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Abstract: In this article, a nonlinear autocatalytic chemical reaction glycolysis model with the
appearance of advection and diffusion is proposed. The occurrence and unicity of the solutions in
Banach spaces are investigated. The solutions to these types of models are obtained by the opti-
mization of the closed and convex subsets of the function space. Explicit estimates of the solutions
for the admissible auxiliary data are formulated. An elegant numerical scheme is designed for
an autocatalytic chemical reaction model, that is, the glycolysis model. The fundamental traits of
the prescribed numerical method, for instance, the positivity, consistency, stability, etc., are also
verified. The authenticity of the proposed scheme is ensured by comparing it with two extensively
used numerical techniques. A numerical example is presented to observe the graphical behavior of
the continuous system by constructing the numerical algorithm. The comparison depicts that the
projected numerical design is more productive as compared to the other two schemes, as it holds all
the important properties of the continuous model.

Keywords: optimal solution; auxiliary data; advection; equilibrium point; glycolysis; diffusion;
structure preserving

MSC: 49J30; 34A12

1. Introduction

Glycolysis reaction behavior arises in biological sciences, chemistry, biochemical
sciences, open chemical reactors, etc. This type of reaction reflects the pattern behavior
of the solutions. So, the solution of the underlying reaction model exhibits oscillatory
behavior when the steady state of the model is unstable. Hess and Boiteux [1] investigated
the metabolic oscillations in various cellular systems. Initially, glycolytic traveling waves
were observed in yeast cells. Afterward, the oscillatory wave solutions were observed in
many phenomena, such as an open spatial reactor [2] and the glycolysis reaction for the
uptake of glucose in cones [3]. The dynamical systems are generally associated with the
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real-world problems, represented by the mathematical systems involving the partial or
ordinary differential equations. Mostly, these differential equations contain the space and
time derivatives of the unknown quantities which represent the dynamics of the physical
model. In the system of differential equations, the space derivatives of a different order
have a strong impact on the behavior of the dynamical system. These types of mathematical
models with the time derivatives have vast applications in the various fields of the real
world, for instance, chemistry, physics, biological sciences and engineering [4–13]. Physical
chemistry also has a verity of applications in mathematics. There are several chemical
reaction models in the form of differential equations that represent the different properties
of the chemical substances. Glycolysis is a fundamental chemical reaction which appears in
the cytosol of cells’ cytoplasm. It is actually a metabolic pathway for the energy of cells in an
organism [14,15]. This pathway concerns the oxidative disruption of one glucose molecule
into two pyruvate with the addition of energy in the form of adenosine triphosphate (ATP)
and nicotinamide adenine dinucleotide (NAD) [16]. Glycolysis plays a significant role in
the body cells as glucose is a major source of propellant for the tissues in the body. For
instance, the only mean of energy for the brain is the glucose. The body must carry a
sufficient quantity of glucose in the blood to guarantee the brain functioning naturally. So,
glycolysis appears in almost all living organisms.

To study the advection–diffusion systems, the applications of the derivatives, ulti-
mately the differential equations in the mathematical models of the underlying systems,
have a significant role. The governing equations involved in the phenomenon provide an
easy understanding for investigating the model. For the numerical solution of the glycolysis
model, it is of great significance to verify the important properties such as the existence,
uniqueness and convergence toward the true steady states. To explore the numerical so-
lution of the set of equations representing the system, the awareness of the existence and
uniqueness of the solution is an important thing. Moreover, the study of the convergence
behavior of the solution plays a vital role in the numerical analysis [17]. Before computing
an approximate solution, it is more beneficial to ensure the existence of the solution. When
the solution is guaranteed, then it is a further challenging task to find how many solutions
are possible. Then, a feasible solution is traced, which is in accordance with the constraints
of the system. The solutions of differential equations generally lie in the function spaces
called Banach spaces. Generally, the desired values of the state variables involved in the
system of differential equations cannot have a global bound, so it is obviously attractive to
consider a closed ball in the space of continuous functions. The advantage of considering
such subsets is that explicit estimates can be obtained. In the first stage, the problems
are reduced to the operator having a fixed-point property for which the solutions are
guaranteed in the closed balls of these spaces of the functions that lead to the limitations
on the radius of the closed balls for an available interval or boundary conditions. Likewise,
the same radius chosen in the same problem can also lead to the limitations for admissible
auxiliary data. The closed ball for which the limitation or restriction is placed is called
the optimal ball. Tutschke, in 2005, gave the idea about explicit estimates for the general
equations of operators [18]. Numerical schemes are immensely applied to approximate the
solutions of the system of differential equations. So, it is necessarily required to establish
such numerical schemes that carry all the fundamental traits of the model, namely the
positivity, boundedness and convergence toward the fixed point. In recent years, a number
of researchers studied the glycolysis models [19,20] which are nonlinear in nature. Due
to the nonlinearity, to find the analytical solutions for these models is a strenuous job,
so most of the researchers found the numerical solutions of these types of mathematical
models [21,22].
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In 1968, Selkov [23] constructed a simple model of glycolysis that represents the quali-
tative behavior of most experimental data for a single-frequency oscillation in glycolysis.
Selkov’s model is described as

du1

dt
= −u1 + σu2 + u1

2u2,

du2

dt
= ρ− σu2 − u1

2u2.

