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Abstract: Ground thermal tests are always mandatory before any space mission is flown into space.
The collected results of these tests are mainly temperatures of the different parts of the spacecraft
(nodes) for different mission scenarios. The measured temperatures always show differences with
the expected values coming from the computer thermal mathematical models. The origin of these
differences is partially related to the inherent error coming from physical measurements. The thermal
parameters that compose the computer thermal mathematical models must always be correlated
with the results coming from tests. This paper studies, through three thermal models, the difficulties
that are found in the correlation process when the measured temperatures reach a certain level of
error. Thermal parameters become more difficult to be identified when the measurement error level
increases. However, the temperature fields obtained with these poor thermal parameters are good
enough for the mission thermal analysis. Several error levels, different load cases and correlation for
steady-state and transient cases are studied to probe these findings.

Keywords: model correlation; thermal mathematical model; measurements error; thermal control;
gradient based algorithm

1. Introduction

The Thermal Control Subsystem is a fundamental component of the engineering
design work of any spacecraft. Its purpose is clear: to maintain all the components of the
spacecraft and payloads inside the safe range of temperatures devised for the mission. The
design task requires to know the temperatures distributions expected for the spacecraft
for any mission scenario (cold case, hot case, transport, experimentation, etc.) [1–5]. This
task requires defining the heat inputs that the spacecraft undergoes from external sources
(solar, infrared, albedo, etc.) as well as the heat produced inside the spacecraft (electronics,
heaters, etc.).

To be able to predict these temperatures distributions, Thermal Mathematical Models
(TMM) are built, considering the geometry, the materials thermal properties, the presence of
thermal insulation (Multi-Layer Insulation, MLI), thermostats, heaters, etc. The temperature
of each node, in which the TMM is discretized, is given by Equation (1), where n is the
number of nodes of the TMM, GL(i, j) is the conductive conductance (W/m) between nodes
i and j, σ is the Stefan–Boltzmann constant (5.67·× 10−8 W/(m2·K4)), GR(i, j) is the radiative
conductance (m2) between nodes i and j, Ti and Tj are the temperatures (K) of nodes i and
j, MiCi is the product of the i node mass (kg) times the heat capacity (J/(kg·K)) and qi is
the power (W) that enters into node i. The subscripts i and j go from 1 to n. It is usual
to call thermal inertia to the product MiCi as it describes the “opposition” to change the
temperature of i node when subjected to a power input. Therefore, the solution of the set
of nonlinear equations corresponding to the nodes solves the TMM. This process is called
the Thermal Lumped Parameter method (TLP) and provides the temperature distribution
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of the different parts of the spacecraft (nodes), as well as the heat flows (W) between the
nodes [6,7]. The TMM is solved for the different load cases and scenarios, in order to predict
the thermal behavior in every situation expected during the mission.

j=n

∑
j=1

GL(i, j)
(
Ti − Tj

)
+

j=n

∑
j=1

σGR(i, j)
(

T4
i − T4

j

)
+ MiCi

dTi
dt

= qi (1)

As any mathematical model, the TMM represents reality in an approximate way. The
temperatures predicted by the TLP method will be correct if the simplifying assumptions
made to build the TMM were appropriate and reasonable. Otherwise, predicted results
will be poor. For this reason, the TMMs must be validated.

Considering the ideas mentioned in the previous paragraphs, the need of thermal
tests on ground is clear. Their purpose is to reproduce on ground the thermal scenarios
that the spacecraft will find in orbit. These tests at the laboratory scale will produce a set of
measured temperatures that could be compared with the predicted temperatures calculated
with the TMMs. If the temperatures measured and the temperatures predicted are close
enough, the TMM represents well the reality, and the thermal engineers have a tool to
predict with reliability other thermal scenarios that could not be tested in the laboratory.

However, there is always differences between the measured temperatures in the
laboratory and the calculated ones with the TMMs. These differences could be attributed
to two different sources. On the one hand, the TMMs construction is an approximate
process and simplifying assumptions or even errors could be done. On the other hand,
measurement devices and, in general, measurement techniques are, by themselves, an
imperfect process, which implies uncertainties and errors.

Therefore, the TMMs must be correlated. That is, the thermal parameters that compose
the TMM (GLs, GRs and MCs) must be modified in order to predict temperatures as close
as possible to the measured ones. Much work has already been devoted to this task by
researchers and different methods and approaches have been used, but a fully operational
semiautomatic solution of the problem has not been achieved yet. For instance, Klement [8]
used quasi-Newton algorithms of the class defined by C. G. Broyden and stated that
his approach reduces the number of iterations by several orders of magnitude. Further
work by Klement, Anglada and Garmendia [9] compared the quasi-Newton approach
with the genetic algorithm solutions, showing a better performance of quasi-Newton
algorithms. In reference [10], Garmendia and Anglada presented their initial work on
correlation, based on genetic algorithms. In the Ph.D. work of I. Torralbo [11], a complete
mathematical development of the correlation problem was tackled based on a Jacobian
matrix formulation and a Moore–Penrose pseudo-inversion on the non square matrix.
Finally, Anglada, Martínez-Jiménez and Garmendia [12] analyzed the work of M.J.D.
Powell on optimization and compared results based on gradient-based algorithms with
results obtained with genetic algorithms.

