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Abstract

Civil infrastructures, such as bridges, are critical assets for society and the econ-
omy. Many of them have already reached their expected life and withstand load-
ings that exceed the design specifications. Besides, bridges suffer from various
degradation mechanisms, including aging, corrosion, earthquakes, and, nowadays,
the undeniable effect of climate change. This context has motivated an increas-
ing interest in early detecting damage to prevent costly actions and dangerous
failures. Structural Health Monitoring (SHM) consists of implementing effective
strategies to continuously assess the health condition of structures using moni-
toring data collected by sensors.
This dissertation focuses on the SHM problem of damage detection and identi-

fication. It is an ill-posed inverse problem that aims at inferring the health state
of a structure from measurements of its response. The measurements include
large amounts of noisy data affected by environmental and operational condi-
tions, acquired with sensors of different nature. Solving such a multidisciplinary
problem encompasses the use of applied mathematics, computational mechanics,
and data science. In this dissertation, we exploit the potential of Deep Neural
Networks in approximating complex inverse problems and employ computational
parametrizations and the Finite Element Method to enrich the training phase by
including damage scenarios.
We explore two different approaches to the problem. In the first approach,

we develop an outlier detection strategy to detect departures from the baseline
condition. We only employ long-term monitoring data measured at the bridge
during normal (healthy) operation. Starting from Principal Component Analysis
(PCA) as a statistical data reconstruction technique, we design a specific Deep
Autoencoder network that enhances PCA by adding residual connections to in-
clude nonlinear transformations. This architecture gains partial explainability
by evaluating the contribution of nonlinearties over affine transformations in the
reconstruction process. We also investigate the method performance when us-
ing local or global variables and evaluate the potential of combining both data
sources in the damage detection task.
In the second approach, we reach a higher level of damage identification by

estimating its severity and location. The goal is to provide a suitable methodology
for real full-scale applications that requires reasonable computational resources.
We employ a calibrated computational parametrization to solve multiple Finite
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Abstract

Element simulations under different damage scenarios. These synthetic scenarios
enrich the training dataset of a Deep Neural Network that maps the response
of the bridge with its health condition in terms of damage location and severity.
Finally, we incorporate the effect of environmental and operational variability
in the parametrization by applying a clustering algorithm to find representative
samples among the entire dataset. We assume these samples cover most of the
variability present in the data and consider them as starting points to generate
synthetic training data.
We apply the proposed methods to three main case study bridges with available

monitoring data: the Beltran bridge in Mexico, and the Infante Dom Henrique
bridge in Porto, and the Z24 bridge in Switzerland. Both structures resulted crit-
ical to validate and test the ability of the proposed methods and to demonstrate
their applicability in the full-scale.
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Resumen

Las infraestructuras civiles, como los puentes, son bienes cŕıticos para la sociedad
y la economı́a actuales. Muchas de estas estructuras ha alcanzado ya su vida
útil y actualmente se encuentra sometida a excesos de carga muy por encima
de las especificaciones de diseño. Además de esta sobrecarga, los puentes se
ven expuestos a diversos mecanismos de degradación, como el envejecimiento de
materiales y componentes, la corrosión, la ocurrencia de terremotos y, hoy en
d́ıa, un fenómeno tan innegable como es el cambio climático. La monitorización
de la salud estructural (SHM) consiste en implementar estrategias efectivas para
evaluar de manera continua la condición de salud de las estructuras mediante
datos procedentes de la monitorización.
Esta tesis aborda el problema de SHM de identificación y detección de daño

estructural. Se trata de un problema inverso que pretende inferir el estado de
salud de la estructura a partir de la medición de ciertas variables respuesta. Las
mediciones incluyen grandes cantidades de datos ruidosos, afectados también por
las condiciones operativas y ambientales en que trabaja la estructura, y se miden a
través de sensores de diferente tipo implantados en la estructura (acelerómetros,
galgas extensiométricas, termómetros, etc.). Resolver un problema multidisci-
plinar como este requiere la aplicación de matemáticas, mecánica computacional,
y ciencia de datos. En esta tesis, explotamos el potencial de las técnicas de Deep
Learning (DL), particularmente las redes neuronales profundas, para aproximar
problemas inversos complejos. Además, empleamos modelos computacionales y
el método de Elementos Finitos (FE) para simular escenarios de daño y enrique-
cer la fase de entrenamiento de las redes neuronales y lograr diagnósticos más
detallados.
Exploramos dos enfoques diferentes al problema de identifiación de daño. En el

primer método, desarrollamos una estrategia de detección de anomaĺıas capaz de
detectar salidas de una condición asumida como referencia o base. Empleamos
datos procedentes de monitorización a largo plazo medidos en el estado nor-
mal de funcionamiento de la estructura. Partiendo de la técnica de Análisis de
Componentes Principales (PCA) como herramienta estad́ıstica de compresión y
reconstrucción de datos, diseñamos una red neuronal profunda conocida como
autoencoder residual capaz de mejorar los resultados del PCA mediante la in-
corporación de transformaciones no lineales en las conexiones residuales. Esta
arquitectura proprociona una explicabilidad parcial al método, ya que permite
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evaluar la contribución de las no linealidades sobre las transformaciones lineales
en el proceso de reconstrucción. También investigamos el funcionamiento del
método para distintas variables de entrada. Comparamos la capacidad de de-
tección cuando se usan (a) solo variables locales, (b) solo variables globales, y (c)
la combinación de ambas.
En el segundo enfoque, buscamos alcanzar un nivel más alto en la identifi-

cación de daño mediante la estimación de su severidad y localización. El objetivo
es proporcionar una metodoloǵıa adecuada para aplicaciones a escala completa
que requiera una cantidad asumible de recursos computacionales. Empleamos
una parametrización computacional calibrada para representar la estructura real
y generar múltiples simulaciones FE en diferentes estados de daño clasificados
por localización y severidad del daño. Estos escenarios sintéticos se emplean para
enriquecer los datos de entrenamiento de una red neuronal profunda que establece
la relación entre la respuesta estructural medida a través de las propiedades
dinámicas (frecuencias y modos de vibración) y la condición de salud estruc-
tural en forma de localización y severidad del daño. Finalmente, incorporamos
el efecto de la variación ambiental y operativa en la base de datos sintética apli-
cando un algoritmo de agrupación de datos que identifica mediciones represen-
tativas. A partir de estas mediciones, se realiza el proceso de calibración de la
parametrización FE y se generan escenarios de daño sintético. Asumimos que
estas muestras representativas cubren la mayor parte de la variabilidad presente
en los datos y por tanto permiten generalizar mejor los diagnósticos.
Los métodos propuestos se aplican principlamente a datos procedentes de tres

casos de estudio reales: el puente Beltrán en Méjico, el puente Infante Dom
Henrique en Oporto, y el puente Z24 en Suiza. Estos datos han sido cŕıticos
para poder desarrollar y validar la capacidad de funcionamiento de los métodos
desarrollados en esta tesis, aśı como para demostrar su aplicabilidad en casos a
escala real.
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1 Introduction

1.1 Motivation

Civil infrastructures are critical assets for society and economy. Bridges suffer
from various degradation mechanisms, including aging, material deterioration,
or extreme loads [27, 48]. Another hazard that currently threatens bridges is
climate change [58]: temperatures suffer fast and extreme variations; floodings,
earthquakes, and tsunamis occur more often, and the water level is increasing in
many parts of the world. This situation has turned bridges into vulnerable assets
and imposes priority on ensuring their integrity and safe performance.
One key challenge in this context is the early identification of damage [50].

Visual inspections are the first attempt to evaluate the state of structures, but
they provide subjective diagnostics [22]. These practices are laborious, time-
consuming, risky, and their implementation often requires service shutdown [8,
92]. Besides, they detect only eye-accessible defects, such as cracks or spalling.
The inefficacy and limitations of visual inspections have promoted the emergence
of Structural Health Monitoring (SHM) [92]. SHM aims at solving the inverse
problem of damage identification by measuring the response of the structure
through instrumentation devices. The application of SHM practices contributes
to detecting damages at an early stage, allowing to timely take corrective actions
and prevent catastrophic failures [22]. This enables transit from traditional pre-
scheduled maintenance plans to condition-adaptive strategies, which are more
efficient in both economic and safety terms.
In recent decades, several civil engineering structures have been instrumented

for long periods with health assessment interests [83, 103, 29, 23, 91, 71, 39, 86].
There has also been a huge effort in developing SHM techniques using non-
destructive testing practices [75], computer vision [38], or Artificial Intelligence
methods [131]. Despite the improvements accomplished, SHM is still far from be-
ing a consolidated practice in the real world, with most works applied to lab-scale
pilots or parameterized models under controlled environments. Various challenges
prevent its robust implementation in full-scale operating systems, including the
uniqueness of each civil engineering structure, the uncertain and varying opera-
tional environment, the lack of empirical data regarding damage scenarios, and
the costly adaptation to large complex structural systems.
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1 Introduction

The vulnerability of currently operating civil infrastructures expresses the need
for reliable and effective SHM practices that overcome the existing challenges.
The recent technological advances in instrumentation, computation, and data
science, settle an unprecedented context for active research in the field. These
circumstances motivate the present thesis, which intends to contribute to devel-
oping and applying novel SHM practices to in-service structures.

1.2 Related work and literature review

1.2.1 Damage Identification and SHM

Let us denote the bridge response by uB. At its simplest level, a bridge behaves
as a simply supported beam with additional boundary conditions, governed by
the following partial differential equation:

W
B2uBpx, tq

Bt2
` C

BuBpx, tq

Bt
` KuBpx, tq “ qpx, tq, (1.1)

where W , C, and K are the inner properties of the structure and stand for
its mass, damping, and stiffness, respectively. The external load is represented
by qpx, tq, and variables x and t indicate position and time. For simplicity in
notation, from now on we ommit the location and time depedence, px, tq.
According to [41], damage can be defined as any change to the physical prop-

erties of a system that results in an adverse performance of that system. Damage
mainly affects the stiffness properties (K), causing a rigidity reduction that re-
flects on the bridge response, uB. Let F be the forward operator that relates the
bridge response uB with its properties and conditions:

uB “ FpW,C,K,BCs,qq, (1.2)

In practice, we obtain the response uB through monitoring campaigns M that
provide measured observations m “ uB ` ϵ, where ϵ contains the measurement
error. We denote G to the operator that yields the damage state DB as:

DB “ GpW,C,K,BCs,qq. (1.3)

The true value of the properties affected by damage is unknown and unmeasur-
able. Thus, solving Equation 1.3 becomes unfeasible. It turns damage identifi-
cation into an inverse problem, where we intend to infer the condition DB of a
structure using measurable observations m of its response [50]. Figure 1.1 illus-
trates the problem in a block diagram. The red-colored arrow denotes the inverse
operation (I) of damage identification.
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Damage Condition
DB

Bridge

Structural Response
uB

Observations
m

G F

M

I

Figure 1.1: The inverse problem of damage identification as a block diagram

According to Rytter [114], the identification of damage (i.e., the information
included inDB) has various levels in terms of the depth of the attained knowledge.
These levels are:

• Level I: detection (qualitative notification of the presence of damage)

• Level II: localization (estimate the probable location)

• Level III: quantification (estimate the severity of the damage)

• Level IV: prognosis (consequences of the given damage)

Achieving each level depends on the data availability and the complexity of the
SHM approach [41]. There are four main steps in the implementation of an SHM
strategy, namely, (i) operational evaluation, (ii) data acquisition and cleansing,
(iii) feature extraction, and (iv) statistical model development [41]. This disser-
tation focuses on step (iv), although it includes aspects related to the others.

1.2.2 Measurements in SHM

In large civil engineering structures, raw monitoring data may come from very
different sensor types and contain numerous sources of uncertainty. Deciding
what to measure is critical when implementing SHM for damage identification.
The measured observations m “ uB ` ϵ must be sensitive to the presence of
damage for the SHM strategy to be effective. In operating bridges, many phe-
nomena exist that make the structural response fluctuate over time regardless
of the health condition. These are Environmental and Operational Conditions
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(EOCs), including temperature, humidity, or traffic level. The bridge response
contains two affecting terms, i.e., uB “ fpuDam,uEOCq, where uDam accounts for
the effect of damage and uEOC refers to the effect of varying EOCs. The ideal
measurement would be highly sensitive to damage but poorly affected by EOCs.
Vibration-based SHM is a widely extended practice that employs the dynamic

response of the structure as the damage-sensitive feature [9, 80, 5]. In this con-
text, raw vibration measurements (e.g., acceleration signals) are often processed
through Operational Modal Analysis (OMA) [20] techniques to produce the modal
properties of the structure, mainly eigenfrequencies and eigenmodes [92]. Avci et
al. [12] reviewed the extensive literature on different data-driven approaches to
detect structural damage using vibration monitoring data.
While post-processing measurements to estimate eigenfrequencies is well es-

tablished (see e.g., [67, 139, 135, 21]), approximating eigenmodes (a.k.a., mode
shapes) presents additional difficulties. Only a few OMA techniques address
this challenge [88, 67], yet the accuracy of higher-order modes can be deficient.
For this reason, some vibration-based approaches employ only eigenfrequencies
as damage-sensitive features. For example, Comanducci et al. [31] investigate
various data-driven algorithms (dynamic regression, linear and local PCA, and
cointegration). They use time histories of eigenfrequencies measured in the In-
fante Dom Henrique bridge. Magalhães et al. [87] also employed Infante Dom
Henrique as the target structure to investigate the potential of eigenfrequencies
in damage detection. However, eigenfrequencies are global variables, and their
ability to provide information regarding damage location is limited [126]. It im-
plies that they yield only a level I diagnostic in the Rytter scale [114].
Recent developments in sensing technology and computational resources have

aroused a growing interest in exploiting raw time-domain measurements [131].
These include vibration (acceleration) signals and quasi-static changing responses,
such as displacements, rotations, or strains. [22]. These signals have demonstrated
detection capabilities, mainly when damage occurs nearby the sensor emplace-
ment (local variables). For example, Teng et al. [132] applies one-dimensional
CNNs to raw short-term acceleration signals. They validate the method in a labo-
ratory environment using a truss bridge and a frame structure. Azim and Gül [13]
employed strain measurements to detect damages in truss railway bridges. They
validated the method using a Finite Element (FE) model to simulate stiffness
reductions, achieving successful detection, location, and relative quantification of
damage.
But local variables lose sensitivity when the damage occurs far from their loca-

tion. This fact restricts the detectable damages to the instrumented region, and
very dense sensor arrays are required to cover the whole structural system. In
this sense, including global variables (eigenfrequencies) seems promising to solve
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the detection problem. Only the work presented by Alten et al.[4] was found to
study the detection ability of eigenfrequencies, strains, and rotations separately
in a post-tensioned reinforced concrete bridge. Combining both data sources (i.e.,
local and global) in full-scale bridges remains unexplored in the existing literature
and arises one of the contributions of this thesis.

1.2.3 Model-based damage identification

There are two broad approaches to solve the damage identification problem:
model-based and data-driven. Model-based approaches account for the physics
that govern the structural behavior [50]. These techniques require strong physical
knowledge and modeling skills [12]. Model-based methods estimate the structural
properties of a numerical approximation to minimize the discrepancy between its
response and that of the real structure [130]. This technique has been extensively
applied in the civil engineering field and is broadly known as Finite Element
Model Updating (FEMU) [51].
There are two main scopes of FEMU in SHM: calibration, and damage iden-

tification. Calibration is the process of updating the values of the structural
properties to attain a reliable baseline parametrization. The goal is to reduce
uncertainties and unknowns in the model given some experimental input. Hence,
the variation interval within this approach is small. Some cases of FEMU for
calibration can be found in [30, 112, 117]. For example, [112] solves a calibration
problem by updating the parameters of a bowstring-arch railway bridge using a
genetic algorithm. They feed the updating process with the response obtained
during an ambient vibration test (eigenfrequencies, eigenmodes and damping co-
efficients).
On the other hand, FEMU can also be applied to evaluate an unknown bridge

condition and identify damage by enforcing the model to reproduce a measured
response. In this diagnostic phase, since the real damage condition is unknown,
a much wider interval of variation is assumed for the parameters, yielding to
computationally expensive procedures [61]. Some authors, such as Liu et al. [82]
and Tran-Ngoc et al. [136], apply FEMU for damage identification in full-scale
structural systems. Work [6] employs a genetic algorithm-based FEMU to a
railway bridge with successful location and quantification of damage.
The main limitation of model-based approaches is the huge computational effort

required to provide a diagnostic. FEMU can be very time-consuming when a large
number of parameters with a wide variation interval is involved [89]. This often
prevents its application as a real-time assessment method.
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1.2.4 Data-driven damage identification

As opposed to model-based, data-driven methods rely exclusively on measure-
ments [119]. The core idea is to characterize the reference behavior of the
structure by measuring some features of its response during long-term opera-
tion [37, 40]. Traditional data-driven methods employ statistical pattern recog-
nition [63] and control charts of directly measured variables [76].