Mickens, in [24], analyzed the above Selkov model numerically and obtained the
approximate solution by using a finite difference scheme in a nonstandard way (NSFD),
which possesses the property of positivity preserving naturally. In the abovementioned
model, u1 and u2 represent the concentrations of the chemical substances, so they must
be positive. The systems of first-order partial differential equations have been considered
within the framework of the Clifford analysis, where the components of the Clifford algebra-
valued functions are the solutions of the diffusion equations [25]. Verveyko and Verisikin
demonstrated the computational analysis of the glycolysis reaction model in an open spatial
reactor [26]. In [27], Nauman et al. considered a one-dimensional coupled autocatalytic
glycolysis model and solved it numerically by an efficient finite difference explicit numerical
scheme, which preserves the positivity of the unknown quantities used in the model. Now,
we convert the model, mentioned above, into the advection–reaction–diffusion model as
follows:

∂u
∂t

= Du∆u− u + σv + u2v,

∂v
∂t

= Dv∆v + ρ− σv− u2v.

With the inclusion of the advection and diffusion terms in the mathematical model
concerning population dynamics and an autocatalytic chemical reaction system, it rep-
resents more realistic behavior as advection describes the directed movements and the
random movements are represented by the diffusion process. So, the extended models
thoroughly explain the relevant physical phenomena [28–35]. In this paper, we dealt with a
one-dimensional glycolysis model with advection–diffusion.

∂ f
∂t

+
∂ f
∂x

= ν1
∂2 f
∂x2 + ag + f 2g− f , (1)

∂g
∂t

+
∂g
∂x

= ν2
∂2g
∂x2 − ag− f 2g + b, (2)

with initial and boundary conditions

f (x, 0) = β1(x) > 0,

g(x, 0) = β2(x) > 0,

and

fx(0, t) = fx(1, t) = 0,

gx(0, t) = gx(1, t) = 0,

where f and g are the unknown quantities representing the concentration of chemical
substances, and ν1 and ν2 represent the diffusion coefficients. In the above proposed model,
∂2 f
∂x2 and ∂2g

∂x2 exhibit the diffusion (random movement) and ∂ f
∂x , ∂g

∂x show the advection
(directed movement) of f and g, respectively.

The remainder of this article consists of the following sections. In Section 2, the general
form of the advection–reaction–diffusion system is considered for the analysis. The exis-
tence of the optimal solution of this system in an optimal ball of a Banach space with explicit
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estimates is discussed. A result about the uniqueness of the solution of the proposed system
is also established. Section 3 is devoted to the numerical study of the autocatalytic glycoly-
sis model. A reliable and efficient numerical scheme, which is known as a nonstandard
finite difference technique, is designed which preserves the traits of the physical system.
The consistency and stability of the proposed scheme are also discussed in this section.
In order to show the efficiency of the proposed scheme, its comparison with the other
well-known numerical schemes is necessary. So, to compare our results, two other existing
methods are also applied on the same problem, and the results are compared in this section.
A numerical example with complete numerical simulations is illustrated in Section 4. In
Section 5, some concluding remarks are given.

2. Existence of Optimal Solutions

In this section, we find some optimality conditions in Banach spaces for some quanti-
ties used in the existence of optimal solutions to glycolysis model (1) and (2). This system
can be expressed in a more general form as

ft = H1( f , g, fx, fxx), (3)

gt = H2( f , g, gx, gxx). (4)

In the above form, H1 and H2 showing in the right sides of Equations (3) and (4) may
be linear or nonlinear functions in which nonlinearity of H1 and H2 may depend on f and
g as well as on their first- and second-order apace derivatives [36]. The equivalent form for
the solution of the above system can be written as follows

f (x, t) = f0 +
∫ t

0
H1( f , g, fx, fxx)(x, t)dω,

g(x, t) = f0 +
∫ t

0
H2( f , g, gx, gxx)(x, t)dω.

Combining these two equations, we obtain

f (x, t) = f0 +
∫ t

0
H1

(
f , g0 +

∫ ω

0
H2( f , g, gx, gxx)(x, s)ds, fx, fxx

)
(x, ω)dω.

