d2
M (xt, Nj(µj , Σj)) (3.2)

The pseudocode for this phase can be seen in Algorithm 4 (p repre-
sents the vector of predictions). A graphical representation of this phase
is shown in Figure 3.3.

3.2.2.1 Update Process

The goal of the update process is twofold. On the one hand, when an
instance is classified as a known class j, the update process renews the
parameters of that class {µj , Σj} incrementally. On the other hand,
the update process manages the disappearance and emergence of new

3.2 Proposed method 63

Algorithm 4: Pseudocode of the online phase.
Input: Mt, xt, α
for j ∈ {1, . . . , |Ct|} do

dstj = d2
M (xt, Nj(µj , Σj))

if dstj ≥ χ2
d,1−α for all j then

buffer = buffer
⋃

xt

else
ct = arg min

j
dstj

p = p
⋃

ct

updateProcess((xt, ct), Mt, p)

(a) Extension of the current mod-
els.

(b) Detection of a new class.

Fig. 3.4: Two different situations that the update process could face dur-
ing the discovering of new classes. Black points represent the buffered
instances.

classes. In the former, a check is made to see whether a class can be
considered as outdated. In order to do that, the number of predictions
of that class, with respect to the number of predictions of other classes,
is computed. If this ratio is low, according to a user defined parameter,
the mixture component that represents the outdated class is removed
from the mixture. Note that the proposed algorithm does not address
the reappearance of removed classes. Therefore, the reappearance of a
removed class will be treated as a new emerging class. Regarding the

64 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

Fig. 3.5: Flowchart of the update process in the online phase of the
proposed parametric framework. Given the vector of predictions, the
buffered instances and the current model, the update process outputs
the new updated model and the predictions for the buffered instances.

emergence of a new class, it searches for new emerging classes among
the buffered instances. Note that, depending on the threshold selected
by the user, some instances may belong to one of the known classes.
However, they are introduced into the buffer. Therefore, the buffered
instances may not contain new emerging classes but a drift or an ex-
tension of existing ones (see Figure 3.4). A graphical representation of
this part of the algorithm is shown in Figure 3.5.

In order to discover new classes, the EM algorithm is used. The
maximum number of new emerging classes that are sought are selected
by the user. One run of the EM is carried out for each possible num-
ber of components (classes). The Bayesian Information Criterion (BIC)
is used to evaluate the configuration of each EM run and select the
proper mixture components. This criterion penalizes the likelihood by
the number of parameters of the model. Therefore, it finds a balance
between the number of parameters and the likelihood. It is computed
as:

3.2 Proposed method 65

BIC = p log(n) − 2 log(L̂) (3.3)

where p are the number of parameters of the model, n the number of
data points, and L̂ represents the likelihood.

The EM algorithm has to deal with an scenario where both probabil-
ity distributions that represent the known classes, and data (instances
from the buffer) are given. We consider that this scenario can be ad-
dressed in two different ways. Firstly, in order to work only with data,
the probability distribution associated to each class can be sampled.
Nevertheless, this approach is not suitable in a streaming environment
in which memory and time limitations exist. Furthermore, the amount
of instances to be sampled from each distribution is also unknown. The
second approach consists of assigning weights to the probability dis-
tribution associated to each class. This is the approach taken in this
chapter. The weights are incorporated in the EM algorithm with the
following adaptation in the maximization step to update the parameters
of the jth class component:

µ
(l+1)
j =

buffer︷ ︸︸ ︷
n∑

i=1

p(xi|µl
j , Σl

j)xi +

prob. distr.︷ ︸︸ ︷
|Ct|∑
k=1

wkp(µ0
k|µl

j , Σl
j)µ0

k

n∑
i=1

p(xi|µl
j , Σl

j) +
|Ct|∑
k=1

wkp(µ0
k|µl

j , Σl
j)

(3.4)

Σ
(l+1)
j =

n∑
i=1

p(xi|µl
j , Σl

j)(xi − µ
(l+1)
j)(xi − µ

(l+1)
j)T

n∑
i=1

p(xi|µl
j , Σl

j) + wjp(µ0
j |µl

j , Σl
j)

+

+

|Ct|∑
k=1

wkp(µ0
k|µl

j , Σl
j)Σ0

k

n∑
i=1

p(xi|µl
j , Σl

j) +
|Ct|∑
k=1

wkp(µ0
k|µl

j , Σl
j)

(3.5)

where we denote as µ0
j and Σ0

j the parameters of the jth class at the
beginning of the EM algorithm; and wj represents the assigned weight.

The result of the EM algorithm strongly depends on the weights as-
signed to each of the mixture components (see Figure 3.6). For instance,

66 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

if the weight assigned to a component j is high in comparison to the
rest of the weights and number of buffered instances, the EM algorithm
naturally reduces the covariance of that mixture component j. When
the opposite situation occurs (when the weight for one mixture com-
ponent j is low with respect to other weights and number of buffered
instances), the mixture component j can significantly drift, considering
the new emerging class instances as its own members. Therefore, in or-
der to obtain a proper solution, a clever balance between the weights
of the components and the size of the buffer is necessary.

w1 = 800
w2 = 50

−5 0 5 10

−
5

0
5

1
0

●

●

●

w1 = 50
w2 = 800

−5 0 5 10

−
5

0
5

1
0

●●

●

w1 = 365
w2 = 812

−5 0 5 10

−
5

0
5

1
0

●●

●

Fig. 3.6: The top figure shows the feature space when the buffer is full.
The buffered instances are represented by black points. Three bottom
scenarios show different results depending on the weights assigned to
each class. The leftmost figure shows when w1 ≪ w2. C1 drifts and
considers some of the new emerging class instances as its own class. The
middle figure shows when w1 ≫ w2, then the EM minimizes to almost
null the covariance of C1. Also, C2 drifts and assumes new emerging
class instances. The rightmost figure shows the adequate weights and
its result.

Finding adequate weights depends on many factors. For instance,
different weights are necessary when facing a concept drift or a new
emerging class scenario (see Figure 3.6). Furthermore, aspects such as
the ratio of instances predicted of each class, or the filling speed of the
buffer strongly affect the adequate weights, among others. Therefore,

3.2 Proposed method 67

due to the complexity of the selection of an adequate weight set, a
meta-regression approach has been used for this task.

A. Meta-regression approach

This meta-regression model is pre-trained and supplied in the online
phase with a cascade classification hierarchy. A diagram of the cascade
hierarchy can be seen in Figure 3.7.

The meta-regressor uses a variety of features that are extracted from
the stream. The stream is naturally split into epochs. Each epoch starts
when the buffer is empty and ends when it is full. The aim of these
features is to provide summarized information about the behavior of
the stream. Particularly, they give information about the distribution
of the instances throughout the current epoch and the degree of overlap
among the classes. Hence, during each epoch, the following features are
extracted:

Fig. 3.7: Flow diagram of the meta-regression approach used to predict
the proper weight set for the mixture components used in the EM al-
gorithm.

• The number of instances classified as c, divided by the number of
instances classified as a different class.

• The entropy of the mixture model at the time that the buffer reaches
its maximum capacity. This feature represents the existing degree
of overlapping between classes. The entropy Garcia et al. [2019] is
calculated as

68 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

Ent(Mt) = −
|Ct|∑
j=1

|B|∑
i=1

tij(xi) log tij(xi) (3.6)

where |B| represents the buffer size and

tij(xi) = ϕkfk(xi|µk, Σk)∑|Ct|
h=1 ϕhfh(xi|µh, Σh)

(3.7)

• For each class, the mean and variance of the inter-arrival times of
two consecutive instances of the same class c are computed. This
feature represents the arrival frequency of instances of each class.

• For each class, the mean and variance of the density values that the
Gaussian distribution of that class assigns to the instances of the
buffer.
As a first stage of the classification hierarchy, a random forest classi-

fier is used to differentiate between a concept-drift and (see Figure 3.4a)
a new emerging class (see Figure 3.4b) scenario. The random forest
classifier has been selected due to its demonstrated solid performance
[Fernández-Delgado et al., 2014]. The second stage of the meta-regressor
approach consists of running a 3-Nearest Neighbors classifier in order
to obtain the adequate weight set. The k of the NN classifier has been
selected from empirical tests. The k-NN algorithm is a natural multi
output classifier that empirically has shown good results in our tests.
Two different datasets are used for the 3-NN approach, one containing
only situations where new emerging classes have emerged, and a second
dataset where concept-drift situations have occurred. The output of the
random forest classifier selects the corresponding dataset for the 3-NN
approach. As the reader might have realized already, as many regression
models as the number of mixture components need to be supplied.

In order to generate the training data for the meta-regression ap-
proach and pre-train it, a battery of synthetically generated realistic
random scenarios has been created. These scenarios are given to SND-
Prob for classification. When the buffer is full, the aforementioned fea-
tures are extracted from the current epoch. Then, multiple weight sets
are tested in a greedy-search approach. For each weight set (one weight
for each mixture component), the EM algorithm is run and the buffered
instances are predicted. The best weight set is selected based on the ac-
curacy that the model obtains after releasing the buffer. This process
is run many times and a consistent dataset is obtained.

3.2 Proposed method 69

Two different situations can occur when running the experiments.
On the one hand, a situation where a new class emerges in the buffer
and, on the other hand, a situation where concept-drift occurs. These
two situations generate two different datasets.

In the generation of the datasets and in order to control the emer-
gence of new classes, the arrival-strategies presented in the experimen-
tal section have been used. To manage the position of the classes in the
feature space, and take into account the overlapping that may occur,
random points have been sampled that are considered the means of the
Gaussian distributions that form the classes. The covariance matrix is
retrieved by sampling a Wishart distribution with random parameters.
In the offline phase, 2500 instances of each of the offline classes are used
to train the initial model. The experiment finishes when the buffer is
released and a new emerging class is discovered. If the buffer is filled
with extensions of known classes and hence, a concept drift needs to be
modeled, the experiment continues until a new class emerges.

Algorithm 5: Pseudocode of the update process.
Input: Mt, (xt, ct), metaregressor
if Buffer is full then

features = extractFeatures(p, buffer,Mt)
Mt = removeOutdatedClasses(Mt, p)
w = metaregressor(features)
Mt+1, p = emAlgorithm(buffer, Mt, w)

else
Update model with the newly predicted (xt, ct)
Mt+1 = updateParameters(Mt, (xt, ct))

return Mt+1, p

The computational complexity of the online phase, in the worst case
scenario when the update process is run is computed as follows. Firstly,
when predicting a newcomer instance, the inverse of the covariance ma-
trix needs to be obtained, which has a cubic complexity being O(d3|Ct|)
where d represents the number of features and |Ct| the number of classes
at time t. Secondly, the computational complexity for the extraction of
features for the metaregression model can be seen as:

70 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

• Calculating the entropy of the current epoch: O(|Ct|d2|B|), where
|B| represents the buffer size.

• Extracting the inter-arrival times of two consecutive instances of
the same class: O(u3), where u represents the number of instances
arrived in the current epoch.

• The cost of predicting the weights with the metaregression approach
is O(M + DT), where M represents the number of instances of the
metaregressor, D the depth of the random forest trees and T the
number of random trees.

• Predicting with the 3NN model has a computational complexity of
O(K(|B|k)) where K are the different EM configurations that are
considered, and k the number of components of each EM run.

To sum up, the global computational complexity of the proposed
algorithm is: O(d3|Ct| + |Ct|((d2|B|) + (uu2)) + M + DT + K(|B|k)).
Besides, the memory complexity of this phase is O(d2|Ct| + l), where l
is the length of the vector of predictions.

3.3 Experimental study

This section describes the experiments carried out in this study and
analyzes the results. In these experiments, the proposed method is com-
pared with two state-of-the-art techniques such as MINAS [Faria et al.,
2016] and SENCForest [Mu et al., 2017]. A supervised version of the
proposed algorithm SNDProb is also used (Supervised SNDProb). This
illustrates a low classification error bound for the proposed SNDProb al-
gorithm. Supervised SNDProb uses the true labels to update the model,
i.e. stream instances come annotated. Instances that are classified as
novelty are introduced into the fixed sized buffer annotated. When the
buffer reaches its maximum capacity, new classes are discovered, and
the existing ones are updated accordingly. Note that the buffer is su-
pervised so the new class discovering process consists of computing the
parameters of the Guassian mixtures of each of the buffered classes. The
experiments have been run with both a battery of synthetic datasets and
two public datasets commonly used in novelty detection and streaming
literature. Particularly, the Cover Forest and Poker datasets from the
UCI repository have been used. A brief description of these datasets is

3.3 Experimental study 71

shown in Table 3.1. Regarding the synthetic scenarios, multiple varia-
tions have been used to test the proposed algorithm. The amount of
classes ranges from 3 to 5, and the number of offline classes used is all
the classes but one emerging class. The real-world Cover Forest dataset,
has been modified according to [Mu et al., 2017]. Table 3.1 shows the
number of features of the datasets, the number of examples, the number
of classes that are available in each dataset, and the specific class labels
that are used in the initial offline phase.

Table 3.1: Brief description of the used synthetic and real-world
datasets.

Dataset # Features # Inst. # Classes # Offline
Classes

Cover Forest 10 551443 4 2
Poker dataset 10 1017261 4 2
36 Synthetics 2 17000 3, 4 or 5 |C| − 1
Inst. represents the number of instances in the dataset.

The parameters of the SNDProb, MINAS and SENCForest algo-
rithms are exposed in Table 3.2. Regarding the proposed algorithm,
SNDProb, the prediction threshold α is fixed to 0.02, the maximum
number of new classes to appear at a time is set to 2 and the buffer
size is set to 500 instances. These same parameters are set for the Su-
pervised SNDProb algorithm. Regarding the parameters of the MINAS
and SENCForest approaches, these have been taken from the original
papers according to their best results and comparative study.

3.3.1 Performance metrics

In order to evaluate the performance of the classifiers in streaming nov-
elty detection, classical scores from supervised classification are not rep-
resentative enough in this streaming environment. In streaming novelty
detection, the performance is not only based on the accuracy but aspects
such as the misclassification among the known classes, or the misclassi-
fication among the new emerging classes are also important. Therefore,
researchers have proposed alternative evaluation measures to deal with

72 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

Table 3.2: Parameters of the algorithms used in the experimental study.

Algorithms Parameters Settings
SNDProb α 0.02

Buffer size 500
Max new classes 2
Class forgetting parameter 0.05

MINAS Threshold past (buffer) 2000
Min number of examples in the cluster 20
k = Number of micro-clusters 100
Window size to forget outdated data 1000 / k
Threshold (see Faria et al. [2016]) TV1
Clustering algorithm clustream

SENC Forest Subsample size 100
Buffer size 300
Number of trees 100

this dynamic scenario. For instance, Masud et al. [2013] proposed as a
measure the percentage of misclassified instances belonging to a new
class classified as a known class (Miss New), or the percentage of mis-
classified instances from a known class classified as a new class (False
new). In addition, Masud et al. [2013] used the classification error to
analyze the results. Similarly, in Zhu et al. [2018], the average precision
among all classes is used. Mu et al. [2017] proposed the F-measure and
EN_accuracy evaluation measures. EN_Accuracy measures the mis-
classification among offline classes but does not measure the misclas-
sification among the new emerging class instances. For instance, in a
problem with two new emerging classes, when an instance from one new
emerging class is classified as the other new emerging class, it is con-
sidered a success in this metric. On the contrary, if an instance belongs
to one of the known classes and it is incorrectly classified as another
known or new class, it is considered an error. F-measure evaluates the
harmonic mean for new emerging classes. All the aforementioned mea-
sures are summarized in Table 3.3. Note that when computing the Miss
New evaluation measure, the number of new classes can vary through-
out the stream. Meaning that a new emerging class is no longer new
after it is discovered. Therefore, when the number of new classes is 0,
we output 0 for convenience.

3.3 Experimental study 73

In order to fairly compare the state-of-the-art techniques with SND-
Prob, some aspects must be considered. For instance, the SENCForest
algorithm classifies any new emerging class with the same label. Hence,
the classification error can not be computed in the case when there is
more than one emerging class, as it is not possible to know whether or
not a new class instance is correctly classified among the new classes.
For example, consider a problem with 2 new emerging classes. When
an instance of one emerging class arrives, it is predicted with the new
class label. Later on, an instance from the other new emerging class
arrives and it is predicted with the same new class label. Therefore, it
can not be known if it is predicted as the former new emerging class
or as the later. In order to overcome this issue, the EN_Accuracy eval-
uation measure has been used (see Table 3.3). Regarding the MINAS
algorithm, it marks instances as unknown when the model can not clas-
sify them as any other known class. These instances are inserted into
the buffer. Contrary to SENCForest and SNDProb algorithms, MINAS
does not output a prediction for these buffered instances. Referring to
the computation of the evaluation measures, these unknown instances
do not compute as an error or success for MINAS. Therefore, we remark
in the experiments how many of these unknown instances are marked by
the MINAS algorithm. Furthermore, we remark the number of classified
instances at each iteration of SNDProb, MINAS and SENCForest algo-
rithms. Note that SNDProb and SENCForest do classify the buffered
instances.

SNDProb and SENCForest output predictions for the buffered in-
stances when the buffer is released. Hence, while these buffered instances
are stored in the buffer, it is considered that they are not predicted and
hence, they do not count as an error or success in the calculation of the
evaluation measures.