1.2.4.1 Data compression techniques

As previously introduced, any measurement contains three main terms:

m “ uDam ` uEOC ` ϵ (1.4)

One of the most challenging issues in data-driven SHM is tackling the effect of
environmental and operational variability introduced by uEOC [111, 107, 125, 8].
These phenomena affect the system and may conceal the damage detection ability
of the algorithms [128, 92]. Numerous statistical methods have been developed to
address this problem, such as autoregressive models [12] or Principal Component
Analysis (PCA) [102, 32, 31, 92].
PCA is an statistical data compression tool widely employed in SHM [134,

16, 129, 53]. It applies a linear transformation of the data into the orthogonal
subspace formed by the most relevant eigenvectors of the data covariance matrix
[104]. This method allows isolating environmental and operational variability
by projecting the data onto the most relevant principal components (eigenvec-
tors) [94]. There exist numerous applications of PCA in damage detection [31,
129, 53, 54]. For example, Mujica et al. [94] use the residual between a sample and
its corresponding projection onto the model of principal components as a nov-
elty indicator for structural condition assessment. In our work [53], we propose
an outlier detection method to assess the behavior against horizontal loads of a
bridge in Mexico. The goal is to detect malfunctions in the sliding bearings that
allow the relative displacement between the deck and the piers. We apply PCA to
compress monitoring data from four longitudinal displacement sensors and calcu-
late a single-value damage indicator for outlier detection. Analogously, work [13]
proposes a PCA-based damage detection strategy for truss railway bridges using
strain time-history responses. They validate the method numerically using an
analytical model with induced aritifical damage.
Since PCA performs data compression via a linear mapping, it may lose impor-

tant (irrecoverable) information [115]. Some nonlinear approaches have emerged
to overcome this problem, such as Kernel PCA [95, 56]. But adequately select-
ing the nonlinear function for Kernel PCA is often a challenging task that may
prevent obtaining successful results.
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1.2.4.2 Machine Learning techniques

With the irruption of Artificial Intelligence, more complex data-driven techniques
have emerged, where an important branch is Machine Learning (ML) [116].
Neural Networks (NNs) are the most common form of Machine Learning technique
[25]. Compared to traditional data-driven approaches, NNs have the potential to
effectively approximate complex nonlinear functions. According to the universal
approximation theorem, a single-layered network can approximate any function
when enough hidden units are available [70]. But employing a single layer may be
a suboptimal way of addressing highly complex problems. During decades, there
has been a huge evolution in the configuration and training of Deep Learning
(DL) methods, particularly Deep Neural Networks (DNNs) [59, 64].
DNNs have demonstrated to be powerful techniques in SHM applications [14,

34, 124, 127, 46, 132, 142, 93]. Some works, such as [131, 14, 116], provide insight-
ful reviews on the evolution of Artificial Intelligence based methods in the field
of SHM. In this context, the goal of the DNN is to approximate the mathemat-
ical relationship between the response of the structure and its health condition,
represented by function I in Figure 1.1. We often refer to this approximation
as Iθ, where θ include all the involved parameters of the DNN. Since DNNs
undergo a training phase to learn this function, the computational effort concen-
trates during training, yielding practically real-time predictions [14]. This is an
important advantage over model updating techniques. For example, Mehrjoo et
al. [90] propose a feedforward NN-based SHM method for damage detection in
truss bridge structures. The NN estimates damage severity at the joints using
eigenfrequencies and eigenmodes as input data.
CNNs are very poweful due to their ability to extract high-level representations

features from data [116]. They have been extensively applied in image processing
problems such object classification and recently progressed in the field of SHM.
For example, work [15] employs a CNN trained with acceleration time histories
and compressed histograms to detect and localize damage in large scale struc-
tures. Abdeljaber et al. [2] employ one-dimensional Convolutional Neural Net-
works (CNN) to detect and locate damage at the different joints of a steel frame
in a laboratory environment. An independent CNN is designed and trained for
each of the joints. Other works, such as [140] or [143], employ CNNs to find out
cracks from images of the target structure.

Autoencoders

Autoencoders are a specific Deep Neural Network type based on the same idea
of data compression as PCA but including nonlinearities [115]. An autoencoder
reconstructs the input data by following two steps: encoding and decoding [17].
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The encoding step compresses the data onto a lower-dimensional representation
(dimensionality reduction), and the decoding step reconstructs the original mea-
surements from the lower-dimensional features [68]. During training, the autoen-
coder learns to reconstruct data from the healthy condition of the structure, which
includes environmental and operational variability [124]. The reconstruction error
measures the discrepancy between a measurement and its reconstruction. When
we obtain new measurements that belong to a similar (undamaged) condition, we
expect the autoencoder will adequately reconstruct them with a small error value.
It is assumed that the variability induced by damage affects the data differently
than environmental and operational phenomena [111]. Thus, we expect that the
autoencoder yields a high reconstruction error with the appearance of damage
that sufficiently affects the measurements [26, 96].
Recently, autoencoders have been employed for outlier detection in several ar-

eas [49]. Several works exist in the literature employing reconstruction error in
SHM applications [49, 28, 96, 7]. For example, Chen et al. [28] apply autoencoder
ensembles for outlier detection to various benchmark datasets and compare its
effectiveness to other traditional techniques. Oh et al. [97] employ an autoencoder
network to detect abnormal operation sounds of a complex machine using audio
spectrograms. Li et al. [79] propose a hybrid autoencoder for anomaly detec-
tion in meteorological measurements to handle spatio-temporal data. All these
works employ basic autoencoder architectures and dismiss the transition process
to outperform linear data compression approaches.

1.2.5 Combined model and data-based damage identification

One clear advantage of data-driven approaches over model-based is their ability
to provide almost real-time diagnostics once trained. Besides, they skip the need
to create accurate FE models. But the main challenge for their implementation
in the civil engineering field is the lack of real experimental data regarding pos-
sible damage scenarios. This restricts their application to unsupervised learning
alert systems that detect departures from the pre-characterized healthy condi-
tion [37]. Achieving more insightful diagnostics requires the incorporation of
synthetic damage scenarios from FE simulations. This enlarges the learning do-
main of data-driven algorithms and allows to reach levels II and III of damage
identification (location and quantificaition) in Rytter scale [114].
Some hybrid approaches that incorporate numerical simulations as an addi-

tional source of information have been recently investigated [100, 45, 93, 144,
121, 120]. Figueredo et al. [45] address an unsupervised learning problem by
feeding the data-driven algorithm with synthetic data from healthy conditions
under different simulated environments. In the supervised field, Pathirage et
al. [100] apply autoencoders to identify damage in a small-scale frame structure.
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They employ the stiffness reductions caused by damage at each element of the
system directly as the output variables to be predicted. Zhang et al. [144] pro-
pose a physics-guided neural network approach to localize damage in structures.
They design a loss function that accounts for the discrepancy between the pre-
diction given by the data-driven algorithm and the result of model updating to
enhance the diagnostic. Mousavi et al. [93] propose a hybrid technique to de-
tect damage in a laboratory beam structure using a Deep CNNs. They train the
NN using frequency data from the healthy experimental response and numerical
simulations to include damaged scenarios. Authors use the undamaged response
to update the parameters of the numerical model before running damage simula-
tions. Seventekidis et al. [122] also employ a CNN classifier to detect structural
damage in an experimental benchmark beam. The training phase includes sim-
ulated responses from a computational model that is initially updated for the
healthy state, including different load conditions and damaged states. Analo-
gously, in [120], authors propose a CNN-based classification approach to identify
damage in a pin-joint composite truss structure using synthetic data from FE
models. Despite the successful results obtained within these works, all of them
remain in a laboratory implementation and their practicality on the full scale has
not been demonstrated yet.

1.3 Contributions of the Dissertation

This dissertation intends to contribute to the transition from research to the
real practice of SHM damage detection methods for full-scale operating bridge
structures. We address the implementation of Deep Learning techniques from
a mathematical understanding found in traditional data compression techniques
such as PCA to provide comprehensible solutions. We contribute to this appli-
cability through various developments, some of them already included in recent
publications [53, 43, 44].
In work [53], we provide an unsupervised SHM approach based on PCA to

monitor the global behavior of the sliding bearings in the Beltran viaduct, in
Mexico. We first demonstrate the existence of strong linear correlations in the
relative displacements measured at the deck-pier connections of the bridge during
nine months of monitoring. We then employ linear PCA to compress the mea-
surements and design a robust performance indicator for outlier detection that is
only weakly affected by temperature variations. This work delivers a fully appli-
cable SHM practice for operating bridges that satisfy the assumption of linearly
correlated measurements.
Work [43] proposes a DL-based enhancement of PCA for outlier detection to

assess the structural condition of two operating bridges. We investigate the lim-
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itations of linear PCA by first replicating its compression and reconstruction
ability with an autoencoder NN architecture. We then incorporate deep residual
connections to account for nonlinear relationships in a partialy explainable way.
By fixing the weights obtained after training the linear autoencoder, we realize
the enhancement provided by including nonlinear relationships. The blockwise
configuration of the autoencoder enables the activation or deactivation of the
residual connections. This work provides an enhanced outlier detection method-
ology for full-scale bridges that adapts to both linear and nonlinear variability
environments.
We provide a comparative study regarding the use of global and local monitor-

ing variables, as well as their combination. We apply the deep residual autoen-
coder architecture developed in [43] to long-term monitoring data including (a)
global variables (eigenfrequencies), (b) local variables (inclinations and strains),
and (c) the combination of both. We first investigate the contribution of each
variable type in the detection of damage, demonstrating that combining both
sources of data contributes to extend the detectable damage locations and reduce
the minimium sensitivity level. We subsequently analyze the potential of local
variables to determine the location of damage when it occurs nearby a particular
sensor emplacement. This work reveals the benefits of deploying complementary
monitoring systems to achieve robust and insightful damage detection assessment
for large bridge structures under service.
Work [44] addresses the inverse problem of damage identification throughout

a supervised learning approach. We overcome the lack of real damage scenar-
ios using FE simulations that recreate stiffness reductions at different bridge
parts and obtain the dynamic response in the form of eigenfrequencies and eigen-
modes. Computational mechanics provide the basis to understand and simulate
the behavior of the bridge structures. We define the relationship between the
FE parametrized damage and two identification labels: location and severity. We
then train a DNN that maps the dynamic response of the bridge to its health con-
dition according to the damage description labels. This work provides a higher
level diagnostic compared to the unsupervised approaches addresed in [53, 43]
since it estimates the location and severity level of the damage.
Finally, we also explore the challenging task of including the effect of varying

environmental and operational conditions in the combined methodology proposed
in [44]. This last research provides a novel methodology based on Gaussian Mix-
ture models to classify experimental data and select significant points to build
the synthetic database for training.
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1.4 Outline of the thesis

The remainder of this thesis is structured as follows: Chapter 2 addresses the
development of the deep enhanced PCA technique proposed in [43] and its appli-
cation to two full-scale operating bridges. It includes the analysis of combining
local and global variables to improve the diagnostic. Chapter 3 is devoted to the
implementation of the supervised learning damage identification method devel-
oped in [44]. Chapter 4 addresses the challenge of accounting for varying EOCs in
the synthetic database of the combined model-based and data-driven approach.
Chapter 5 summarizes the main conclusions and remaining challenges to be ad-
dressed as future research. Finally, Chapter 6 includes the main achievements
of this dissertation including the scientific contributions, the published works in
journals, and the conferences and workshops developed within the framework of
the thesis.
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2 Deep Learning enhanced PCA

2.1 Introduction

This chapter addresses the problem of damage detection in bridge structures
using an unsupervised learning approach. As introduced in Chapter 1, one of the
key challenges of this approach is the effect of changing EOCs on the monitoring
data.
PCA is one of the most extensively employed practices to tackle this issue, since

it only requires long-term monitoring data from the bridge response [134, 16, 60].
The main limitation of PCA is that it performs well in linearly correlated (and
weakly nonlinear) spaces but worsens with more complex relationships. In the
field of civil engineering, monitoring data may come from very different types of
sensors affected by several phenomena, yielding a highly nonlinear data space.
This restricts the use of PCA for our particular purpose.
With an autoencoder NN, we can easily overcome the limitation of PCA since

it incorporates nonlinear transformations. However, the standard autoencoder
architecture lacks explainability in terms of separating the contribution of non-
linear operations over simple linear transformations. We develop a particular
autoencoder architecture that uses residual connections to obtain a partially ex-
plainable NN [10]. Explainability is a key advantage of our proposed architecture
as it enables to work with simple linear transformations when possible and incor-
porate nonlinearities if required. Imposing specific constraints during training,
we can also attain specific solutions such as PCA in the linear approach. The
architecture also allows understanding the enhancement process with respect to
traditional PCA.
We apply the designed residual autoencoder to assess the structural behav-

ior of operating bridges. While most bridge SHM works focus on the dynamic
properties and acceleration signals [87, 31, 106, 24, 81, 42], here we exploit other
measurable time series from long-term monitoring campaigns. The input vari-
ables are measurements from different sensors and constitute the target output
to be predicted by the autoencoder. We use the reconstruction error as a single-
value novelty indicator for outlier detection. We apply this methodology to two
real structures under service. The first one employs the same dataset as Garcia-
Sanchez et al. [53] for the Beltran bridge in Mexico. The second case study
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includes multivariate sensor data from a continuous monitoring campaign of five
years of service life of bridge Infante Dom Henrique in Porto, Portugal.

2.2 Principal Component Analysis (PCA)

PCA is one of the most widely used data compression techniques for outlier de-
tection [60]. Its main application in SHM is removing the effect of environmental
and operational variability. As opposed to other techniques (e.g., autoregressive
models), PCA avoids measuring environmental/operational variables since they
are considered embedded variables [141].
PCA applies an affine transformation to project the original multivariate dataset

into a lower-dimensional vector subspace defined by the directions that contain
most of the variance present in the data [137]. Let M P Mnˆv be a set of n
rescaled measurements from v variables (sensors). We express the compression
into a k-dimensional space as a linear mapping:

Z “ TM, (2.1)

where matrix T P Rkˆv is the transformation matrix, with k ă v. We calculate
matrix T by applying Singular Value Decomposition (SVD) [138] to the covariance
matrix C of the original dataset:

C “ MMT
“ WΛW T . (2.2)

Here, W P Rvˆv is an orthogonal matrix (WW T “ I) containing the eigenvectors
of C (Principal Components or PCs) columnwise , and Λ is a diagonal matrix
with the eigenvalues of C. The transformation matrix T is formed by the first
k columns of W . Hence, the latent representation Z contains the data features
compressed into the k-dimensional space. We can apply the inverse operation as:

M̂ “ T TZ “ T TTM. (2.3)

This operation remaps the data back into the original space with minimal recon-
struction error: E “ M ´ M̂ . Figure 2.1 shows an example of PCA projection
from a three-dimensional original data space to a two-dimensional one.
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2D linear subspace to project the data
with minimal error
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Figure 2.1: Example of PCA projection from a 3D to a 2D space
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2.3 Autoencoders

Autoencoders are a specific DNN type based on the same idea of data compression
and reconstruction as PCA, but including nonlinearities [115]. An autoencoder
contains two parts: an encoder and a decoder [17].
For a certain measurement m “ pm1,m2, ...,mvqT in the original dataset

M P Mnˆv, the encoder FE : Rv Ñ Rk compresses the data onto a k-dimensional
representation z “ FEpm;θEq, with θE being the encoder NN parameters. The
decoder FD : Rk Ñ Rv reconstructs the original measurements from the lower-
dimensional features m̂ “ FDpz;θDq, where θD contains the decoder parame-
ters [68]. As with any NN, the encoder and the decoder apply a composition of
a series of affine transformations followed by element-wise nonlinear activation
functions throughout lE and lD layers, respectively. We express both terms as:

FEpm;θEq “ N ˝ AlE
E ˝ N ˝ AlE´1

E ˝ ... ˝ N ˝ A1
E . (2.4)

FDpz;θDq “ N ˝ AlD
D ˝ N ˝ AlD´1

D ˝ ... ˝ N ˝ A1
D . (2.5)

Here, N is a nonlinear activation function (e.g. ReLu); Aj
i “ W j

i x ` bj
i indicates

an affine transformation with weights W j
i , bias b

j
i and input data x; and symbol

˝ indicates composition operation. Figure 2.2 shows the standard autoencoder
architecture.

mi ∈ RS

zi ∈ Rk

m̂i ∈ RS

Encoder FE Decoder FD

Figure 2.2: Standard architecture of an Autoencoder
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Autoencoders introduce nonlinear functions into the reconstruction process.
Determining the enhancement of this approach over linear transformations re-
quires first replicating PCA results in terms of reconstruction. But given its
NN topology as an alternate composition of affine and nonlinear functions, the
standard autoencoder architecture is unable to map the vector subspace of affine
transformations that include PCA. This prevents evaluating the contribution of
nonlinearities over the linear approach, yielding a non-explainable NN. Besides,
it is unclear if the selected architecture (number of layers and neurons) will out-
perform PCA.

2.4 Residual Autoencoder Architecture

We design a novel deep autoencoder architecture that is explainable. Figure 2.3
shows the block-wise topology of the network. The black-colored blocks contain

Fa

Fb

Fc

Fd

FE = Fa +Fb FD = Fc +Fd

Figure 2.3: Proposed deep residual autoencoder architecture

the standard encoder and decoder architectures with the composition of affine and
nonlinear transformations. By adding parallel connections (blue-colored blocks),
we skip the nonlinear operations involved in Fb and Fd. This approach allows to
map the subspace of affine transformations and reproduce PCA. The following
equations describe the operations at each block:

Fapm;θaq “ Wam ` ba. (2.6)

Fcpz;θcq “ Wcz ` bc. (2.7)

Fbpm;θbq “ N ˝ Alb
b ˝ N ˝ Alb´1

b ˝ ... ˝ N ˝ A1
b . (2.8)

Fdpz;θdq “ N ˝ Ald
d ˝ N ˝ Ald´1

d ˝ ... ˝ N ˝ A1
d. (2.9)
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We can interpret this parallel architecture as a Residual Neural Network (RNN)
[66], where the NNs in the blocks Fb and Fd represent the residual terms, and
the blue blocks (Fa and Fc) refer to the skip connections. Our skip connections
are affine transformations instead of identity mappings, which are more general
and can reproduce PCA.
This architecture endows the autoencoder with partial explainability since we

can separate the contribution of linear and nonlinear transformations. When
we deactivate the residual terms, the autoencoder applies two consecutive affine
transformations (Fa and Fc), analogous to PCA. As a result, the autoencoder
will attain same or better-quality results than PCA transformations in terms of
data reconstruction, under assumption of optimal network training.
Contrary to traditional PCA (and other statistical techniques), NNs require

a training phase to obtain the optimal parameter values that solve the approx-
imation of interest. The objective of the autoencoder is to recover the original
measurements from their lower-dimensional representation. The reconstruction
error ρpmq measures the misfit between an original data point m and its corre-
sponding reconstruction m̂ using the squared l2 norm:

ρpmq “ }m ´ pFD ˝ FEqθpmq}
2
2, (2.10)

where θ “ tθa,θb,θc,θdu contains the weight and bias parameters of the four
modules that build the complete autoencoder, and ˝ stands for the composition
operator.
Training the model consists of finding the parameter set θ˚ that minimizes a

loss function Lθ based on the reconstruction error for the training dataset M:

Lθ˚ :“ argmin
θ

}M ´ pFD ˝ FEqθpMq}
2
2 (2.11)

Here, we perform a two-step training to evaluate the enhancement of adding
nonlinear terms to the linear autoencoder that approximates PCA.

2.4.1 Training step 1

During the first step, we deactivate the nonlinear blocks of the architecture (Fb

and Fd) and train only for the linear blocks (Fa and Fc). This yields the final
linear autoencoder, with parameters θ˚

a and θ˚
c . Figure 2.4 represents the ar-

chitecture of the linear autoencoder, where the nonlinear terms are deactivated.