In the light of the theory of operators, the integral equation showing above to evaluate
the solution to Equations (3) and (4) can be written in operator form, which becomes a
fixed-point problem as follows

J
(

f (x, t)
)
= f (x, t), f (x, t) ∈ C2,1

(
[a, b]× [0, τ]

)
.

For any real number τ ≥ 0, let X = C
(
[a, b]× [0, τ]

)
be a Banach space in which we

will optimize the proposed problem. Optimization can be performed by choosing a closed
and convex subset, called closed ball, in the solution space X. To choose this closed and
convex subset in X, two possibilities arise as follows:

1. Consider a closed ball in the Banach space X whose center is at Θ ∈ X which is
usually known as the zero of the space X.

Sr(Θ) =

{
f | f ∈ X, ‖ f −Θ‖ ≤ r, r > 0

}
.

The fixed point results from the literature of a nonlinear analysis can be helpful to
ensure the existence of the solution. In this regard, Schauder fixed-point theorem is applied
to guarantee the existence result for the system (1) and (2). First, it is important to consider
that the fixed-point operator J maps continuously the ball Sr(Θ) in to itself.



Mathematics 2023, 11, 37 5 of 17

Now, consider a mapping

J : Sr(Θ)→ Sr(Θ)

defined as

J
(

f (x, t)
)
= f0 +

∫ t

0
H1

(
f , g0 +

∫ ω

0
H2( f , g, gx, gxx)(x, s)ds, fx, fxx

)
(x, ω)dω.

Suppose that

‖H1(x, t)‖ ≤ k(r),

k(r) is a real-valued continuous function.
Take

‖J f (x, t)−Θ‖ =∥∥∥∥ f0 +
∫ t

0
H1

(
f , g0 +

∫ ω

0
H2( f , g, gx, gxx)(x, s)ds, fx, fxx

)
(x, ω)dω

∥∥∥∥
≤ | f0|+ k(r)t

‖J f (x, t)‖ ≤ | f0|+ k(r)τ.

To fulfill the first condition of Schauder’s fixed-point theorem, J is needed to be a
self-map. So,

| f0|+ k(r)τ ≤ r. (5)

If we choose the initial condition f0 and τ, length of the interval for continuity, we can
optimize r, that is, the optimal ball. Then,

r ≥ k(r)τ + | f0|. (6)

If we fix r and | f0|, then

τ ≤ r− | f0|
k(r)

. (7)

To obtain the highest value of τ, we have to find the maximum value of r−| f0|
k(r) . Let r∗

be the value of optimized radius r, then it satisfies the equation

0 = k(r)− (r− | f0|)k′(r),
≤ k(r)− τk(r)k′(r). (by using (7))

This implies

τ ≤ 1
k′(r)

. (8)

Again, if τ is chosen first, the value of f0 can be optimized from (6), that is,

| f0| ≤ r− τk(r). (9)

For the greatest value of f0, we have the maximum value of r− τk(r). The optimized
value of r satisfies the equation

τ =
1

k′(r)
. (10)
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2. If we consider an optimal ball with center at the initial condition f0.

Sr( f0) =

{
f | f ∈ X, ‖ f − f0‖ ≤ r, r > 0

}
.

By Schauder’s fixed-point theorem, existence of the solutions to Equations (1) and (2)
require the self-mapping first for J : Sr( f0)→ Sr( f0) defined as

J
(

f (x, t)
)
= f0 +

∫ t

0
H1

(
f , g0 +

∫ ω

0
H2( f , g, gx, gxx)(x, s)ds, fx, fxx

)
(x, ω)dω.

Let us take H1(x, t) ≤ k1(r), where k1(r) is a real-valued continuous function. Take∥∥∥∥J f (x, t)− f0(x, t)
∥∥∥∥ =

∥∥∥∥ f0 +
∫ t

0
H1(x, ω)dω− f0

∥∥∥∥,

≤ k1(r)t,

= τk1(r),

where H1 ≡ H1

(
f , g0 +

∫ ω
0 H2( f , g, gx, gxx)(x, s)ds, fx, fxx

)
. For J to be self-mapping, we

have

τk1(r) ≤ r,

τ ≤ r
k1(r)

.

For the largest possible value of τ, maximization technique can be applied from applied
calculus on r

k1(r)
in which k1(r) is considered as a differentiable function.