All the evaluation measures shown in Table 3.3 are used in this ex-
perimental study. Their computation is made at every iteration in both
synthetic and real datasets. However, in order to illustrate the com-
parative study, only the classification error and EN_Accuracy mea-
sures are presented. Note that, since in the synthetic datasets only
one class emerges in the stream, the EN_Accuracy matches the clas-
sification Accuracy and hence, it corresponds with the inverse of the
classification error. Therefore, only the classification error is shown in
these experiments. The rest of measures can be found in the web based

74 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

Table 3.3: Summary of the state of the art evaluation measures.

Measure Computation
Classification Error # Incorrect classified instances

Instances

EN_Accuracy An+A0
Instances

F-measure 2∗P ∗R
P +R

Miss New # Instances from a new class classified among KNOWN classes
NEW class instances

False New # Instances from a KNOWN class classified as a NEW class
KNOWN class instances

An: # emerging class instances identified as new class.
A0: # known class instances correctly classified.
P : Precision of the emerging class.
R: Recall of the emerging class.

supplementary material available in: https://andercarreno.shinyapps.
io/SNDProb/. This website contains a RShiny Application that al-
lows SNDProb to be interactively run over the synthetic datasets. To
the best of our knowledge, this is the first GUI offering the possi-
bility to test a streaming novelty detection algorithm. Furthermore,
in this web application, it is possible to modify some parameters of
the SNDProb before running the experiments, giving more flexibil-
ity to the user. The code and the data used in this experimental
section can also be found on the following Github repository: https:
//github.com/andercarreno/SNDProb/.

3.3.2 Synthetic scenarios

A battery of synthetic datasets has been generated to test a variety of
realistic situations, and control a set of different characteristics. The
following aspects have been taken into account:

• the new class emergence timestamp
• the probability of arrival of instances of new or known classes at

each iteration of the stream
• the overlap between the newcomer class and the existing ones
• the shape of the classes

https://andercarreno.shinyapps.io/SNDProb/
https://andercarreno.shinyapps.io/SNDProb/
https://github.com/andercarreno/SNDProb/
https://github.com/andercarreno/SNDProb/

3.3 Experimental study 75

In order to control the arrival rate of the instances, 6 different arrival
strategies have been created. An arrival strategy consists of a variety of
exponential functions, one per class, that models the probability of sam-
pling one of the classes at a certain timestamp. These arrival strategies
can be seen in Figure 3.8. The Figure shows the initial 15000 itera-
tions. The same trend remains for the next iterations. This period is a
stationary period that starts at iteration 5000, holding for the rest of
iterations (up to 15000). Note that an arrival strategy can be seen as a
sequence of probability distributions {pt(C)}∞

t=1, one at each iteration
of the stream t, where |C| is fixed [Gama et al., 2014]. For new emerging
classes, the probability is close to 0 at the beginning until they emerge
at some point of the stream.

For the purpose of controlling the overlapping and shape of the
classes, 6 different synthetic domains have been created. Figure 3.9
shows the different scenarios that are used for 3 classes. Instances from
2 classes are supplied at the offline phase to learn the initial model.
Instances of the remaining class arrive according to one of the proposed
arrival strategies in order to be discovered by the algorithm. As can be
seen, 5 scenarios have been generated using a Gaussian distribution for
each class. The mean and the covariance matrices have been adequately
chosen to generate different overlapping and shape scenarios. In order
to test our algorithm in a scenario that does not fulfill the assumption
of Gaussianity of the SNDProb, Scenario 6 has been created. This last
scenario has been generated by sampling each class from a 4-component
mixture of Gaussian distributions.

A synthetic data stream consists of one of the 36 combinations cre-
ated by one arrival strategy and one scenario (see Figures 3.8 and 3.9).
These 36 combinations have also been extended to 4 and additionally to
5 classes, conforming another 72 synthetic data streams. All experimen-
tal results can be found in the supplementary material that is available
at the following website: https://andercarreno.shinyapps.io/SNDProb/.
From all these synthetic data streams, 3 have been selected to show
the performance of the SNDProb and its comparison with MINAS and
SENCForest approaches. The selection has made done due to their simi-
larity with possible real-world situations. Particularly, in the first exper-
iment, the 1st scenario and the 1st arrival strategy are used to provide
a detailed comparative study between the algorithms. In the second
experiment, the of the different arrival strategies over the 1st synthetic

https://andercarreno.shinyapps.io/SNDProb/

76 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

scenario is discussed. In the third experiment, the impact of the different
arrival strategies over the 4th synthetic scenario is exposed. Finally, the
non-Gaussian synthetic scenario with the 2nd arrival strategy is tested
and the results are extensively discussed. In all synthetic data streams,
the number of instances from each offline class used to learn the initial
model is 2500 instances.

In each data stream, only one new emerging class appears through-
out the stream. Although the proposed algorithm is capable of discover-
ing more than one class at a time, the lack of evaluation measures that
account for the emergence of more than an emerging new class mo-
tivates this criteria. Furthermore, SENCForest is not able to discover
more than one class at a time and hence, the comparison would not be
possible.

3.3.2.1 Scenario 1 & arrival strategy 1: Non-overlapping
classes with gradual emergence of the new class.

In Figure 3.10, a screenshot of the stream experimented in the 1st sce-
nario and 1st arrival strategy is shown. The framed subfigures represent
the iterations when the buffer is full, before the update process is run.
The 1st scenario consists of 3 separated, round-shaped Gaussian distri-
butions. According to the 1st arrival strategy exposed in Figure 3.8, a
new class (blue line) emerges around iteration 1500. This class grad-
ually emerges and at iteration 2000 there is a probability higher than
0.4 of sampling an instance from that new emerging class. At iteration
2276, the buffer reaches its maximum capacity and the model is re-
newed by the update process. At this point, the new class (blue class)
is discovered. Referring to the arrival strategy (Figure 3.8), the first
class drastically disappears around iteration 1700 (red class). At itera-
tion 4626, when the buffer is full again, SNDProb considers one of the
known classes (red class) as outdated and henceforth, the model stops
considering it for further predictions.

Figure 3.11 shows the classification error and the number of pre-
dicted instances at each iteration of SNDProb, MINAS and SENCForest
algorithms over the 1st arrival strategy and 1st synthetic scenario. The
Supervised SNDProb approach illustrates the low classification error
bound that SNDProb can achieve in this data stream. Table 3.4 shows
the confusion matrix of the Supervised SNDProb, SNDProb, MINAS
and SENCForest algorithms in percentage.

3.3 Experimental study 77

0 5000 10000 15000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Iteration

P
ro

b
a

b
ili

ty
 o

f
s
a

m
p

lin
g

Strategy 1

0 5000 10000 15000
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Iteration

P
ro

b
a

b
ili

ty
 o

f
s
a

m
p

lin
g

Strategy 2

0 5000 10000 15000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Iteration

P
ro

b
a

b
ili

ty
 o

f
s
a

m
p

lin
g

Strategy 3

0 5000 10000 15000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Iteration

P
ro

b
a

b
ili

ty
 o

f
s
a

m
p

lin
g

Strategy 4

0 5000 10000 15000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Iteration

P
ro

b
a

b
ili

ty
 o

f
s
a

m
p

lin
g

Strategy 5

0 5000 10000 15000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Iteration

P
ro

b
a

b
ili

ty
 o

f
s
a

m
p

lin
g

Strategy 6

Fig. 3.8: Arrival strategies for 3 classes. With these strategies the arrival
and disappearance of the classes are controlled. The lines represent the
probability of sampling from that class at each iteration of the stream.
Red and green classes are supplied in the offline phase to train the initial
model. The blue line corresponds to the new emerging class.

SNDProb outperforms state-of-the-art approaches offering the low-
est classification error throughout the stream (see Figure 3.11b). Some
events that correspond with the release of the buffered instances are
worth analyzing. The new class emerges around iteration 1500 and
SNDProb introduces instances from that class in the buffer. The buffer
is released at iteration 2276. At this point, a tiny increase in the clas-
sification error is found for the SNDProb algorithm. This is due to the
missclassification of some of the buffered instances. However, the new
emerging class is perfectly discovered as shown in Figure 3.10, in subfig-
ure 3.10c. The second key event corresponds with iteration 4626, when
the buffer is again released. This time, the model considers the red class

78 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

−5 0 5 10

−
5

0
5

1
0

X1

X
2

Scenario 1

−5 0 5 10

−
5

0
5

1
0

1
5

2
0

X1

X
2

Scenario 2

−5 0 5 10 15

−
5

0
5

1
0

1
5

2
0

X1

X
2

Scenario 3

−5 0 5 10 15

−
5

0
5

1
0

X1

X
2

Scenario 4

−5 0 5 10

−
6

−
4

−
2

0
2

4
6

X1

X
2

Scenario 5

−20 −15 −10 −5 0 5 10

−
5

0
5

1
0

1
5

X1

X
2

Scenario 6

Fig. 3.9: Synthetic scenarios for 3 classes. Two classes are given at the
offline phase (red and green) and one (blue) emerges throughout the
stream.

as outdated and removes it from the model. At this point, the buffer
consists of instances from green and blue classes and SNDProb correctly
discriminates between these two. As a result, a decrease in classifica-
tion error can be seen. At iteration 10912, another extension of blue
and green classes can be found that the model correctly accounts for.
Regarding the MINAS algorithm, an increasing trend is found in clas-
sification error throughout the stream. SENCForest shows an abrupt
increase at the beginning of the stream until it stabilizes around itera-
tion 1000. Afterwards, a nearly constant classification error curve can
be seen.

In Figure 3.11a, the number of predicted instances at every itera-
tion of the stream is shown. The supervised version of the SNDProb
only shows one step, when the first class is discovered. The rest of the

3.3 Experimental study 79

algorithms show several steps that correspond with the different buffer
releases. These steps can also be seen in the classification error curves
of SNDProb and SENCForest algorithms. Regarding the MINAS ap-
proach, the number of predicted instances is noticeably lower than for
the rest of the algorithms. Particularly, MINAS does not output pre-
diction for 2538 instances, 16.92% of the total number of instances.

Considering the number of times that the buffer is filled, a ma-
jor difference is found between the SNDProb and SENCForest. Note
that the buffer size is different for these two algorithms. However, even
though the buffer size of SNDProb is almost twice that of the SENC-
Forest buffer size, the number of times that the buffer is filled in the
SENCForest does not correspond with the number of times (twice) that
SNDProb fills its buffer. This behavior suggests that SNDProb is able to
learn the shape of the classes with a lower number of instances than the
SENCForest approach. This is a positive result, since while instances
are in the buffer, their class is not predicted.

Table 3.4: Confusion matrix of the SNDProb, MINAS and SENCForest
approaches for the 1st scenario and 1st arrival strategy. The values are
shown in percentage and B represents the instances stored in the buffer
at the end of the experiment

Supervised
SNDProb SNDProb

Ĉ1 Ĉ2 Ĉ3 B Ĉ1 Ĉ2 Ĉ3 B

R
E

A
L

C
L

A
SS

E
S C1 1.00 0.00 0.00 0.00 0.98 0.00 0.01 0.00

C2 0.00 1.00 0.00 0.00 0.00 0.98 0.00 0.02
C3 0.02 0.01 0.97 0.00 0.01 0.00 0.95 0.03

MINAS SENCForest
C1 0.98 0.00 0.00 0.02 0.96 0.00 0.04
C2 0.00 0.96 0.00 0.04 0.00 0.97 0.03
C3 0.15 0.11 0.40 0.34 0.04 0.00 0.96

3.3.2.2 Scenario 1: Impact of the different arrival strategies

In this experiment, the impact of the different arrival strategies over the
1st scenario (see Figure 3.9) is analyzed. Figure 3.12 shows the evalua-

80 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

-20 -10 -5 0 5 10 15

-1
0

-5
0

5
1
0

1
5

2
0

X1

X
2

2

3

0

Iter. 500

-20 -10 -5 0 5 10 15

-1
0

-5
0

5
1
0

1
5

2
0

X1

X
2

Iter. 2276

-20 -10 -5 0 5 10 15

-1
0

-5
0

5
1
0

1
5

2
0

X1

X
2

2

3

4

0

Iter. 2500

-20 -10 -5 0 5 10 15

-1
0

-5
0

5
1
0

1
5

2
0

X1

X
2

Iter. 4626

-20 -10 -5 0 5 10 15

-1
0

-5
0

5
1
0

1
5

2
0

X1

X
2

2

3

4

0

Iter. 5000

-20 -10 -5 0 5 10 15

-1
0

-5
0

5
1
0

1
5

2
0

X1

X
2

Iter. 10912

-20 -10 -5 0 5 10 15
-1
0

-5
0

5
1
0

1
5

2
0

X1

X
2

2

3

4

0

Iter. 11000

-20 -10 -5 0 5 10 15

-1
0

-5
0

5
1
0

1
5

2
0

X1

X
2

2

3

4

0

Iter. 15000

Fig. 3.10: Stream screenshots of the SNDProb in the 1st synthetic sce-
nario with the 1st strategy. The red and the green classes are supplied
in the offline phase and the blue class is discovered. The points colored
in black are the buffered instances. The framed figures correspond to
the iteration when the buffer is full; before the update process is run.

tion of the classification error of SNDProb, MINAS, and SENCForest
algorithms over each of the proposed arrival strategies (see Figure 3.8)

In each of the scenarios, the Supervised SNDProb has been run to
gather a classification error bound that can be achieved by SNDProb
in each of the data streams.

As can be seen, the performance of all the algorithms is severely
affected by the different arrival strategies. SNDProb and SENCForest
show the smallest degree of variability. However, SNDProb outperforms
the rest of the approaches in every data stream except in the 4th data
stream. Nevertheless, the differences in such data stream are negligible.

Regarding the MINAS approach, it needs to be mentioned that the
number of instances that are not predicted by this algorithm vary from
9% to 19% of the total amount of 15000 instances. It can be concluded
that the MINAS approach is the most affected algorithm by the different

3.3 Experimental study 81

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

0 5000 10000 15000

Iteration

N
u

m
b

e
r

o
f

p
re

d
ic

te
d

 i
n

s
ta

n
c
e

s

MINAS

SENCForest

SNDProb

SNDProb_Supervised

(a) Number of predicted instances throughout the stream

0.0

0.1

0.2

0.3

0.4

0.5

0 5000 10000 15000

Iteration

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

MINAS
SENCForest
SNDProb
Supervised SNDProb

(b) Classification Error

Fig. 3.11: Number of predicted instances and classification error at each
iteration of the stream of SNDProb, MINAS and SENCForest algo-
rithms over the 1st scenario and 1st arrival strategy. The vertical dashed
line shows when there is more than 0.1 probability of sampling from the
new emerging class distribution. A Supervised SNDProb version is also
presented to illustrate the low classification error bound that SNDProb
can achieve in this data stream.

82 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

0.0

0.1

0.2

0.3

0.4

0.5

0 5000 10000 15000

Iteration

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

MINAS
SENCForest
SNDProb
Supervised SNDProb

(a) Strategy 1

0.0

0.1

0.2

0.3

0.4

0.5

0 5000 10000 15000

Iteration

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

MINAS
SENCForest
SNDProb
Supervised SNDProb

(b) Strategy 2

0.0

0.1

0.2

0.3

0.4

0.5

0 5000 10000 15000

Iteration

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

MINAS
SENCForest
SNDProb
Supervised SNDProb

(c) Strategy 3

0.0

0.1

0.2

0.3

0.4

0.5

0 5000 10000 15000

Iteration

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

MINAS
SENCForest
SNDProb
Supervised SNDProb

(d) Strategy 4

0.0

0.1

0.2

0.3

0.4

0.5

0 5000 10000 15000

Iteration

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

MINAS
SENCForest
SNDProb
Supervised SNDProb

(e) Strategy 5

0.0

0.1

0.2

0.3

0.4

0.5

0 5000 10000 15000

Iteration

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

MINAS
SENCForest
SNDProb
Supervised SNDProb

(f) Strategy 6

Fig. 3.12: Impact of the different arrival strategies in the performance
of the SNDProb, MINAS and SENCForest algorithms over the 1st sce-
nario. The vertical dashed line shows when the new class emerges. A
Supervised SNDProb version is also presented to illustrate the low clas-
sification error bound that SNDProb can achieve in this data stream.

arrival strategies. In many data streams, such as the 1st, 2nd, 3rd, and
6th it can not even discover the new emerging class.

Considering the performance of the SENCForest approach, it can be
concluded that the initial model learned by the SENCForest approach
at the offline phase performs weakly due to the high classification error
shown at the beginning of the experiments.

3.3.2.3 Scenario 4: Impact of the different arrival strategies

In this experiment, the impact of the different arrival strategies over the
4th scenario (see Figure 3.9) is analyzed. Figure 3.13 shows the evalu-
ation of the classification error of SNDProb, MINAS and SENCForest
algorithms over each of the proposed arrival strategies (Figure 3.8).

The 4th scenario (Figure 3.9) corresponds with 3 Gaussian shaped
classes. Two of them are supplied in the offline phase (red and green):
these classes overlap, forming a cross. The new emerging class (blue) is
separated from the offline classes.