PCA is a particular solution to this linear problem that satisfies particular re-
strictions [72]. By definition, principal components are orthonormal and produce
uncorrelated z features [72]. To attain the exact solution of PCA (i.e., trans-
formation matrix T in equation 2.1), we can impose these constraints on the
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Fa

Fb

Fc

Fd

LStep 1
θ∗ := argminθ ∥M− (Fa ◦ Fc)θ(M)∥22

Figure 2.4: Step 1: train the linear autoencoder

weight matrix Wa as well as Wc “ W T
a during the training phase. In such a case,

ba P Rv and bc P Rk are null vectors, and the weight matrices Wa P Rvˆk and
Wc P Rkˆv contain the first k eigenvectors of the covariance matrix C column-
wise and row-wise, respectively. Focusing on data reconstruction, we can employ
a linear autoencoder that replicates PCA or any other solution that captures the
same level of information. If we impose no constraints, the linear autoencoder
obtains a different but valid solution in terms of data reconstruction.

2.4.2 Training step 2

In the second step, we activate the nonlinear connections to build the residual au-
toencoder. Instead of retraining the linear blocks, we freeze the parameter values
obtained during step 1 and train only the residual ones. With this approach, we
continue the training from the linear solution, allowing to measure the enhance-
ment of the residual terms. Figure 2.5 shows the second training step, where F˚

a

and F˚
c stand for the linear blocks optimized during step 1.
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F∗
a

Fb

F∗
c

Fd

Non-trainable blocks

LStep 2
θ∗ := argminθ ∥M− (FD ◦ FE)θ(M)∥22

Figure 2.5: Step 2: train the residual autoencoder

2.5 Unsupervised SHM strategy: outlier detection

The final goal of the methodology is to detect abnormal behavior of bridges from
experimental measurements acquired during monitoring. We train the residual
autoencoder with measurements from the undamaged (healthy) condition. The
reconstruction error is expected to be small for unseen measurements that corre-
spond to this state. But if we evaluate new data coming from a different scenario
(namely, a damaged one), the autoencoder will poorly reconstruct them.
We employ the reconstruction error ρ as the damage-sensitive indicator. The

threshold value α for outlier detection is the 99 percentile of the training dataset.
For a new measurementmnew P Rv acquired within a future monitoring campaign,
we obtain the reconstruction error and compare it against the threshold value.
Algorithm 1 describes this procedure.

Algorithm 1: Reconstruction error-based outlier detection

Input: mnew P Rv, FE, FD, θ˚, α
Output: ρ

1 Compute the reconstruction error: ρ “ }mnew ´ pFD ˝ FEqθ˚pmnewq}22
2 if ρ ą α then
3 mnew is abnormal, indicate outlier
4 else
5 mnew is healthy
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2.6 Results using quasi-static data

Here we present results obtained with data from monitoring systems recording
local variables (quasi-static measurements such as displacements or inclinations)
instead of dynamic response in the frequency domain.

2.6.1 Beltran bridge in Mexico

We apply the proposed method to assess the global behavior of an asymmetric
prestressed concrete viaduct in Mexico: the Beltran bridge. The bridge contains
four sliding bearings at the deck-pier contacts to allow for relative displacements
and limit the horizontal loads reaching the piers. But if these devices lose their
sliding properties, large displacements and subsequent cracking can occur at the
pier caps. Garcia-Sanchez et al. [53] provide further details. Figure 2.6 shows the
profile of the bridge.

Figure 2.6: Beltran bridge profile with sensor location

The monitoring campaign used fiber optic sensors and was active from August
2012 to August 2013. Due to occasional shutdowns of the system, the effective
monitoring time was of approximately nine months. We employ time series from
four longitudinal displacement sensors (see Figure 2.6). The data was acquired
at a sampling frequency of 200 Hz, and the mean value was calculated and stored
every ten minutes for each sensor. This sub-sampling considerably reduces the
storage space while permitting the analysis of long-term variations. After this
pre-processing step, we have four sensor signals (v “ 4) with 37,692 measure-
ments each. We employ the first 90% of the data randomly split into 85% for
training and 15% for validation. We use the final 10% for testing purposes. We
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Table 2.1: Comparison of PCA and constrained linear autoencoder

PCA Constrained approach Unconstrained approach

PC1 PC2 w1
a w2

a w1
a w2

a w1
c w2

c

0.5365 0.1071 0.5362 0.1077 -0.6544 0.4597 -0.2502 0.2914

0.4957 -0.5296 0.4954 -0.5308 -1.0375 -0.1796 -0.4716 -0.2116

-0.5078 0.3025 -0.5084 0.3016 0.8989 -0.0449 0.3907 0.0359

0.4567 0.7852 0.4750 0.7846 -0.0789 1.0556 0.0450 0.7865

Captured: 90.41% Captured: 90.41% Captured: 90.41%

adapt the architecture described in section 2 to fit the four-dimensional input.
The nonlinear connections are symmetric and contain three layers each. This
architecture provides adequate results. We first train for the linear autoencoder
(training step 1) for a two-dimensional compression. We design the linear autoen-
coder to replicate PCA by imposing the constraints that hold for the principal
components. Table 2.1 compares the transformation matrices of traditional PCA
(PC1 and PC2 stand for the first two principal components of the training data
covariance matrix), the designed linear autoencoder with the constraints, and an
unconstrained approach with null bias terms. We observe that the three config-
urations capture the same level of information. In subsequent steps in this work,
we employ the constrained linear autoencoder that replicates PCA results.
After solving the linear autoencoder, we incorporate the nonlinear connections

(Fb and Fd) to build the nonlinear autoencoder. According to the two-step train-
ing, we fix the previously obtained weight matrices and only train the nonlinear
modules. Figure 2.7 shows the evolution of the loss functions for the training
and the validation datasets for the two training steps. The number of epochs
indicates the repetitions over the training dataset to minimize the loss function.
We observe in figure 2.7a that the first training step (linear autoencoder) con-
verges after just 50 epochs with a loss function value of 0.0946 for the training
dataset. Figure 2.7b shows the effect of adding the nonlinear connections to the
linear autoencoder (training step 2). The loss function decays to a value of 0.0171
after 300 epochs. When the output dimension of the encoder is equal to two, the
amount of information captured during training raises from 90.41% to 98.05%
when we add the deep nonlinear connections. This means that the nonlinear
terms contribute to reduce the reconstruction error from 9.59% to 1.95% (« 80%
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Final value Lθ∗ = 0.0959

(a) Loss evolution during training: step 1
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Final value Lθ∗ = 0.0171

(b) Loss evolution during training: step 2

Figure 2.7: Loss function evolution for the Beltran bridge dataset

error reduction). When the output dimension of the encoder is reduced to one,
the level of captured information is below 90% for both architectures. This makes
impractical the outlier detection task.
For comparison, we implemented a kernel PCA and tried different kernel func-

tions (radial basis (rbf) and cosine functions) [69]. For the rbf function, we
attained a 42.99% of information captured, and a 76.77% was attained for the
cosine function. Since the real distribution of the data is unknown, it is nontrivial
to find a kernel function that outperforms the linear solution.
We analyze the reconstruction ability of the two configurations via the cross-

plots (ground truth vs predictions) of the sensor signals. Here, the ground truth
are the measurements of each sensor, and the predictions are the reconstructed
variables. The square of the correlation coefficient r2 provides a numerical mea-
sure of the correlation between ground truth and prediction for each sensor (see
Table 2.2). Figure 2.8 compares the crossplot corresponding to sensor 1 for the
linear and the nonlinear models. We observe a superior performance for the
complete model with nonlinearities.
We finally determine the threshold value α as the 96th percentile (p-96) over the

training reconstruction errors. We select a percentile vallue that ensures a rate
of false positives below 5% as well as delivers adequate equilibrium between false
positves and negatives. Figure 2.9 shows the histograms for the linear and nonlin-
ear autoencoder training reconstruction errors, and the corresponding threshold
values.

2.6.1.1 Testing results

We now test the ability of both autoencoder configurations in the detection of
outliers. We use the testing dataset that contains the final 10% of the data. We
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Table 2.2: r2 metric for the sensors in Beltran bridge

Sensor ID Sensor type Linear model Residual model

1 Displacement 0.891 0.978

2 Displacement 0.908 0.981

3 Displacement 0.842 0.981

4 Displacement 0.975 0.988

(a) Linear auteoencoder (b) Residual autoencoder

Figure 2.8: Beltran bridge training crossplots for sensor 1

(a) Linear autoencoder (b) Nonlinear autoencoder

Figure 2.9: Beltran bridge reconstruction error training histograms
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simulate damage by reducing the displacement measurements at one of the sensors
to represent a loss of sliding properties at that bearing. We do so by applying a
reduction factor to the measurements of sensor 1. Figure 2.10 shows the location
of the damage in the bridge. We consider three different damage levels: 50%,

Damaged bearing

1
2 3

4

Figure 2.10: Location of the testing damage at Beltran bridge

30% and 20%. For each level of damage, we duplicate the test data set and apply
the reduction factor to the second half of the measurements [53]. Figure 2.11
compares the control charts for the three damage levels. The shadowed regions
in Figure 2.11 cover the part of the testing affected by damage.
Table 2.3 gathers the fraction (%) of false positves (FP) and false negatives

(FN) for each case. The presence of false positives occurs probably due to the
short length of the monitoring period (less than a year). The training phase covers
a limited range of environmental variations and the testing dataset includes data
from a healthy scenario that corresponds to an unseen month of the year. We
believe we can overcome this with longer monitoring campaigns. We also observe
that the linear autoencoder needs stronger damages to be able to detect it. While
the deep nonlinear autoencoder still detects a damage of 30% with less than 3% of
false negatives, the linear autoencoder considerably fails for that scenario. For a
damage severity of 20% affecting the bearing, the nonlinear autoencoder increases
the rate of FN but still detects it.
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(a) Linear auteoencoder (b) Residual autoencoder

(c) Linear auteoencoder (d) Residual autoencoder

(e) Linear auteoencoder (f) Residual autoencoder

Figure 2.11: Beltran bridge testing control charts

2.6.2 Infante Dom Henrique bridge in Porto

The Infant Dom Henrique bridge was opened to road traffic in 2002 between the
cities of Vila Nova de Gaia and Porto. It consists of a rigid prestressed reinforced
concrete box-beam deck supported over a 1.50 m thick reinforced concrete arch.
This is a unique structure that achieved a world record due to the shape of its
arch span of 280 m to cross river Douro. More detailed information regarding its
structural aspects can be found in Fonseca et al. [33]. Given the particularities of
the bridge, a monitoring system was installed to control construction and assem-
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Table 2.3: Outlier detection results for Beltran bridge.

Architecture type Damage level(%) FP(%) FN(%)

Linear 50 2.30 3.15

Residual 50 1.26 0.00

Linear 30 2.30 73.93

Residual 30 1.26 2.89

Linear 20 0.12 91.80

Residual 20 1.26 15.63

bly operations, being afterwards also used to assess the long-term behavior. It
employs several sensors located at the main sections of the bridge, registering one
data point per hour. There are three types of sensors: strain gauges, clinometers,
and thermometers. Magalhães et al. [3] provide further information regarding
sensor properties and location, as well as monitoring aspects.
Although the monitoring campaign covered more than ten years of service life

of the bridge, there occurred some shutdowns of the system that prevented the
records to be continuous. For this reason, in this work we employ five years of
monitoring, which are practically free from failures. For the particular purpose of
this work, we consider 16 sensors located at six sections that are relevant for the
structural behavior. The selected sensors were free from important shutdowns and
included eight clinometers and eight strain gauges. Figure 2.12 shows the profile
of the bridge and indicates the location of the sensors. Sections S1, S2, S5 and S6

Inclinometers

Strain gauges

S1 S2 S3 S4 S5 S6

Figure 2.12: Infante D. Henrique bridge profile with sensor location

contain two inclinometers each, but at section S6 we discard one of the sensors
due to low signal quality. Figure 2.13 shows the evolution of the seven selected
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Figure 2.13: Evolution of the seven inclinometers between 2007 and 2010

inclination signals over the frist three years of the monitoring period. Sections
S3 and S4 include four strain gauges, but in section three one is discarded due
to low signal quality. Figure 2.14 shows the evolution of the selected stress time-
series during three years of the monitoring period. We denote each sensor as Si,j,
with i indicating the instrumented section where it is located and j being the
sensor number. More details regarding the exact location of the sensors can be
found in Fonseca et al. [3]. We remove null values and obtain a total of 14 sensor
signals with 34,641 measurements each. We use the first 90% of these data with
a random split into 80% training and 20% validation.
We adapt the autoencoder architecture for a 14-dimensional input. In this

case, the nonlinear connections are also symmetric and consist of six layers each.
This number of layers provides adequate results and the architecture has not
been further optimized. We solve the first training step (only Fa and Fc are
active) for a two-dimensional compression. We design the linear autoencoder to
approximate PCA by imposing the constraints satisfied by principal components.
The information captured is similar to that of PCA (92.93%).
After solving the linear autoencoder, we incorporate the nonlinear connections

(Fb and Fd) that yield the nonlinear autoencoder. In order to evaluate the en-
hancement of the nonlinear connections over the linear approach, we fix the weight
matrices obtained and train the nonlinear modules only. Figure 2.15 shows the
loss functions for the training and validation datasets for both the linear and the
nonlinear autoencoder. As with the Beltran bridge, we observe that the linear
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Figure 2.14: Evolution of the seven strain gauges over the monitoring period
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Figure 2.15: Loss function evolution for the Infante bridge dasaset

model (see Figure 2.15a) converges with around 50 epochs at a value of 0.0716
for the training dataset. Figure 2.15b shows the effect of adding the nonlinear
connections after 300 epochs, with the loss function reaching a value of 0.0311
for the training dataset. For a compression into a two-dimensional vector, the
captured information during training raises from 92.93% to 97.05% after adding
the nonlinear connections, indicating an enhancement in the reconstruction. A
compression into a one-dimensional vector provides a level of captured informa-
tion below 90% for both architectures, making impractical the outlier detection
task.
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Table 2.4: r2 metric for the sensors in Infante bridge.

Sensor ID Sensor type Linear Model Residual Model

S11 Clinometer 0.993 0.992

S12 Clinometer 0.994 0.993

S21 Clinometer 0.995 0.993

S22 Clinometer 0.996 0.994

S51 Clinometer 0.985 0.989

S52 Clinometer 0.990 0.991

S62 Clinometer 0.863 0.954

S31 Strain gauge 0.907 0.959

S32 Strain gauge 0.944 0.978

S33 Strain gauge 0.942 0.974

S41 Strain gauge 0.833 0.929

S42 Strain gauge 0.845 0.944

S43 Strain gauge 0.780 0.929

S44 Strain gauge 0.756 0.932

Average 0.916 0.962

For comparison, we implemented a kernel PCA and tried different kernel func-
tions (radial basis (rbf) and cosine function)[69]. For example, the cosine function
provided a 80.10% of information captured.
We analyze the reconstruction ability of the models via the crossplots (ground

truth vs predictions) of the sensor signals. Table 2.4 shows the r2-metric of each
sensor for the two models. Figure 2.16 shows the correlation between the ground
truth and the predictions for the training set (sensor 9), including the r2 metric.
Again, the deep nonlinear autoencoder exhibits superior performance. We finally
obtain the threshold value α for outlier detection as the p´98 over the training
reconstruction errors. Figure 2.17 shows the corresponding histograms for the
two autoencoder architectures, indicating the threshold value.
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(a) Linear auteoencoder (b) Residual autoencoder

Figure 2.16: Training crossplots for sensor 9 (strain gauge) at Infante bridge

(a) Linear auteoencoder (b) Residual autoencoder

Figure 2.17: Infante bridge reconstruction error training histograms

2.7 Simulation of damage

Given the lack of experimental data in the presence of damage, numerical simu-
lations are employed to represent some damage scenarios and test the detection
ability of the proposed methodology. This procedure includes two steps: first,
the synthetic responses of the system are obtained using FE model simulations
that reproduce various damages with different locations and severity levels. Sec-
ondly, damaged testing datasets are constructed by applying the synthetic relative
changes (between healthy and damaged responses) to the testing monitoring pe-
riod to add environmental and operational variability. The following subsections
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describe the procedure.

2.7.1 Damage scenarios

We employ a FE model built in ANSYS® using 3D elastic beam-type elements.
Figure 2.18 shows an extruded view of the FE model (not the real geometry of
the cross-sections). This model was built by Magalhães et al. [86] and updated to

Figure 2.18: Extruded view of the FE model built in ANSYS®

obtain adequate responses compared to an ambient vibration test. The updating
process focused on finding adequate constraints for the connections between the
deck and the piers and abutments [86].
Accurately simulating damage demands a huge computational effort and hu-

man expertise. These resources are often unavailable or unprofitable, and sim-
pler approximations are needed. In this work, damage is feasibly simulated by
reducing the inertial properties to represent a loss of vertical bending stiffness
at small-length segments of the structure. This approach was first proposed and
employed by Magalhães et al. [85] to reproduce possible consequences of aging
phenomena, corrosion, or extreme events. Here, we investigate damage at section
S1 (see Figure 2.12) with three severity levels, namely 50%, 30%, and 20%, which
correspond to the stiffness reduction at the affected section. We obtain the rota-
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Table 2.5: Description of the damage scenarios for Infante bridge.

Damage level(%) Description Average drel

50 Stiffness reduction 0.25

30 Stiffness reduction 0.12

20 Stiffness reduction 0.075

tions directly from static self-weight simulations. With the proposed approach,
the differences in the damaged responses from the undamaged one are only due
to the introduction of damage. We obtain the relative difference as:

drel “
ms

dam ´ ms
und

ms
und

, (2.12)

where ms
und and ms

dam correspond to the synthetic responses obtained in an un-
damaged and a damaged state, respectively. Table 2.5 describes the damage
severity and indicates the average relative difference for the measurements of the
two affected sensors emplaced in section S1 according to Figure 2.12.