The method that is presented in this paper deals with the correlation problem in
a semiautomated, mathematical way, instead of doing it in a manual way, based on the
experience of thermal engineers. Other approaches, like statistical or even machine learning,
are out of the scope of this study.

The TMM correlation procedure is basically an inverse thermal problem where the
values of the model parameters are estimated based on the temperature data. The main
drawback of this approximation is that the problem is ill-posed due to the absence of a
unique solution. That is, different combinations of the TMM parameters could provide
the correct temperatures, being the main risk, the loss of the physical sense due to the
values mathematically assigned to these parameters. One option to attenuate this problem
is to include several load cases in the correlation as was stated in previous works of the
authors [13,14].

An additional difficulty of inverse thermal problems is that the effect of changes in
boundary conditions are usually dumped, causing a change in system temperature of
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lower magnitude than those changes in boundary conditions. Therefore, during the inverse
problem resolution, small changes in the system temperature caused, for example, by
measurement uncertainties, can originate from big changes in the adjusted parameters.

For this reason, the objective of this paper is to study the influence of the measurement
uncertainties and errors, in the process of correlating the TMM against the measured
temperatures.

2. Correlation Methodology and Handling of Measurements Uncertainties

Previous works by the authors have shown the possibility of doing an adequate
correlation of thermal parameters, both in the steady state and transient situations, for
small size TMMs using minimization algorithms [13,14]. These works were developed
using the same three small TMMs used in the work presented hereafter, composed by 4
nodes, 7 nodes and 16 nodes, respectively. The last two models were derived from the TMM
of the Tribolab instrument, a space tribometer that was flown on board the International
Space Station [15].

The correlation methodology followed could be summarized saying that the objective
is to minimize the differences between the temperatures measured in the tests and the
temperatures predicted by the TMMs. For doing this, the TMM thermal parameters
(GLs, GRs, MCs) are changed through a gradient-based set of minimization subroutines
(TOLMIN), developed by Professor M. J. D. Powell [16,17].

In an ideal case, temperatures predicted for each node would be compared with
the corresponding measured value. However, the number of measurement points in the
thermal test are usually lower than the number of nodes of the TMMs.

In this case, instead of using real test temperatures as reference values, the next
procedure has been followed. For each model, a reference TMM was set up and solved.
The GLs, GRs and MCs used in that model are considered the reference parameters (the
correct parameters) and the temperatures provided the reference temperatures. Then, this
model has been modified (GLs, GRs and MCs have been randomly altered) and has been
called the base model. The temperatures obtained with this base model are the predicted
temperatures (or base temperatures), which should match the reference (correct) ones. That
is, the base model represents the model that thermal engineers would produce with CAD
tools, material properties, etc., and that must be correlated against reference temperatures.
The main advantage of using this procedure in this study instead of the temperatures
measured in thermal tests is that in this way, we have available the correct temperature
values in every node of the model, and we have also available the correct values of the
model parameters (GLs, GRs and MCs). Therefore, we can evaluate not only the error
level in the predicted temperatures but also the error in the values assigned to the TMM
parameters (GLs, GRs and MCs) during the correlation.

What has been explained as far as now does not take into account possible error
measurements, instead it is assumed that temperatures would be “perfectly” measured.
In order to study the effect of having some degree of error in the measurement of the
temperatures, the reference temperatures have been modified following Equation (2) (see
reference [18]).

T∗
re f erence = Tre f erence + ω·σ (2)

where ω is a random variable with normal (Gaussian) distribution, zero mean, and unitary
standard deviation. σ is the standard deviation of the measurement errors.

Real precision of temperature measurements is difficult to estimate, as the information
given by the measurement devices suppliers is not complete. To add more uncertainty,
different types of thermocouples or thermistors are used for the temperature measure-
ments. The scenario complicates further if we take into account the fact that thermal tests
equipment is always built on an individual client basis (there are no standard thermal
vacuum chambers). Consequently, we will try to resume these facts in a unique parameter,
the standard deviation σ, and we will use different values of it ranging from σ = 0.1 to
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σ = 0.0001 to see the influence it has on the results’ accuracy. Assuming 99% confidence
for the measured temperature, ω lies in the range shown in Equation (3).

− 2.57583 < ω < 2.57583 (3)

To generate values of ω in the mentioned range, the random_seed and random_number
subroutines of the Fortran language have been used. The pseudorandom number returned,
x, is a real value between 0 and 1, so a linear transformation is used to obtain the values of
ω in the adequate range following Equation (4).

ω = 5.15166x − 2.57583 (4)

A graphical description of the methodology can be seen in Figure 1.
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3. Results Obtained for Different Case Studies and Discussion

Now, the results obtained for the three different case studies (4, 7 and 16 nodes TMMs)
will be presented. The number of calculations done is very high, therefore, the tables that
follow will try to resume the most important points needed to evaluate the correlation
process when measurement errors are present. The employed cases will be those presented
previously elsewhere (see references [13,14]), to allow the interested reader to have a
complete idea of the process of correlation, its possibilities and the difficulties present.

For the sake of clarity, before displaying the tables with results, it is interesting to note
that there are two table types: those showing results for thermal parameters and those
showing results for temperatures.