3.3 Experimental study 83

0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000

Iteration

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

MINAS
SENCForest
SNDProb
Supervised SNDProb

(a) Strategy 1

0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000

Iteration

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

MINAS
SENCForest
SNDProb
Supervised SNDProb

(b) Strategy 2

0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000

Iteration

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

MINAS
SENCForest
SNDProb
Supervised SNDProb

(c) Strategy 3

0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000

Iteration

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

MINAS
SENCForest
SNDProb
Supervised SNDProb

(d) Strategy 4

0.0

0.2

0.4

0.6

0 5000 10000 15000

Iteration

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

MINAS
SENCForest
SNDProb
Supervised SNDProb

(e) Strategy 5

0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000

Iteration

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

MINAS
SENCForest
SNDProb
Supervised SNDProb

(f) Strategy 6

Fig. 3.13: Impact of the different arrival strategies in the performance
of the SNDProb, MINAS and SENCForest algorithms over the 4th sce-
nario. The vertical dashed line shows when the new class emerges. A
Supervised SNDProb version is also presented to illustrate the low clas-
sification error bound that SNDProb can achieve in this data stream.

In each of the scenarios, the Supervised SNDProb has been run to
gather a classification error bound that can be achieved in each of the
data streams by the SNDProb algorithm.

As can be seen in Figure 3.13, the different arrival strategies strongly
affect the performance of the algorithms. The least affected algorithm
is SNDProb, which outperforms the rest of the algorithms by obtaining
a classification error below 0.15 in every data stream.

The performance of the MINAS algorithm is worse than the rest
of the algorithms used. In every data stream, the classification error is
above the rest of the analyzed methods. It is worth mentioning that
the number of not predicted instances by the MINAS approach ranges
from the 10% to the 21% of the total amount of instances in the data
stream.

Finally, the performance of the SENCForest approach is outper-
formed by the rest of the algorithms in every data stream except in the
5th. In this data stream, SENCForest beats the rest of the approaches
but the difference is negligible.

84 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

3.3.2.4 Scenario 6 & arrival strategy 2: Non-Gaussian
scenario.

In Figure 3.14, a screenshot of the stream using the 6th scenario and
2nd arrival strategy is shown. Regarding the 2nd arrival strategy (see
Figure 3.8), no class disappears. Instances of the different classes ar-
rive sequentially, one after another, and once they have emerged, the
instances from all the classes have equal probability of being sampled.

The classes of this scenario do not follow a Gaussian distribution.
Therefore, SNDProb is not expected to perform as well as in Gaussian
scenarios. Nevertheless, the classification error is still lower than 0.15
for every algorithm. As can be seen in the screenshots of the stream in
Figure 3.14, the buffer is full of instances of the new emerging class at
iteration 5122 (black points). Regarding the arrival strategy presented
in Figure 3.8, the new class emerges around iteration 3000. In Table 3.5
the confusion matrix of the Supervised SNDProb, SNDProb, MINAS
and SENCForest approaches is shown in percentage.

The Supervised SNDProb has been run to gather a low classification
error bound that can be achieved in this data stream by the SNDProb
algorithm. In this data stream, the assumptions of the probabilistic
model are not fulfilled and therefore, this is reflected in the performance
of both SNDProb and Supervised SNDProb. As can be seen, an increase
in classification error is found after the new emerging class appears
in the stream and even in the supervised version, the use of a single
Gaussian distribution is not sufficient for dealing with this scenario.
Nevertheless, the classification performance of the SNDProb is close to
other competitors such as MINAS and SENCForest approaches.

In Figure 3.15, the evaluation measures of SNDProb, MINAS and
SENCForest approaches are shown. In this scenario SENCForest offers
the best results. It can be seen an increase in classification error at the
beginning of the stream that suggests that the initial model learned
on the offline phase performs weekly. Afterwards, the classification er-
ror remains constants throughout the stream. Furthermore, there is no
increase when the new emerging class emerges. Regarding the MINAS
approach, it does not output a prediction for 2290 instances, 15.27%
of the data stream. Around the iteration 9000 an increase in classi-
fication error can be found that suggests that the model has drifted
to a wrong one. Regarding SNDProb, the classification error is almost
constant until the iteration 3000, when the new class emerges. Hence-

3.3 Experimental study 85

forth, the classification error increases. This behavior corresponds to the
misclassification of this new emerging class instances as known classes.
However, new emerging class is discovered in spite of the limitations of
the Gaussian shape (see Figure 3.14c).

In Figure 3.15a the number of predicted instances at each iteration of
the stream by SNDProb, Supervised SNDProb, MINAS and SENCFor-
est algorithms is found. Several steps can be found in the SENCForest
and SNDProb algorithms, meaning that the buffer is being filled and
released several times.

Table 3.5: Confusion matrix of the Supervised SNDProb, SNDProb,
MINAS and SENCForest approaches for the 6th scenario and 2nd ar-
rival strategy. The values are shown in percentage and B represents the
instances stored in the buffer at the end of the experiment

Supervised SNDProb SNDProb
Ĉ1 Ĉ2 Ĉ3 B Ĉ1 Ĉ2 Ĉ3 B

R
E

A
L

C
L

A
SS

E
S C1 0.91 0.03 0.07 0.00 0.9 0.03 0.07 0.00

C2 0.00 1.00 0.00 0.00 0.04 0.92 0.03 0.01
C3 0.09 0.00 0.91 0.00 0.26 0.00 0.71 0.09

MINAS SENCForest
C1 0.97 0.00 0.00 0.03 0.98 0.01 0.02
C2 0.00 0.96 0.00 0.04 0.00 0.98 0.02
C3 0.10 0.11 0.30 0.49 0.04 0.00 0.96

3.3.3 Cover Forest dataset

Table 3.6: Distribution of classes of the Cover Forest dataset.

Online Classes
Offline Classes

Class 1 2 3 7
Instances 211988 283277 35702 20476

% of instances 38.44 51.37 6.48 3.71
* In the online phase all the instances are supplied

86 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

-20 -10 -5 0 5 10 15

-1
0

-5
0

5
1
0

1
5

2
0

X1

X
2

2

3

Iter. 500

-20 -10 -5 0 5 10 15

-1
0

-5
0

5
1
0

1
5

2
0

X1

X
2

Iter. 5122

-20 -10 -5 0 5 10 15

-1
0

-5
0

5
1
0

1
5

2
0

X1

X
2

2

3

4

0

Iter. 5500

-20 -10 -5 0 5 10 15

-1
0

-5
0

5
1
0

1
5

2
0

X1

X
2

2

3

4

0

Iter. 8500

-20 -10 -5 0 5 10 15

-1
0

-5
0

5
1
0

1
5

2
0

X1

X
2

Iter. 11238

-20 -10 -5 0 5 10 15

-1
0

-5
0

5
1
0

1
5

2
0

X1

X
2

2

3

4

0

Iter. 11500

-20 -10 -5 0 5 10 15
-1
0

-5
0

5
1
0

1
5

2
0

X1

X
2

Iter. 12610

-20 -10 -5 0 5 10 15

-1
0

-5
0

5
1
0

1
5

2
0

X1

X
2

2

3

4

0

Iter. 13000

Fig. 3.14: Stream screenshots of the SNDProb in the 6th synthetic sce-
nario with the 2nd strategy. The red and the green classes are supplied
in the offline phase and the blue class is discovered. The points colored
in black are the buffered instances. The framed figures correspond to
the iteration when the buffer is full; before the update process is run.

This dataset is composed of cartographic variables of two American
forests. Each instance corresponds to a variety of features extracted
from every 30 × 30 meter cell of a map. The objective is to predict the
cover forest species type of each instance. This is a public dataset that
can be gathered from the UCI repository1. A summary of this dataset
can be found in Tables 3.1 and 3.6.

According to the modifications made in Faria et al. [2016], the num-
ber of instances from each offline class used to learn the initial model
is 500.

In Figure 3.16, the evaluation measures of SNDProb, MINAS and
SENCForest algorithms are shown. In addition, in order to illustrate
a low Error bound that the SNDProb algorithm can achieve, the Su-
pervised SNDProb approach has been used. In this problem, Super-

1 https://archive.ics.uci.edu/ml/datasets/covertype

https://archive.ics.uci.edu/ml/datasets/covertype

3.3 Experimental study 87

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

0 5000 10000 15000

Iteration

N
u

m
b

e
r

o
f

p
re

d
ic

te
d

 i
n

s
ta

n
c
e

s

MINAS

SENCForest

SNDProb

SNDProb_Supervised

(a) Number of predicted instances throughout the stream

0.00

0.05

0.10

0 5000 10000 15000

Iteration

C
la

s
s
if
ic

a
ti
o

n
 E

rr
o

r

MINAS

SENCForest

SNDProb

SNDProb_Supervised

(b) Error

Fig. 3.15: Number of predicted instances and classification error at each
iteration of the stream of SNDProb, MINAS and SENCForest algo-
rithms over the 6th scenario and 2nd arrival strategy. The vertical dashed
line shows when there is more than 0.1 probability of sampling from the
new emerging class distribution. A Supervised SNDProb version is also
presented to illustrate the low classification error bound that SNDProb
can achieve in this data stream.

vised SNDProb has a minimal classification error throughout the entire
stream. In Table 3.7 the confusion matrix of the Supervised SNDProb,
SNDProb, MINAS and SENCForest approaches is shown in percentage.

88 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

As can be seen, both SNDProb and MINAS algorithms provide low
classification error. Slight increases of the classification error can be seen
when the new class emerges in both the MINAS and SNDProb curves.
Regarding the SENCForest approach, it shows a decreasing trend in the
classification error at the beginning of the experiment. This is due to
the fact that only 500 instances from each offline class are given to the
algorithm to learn the initial model. Therefore, the model is not robust
enough at these first iterations of the stream. When instances from the
first class arrive (the first class is an offline class), they are used to
update the model and, therefore, the classification error is reduced. At
iteration 211490, instances from the second offline class arrive. However,
the classification error of the SENCForest algorithm increases.

Considering the EN_Accuracy shown in Figure 3.16c, SNDProb
and MINAS show similar results. However, SENCForest shows a dif-
ferent trend in EN_Accuracy. Particularly, it can be concluded that
the SENCForest classifies instances from known classes as new.

Figure 3.16a shows the number of predicted instances at each it-
eration by SNDProb, Supervised SNDProb, MINAS and SENCForest
algorithms. The number of predicted instances by the MINAS algo-
rithm largely differs from the SNDProb and SENCForest approaches.
Specifically, MINAS does not output a prediction for 234079 instances,
42.5% of the dataset.

3.3.4 Poker dataset

In this dataset, each record is an example of a poker hand consisting
of five playing cards drawn from a standard deck of 52. Each card is
described using two attributes (suit and rank), for a total of 10 pre-
dictive attributes. The class represents the poker hand. This is a public
dataset that can be obtained from the UCI repository1. A summary of
this dataset can be found in Tables 3.1 and 3.8.

This dataset has been modified and only the first 4 major classes
have been used. In the offline phase, 250000 and 200000 instances from
the 1st and 2nd classes have been used respectively to learn the initial
model. The rest of the instances are supplied in the online phase for
prediction. Regarding the arrival order of the instances, they are ran-
domly shuffled and supplied to the SNDProb for prediction. Note that

1 https://archive.ics.uci.edu/ml/datasets/Poker+Hand

https://archive.ics.uci.edu/ml/datasets/Poker+Hand

3.3 Experimental study 89

0
2
0
0
0
0
0

4
0
0
0
0
0

0 200000 400000

Iteration

N
u

m
b

e
r

o
f

p
re

d
ic

te
d

 i
n

s
ta

n
c
e

s

MINAS

SENCForest

SNDProb

SNDProb_Supervised

Number of predicted instances throughout the stream

0.00

0.25

0.50

0.75

1.00

0 200000 400000

Iteration

C
la

s
s
if
ic

a
ti
o

n
 E

rr
o

r

MINAS

SENCForest

SNDProb

SNDProb_Supervised

Error

0.00

0.25

0.50

0.75

1.00

0 200000 400000

Iteration

E
N

_
A

c
c
u

ra
c
y

MINAS

SENCForest

SNDProb

SNDProb_Supervised

EN_Accuracy

Fig. 3.16: Number of predicted instances, classification error and
EN_Accuracy at each iteration of the stream of SNDProb, MINAS
and SENCForest algorithms over the Cover Forest real-world dataset.
In this experiment, one class arrives at a time. Vertical dashed lines
show when a class arrives in the stream. The new emerging classes cor-
respond with the last 2 vertical dashed lines.

90 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

Table 3.7: Confusion matrix of the Supervised SNDProb, SNDProb,
MINAS and SENCForest approaches for the Cover Forest dataset. The
values are shown in percentage and B represents the instances stored
in the buffer at the end of the experiment.

Supervised SNDProb SNDProb
Ĉ1 Ĉ2 Ĉ3 Ĉ7 B Ĉ1 Ĉ2 Ĉ3 Ĉ7 B

R
E

A
L

C
L

A
SS

E
S C1 0.02 0.98 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.00

C2 0.01 0.99 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
C7 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.99 0.00

MINAS SENCForest
C1 0.55 0.00 0.00 0.00 0.45 0.55 0.13 0.18
C2 0.00 0.56 0.00 0.00 0.43 0.39 0.72 0.56
C3 0.00 0.00 0.02 0.78 0.20 0.01 0.15 0.21
C7 0.00 0.00 0.02 0.51 0.47 0.06 0.00 0.05

Table 3.8: Distribution of classes of the Poker dataset.

Online Classes
Offline Classes

Class 1 2 3 7
Instances 513702 433097 48828 21634

% of instances 50.50 42.58 4.80 2.12
* In the online phase all the instances are supplied

2 classes emerge during the stream and since a random shuffle has been
pursued, they are likely to appear at the same buffer release.

In Figure 3.17, the evaluation measures of SNDProb, Supervised
SNDProb, MINAS and SENCForest algorithms are shown. The Super-
vised SNDProb algorithm has been used to illustrate a low classification
error bound that the SNDProb algorithm can achieve. In this problem,
SNDProb has a higher classification error with respect to MINAS ap-
proach. This is due to the cause that the assumptions of the probabilistic
model are not fulfilled. However, the Supervised SNDProb shows a low
classification error until the new emerging class emerges. Therefore it
can be said that SNDProb can not discover the new emerging class cor-
rectly. In Table 3.9 the confusion matrix of the Supervised SNDProb,
SNDProb, MINAS and SENCForest approaches is shown in percentage.

3.3 Experimental study 91

0

200000

400000

0 200000 400000

Iteration

N
u
m

b
e
r

o
f

p
re

d
ic

te
d

 i
n
s
ta

n
c
e
s

MINAS
SENCForest
SNDProb
Supervised SNDProb

Number of predicted instances throughout the stream

Error

0.00

0.25

0.50

0.75

1.00

0 200000 400000

Iteration

E
N

_
A

c
c
u
ra

c
y

MINAS
SENCForest
SNDProb
Supervised SNDProb

EN_Accuracy

Fig. 3.17: Number of predicted instances, classification error and
EN_Accuracy at each iteration of the stream of SNDProb, MINAS
and SENCForest algorithms over the Poker real-world dataset. In this
experiment, multiple classes arrive at a time. A Supervised SNDProb
version is also presented to illustrate the low classification error bound
that SNDProb can achieve in this data stream.

92 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

Table 3.9: Confusion matrix of the Supervised SNDProb, SNDProb,
MINAS and SENCForest approaches for the Poker dataset. The values
are shown in percentage and B represents the instances stored in the
buffer at the end of the experiment.

Supervised SNDProb SNDProb
Ĉ1 Ĉ2 Ĉ3 Ĉ7 B Ĉ1 Ĉ2 Ĉ3 Ĉ7 B

R
E

A
L

C
L

A
SS

E
S C1 0.97 0.03 0.00 0.00 0.00 0.64 0.36 0.00 0.00 0.00

C2 0.00 1.00 0.00 0.00 0.00 0.00 0.98 0.02 0.00 0.00
C3 0.00 0.67 0.33 0.00 0.00 0.00 0.00 0.00 0.96 0.04
C7 0.00 0.01 0.08 0.92 0.00 0.00 0.00 0.00 0.85 0.14

MINAS SENCForest
C1 0.59 0.41 0.00 0.00 0.00 0.88 0.08 0.04
C2 0.48 0.52 0.00 0.00 0.00 0.09 0.89 0.09
C3 0.38 0.00 0.62 0.00 0.00 0.11 0.76 0.13
C7 0.27 0.00 0.00 0.73 0.00 0.11 0.70 0.19

As can be seen, SNDProb has the highest classification error at
the end of the data stream. An increase in classification error is found
after the iteration 200000. This suggests that a new emerging class has
appeared but the SNDProb is not able to properly discover it. Regarding
the MINAS approach, a constant classification error is found throughout
the entire stream. Finally, the SENCForest approach shows the lowest
classification error at the beginning of the stream, but after the iteration
270000, an increase is found. Two conclusions can be extracted from this
behavior. On the one hand, SENCForest learns a good initial model in
the offline phase that provides a low classification error. On the other
hand, the SENCForest approach is unable to discover the new emerging
classes and hence, an increase in classification error is found.

Considering the EN_Accuracy in Figure 3.17c, SNDProb shows a
similar pattern to the one shown in the classification error. After the
iteration 200000, a decrease is found. This means that instances from
new classes are incorrectly being classified as a known class. MINAS and
SENCForest show similar results at the end of the stream. However, the
SENCForest approach outperforms the rest of the algorithms in terms
of the EN_Accuracy at the beginning of the data stream.

Figure 3.17a shows the number of predicted instances at each it-
eration by SNDProb, Supervised SNDProb, MINAS and SENCForest

3.4 Conclusions and future work 93

algorithms. In this data stream, all the algorithms predict all the in-
stances.