2.7.2 Damaged datasets

The proposed FE simulations lack consideration of environmental variability. Be-
sides, since the monitoring system provides one observation per hour, running
time-domain simulations becomes unfeasible to generate a representative dataset
for evaluating the methodology. The experimental testing dataset (healthy) is
employed as the target to embed the simulated damage scenarios and overcome
the previous limitations. It is assumed that for any damage scenario, the relative
differences drel hold in both the synthetic and experimental environments. In a
simplistic approach, it is assumed that damage appears instantaneously and its
effects are constant over time within the short testing period upon consideration.
We generate a certain damaged dataset by applying the following transformation
to each observation:

mdam “ mp1 ` drelq, (2.13)

In this analysis, three damaged datasets (one for each severity level) are built.
The healthy testing dataset contains Nund “ 1, 439 observations that correspond
to 10% of the monitoring data (unseen during training). Accordingly, each dam-
aged dataset contains Ndam “ Nund “ 3, 663 observations. For each damage
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scenario, the entire testing dataset includes the Nund healthy observations and
the corresponding Ndam samples to evaluate the ability of the autoencoder as an
outlier detector.
We finally feed the complete test dataset to the autoencoders and obtain the

damage indicator (i.e. the reconstruction error, ρ) for each observation. Figure
2.19 shows the control charts of the damage indicator for outlier detection. The

(a) Linear auteoencoder (b) Residual autoencoder

(c) Linear auteoencoder (d) Residual autoencoder

(e) Linear auteoencoder (f) Residual autoencoder

Figure 2.19: Infante bridge testing control charts

shadowed regions correspond to the part of the testing dataset affected by damage.
Table 2.6 gathers the results in terms of false positives and false negatives. We
observe that the incidence of false positives is very small for both the linear and
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Table 2.6: Outlier detection results for Infante bridge.

Architecture type Damage level(%) FP (%) FN(%)

Linear 50 3.03 0.00

Residual 50 0.71 0.00

Linear 30 3.03 0.62

Residual 30 0.71 0.00

Linear 20 3.03 89.08

Residual 20 0.71 10.67

the nonlinear autoencoders. Since the monitoring campaign covers five years,
it is possible to train the networks for a wide enough range of environmental
and operational variations. In terms of false negatives, the performance of both
approaches is still good for a damage severity of 30%, but the linear autoencoder
starts to raise some false negatives (below 1%). For a damage severity of 20%, the
rate of change in the measurements is very small and thus reconstruction errors
slightly increase. The linear autoencoder completely fails in the detection of this
damage, while the nonlinear architecture presents close to 11% of false negatives.

2.8 Results combining static and dynamic data

In this section we investigate the potential of different measurable variables in
the task of damage detection using the deep nonlinear autoencoder. We employ
Infante Dom Henrique bridge as the case study, since a complementary long-
term dynamic monitoring system was installed in 2007 [86]. This additional
monitoring system measures acceleration signals from 12 uniaxial force balance
accelerometers installed inside the deck box girder. Due to existing structural
symmetry, only half of the bridge was monitored at four particular sections (see
figure 2.20) [86]. There are four instrumented sections with three sensors each.
One sensor measures lateral accelerations, and the others measure vertical ac-
celerations upstream and downstream. Additional information can be found in
Magalãhes et al. [86]. We employ measurements from the upstream vertical accel-
erations. Every half an hour, the system creates an ASCII file with 30-min time
series sampled at 50 Hz that is subsequently post-processed using DynaMo [84]
software to obtain estimates of the first twelve eigenfrequencies of the structure.
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Accelerometers

A1 A2 A3 A4

Figure 2.20: Instrumented cross-sections in the dynamic monitoring system

We combine measurements from the two aforementioned monitoring systems.
We analyse three years of continuous monitoring data. The monitoring period
extends from September 2007 to September 2010. We use measurements from
inclinometers and strain gauges as the local variables (see Figure 2.12). We
employ the eigenfrequencies produced with DynamMo software [84] as the global
variables. Figure 2.21 shows the evolution of the first 12 eigenfrequencies (Hz) of
the structure.

Figure 2.21: Evolution of the first 12 eigenfrequencies over the monitoring period.
The squared window represents a subset of 1,000 measurements of
the first eigenfrequency to show the variability over time

Since the local variables yield one measurement per hour whereas eigenfre-
quencies are produced every half an hour, we compute the mean of every two
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eigenfrequency measurements to use data from both monitoring systems with
the same time resolution. After removing null values, we obtain a total of 16,005
measurements for each variable. We employ 72% of the samples for training and
18% for validation. The final monitoring period (remaining 10% of the data)
is kept to investigate the method ability for damage detection using different
variable combinations.
The final goal of the autoencoder is to detect abnormal responses in the struc-

ture from the value of the reconstruction error. If damage alters the structural
response, the latent representation z will differ with respect to that learned for
the undamaged observations, yielding a high reconstruction error ρ (outlier). We
want to investigate the potential of combining local and global monitoring vari-
ables in damage detection. Hence, we design three different DNN architectures
to accommodate the input dimension for i) local variables (DNNLocal), ii) global
variables (DNNGlobal), and iii) both local and global variables (DNNCombined).
The three DNNs follow the scheme sketched in Figure 2.3. All the architec-

tures are fully-connected with only dense layers. The linear encoder Fa applies
the affine transformation using a single dense layer with linear activation to com-
press the input to the k-dimensional latent vector. The same holds for the linear
decoder Fc, which expands the latent vector to the original input space. The
nonlinear encoder Fb contains six hidden layers using ReLu activation function
and an output layer linearly activated to reach the latent dimension. The ar-
chitecture of the nonlinear decoder Fd is symmetric with respect to that of Fb.
The activation function is ReLu for all the hidden layers and linear at the output
layer.
The architectures of DNNLocal and DNNGlobal are identical except for their

input dimensions that are 14 and 12, respectively. The hidden layers in the non-
linear encoder contain the following number of neurons: r32, 36, 48, 36, 48, 24s.
The encoding dimension is k “ 3. In the case of DNNCombined, which has a
26-dimensional input, the hidden layers have twice as many units as those in
DNNLocal or DNNGlobal, and the encoding dimension is k “ 8. This expansion
broadens the search space (more trainable parameters) when working with the
combination of variables. The networks are trained and validated with long-term
monitoring data corresponding to the healthy state of the bridge (unsupervised
learning). This period covers two years of environmental and operational variabil-
ity. It is expected that new (unseen) measurements corresponding to the healthy
state will produce a feature vector z similar to those of the training observa-
tions and thus yield a small reconstruction error. But if the new measurements
correspond to a damaged scenario, it is expected the network will poorly recon-
struct them, delivering a high reconstruction error. Table 2.7 summarizes the
main characteristics of each architecture and the training specifications. In all
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cases we employed Adam optimizer [74] with a learning rate of 10´3 and a batch
size of 1,024 samples. The network architectures and training procedures were

Table 2.7: Summary of architecture and training specifications

ID Input dimension k Parameters Epochs

DNNLocal 14 3 16,582 800
DNNGlobal 12 3 16,438 800
DNNCombined 26 8 65,380 1,800

implemented using Tensorflow 2.8 [62].
Figure 2.22 shows the evolution of the loss function during training and val-

idation for the three networks. It is observed that local and global variables
independently reach convergence before 800 epochs. An epoch represents an it-
eration over the entire dataset to minimize the loss function. For DNNCombined,
since the number of trainable parameters is much higher, the minimization pro-
cess achieves convergence after approximately 1,800 epochs, yielding a better
solution.
In this study, we investigate four damage locations with three severity levels of

5%, 10%, and 20%. Figure 2.23 shows the approximate locations of the studied
damage cases (D1, D2, D3, and D4). Scenarios D1, D2, and D3 occur nearby
instrumented deck sections, while D4 affects one column connecting arch and
deck, and it is relatively far from the positions where local variables are recorded.
The synthetic global variables are derived from modal analyses using ANSYS

eigensolver. The rotations are directly obtained from static self-weight simula-
tions. To generate the stresses provided by the strain gauges, the vertical bending
moments from the self-weight simulation are first obtained, and then the bend-
ing stress variations are calculated using the Navier formula for the considered
inertia reductions. Tables 2.8and 2.9 gather the relative differences of local and
global variables, respectively. In Table 2.8 the sensors with null relative differ-
ence (drel “ 0) for all the considered damaged scenarios have been ommitted,
namely S21, S22, S41, S42, S43, and S44. Similarly, in Table 2.9, we have omitted
eigenfrequencies f1 and f5.
12 damaged datasets (one for each scenario and severity level) are built. The

healthy testing dataset contains Nund “ 1, 439 observations that correspond to
10% of the monitoring data (unseen during training). Accordingly, each damaged
dataset contains Ndam “ Nund “ 1, 439 observations. For each damage scenario,
the entire testing dataset includes the Nund healthy observations and the corre-
sponding Ndam samples to evaluate the ability of the autoencoder as an outlier
detector. Figures 2.24 and 2.25 show the effect of damage D1 with 10% severity
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(a) Loss evolution for DNNLocal (b) Loss evolution for DNNGlobal

(c) Loss evolution for DNNCombined

Figure 2.22: Loss evolution of the designed DNNs

Inclinometers

Strain gauges

D1 D2 D3

D4

Damages

Figure 2.23: Location of the damage scenarios at Infante bridge

on sensor S11 and eigenfrequency f4, respectively.
We employ the reconstruction error ρ (see equation 2.10) as the indicator to

detect abnormal structural behavior. If damage alters the structural response,
the latent representation z will differ from that learned for the undamaged ob-
servations, yielding a high reconstruction error ρ (outlier). To evaluate the per-
formance in detecting structural damage, the Receiver Operating Characteristic
(ROC) curves [18] are calculated. ROC curves are widely employed to measure
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Table 2.8: Relative differences drelp%q for local variables.

Severity S11 S12 S31 S32 S33 S51 S52 S62

5% -1.61 1.61 0.00 0.00 0.00 0.00 0.00 0.00
D1 10% -3.42 3.42 0.00 0.00 0.00 0.00 0.00 0.00

20% -7.54 7.54 0.00 0.00 0.00 0.00 0.00 0.00

5% 0.00 0.00 4.94 4.94 4.94 0.00 0.00 0.00
D2 10% 0.00 0.00 10.43 10.43 10.43 0.00 0.00 0.00

20% 0.00 0.00 23.47 23.47 23.47 0.00 0.00 0.00

5% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.76
D3 10% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -3.61

20% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -7.95

5% 0.00 0.00 0.00 0.00 0.00 0.23 0.23 0.00
D4 10% 0.00 0.00 0.00 0.00 0.00 0.21 0.21 0.00

20% 0.00 0.00 0.00 0.00 0.00 1.02 1.02 0.00

the performance of classifiers [47]. These curves represent the rate of false-positive
predictions (FPR) against the rate of true-positive predictions (TPR).
In the context of SHM, a false positive indicates healthy data misclassified as

damage, and a true positive indicates a correctly classified damaged scenario.
Unsupervised learning results in a single-class classification, where undamaged
data belong to the healthy class and any damaged scenario corresponds to an
outlier [73]. The detection ability consists of classifying new unseen healthy
observations as undamaged and detecting any departure as an outlier. False-
positive and true-positive rates are obtained according to a threshold value α
that establishes the maximum ρ value corresponding to the undamaged state.
Measurements that produce error values above α are classified as damaged. When
building the ROC curves, the value of α is varied to sweep the FPR within the
interval [0,1]. A perfect classifier operates along the horizontal line at TPR “ 1,
and a random classifier would follow the diagonal line (45˝) that crosses the ROC
space [47].
Let ρtund

and ρtdam denote the reconstruction errors for the undamaged and
damaged testing subsets, respectively. The FPR and TPR for a threshold value
(α) are obtained as:

FPR “

řNund

j“1 pρtjund
ą αq

Nu

, (2.14)
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Table 2.9: Relative differences drelp%q for global variables.

Severity f2 f3 f4 f6 f7 f8 f9 f10 f11 f12

5% -0.08 -0.02 -0.07 -0.06 -0.03 0.00 -0.01 0.00 0.00 0.00
D1 10% -0.17 -0.03 -0.14 -0.12 -0.06 0.00 -0.01 0.00 -0.00 -0.01

20% -0.38 -0.05 -0.31 -0.26 -0.13 0.00 -0.02 -0.00 -0.01 -0.02

5% 0.00 -0.03 -0.03 0.00 -0.03 0.00 -0.00 -0.01 0.00 0.00
D2 10% 0.00 -0.06 -0.07 0.00 -0.07 0.00 -0.00 -0.03 0.00 -0.00
. 20% 0.00 -0.13 -0.14 -0.00 -0.16 0.00 -0.00 -0.06 -0.00 -0.00

5% -0.09 -0.02 -0.08 -0.07 -0.04 0.00 -0.01 0.00 -0.00 -0.00
D3 10% -0.19 -0.03 -0.16 -0.14 -0.08 0.00 -0.01 -0.00 -0.00 -0.01

20% -0.41 -0.06 -0.35 -0.31 -0.17 0.00 -0.02 -0.01 -0.01 -0.03

5% -0.06 -0.01 -0.07 -0.01 -0.01 0.03 -0.12 -0.07 0.01 -0.00
D4 10% -0.11 -0.01 -0.14 -0.03 -0.03 0.03 -0.25 -0.12 0.01 -0.00

20% -0.24 -0.02 -0.29 -0.06 -0.08 0.03 -0.53 -0.23 0.01 -0.01

TPR “

řNdam

j“1 pρtjdam
ą αq

Nd

, (2.15)

Figures 2.26to 2.28 compare the performance of the three designed DNNs for
each type of damage to demonstrate the benefit of combining local and global
variables. In the figures, the random classifier is represented with a grey dashed
line. The performance increases as the curve moves away from the grey line and
approximates the top of the ROC space.
Local variables exhibit good performance for damage scenarios D1 to D3,

mainly for severity levels above 10% (see figures 2.27 and 2.28). In the case
of damage D2, where three strain gauges are installed in the region affected by
the damage, local variables yield a perfect classifier even for a slight severity level
(see Figure 2.26). Since D3 occurs close to only one sensor (at S5), the sensitivity
is lower than with damage D1 (similar damage at S1), where two inclinometers
participate. But when damage occurs far from any instrumented section (D4),
local variables turn insensitive and yield a poor classifier even for a high severity
level (see Figure 2.28). Hence, the performance of local variables is adequate as
long as the damage occurs nearby an instrumented section but strongly worsens
for other damage locations.
These results are further analyzed by exploring the latent space for each damage

scenario. Figure 2.29 compares the latent space representation of local variables
for a 10% severity. Figure 2.29b highlights the sensitivity of strain gauges to
damage with a huge difference between the healthy and the damaged latent rep-
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Figure 2.24: Effect of damage D1 with 10% severity on S11

resentation. Figure 2.29d evidences that damage D4 barely affects local variables,
making the healthy and the damaged latent representations overlap throughout
the testing period.
On the other hand, global variables adequately detect the four damage scenarios

when the severity reaches 20% (see figure 2.28). However, the performance decays
for lower severity levels, indicating a limited sensitivity to slight damage, as shown
in Figures 2.26 and 2.27. Figure 2.30 compares the latent space representation
for each damage with 10% severity for global variables. Results are particularly
deficient in the case of damage D2 (according to Figure 2.30d, only latent variable
z2 shows some variation with respect to the undamaged state). To explain this,
the eigenmodes associated with the eigenfrequencies are analyzed. The shape of
an eigenmode represents the vibration amplitude of each structural node when the
bridge is excited at the corresponding eigenfrequency [65]. When damage occurs
close to a node with reduced curvature for a certain eigenmode, the corresponding
eigenfrequency will be poorly affected by changes in the bending stiffness. Thus,
eigenfrequencies are more sensitive to damage that occurs close to nodes with
higher curvatures.
Since damage was introduced as a vertical stiffness reduction, it mainly affects

the vertical bending eigenmodes. In this case, only four out of the 12 global
variables represent vertical bending eigenmodes and thus participate in detecting
the proposed damage scenarios. The rest of the mode shapes are lateral and
torsional. Figure 2.31 shows the four vertical bending mode shapes adopted in
this work. Damage D2 occurs in the middle deck (see Figure 2.23) and it slightly
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Figure 2.25: Effect of damage D1 with 10% severity on f4

affects global variables due to the low curvature of the involved eigenmodes at this
position (see mainly Figures 2.31a and 2.31d). Hence, although global variables
increase the range of detectable damage compared to local variables alone, they
still present some limitations, mainly for reduced severity levels. It is worth noting
that DNNGlobal achieves the best performance for damage D4 (see Figure 2.27d),
which presented worse results when using local variables only.
In light of the previous observations, it becomes interesting to combine both

sources of monitoring data. The red dashed line in Figures 2.26 to 2.28 reveals
that combining local and global variables outperforms the classification ability
of local or global variables alone. The ROC curves denote a multiplicative en-
hancement of the results that goes beyond the sum of the individual contribu-
tions of local and global variables. This becomes more evident mainly for ligher
damages (see, for example 2.26c). In the case of damage D4, since the con-
tribution of local variables is very low (see, e.g., Figure 2.28d), the combined
solution practically coincides with the performance of global variables only. Fig-
ure 2.32 compares the 8-dimensional latent space representations of the damage
scenarios (10% severity) with respect to the undamaged condition produced by
DNNCombined. Results show the discrepancies between damaged and undamaged
latent representations (e.g., damage D1 mainly affects the second, seventh, and
eighth dimensions, whereas damage D2 affects all of them).
In general, the obtained ROC curves for the combined approach are very good

for severity levels of 10% (see Figure 2.27). The minimum detectable damage
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(a) Damage D1 5% severity (b) Damage D2 5% severity

(c) Damage D3 5% severity (d) Damage D4 5% severity

Figure 2.26: ROC curves for damage severity 5%

can thus be established within the interval 5% ´ 10%, depending mainly on the
contribution of local variables.