Suppose that r∗ be the value of optimal radius, then it should be the root of the equa-
tion

k1(r) = rk′1(r). (11)

If k1(r) ∈ C2[<] and (
r

k1(r)

)′′
= −

rk′′1 (r)
k2

1(r)
.

If we suppose k′′1 (r) is positive for all values of r, then r
k1(r)

has a maximum value
at every value r∗ which satisfies Equation (11). Because between two maximum val-
ues there exists at least one minimum value, the assumption of k′′1 (r) ≥ 0 implies that
Equation (11) has at most one solution.

With the help of the above discussion, we can develop a result.

Theorem 1. Suppose that for a real-valued continuously differentiable function k1(r), the optimal
value of radius r∗ is the root of Equation (11). Moreover, k1(r) ∈ C2 and positive. Then, at most, one
value of optimal radius of a closed ball exists in which the solutions of Equations (1) and (2) exist.

Numerical solutions have a key role in the applied study of mathematics. Along with
the approximate solutions, numerical simulations help us to understand the behavior of
the solutions as well as the numerical scheme [37–39]. In the following section, we use a
suitable and reliable Mickem’s technique, named the nonstandard finite difference (NSFD)
scheme, to obtain the solution of the prescribed model, and to show the strong reasonings
to use this scheme, we will find the solution to the same problem by some well-known
numerical schemes for the comparison.
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3. Numerical Solutions of Glycolysis Model with Analysis

In the literature of numerical analysis, the finite difference schemes have a pivotal role
to find the numerical solution of differential equations that may be linear or nonlinear. The
use of such kind of techniques makes the numerical calculations very easy as compared to
the other existing methods because this technique converts the continuous model into a
discrete formulation by taking some finite number of values of the function defined on the
corresponding finite number of points in the given domain which is easy to handle [40–44].
The Taylor’s series expansion is the best tool to obtain the numerical approximations.

In the remaining part of this paper, assume that m, n are two positive integers and
τ ∈ R, a positive real number. For finding the values of the state variables involved in
Equations (1) and (2), we proceed as follows: the intervals [a, b] and [0, τ] are discretized
as given below a = x0 < x1 < x2 < . . . < xm = b and 0 = t0 < t1 < t2 < . . . < tn = τ of
[a, b] and [0, τ], respectively, with the norm λ = b−a

m and µ = τ
n

Let f q
p and gq

p be the approximate values of the function f (x, t) and g(x, t), respectively,
at a grid point (xp, tq). The fixed point (point of equilibria) of Equations (1) and (2)
is ( f ∗, g∗) = (b, b

a+b2 ). Strogatz discussed the stability of the fixed point of the gly-
colysis model in [45]. According to Strogatz, the fixed point of glycolysis is stable if
b4+(2a−1)b2+(a+a2)

a+b2 > 0 and unstable if b4+(2a−1)b2+(a+a2)
a+b2 < 0.

As for some nonlinear systems, it is difficult to investigate the analytical solutions
to Equations (1) and (2). So, we adopt some numerical techniques to approximate them.
A numerical scheme is called reliable if it sustains the fundamental traits of the system. In
particular, it should preserve the structure of the continuous system. Mickens established
the criteria for constructing the structure-preserving nonstandard numerical scheme [46].
Here, we apply the scheme which was established by Charpentier [47]. This scheme retains
the positivity property for the underlying system. The efficiency of the proposed scheme is
elucidated by comparing it with other existing schemes in the literature.

There are many implicit and explicit schemes in the literature proposed by various
researchers. In the explicit scheme, the dependent quantities are expressed in terms of some
already known quantities for the previous step of time, while for the implicit schemes, both
dependent and independent variables (the value of functions at a future time step) are used
in one equation, so they can be represented in the matrix notation. We can discretize our
proposed model (1) and (2) by using the formulas

∂ f
∂t

=
f q+1
p − f q

p

µ

∂ f
∂x

=
f q+1
p − f q+1

p−1

λ

∂2 f
∂x2 =

f q+1
p+1 − 2 f q+1

p + f q+1
p−1

λ2 .

Substituting these formulas in Equations (1) and (2) and applying the rules defined
by Mickens [46], we obtain

f q+1
p − f q

p

µ
+

f q+1
p − f q+1

p−1

λ
= ν1

f q+1
p+1 − 2 f q+1

p + f p+1
p−1

λ2 + (12)

agq
p +

(
f q
p

)2

gq
p − f q+1

p .
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gq+1
p − gq

p

µ
+

gq+1
p − gq+1

p−1

λ
= ν2

gq+1
p+1 − 2gq+1

p + gq+1
p−1

λ2 − (13)

agq+1
p −

(
f q
p

)
gq+1

p + b.