Results corresponding to thermal parameters represent the arithmetic mean of the
differences between the reference thermal parameters and the values assigned to them by
the minimization algorithm. If we call NPAR, the number of unknown parameters that
must be correlated (GLs, GRs and MCs), and Pi, each one of these parameters, the error
would be calculated following Equation (5).

Error =
1

NPAR

NPAR

∑
i=1

[∣∣∣∣∣P
re f erence
i − Pcorrelated

i

Pre f erence
i

∣∣∣∣∣·100

]
(5)

In the case of temperature results, the values correspond to the arithmetic mean
between the reference temperatures and the temperatures obtained with the TMM once
correlated, that is, using the thermal parameters obtained from the correlation. If we call
NNOD, the number of nodes of the model, NSTEP, the number of time steps used in the
solution of the thermal case and NCASE, the number of load cases taken into account in the
calculation, we can see that NTEMP, the number of temperatures present in the correlation,
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is given by Equation (6). Further, the error would be calculated following Equation (7)
(calling Ti each one of these temperatures).

NTEMP = NNOD·NSTEP·NCASE (6)

Error =
1

NTEMP

NTEMP

∑
i=1

∣∣∣Tre f erence
i − Tcorrelated

i

∣∣∣ (7)

3.1. 4 Nodes Model

As a first simple model, a theoretical 4 nodes model (nodes 1 to 4) has been used.
The thermal model, which can be seen in Figure 2, has three linear conductances (GLs),
three radiative conductances (GRs) and three thermal inertias (MCs). Power is applied in
node number 1 and a constant temperature of 20 ◦C is maintained in sink node 4, for all
the load cases. The transient case extends 7200 s (2 h), and the initial temperature for all
the nodes is 20 ◦C. The time step used is 600 s (10 min). The behavior and correlation of
this model was studied in depth in references [13,14], which can be consulted for more
detailed information. Now, different error levels have been introduced for the reference
temperatures, as can be seen in the different values assigned to the standard deviation (SD)
in the tables included in next sections. Their influence has been studied for steady state
cases and for transient analysis.
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3.1.1. 4 Nodes Model: Correlation for Steady State Cases

Table 1 shows the errors in the TMM parameters both at the initial state and after the
correlation, for different levels of measurement errors (different standard deviation values).
The analysis has been done including different load cases in the correlation. Three load
cases results (hot, stay alive and cold) were available for the correlations. Correlation 2(a)
was done using hot and stay alive cases, correlation 2(b) was done using hot and cold cases
and correlation 2(c) was done using stay alive and cold cases.

Table 1. Errors obtained for the TMM thermal parameters. Steady state 4 nodes model.

SD = 0.01 SD = 0.001 SD =
0.0001

SD =
0.00001 SD = 0.0

No. of
Load Cases Initial Error Error Error Error Error Error

3 67.92% 61.53% 120.20% 6.60% 0.04% 0.02%
2 (a) 67.92% 888.09% 62.28% 48.31% 2.16% 0.00%
2 (b) 67.92% 85.39% 57.73% 18.30% 0.67% 0.00%
2 (c) 67.92% 64.80% 45.79% 41.46% 0.65% 0.00%

The mean initial error in the parameters (67.92%) can be reduced if the standard
deviation error in the measurements is 0.0001 or lower.

After obtaining the correlated thermal parameters with the different SD error lev-
els, TMMs were re-built using the correlated parameters. Then, these correlated models



Aerospace 2022, 9, 821 6 of 13

were run and new predicted temperatures were obtained. Table 2 collects the absolute
temperature error level for these models.

Table 2. Errors obtained for predicted temperatures for steady state 4 nodes model.

SD = 0.01 SD = 0.001 SD =
0.0001

SD =
0.00001 SD = 0.0

No. of
Load Cases Initial Error Error Error Error Error Error

3 1.6511 0.0174 0.0051 0.0001 0.0000 0.0000
2 (a) 1.6511 0.0151 0.0041 0.0017 0.0000 0.0000
2 (b) 1.6511 3.5935 0.0038 0.0001 0.0000 0.0000
2 (c) 1.6511 0.0185 0.0070 0.0003 0.0000 0.0000

The mean initial error for predicted temperatures goes clearly down if the standard
deviation SD in the measured temperatures is equal or lower than 0.001.

As it can be seen, the smaller the standard deviation of the error in the temperatures
measurements, the better the results both for the thermal parameters and for temperatures.

3.1.2. 4 Nodes Model: Correlation for Transient Cases

The simple 4 nodes model has been also studied for transient cases. The number
of temperatures is now much higher, as values in each time step are available for each
node. Again, different levels of standard deviation SD were considered in the correlation
of the thermal parameters. Table 3 collects the results for transient cases for the thermal
parameters, when two load cases or one load case are considered. As expected, the lower
the standard error in the measurement of temperatures, the better the thermal parameters
correlation. Additionally, when two load cases are used instead of one, improved results
are obtained.

Table 3. Errors obtained for the TMM thermal parameters. Correlation of transient 4 nodes model.

SD = 0.01 SD = 0.001 SD =
0.0001

SD =
0.00001 SD = 0.0

No. of
Load Cases Initial Error Error Error Error Error Error

2 56.94% 27.60% 13.69% 1.49% 0.11% 0.03%
1 56.94% 58.92% 47.58% 2.46% 0.12% 0.06%

Once the correlated thermal parameters were obtained, a calculation of predicted
temperatures was done for the different load cases considered. Results are collected in
Table 4, which shows the mean error value of the temperatures predicted versus the correct
temperatures.