2.8.1 Damage location

In addition to detecting damage occurring nearby the sensor emplacement, local
variables also contribute to determining the damage location. It is expected
that the autoencoder yields an outlier (ρ ą α) when an abnormal behavior that
affects the structural response registers through monitoring. It is assumed that
this abnormal behavior corresponds to damage at any bridge location. Once
the reconstruction error exceeds the threshold value (α) indicating damage, the
contribution of local variables to the reconstruction error may be informative of
the damage location. Here, the four damage scenarios considered for testing are
investigated, whose location is known beforehand, to verify the capability of local
variables in damage location.
It is assumed that if damage occurs nearby an instrumented section, it will
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(a) Damage D1 10% severity (b) Damage D2 10% severity

(c) Damage D3 10% severity (d) Damage D4 10% severity

Figure 2.27: ROC curves for damage severity 10%

mainly affect the corresponding local variables, and the autoencoder will recon-
struct these variables more deficiently. Hence, the highest contribution to the re-
construction error would result from variables measured with the sensors located
nearby the damaged region. Here, analyze the reconstruction error of local vari-
ables is analyzed using the combined autoencoder (DNNCombined). For a particu-
lar (randomly chosen) observation in the damaged testing datasets, the individual
reconstruction error of the local variables is obtained using equation (2.10). The
contribution to the reconstruction error (%) is calculated at each instrumented
section and results are compared. Tables 2.10 to 2.13 gather the reconstruction
error at each section for each of the considered damage scenarios. When the in-
strumented section contains more than one local variable, the average value of the
involved variables is computed. For damage scenarios D1 to D3, the error values
corresponding to the instrumented section nearby the damage (see figure 2.23)
are highlighted in bold.
Results demonstrate that damage D1 to D3, which occur nearby the positions

where local variables are recorded, are adequately located even for reduced sever-
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(a) Damage D1 20% severity (b) Damage D2 20% severity

(c) Damage D3 20% severity (d) Damage D4 20% severity

Figure 2.28: ROC curves for damage severity 20%

Table 2.10: Contributions to reconstruction error for D1

Instrumented section Severity level
5% 10% 20%

S1 16.44 22.48 30.77
S2 0.09 0.16 0.32
S3 1.55 0.96 1.05
S4 1.38 1.58 1.70
S5 0.60 0.86 0.99
S6 3.44 6.78 0.03

ity levels (see Tables 2.10 to 2.12). The contribution of the affected section is
considerably higher than those of the rest of the instrumented sections. By con-
trast, local variables are unable to inform about the location of D4, since no local
variables are recorded close to it. This means that local variables only aid to
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(a) Damage D1 with 10% severity (b) Damage D2 with 10% severity

(c) Damage D3 with 10% severity (d) Damage D4 with 10% severity

Figure 2.29: Comparison of the healthy and damaged 3-dimensional latent space
for DNNLocal

Table 2.11: Contributions to reconstruction error for D2

Instrumented section Severity level
5% 10% 20%

S1 0.08 0.00 0.09
S2 0.00 0.10 0.08
S3 18.96 24.57 23.03
S4 8.53 2.96 1.75
S5 0.25 0.40 0.27
S6 1.07 0.11 1.19

locate damage occurring close to their emplacement.

2.8.2 SHM strategy

The final goal of the methodology is to detect abnormal behavior of Infante Dom
Henrique bridge during operation from experimental monitoring data. The com-
bination of local and global variables is employed as the input data and the corre-
sponding DNN (DNNCombined) developed and trained in Section 2.8 is considered.
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(a) Damage D1 with 10% severity (b) Damage D2 with 10% severity

(c) Damage D3 with 10% severity (d) Damage D4 with 10% severity

Figure 2.30: Comparison of the healthy and damaged 3-dimensional latent space
for DNNGlobal

Table 2.12: Contributions to reconstruction error for D3

Instrumented section Severity level
5% 10% 20%

S1 0.07 0.33 0.72
S2 0.24 0.60 0.90
S3 3.51 2.47 1.74
S4 2.00 3.06 3.76
S5 0.68 0.38 0.21
S6 33.21 43.90 51.29

The damage detection strategy employs control charts of the reconstruction er-
ror [76] to produce an alert system that early detects structural damage.
Here, the cumulative error after five measurements is employed to reduce the

risk of occurrence of false positives and produce a more robust alert system [87].
This means that the detection time is five hours, since the monitoring system pro-
vides one observation per hour including the measurements of the local and global
variables. The threshold value α for the reconstruction error is established at the
97-percentile of the training dataset to obtain an adequate trade-off between the
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(a) First vertical eigenmode (b) Second vertical eigenmode

(c) Third vertical eigenmode (d) Fourth vertical eigenmode

Figure 2.31: Vertical bending eigenmodes

number of false positives and false negatives. Five testing subsets are concate-
nated: healthy, damage D1, damage D2, damage D3, and damage D4. The four
damage scenarios are considered with a severity level of 10%. Figure 2.33 shows
the control chart of the reconstruction error. The logarithmic scale is applied
to the reconstruction errors to better visualize the results. The grey-shadowed
region indicates the part of the testing with damage, and the vertical dashed
lines delimit the subset associated with each damage. Measurements exceeding
the threshold value (blue horizontal line) are red-coloured, and those below the
threshold are green-coloured.
The figure shows that the four damage scenarios are adequately detected. In

the case of damage D2, since three strain gauges exist at the affected region, the
reconstruction error is very sensitive and robustly detects it. This means that
lighter damage occurring at that location will be successfully detected. Figure
2.26 and 2.32b already revealed this sensitivity. Damage scenarios D1 and D3,
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(a) Damage D1 with 10% severity (b) Damage D2 with 10% severity

(c) Damage D3 with 10% severity (d) Damage D4 with 10% severity

Figure 2.32: Comparison of the healthy and damaged 8-dimensional latent space
for DNNCombined

which occur close to inclinometers, are adequately detected with some slack for
lighter severity levels, specially damage D1, where two sensors participate. On
the other hand, when analyzing damage D4, some false negatives are attained,
which indicate that lower severity levels will be more difficult to detect. Hence,
when only global variables participate since no local variables exist nearby the
damage, the minimum detectable severity is 10%.
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Table 2.13: Contributions to reconstruction error for D4

Instrumented section Severity level
5% 10% 20%

S1 3.52 1.65 0.16
S2 0.73 0.36 0.01
S3 3.44 1.70 0.54
S4 3.79 1.15 0.20
S5 4.36 1.58 1.62
S6 0.21 0.16 0.10

Figure 2.33: Testing control chart with damage severity of 10%
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3 Combined model-based and
data-driven approach

3.1 Introduction

In this section we address a supervised Deep Learning approach for damage identi-
fication in bridge structures. We employ a hybrid methodology that incorporates
FE simulations to enrich the training phase of a Deep Neural Network with syn-
thetic damage scenarios. The methodology intends to contribute to the progress
towards the applicability of SHM practices in full-scale bridge structures. The
goal is to broadly determine the location of the damage and to estimate its severity
level. This diagnostic enables performing more exhaustive identification strategies
(e.g., ultrasonic waves) in a reduced space, which would be unfeasible otherwise.
The damage we seek to detect corresponds to any material degradation that af-
fects wide areas of the structure by reducing its stiffness properties. Our method
allows a feasible adaptation to large systems with complex parametrizations and
structural particularities.
We investigate the performance of the proposed method on two full-scale in-

strumented bridges, obtaining adequate results for the testing datasets even in
presence of measurement uncertainty. Besides, the method successfully predicts
the damage condition for two real damage scenarios of increasing severity avail-
able in one of the bridges.

3.2 Problem description

In this work, we propose a supervised learning approach for damage identification
in bridge structures. For a certain bridge B, we consider the dynamic response
of the structure in the form of eigenfrequencies and eigenmodes:

uB “ tfB,ΦBu, (3.1)

where fB P Rnm includes nm eigenfrequencies and ϕB P Rno ˆ Rnm contains the
corresponding no-dimensional eigenmodes. We define the bridge condition by
the location and severity of damage: DB “ tLB, SBu. Here, LB P r1, 2, ..., nzs
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indicates the location of damage among nz zones in the bridge. Depending on
the bridge type, these zones can be portions of the spans along the deck, or
refer to elements with a particular structural function, such as regions near piers
or abutments. The damage severity SB P rsmin, smaxs indicates the extent of
damage. Damages below smin are considered negligible and damages above smax

are unlikely to occur before an action is taken. As described in Section 3.1, the
damage identification problem consists of finding the characteristics of damage
from measurements of the bridge response:

DB “ IpuBq, (3.2)

where I is the inverse operator (see Figure 1.1).
We need training data covering the target damage states to approximate the

inverse problem via Deep Learning. In full-scale operative bridges, it is unfea-
sible to recreate damage scenarios. Hence, monitoring data correspond only to
the healthy or normal condition. We overcome this lack by employing a compu-
tational parametrization of the bridge, Bθ. The parametrization Bθ substitutes
the bridge B in the generation of damaged data.
We propose a combined methodology that employs Computational Mechanics

fos solving damage scenario simulations and Deep Learning for rapidly assessing
the health condition. The methodology is structured as follows: piq we build a
computational parametrization to approximate B; piiq we update the values of
the parametrization to match a measured response during normal operation; piiiq
we establish a relationship between the parametrization values and the character-
istics of damage; pivq we generate a database of damage scenarios with different
locations and severity levels; finally, pvq we build a DNN to approximate I with
small error and predict damage in B from dynamic monitoring data.

3.3 Bridge parametrization

Let Bθ “ tθ1, ...,θnzu be a parametrization that represents B with nz different
zones. The number of zones to locate damage depends on the density of sensors
in the monitoring system of B.
The parametrization includes elastic material properties, cross-section areas,

and spring stiffness constants to describe boundary conditions. Each zone in Bθ

is described by a subset of properties θi “ tθ1, ..., θnθi
u. We employ a Finite

Element solver FFE to produce the dynamic response of the parametrization:

uBθ
“ FFE

pBθq, (3.3)

where uBθ
“ tfBθ

,ϕBθ
u contains the eigenfrequencies and eigenmodes of the
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parametrization. For simplicity in notation, we refer to FFE as F since we
consider negligible the difference between both operators.

3.3.1 Update the values of the parametrization for the
healthy state

Under normal operating conditions, we assume the bridge is healthy and has a
dynamic response uh

B. In large-scale structures, we often measure uh
B through

a short-term ambient vibration test with some inherent error: mh
B “ uh

B ` ϵ.
We subsequently obtain the dynamic properties using OMA techniques, yielding
m

1h
B “ tfhB,ϕ

h
Bu [118, 88]. For simplicity in notation, we remove the tilde and

refer to the OMA-processed response as mh
B. Using short-term monitoring data

for the updating process is a deterministic method that lacks consideration of
environmental and operational variability. This approach poses a limitation to
the methodology. When long-term monitoring data are avaialable, it is possible
to incorporate EOC variations and achieve better characterization of the healthy
state. We might address this problem using bayesian updating techniques [57],
or with the methodology described in Chapter 4.
We set the initial parametrization values to Bθ “ Bθ0 based on design prop-

erties and engineering knowledge. This solution yields the preliminary numerical
response as uBθ0

“ FpBθ0q. However, the true material properties (e.g., the elas-
tic modulus of concrete or steel) in B are uncertain, and modeling the boundary
conditions (such as piers or abutments) requires some simplifying decisions. Due
to these assumptions and simplifications, there exist discrepancies between the
true and the parametrization responses. We reduce this difference by updating
the uncertain parameter values to match the healthy measured response. The
resulting parametrization B˚

θ makes uB˚
θ
approximate mh

B with small error. We
formulate this inverse problem as a minimization in the l2 norm:

B˚
θ :“ argmin

Bθ

}FpBθq ´ mh
B}2. (3.4)

The variation intervals of the parameters contained in Bθ must ensure consis-
tency in the structural sense to represent a healthy condition after the updating.
Hence, B˚

θ “ tθ˚
1 ,θ

˚
2 , ...,θ

˚
nz

u yields the values of material properties and bound-
ary conditions that adequately represent the healthy state of B.

3.4 Damage characterization

In this step, we establish the relationship G between the structural properties of
the bridge Bθ and its damage condition DBθ

“ tLBθ
, SBθ

u. We assume that only
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one of the nz zones experiments damage at a given time. Thus, when damage
occurs at the i-th zone, the location is given by LBθ

“ i. We define the damage
severity as:

SBθ
“ Gpθiq “

g

f

f

e

1

nθi

nθi
ÿ

j“1

si,j2, (3.5)

where si,j are the individual severity values for each involved property, described
next. We apply a reduction vector βi P rlbi, 1snθi that affects the structural prop-
erties such that θd

i “ βiθ
˚
i . The lower bounds lbi P Rnθi contain the maximum

admissible reduction value for each property in θi based on engineering knowledge
to ensure structural sense. The remaining subsets of properties θj pj ‰ iq keep
their undamaged value in B˚

θ . Thus, the parametrization for a certain damage
scenario at the i-th zone is Bd

θ “ tθ˚
1 , ...,θ

d
i , ...,θ

˚
nz

u.
The relationship between the severity and the reduction factor depends on the

type of structural property, which can be material or section properties (type a),
and/or boundary conditions (type b). We establish this distinction because the
dynamic response varies differently with changes in properties from each group.
For type a, the value of the reduction factor is directly obtained as:

si,j “ 1 ´ βi, j j “ 1, .., na
θi
, (3.6)

where na
θi
is the number of a type properties at the i-th location. For type b, a

different scale is employed to induce effective damage in the structure. In this
case, the relationship between the reduction factor and its corresponding severity
level is:

si,j “
smax

log10plbi,jq
log10pβi, jq j “ 1, ..., nb

θi
, (3.7)

with nb
θi

“ nθi ´ na
θi
and lbi,j being the j ´ th element in the lower bound vector

lbi.

3.5 Synthetic database generation

A synthetic database is generated that contains damage scenarios of different
severity at each location. While location is a discrete variable that takes values
between 1 and nz, severity is a continuous variable. To uniformly sweep the
severity interval, we build an iterative process to create different scenarios.
For each sample at the i-th zone, an initial sampling generates the value of

SBθ
from a uniform distribution: SBθ

„ Upsmin, smaxq. This is the target value
to achieve with the individual severity values of each property at the damaged
location using equation 3.6. We first generate random values for each individual
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property as: s̄i,j “ randpUp0, smaxqq, with j “ 1, ..., nθi . We calculate the severity
level S̄ by replacing s̄i,j in equation (2.13). We then correct the individual severity
values to produce S, using the following expression:

si “
S

S̄
s̄i (3.8)

The reduction vector βi is subsequently obtained from eqs. 3.5 and 3.6. If any
element in βi lies out of the admissible interval rli, 1q, we generate a new random
set of individual severity values s̄i and recalculate βi. We iteratively repeat
this step until we achieve a correct set of reduction factors. We finally obtain
the damaged properties as θd

i “ βiθ
˚
i . The damaged bridge is given by Bd

θ “

tθ˚
1 , ....,θ

d
i , ...,θ

˚
nz

u. Algorithm 2 describes this iterative procedure to obtain valid
damage scenarios with uniformly distributed severity (LBθ

“ i).
Algorithm 2 is applied to obtain n damage scenarios for each structural region

i “ 1, ..., nz. This results in N “ nz ˆ n samples conforming the database. The
corresponding dynamic responses are calculated by solving:

u
pkq

Bθ
“ F

´

Bdk
θ

¯

k “ 1, ..., N (3.9)

The k-th sample in the database contains the dynamic response u
pkq

Bθ
“ tf

pkq

Bθ
,ϕ

pkq

Bθ
u

and the corresponding damage condition of the bridge D
pkq

Bθ
“ tL

pkq

Bθ
, S

pkq

Bθ
u.
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Algorithm 2: Generation of damaged scenarios with uniform severity

Input: θ˚, smin, smax, lbi, nθi , a, b
Output: Bd

θ , SBθ

/* */

/* Part I: Initialization */

1 SBθ
Ð randpUpsmin, smaxqq ; // Obtain posterior severity value

2 Bd
θ Ð B˚

θ ; // Initialize the damaged parametrization

3 βi, j Ð 0, j “ 1, ..., nθi ; // Initialize reduction vector βi

/* */

/* Part II: Obtain a damaged parametrization θd */

4 while any (βi, j ă lbi,j or βi, j ą 1 j “ 1, ..., nθi) do
5 for j Ð 1 to nθi by 1 do
6 s̄i,j Ð randpUp0, smaxqq ; // Obtain the preliminary

individual severity values s̄i

7 Obtain S̄ from eq. (3.7). ; // Calculate the preliminary

severity S̄
8 Obtain si from eq. (3.8); // Obtain the severity values

/* Calculate the reduction vector βi */

9 for j Ð 1 to nθi by 1 do
10 if property type = a then
11 Calculate βi,j from eq. (3.5)

12 if property type = b then
13 Calculate βi,j from eq. (3.6)

/* Part III: Obtain the damaged bridge Bd
θ */

14 θd
i Ð βiθ

˚
i ; // Calculate the subset of damaged properties θd

i

15 Bd
θ Ð tθ˚

1 , ...,θ
d
i , ....,θ

˚
nz

u; // Build the damaged bridge

parametrization

16 Return tBd
θ, SBθ

u
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3.6 Deep Neural Network

The final goal of the proposed methodology is to identify the damage state of
the bridge from measurements of its dynamic response. The operator I (see
Figure 1.1) introduced in Section 3.2 establishes the relationship between the
dynamic response uB (input) and the damage characteristics DB (output). The
dimension of the input layer v depends on the number of mode shapes (nm) and
available observation points or sensors (no) that describe the dynamic response
of the bridge, being: v “ nmpno ` 1q. Let Iγ be a DNN that approximates the
inverse operation of damage identification I:

DBθ
« IγpuBθ

;γq, (3.10)

where γ includes the parameters of the DNN.
Step 1: Pre-processing:
Due to the disparity between the two output variables (location and damage

severity) in DB, we apply a linear rescaling into the interval r0.5, 1.5s. This
interval is selected as it is of unit length and ensures correspondence between
relative and absolute errors [123]. For a certain variable x, let xmin :“ minpxq

and xmax :“ maxpxq. The rescaling function R is defined as:

Rpxq “
x ´ xmin

xmax ´ xmin

` 0.5 (3.11)

Thus, the rescaled damage condition is obtained as Dresc
B “ RpDBq. For simplic-

ity in notation, in the following, the rescaled health condition Dresc
B is referred to

as DB. The same holds for the parametrization (Dresc
Bθ

).
Step 2: Loss function: The discrepancy between the predicted damage

condition IγpuBq and the real state DB is measured employing the l2 norm of the
following loss function:

Lγ “ }IγpuBq ´ DB}2 (3.12)

Step 3: Network architecture: A particular NN architecture based on
autoencoders [17] is proposed in this work. Autoencoders perform an encoding
step to compress the input into a lower-dimensional vector and subsequently
decompress it (decoding step) to recover most of the original information [68].
Here, we rely on autoencoder approaches but substitute the decoding step by
a mapping between the encoded input and the structural damage (location and
severity).
The architecture contains two connected modules. The first module solves

the encoding task of data compression. The second module finds a relationship
between the compressed input and the damage characteristics. As described in
Section 2.4, each module is created by adding a linear and a nonlinear term. With
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this architecture, when the addressed problem is straightforward and nonlineari-
ties have a small contribution, the nonlinear blocks can be deactivated. Figure 3.1
describes our proposed network topology.