After some simplifications, we obtain

−χ2 f q+1
p+1 + (1 + χ1 + 2χ2 + µ) f q+1

p − (χ1 + χ2) f q+1
p−1 = (14)

µagq
p + f q

p

(
1 + µ f q

p gq
p

)

−χ∗2 gq+1
p+1 +

(
1 + χ1 + 2χ∗2 + aµ + µ

(
f q
p

)2)
gq+1

p − (χ1 + χ∗2)gq+1
p−1 = (15)

gq
p + µb

where χ1 = µ
λ , χ2 = µν1

λ2 , χ∗2 = µν2
λ2 .

3.1. Order of Accuracy

For the accuracy of the numerical solution, it is very important that is achieved by
the numerical design. The accuracy of the proposed scheme is obtained by using Taylor’s
expansions. From Equation (12), let

` f =
f (x, t + µ)− f (x, t)

µ
+

f (x, t + µ)− f (x− λ, t + µ)

λ
−

ν1

(
f (x + λ, t + µ)− 2 f (x, t + µ) + f (x− λ, t + µ)

λ2

)
+ ag (16)

− f 2g + f (x, t + k).

Take

f (x, t + µ)− f (x, t)
µ

=
1
µ

{
f + µ

∂ f
∂t

+
µ2

2!
∂2 f
∂t2 +

µ3

3!
∂3 f
∂t3 +

µ4

4!
∂4 f
∂t4 + · · · − f

}
=

∂ f
∂t

+
µ

2!
∂2 f
∂t2 +

µ2

3!
∂3 f
∂t3 +

µ3

4!
∂4 f
∂t4 + · · ·.

Similarly, after finding the values of f (x− λ, t + µ), f (x + λ, t + µ) by using Taylor’s
series, we obtain

` f =
∂ f
∂t

+
∂ f
∂x
− ν

∂2 f
∂x2 − ag− f 2g + f +

µ

2!
∂2 f
∂t2 +

µ2

3!
∂3 f
∂t3 +

µ3

4!
∂4 f
∂t4 + · · ·

− λ

2!
∂2 f
∂x2 +

2µ

2!
∂2 f
∂x∂t

+
λ2

3!
∂3 f
∂x3 + · · · − ν

(
µ

∂3 f
∂x2∂t

)
+ · · ·

+ µ
∂ f
∂t

+
µ2

2!
∂2 f
∂t2 +

µ3

3!
∂3 f
∂t3 +

µ4

4!
∂4 f
∂t4 + · · ·.

So, ` f →
{

∂ f
∂t +

∂ f
∂x − ν

∂2 f
∂x2 − ag− f 2g + f

}
as µ→ 0 and λ→ 0.
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Now, for Equation (13), let

`g =
g(x, t + µ)− g(x, t)

µ
+

g(x, t + µ)− g(x− λ, t + µ)

λ
−

ν1

(
g(x + λ, t + µ)− 2g(x, t + µ) + g(x− λ, t + µ)

λ2

)
+ ag(x, t + µ) (17)

+ f 2g(x, t + µ)− b.

By applying Taylor’s expansion series formulas on (17) and after some simple cal-

culations, we obtain `g →
{

∂g
∂t + ∂g

∂x − ν
∂2g
∂x2 + ag + f 2g − b

}
as µ → 0 and λ → 0.

Hence, the proposed scheme is consistent with order 1.

3.2. Stability of Proposed Scheme

From Equation (14),

(1 + χ1 + 2χ2 + µ) f q+1
p = (χ1 + χ2) f q+1

p−1 + χ2 f q+1
p+1 + µagq

p + µ

(
f q
p

)2

gq
p − µ f q+1

p .

After linearization, we have

(1 + χ1 + 2χ2 + µ) f q+1
p = (χ1 + χ2) f q+1

p−1 + χ2 f q+1
p+1 + µ f q

p + f q
p .

Put

f q+1
p = φ(t + ∆t)eiαx

f q+1
p−1 = φ(t + ∆t)eiα(x−∆x)

f q+1
p+1 = φ(t + ∆t)eiα(x+∆x)

f q
p = φ(t)eiαx

(1 + χ1 + 2χ2 + µ)φ(t + ∆t)eiαx = (χ1 + χ2)φ(t + ∆t)eiα(x−∆x)

+χ2φ(t + ∆t)eiα(x+∆x) + µφ(t)eiαx

∣∣∣∣φ(t + ∆t)
φ(t)

∣∣∣∣ = ∣∣∣∣ µ

1 + χ1 + 2χ2 + µ− (χ1 + χ2)eiα∆x− χ2eiα∆x

∣∣∣∣
which is less than 1.