Table 4. Errors obtained for predicted temperatures for transient 4 nodes model.

SD = 0.01 SD = 0.001 SD = 0.0001 SD = 0.00001 SD = 0.0

No. of
Load Cases Load Case Initial

Error Error Error Error Error Error

2 cold 0.9414 0.0031 0.0011 0.0001 0.0000 0.0000
2 stay alive 1.5025 0.0053 0.0010 0.0001 0.0000 0.0000
2 hot 2.2464 0.0087 0.0006 0.0001 0.0000 0.0000
1 cold 0.9414 0.0061 0.0007 0.0001 0.0000 0.0000
1 stay alive 1.5025 0.0107 0.0035 0.0002 0.0000 0.0000
1 hot 2.2464 0.0183 0.0108 0.0005 0.0000 0.0000
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It is worth to note that, even for the highest levels of standard deviation error, the
temperature values match very well with the correct temperature values. This happens
even for the TMMs whose thermal parameters show bigger errors.

Finally, the effect of the measurement errors has been also studied in the situation
when the temperature of one node is unknown (node 2), which implies a higher difficulty
to achieve a good correlation. Thermal parameters results obtained in this case are collected
in Table 5. As it could be expected, results are worse than those shown in Table 3. Only the
three load cases with a minimum standard deviation (SD = 0.00001) show a good match
between the correlated parameters and the real ones.

Table 5. Errors obtained for the TMM thermal parameters. Correlation of transient 4 nodes model
with 1 unknown temperature.

SD = 0.01 SD = 0.001 SD =
0.0001

SD =
0.00001 SD = 0.0

No. of
Load Cases Initial Error Error Error Error Error Error

2 56.94% 76.20% 66.41% 65.46% 63.95% 3.37%
1 56.94% 266.90% 75.47% 63.76% 66.44% 33.31%
3 56.94% 65.11% 65.41% 65.35% 5.96% 4.58%

Once again, the new sets of predicted temperatures were obtained with the new
correlated thermal parameters. The results are shown in Table 6, where the mean absolute
temperature errors are collected.

Table 6. Errors obtained for predicted temperatures for transient 4 nodes model, 1 unknown temperature.

SD = 0.01 SD = 0.001 SD = 0.0001 SD = 0.00001 SD = 0.0

No. of
Load Cases Load Case Initial Error Error Error Error Error Error

2 cold 0.9414 0.1089 0.0326 0.0161 0.0150 0.0001
2 stay alive 1.5025 0.1761 0.0530 0.0254 0.0243 0.0023
2 hot 2.2464 0.2678 0.0815 0.0379 0.0373 0.0035
1 cold 0.9414 0.3811 0.1248 0.0800 0.0133 0.0124
1 stay alive 1.5025 0.6265 0.2008 0.1355 0.0212 0.0206
1 hot 2.2464 0.9785 0.3049 0.2182 0.0345 0.0322
3 cold 0.9414 0.1718 0.0538 0.0158 0.0024 0.0019
3 stay alive 1.5025 0.2784 0.0879 0.0248 0.0039 0.0031
3 hot 2.2464 0.4287 0.1357 0.0378 0.0060 0.0047

Close examination of the new predicted temperatures in Table 6 shows a dramatic
improvement of the predicted values versus the initial error. Even for the poorest thermal
parameters correlation (those with the highest standard deviation), the new set of tempera-
tures match well with the correct temperatures. However, results when considering three
load cases instead of two load cases for the correlation are worse, which is an unexpected
result. The authors have no clear explanation for this fact.

3.2. 7 Nodes Model

The previous 4 nodes model showed the trends and limitations of the correlation
method when applied to a theoretical small thermal model. It is interesting to make an
equivalent study for a bigger model, which corresponds to a real device. In this section,
we study a reduced 7 nodes model of the Tribolab instrument, a space tribometer that was
flown on board the International Space Station [15]. Three of the nodes are sink nodes:
two radiation sink nodes (nodes 99,241 and 99,271) and one conduction sink node (node
10,000). The model consists of four linear conductances, two radiation conductances and
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four thermal inertias, for the transient cases, which can be seen in Figure 3. In the transient
cases, the calculations run for 86.400 s (that is, one day) and time step ∆t = 600 s. This
makes a total of 144 time steps. The initial temperature considered for t = 0 is T = 20 ◦C.

Aerospace 2022, 9, x FOR PEER REVIEW 8 of 14 
 

 

3  hot  2.2464 0.4287 0.1357 0.0378 0.0060 0.0047 

Close examination of the new predicted temperatures in Table 6 shows a dramatic 

improvement of the predicted values versus the initial error. Even for the poorest thermal 

parameters correlation (those with the highest standard deviation), the new set of temper-

atures match well with the correct temperatures. However, results when considering three 

load cases instead of two load cases for the correlation are worse, which is an unexpected 

result. The authors have no clear explanation for this fact. 