Figure 3.1: Block diagram of our proposed Neural Network

For the first module, we have: I1
γ “ I l1

γ ` In1
γ . The linear branch I l1

γ puB;γl1q

applies an affine transformation to the input layer through one single dense layer.
γl1 contains the weights and bias parameters of the operation. The nonlinear
branch In1

γ puB;γn1q undergoes a feed-forward architecture [59] that applies a
linear transformation followed by a nonlinear activation function g through Ln1

layers. The parameter vector γn1 includes the weights and bias of the operation.
The output of the first module enters a second module with analogous architecture
that performs the feature mapping. The output layer adds the linear and the
nonlinear connections of the second module: I l2

γ pI1
γ ;γl2q ` In2

γ pI1
γ ;γn2q. This

layer is customized to restrict the output variables to the admissible rescaled
interval. Let C be the clipping function into the interval r0.5, 1.5s:

Cpx; 0.5, 1.5q “

$

&

%

0.5 if x ă 0.5
x if 0.5 ď x ď 1.5
1.5 if x ą 1.5

(3.13)

The last step is to undo the rescaling operation in equation (3.11) to obtain the
real values of the output variables.
Step 4: Training: We employ the database generated in section 3.5 to train

the DNN (Iγ) and obtain the set of optimal parameters γ˚ that produces an
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adequate approximation to I:
γ˚ :“ argmin

γ
pLγq (3.14)

Here, we employ an stochastic gradient descent method to solve the minimization
problem [59]. We employ Tensorflow library available in Python environment to
carry out the whole process [1].

3.7 SHM strategy: damage location and severity
estimation

The final goal is to employ the DNN to evaluate new measured data from the
monitoring systems operating in bridge structures. Figure 2 shows a flowchart
of the whole procedure. We can divide the different tasks into offline and online.
The offline part includes the required steps to build the damage identification
system. The online part consists of acquiring new measurements from the bridge
to feed the DNN and obtain a health condition diagnostic.

Figure 3.2: Flowchart of the proposed methodology

In this work, we focus on the development of the offline part. The online
part incorporates the DNN as a close to real-time assessment tool for SHM.
Once new measurements are acquired under an unknown structural condition,
the DNN would provide a damage diagnostic. The prediction must be considered
an assessment that complements visual inspections and other evaluation methods.
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3.8 Numerical Results

In this section, we describe the results obtained for two case studies. The first
one is the Infante Dom Henrique bridge in Porto. This bridge is currently under
service and is being monitored. However, data regarding real damage scenarios
are unavailable. We subsequently apply the proposed method to the Z24 bridge
in Switzerland. This brings up the opportunity to perform an experimental test.
To solve the different tasks, we employed a computer (Dell Precision 3520) with
the following specifications: Intel(R) Core i7-7700HQ, 2.80 GHz CPU.

3.8.1 Case 1: Bridge Infante Dom Henrique

3.8.1.1 The bridge and monitoring system

The bridge Infante Dom Henrique was already described in Chapter 2. The mon-
itoring system employed in this study is the dynamic one, introduced in Section
2.8 and fully described in [86]. In this work, we focus on the vertical accelerations
of the bridge to locate and quantify the damage. We have access to four vertical
acceleration signals (upstream or downstream) from which we calculate the dy-
namic properties (eigenfrequencies and eigenmodes) using OMA techniques [86].
Figure 3.3 shows the first four unity-scaled vertical mode shapes. While eigenfre-
quencies are global features, eigenmodes contribute to locating damage. A mode
shape describes the vibration amplitude level for each node of the structure when
it is excited with the corresponding eigenfrequency. The presence of damage at
certain location will change the mode shape differently. If changes to bending
stiffness are under investigation, each eigenmode is more sensitive to those dam-
ages occuring close to the regions where the curvature of the mode shape is larger.
The number of points describing each eigenmode depends on the number of sen-
sors in the monitoring system. Hence, the monitoring system restricts the zones
where damage can be located to those that influence the modal ordinates of the
instrumented degrees of freedom. In this work, we restrict the possible damaged
regions to the instrumented half of the bridge. Although damages at regions on
the left-hand side of the bridge might also be detected, it would be difficult to
distinguish their location.

3.8.1.2 Ambient vibration test

An ambient vibration test is one of the most convenient approaches to estimate
the modal parameters of a structure under service [86]. It employs the vibration
induced by traffic and wind as the excitation to characterize the response of
the structure. The amplitude of the accelerations that the bridge suffers under
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(a) First vertical eigenmode (b) Second vertical eigenmode

(c) Third vertical eigenmode (d) Fourth vertical eigenmode

Figure 3.3: Vertical eigenmodes obtained from ambient vibration test
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such excitation is very low. For this reason, especially sensitive sensors must be
employed.
In the ambient vibration test carried out at Infante bridge in 2002, four tri-

axial 18-bit strong motion recorders were used [86]. All sensors were synchronized
through external GPS sensors. During the test, two of the sensors were fixed in the
middle-deck cross-section (upstream and downstream) and acted as a reference.
The other two sensors changed position within a total of 15 set-ups to cover the
length of the bridge deck. For each set-up, records of 16 minutes were collected
with a sampling frequency of 100 Hz. This frequency was reduced to 20 Hz
after the application of a low-pass filter. Further details regarding the ambient
vibration test can be found in Magalhães et al. [86].

3.8.1.3 Parametrization

We employ a parametrization developed by Magalhães et al. [86]. It includes 3D
bar elements in ANSYS® to describe the behavior of the bridge. The structural
properties (area, bending and torsion moments of inertia, and shear deflection
constants) are included according to design specifications. Since we are inves-
tigating the vertical bending response of the structure, 3D bar elements (beam
type) have optimal functionality. They also allow introducing damage as a re-
duction of the corresponding cross-section inertial properties. This type of model
was first developed by Magalhães et al.[86] and can be considered an accurate
approximation to represent the vertical bending behavior of the bridge. More so-
phisticated models such as those composed of solid elements could be employed.
These provide more precise predictions at the cost of higher computational ef-
fort and modeling complexity. But these models can introduce undesired mode
shapes (e.g., vibrations of the cantilever eaves of the deck) and hinder the modal
identification process. Besides, damage simulation in these models may become
very complex since solid elements lack section properties as an accessible param-
eter. It forces to introduce damage in terms of geometrical variations, which is
a non-trivial task that can produce mesh problems and prevents automatically
generating scenarios.
Magalhães et al. [86] described the calibration process, focusing on the con-

nections of columns and abutments with the deck. While the highest columns
(corresponding to instrumented sections S1 and S6 in Figure 2.12) have a mono-
lithic connection, the other columns and abutments contain two unidirectional
sliding pot bearings. Three possible connection disposals were considered and
analyzed. The authors designed a final parametrization including fixed longitudi-
nal displacement and rotations in the pot bearings at the columns but free at the
abutments, and horizontal springs to simulate additional stiffness at the abut-
ments. The value of the stiffness constants in the abutments is fixed manually to
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approximate the first four vertical bending eigenmodes.
For further steps is this methodology, we employ the higher-order modes (third

and fourth) since they are more sensitive to localized damages such as those
sought in this work [92]. According to the position of the sensors, we consider
eight possible damage locations along the right-hand side of the bridge, according
to Figure 3.4. Each location is 17.5 m long along the bridge deck.

Figure 3.4: Parametrization of Infante bridge with eight locations

3.8.1.4 Database generation

Given the beam-type behavior of the bridge [86] and the location of the sensors
in the monitoring system, we focus on the identification of damages in the deck.
Specifically, we employ the real values that describe the cross-section inertia along
with the beam-type elements that model the deck. All these structural properties
are of type a introduced in Section 3.4. Each location contains 4 properties,
resulting in a total of 32 structural properties involved in this case of study. We
set the minimum severity to smin “ 2.5% and the maximum to smax “ 50% based
on sensitivity analysis and engineering criterion. During sensitivity analysis, we
observed that damages below 2.5% barely introduced changes in the response of
the structure. The multiplication factors in β range from 0 (undamaged property)
to 0.5 (50% damage at that property).
We solve n “ 5, 000 damage scenarios for each of the nz “ 8 locations, yielding

a total of N “ 40, 000 samples. The time required to obtain the database was
37.3 hours. We calculate the dynamic response for each sample and match it
with the corresponding damage label to form the database. Although only four
measurement points (sensors) are available in the monitoring system, we obtain
seven-dimensional eigenmodes from the simulations to add extra information.
We complete the experimental eigenmodes by fitting an spline and obtaining the
intermediate value in between every two sensors.
We choose some representative samples from the database to study the sensi-

tivity of eigenfrequencies to damage. For each location, we select ten samples of
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constantly increasing severity from 5% to 50%. Figure 3.5 shows the sensitivity
of the selected eigenfrequencies.

(a) Third vertical eigenfrequency (b) Fourth vertical eigenfrequency

Figure 3.5: Evolution of eigenfrequencies with increasing damage severity

We observe that the third eigenfrequency is very sensitive to damages at lo-
cations L1 and L5. This is related to the curvature (change of slope) of the
eigenmodes [113]. The higher the curvature of the mode in the affected location,
the higher the impact on the corresponding natural frequency [113]. We observe
that for location L3, since it is almost a blind node (small curvature), it barely
changes with the increase of severity (see Figure 3.3c). For the same reason, the
fourth vertical eigenfrequency is strongly affected by damages at location L3 (see
Figure 3.3d).

3.8.1.5 Deep Neural Network

We employ the network architecture described in Section 3.6. The input layer
receives a total of v “ 16 features or variables. These include higher-order (third
and fourth) vertical eigenfrequencies and eigenmodes, as indicated in subsec-
tion 3.8.1.3. The encoding phase compresses this input into an eight-dimensional
feature vector. The nonlinear connections In1

γ and In2
γ are symmetric and contain

five layers each. We employ a “ReLu” [59] activation function at the first four
hidden layers. The fifth hidden layer applies a linear transformation. The output
layer applies the clipping function C to yield the two-dimensional output in the
rescaling interval. This topology provides adequate results.
We randomly split the database as follows: 72% of the samples are employed

for training, 18% for validation, and the remaining 10% are kept for testing. We
train the neural network through 10, 000 epochs. This number allows for sufficient
training and prevents overfitting. Each epoch constitutes a new passage of the
entire training dataset through the NN[59]. Figure 3.6 shows the evolution of the
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loss function for both the training and validation datasets. The required training
time was 12 min. We employ a particular gradient descent optimizer that prevents
getting trapped in local minima during training [74]. This optimizer produces
high loss function values at certain epochs. To select an adequate solution, we
retain the best trained model based on a performance indicator. Here, we select
the model that achieves the minimum loss value for the validation dataset.

Figure 3.6: Loss evolution for the training and validation datasets (Infante bridge)

We evaluate the performance of the trained network for the testing dataset.
Figure 3.7 displays the cross-plot of the output variables. It exhibits a high
correlation between the real value (ground truth) and the prediction given by
the DNN for both severity and location. We employ the squared correlation
coefficient r2 as the correlation metric [11]. The distribution of the samples in
the graph is represented with a color scale, with a darker color meaning more
density of samples.
Figure 3.7a shows the cross-plot of location for the testing dataset. Although

the ground truth is restricted to the eight possible locations, the prediction of
the DNN is continuous (regression). Most of the samples concentrate close to
the red line (prediction = ground truth), resulting in a high correlation level (r2).
Figure 3.7b shows the predictions obtained for the severity variable. These results
show a good performance of the DNN during the numerical test.
Given the lack of real measurements from damage scenarios, we perform a

numerical test. We employ two damage cases described by Magalhães et al. [87].
These are considered minor damages according to [87]. They consist in reducing
the vertical bending inertia at a small segment of the bridge deck. They affect
locations L1 and L8 according to Figure 3.4. We consider two reduction levels
-10% and 30%- for the damaged structural property. We estimate the ground
truth severity for each scenario according to equations 3.5 and 3.6. Table 3.1
shows the prediction provided by the DNN.

65



3 Combined model-based and data-driven approach

(a) Location cross-plot for the testing
dataset

(b) Severity cross-plot for the testing
dataset

Figure 3.7: Infante bridge cross-plots for the testing dataset

Table 3.1: Numerical testing for Infante bridge.

Scenario Ground truth Prediction

Location Severity (%) Location Severity (%)

10% stiffness reduction at L1 1 5.00 1.41 4.21

30% stiffness reduction at L1 1 15.00 1.05 13.42

10% stiffness reduction at L8 8 5.00 7.89 5.32

30% stiffness reduction at L8 8 15.00 8.00 17.85
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According to Table 3.1, the DNN is achieving adequate results. However, the
lack of experimental damage scenarios prevents a more realistic validation. After
training and validation, the algorithm is ready to be implemented in the SHM
system. The monitoring sensors will acquire new measurements and produce
the current natural frequencies and mode shapes of the structure. To make the
experimental eigenmodes (four-dimensional) match the numerical ones (seven-
dimensional), we complete them by fitting a spline and obtaining the correspond-
ing value between every two sensors. The completed experimental measurements
are fed to the DNN that provides a prediction of the health condition of the
structure.
To demonstrate the contribution with respect to other existing techniques, we

consider the work developed by Pathirage et al. [100], which also employed an
autoencoder trained with numerical simulations to solve the damage identifica-
tion problem. The main difference lies in the output of the DNN. For Pathirage
et al. [100], the output is an N-dimensional vector based on the N parameters
(structural properties) that can change in presence of damage. N can be consid-
erably large for large-scale structures with complex parametrizations. Besides,
this approach requires to adapt the architecture to fit the number of properties
of different structures or different parametrizations of the same structure. Our
approach applies a post-processing to the structural parameters to make pre-
dictions based on a two-dimensional output that describes damage in terms of
location and severity. This allows keeping the same architecture (with reduced
output dimension) of the DNN regardless of the parametrization and structural
system and enhances the interpretation of predictions. Also, the larger is the
output (more variables to predict) the more complex gets the training phase and
predictions may lose accuracy.
For the case of study of Infante Dom Henrique bridge, the output dimension

increases from two to 32 if we employ the approach of Pathirage et al. [100]. We
implement this by adapting our DNN to have a 32-dimensional output, where the
output corresponds to the reduction vector β. Table 3.2 compares the value of
the r2 metric that measures the correlation between ground truth and prediction
of the output variables during testing for both methodologies. The predictions
provided by our approach are better than those using the 32-dimensional one.
Obtaining adequate results using that methodology would require a more complex
DNN and a larger training database, which implies more computational effort.
In addition, the results provided by our approach are easier to interpret and
enhance applicability mainly for complex parametrizations with a large amount
of involved structural properties.
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Table 3.2: Comparison of metric r2 value for the output variables during testing
using a 2-D approach and a 32-D approach.

Output dimension Variable

Var1 Var2 Var3 ... Var30 Var31 Var32

2-D 0.9980 0.9775 - ... - - -

32-D 0.8591 0.7802 0.7345 ... 0.7531 0.7771 0.8375

3.8.1.6 Incorporation of measurement uncertainty

In this section, we evaluate the performance of the methodology in presence of
measurement noise and environmental variability. A long-term monitoring cam-
paign started in 2007 at Infante bridge that contained 12 force balance accelerom-
eters installed in four particular cross-sections of the structure [86, 87]. These
measurements were subsequently processed to identify the eigenfrequencies and
eigenmodes of the bridge.
Some statistical analyses were carried out by Magalhães et al. [86] to explore

the variability induced by temperature and other operational phenomena (e.g.,
concrete hardening) in the eigenfrequencies of the bridge. Table 2 in their work
[86] compared the Standard Deviation (SD) of the first twelve eigenfrequencies for
the ambient vibration test and the monitoring campaign, observing much higher
values during the monitoring phase due to the effect of temperature. According
to their study, any eigenfrequency outranging the interval of its value `{ ´1.5SD
could be considered an outlier. This information was unavailable for eigenmodes,
but it is known that they are less sensitive to environmental variability [105].
Based on this information, we account for measurement noise and environmen-

tal variability as follows: for the eigenfrequencies, we consider the same interval
as [86]. To be conservative, we employ the highest SD value amongst the four
vertical eigenfrequencies analyzed. For the eigenmodes, we employ the variability
observed during the ambient vibration test that includes measurement noise. We
incorporate measurement error as an additive term [126] such that:

mBθ
“ uBθ

` ϵ, (3.15)

where uBθ
refers to any response obtained from simulations (eigenfrequencies

and eigenmode amplitudes), ϵ stands for the additive error term, and mBθ
is the

resulting synthetic measurement.
The new database includes: (i) the original database described in Section

3.8.1.4, (ii) the original database affected by a reduced error level (ϵ P r´0.0001,`0.0001s),
and (iii) the original database affected by the previously described measurement
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uncertainty according to [86]. The value of ϵ for each scenario is randomly sam-
pled from the corresponding interval.
We repeat the training and validation process of the neural network for the

new database. Figure 3.8 shows the loss evolution for the training and validation
datasets. The required training time was 28 min.

Figure 3.8: Loss evolution for the training and validation datasets with measure-
ment uncertainty

We then evaluate the performance of the trained network for the testing dataset.
Figure 3.9 includes the cross-plot of the output variables.
The achieved correlation levels are slightly lower than those obtained in the

deterministic approach, but results are still great, demonstrating an adequate
performance of the DNN. Table 3.3 shows the prediction provided by the DNN
for the considered damage scenarios. We observe that the DNN achieves adequate
results in predicting both damage scenarios. This example is a preliminary at-
tempt to include measurement error in the process, but more extensive research
is required to demonstrate the full capability of the method to operate under
diverse noisy and variable environments. We consider this issue in Chapter 4.

3.8.2 Case study 2: Z24 bridge

The Z24 bridge is a post-tensioned concrete two-cell box girder with three spans
crossing the highway that connects Bern and Zurich (see Figure 3.10). This
bridge was demolished in 1998 to expand its span due to an enlargement of the
highway [108]. Before demolition, some damage scenarios were generated and
monitored during short-term campaigns for different research purposes [77, 110,
133, 76]. In this work, we employ two damage scenarios corresponding to a
settlement of 40 mm and 80 mm at the Koppigen side pier (see Figure 3.10).
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(a) Location cross-plot (b) Severity cross-plot

Figure 3.9: Infante bridge cross-plots for the testing dataset with measurement
uncertainty

Figure 3.10: Z24 bridge in Switzerland [108]
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Table 3.3: Numerical testing for Infante bridge in presence of measurement un-
certainty.