Again, from Equation (15), after linearization, we obtain

−χ∗2 gq+1
p+1 +

(
1 + χ1 + 2χ∗2

)
gq+1

p − (χ1 + χ∗2)gq+1
p−1 = gq

p

Similarly, we obtain∣∣∣∣φ(t + ∆t)
φ(t)

∣∣∣∣ = ∣∣∣∣ 1
1 + χ1 + 2χ∗2 − χ∗2eiα∆x − (χ1 + χ∗2)e

−iα∆x

∣∣∣∣
which is also less than 1.

Hence, the proposed scheme is von Nuemann stable.
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3.3. Positivity of Proposed Scheme

M-matrix theory [48] is quite useful for proving the positivity of a large number of
mathematical models regarding population dynamics, economy, engineering, autocatalytic
chemical reactions, etc.

M-matrix over R is a square matrix if all the entries in off-diagonal position are
non-positive.

Remark 1. It is evident that M-matrix obeys the diagonal dominance property and all the entries
of the inverse of M-matrix are always positive.

Theorem 2. For any λ ≥ 0 and µ ≥ 0, the discretized system (14) and (15) has positive solutions.
That is, f q ≥ 0 and gq ≥ 0 for all q = 0, 1, 2, . . ..

Proof. The system (14) and (15) can be expressed as

K f n+1 = U (18)

Lgn+1 = V (19)

where K and L are (n + 1)× (n + 1) square matrices, while U and V represent the column
matrices of the system (18) and (19).

K =



α1 α2 0 · · · · · · · · · · · · 0

α3 α1 α4
. . .

...

0 α3 α1 α4
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . α3 α1 α4 0
...

. . . α3 α1 α4
0 · · · · · · · · · · · · 0 α2 α1



L =



β1 β2 0 · · · · · · · · · · · · 0

β3 β1 β4
. . .

...

0 β3 β1 β4
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . β3 β1 β4 0
...

. . . β3 β1 β4
0 · · · · · · · · · · · · 0 β2 β1


The diagonal elements of the matrix K represented by kij, i = j where i, j = 1, 2, 3, · · · n+

1, are α1 = 1 + χ1 + 2χ2 + µ. On the other hand, the elements in K other than diagonal
elements represented by kij, i 6= j where i, j = 1, 2, 3, · · · n + 1 are α2 = −(χ1 + 2χ2),
α3 = −(χ1 + χ2) and α4 = −χ2, in which χ1 = µ

λ , χ2 = µν1
λ2 . The diagonal elements of ma-

trix L defined as lij, i = j where i, j = 1, 2, 3, · · · n + 1 are β1 = 1 + χ1 + 2χ∗2 + aµ + µ( f 0
0 )

2.
While the off-diagonal entries in L represented by lij, i 6= j and i = 1, 2, 3, · · · n + 1 are
β2 = −(χ1 + 2χ∗2), β3 = −(χ1 + χ∗2) and β4 = −χ∗2 , where χ1 = µ

λ , χ∗2 = µν2
λ2 . Col-
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umn matrix entries in both the matrices L and M are µagq
p + f q

p

(
1 + µ f q

p gq
p

)
and gq

p + µb,

respectively.
Again,

f n = ( f n
0 , f n

1 , · · · f n
m)

T , gn = (gn
0 , gn

1 , · · · gn
m)

T .

Because f 0
i , g0

i ≥ 0, and clearly, the diagonal elements of both above matrices K and L,
α1 and β1, respectively, are non-negative. Moreover, α2, α3, α4, β2, β3 and β4, all are negative
in both the above matrices.

In the presence of all the abovementioned properties, both the matrices K and L are M-
matrices. This implies that K and L are non-singular matrices. So, the Equations (18) and (19)
can be represented by

f q+1 = K−1U

gq+1 = L−1V.

Assume that f q ≥ 0 and gq ≥ 0, K and L are M-matrices. This implies that all the
entries of K−1 and L−1 are positive. So, we obtain f q+1 > 0 and gq+1 > 0. Hence, by
induction, the system (14) and (15) is positive.

3.4. The Upwind Implicit Scheme

In upwind scheme, both time and space derivatives are developed in the following
manner:

∂ f
∂t

=
f q+1
p − f q

p

µ

∂ f
∂x

=
f q+1
p − f q+1

p−1

λ

∂2 f
∂x2 =

f q+1
p+1 − 2 f q+1

p + f q+1
p−1

λ2 .