3.2. 7 Nodes Model 

The previous 4 nodes model showed the trends and limitations of the correlation 

method when applied to a theoretical small thermal model. It is interesting to make an 

equivalent study for a bigger model, which corresponds to a real device. In this section, 

we study a reduced 7 nodes model of the Tribolab instrument, a space tribometer that was 

flown on board the International Space Station [15]. Three of the nodes are sink nodes: 

two radiation sink nodes (nodes 99,241 and 99,271) and one conduction sink node (node 

10,000). The model consists of four linear conductances, two radiation conductances and 

four thermal inertias, for the transient cases, which can be seen in Figure 3. In the transient 

cases, the calculations run for 86.400 s (that is, one day) and time step Δ𝑡 = 600 𝑠. This 

makes a total of 144 time steps. The initial temperature considered for 𝑡 = 0 is 𝑇 = 20 °C. 

 

Figure 3. The 7 nodes model. 

Powers are applied in no sink nodes (85,040, 85,041, 85,070 and 85,071) and sink tem-

peratures are known. For this 7 nodes model, both steady state and transient results have 

been used in the parameter correlation. 

3.2.1. 7 Nodes Model. Correlation for Steady State Cases 

The results obtained for the parameters correlation in the steady state cases are col-

lected in Table 7. Two different situations are considered in these results: All the temper-

atures are known (first row) or two temperatures (those of nodes 85,040 and 85,050) are 

unknown (rows 2 and 3). For the correlation, the temperatures of two load cases were 

used (first row), three load cases (second row) or four load cases (third row). 

Table 7. Errors obtained for the TMM thermal parameters. Steady state 7 nodes model. 

   SD = 0.01 
SD = 

0.001 

SD = 

0.0001 
SD = 0.00001 SD = 0.0 

Un-

knowns 

No. of 

Load Cases 

Initial  

Error 
Error Error Error Error Error 

0  2  53.64% 60.94% 2.16% 0.87% 0.05% 0.02% 

2  3  53.64% 39.79% 16.11% 0.54% 0.07% 0.02% 

2  4  53.64% 174.16% 3.26% 0.14% 0.03% 0.02% 
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Powers are applied in no sink nodes (85,040, 85,041, 85,070 and 85,071) and sink
temperatures are known. For this 7 nodes model, both steady state and transient results
have been used in the parameter correlation.

3.2.1. 7 Nodes Model: Correlation for Steady State Cases

The results obtained for the parameters correlation in the steady state cases are col-
lected in Table 7. Two different situations are considered in these results: All the temper-
atures are known (first row) or two temperatures (those of nodes 85,040 and 85,050) are
unknown (rows 2 and 3). For the correlation, the temperatures of two load cases were used
(first row), three load cases (second row) or four load cases (third row).

Table 7. Errors obtained for the TMM thermal parameters. Steady state 7 nodes model.

SD = 0.01 SD = 0.001 SD = 0.0001 SD = 0.00001 SD = 0.0

Unknowns No. of
Load Cases

Initial
Error Error Error Error Error Error

0 2 53.64% 60.94% 2.16% 0.87% 0.05% 0.02%
2 3 53.64% 39.79% 16.11% 0.54% 0.07% 0.02%
2 4 53.64% 174.16% 3.26% 0.14% 0.03% 0.02%

As expected, a smaller standard deviation in the temperatures measurements implies a
better correlation of the parameters. The presence of unknown temperatures on some of the
nodes makes it more difficult (or even impossible) to obtain a correct thermal parameters
correlation. However, the use of more load cases balances the added difficulty and results,
for the thermal parameters are quite satisfactory if SD is equal or lower than 0.001. It is also
interesting to note that the results for SD = 0.1 behave in some unexpected way (they are
worse than the initial error) but the use of smaller values of SD improves the results clearly.

Once the thermal parameters have been obtained from the correlation, all the thermal
steady state cases have been calculated again using them. Results are collected in this case
in Table 8.

Table 8. Errors obtained for predicted temperatures for steady state 7 nodes model.

SD = 0.01 SD = 0.001 SD = 0.0001 SD = 0.00001 SD = 0.0

Unknowns No. of
Load Cases

Initial
Error Error Error Error Error Error

0 2 4.9444 1.0961 0.0466 0.0201 0.0012 0.0000
2 3 4.9444 0.6115 0.3247 0.0102 0.0012 0.0000
2 4 4.9444 0.7695 0.0814 0.0032 0.0005 0.0000
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Once again, a dramatic improvement of the temperatures predicted is achieved, even
for big standard deviations. The presence of unknown temperatures is well balanced with
the effect of taking into account more load cases for the correlation.

3.2.2. 7 Nodes Model: Correlation for Transient Cases

The simple 7 nodes case of the Tribolab instrument is also used in the transient version
of the correlation algorithm. The measured temperatures have been used in three different
situations, when all the temperatures are known, when one temperature is missed (that of
node 85,040) and when two temperatures are missed (those of nodes 85,040 and 85,070). For
each of these situations, two load cases, two load cases and four load cases have been used,
respectively. Errors with different standard deviation values were added to the reference
temperatures for each time step considered.

The results obtained for the thermal parameters can be seen in Table 9.

Table 9. Errors obtained for the thermal parameters for transient 7 nodes model.