Scenario Ground truth Prediction

Location Severity (%) Location Severity (%)

10% stiffness reduction at L1 1 5.00 1.06 5.93

30% stiffness reduction at L1 1 15.00 0.97 15.32

10% stiffness reduction at L8 8 5.00 7.83 5.32

30% stiffness reduction at L8 8 15.00 8.00 21.36

3.8.2.1 Ambient vibration test

Previous to bridge demolition, some tests were carried out in the bridge under
the SIMCES project, including progressive damage simulations [35]. Forced and
ambient vibration tests were performed for the healthy structure and subsequent
damage scenarios. In this work, we employ measurements from the ambient
operational vibration tests (11-12 min length records of ambient accelerations
including fixed and moving sensors in nine different set-ups) to identify the ex-
perimental first and second eigenmodes with high resolution. Further information
regarding the configuration and measurements can be found in Reynders et al.
[108] The available number of points describing each eigenmode allows to charac-
terize the dynamic behavior of the bridge with only the first two eigenmodes. We
employ the software MACEC [109] to obtain the natural frequencies and mode
shapes from the acceleration signals. The first one is a vertical bending, and the
second one corresponds to a torsion.

3.8.2.2 Parametrization

We build a parametrization in ANSYS® using shell elements for the deck and
the piers and spring-type elements to model boundary conditions. The use of
shell-type elements is justified since one of the selected mode shapes representing
the structural behavior corresponds to a torsion. Shell elements provide a better
distribution of the structural masses. Other works, such as [52] or [55], propose
similar modeling elements, supporting the decision taken and the model validity.
We consider five different locations (see Figure 3.11). The parametrization in-
cludes material properties (type a) and boundary conditions (type b). Material
properties refer to the elastic modulus of the concrete. These properties describe
locations one, two, and three. Locations one and three include seven material
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Figure 3.11: Parametrization of Z24 bridge with five locations

properties, and location two contains 14 along its length. We describe locations
four and five (boundary conditions at the piers) with spring constants in the ver-
tical direction (five properties describe each of these locations). A total of 38
properties are involved in this case of study.
We employ a Genetic Algorithm [78] to solve equation (3.4) and calibrate the

parametrization. This yields a good numerical approximation to the response of
the real bridge according to the ambient vibration test. Table 3.4 gathers the
error terms in frequencies and eigenmodes before and after the updating process.
For the eigenmodes, we employ the Modal Assurance Criterion (MAC) values [98].

Table 3.4: Results of the updating procedure.

Mode Initial parametrization Updated parametrization

Freq. error (%) MAC Freq. error (%) MAC

1 0.54 0.9774 0.39 0.9886

2 0.02 0.9871 0.01 0.9930

3.8.2.3 Database generation

We set the minimum severity to smin “ 0.05 and the maximum to smax “ 0.5
based on sensitivity analysis and engineering criterion. During sensitivity analy-
sis, we observed that damages below 5% barely introduced changes in the struc-
tural response. The multiplication factors in β range from 0 (undamaged prop-
erty) to 0.5 (50% damage at that property). We solve n “ 8, 000 damage scenarios
for each of the nz “ 5 locations, yielding a total of N “ 40, 000 samples. The
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time required to obtain the database was 30.6 hours. We calculate the dynamic
response for each sample and match it with the corresponding damage label.

3.8.2.4 Deep Neural Network

We employ the network architecture described in section 3.6. The architecture
of the neural network contains six hidden layers at the nonlinear connections In1

γ

and In2
γ . We employ a “ReLu”[59] activation function at the hidden layers of the

nonlinear connection. The input layer receives a total of m “ 46 input features.
These include the first two eigenfrequencies and corresponding eigenmodes. The
length of the mode shape vectors is 22 and includes points from both upstream
and downstream measurement positions. The encoding phase compresses this
input into a 17-dimensional feature vector. This topology provides adequate
results.
We randomly split the database as follows: 72% of the samples are employed

for training, 18% for validation, and the remaining 10% are kept for testing. We
train the neural network through 5, 000 epochs. This number allows for sufficient
training while preventing over-fitting. Figure 3.12 shows the evolution of the loss
function for the training and validation datasets. The required training time was
10 min. We employ an optimizer that prevents from getting trapped in local
minima during training [74]. This optimizer produces high loss function values
at certain epochs, but we select the model with minimum validation loss.

Figure 3.12: Loss evolution for the training and validation datasets (Z24 bridge)

We evaluate the performance of the trained network for the testing dataset.
Figure 3.13 includes the cross-plot of the output variables. It shows that a high
correlation exists between the real value (ground truth) and the prediction given
by the network.
Now, we test the network for the available experimental damages. We employ

two damages of increasing severity at the pier in the Koppigen side (see Fig-
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(a) Location cross-plot for the testing dataset. (b) Severity cross-plot for the testing dataset.

Figure 3.13: Z24 bridge testing cross-plots.

ure 3.10), that corresponds to location L5 according to Figure 3.11. The damage
consisted of pier settlements of 40 mm (D1) and 80 mm (D2) [19]. Both damages
are considered to be of high severity [19]. The monitoring datasets consisted of
two 10.9 minutes long time series sampled at 100 Hz. Peeters et al. [101] de-
scribe the experiments in more detail. We post-processed the acceleration signals
to obtain the responses mD1

B and mD2
B and evaluated the DNN. Table 3.5 gathers

the obtained results.

Table 3.5: Experimental validation with two damage scenarios.

Damage Location Severity (%)

D1 4.78 30.64

D2 5.00 43.64

We observe that the DNN correctly predicts the location of the damage. The
true severity level is unknown for both scenarios, although we expect to obtain
high values that increase from the first scenario to the second one. Accordingly,
the obtained results indicate meaningful severity levels (above 30%).
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4 Accounting for varying EOCs in
the synthetic database

4.1 Introduction

In Chapter 3, we addressed the damage identification problem as a deterministic
task. We employed the response mh

B acquired during a short-term ambient vi-
bration test as the reference to update a FE parametrization. This measurement
corresponds to a particular date time with specific EOCs. We then generated the
synthetic database according to the procedure described in sections 3.3 to 3.5.
All the synthetic damage scenarios generated from the updated parametrization
were assumed to occur under the same EOCs.
Figure 4.1 schematically represents the synthetic database for one zone in the

bridge, where we generate ns synthetic scenarios with varying damage severity
within the interval r0, 0.5s. The same holds for the other zones. This approach

EOCs
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0.50

0.00
mh

B

uh∗
Bθ

ud1i
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Damaged

Figure 4.1: Original synthetic database representation

disregards the effect of varying EOCs, which poses its main limitation. In prac-
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tice, neglecting these phenomena may hinder the damage detection task and yield
a wrong assessment of the bridge behavior. In this chapter, we aim to enhance the
methodology by incorporating the effect of varying EOCs in the training database
of DNNs for damage assessment.

4.2 Gaussian Mixture Model clustering approach

Given an instrumented structure where long-term monitoring data are available
(one year or more), we have access to a set of measurements MB that corre-
sponds to its healthy or reference behavior. These measurements include many
healthy states with different EOCs, such that MB “ tmi

Bu
Nm
i“1, where Nm is

the total number of healthy samples measured during the monitoring period.
Each measurement contains the eigenfrequencies and eigenmodes of the struc-
ture, mi

B “ tf iB,Φ
i
Bu.

Environmental and operational conditions mainly include temperature, humid-
ity, and traffic [141]. During long-term periods, these phenomena progressively
change over time with certain seasonality. Ideally, we would like to generate a
synthetic database that contains scenarios occurring at any possible combination
of EOCs (see Figure 4.2). However, achieving this database is impractical and

EOCs
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0.50

0.00

ud1i
Bθ

Healthy

Damaged

Figure 4.2: Ideal synthetic database representation

unfeasible. It requires solving an updating problem for each of the Nm available
measurements to obtain the corresponding calibrated parametrizations.
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4 Accounting for varying EOCs in the synthetic database

Alternatively, here we obtain some representative measurements that describe
the entire dataset and include most EOC variation. By applying a clustering
technique, we classify the long-term monitoring data into Q groups that char-
acterize the existing variability. We employ a Gaussian Mixture Model (GMM)
to address this issue [99]. A GMM is an unsupervised clustering method that
classifies a dataset X according to probability density estimations on a mixture
of Gaussians [99]. We define the GMM as a linear combination of multivariate
Gaussian distributions such that the probability P pXq is computed by:

P pXq “

Q
ÿ

q“1

πqN pX|µq,Σqq, (4.1a)

0 ď πq ď 1,
Q

ÿ

q“1

πq “ 1, (4.1b)

where πq indicates the mixing coefficient or weight for the q-th Gaussian repre-
sented by its mean µq and covariance matrix Σq [99].
The GMM determines the linear combination of Gaussian functions that best

separates the measurements into Q clusters using the Expectation Maximization
algorithm [99, 36]. Each of these groups represents a set of EOCs sharing some
common characteristics (e.g., high temperatures). The number of clusters is often
decided based on metrics such as the Maximum log-likelihood [36]. Figure 4.3
shows an example of a GMM classification for two-dimensional measurements in
X with Q “ 3 clusters.
Here, we apply a Q-dimensional GMM to the available monitoring data MB.

Each measurement belongs to a cluster based on the highest probability among
the Q Gaussians. We obtain a representative point for each cluster as that with
minimal distance to the corresponding gaussian mean:

m
hq

B :“ argmin
mB

pρqmB
q, q “ 1, 2, ..., Q (4.2)

where we calculate the distance as ρqm “

b

řv
j“1pmBj

´ µq
jq

2, with v indicating

the dimension of the vectors. We select these representative meausurements,

tmh1
B ,mh2

B , ...,m
hQ

B u and solve the updating task (see section 3.3.1) to produce

the Q optimal FE parametrizations with responses UGMM
Bθ

“ tu
h˚
1

Bθ
,u

h˚
2

Bθ
, ...,u

h˚
Q

Bθ
u.

Finally, we generate synthetic scenarios following the steps in section 3.5. This
approach sets a trade-off between the number of clusters and the computational
cost of building the database. Figure 4.4 schematically represents the proposed
database for one zone in the bridge (see Figure 3.4). The same holds for the other
zones. The selected measurements are representative according to the GMM
clustering. We thus expect that they cover most EOC variability.

77



4 Accounting for varying EOCs in the synthetic database

x1

x2

Cluster 1 : N (X|µ1,Σ1) Cluster 2 : N (X|µ2,Σ2)

Cluster 3 : N (X|µ3,Σ3)

µ1

µ2

µ3

Figure 4.3: Example of GMM clustering with two-dimensional data
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Figure 4.4: GMM-based synthetic database representation

4.3 Two-step damage assessment

The final goal of this methodology is to assess the structural condition and esti-
mate the damage severity S and location L. Here, we propose a two-step approach
to assess the bridge condition.
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4 Accounting for varying EOCs in the synthetic database

4.3.1 Severity estimation

We employ a DNN to estimate the damage severity, denoted by DNNS. To train
DNNS, we include the available long-term monitoring data, MB, which belong
to the healthy state of the bridge. We assume that all the scenarios in MB corre-
spond to a severity value of S “ 0, whereas the location label is unknown. These
measurements contribute to learning different healthy states and preventing false
positives. We then enrich MB with the synthetic database previously generated
in section 4.2. Once trained, DNNS receives new measured data from the moni-
toring system and provides a severity diagnostic. If the estimated severity for a
certain measurement exceeds the predefined threshold α, we assume that damage
exists and raise an alert.

4.3.2 Location estimation

After detecting and quantifying the damage, a subsequent DNN (DNNL) receives
the measurement to indicate its location. We only train DNNL with damaged
samples from the database, i.e., those with a severity level S ě α. This method-
ology prevents healthy scenarios from contributing to the damage location, since
they could mislead the diagnostic. Figure 4.5 shows a flowchart of the proposed
approach.

Severity
Instrumented bridge, B

DNNS

mnew
B

S ≥ α?

S = DNNS(m
new
B )

DNNL
YES

Healthy

NO

Damage condition :
DB = {S,L}L = DNNL(m

new
B )

Figure 4.5: two-step assessment flowchart

For the training stage, we employ the same loss function introduced in equa-
tion 3.6 to measure the discrepancy between the predicted condition and the real
state. We define two loss functions, one for each estimator. In lossS, the inverse
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4 Accounting for varying EOCs in the synthetic database

operator Iγ refers to DNNS (γ contains the network parameters), and the dam-
age condition is the severity level: DB “ S. Analogously, in lossL, Iγ refers to
the inverse operator DNNL with damage condition DB “ L.

4.4 Numerical Results

We apply the proposed methodology to the case study of the Infante Dom Hen-
rique bridge. We employ three years of long-term dynamic monitoring data. We
introduce the monitoring system in section 2.8, and it is fully described in [86].
We employ four vertical acceleration signals from which we calculate the dynamic
properties (eigenfrequencies and eigenmodes) every 30 minutes through an auto-
matic OMA technique [85]. Any measurement in MB includes v “ 32 variables:
nm “ 4 eigenfrequencies and corresponding eigenmodes acquired every thirty
minutes. We obtain seven-dimensional eigenmodes by fitting a spline to the four
measurements and obtaining the intermediate value between every two sensors.
After removing null values, MB contains a total of Nm “ 17, 141 samples.

4.4.1 GMM-based database

Given the high dimensionality of the dataset, we first apply PCA to compress
the data and obtain relevant features for the clustering. Table 4.1 analyzes the
explained variance for the first four principal components. The table reveals

Table 4.1: Principal Component Analysis results

PC1 PC2 PC3 PC4

Explained Variance (%) 95.55 1.80 0.92 0.72

Cumulated (%) 95.55 97.35 98.27 98.99

that the first PC explains most of the variance in the data, whereas the rest
explains a residual part (ă 5%). We compress the original measurements into
one-dimensional features by transforming them as:

M̂B “ TMB, (4.3)

where the transformation matrix T contains PC1 coordinates.
We apply the GMM clustering technqiue to the transformed dataset M̂B. We

would ideally cluster the data into thousands of groups to include the entire EOC
variability, but using a large number of clusters conflicts with the computational
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cost of obtaining the synthetic scenarios. Particularly, each cluster adds approx-
imately 17 hours of computational time, including the parametrization updating
step and generating the synthetic scenarios for the database. Given that we aim
to include most of the variability present in the data but with the computational
restriction, we decide to employ five clusters (Q “ 5). Table 4.2 presents the
five mean values of the gaussians. Figure 4.6b displays the transformed dataset

Table 4.2: Mean vector coordinates for the five clusters

µ0 µ1 µ2 µ3 µ4

Value -1.3867 -1.3112 -1.1325 -0.8167 0.0024

M̂B colored by cluster label. Figure 4.6a shows the distribution of the samples in
the Q clusters. According to Figure 4.6b, we appreciate that the data dispersion
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Figure 4.6: Dataset clustering results for Q “ 5.

increases with the value of the PCA transformation feature. Cluster four con-
tains only 54 samples very widely spread, indicating that they could be outliers.
However, the analysis of these data is out of the scope of this work.
After performing the clustering, we obtain the five points in the transformed

space that lie closer to the means according to equation 4.2. Finally, we extract
the corresponding 32-dimensional measurements: MGMM

B “ tmh0
B ,mh1

B ,mh2
B ,mh3

B ,
mh4

B u. For each of these five measurements, we solve the updating process to ob-

tain the calibrated parametrizations, yielding the responses UGMM
Bθ

“ tu
h˚
0

Bθ
,u

h˚
1

Bθ
,

u
h˚
2

Bθ
,u

h˚
3

Bθ
,u

h˚
4

Bθ
u.

We generate the synthetic scenarios and conform the new database following
the steps in section 3.5. We generate a total of Ns “ 80, 000 synthetic samples:
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ns “ 2, 000 samples for each of the nz “ 8 zones in the bridge and for each
response in UGMM

Bθ
. The computational time of generating this database is of

approximately 50 hours. The entire database contains N “ Nm ` Ns “ 97, 141
samples, including the experimental and the synthetic scenarios.

4.4.2 Deep Neural Networks for a two-step assessment

Here, we employ fully-connected feedforward DNNs with ReLU activation func-
tions in the hidden layers. The architectures provide adequate performance. Op-
timizing the architectures is out of the scope of this research. We employ the
complete response as the input (the four eigenfrequencies and eigenmodes). Thus,
each sample contains v “ 32 dimensions. Table 4.3 summarizes the properties of
the DNNs. We first train the severity estimator DNNS. We randomly split the

Table 4.3: Summary of architecture and training specifications

ID Hidden Layers Parameters Optimizer Batch size LR

DNNS 9 36,597 Adam 8,196 10´4

DNNL 6 7,879 Adam 8,196 10´4

available data (N samples) into 70% for training, 20% for validation, and 10%
for testing.
We evaluate the performance of the network with the validation dataset. Fig-

ure 4.7a shows the severity cross-plot that compares the ground truth against
the estimated severity values. The figure shows a high prediction performance
with the r2 metric reaching 0.96. We follow the same procedure for the location
estimator, DNNL. In this case, we restrict the training data to those scenarios
where S ą α, with α “ 0.05 indicating the lowest detectable damage. Figure
4.7b shows the corresponding cross-plot that compares the ground truth against
the estimated location values. The figure shows an adequate approximation of
DNNL given the high correlation factor during validation.

4.4.3 Synthetic testing

Here, we analyze the methodology in the task of damage identification. Since
real damage scenarios are unavailable in full-scale operative bridge applications,
we employ synthetic damage cases for testing.
We aim to analyze the enhancement of the proposed methodology with respect

to the original approach described in Chapter 3in the task of damage identi-
fication. For the comparison, we generate a database according to Figure 4.1
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(a) Severity cross-plot (b) Location cross-plot

Figure 4.7: DNNS and DNNL cross-plots during validation

that disregards the effect of changing EOCs. Given that cluster zero is the most
significative in MB according to Figure 4.6a, we employ mh0

B as the baseline
healthy measurement to build the database. Hence, the original database con-

tains the synthetic scenarios generated from u
h˚
0

Bθ
. We denote DNN original

S and

DNN original
L to the neural networks described in section 4.4.2 trained with the

original database.