3.4 Conclusions and future work

A novel probabilistic framework to deal with streaming novelty detec-
tion is proposed. It accounts for the current limitations of the state-
of-the-art methods and offers a more flexible tool based on a robust
mathematical background.

SNDProb uses a mixture of Gaussian distributions to model the
set of classes in order to illustrate the proposed framework. Newcomer
instances arrive in a stream fashion and they are predicted based on
the probability of belonging to each of the classes. Instances for which
the model cannot provide confident predictions are introduced into a
fixed-sized buffer. For the purpose of discovering new emerging classes,
an Expectation Maximization algorithm is used. In order to balance the
relevance between the new data stored in the buffer and the probabilistic
models that represent the known classes, a meta-regression approach
has been developed. It has been tested that when the data fulfills the
assumptions of the Gaussian distribution, SNDProb outperforms state-
of-the-art algorithms such as MINAS and SENCForest. Furthermore it
obtains competitive results in the case of non-Gaussian classes.

SNDProb provides a robust solution to the streaming novelty de-
tection problem. However, there are some limitations that need to be
taken into account. For instance, recurring concepts are not considered
in this approach. When SNDProb does not predict instances as one of
the known classes for a sufficient period of time, it considers this class as
outdated and removes it from the known classes. However, it is known
in the literature that classes can reappear throughout the stream. SND-
Prob does not account for this event and treats the newcomer class as
a new one. Besides, SNDProb uses a single Gaussian distribution to
model each of the classes. This may not be enough to model more com-
plex shaped-classes. However, when the assumptions of the parametric
model are fulfilled, SNDProb outperforms other literature approaches.
Finally, the high number of parameters that SNDProb and the rest of
the algorithms of the literature have, such as MINAS and SENCFor-
est, is a relevant aspect to consider due to the difficulty of finding their
appropriate values.

94 3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection

Regarding the experimental study, synthetic scenarios accompanied
with a variety of arrival strategies have been presented. With these
combinations of scenarios and arrival strategies, a wide range of real-
istic data streams have been tested, including significant features that
has not been studied before in the related literature. Firstly, the sce-
narios set up a benchmark of different classes shapes and overlapping
situations. Secondly, the arrival strategies control the arrival rate of the
different offline and online classes throughout the stream. The experi-
mental results confirm that the overlap between classes and the arrival
strategies deeply affects the performance of the novelty detection al-
gorithms. For the first time a streaming novelty detection algorithm is
analyzed under the aforementioned conditions.

As future work, we plan to extend the current parametric approach
to other probabilistic models. For instance, more complex probability
models such as a mixture of Gaussians to represent each class is inter-
esting and challenging future work, as well as other more complex prob-
ability models such as copulas models. Regarding the threshold value
to introduce the novel instances of the online phase into the buffer,
there is a challenging line of research in order to make it adaptive. This
will ensure a better management of instances of known classes that are
accidentally introduced into the buffer.

Finally, we think that there is a need in the community to establish
robust evaluation metrics to properly evaluate this learning scenario and
set the basis in order to compare the proposed algorithms. We think
that other aspects such as the reactivity of the algorithm to discover
new emerging classes, or the reactivity to recognize outdated classes
are important aspects that should be considered in this scenario, for
instance, with novel evaluation measures.

4

Time Series Streaming Novelty Detection
with Emerging New Classes

In this chapter, we extend the previous work shown in Chapter 3 to deal
with time series data. In order to do that, we propose a novel method-
ological solution based on deep learning. In particular, we propose using
a deep autoencoder and a Deep Support Vector Data Description (Deep
SVDD) network to model each of the classes. Newcomer instances are
checked whether they belong to the classes or not. In a positive case,
the corresponding class is assigned and the model of that class is up-
dated. Instances that do not belong to any of the learned set of classes,
are stored into a fixed-sized buffer for further analysis. New classes are
discovered by performing a hierarchical agglomerative clustering using
Dynamic Time Warping (DTW) distance. Since this is done in an un-
supervised manner, the model could get into a non-recoverable state if
a new class concept is wrongly identified in the discovery process. To
overcome this issue, we propose to maintain multiple parallel, inher-
ently different models, that an expert could evaluate in hindsight. This
allows us to use SND in real-world applications with expert knowledge.
Our results show that the model can effectively discover new emerging
classes and also provides a global explanation of the stream and the
evolution of concepts within.

96 4 Time Series Streaming Novelty Detection with Emerging New Classes

4.1 Introduction

Time-dependent data continues to be a hot-topic between both re-
searchers and engineers. As a result, a variety of successful applications
can be seen in the literature that deal with time series data [Dennis
et al., 2019, Bai et al., 2021, Chen et al., 2021]. For instance, in cyber-
security, users are constantly monitored when using digital resources.
These sequences of actions can be seen as time series of different length
depending on the usage-time of the users. Commonly, this data is used
by a previously learned model to detect anomalous behaviors, such
as attackers or intruders. These problems are known in the literature
as streaming time-series classification [Dennis et al., 2019]. Briefly, in
streaming time series classification, a classifier f predicts the class of
newcomer time series and afterwards, the corresponding true label is
supplied and used to dynamically update the current model. Formally,
let X ⊆ RL, C ⊆ Z be the feature and label spaces, respectively; also, let
St = {(xt, ct)}∞

t=1 represent the stream where xt ∈ X is the tth sequen-
tial data point with xt = [xt,1, xt,2, . . . , xt,L] ∈ RL, xt,l denotes the lth

time-step data value and, ct ∈ C is the corresponding label of xt. Given
St the aim is to dynamically update the current classifier f : X → C.

As occurs in any streaming classification setting, the generative dis-
tribution at time t, pt on X × C may vary throughout the stream,
making the task of accurately classifying the time series more difficult.
Concretely, the model must react to concept-drift [Gama et al., 2014].
This concept drift can be seen as a change on the underlying gener-
ative distribution of the data over time. Formally, we say there is a
concept-drift between two timestamps t0 and t1 if:

pt0 ̸= pt1 (4.1)

In SND another challenging event is considered: new classes can
emerge or disappear throughout the stream. This can be seen as an
abrupt change in pt. The model needs to adapt to these changes by
unsupervisedly learning new classes or removing the learned ones 1.
Formally, in a SND problem an initial offline dataset, S0 = {(xi, ci)}n

i=0
is used to learn an initial classifier that predicts newcomer instances

1 Correctly removing outdated classes minimizes future potential classifica-
tion error.

4.1 Introduction 97

Offline phase Online phase

learn

Stream

Update
phase

Update
phase

Buffer

Update
phase

learned

if full
Discovery
process

1

2

Fig. 4.1: A graphical representation of the offline and online phases of
a SND approach. Different classes are represented with different colors.
Each time an instance is classified, the instance and the prediction are
used to update the current model. Instances for which the labels are
unknown are introduced into a fixed-sized buffer.

among a set of known classes Ct ⊂ C or as novelties. The classifier is then
defined as f : X → {Ct, −1}, where −1 denotes the novelty. Unlabeled
instances arrive in a stream fashion St = {xt}∞

t=1. The classifier must
predict the class of the newcomer instances xt considering that the
aforementioned changes in pt can occur at any time. For discovering
new classes, the set β = {x|f(x) = −1} is used when this reaches a
fixed number of instances.

Referring to the previous motivating example in cybersecurity, in
this SND setting, the system would not only classify the clients be-
tween anomalous or normal, but among the different categories that
are previously known. Moreover, the system would discover new usage-
patterns that may potentially be new types of attacks or vulnerabilities
of the system1. In order to do that, a SND approach starts learning a
model from a fully supervised dataset and then predicts instances that
arrive in a stream fashion. Both the instances and the predictions are
used to update the current model and tackle the concept drift. Once
in a while, the model has not enough evidence to predict an instance
among the previously learned set of classes. The model keeps aside in a

1 Other normal usage-patterns can also be discovered.

98 4 Time Series Streaming Novelty Detection with Emerging New Classes

fixed-sized buffer these unpredicted instances. When the buffer reaches
its maximum capacity, new classes are sought among the buffered in-
stances. This workflow is shown in Figure 4.1. Note that multiple classes
can emerge when analyzing the buffer. As a result of such an analysis,
both the updated model and the corresponding labels for the buffered
instances are obtained. The workflow of the discovery process is illus-
trated in Figure 4.2.

Update phase - Discover new class

Buffer

learning

Predictions

Updated
Model

Fig. 4.2: A graphical representation of the output of the update process
when the buffer is full of a SND approach. Here the model is updated
and two new emerging classes have been discovered (black and green
classes). As a result of the release, both the updated model and the
corresponding predictions are output.

Regarding the data used in SND, the literature has proposed a set of
approaches using non-temporal data [Faria et al., 2016, Carreño et al.,
2022, Mu et al., 2017]. However, there are no approaches that explicitly
consider time-dependent data. In this paper, we use fixed-length time
series as instances that arrive in a stream fashion and we propose a
new methodology based on deep neural networks to leverage from such
time-dependency.

Nevertheless, SND approaches share a key drawback. Since the dis-
covering process is pursued in an unsupervised manner, wrong decisions
may potentially lead to a non-recoverable model. In other words, when
the model wrongly infers the emergence of a new class, it is unlikely
to recover from this mistake, in terms of forgetting or removing the
wrongly discovered class. Similar conclusions apply to when a class is
wrongly considered as outdated.

4.1 Introduction 99

To address this problem, we propose a new solution towards a global
explainability of the stream and a robust human-evaluation alternative
for the SND solution. Specifically, we propose keeping multiple models
whenever new classes are sought among the buffered instances. When
the buffer is released, new models are created that consider the emer-
gence of new classes. Besides, the model that assumes that no new class
has emerged is also kept. All of them continue being dynamically up-
dated throughout the stream. In order to avoid the exponential grow of
the number of models, every time a new model is created, it is compared
with respect to the rest and removed if it is considered to be duplicated.
This framework allows to a) provide a global explanation of the stream
when comparing the accuracy values of the different models at each it-
eration of the stream, when testing the models in a controlled scenario
and, b) allow an expert to select the best SND model in a real-world
applications where no labeled data is available throughout the stream.
In this scenario, an expert could deal with a reduced set of samples and
evaluate the model to select the most appropriated one.

To sum up, our paper contributes to the state-of-the-art in the fol-
lowing aspects:

• We propose a new methodological solution based on deep learning
to the SND problem that leverages from time series data.

• We account for the exposed non-recovery limitation of SND prob-
lem by proposing the maintenance of multiple, inherently different,
models at every iteration of the stream.

• By keeping multiple models, we also provide a global explanation
of the stream when referring to the accuracy values of every model
along the stream, in a testing scenario.

The rest of the paper is organized as follows. In Section 4.2, the re-
lated work of the SND problem is discussed. In Section 4.3, we precisely
explain the new methodological solution based on deep learning that
leverages from time series. Section 4.4 describes the proposed frame-
work of keeping multiple models throughout the stream. In Section 4.5
we discuss about the experimental results and, in Section 4.6, the con-
clusions are exposed.

100 4 Time Series Streaming Novelty Detection with Emerging New Classes

4.2 Related Work

There are some related scenarios to the SND problem that share a close
objective but with different specifics. The differential key component is
the availability of true class labels throughout the stream. Firstly, in
supervised stream learning, true labels are always received after the
prediction is made [Cutkosky, 2020]. This true label is used to update
the model. Secondly, in Class Incremental Learning, annotated data is
used for learning a new class and update the current model [Zhu et al.,
2021, Rebuffi et al., 2017]. Thirdly, other works such as Masud et al.
[2013, 2009] also update the current model to consider a new class but
in an unsupervised manner. However, true labels are received after some
period of time, and always after the class discovering phase. With this
new information, the model gets corrected or updated if necessary. This
scenario is also related with the late-labelling problem [Grzenda et al.,
2020].

The literature has proposed several approximations that deal with
the SND problem. Faria et al. [2016] proposed the MINAS approach;
a non-parametric solution based on an ensemble of k-means clustering
results. It models each of the classes by the union of a large number
of micro-clusters that summarize the data points. For prediction, Eu-
clidean distances to these micro-clusters are computed to test whether
new points fit to any of the classes. In case they do not fit, they are
introduced into a fixed-sized buffer and when it is full, a new clustering
is formed from these instances, thus producing emerging classes.

Mu et al. [2017] proposed SENCForest, based on a combination of
isolation trees, and k-means clustering. Briefly, a k-means clustering
is pursued in each of the leaves of the isolation trees. For prediction,
each of the instances is evaluated into the leaves and then within the
clustering configurations of that leave. A similar procedure as described
in the MINAS approach is done to test whether an instance belongs to
one of the learned classes. New classes are incorporated to the current
model by extending the isolation trees. One limitation of this approach
is that only considers that a single new class can emerge in each buffer
release.

Carreño et al. [2022] proposed a parametric approach by means of
a mixture of Gaussian distributions. Each of the classes is represented
by one mixture component and the predictions are made based on the

4.3 Methodology 101

probability of the instances to belong to each of the classes. For discov-
ering new classes, an EM algorithm is used when the buffer is full.

All of these approaches are designed to deal with fixed-length vector
inputs without temporal correlation among the variables (i.e., tabular
data). This is not the case of our approach which considers that the in-
stances are time series. Our novel methodology is based on deep learn-
ing to handle time series instances. Furthermore, literature solutions do
not account for the potential possibility of deriving into a invalid non-
recoverable solution due to the absence of supervised data. Hence, the
usability of such approaches in real-world scenarios is limited. We ac-
count for this limitation by providing a novel framework of maintaining
multiple models throughout the stream.

4.3 Methodology

The literature has commonly split the solutions of SND in two phases:
offline and online. The offline phase learns a model from a fully-labeled
dataset. In the online phase, unlabeled instances will arrive via a stream
and the model needs to accurately classify these among the previously
learned classes, or as novelty. If the instances are not predicted as nov-
elties, both the instances and the newly made predictions are used to
update the model via the update process. Moreover, when the user de-
fined buffer is full of novel instances, the update process manages the
buffer release and updates the model with the addition of new emerg-
ing classes if necessary. Note that, in this work, the instances are time
series.

In the following sections, the proposed methodology is detailed in
each of the phases that conforms a SND algorithm.

4.3.1 Offline phase

The proposed solution consists of learning an ensemble of models each
representing one class (one model per class). For each class, a symmet-
ric autoencoder is learned from a fully labeled dataset S0 = {(xt, c)}n

i=1
where each instance xi is a time series. Two 1-dimensional convolution
layers followed by hyperbolic tangent activation functions are used pre-
vious to a dense layer that maps the time series into an embedding space

102 4 Time Series Streaming Novelty Detection with Emerging New Classes

(bottleneck). The quadratic loss is minimized among the input and re-
constructed series. In this problem we use convolution layers since the
goal is to extract the representative sequences of each class, also known
in the literature as shapelets [Li et al., 2021]. Although we have tested
RNN layers, convolutional layers have exhibited better results.

As a second step, the encoder is fine-tuned to map the embedded
features into a hypersphere. This approach is known in the literature
as Deep SVDD [Ruff et al., 2018]. A Deep SVDD network consists on
a deep learning approach inspired by kernel-based one-class classifi-
cation and minimum volume estimation. Specifically, it trains a neu-
ral network while minimizing the volume of a hypersphere that en-
closes the network representations of the data. Let F ⊂ Rh be the
output space of h hidden dimensions, ϕc(·; Wc) : X → F is a neu-
ral network learned for class c with K ∈ N hidden layers and set of
weights Wc = {W1

c , W2
c , . . . , WK

c }, where Wk
c are the weights of layer

k ∈ {1, . . . , K}. That is, ϕc(x, Wc) ∈ F is the feature representation of
x given by the network ϕc with parameters Wc. The aim of the Deep
SVDD network is to jointly learn the network parameters Wc while
minimizing a hypersphere with radius R > 0 and center oc ∈ F which
is fixed to the medoid of the instances of class c in this work. The Deep
SVDD minimizes the following objective function:

min
Rc,Wc

R2
c + 1

νnc

nc∑
i=1

max{0, ||ϕc(x; Wc) − oc||2 − R2
c} + λ

2

K∑
k=1

||Wc
k||2F

(4.2)
where oc and Rc are the center and the radius of the hypersphere of
class c, respectively. Wc = {W 1, W 2, . . . , W K} are the set of weights of
the neural network, nc is the number of instances of class c, ν ∈ (0, 1]
is a penalizing factor that controls the trade-off between the volume
of the hypersphere and violations of the boundary. || · ||F denotes the
Frobenius norm.

Deep SVDD offers two key solutions. Firstly, it works as a one class
classifier by checking whether an instance fall inside the hypersphere
or not. Secondly, it naturally provides an anomaly score based on the
distance of the points to the center of the hypersphere:

sc(x) = ||ϕc(x; W∗
c) − oc||2 (4.3)

4.3 Methodology 103

where W∗
c are the weights of a pretrained Deep SVDD network. Note

that Deep SVDD was not proposed for an online environment where pt

could potentially vary throughout the stream. Hence, the learned value
of Rc at some time t could not be appropriate to classify instances at
time t + 1. Furthermore, in the SND setting, the absence of labeled
data makes the task of updating the threshold, i.e. the radius of the
hypersphere, more difficult. As a first approach, one might think to add
a slack to the Rc term. However, the intuition of adding a value in
a deep output space is also difficult. Instead, we opted to model the
anomaly score sc with a Gaussian distribution:

sc ∼ Nc

(
µc = 1

nc

nc∑
i=1

sc(x), σ2
c = 1

nc

nc∑
i=1

(sc(x) − µc)2

)
(4.4)

We learn this probabilistic framework from instances of the offline phase
and we maintain it in the online phase. For clarification, from now on, we
denote a model as a tuple of an autoencoder and Deep SVDD networks
that represents one specific class. The next section exposes how the
newcomer time series are predicted and how the model is updated to
both tackle the concept drift and consider new emerging classes.