Substitute the above approximations in Equations (1) and (2), we obtain

−(χ1 + χ2) f q+1
p−1 + (1 + χ1 + 2χ2) f q+1

p − χ2 f q+1
p+1 = (20)

aµgq
p + µ

(
f q
p

)2

gq
p − µ f q

p + f q
p

−(χ1 + χ∗2)gq+1
p−1 + (1 + χ1 + 2χ∗2)gq+1

p − χ∗2 gq+1
p+1 = (21)

−µgq
p − µ

(
f q
p

)2

gq
p + gq

p + b

where χ1 =
µ

λ
, χ2 =

µν2

λ2 and χ∗2 =
µν2

λ2 .

The upwind scheme is implicit in nature, and it constructs a diagonally dominant
system of algebraic equations. The von Neumann criteria are applied in describing the
stability of the model.

3.5. The Classical Crank Nicolson Scheme

In this famous numerical classical method, the partial derivatives with respect to time
and space are replaced by using the classical central difference concept at (pλ, 2q+1

2 µ),
which represents the average of the two consecutive points of the time coordinate, while
keeping the space coordinates fixed, i.e., (p, q) and (p, q + 1). Then,
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∂ f
∂t

∣∣∣∣q
p

=
f q+1
p − f q

p

µ

∂ f
∂x

∣∣∣∣q
p

=
f q
p+1 − f q

p−1

4λ
+

f q+1
p+1 − f q+1

p−1

4λ

∂2 f
∂x2

∣∣∣∣q
p

=
1
2

 f q
p+1 − 2 f q

p + f q
p−1

λ2 +
f q+1
p+1 − 2 f q+1

p + f q+1
p−1

λ2 h

.

The corresponding difference equations are determined by Equations (1) and (2), and
after substituting the above approximations, we have

−
(

χ1

4
+

χ2

2

)
f q+1
p−1 + (1 + χ2) f q+1

p +

(
χ1

4
− χ2

2

)
f q+1
p+1 =

(
χ1

4
+

χ2

2

)
f q
p−1 (22)

+(1− χ2) f q
p +

(
χ2

2
− χ1

4

)
f q
p+1 + µagq

p + µ

(
f q
p

)2

gq
p − µ f q

p

−
(

χ1

4
+

χ∗2
2

)
gq+1

p−1 + (1 + χ∗2)gq+1
p +

(
χ1

4
− χ∗2

2

)
gq+1

p+1 =

(
χ1

4
+

χ∗2
2

)
gq

p−1 (23)

+(1− χ∗2)gq
p +

(
χ∗2
2
− χ1

4

)
gq

p+1 − µagq
p − µ

(
f q
p

)2

gq
p + b.

4. Numerical Experiment

In this section, we discuss a numerical experiment. Consider the system (1) and (2)
with the following initial and no-flux boundary conditions:

f (x, 0) = 3.5 + 0.1 sin x (24)

g(x, 0) = 0.8 + 0.1 sin x (25)

Figures 1 and 2 indicate the graphical solutions of the state variables f and g which
represent the concentration of the chemical substances with the help of the popular Crank
Nicolson technique. The graphs in Figure 1 show the negative solution of g, which is
worthless, while this scheme is mathematically stable and unconditionally consistent.
Moreover, the graphs in Figure 2 point out that this technique is divergent for various
step sizes. So, we can conclude that the Crank Nicolson method is not applicable to the
proposed model.

1
0.8

0.6

Crank Nicolson finite difference scheme

0.4

x
0.2

00t

50

0

1

2

3

4

100

f
(x
,t
)

(a) Mesh graph of f

1
0.8

0.6

Crank Nicolson finite difference scheme

0.4

x
0.2

00t

50

-0.4

-0.2

0

0.2

0.4

100

g
(x
,
t)

(b) Mesh graph of g

Figure 1. Graphical solution of f , g (concentration of substances) using Crank Nicolson method at
a = 3.5, b = 0.25, χ1 = 2, χ2 = χ∗2 = 0.04 ν1 = ν2 = 10−3.
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1
0.8

0.6

Crank Nicolson finite difference scheme

0.4

x
0.2

00
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2

×10124
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-1

3
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(x
,t
)

(a) Mesh graph of f

1
0.8

0.6

Crank Nicolson finite difference scheme

0.4

x
0.2

00

1

t

2

×10124

-2

-1

2

1

0

3

g
(x
,
t)

(b) Mesh graph of g

Figure 2. Graphical solution of f , g (concentration of substances) using Crank Nicolson method at
a = 3.5, b = 0.25, χ1 = 6, χ2 = χ∗2 = 0.12 ν1 = ν2 = 10−3.

The simulations in Figures 3 and 4 for the upwind implicit method are similar to the
Crank Nicolson method. The upwind implicit scheme exhibits the non-physical behavior
in these graphs. Therefore, this method also fails to sustain the structure of the glycolysis
model.