4.4.3.1 Synthetic testing under seen EOCs

We first evaluate the damage detection performance for scenarios occurring under
the same EOCs considered during training. This testing dataset corresponds to
10% of the available samples according to the database splitting (70% training,
20% validation, and 10% testing).
(A) Performance of the original approach: Here, we test the damage

identification ability of the original database created from u
h˚
0

Bθ
. In this case,

the testing subset contains damage scenarios occurring only under the particular
EOCs of mh0

B .
We first evaluate DNN original

S to estimate the severity of the damage. Fig-
ure 4.8a shows the corresponding cross-plot that displays the ground truth (real
severity label) against the prediction provided by DNNS. The squared corre-
lation coefficient indicates a high performance. We subsequently estimate the
location of the damage. Figure 4.8b displays the location cross-plot. DNN original

L

also reveals an extraordinary performance during this test.
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(B) Performance of the GMM-based method: We now test the dam-
age identification ability of the new proposed database. This database contains
synthetic scenarios generated from the updated parametrizations with responses
stored in UGMM

Bθ
. Hence, the testing damage scenarios are assumed to occur under

the same EOCs of the five corresponding measurements in MGMM
B .

We evaluate DNNS to estimate the severity of the damage. Figure 4.9a shows
the resulting cross-plot. The squared correlation coefficient indicates a good
performance with r2 « 0.94. We subsequently estimate the damage location
for those scenarios exceeding the threshold α. Figure 4.9b displays the cross-plot,
revealing a very high performance of DNNL. These results demonstrate that
the proposed 2-step DNN assessment adequately performs when damage occurs
under the same EOCs employed during training.

4.4.3.2 Synthetic testing under unseen EOCs

We now investigate the performance of the methodology for damage scenarios
occurring under different EOCs unseen during the training phase. This test
evaluates if applying GMM to select representative measurements for the training
database contributes to generalizing the damage assessment task under different
(unseen) EOCs.
We first select three test measurements from the monitoring data MB that

belong to three different clusters, denoted by tmt1
B ,m

t2
B ,m

t3
Bu. We employ only

three measurements to restrict the computational cost required by the entire
methodology. According to the clustering results in Figure 4.6a, we extract the
measurements from the most relevant (highest occurrence frequency) clusters,
namely, zero, one, and two. Table 4.4 summarizes the main properties of these
measurements, including the value of the four eigenfrequencies, the PCA com-
pressed feature, and the cluster label.

Table 4.4: Summary of selected testing points

Case f1 f2 f3 f4 PCA feature Cluster

mt1
B 0.8121 1.1426 1.4123 2.0049 -1.3825 0

mt2
B 0.8165 1.1491 1.4189 2.0184 -1.2678 1

mt3
B 0.8172 1.1429 1.4064 1.9998 -1.1644 2

We solve the FE model updating process to obtain the calibrated parametriza-

tions, yielding the responses UTest
Bθ

“ tu
t˚
1
Bθ
,u

t˚
2
Bθ
,u

t˚
3
Bθ

u. We then generate nt “ 50
synthetic scenarios with random severity within the interval r0, 0.5s for each of
the nz “ 8 zones in the bridge according to section 3.5. The testing dataset
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contains a total of 1, 200 samples (400 for each parametrization in UTest
Bθ

). Figure
4.10 shows a representative example of the testing samples for one of the bridge
zones with nt “ 8 synthetic scenarios. The figure makes clear that the testing
EOCs are different from those considered during training.
(A) Performance of the original approach: We evaluate the performance

of the original database generated from mh0
B . Figure 4.12 shows the cross-plots

for severity and location.
Figure 4.11a reveals that this approach fails to detect damage, with an over-

all score r2 « 0.37. We observe that points from cluster zero present better
estimations than those points belonging to clusters one and two. This result
demonstrates that neglecting changes in EOCs during training misleads the as-
sessment under different conditions. In the case of location, we also observe poor
predictions from DNN original

L , evidencing the unreliability of neglecting EOCs.
(B) Performance of the proposed GMM-based method: We finally

evaluate the performance of the GMM-based methodology under changing EOCs.
Figure 4.12a shows the severity cross-plot. The squared correlation coefficient in-
dicates an adequate performance with r2 « 0.85. We subsequently estimate the
damage location for the scenarios with S ě α. Figure 4.12b displays the corre-
sponding cross-plot. We also observe an adequate performance of DNNL, with
r2 « 0.85. These results reveal that the proposed methodology gains robustness
against the effect of varying EOCs during assessment. If more computational re-
sources were available, we would consider a higher number of clusters to produce
a more representative database that enhances the performance.
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(a) Severity cross-plot under seen EOCs

(b) Location cross-plot under seen EOCs

Figure 4.8: Testing cross-plots for the original approach under seen EOCs
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(a) Severity cross-plot under seen EOCs.

(b) Location cross-plot under seen EOCs.

Figure 4.9: Cross-plots during testing under seen EOCs for the new database
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Figure 4.10: Example of synthetic testing samples under unseen EOCs
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Figure 4.11: Testing cross-plots for the original database under unseen EOCs
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Figure 4.12: Testing cross-plots for the proposed approach under unseen EOCs
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5.1 Conclusions

In this dissertation, we investigate and develop various Structural Health Mon-
itoring (SHM) techniques to solve the damage identification problem in bridge
structures at different levels. We focus on the use of Deep Learning (DL) as
the means to provide structural health diagnostics. We first explore the field of
pure data-driven methods that produce alert systems able to detect the pres-
ence of damage. We develop an alert system that employs a particular Deep
Neural Network (DNN) known as a deep residual autoencoder to rapidly detect
structural damage. Subsequently, intending to achieve a more detailed assess-
ment of the structural condition, we develop a hybrid approach that combines
model and data-based techniques. We create a computational Finite Element
(FE) parametrization to represent the real structure and generate synthetic dam-
age scenarios that are experimentally unavailable. We employ these scenarios to
train the data-driven method (DNNs) and provide assessment close to real-time,
indicating the damage location and severity. We apply and validate the proposed
methodologies with data from three real structures: the Beltran bridge in Mexico,
the Infante Dom Henrique bridge in Porto, and the Z24 bridge in Switzerland.
In Chapter 2, we investigate the transition from a traditional data compression

technique (Principal Component Analysis, PCA) to an enhanced DL approach
in solving the damage detection problem based on a reconstruction error. We
first describe the foundations of PCA and provide the step-by-step development
of a deep residual autoencoder that replicates and enhances PCA in data recon-
struction by including nonlinearities. We demonstrate that an autoencoder that
applies linear transformations to compress and reconstruct the data captures the
same level of information as PCA after an adequate training phase. By adding
nonlinear transformations into the architecture as residual (parallel) blocks, we
ensure that the worse possible solution is at least as good as that of PCA, under
the assumption that the optimizer finds the global minima. We conclude that
this novel architecture outperforms PCA detection ability mainly when working
with highly complex multivariate datasets. Besides, it allows employing the linear
architecture in simpler data spaces.
We validate the methodology using data from bridges Beltran (Mexico) and
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Infante dom Henrique (Porto). Improving the reconstruction task with the resid-
ual autoencoder reduces the false positive rates during testing. It also reduces
the false negative rates and allows us to detect lighter severity levels, indicating
that we can discover damage at earlier stages.
We devote the last part of Chapter 2 to analyzing the contribution of different

types of measurable variables, grouped into local and global. We employ the Re-
ceiver Operating Curves (ROC) curves to compare the effectiveness of using (a)
local variables only, (b) global variables only, and (c) the combination of both.
Local variables are strongly sensitive to damage occurring nearby their emplace-
ment but fail for other damage locations. Global variables such as eigenfrequen-
cies broaden the detectable locations to the entire structure but lose sensitivity
to slight damage. In summary, combining both sources of data provides a more
complete and robust assessment.
An essential point in locating damage lies in the adequate disposal of the long-

term monitoring sensors. Deploying a large number of sensors helps to improve
the diagnostics, but it results in inadmissible costs. An intelligent positioning
strategy might yield a more efficient solution. Particularly important locations
are: (a) those more susceptible to suffering damage (e.g. joints, pier foundations,
etc.), and (b) those where eigenmodes present reduced curvature since global
variables lose sensitivity at these positions. Since eigenmodes can be obtained
beforehand (through an ambient vibration test or numerical simulations), those
nodes that are more “blind” to global variables can be identified and supported
with local variable sensors.
In Chapter 3, we implement and test a novel SHM methodology to identify

damage that induces a stiffness reduction at a specific part of the structure. We
employ experimental measurements from ambient vibration tests to adjust the
properties of a FE parametrization of the bridge and approximate the measured
dynamic response (natural frequencies and mode shapes). By grouping the struc-
tural properties of the parametrization into various regions where damage may
occur, we design a database that includes different scenarios labeled by damage
location and severity. The proposed DNN captures the relationship between the
dynamic response of the structure and the presence of damage with reduced error
after adequate training. The methodology demonstrates to be easily adaptable
to different types of bridges. The use of labeled synthetic samples corresponding
to specific damage location and severity levels during the DNN training enables
reaching a higher level in the diagnostic scale according to Rytter [114].
We validate the methodology with two full-scale cases of study: Infante Dom

Henrique and Z24. For the Infante bridge, we achieve adequate results, including
successful prediction of two synthetic damage scenarios evaluated as testing. We
also explore the robustness of the method in presence of measurement error by
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introducing noise and environmental variability by adding a term to the responses
of the synthetic scenarios in the database. The availability of two experimental
damage scenarios of increasing severity in the Z24 case study allows us to evaluate
the performance beyond the numerical frame. The DNN correctly estimates the
location of the pier settlements applied before the bridge demolition. The exact
severity level of these damage scenarios is unknown, but high values are expected
and achieved, demonstrating the ability of the methodology.
One of the most important challenges in assessing the health condition of op-

erative bridge structures is tackling the effect of varying Environmental and Op-
erational Conditions (EOCs). Pure data-driven methods often require long-term
monitoring data for training that cover most of this variability. However, when
employing computational simulations to enlarge the identification space beyond
the undamaged condition, we need to somehow incorporate EOCs in the synthetic
damage scenarios. The ideal training database would contain infinite damage
scenarios occurring at any possible combination of EOCs, but such approach is
inefficient and unfeasible.
In Chapter 4, we propose a novel approach to efficiently create a synthetic

database that accounts for varying EOCs. We employ a Gaussian Mixture Model
(GMM) to cluster the experimental data and select some significant points from
which we build the synthetic database. We compare the performance of the
original methodology (one single measurement as the baseline) with the new ap-
proach (five measurements representaive of the different clusters as the baseline)
in the task of damage identification with data from the Infante bridge. The
original approach fails when damage occurs under EOCs different from those of
the measurement employed to generate the training scenarios. We conclude that
neglecting the effect of EOCs during the training phase of DNNs has detrimen-
tal consequences in diagnostics. Including various measurements with different
EOCs in the database generation enhances the performance of the method and
allows generalizing the assessment to a wide range of EOCs. The main limita-
tion of the proposed method is the restrictive trade-off between the number of
employed measurements and the computational cost of generating the database.

5.2 Future work

The proposed pure data-driven SHM method based on a deep residual autoen-
coder yields very robust alert systems able to early detect damage with no need
for complex computational models. Despite their low diagnostic level [114], alert
systems constitute the preliminary assessment tool to detect the presence of any
abnormal behavior or malfunction in the structure and activate more detailed
inspections. Given the successful results obtained when applied to very different
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bridges, we consider future work transferring the methodology to other areas,
such as wind energy (onshore and offshore) or gas transport. These industries
are in continuous development, and SHM practices are of huge interest to provide
enhanced assessment and maintenance.
On the other hand, when attempting to provide a more insightful diagnostic,

we need to rely on computational mechanics to enrich the training phase of DNNs.
In this multidisciplinary domain, there exist multiple sources of uncertainty and
error, including measurements, material and structural properties, and compu-
tation. Also, we know that varying EOCs constitute a highly relevant aspect of
diagnostics. Although the approach we propose in Chapter 4 gains robustness
against varying EOCs in comparison with using only one measurement, it lacks
a quantification of the uncertainty. We consider as future work exploring the im-
plementation of bayesian DNNs, which deliver confidence estimates that provide
more robustness and reliability to the diagnostics.
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6.1 Scientific Achievements

This dissertation intends to contribute to the transition from research to the
real practice of SHM damage detection methods for full-scale operating bridge
structures. We address the implementation of Deep Learning techniques from
a mathematical understanding found in traditional data compression techniques
such as PCA to provide comprehensible solutions. We contribute to this appli-
cability through various developments, some of them already included in recent
publications [53, 43, 44].
In work [53], we provide an unsupervised SHM approach based on PCA to

monitor the global behavior of the sliding bearings in the Beltran viaduct, in
Mexico. We first demonstrate the existence of strong linear correlations in the
relative displacements measured at the deck-pier connections of the bridge during
nine months of monitoring. We then employ linear PCA to compress the mea-
surements and design a robust performance indicator for outlier detection that is
only weakly affected by temperature variations. This work delivers a fully appli-
cable SHM practice for operating bridges that satisfy the assumption of linearly
correlated measurements.
Work [43] proposes a DL-based enhancement of PCA for outlier detection to

assess the structural condition of two operating bridges. We investigate the lim-
itations of linear PCA by first replicating its compression and reconstruction
ability with an autoencoder NN architecture. We then incorporate deep residual
connections to account for nonlinear relationships in a partialy explainable way.
By fixing the weights obtained after training the linear autoencoder, we realize
the enhancement provided by including nonlinear relationships. The blockwise
configuration of the autoencoder enables the activation or deactivation of the
residual connections. This work provides an enhanced outlier detection method-
ology for full-scale bridges that adapts to both linear and nonlinear variability
environments.
We also provide a comparative study regarding the use of global and local

monitoring variables, as well as their combination. We apply the deep residual
autoencoder architecture developed in [43] to long-term monitoring data includ-
ing (a) global variables (eigenfrequencies), (b) local variables (inclinations and

95



6 Main achievements

strains), and (c) the combination of both. We first investigate the contribution
of each variable type in the detection of damage, demonstrating that combining
both sources of data contributes to extend the detectable damage locations and
reduce the minimium sensitivity level. We subsequently analyze the potential
of local variables to determine the location of damage when it occurs nearby a
particular sensor emplacement. This work reveals the benefits of deploying com-
plementary monitoring systems to achieve robust and insightful damage detection
assessment for large bridge structures under service. We have written a paper
that is currently under review, entitled: Deep Neural Network for damage
detection in Infante Dom Henrique bridge using multi-sensor data.
Work [44] addresses the inverse problem of damage identification throughout

a supervised learning approach. We overcome the lack of real damage scenar-
ios using FE simulations that recreate stiffness reductions at different bridge
parts and obtain the dynamic response in the form of eigenfrequencies and eigen-
modes. Computational mechanics provide the basis to understand and simulate
the behavior of the bridge structures. We define the relationship between the
FE parametrized damage and two identification labels: location and severity. We
then train a DNN that maps the dynamic response of the bridge to its health con-
dition according to the damage description labels. This work provides a higher
level diagnostic compared to the unsupervised approaches addresed in [53, 43]
since it estimates the location and severity level of the damage.
Finally, we also explore the challenging task of including the effect of varying

environmental and operational conditions in the combined methodology proposed
in [44]. This last research provides a novel methodology based on Gaussian Mix-
ture models to classify experimental data and select significant points to build the
synthetic database for training. We are currently finishing a new publication re-
garding this work, entitled Damage identification under varying ambient
conditions combining Deep Learning and Computaional simulations.
Application to a real bridge.
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formance. Journal of Civil Structural Health Monitoring 10, 1023–1036
(2020).

2022 A. Fernandez-Navamuel, F. Magalhães, D. Zamora-Sánchez, Á.J. Omella,
D. Garcia-Sanchez, and D. Pardo. Deep learning enhanced principal
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component analysis for structural health monitoring. Structural
Health Monitoring. 2022;21(4):1710-1722. doi:10.1177/14759217211041684.

2022 A. Fernandez-Navamuel, D. Zamora-Sánchez, Á.J. Omella, D. Pardo, D.
Garcia-Sanchez, and F. Magalhães. Supervised Deep Learning with
Finite Element simulations for damage identification in bridges.Engineering
Structures. 257. 114016. 10.1016/j.engstruct.2022.114016.

2022 A. Fernandez-Navamuel, D. Pardo, F. Magalhães, D. Zamora-Sánchez, Á.J.
Omella, and D. Garcia-Sanchez. Deep Neural Network for damage
detection in Infante Dom Henrique bridge using multi-sensor
data. Structural Control and Health Monitoring (under review).

2022 A. Fernandez-Navamuel, D. Pardo, F. Magalhães, D. Zamora-Sánchez,
Á.J. Omella, and D. Garcia-Sanchez. Damage identification under
varying ambient conditions combining Deep Learning and Com-
putaional simulations. Application to a real bridge.

6.3 Conferences and Workshops

2019 A. Fernandez-Navamuel and D. Garcia-Sanchez, Damage detection tool
development for decision making in bridge management. 2nd
SAFE-FLY International Conference. May 08-10 2019, Vitoria-Gasteiz

2021 D. Zamora-Sánchez and A. Fernandez-Navamuel, Structural Health Mon-
itoring Fundamentals: Surfacing in an ocean of SHM Algo-
rithms. 3rd Online workshop of the Stakeholders Reference Group on
Monitoring-based Decision Support for Resilient Transport Infrastructures.
FORESEE Project. March 18 2021

2022 A. Fernandez-Navamuel, D. Zamora-Sánchez, T. Varona Poncela, C. Jiménez-
Fernández, J. Dı́ez-Hernández, D. Garcia-Sanchez, and D. Pardo. Vibration-
based SHM strategy for a real time alert system with damage
location and quantification. 10th European Workshop on Structural
Health Monitoring (10th EWSHM). July 04-07 2022 Palermo, Italy (Held
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online).

2022 A. Fernandez-Navamuel, D. Zamora-Sánchez, D. Garcia-Sanchez, F. Mag-
alhães, and D. Pardo. Damage detection in bridge structures using
an unsupervised Deep Autoencoder 8th European Congress on Com-
putational Methods in Applied Sciences and Engineering. June 05-09 2022
Oslo, Norway.

2022 A. Fernandez-Navamuel, D. Zamora-Sánchez, D. Garcia-Sanchez, F. Ma-
galhães, and D. Pardo. Bridge damage detection using Deep Au-
toencoder Networks Congress on Numerical Methods in Engineering.
September 12-14 2022, Gran Canaria, Spain.
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[85] F. Magalhães and Á. Cunha. Explaining operational modal analysis with
data from an arch bridge. Mechanical Systems and Signal Processing,
25(5):1431–1450, 2011.
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