SD = 0.01 SD =
0.001

SD =
0.0001

SD =
0.00001

Unknowns No. of
Load Cases

Initial
Error Error Error Error Error

0 2 49.88% 35.26% 1.10% 0.03% 0.02%
1 2 49.88% 1800.74% 218.57% 0.09% 217.82%
2 4 49.88% 22.94% 0.31% 0.06% 0.02%

With 0 and 2 unknowns and using two or four load cases, the results of the correlation
are good: smaller temperature deviations and enough load cases considered lead to a better
correlation, also for this transient case. However, behavior is somehow erratic when one
temperature is unknown and two load cases are used. There is not a clear explanation of
this fact. A possible human error in the model or a non convergence situations are possible
explanations of the unexpected behavior.

Results for the temperatures calculated with the thermal parameters obtained from
the correlation, can be seen in Table 10.

Table 10. Errors for predicted temperatures for transient 7 nodes model.

SD = 0.01 SD = 0.001 SD = 0.0001 SD = 0.00001

Unknowns No. of
Load Cases Case Initial

Error Error Error Error Error

0 2 cold 5.4945 1.6181 0.0262 0.0004 0.0001
0 2 TEM_cold 4.4784 0.2512 0.0162 0.0001 0.0000
0 2 hot 4.0152 1.1499 0.0190 0.0002 0.0001
1 2 cold 5.4945 0.6900 2.9599 0.0006 2.9444
1 2 TEM_cold 4.4784 2.2728 8.2142 0.0020 8.2095
1 2 hot 4.0152 3.2454 2.0224 0.0004 2.0349
2 4 cold 5.4945 0.1182 0.0051 0.0008 0.0000
2 4 TEM_cold 4.4784 0.1341 0.0059 0.0005 0.0000
2 4 hot 4.0152 0.1702 0.0075 0.0004 0.0000

The results for the temperatures are good, for zero and two unknowns, even if the
thermal parameters correlated were not that exact. The error in the temperatures is small,
even for high standard deviations. However, the one unknown case does not behave well,
which is consistent with the poor results obtained for the thermal parameters
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3.3. 16 Nodes Model

After the two previous small models, with limited number of nodes and thermal
parameters, a 16 nodes model was devised. It is called the Tribolab compact model,
because the model represents in a more accurate way the real geometry and thermal
behavior of Tribolab. The number of nodes is N = 16 and, between them, there are 22 linear
conductances and 25 radiative conductances. There is also one conductive sink node (node
10,000, the ISS) and one radiative sink node (node 99,292, the Space). The total number of
thermal parameters to be correlated is 58, as also the thermal inertias are considered in the
transient cases.

The model is shown in Figure 4, where the red dots represent the nodes, the dash lines
the radiative conductances (GRs), the solid thin lines the conductive conductances (GLs)
and the solid thick lines represent the presence of conductive and radiative conductances
(GLs and GRs) between the nodes.
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Figure 4. The 16 nodes model.

3.3.1. 16 Nodes Model: Correlation for Steady State Cases

Results for the thermal parameters correlation are shown in Table 11. All the temper-
atures of the nodes have been considered known and different standard deviation levels
have been considered. The four, five and six load cases results were taken into account for
the correlations.

Table 11. Errors obtained for thermal parameters correlation for steady state 16 nodes model.

SD = 0.01 SD = 0.001 SD =
0.0001

SD =
0.00001

Unknowns No. of
Load Cases

Initial
Error Error Error Error Error

0 4 24.78% 1659.27% 102.32% 39.72% 36.68%
0 5 24.78% 3315.36% 121.04% 49.57% 11.61%
0 6 24.78% 12277.32% 309.39% 28.58% 10.60%

Results seem to be poor, even if a high number of load cases are considered. Only for
a small value of SD = 0.0001, the thermal parameters have improved. However, as can be
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seen in Table 12, temperature results are good for all the error standard deviation values,
also with four, five or six load cases.

Table 12. Errors obtained for predicted temperatures for steady state 16 nodes model.

SD = 0.01 SD = 0.001 SD =
0.0001

SD =
0.00001

Unknowns No. of
Load Cases

Initial
Error Error Error Error Error

0 4 2.9050 0.7778 0.0872 0.0134 0.0022
0 5 2.9050 1.3962 0.2328 0.0062 0.0006
0 6 2.9050 0.8505 0.1067 0.0062 0.0021

3.3.2. 16 Nodes Model: Correlation for Transient Cases

Table 13 collects the results for the thermal parameters correlation when using two
load cases or four load cases and when the reference temperatures have different error
levels (standard deviation going from 0.0001 to 0.1).

Table 13. Errors obtained for thermal parameters for transient 16 nodes model.

SD = 0.01 SD = 0.001 SD =
0.0001

SD =
0.00001

Unknowns No. of
Load Cases

Initial
Error Error Error Error Error

0 2 25.87% 1943.51% 212.45% 43.36% 6.01%
0 4 25.87% 2275.82% 158.60% 20.79% 2.92%

Results show a poor behavior of the correlation methodology for the thermal parame-
ters and results only improve if SD = 0.0001 or lower.

However, the results for the temperatures field for the correspondent cases are better
than expected, as can be seen in Table 14. When using four load cases, all the results
obtained with the correlated parameters are better than the initial error of temperatures.

Table 14. Errors obtained for predicted temperatures for transient 16 nodes model.