4.3.2 Online phase

Time series xt arrive in a stream fashion, one at a time, t = n +
1, n+2, . . . and not necessarily in equally-spaced time intervals. For each
class, the anomaly score sc(xt) is computed. Considering the exposed
probabilistic framework, an unlabeled, streaming instance will not be
predicted if the instance is in set Ωc = {xt|Nc(xt) ≥ rα} such that
p(Ωc) = 1−α, for all existing classes c ∈ Ct; i.e. if the instance has a low
probability of belonging to any of the classes, it is inserted into a fixed-
sized buffer. α is a user parameter that provides an intuitive threshold
based on probability. The computation of the Ωc set is a difficult task.
However, in the case of the Gaussian distribution, this can be computed
with the Mahalanobis distance as Ωc = {xt|d2

M (xt, Nc(µc, σc)) ≤ hα}
where the Mahalanobis distance is defined as:

d2
M (xt, Nc(µc, σc)) = (xt − µc)2

σ2
c

(4.5)

104 4 Time Series Streaming Novelty Detection with Emerging New Classes

Considering d2
M as a function of a Gaussian random variable, then

d2
M ∼ χ2

d where d = 1 in this univariate case. The computation of the
hα is performed as hα = χ2

d,1−α.
Besides, when an instance is inside Ωc, we assume that there is

enough evidence to classify it as that class c. Therefore the prediction
is made by assigning the c = arg maxc{Nc(xt), ∀c/xt /∈ Ωc}. This is
computed using the Mahalanobis distance:

ct = arg min
c

d2
M (xt, Nc(µc, σc)) (4.6)

When an instance is classified, the tuple (xt, ct) is used by the update
process to update the model of that class c.

4.3.2.1 Update process

The goal of the update process is twofold. Firstly, it updates the en-
semble of models to tackle concept drift; secondly, it analyzes the buffer
when is full to discover new emerging classes. Regarding the former task,
the pair (x, c), where c is the newly predicted class, is used to perform
another step in the optimization of the weights of both the autoen-
coder and Deep SVDD networks of class c. According to the second
task, complete-linkage hierarchical clustering is performed with DTW
distance between the buffered time series.

At this point, an important decision needs to be taken. We need to
determine the number of new emerging classes in the buffer (if any).
Note that the initial offline ensemble is learned from a fully supervised
dataset. When the buffer is full, only unsupervised data is available. The
buffered data is likely to be different from the already known classes
but, since concept drift might have occur, the buffer might be filled
with both, novel instances from new emerging classes and incorrectly
identified instances as novel. This increments the uncertainty on the
process for determining the number of new emerging classes. Moreover,
the number of new emerging classes is not restricted, meaning that more
than one class could emerge in the same buffer release. Nevertheless,
the proposed approach, as well as literature approaches [Faria et al.,
2016, Carreño et al., 2022], assume a maximum number of classes that
could emerge at the same time.

Incorrectly updating the current ensemble to considering a larger
or lower amount than the real number of classes has a notable impact

4.4 A Framework of Parallel Universes 105

on the performance of the classifier. Furthermore, recovering from such
incorrect solution is highly unlikely, 1 deriving, in the long time, in a
useless classifier. Moreover, SND assumes that no true labels are gath-
ered at any time of the stream; hence, there is no way to assess the
validity of the ensemble in a real-world situation. In order to overcome
this characteristic of the SND problem, what we call a parallel universe
is proposed.

4.4 A Framework of Parallel Universes

To solve the problem of taking erroneous solutions we propose the use
of parallel hypotheses or parallel universes. We maintain every new
hypothesis of new emerging classes, such that an expert could evaluate
in hindsight. Specifically, we dynamically maintain a tree of ensemble
models; a graphical representation can be seen in Figure 4.3. At time t
a model that classifies among 2 classes is available and at time t + v its
buffer is full. The maximum number of new emerging classes to seek for
is set to 1 in this example. Two possibilities are maintained: on the one
hand, to keep the same model that considers |C| = 2 classes, while on
the other, to learn a new model that considers one new emerging class
(|C| = 3). A similar behavior can be seen at time t + v + u.

Clearly, the number of ensembles grows exponentially throughout
the stream. In order to reduce such exponential growth, the newly cre-
ated ensembles are compared with each other2 and, if similar, duplicates
are removed. This is not too different from the resampling step used to
prevent particle generation in particle filters, e.g., in Martino et al.
[2017]; however, in our case, ensembles are more complex than a typi-
cal ‘particle’, and we focus on efficiency via removing close-duplicates
rather than only pruning away degenerate (low-likelihood) hypotheses.

In the proposed methodology based on neural networks, comparing
two models is a non-trivial task that has been thoroughly researched
in recent years [Bernstein et al., 2020, Chicco, 2021]. The proposed
solution uses an ensemble of autoencoders and Deep SVDD networks;
one pair for each class. In order to compare two ensembles that classify

1 Recovering in terms of taking back the prior valid ensemble or to remove
the incorrect new emerging class in an online manner

2 Only the leaves of the tree need to be tested.

106 4 Time Series Streaming Novelty Detection with Emerging New Classes

Mt

|C| = 2Mt+v

|C| = 2

Mt+v

|C| = 3

Mt+v+u′

|C| = 2

Mt+v+u′

|C| = 3

Mt+v+u

|C| = 4

Mt+v+u

|C| = 3

|C| + 0 |C| + 1

|C| + 1|C| + 0|C| + 0 |C| + 1

Equal Models. Delete the newest one

T
im

e

Fig. 4.3: A graphical representation of the parallel universe. Each model
has its own buffer so it is analyzed at different times, creating multiple
ensembles.

among the same number of classes, we randomly generate vectors (of
the same size as the time series) and we provide them as time series
to the autoencoders of the ensemble. We compute the Mean Squared
Error (MSE) of the reconstruction error of the time series for each of
the ensembles. If the difference in error among two ensembles is lower
than a user defined threshold, we assume that these two ensembles
have learned to reconstruct the same set of classes and hence, they are
considered as duplicate ensembles. Therefore, we remove the newer one.
Although this approach does not account for the exponential growth
of the parallel universe framework, it notably reduces the number of
ensembles kept.

The parallel universe framework offers two key characteristics. Firstly,
an expert could evaluate the ensembles to avoid the effect of wrong au-
tomatic decisions, and select the most adequate one to dynamically
continue learning the stream. Secondly, it offers a global explanation
about the stream and evolution of the concepts within.

4.5 Experimental Results and Discussion

We evaluate the proposed method on two well known time series
datasets from the Time Series Classification repository [Dau et al.,
2018]. In order to realistically simulate a SND problem, we have re-
moved some of the classes from the offline data and supplied afterwards
in the online phase for class discovering. In Table 4.1, the datasets used

4.5 Experimental Results and Discussion 107

and the number of time series from each of the classes provided at each
phase is shown. Both the datasets and the code will be available upon
publication in a public Github repository.

Table 4.1: Summary of the number of instances of each class provided in
the offline and online phases for each of the tested time series datasets.

Dataset Class Offline phase Online phase

CBF
1 230 80
2 226 84
3 0 310

BME
1 42 18
2 46 14
3 0 60

We compare our method with respect to a collection of diverse state-
of-the-art approaches. Note that there are no algorithms in the litera-
ture that are specifically developed to deal with time-dependent data
for the SND problem. Nevertheless, the time series are supplied as reg-
ular vectors to the competitors. We decided to compare with respect
to the MINAS, SENCForest and SNDProb approaches as they are well
known literature solutions for the SND problem. Accuracy is used as
evaluation metric.

Evaluating SND approaches is a difficult task [Carreño et al., 2022].
The instances while are stored into the buffer have no assigned class
label. However, when the buffer is released, a prediction for the buffered
instances is provided. At this point, they take part in the evaluation
measures. This criterion is followed by most of the literature approaches
such as SENCForest and SNDProb algorithms, and we also follow it in
our paper. In the case of MINAS, the buffered instances do not receive a
class at any time, not when they are introduced into the buffer, neither
when they are released. Hence, they do not compute in the evaluation
measures. Note that this behavior implies that, at each iteration of the
stream, the number of predicted instances and the number of iterations
do not necessarily match. We also show the number of instances stored
into the buffer at each iteration of the stream for each of the tested
algorithms.

108 4 Time Series Streaming Novelty Detection with Emerging New Classes

The proposed approach uses the parallel universe framework de-
scribed in Section 4.4. Therefore, a set of accuracy lines is shown in
Figures 4.4 and 4.5. Each accuracy line corresponds to one of the dif-
ferent ensembles/hypotheses. Note that since the creation of new en-
sembles is constrained to the buffer filling time, the starting point of
these ensembles is different. In the plots, each ensemble is referred to
as root, plus a set of numbers. Each position corresponds to one buffer
release. Hence, root200 corresponds to an ensemble with 3 buffer fills
(3 numbers, 3 buffer releases). In the first buffer release, an ensemble
with 2 new emerging classes was created. In the second buffer release,
no new emerging class is considered, hence, the same ensemble is kept.
This occurs again with the third buffer release.

4.5.1 Results on CBF dataset

Cylinder-Bell-Funnel is a simulated dataset in which time series in-
stances follow one of 3 shapes (cylinder, bell, or funnel) plus noise which
makes this classification task more challenging. Furthermore, the time
series are misaligned. All series have the same length that corresponds
to 128 values. The number of instances used in each of the phases of
the SND problem are shown in Table 4.1. Instances of each class of the
online phase arrive with equal probability.

All hyper-parameters of the compared algorithms have been set ac-
cording to recommendations of the original papers, except: In MINAS
we set the number of micro clusters per class to 10; and for SENCFor-
est the number of subtrees per class to 10. The buffer size is set to 50
instances for every algorithm.

In Figure 4.4, the accuracy values and the number of buffered in-
stances of the MINAS, SENCForest, SNDProb and the proposed al-
gorithm are shown at each iteration of the stream. For our proposal,
multiple accuracy lines can be seen as a result of the parallel universe.
These ensembles can be dynamically evaluated by an expert to select
the most appropriate hypothesis. The initial ensemble (root000000) fills
its buffer 6 times. These correspond with the different accuracy peaks
shown in Figure 4.4. The obtained accuracy tends to the 35% which
corresponds to the distribution of the offline classes according to Ta-
ble 4.1. In other words, it classifies properly the instances of the offline
classes but it wrongly predicts the new emerging ones. The ensemble

4.5 Experimental Results and Discussion 109

root10 provides the best results. In this case, the ensemble fills the buffer
twice. Firstly, the initial ensemble is split to consider one new emerging
class. Secondly, the later fills its buffer again and this branch does not
increase the number of classes. The rest of the ensembles that do not
match the correct number of classes offer worse results that degrade
during time.

SNDProb performs properly until the buffer is released. This sug-
gests that almost all the instances are introduced into the buffer and
when these are released, they are missclassified. Moreover, due to the
meaningful drop in accuracy, it can be said that the SNDProb can not
classify among any of the classes, either new or old.

The MINAS approach shows a constant increase in accuracy. How-
ever, it does not discover the new emerging class. Furthermore, note
that MINAS does not predict the instances stored into the buffer. The
same accuracy trend can be seen for the SENCForest approach.

4.5.2 Results on BME dataset

Begin-Middle-End is a dataset that consists of 3 classes. Each instance
(of length 128) represents a bell, and the class indicates its position in
the series (beginning, middle or end). The distribution of classes at each
of the phases is shown in Table 4.1. Similar to the CBF dataset, the
instances of the different classes of the online phase arrive uniformly.

The parameters of the algorithms have been set to default except of
the buffer size, which has been fixed to 30 for all the algorithms.

Figure 4.5 shows that the proposed approach, offering a set of so-
lutions to an expert, notably outperforms the other approaches when
root1 is selected in hindsight. The offline ensemble fills its buffer twice
throughout the stream. This can be clearly seen in the peaks of the
number of buffered instances throughout the stream.

SNDProb offers better results than MINAS and SENCForest ap-
proaches, but it only obtains 50% accuracy, suggesting that it does not
discover any new emerging class, and evidenced by not a single buffer
release.

The MINAS and SENCForest approaches show similar results. Par-
ticularly, it can be seen that MINAS increases, above the maximum
buffer size, the number of buffered instances along the stream. This is
due to the fact that the MINAS approach does not release the buffer:

110 4 Time Series Streaming Novelty Detection with Emerging New Classes

0 100 200 300 400 500
0

0.5

1
A

cc
ur

ac
y

0 100 200 300 400 500
0

20

40

Time

#
B

uff
er

ed
In

st
an

ce
s

root20
root21
root22
root000000
root10
SNDProb
MINAS
SENCForest

Fig. 4.4: Results (accuracy, number of buffered instances) on the CBF
data. Multiple lines correspond to the proposed approach under the
parallel universe setting. Compared SNDProb, MINAS and SENCFor-
est algorithms are also shown.

those instances are never predicted by this algorithm but only used to
update the model.

4.6 Conclusions

We propose a novel time series Streaming Novelty Detection (SND)
approach based on autoencoder and Deep Support Vector Data De-
scription (Deep SVDD) networks. The proposed solution is capable of
accurately predicting newcomer time series and update itself in an unsu-
pervised manner to consider new emerging classes throughout a stream.
A novel parallel universe framework is designed allowing to use SND
approaches in real-world scenarios that an expert could evaluate in hind-
sight. As a result, we offer a dynamic mechanism to recover from wrong
decisions when discovering new emerging classes.

4.6 Conclusions 111

0 20 40 60 80 100
0

0.5

1

A
cc

ur
ac

y

0 20 40 60 80 100
0

20

40

60

Time

#
B

uff
er

ed
In

st
an

ce
s

root1
root2
root00
SNDProb
MINAS
SENCForest

Fig. 4.5: Results (illustrated in the same way as Fig 4.4) on the BME
data.

The comparative study shows that our approach outperforms state-
of-the-art algorithms by leveraging from the temporal nature of time
series, specially, when an ensemble of the parallel universe framework
matches the real number of classes in the stream. Furthermore, the
ensembles of the parallel universe framework provide an explanation
about the evolution of concepts.

As a first step towards the extension of this work, could be to con-
sider different length time series. Nevertheless, the current solution
based on neural networks needs a fixed number of neurons that cor-
respond to the timestamps of the time series. In order to approach to
this problem, the time series could be adapted to a fixed length in a
preprocessing step [Tan et al., 2019].

The proposed solution offers a novel methodological framework to
be used by an expert in hindsight. However, we realize that the expert is
not always available in certain domains. Removing the expert from this
workflow is a potential, challenging, future work. Nevertheless, since in

SND there is no true labels throughout the stream, assessing the validity
of an ensemble is not straightforward. As a first approach, we think that
some features could be extracted from the stream, similar to the ones
obtained in Chapter 3 in their metaregression approach. We believe that
if a new class is discovered and instances are no longer introduced into
the buffer once the model is updated whit the new emerging class, we
could say that the model is getting more robust. In any case, it can be
seen that without ground truth, the instances could be wrongly being
classified and hence, that features would not be informative.

Finally, like virtually all methods, there are some hyper-parameters
which might be fine tuned; doing so is beyond our intended scope, but
would be an obvious candidate for future work.

5

General Conclusions and Future Work

5.1 Conclusions

In this dissertation, one contribution to the area of supervised classifi-
cation and two to the field of Streaming Novelty Detection (SND) have
been proposed. In Chapter 2, rare event, anomaly, novelty and outlier
detection terms are analyzed from the supervised classification frame-
work and a one-to-one assignment of terms and problems is proposed.
As a result, we have given a short step towards the standardization of
the field. In our thorough review of the literature, we discovered that
there are some different problems named with one of the aforementioned
terms. Besides, the same problem is being referred to indistinctly with
different terminology. In this hindering situation, we took some key
papers of the literature that also tried to clarify this field in their in-
troduction section and we proposed a one to one assignment of terms
to learning scenarios. Concretely, we assign the

• rare event detection term to the (early) time series classification
problem;

• anomaly detection to the (highly) unbalanced supervised classifica-
tion problem;

• static novelty detection to a supervised classification problem where
only one class is available for training;

• dynamic novelty detection to a supervised classification problem
where the number of classes is unknown;

114 5 General Conclusions and Future Work

• and, outlier detection, that we relate to the unsupervised classifica-
tion problem.

In order to validate the proposed assignment of terms and learning
scenarios, we performed some experiments by retrieving papers from
Google Scholar, ACM Digital Library and IEEE Xplore search engines.
In the first experimental scenario, the most cited papers after the year
2000 are obtained in each of the search engines. In the second scenario,
the first search-results after 2014 are considered. In both scenarios, for
each paper, two terms are obtained. On the one hand, that term used by
the authors to describe the problem, and on the other hand, that which
would have been assigned by our taxonomy. As a result, a confusion
matrix is built for every scenario and search engine. As a result of this
experiment, we clearly exposed the motivating mix-up between terms
and problems; we analyzed between which terms the confusion was the
highest; and we validated our proposed assignment of terms to learning
scenarios.