1
0.8

0.6

Upwind implicit finite difference scheme

0.4

x
0.2

00t

50

0

1

2

3

4

100

f
(x
,t
)

(a) Mesh graph of f

1
0.8

0.6

Upwind implicit finite difference scheme

0.4
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0.2

00t

50

-0.4

-0.2

0

0.2

0.4

100

g
(x
,
t)

(b) Mesh graph of g

Figure 3. Graphical solution of f , g (concentration of substances) using upwind implicit method at
a = 3.5, b = 0.25, χ1 = 2, χ2 = χ∗2 = 0.04 ν1 = ν2 = 10−3.
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(a) Mesh graph of f

1
0.8

0.6

Upwind implicit finite difference scheme

0.4

x
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00

1

t

2

×10211

1.5

1

0.5

0

2

3

g
(x
,
t)

(b) Mesh graph of g

Figure 4. Graphical solution of f , g (concentration of substances) using upwind implicit method at
a = 3.5, b = 0.25, χ1 = 6, χ2 = χ∗2 = 0.12 ν1 = ν2 = 10−3.

The graphical approach of the suggested NSFD implicit technique is performed
in Figures 5 and 6. All the important attributes of the state variables involved in the
system (1) and (2) are contained by the proposed technique. This technique achieves the
convergent solutions for all the step sizes and also holds the positive solution.
In Figures 1–6, we select the values of a and b in such a way that the condition
b4+(2a−1)b2+(a+a2)

a+b2 > 0 is satisfied, so the fixed point ( f ∗, g∗) of the glycolysis model is
stable. It is clear from Figures 2, 4–6 that the designed NSFD implicit technique retains the
stability of the fixed point ( f ∗, g∗) while the upwind and Crank Nicolson schemes fail in
this regard.

1
0.8
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Proposed Implicit FD Scheme
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50
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3
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100
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X: 0.55
Y: 100
Z: 0.25

(a) Mesh graph of f

1
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Proposed Implicit FD Scheme

0.4

x
0.2

00t

50

0

0.1

0.2

0.3

0.4

100

g
(x
,
t)

X: 0.55
Y: 100
Z: 0.07018

(b) Mesh graph of g

Figure 5. Graphical solution of f , g (concentration of substances) using designed NSFD implicit
method at a = 3.5, b = 0.25, χ1 = 2, χ2 = χ∗2 = 0.04 ν1 = ν2 = 10−3.

It is evident from the above figures that the underlying system (1) and (2) is unstable

at the fixed point ( f ∗, g∗), if the expression b4+(2a−1)b2+(a+a2)
a+b2 is less than zero. Figure 7

validates that the proposed technique demonstrates the same behavior as possessed by
the model (1) and (2). In the graphs of Figure 7, we take the values of a and b in such a

way that the expression b4+(2a−1)b2+(a+a2)
a+b2 is less than zero. Clearly, the graphical solution

exhibits unstable behavior.
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Figure 6. Graphical solution of f , g (concentration of substances) using NSFD implicit method at
a = 3.5, b = 0.25, χ1 = 6, χ2 = χ∗2 = 0.12 ν1 = ν2 = 10−3.
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Figure 7. Graphical solution of f , g (concentration of substances) using designed NSFD implicit
method at a = 0.008, b = 0.6, χ1 = 2, χ2 = χ∗2 = 0.04 ν1 = ν2 = 10−3.

5. Conclusions

In the current article, the existence of the solution for a chemical reaction system,
known as a glycolysis model, is described by using a renowned result of the fixed-point
theory. Firstly, we considered a function space (solution space) of the continuous functions
and optimized the solution by a closed ball which is a subset of the function space. In
the framework of optimization, we constructed a result with suitable conditions. The
uniqueness of the solution in this regard was also discussed. After acquiring the existence
and uniqueness of the values of the state variables, we constructed a scheme for the
numerical approximation of the solutions of the system which holds the unconditional
positivity of the required solutions. We also proved that our proposed numerical scheme
is consistent with the model (1) and (2). The comparison of the current scheme with the
existing schemes verified that our proposed scheme is more efficient. The upwind and
Crank Nicolson schemes were selected for the comparison. Moreover, these schemes did
not preserve the structure of the continuous model. Because the elements of the function
space are not globally bounded, it is better to choose the optimal balls for handling the
issue. These balls provide the explicit estimates for the approximate solutions to the system.
In the future, numerical solutions can be optimized in this manner. Our proposed scheme
may be used as a significant tool for solving the different nonlinear systems.
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