SD = 0.01 SD = 0.001 SD = 0.0001 SD = 0.00001

Unknowns No. of
Load Cases Case Initial

Error Error Error Error Error

0 2 cold 3.5720 2.6416 5.5350 0.0017 0.0001
0 2 hot 0.9029 3.6093 2.6906 0.0018 0.0001
0 2 stay alive 3.8259 4.7448 7.9769 0.0830 0.0013
0 2 TEM 3.2337 4.2852 6.0736 0.0302 0.0005
0 4 cold 3.5720 2.2126 0.0613 0.0010 0.0002
0 4 hot 0.9029 2.3096 0.0393 0.0006 0.0001
0 4 stay alive 3.8259 2.4258 0.0558 0.0008 0.0003
0 4 TEM 3.2337 2.7939 0.0682 0.0005 0.0002

Finally, the correlation of this model done with transient results permits us to study
the possibility of trying the correlation even if some nodes temperatures are unknown. This
could be the case when thermocouples cannot physically reach the position of the node or
recording problems are experienced when testing. It is worth to be noted that this situation
makes it more difficult to obtain sensible results.

Table 15 collects the results obtained for the thermal parameters, when different
number of unknown temperatures are present and when different number of load cases
were used for the correlation.
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Table 15. Errors obtained for thermal parameters for transient 16 nodes model.

SD = 0.01 SD = 0.001 SD =
0.0001

SD =
0.00001

Unknowns No. of
Load Cases

Initial
Error Error Error Error Error

1 3 25.87% 2430.12% 126.95% 22.00% 6.01%
2 4 25.87% 1285.98% 777.48% 38.05% 48.99%
3 4 25.87% 210,717.03% 696.56% 56.61% 44,513.96%
4 4 25.87% 8205.55% 1167.98% 47.08% 5.78%
5 4 25.87% 9586.68% 1091.23% 5774.93% 3933.30%

The results show a poor behavior of the correlation algorithm when looking for
the correct thermal parameters. In general terms, the higher the number of unknown
temperatures, the higher the error when identifying thermal parameters.

However, the correlation algorithm makes its job minimizing the error function or at
least sending a set of thermal parameters that decreases the differences between measured
temperatures and predicted temperatures. This can be seen in Table 16, where almost all
the predicted temperatures are better values than the initial ones if the SD = 0.01 or lower.
This happens even for the cases where the number of unknown temperatures is high.

Table 16. Errors obtained for predicted temperatures for transient 16 nodes model.

SD = 0.01 SD = 0.001 SD = 0.0001 SD = 0.00001

Unknowns No. of
Load Cases Case Initial

Error Error Error Error Error

1 3 cold 3.5720 1.8114 0.2482 0.0016 0.0002
1 3 hot 0.9029 1.5564 0.0895 0.0015 0.0002
1 3 stay alive 3.8259 0.7281 0.2454 0.0016 0.0003
2 4 cold 3.5720 30.1191 0.0494 0.0015 0.0003
2 4 hot 0.9029 27.1682 0.0692 0.0011 0.0003
2 4 stay alive 3.8259 39.3655 0.0821 0.0017 0.0003
2 4 tem 3.2337 32.8056 0.0679 0.0018 0.0002
3 4 cold 3.5720 0.6806 0.1374 0.0024 0.4084
3 4 hot 0.9029 0.7816 0.0866 0.0014 0.3037
3 4 stay alive 3.8259 0.5962 0.1903 0.0020 0.3420
3 4 tem 3.2337 0.6749 0.1547 0.0018 0.3640
4 4 cold 3.5720 5.8415 0.1556 0.0025 0.0002
4 4 hot 0.9029 3.3647 0.1175 0.0017 0.0003
4 4 stay alive 3.8259 7.3023 0.2413 0.0038 0.0002
4 4 tem 3.2337 6.5212 0.1785 0.0035 0.0001
5 4 cold 3.5720 0.8924 1.5842 0.2424 0.4562
5 4 hot 0.9029 27.1682 0.8696 1.7305 0.3007
5 4 stay alive 3.8259 1.4440 1.9868 0.2824 0.5476
5 4 tem 3.2337 32.8056 2.0978 2.3228 0.5099

4. Conclusions

Results have been previously discussed when they were presented in Section 3 of
this paper. For this reason, in this final conclusions section, only the most remarkable and
general trends of the results will be highlighted.

The first idea is that the higher the error level in the measured temperatures, the more
difficult to reach convergence for the thermal parameters and, consequently, the higher
the error of these thermal parameter values. This fact can be observed in almost all the
analyzed cases.

A second point that must be underlined is that, in general, even if the values obtained
for the thermal parameters are poor, the temperatures obtained with models using these



Aerospace 2022, 9, 821 13 of 13

correlated parameters are better than the initial estimations before the correlation. This fact
is related to the absence of a unique solution to the correlation problem.

The third conclusion is that smaller models (4 or 7 nodes, with less than 10 thermal
parameters) obtain better results for the correlation than bigger ones. At the same time,
the presence of more load cases (measured temperatures) helps the correlation, as more
information is available for the minimization algorithm.

As a fourth conclusion, it can be said that a higher amount of data present in the
transient cases (data for different time steps) helps in the optimization if unknown node
temperatures are present in the process.