After performing a wide review of the literature, the SND problem
particularly draw our attention and, in Chapter 3, our first contribution
to the SND problem is described. SND is the problem where, starting
from a fully labeled dataset, a model is learned. Afterwards, instances
arrive in a stream fashion for classification. Predicted instances are used
by the model to update itself and tackle concept drift. Once in a while,
the model has not enough evidence to classify the newcomer instances
among the previously learned set of classes. Hence, the model identifies
these as novelties and stores them into a fixed-sized buffer for further
analysis. When the buffer is full, new classes are sought among the
stored instances and the model is updated accordingly. In our approach,
we proposed a novel parametric framework based on a mixture of Gaus-
sian distributions, where each mixture component models a class. For
discovering new emerging classes, we encountered a challenging sce-
nario where both probability distributions and data were present. To
face this situation, we opted to weight the Gaussian distributions that
model each of the classes and combine these in a modified version of the
Expectation Maximization (EM) algorithm. We noticed that obtaining
a proper weight set is crucial for discovering new emerging classes. Fur-
thermore, we discovered that the weights widely vary depending on
some characteristics of the stream. In particular, aspects such as the
buffer filling speed, the ratio of predicted instances of each class or

5.1 Conclusions 115

the separation in the feature space between the mixture components
affect the adequate weight set. Moreover, we also considered that the
buffered instances may belong to the already known set of classes, but
due to concept drift, these were introduced into the buffer. Therefore,
we proposed to learn a classifier that, based on a set of features that rep-
resent the stream, predicts an adequate weight set. Note that as many
weights as mixture components need to be predicted by the classifier.
We propose to use a metaregressor that follows a hierarchical classifi-
cation scheme. Firstly, a random forest classifier discriminates between
a concept drift situation, where the buffered instances will belong to
the already learned classes; and a emerging new classes scenario, where
new classes must be discovered among the buffered instances. In the sec-
ond step of the metaregressor approach, a k-Nearest Neighbors (k-NN)
classifier is performed that will select the adequate weight set.

We also discovered that the arrival time of the classes notably affects
the performance of the SND approaches. For instance, if the instances
of the different classes arrive sequentially one class after another, the
classification consists on discovering that specific change. Therefore, we
proposed 6 different arrival strategies that model the probability of sam-
pling from the generative distributions of each class at every timestamp.
Furthermore, for illustration purposes, we also created 6 synthetic sce-
narios. Our results show that when the assumption of the probabilistic
framework of the SNDProb are fulfilled, our approach outperforms the
selected literature approaches. Furthermore, we also confirmed that the
different arrival strategies affect the performance of the classifiers.

SNDProb accounted for some drawbacks of other literature ap-
proaches. However, a major issue was discovered while developing the
SNDProb solution. Since SND problem assumes that no labels are ob-
tained throughout the online phase, the validity of the model can not be
assessed. As a result, the model could derive into a unreliable solution
that is potentially unrecoverable. In Chapter 4, we overcome this limi-
tation of the SND problem and also we give a step forward in the field
by providing a solution to deal with time series data that has never been
addressed before. In order to treat with time series data, we propose
an ensemble of both autoencoders and Deep Support Vector Data De-
scription (Deep SVDD) networks that model each of the classes. Deep
SVDD networks are used as a one-class classification model that nat-
urally provides an anomaly score. The prediction is made by assigning

116 5 General Conclusions and Future Work

the class that minimizes the anomaly score. If for all the classes, an
instance is out of their normal region, this instance is stored into a
fixed-sized buffer. Similar to the SNDProb approach, both the instance
and its predicted label are used to update the model. Particularly, this
tuple is used to perform another step into the optimization of the net-
works that model the predicted class. To consider the major issue of the
SND problem, we propose to maintain multiple ensembles, that model
a different number of classes. Concretely, whenever the buffer is full, a
fixed number of hypotheses (new classes) are sought. We proposed to
maintain every hypothesis in what we call a parallel universe frame-
work so an expert can evaluate them in hindsight. Thus, the models
can be recoverable and the solutions can be assessed afterwards by an
expert. Our results show that the proposed solution properly discovers
new emerging classes and outperforms the other literature approaches
by leveraging from time series data. Furthermore, we clearly show the
scenarios where an incorrect number of new emerging classes is selected
and the difference in performance with respect to an adequate selec-
tion in the number of new emerging classes. This third contribution
of this PhD dissertation is a result of the research stay in the École
Polytechnique with Prof. Jesse Read.

5.2 Future Work

The potential future extensions of this PhD work are briefly discussed
in the following paragraphs.

In this dissertation, the Streaming Novelty Detection (SND) prob-
lem that combines supervised, unsupervised, streaming classification
and novelty detection problems have been studied. Since many differ-
ent learning scenarios have been reviewed in this dissertation, numerous
new directions can be taken. Nevertheless, the briefly researched SND
problem has, undoubtedly, substantial potential future work.

I would like to differentiate between extensions to developed ap-
proaches within the SND literature, and what I consider new research
lines with relation to SND.

A. Extensions to already developed SND solutions:

• In SNDProb [Carreño et al., 2022], we built the foundations for
parametric solutions based on mixtures of probability distributions.

5.2 Future Work 117

Our approach was to consider the Gaussian mixture as the key
probability distribution. As a first extension, different families of
probability distributions could be explored. Furthermore, a mixture
of different probabilistic families could be fit to the data to improve
the flexibility of the model. Following the same idea of improving
the flexibility of the model, each of the classes could be modeled
with a mixture.

• In all the SND approaches, the number of instances of the buffer are
fixed to consider it full. However, I believe that this parameter can
be learned from the stream. In Carreño et al. [2022], we discussed
about several features that are extracted from the stream. Such
features are directly related to the behavior of the stream and the
arrival of the instances. Hence, receiving a large number of instances
that the model identifies as novel could derive into a shrink of the
buffer to discover emerging new classes. On the opposite, having a
very low buffer filling rate, could derive into an enlargement of the
buffer size.

B. Novel research lines related to SND problem:

• Although several evaluation measures have been developed to eval-
uate SND approaches [Faria et al., 2016, Masud et al., 2013, Mu
et al., 2017], non of them consider the reactiveness of the model to
discover new emerging classes. Providing new scores could provide
more revealing comparisons.

• In the work submitted to NeurIPS 2022 conference described in
Chapter 4, instances are time series. This is the first work in SND
literature that deals with this type of data. Following the probabilis-
tic nature of SNDProb [Carreño et al., 2022], I think that a model
can be learned with a mixture of Hidden Markov Models (HMMs),
where each mixture component represents a class. This particular
research line has been studied during these PhD years but without
success. The main bottleneck is where clustering is performed to
discover a set of classes from an unsupervised buffered set of obser-
vations. We have not been able to cluster the data although several
works of the literature have deal with this task before [Ghassem-
pour et al., 2014, Oates et al., 1999, Smyth, 1997, Yao et al., 2021,
Li and Biswas, 2000].

118 5 General Conclusions and Future Work

• SND problem can be seen as an abrupt change in the joint prob-
ability distribution of the data p(x, c) where p(c) changes due to
an increase/decrease on the cardinality of c. Similarly, a problem
where the features evolve throughout the stream has been treated
[Beyazit et al., 2019]. Nevertheless, in such approaches it is assumed
that after predicting the class of a newcomer instance, its label is
received to update the model. By combining both scenarios, a chal-
lenging scenario comes across. Firstly, new classes would emerge
throughout the stream. Secondly, the update of the model would
be in an unsupervised manner; and thirdly, at some point, there
would be a change in the feature space where the description of
the instances would be different henceforth. This learning scenario
would be of great interest in many real world situations, specially
in manufacturing chains, where sensors tend to wear out and the
replacements are alike but not identical. It is known that one of the
interest topics is the predictive maintenance where a faulty machine
is detected before it breaks. In this problem, the target would not
only be the moment before it breaks but the reason; and clearly
new reasons can emerge in an unsupervised manner.

5.3 Main Achievements 119

5.3 Main Achievements

A. Journal Papers

• Carreño A., Inza, I., & Lozano, J.A. (2020). Analyzing rare event,
anomaly, novelty and outlier detection terms under the supervised
classification framework. Artificial Intelligence Review, 53, 3575-
3594. Impact Factor1: 8.139. Ranking: Q1 (14/139). Cites: 38.

• Carreño A., Inza, I., Lozano, J.A. (2022). SNDProb: A Proba-
bilistic Approach for Streaming Novelty Detection. IEEE Transac-
tions on Knowledge and Data Engineering. In press. Impact Factor2:
9,235. Ranking: D1 (10/164).

B. Conference Papers

• Carreño, A., Read, J., Inza, I., & Lozano, J. A (2022). Deep Time
Series Streaming Novelty Detection with Emerging New Classes.
Submitted to Neural Information Processing Systems (NeurIPS)
2022. Ranking: A++.

– As a result of the 3 month research stay at the École Polytech-
nique with Prof. Jesse Read.

• Carreño, A., Inza, I., & Lozano, J. A (2018). Eventos raros,
anomalías y novedades vistas desde el paraguas de la clasificación
supervisada. XVIII Conferencia de la Asociación Española para la
Inteligencia Artificial 925-930. Granada, Spain.

C. Workshop posters

• Carreño A., Inza, I., & Lozano, J.A. (2018). Discover Emerging
New Classes. Balance between Supervised and Non-supervised Clas-
sification paradigms. 3rd Bilbao Data Science Workshop. Bilbao,
Spain.

D. Research Stays

• 17 January - 22 April 2022. DaSciM Team (Laboratoiré d’Informa-
tique, INRIA). École Polytechnique, Paris, France. Supervisor: Prof.
Jesse Read.

1 Category of Computer Science and Artificial Intelligence in 2020.
2 Category of Computer Science and Information Systems in 2021.

120 5 General Conclusions and Future Work

E. Dissemination

• Intelligent Systems Group regular seminars in UPV/EHU. A talk
was given yearly (4 in total) where the current developments and
research lines were discussed.

• Dissemination talk within the Pint of Science festival entitled: "In-
teligencia Artificial: progresos y amenazas". 22nd May 2019, Bilbao.

• Talk to the members and collaborators of the DaSciM Team en-
titled: "Parametric Streaming Novelty Detection: Discovering new
classes while predicting the existing ones". 11th February 2022,
Paris.

• Talk to the members and collaborators of the DaSciM Team enti-
tled: "Deep Time Series Streaming Novelty Detection with Emerg-
ing New Classes". 8th July 2022, Paris.

F. Software

• https://github.com/andercarreno/SNDProb: SNDProb: A Proba-
bilistic Approach for Streaming Novelty Detection. Developed in R
language.

• https://andercarreno.shinyapps.io/SNDProb: Interactive web for
running and visualizing SNDProb: A Probabilistic Approach for
Streaming Novelty Detection. Implemented with R-Shiny Apps.

• https://github.com/andercarreno/SND_TimeSeries_SVDD: Time
Series Streaming Novelty Detection. Developed in Python.

G. Other works carried out during the thesis

• Ortigosa-Hernández, J., Carreño, A., Inza, I. & Lozano, J.A.
(2022). Assessing Imbalanced Classification Problems: A Study on
the Performance Scores. Submitted to the special issue on imbal-
anced classification of the Machine Learning journal. Impact Fac-
tor1: 5,414. Ranking: Q2 (40/144).

• Part of the organization team, providing support to the proceedings
chair, of the 2020 Genetic and Evolutionary Computation Confer-
ence (GECCO’2020) held as an online conference during 8-12 July,
2020, due to the COVID-19 crisis.

1 Category of Computer Science and Artificial Intelligence in 2021.

https://github.com/andercarreno/SNDProb
https://andercarreno.shinyapps.io/SNDProb
https://github.com/andercarreno/SND_TimeSeries_SVDD

References

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H
Friedman. The elements of statistical learning: data mining, infer-
ence, and prediction, volume 2. Springer, 2009.

Christopher M. Bishop. Neural networks for pat-
tern recognition. Clarendon Press, 1995. ISBN
9780198538646. URL https://global.oup.com/academic/product/
neural-networks-for-pattern-recognition-9780198538646?cc=ca&
lang=en&.

Elaine R Faria, André Carlos Ponce de Leon Ferreira Carvalho, and
João Gama. MINAS: multiclass learning algorithm for novelty
detection in data streams. Data Mining and Knowledge Discov-
ery, 30(3):640–680, may 2016. ISSN 1384-5810. doi: 10.1007/
s10618-015-0433-y.

Ander Carreño, Inaki Inza, and Jose A. Lozano. SNDProb: A proba-
bilistic approach for streaming novelty detection. IEEE Transactions
on Knowledge and Data Engineering, 2022. doi: 10.1109/TKDE.2022.
3169229.

Mohammad M. Masud, Qing Chen, Latifur Khan, Charu C. Aggarwal,
Jing Gao, Jiawei Han, Ashok Srivastava, and Nikunj C. Oza. Classifi-
cation and Adaptive Novel Class Detection of Feature-Evolving Data
Streams. IEEE Transactions on Knowledge and Data Engineering,
25(7):1484–1497, jul 2013. doi: 10.1109/TKDE.2012.109.

Xin Mu, Kai Ming Ting, and Zhi-Hua Zhou. Classification Under
Streaming Emerging New Classes: A Solution Using Completely-

https://global.oup.com/academic/product/neural-networks-for-pattern-recognition-9780198538646?cc=ca&lang=en&
https://global.oup.com/academic/product/neural-networks-for-pattern-recognition-9780198538646?cc=ca&lang=en&
https://global.oup.com/academic/product/neural-networks-for-pattern-recognition-9780198538646?cc=ca&lang=en&

124 References

Random Trees. IEEE Transactions on Knowledge and Data Engi-
neering, 29(8):1605–1618, aug 2017. ISSN 1041-4347. doi: 10.1109/
TKDE.2017.2691702.

Tom M Mitchell. Machine Learning. McGraw-Hill, 1997. ISBN
0070428077.

Richard O. Duda, Peter E. (Peter Elliot) Hart, and David G. Stork.
Pattern classification. Wiley, 2001. ISBN 9780471056690. URL
https://www.wiley.com/en-us/Pattern+Classification%2C+2nd+
Edition-p-9780471056690.

Jesse Read, Albert Bifet, Geoff Holmes, and Bernhard Pfahringer.
Streaming multi-label classification. In Proceedings of the Second
Workshop on Applications of Pattern Analysis, pages 19–25. JMLR
Workshop and Conference Proceedings, 2011.

Jesse Read, Antti Puurula, and Albert Bifet. Multi-label classification
with meta-labels. In 2014 IEEE international conference on data
mining, pages 941–946. IEEE, 2014.

Johann Faouzi. Time Series Classification: A review of Algorithms and
Implementations. Machine Learning (Emerging Trends and Applica-
tions), 2022.

Akrem Sellami and Salvatore Tabbone. Deep neural networks-based
relevant latent representation learning for hyperspectral image clas-
sification. Pattern Recognition, 121:108224, 2022.

Adriano Rivolli, Jesse Read, Carlos Soares, Bernhard Pfahringer, and
André CPLF de Carvalho. An empirical analysis of binary transfor-
mation strategies and base algorithms for multi-label learning. Ma-
chine Learning, 109(8):1509–1563, 2020.

Jerónimo Hernández-González, Iñaki Inza, and Jose A. Lozano. Weak
supervision and other non-standard classification problems: A taxon-
omy. Pattern Recognition Letters, 69:49–55, 2016. ISSN 01678655.
doi: 10.1016/j.patrec.2015.10.008.

Amaia Abanda, Usue Mori, and Jose A Lozano. A review on distance
based time series classification. Data Mining and Knowledge Discov-
ery, 33(2):378–412, may 2019.

Shima Ghassempour, Federico Girosi, and Anthony Maeder. Cluster-
ing multivariate time series using Hidden Markov Models. Inter-
national journal of environmental research and public health, 11(3):
2741–2763, mar 2014. ISSN 1660-4601. doi: 10.3390/ijerph110302741.

https://www.wiley.com/en-us/Pattern+Classification%2C+2nd+Edition-p-9780471056690
https://www.wiley.com/en-us/Pattern+Classification%2C+2nd+Edition-p-9780471056690

References 125

URL https://pubmed.ncbi.nlm.nih.gov/24662996https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC3968966/.

Tim Oates, Laura Firoiu, and Paul R Cohen. Clustering time series
with hidden markov models and dynamic time warping. In Interna-
tional Joint Conference on Artificial Intelligence, pages 17–21. Cite-
seer, 1999.

J Lu, A Liu, F Dong, F Gu, J Gama, and G Zhang. Learning under
Concept Drift: A Review. IEEE Transactions on Knowledge and
Data Engineering, 31(12):2346–2363, 2019. doi: 10.1109/TKDE.2018.
2876857.

Cesare Alippi, Giacomo Boracchi, and Manuel Roveri. Hierarchical
Change-Detection Tests. IEEE Transactions on Neural Networks and
Learning Systems, 28(2):246–258, 2017. doi: 10.1109/TNNLS.2015.
2512714.

Y Sun, K Tang, L L Minku, S Wang, and X Yao. Online Ensemble
Learning of Data Streams with Gradually Evolved Classes. IEEE
Transactions on Knowledge and Data Engineering, 28(6):1532–1545,
jun 2016. ISSN 1558-2191. doi: 10.1109/TKDE.2016.2526675.

Heitor M Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrí-
cio Enembreck, Bernhard Pfharinger, Geoff Holmes, and Talel Ab-
dessalem. Adaptive random forests for evolving data stream classifi-
cation. Machine Learning, 106(9-10):1469–1495, 2017.

Albert Bifet, Ricard Gavaldà, Geoff Holmes, and Bernhard Pfahringer.
Machine Learning for Data Streams with Practical Examples in MOA.
MIT Press, 2018. https://moa.cms.waikato.ac.nz/book/.

João Gama, Indre Žliobaite, Albert Bifet, Mykola Pechenizkiy, and Ab-
delhamid Bouchachia. A Survey on Concept Drift Adaptation. ACM
Comput. Surv., 46(4):44:1—-44:37, mar 2014. ISSN 0360-0300. doi:
10.1145/2523813.

Tom Dietterich. Overfitting and undercomputing in machine learning.
ACM computing surveys (CSUR), 27(3):326–327, 1995.

C. E. Shannon. A mathematical theory of communication. The
Bell System Technical Journal, 27(3):379–423, 1948. doi: 10.1002/
j.1538-7305.1948.tb01338.x.

J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.
Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani

Amorim. Do we Need Hundreds of Classifiers to Solve Real World

https://pubmed.ncbi.nlm.nih.gov/24662996 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968966/
https://pubmed.ncbi.nlm.nih.gov/24662996 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968966/
https://moa.cms.waikato.ac.nz/book/

126 References

Classification Problems? Journal of Machine Learning Research, 15
(90):3133–3181, 2014. URL http://jmlr.org/papers/v15/delgado14a.
html.

Corinna Cortes and Vladimir Vapnik. Support-vector networks.
Machine learning, 20(3):273–297, sep 1995. ISSN 0885-6125.
doi: 10.1007/BF00994018. URL http://link.springer.com/10.1007/
BF00994018.

D Tax. One-class classification. PhD thesis, Delft University of Tech-
nology, 2001.

Pedro Moreno, Purdy Ho, and Nuno Vasconcelos. A Kullback-Leibler
divergence based kernel for SVM classification in multimedia applica-
tions. Advances in neural information processing systems, 16, 2003.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015. ISSN 1476-4687. doi: 10.1038/
nature14539. URL https://doi.org/10.1038/nature14539.

Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir
Shahroudy, Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jian-
fei Cai, and Tsuhan Chen. Recent advances in convolutional neural
networks. Pattern Recognition, 77:354–377, 2018. ISSN 0031-3203.
doi: https://doi.org/10.1016/j.patcog.2017.10.013.

Y LeCun, B Boser, J S Denker, D Henderson, R E Howard, W Hubbard,
and L D Jackel. Backpropagation Applied to Handwritten Zip Code
Recognition. Neural Computation, 1(4):541–551, 1989. ISSN 0899-
7667. doi: 10.1162/neco.1989.1.4.541. URL https://doi.org/10.1162/
neco.1989.1.4.541.

Ander Carreño, Iñaki Inza, and Jose A. Lozano. Analyzing rare event,
anomaly, novelty and outlier detection terms under the supervised
classification framework. Artificial Intelligence Review, 53(5):3575–
3594, may 2020. ISSN 15737462. doi: 10.1007/s10462-019-09771-y.

Edward W. Forgy. Cluster analysis of multivariate data: efficiency
versus interpretability of classifications. Biometrics, 21(3):761–777,
1965. ISSN 0006341X, 15410420. URL http://www.jstor.org/stable/
2528559.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In kdd, volume 96, pages 226–231. AAAI Press,
1996.

http://jmlr.org/papers/v15/delgado14a.html
http://jmlr.org/papers/v15/delgado14a.html
http://link.springer.com/10.1007/BF00994018
http://link.springer.com/10.1007/BF00994018
https://doi.org/10.1038/nature14539
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
http://www.jstor.org/stable/2528559
http://www.jstor.org/stable/2528559

References 127

Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace clustering for
high dimensional data: a review. Acm sigkdd explorations newsletter,
6(1):90–105, 2004.

Charu C Aggarwal and Philip S Yu. Finding generalized projected
clusters in high dimensional spaces. In Proceedings of the 2000 ACM
SIGMOD international conference on Management of data, pages 70–
81, 2000.

Mark A Kramer. Nonlinear principal component analysis using autoas-
sociative neural networks. AIChE journal, 37(2):233–243, 1991.

Guzman Santafe, Iñaki Inza, and Jose A Lozano. Dealing with
the evaluation of supervised classification algorithms. Artifi-
cial Intelligence Review, 44(4):467–508, 2015. ISSN 1573-7462.
doi: 10.1007/s10462-015-9433-y. URL https://doi.org/10.1007/
s10462-015-9433-y.

M. Stone. Cross-Validatory Choice and Assessment of Statistical
Predictions. Technometrics, 16(1):125–127, 1974. doi: 10.2307%
2F1267500.

Jonathan Ortigosa-Hernández, Iñaki Inza, and Jose A. Lozano. Towards
competitive classifiers for unbalanc classification problems: a study on
the performance scores. 2016.

Rita P. Ribeiro, Pedro Pereira, and João Gama. Sequential anomalies:
a study in the Railway Industry. Machine Learning, 105(1):127–153,
oct 2016. doi: 10.1007/s10994-016-5584-6.

Marco A F Pimentel, David A Clifton, Lei Clifton, and Lionel
Tarassenko. A review of novelty detection. Signal Processing, 99:
215–249, 2014. doi: 10.1016/j.sigpro.2013.12.026.

Stijn Luca, David A Clifton, and Bart Vanrumste. One-class classifi-
cation of point patterns of extremes. Journal of Machine Learning
Research, 17:1–21, 2016.

Clifton Phua, Vincent Lee, Kate Smith, and Ross Gayler. A Com-
prehensive Survey of Data Mining-based Fraud Detection Research.
Monash University, 2010. doi: 10.1016/j.chb.2012.01.002.

Dit-Yan Yeung and Yuxin Ding. Host-Based Intrusion Detection Us-
ing Dynamic and Static Behavioral Models. Pattern Recognition,
36(1):229–243, 2001. doi: https://doi.org/10.1016/S0031-3203(02)
00026-2. URL http://repository.ust.hk/ir/bitstream/1783.1-2495/1/
yeung.pr2003.pdf.

https://doi.org/10.1007/s10462-015-9433-y
https://doi.org/10.1007/s10462-015-9433-y
http://repository.ust.hk/ir/bitstream/1783.1-2495/1/yeung.pr2003.pdf
http://repository.ust.hk/ir/bitstream/1783.1-2495/1/yeung.pr2003.pdf

128 References

Athanasios Theofilatos, George Yannis, Pantelis Kopelias, and Fanis
Papadimitriou. Predicting Road Accidents: A Rare-events Modeling
Approach. Transportation Research Procedia, 14:3399–3405, 2016.
doi: 10.1016/j.trpro.2016.05.293.

Yvonne Dzierma and Heidi Wehrmann. Eruption time series sta-
tistically examined: Probabilities of future eruptions at Villarrica
and Llaima Volcanoes, Southern Volcanic Zone, Chile. Journal of
Volcanology and Geothermal Research, 193(1-2):82–92, 2010. doi:
10.1016/j.jvolgeores.2010.03.009.

Hildur Einarsdóttir, Monica Jane Emerson, Line Harder Clemmensen,
Kai Scherer, Konstantin Willer, Martin Bech, Rasmus Larsen,
Bjarne Kjær Ersbøll, and Franz Pfeiffer. Novelty detection of for-
eign objects in food using multi-modal X-ray imaging. Food Control,
67:39–47, sep 2016. doi: 10.1016/J.FOODCONT.2016.02.023.

Shuoshuo Fan, Guohua Liu, and Zhao Chen. Anomaly detection meth-
ods for bankruptcy prediction. In 2017 4th International Conference
on Systems and Informatics (ICSAI), pages 1456–1460, 2017. ISBN
978-1-5386-1107-4. doi: 10.1109/ICSAI.2017.8248515.

Alex Kafkas and Daniela Montaldi. How do memory systems detect and
respond to novelty? Neuroscience Letters, feb 2018. doi: 10.1016/J.
NEULET.2018.01.053.

M. Van Den Eeckhaut, T. Vanwalleghem, J. Poesen, G. Govers, G. Ver-
straeten, and L. Vandekerckhove. Prediction of landslide susceptibil-
ity using rare events logistic regression: A case-study in the Flemish
Ardennes (Belgium). Geomorphology, 76(3-4):392–410, 2006. ISSN
0169555X. doi: 10.1016/j.geomorph.2005.12.003.

F. Dufrenois and J. C. Noyer. One class proximal support vector
machines. Pattern Recognition, 52:96–112, 2016. ISSN 00313203.
doi: 10.1016/j.patcog.2015.09.036. URL http://dx.doi.org/10.1016/j.
patcog.2015.09.036.

Gary M Weiss and Haym Hirsh. Learning to Predict Rare Events in
Event Sequences. Proceedings of the 4th International Conference on
Knowledge Discovery and Data Mining, pages 359–363, 1998. doi:
10.1.1.30.8264.

Guilherme O. Campos, Arthur Zimek, Jörg Sander, Ricardo J.G.B.
Campello, Barbora Micenková, Erich Schubert, Ira Assent, and
Michael E. Houle. On the Evaluation of Outlier Detection and One-
Class Classification Methods. Data Science and Advanced Analytics

http://dx.doi.org/10.1016/j.patcog.2015.09.036
http://dx.doi.org/10.1016/j.patcog.2015.09.036

References 129

(DSAA), 2016 IEEE International Conference on, pages 1–10, 2016.
ISSN 1573756X. doi: 10.1109/DSAA.2016.8.

Nicholas A. Heard, David J. Weston, Kiriaki Platanioti, and David J.
Hand. Bayesian anomaly detection methods for social networks. An-
nals of Applied Statistics, 4(2):645–662, 2010. ISSN 19326157. doi:
10.1214/10-AOAS329.

James D. (James Douglas) (James Douglas) Hamilton. Time series
analysis. Princeton University Press, 1994. ISBN 9780691042893.

Philippe Esling and Carlos Agon. Time-series data mining. ACM Com-
puting Surveys, 45(1):1–34, nov 2012. doi: 10.1145/2379776.2379788.

Joseph F Murray, Gordon F Hughes, and Kenneth Kreutz-Delgado.
Machine Learning Methods for Predicting Failures in Hard Drives:
A Multiple-Instance Application. Journal of Machine Learning Re-
search, 6:783–816, 2005. doi: 10.1.1.84.9557.

Shengdong Zhang, Soheil Bahrampour, Naveen Ramakrishnan, Lukas
Schott, and Mohak Shah. Deep learning on symbolic representa-
tions for large-scale heterogeneous time-series event prediction. In
2017 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 5970–5974. IEEE, mar 2017. ISBN
978-1-5090-4117-6. doi: 10.1109/ICASSP.2017.7953302.

Usue Mori. Contributions to time series data mining departing from
the problem of road travel time modeling. PhD thesis, University of
the Basque Country, 2015.

Alberto Ogbechie, Javier Díaz-Rozo, Pedro Larrañaga, and Concha
Bielza. Dynamic Bayesian Network-Based Anomaly Detection for
In-Process Visual Inspection of Laser Surface Heat Treatment. Ma-
chine Learning for Cyber Physical Systems, pages 17–24, 2017. doi:
10.1007/978-3-662-53806-7_3.

Suzan Köknar-Tezel and Longin Jan Latecki. Improving SVM clas-
sification on imbalanced time series data sets with ghost points.
Knowledge and Information Systems, 28(1):1–23, jul 2011. doi:
10.1007/s10115-010-0310-3.

Hong Cao, Xiao-Li Li, Yew-Kwong Woon, and See-Kiong Ng. SPO:
Structure Preserving Oversampling for Imbalanced Time Series Clas-
sification. In 2011 IEEE 11th International Conference on Data Min-
ing, pages 1008–1013. IEEE, dec 2011. ISBN 978-1-4577-2075-8. doi:
10.1109/ICDM.2011.137.

130 References

U Mori, A Mendiburu, S Dasgupta, and J A Lozano. Early Classi-
fication of Time Series by Simultaneously Optimizing the Accuracy
and Earliness. IEEE Transactions on Neural Networks and Learn-
ing Systems, 29(10):4569–4578, oct 2018. ISSN 2162-237X. doi:
10.1109/TNNLS.2017.2764939.

Jingxin Xu, Simon Denman, Clinton Fookes, and Sridha Sridharan.
Detecting rare events using Kullback-Leibler divergence: A weakly
supervised approach. Expert Systems with Applications, 54:13–28,
2016. doi: 10.1016/j.eswa.2016.01.035.

Yilong Ren, Yunpeng Wang, Xinkai Wu, Guizhen Yu, and Chuan Ding.
Influential factors of red-light running at signalized intersection and
prediction using a rare events logistic regression model. Accident
Analysis and Prevention, 95:266–273, 2016. doi: 10.1016/j.aap.2016.
07.017.

Gary King, GKingHarvardEdu Langche Zeng, James Fowler, Ethan
Katz, Mike For research assistance, Jim Alt, John Freeman, Kristian
Gleditsch, Guido Imbens, Chuck Manski, Peter McCullagh, Walter
Mebane, Jonathan Nagler, Bruce Russett, Ken Scheve, Phil Schrodt,
Martin Tanner, Richard For helpful suggestions, Scott Bennett, Paul
Huth, Richard Tucker, Mike Tomz for research assistance, Jim Alt,
John Freeman, Kristian Gleditsch, Guido Imbens, Chuck Manski,
Peter McCullagh, Walter Mebane, Jonathan Nagler, Bruce Russett,
Ken Scheve, Phil Schrodt, Martin Tanner, Richard Tucker for helpful
suggestions, Scott Bennett, Paul Huth, and Richard Tucker. Logis-
tic Regression in Rare Events Data. Political Analysis, 9(2):137–163,
2001.

J.-M. Bourinet. Rare-event probability estimation with adaptive sup-
port vector regression surrogates. Reliability Engineering and System
Safety, 150:210–221, 2016. doi: 10.1016/j.ress.2016.01.023.

Seong-Pyo Cheon, Sungshin Kim, So-Young Lee, and Chong-Bum
Lee. Bayesian networks based rare event prediction with sensor
data. Knowledge-Based Systems, 22(5):336–343, 2009. doi: 10.1016/
j.knosys.2009.02.004.

Wael Khreich, Babak Khosravifar, Abdelwahab Hamou-Lhadj, and
Chamseddine Talhi. An anomaly detection system based on vari-
able N-gram features and one-class SVM. Information and Software
Technology, 91:186–197, 2017. doi: 10.1016/j.infsof.2017.07.009.

References 131

Jianxin Wu, James M Rehg, and Matthew D Mullin. Learning a Rare
Event Detection Cascade by Direct Feature Selection. Neural Infor-
mation Processing Systems (NIPS), 16:1–17, 2003.

Francesco Cadini, Gian Luca Agliardi, and Enrico Zio. Estimation of
rare event probabilities in power transmission networks subject to
cascading failures. Reliability Engineering and System Safety, 2017.
ISSN 09518320. doi: 10.1016/j.ress.2016.09.009.

Suraje Dessai and Mike Hulme. Does climate adaptation policy need
probabilities? Climate Policy, 4(2):107–128, jan 2004. doi: 10.1080/
14693062.2004.9685515.

Leonardo Dueñas-Osorio and Srivishnu Mohan Vemuru. Cascading fail-
ures in complex infrastructure systems. Structural Safety, 31(2):157–
167, mar 2009. doi: 10.1016/J.STRUSAFE.2008.06.007.

T. Bedford and Roger M. Cooke. Probabilistic risk analysis : foun-
dations and methods. Cambridge University Press, 2001. ISBN
0521773202.

Mathieu Balesdent, Jérôme Morio, and Loïc Brevault. Rare Event
Probability Estimation in the Presence of Epistemic Uncertainty on
Input Probability Distribution Parameters. Methodology and Com-
puting in Applied Probability, 18(1):197–216, 2016. doi: 10.1007/
s11009-014-9411-x.

Yves Auffray, Pierre Barbillon, and Jean Michel Marin. Bounding rare
event probabilities in computer experiments. Computational Statis-
tics and Data Analysis, 80:153–166, 2014. doi: 10.1016/j.csda.2014.
06.023.

Daniel Straub, Iason Papaioannou, and Wolfgang Betz. Bayesian anal-
ysis of rare events. Journal of Computational Physics, 314:538–556,
2016. doi: 10.1016/j.jcp.2016.03.018.

S. Miri Rostami and M. Ahmadzadeh. Extracting Predictor Variables to
Construct Breast Cancer Survivability Model with Class Imbalance
Problem. Shahrood University of Technology, 6(2):263–276, jul 2018.
doi: 10.22044/JADM.2017.5061.1609.

Ugo Fiore, Alfredo De Santis, Francesca Perla, Paolo Zanetti, and
Francesco Palmieri. Using generative adversarial networks for im-
proving classification effectiveness in credit card fraud detection. In-
formation Sciences, 2017. ISSN 00200255. doi: 10.1016/j.ins.2017.12.
030.

132 References

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detec-
tion. ACM Computing Surveys, 41(3):1–58, jul 2009. ISSN 03600300.
doi: 10.1145/1541880.1541882. URL http://portal.acm.org/citation.
cfm?doid=1541880.1541882.