As a general conclusion, it can be stated that when measurement errors are present,
the correlation methodology based on the minimization set of subroutines TOLMIN cannot
guarantee good results in the correct thermal parameters identification, but almost always
reaches significantly better results than initial estimates for the temperature fields.

Author Contributions: Conceptualization, methodology and investigation I.G. and E.A.; writing,
review and editing, I.G. and E.A. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gilmore, D.G. (Ed.) Spacecraft Thermal Control Handbook, 2nd ed.; American Institute of Aeronautics and Astronautics: El Segundo,

CA, USA, 2002; Volume 1, ISBN 1-884989-11-X.
2. Meseguer, J.; Pérez-Grande, I.; Sanz-Andrés, A. Spacecraft Thermal Control; Woodhead Publishing: Cambridge, UK, 2012;

ISBN 978-0-84569-996-3.
3. Karam, R.D. Satellite Thermal Control for Systems Engineers. In Progress in Astronautics and Aeronautics; Zarchan, P., Ed.;

American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1998; Volume 181, ISBN 1-56347-276-7.
4. Silk, E.A. Introduction to Spacecraft Thermal Design; Cambridge University Press: Cambridge, UK, 2020.
5. Miao, J.; Zhong, Q.; Zhao, Q.; Zhao, X. Spacecraft Thermal Control Technologies; Springer: Singapore, 2021; ISBN 978-981-15-4983-0.
6. Redor, J.F. Introduction to Spacecraft Thermal Control; ESA Publications Division: Noordwijk, The Netherlands, 1995; ESA-EWP1599.
7. K&K Associates (Ed.) K&K Associates Thermal Network Modeling Handbook; K&K Associates: Westminster, CO, USA, 2002.
8. Klement, J. Quality Assessment for Parameters Obtained with Model Correlation. In Proceedings of the 31st European Space

Thermal Analysis Workshop, Noordwijk, The Netherlands, 24–25 October 2017; pp. 177–178.
9. Klement, J.; Anglada, E.; Garmendia, I. Advances in Automatic Thermal Model to Test Correlation in Space Industry. In

Proceedings of the 46th International Conference on Environmental Systems, ICES 2016, Wien, Österreich, 10–14 July 2016; Texas
Tech University: Lubbock, TX, USA, 2016; pp. 1–11.

10. Garmendia, I.; Anglada, E. Thermal Mathematical Model Correlation through Genetic Algorithms of an Experiment Conducted
on Board the International Space Station. Acta Astronaut. 2016, 122, 63–75. [CrossRef]

11. Torralbo, I. Correlation of Spacecraft Thermal Mathematical Models to Reference Data. Acta Astronaut. 2018, 144, 305–319.
[CrossRef]

12. Anglada, E.; Martinez-Jimenez, L.; Garmendia, I. Performance of Gradient-Based Solutions versus Genetic Algorithms in the
Correlation of Thermal Mathematical Models of Spacecrafts. Int. J. Aerosp. Eng. 2017, 2017, 1–12. [CrossRef]

13. Garmendia, I.; Anglada, E. Thermal Parameters Identification in the Correlation of Spacecraft Thermal Models against Thermal
Test Results. Acta Astronaut. 2022, 191, 270–278. [CrossRef]

14. Garmendia, I.; Anglada, E. Transient Thermal Parameters Correlation of Spacecraft Thermal Models against Test Results. Acta
Astronaut. 2022, 199, 49–57. [CrossRef]

15. Garmendia, I.; Anglada, E. Thermal Control of Tribolab, a Materials Experiment on Board the International Space Station. In
Advances in Materials Science Research; Wythers, M.C., Ed.; Advances in Materials Science Research; Nova Science Publishers:
New York, NY, USA, 2018; Volume 32, pp. 65–142. ISBN 978-1-53613-329-5.

16. Powell, M.J.D. A Tolerant Algorithm for Linearly Constrained Optimization Calculations. Math Program 1989, 45, 547–566.
[CrossRef]

17. Zhang, Z. Software by Professor M. J. D. Powell. Available online: https://www.zhangzk.net/software.html (accessed on
1 May 2021).

18. Mohebbi, F.; Sellier, M. Estimation of Functional Form of Time-Dependent Heat Transfer Coefficient Using an Accurate and
Robust Parameter Estimation Approach: An Inverse Analysis. Energy 2021, 14, 5073. [CrossRef]

http://doi.org/10.1016/j.actaastro.2016.01.022
http://doi.org/10.1016/j.actaastro.2017.12.033
http://doi.org/10.1155/2017/7683457
http://doi.org/10.1016/j.actaastro.2021.11.025
http://doi.org/10.1016/j.actaastro.2022.07.014
http://doi.org/10.1007/BF01589118
https://www.zhangzk.net/software.html
http://doi.org/10.3390/en14165073

	Introduction 
	Correlation Methodology and Handling of Measurements Uncertainties 
	Results Obtained for Different Case Studies and Discussion 
	4 Nodes Model 
	4 Nodes Model: Correlation for Steady State Cases 
	4 Nodes Model: Correlation for Transient Cases 

	7 Nodes Model 
	7 Nodes Model: Correlation for Steady State Cases 
	7 Nodes Model: Correlation for Transient Cases 

	16 Nodes Model 
	16 Nodes Model: Correlation for Steady State Cases 
	16 Nodes Model: Correlation for Transient Cases 


	Conclusions 
	References