Ying Zhou, Wanjun Su, Lieyun Ding, Hanbin Luo, and P.E.D. Love.
Predicting Safety Risks in Deep Foundation Pits in Subway In-
frastructure Projects: Support Vector Machine Approach. Jour-
nal of Computing in Civil Engineering, 31(5):04017052, 2017. doi:
10.1061/(ASCE)CP.1943-5487.0000700.

Keith Noto, Carla Brodley, and Donna Slonim. FRaC: a feature-
modeling approach for semi-supervised and unsupervised anomaly
detection. Data mining and knowledge discovery, 25(1):109–133,
2012. doi: 10.1007/s10618-011-0234-x.

Douglas Reynolds. Gaussian Mixture Models. In Encyclopedia of
Biometrics, pages 827–832. Springer US, Boston, MA, 2015. doi:
10.1007/978-1-4899-7488-4_196.

Matheus Araujo, Rahul Bhojwani, Jaideep Srivastava, Louis Kaza-
glis, and Conrad Iber. ML Approach for Early Detection of Sleep
Apnea Treatment Abandonment. Proceedings of the 2018 Interna-
tional Conference on Digital Health - DH ’18, pages 75–79, 2018.
doi: 10.1145/3194658.3194681. URL http://dl.acm.org/citation.cfm?
doid=3194658.3194681.

Mayank Swarnkar and Neminath Hubballi. OCPAD: One class Naive
Bayes classifier for payload based anomaly detection. Expert Systems
with Applications, 64:330–339, 2016. doi: 10.1016/j.eswa.2016.07.036.

Xin Mu, Feida Zhu, Yue Liu, Ee-Peng Lim, and Zhi-Hua Zhou. Social
Stream Classification with Emerging New Labels. In PAKDD, pages
16–28. Springer, jun 2018. doi: 10.1007/978-3-319-93034-3_2.

Eduardo J. Spinosa, André Ponce De Leon F. De Carvalho, and João
Gama. OLINDDA: a cluster-based approach for detecting novelty
and concept drift in data streams. In Proceedings of the 2007 ACM
symposium on Applied computing, pages 448 – 452, 2007. ISBN 1-
59593-480-4. doi: 10.1145/1244002.1244107.

Yue Zhu, Kai Ming Ting, and Zhi Hua Zhou. Multi-label learning
with emerging new labels. IEEE Transactions on Knowledge and
Data Engineering, 2018. ISSN 1041-4347. doi: 10.1109/TKDE.2018.
2810872.

http://portal.acm.org/citation.cfm?doid=1541880.1541882
http://portal.acm.org/citation.cfm?doid=1541880.1541882
http://dl.acm.org/citation.cfm?doid=3194658.3194681
http://dl.acm.org/citation.cfm?doid=3194658.3194681

References 133

Shixi Chen, Haixun Wang, Shuigeng Zhou, and Philip S. Yu. Stop chas-
ing trends: Discovering high order models in evolving data. In Pro-
ceedings - International Conference on Data Engineering, pages 923–
932, 2008. ISBN 9781424418374. doi: 10.1109/ICDE.2008.4497501.

Sarah M. Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and
Christopher Leckie. High-dimensional and large-scale anomaly de-
tection using a linear one-class SVM with deep learning. Pattern
Recognition, 58:121–134, 2016. doi: 10.1016/j.patcog.2016.03.028.

Vasileios Mygdalis, Alexandros Iosifidis, Anastasios Tefas, and Ioan-
nis Pitas. Graph Embedded One-Class Classifiers for media data
classification. Pattern Recognition, 60:585–595, dec 2016. doi:
10.1016/J.PATCOG.2016.05.033.

Chesner Désir, Simon Bernard, Caroline Petitjean, and Laurent Heutte.
One class random forests. Pattern Recognition, 46(12):3490–3506, dec
2013. doi: 10.1016/J.PATCOG.2013.05.022.

Daqing Zhang, Nan Li, Zhi-Hua Zhou, Chao Chen, Lin Sun, and Shi-
jian Li. iBAT: Detecting anomalous taxi trajectories from GPS traces.
Proceedings of the 13th International Conference on Ubiquitous Com-
puting (UbiComp ’11), pages 99–108, 2011. doi: 10.1145/2030112.
2030127.

V Hodge and J Austin. A survey of outlier detection methodologies.
Artificial intelligence review, 22(2):85–126, 2004. URL https://link.
springer.com/article/10.1023/B:AIRE.0000045502.10941.a9.

J Zhang and M Zulkernine. Anomaly based network intrusion detection
with unsupervised outlier detection. In IEEE International Con-
ference on Communications, pages 2388–2393. ieeexplore.ieee.org,
2006. doi: 10.1109/ICC.2006.255127. URL https://ieeexplore.ieee.
org/abstract/document/4024522/.

N Billor, A S Hadi, and P F Velleman. BACON: blocked adaptive com-
putationally efficient outlier nominators. Computational Statistics &
Data Analysis, 34(3):279–298, 2000. URL https://www.sciencedirect.
com/science/article/pii/S0167947399001012.

Charu C. Aggarwal. Outlier Analysis. Springer Cham, 2017. ISBN
978-3-319-47577-6. doi: 10.1007/978-3-319-47578-3.

H.S. Teng, K. Chen, and S.C. Lu. Adaptive real-time anomaly detec-
tion using inductively generated sequential patterns. In Proceedings.
1990 IEEE Computer Society Symposium on Research in Security

https://link.springer.com/article/10.1023/B:AIRE.0000045502.10941.a9
https://link.springer.com/article/10.1023/B:AIRE.0000045502.10941.a9
https://ieeexplore.ieee.org/abstract/document/4024522/
https://ieeexplore.ieee.org/abstract/document/4024522/
https://www.sciencedirect.com/science/article/pii/S0167947399001012
https://www.sciencedirect.com/science/article/pii/S0167947399001012

134 References

and Privacy, pages 278–284. IEEE, 1990. ISBN 0-8186-2060-9. doi:
10.1109/RISP.1990.63857.

Peter J. Rousseeuw, Annick M. Leroy, John Wiley & Sons., Wiley In-
terScience (Online service), and Mia Hubert. Robust statistics for
outlier detection. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 1(1):73–79, jan 2011. doi: 10.1002/widm.2.

Anwesha Barai and Dey Lopamudra. Outlier Detection and Removal
Algorithm in K-Means and Hierarchical Clustering. World Journal
of Computer Application and Technology, 5(2):24–29, 2017. doi: 10.
13189/WJCAT.2017.050202.

Miloš Radovanović, Alexandros Nanopoulos, and Mirjana Ivanović. Re-
verse Nearest Neighbors in Unsupervised Distance-Based Outlier De-
tection. IEEE Transactions on Knowledge and Data Engineering,
4347(OCTOBER):1–14, 2014. ISSN 10414347. doi: 10.1109/TKDE.
2014.2365790.

Xuan Hong Dang, Ira Assent, Raymond T. Ng, Arthur Zimek, Erich
Schubert, Xuan Hong Dang, Ira Assent, Raymond T. Ng, Arthur
Zimek, and Erich Schubert. Discriminative features for identify-
ing and interpreting outliers. Proceedings - International Confer-
ence on Data Engineering, pages 88–99, mar 2014. ISSN 10844627.
doi: 10.1109/ICDE.2014.6816642. URL http://ieeexplore.ieee.org/
document/6816642/.

Manish Gupta, Jing Gao, and Charu C Aggarwal. Outlier Detection
for Temporal Data : A Survey. IEEE Transactions on Knowledge
and Data Engineering, 25(1):1–20, 2013. ISSN 1041-4347. doi: http:
//doi.ieeecomputersociety.org/10.1109/TKDE.2013.184.

Mohammad M Masud, Jing Gao, Latifur Khan, Jiawei Han, and Bha-
vani Thuraisingham. Integrating Novel Class Detection with Classi-
fication for Concept-Drifting Data Streams. In Wray Buntine, Marko
Grobelnik, Dunja Mladenić, and John Shawe-Taylor, editors, Ma-
chine Learning and Knowledge Discovery in Databases, pages 79–94,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-
642-04174-7.

Ahsanul Haque, Latifur Khan, and Michael Baron. SAND: Semi-
Supervised Adaptive Novel Class Detection and Classification over
Data Stream. In AAAI Conference on Artificial Intelligence, pages
1652 – 1658, 2016a.

http://ieeexplore.ieee.org/document/6816642/
http://ieeexplore.ieee.org/document/6816642/

References 135

Ahsanul Haque, Latifur Khan, Michael Baron, Bhavani Thuraisingham,
and Charu Aggarwal. Efficient handling of concept drift and concept
evolution over Stream Data. In 2016 IEEE 32nd International Con-
ference on Data Engineering (ICDE), pages 481–492, 2016b. doi:
10.1109/ICDE.2016.7498264.

Heitor Murilo Gomes, Jesse Read, Albert Bifet, Jean Paul Barddal, and
Joao Gama. Machine learning for streaming data: state of the art,
challenges, and opportunities. ACM SIGKDD Explorations Newslet-
ter, 21(2):6–22, 2019.

Shehroz S Khan and Michael G Madden. One-class classification: taxon-
omy of study and review of techniques. The Knowledge Engineering
Review, 29(3):345–374, 2014. doi: 10.1017/S026988891300043X.

Zahraa S. Abdallah, Mohamed Medhat Gaber, Bala Srinivasan, and
Shonali Krishnaswamy. AnyNovel: detection of novel concepts in
evolving data streams. Evolving Systems, 7(2):73–93, jun 2016.
ISSN 1868-6478. doi: 10.1007/s12530-016-9147-7. URL http://link.
springer.com/10.1007/s12530-016-9147-7.

Tiago Pinho da Silva, Leonardo Schick, Priscilla de Abreu Lopes, and
Heloisa de Arruda Camargo. A Fuzzy Multiclass Novelty Detector
for Data Streams. In 2018 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), pages 1–8, 2018. doi: 10.1109/FUZZ-IEEE.
2018.8491545.

Tiago Pinho da Silva and Heloisa de Arruda Camargo. Possibilistic
Approach For Novelty Detection In Data Streams. In 2020 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–
8, 2020. doi: 10.1109/FUZZ48607.2020.9177582.

Swee Chuan Tan, Kai Ming Ting, and Tony Fei Liu. Fast Anomaly
Detection for Streaming Data. In International Joint Conference on
Artificial Intelligence, pages 1511–1516, 2011.

Yuh-Jye Lee, Yi-Ren Yeh, and Yu-Chiang Frank Wang. Anomaly Detec-
tion via Online Oversampling Principal Component Analysis. IEEE
Transactions on Knowledge and Data Engineering, 25(7):1460–1470,
2013. doi: 10.1109/TKDE.2012.99.

Jeremiah D Deng. Online Outlier Detection of Energy Data Streams Us-
ing Incremental and Kernel PCA Algorithms. In 2016 IEEE 16th In-
ternational Conference on Data Mining Workshops (ICDMW), pages
390–397, 2016. doi: 10.1109/ICDMW.2016.0062.

http://link.springer.com/10.1007/s12530-016-9147-7
http://link.springer.com/10.1007/s12530-016-9147-7

136 References

Kemilly Dearo Garcia, Elaine Ribeiro de Faria, Cláudio Rebelo de Sá,
João Mendes-Moreira, Charu C Aggarwal, André C P L F de Car-
valho, and Joost N Kok. Ensemble Clustering for Novelty Detection
in Data Streams. In Petra Kralj Novak, Tomislav Šmuc, and Sašo
Džeroski, editors, Discovery Science, pages 460–470, Cham, 2019.
Springer International Publishing. ISBN 978-3-030-33778-0.

Don Dennis, Durmus Alp Emre Acar, Vikram Mandikal, Vinu Sankar
Sadasivan, Venkatesh Saligrama, Harsha Vardhan Simhadri, and Pra-
teek Jain. Shallow RNN: Accurate Time-series Classification on Re-
source Constrained Devices. In H Wallach, H Larochelle, A Beygelz-
imer, F d'Alché-Buc, E Fox, and R Garnett, editors, Advances in Neu-
ral Information Processing Systems, volume 32. Curran Associates,
Inc., 2019.

Yue Bai, Lichen Wang, Zhiqiang Tao, Sheng Li, and Yun Fu. Correla-
tive Channel-Aware Fusion for Multi-View Time Series Classification.
In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 6714–6722, 2021.

Zipeng Chen, Qianli Ma, and Zhenxi Lin. Time-Aware Multi-Scale
RNNs for Time Series Modeling. In Zhi-Hua Zhou, editor, Proceed-
ings of the Thirtieth International Joint Conference on Artificial In-
telligence, IJCAI-21, pages 2285–2291, 2021.

Ashok Cutkosky. Parameter-free, Dynamic, and Strongly-Adaptive On-
line Learning. In Hal Daumé III and Aarti Singh, editors, Proceedings
of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 2250–2259.
PMLR, 2020.

Fei Zhu, Zhen Cheng, Xu-Yao Zhang, and Cheng-Lin Liu. Class-
Incremental Learning via Dual Augmentation. In Advances in Neural
Information Processing Systems, 2021.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and
Christoph H Lampert. icarl: Incremental classifier and representa-
tion learning. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 2001–2010, 2017.

Maciej Grzenda, Heitor Murilo Gomes, and Albert Bifet. Delayed
labelling evaluation for data streams. Data Mining and Knowl-
edge Discovery, 34(5):1237–1266, 2020. ISSN 1573-756X. doi:
10.1007/s10618-019-00654-y.

References 137

Guozhong Li, Byron Choi, Jianliang Xu, Sourav S Bhowmick, Kwok-
Pan Chun, and Grace L H Wong. Shapenet: A shapelet-neural net-
work approach for multivariate time series classification. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 8375–8383, 2021.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke,
Shoaib Ahmed Siddiqui, Alexander Binder, Emmanuel Müller, and
Marius Kloft. Deep One-Class Classification. In Jennifer Dy and
Andreas Krause, editors, Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 4393–4402. PMLR, 2018.

Luca Martino, Jesse Read, Víctor Elvira, and Francisco Louzada. Coop-
erative parallel particle filters for online model selection and applica-
tions to urban mobility. Digital Signal Processing, 60:172–185, 2017.
ISSN 1051-2004. doi: https://doi.org/10.1016/j.dsp.2016.09.011.

Jeremy Bernstein, Arash Vahdat, Yisong Yue, and Ming Yu Liu. On the
distance between two neural networks and the stability of learning.
In Advances in Neural Information Processing Systems, 2020.

Davide Chicco. Siamese Neural Networks: An Overview, pages 73–
94. Springer US, 2021. ISBN 978-1-0716-0826-5. doi: 10.1007/
978-1-0716-0826-5_3.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael
Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanama-
hatana, and Eamonn Keogh. The UCR Time Series Archive, 2018.

Chang Wei Tan, Francois Petitjean, Eamonn Keogh, and Geoffrey I
Webb. Time series classification for varying length series. arXiv
preprint arXiv:1910.04341, 2019.

Padhraic Smyth. Clustering sequences with hidden Markov models. In
Advances in Neural Information Processing Systems, 1997.

Ying Yao, Xiaohua Zhao, Yiping Wu, Yunlong Zhang, and Jian Rong.
Clustering driver behavior using dynamic time warping and hidden
Markov model. Journal of Intelligent Transportation Systems, 25
(3):249–262, 2021. doi: 10.1080/15472450.2019.1646132. URL https:
//doi.org/10.1080/15472450.2019.1646132.

C. Li and G. Biswas. Improving clustering with hidden markov models
using bayesian model selection. In 2000 IEEE International Confer-
ence on Systems, Man and Cybernetics., pages 194–199, 2000. doi:
10.1109/ICSMC.2000.884988.

https://doi.org/10.1080/15472450.2019.1646132
https://doi.org/10.1080/15472450.2019.1646132

	0 Preface
	0.1 Overview of the Dissertation

	1 Background
	1.1 The Task of Classification
	1.2 Main Learning Scenarios
	1.3 The Role of Time When Learning Classifiers
	1.3.1 Influence of Time Among the Features
	1.3.2 Timely Generated Instances

	1.4 Learning From Supervised Data
	1.5 Learning From Unsupervised Data
	1.6 Methods for Evaluating Classifiers
	1.7 Evaluation Measures

	2 Analyzing Supervised Classification Terms and Problems
	2.1 Introduction
	2.2 Rare Event Detection
	2.3 Anomaly detection
	2.4 Novelty detection
	2.5 The related outlier detection scenario
	2.6 The proposed assignment of terms and learning scenarios
	2.7 Validation of the proposed assignment
	2.8 Conclusions

	3 SNDProb: A Probabilistic Approach for Streaming Novelty Detection
	3.1 Introduction
	3.2 Proposed method
	3.2.1 Offline phase
	3.2.2 Online phase

	3.3 Experimental study
	3.3.1 Performance metrics
	3.3.2 Synthetic scenarios
	3.3.3 Cover Forest dataset
	3.3.4 Poker dataset

	3.4 Conclusions and future work

	4 Time Series Streaming Novelty Detection with Emerging New Classes
	4.1 Introduction
	4.2 Related Work
	4.3 Methodology
	4.3.1 Offline phase
	4.3.2 Online phase

	4.4 A Framework of Parallel Universes
	4.5 Experimental Results and Discussion
	4.5.1 Results on CBF dataset
	4.5.2 Results on BME dataset

	4.6 Conclusions

	5 General Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work
	5.3 Main Achievements

	References

