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Abstract: Since 1978, with the first IVF (in vitro fertilization) baby birth in Manchester (England),
more than eight million IVF babies have been born throughout the world, and many new techniques
and discoveries have emerged in reproductive medicine. To summarize the modern technology and
progress in reproductive medicine, all scientific papers related to reproductive medicine, especially
papers related to reproductive translational medicine, were fully searched, manually curated and
reviewed. Results indicated whether male reproductive medicine or female reproductive medicine
all have made significant progress, and their markers have experienced the progress from karyotype
analysis to single-cell omics. However, due to the lack of comprehensive databases, especially
databases collecting risk exposures, disease markers and models, prevention drugs and effective
treatment methods, the application of the latest precision medicine technologies and methods in
reproductive medicine is limited.

Keywords: reproductive medicine; translational bioinformatics; infertility; biomarkers; artificial
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1. Introduction

Reproduction is one of the most common phenomena in the development of the
species, but the rise of reproductive medicine came with the birth of the world’s first test
tube baby in 1978. Over the past 40 years, many new techniques and discoveries have
emerged in reproductive medicine, not only in terms of clinical diagnosis and treatment,
but also in basic theoretical research and the application of reproduction. Reproductive
medicine is inevitably a major theme in the development of medicine as it relates to germ
cells, which are central to the transmission of genetic information from one generation to
the next. Thereby, the leapfrogging process of genetics was also a time of rapid growth in
reproductive medicine.

With the completion of the Human Genome Project, we have moved from the genomic
era to the post-genomic era. If the genomic era is the journey from traditional biology to
bioinformatics, then the post-genomic era is the journey from bioinformatics to translational
bioinformatics (TBI), that is, the development of methods to store, analyze and interpret
relevant methods to transform vast amounts of biomedical and genomic data into predictive,
preventive and proactive health engagement applications [1]. Therefore, understanding the
development and current status of reproductive bioinformatics and integrating traditional
biology, different levels and independent bioinformatics can help to realize a complete
set of top-down or bottom-up regulatory networks [2], tap into the deep phenotypes of
reproductive and individual health risks, and form a structurally complete system of basic
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and clinical inter-translation of molecular biology information network disease, which is
of great importance for the precise management of human health. Here, we provide an
overview of the current status of reproductive bioinformatics and highlight the challenges
and opportunities for the development of translational reproductive bioinformatics.

2. Identification and Molecular Regulation of Biomarkers of Infertility and
Reproductive Disease

With the development of high-throughput technologies, attempts have been made
to introduce molecular diagnostic techniques into medical practice [3]. Genomics and
functional genomics provide thousands of molecular markers of human reproduction and
infertility, making possible molecularly oriented diagnosis and treatment as well as disease
prediction and prevention in clinical medicine, facilitating more precise and personalized
clinical decision making. Traditionally, researchers have used genetic or biomolecular
markers to distinguish specific biological phenotypes [4]. This class of markers has greatly
improved disease diagnosis, but can lack precision, early discovery, prognosis and treat-
ment prediction. As the development of omics has generated massive amounts of mul-
tidimensional data, it is necessary to use mathematical, computer science and physical
methods to integrate important information from multidimensional data into comprehen-
sive map of the way components [5], and to identify regulatory networks and potential key
players through continuous machine learning (ML) from this static network. These marker
molecules and their expressions are then used to identify the corresponding phenotype
(e.g., normal or disease) in a predictive step [4], or to identify drug target interactions
and predict therapeutic responses. In general, the manifestation of diseases, including
reproductive disorders, is not from the malfunction of a certain molecule, but from failure
of multiple molecules and correlated systems or networks. Thus, the integration of omics,
systems biology and bioinformatics with biology facilitates the elucidation of the synergistic
relationships among multiple factors and complex networks of molecular interactions, to
reveal the behavior of the system as a whole and to unravel complex characterization
of diseases.

2.1. Development of Male Reproductive and Infertility Biomarkers

Growing clinical and epidemiological studies suggest that a synchronized increase
in the incidence of male reproductive problems, such as genital abnormalities, testicular
cancer, reduced semen quality and subfertility [6,7]. However, unexplained infertility in
nearly 75% of cases [8] with normal routine semen analysis indicates that the concentration,
viability and morphology of sperm currently practiced clinically do not accurately reflect
sperm function [9]. Therefore, it is necessary to develop effective biomarkers that accurately
reflect male reproductive health status and fertility. At present, prostate cancer (PCA) is the
mostly studied area in male reproductive biomarkers, followed by abnormal sperm and
seminal plasma function.

2.2. Biomarks for Prostate Cancer

PCA is the second most common cancer among males worldwide, and even has the
highest morbidity and mortality rates among some European and African races [10,11].
Genes associated with copy number variation in PCA cancer were more likely to be
found on chromosome (chr)8, chr17 and chr10, while genes associated with methylation
variation were more likely to be found on chr1, chr19 and chr17 [12]. Meanwhile, X-
linkedness of PCA was observed in North America, Finland, Sweden and Germany [13,14].
In general, autosomal dominant cases are more likely to be seen in younger adults and
present familial clustering, whereas autosomal recessive cases and X-linked cases are
sporadic with an older age of onset [15,16]. To date, there have been numerous studies of
biomarkers for primary and metastatic PCA based on single- and multi-omics, with both
shared salient genetic characteristics [17] and differences across the ethnic groups [18,19].
Moreover, genetic heterogeneity was also seen at multiple levels including age [20], Gleason
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pathology classification [21] and prognostic risk [22,23]. The identification of molecular
subtypes of PCA based on The Cancer Genome Atlas (TCGA) [24,25] can be used as
drug targets for precise, biomarker-driven treatment options. Furthermore, PCA causes
germline genetic mutations. Conversely, rare germline variants are associated with rapid
biochemical recurrence [26] and poor prognosis [27] after radical prostatectomy. The
homeobox transcription factor gene homeobox B13 (HOXB13) is the only gene currently
found to only be associated with hereditary PCA. BRCA mutation has been a major cause
of hereditary breast and ovarian cancer. However, studies showed that male-carriers of
BRCA1/2 mutations had an increased risk of PCA with a more aggressive phenotype [28].
Additionally, family history of breast cancer was found to be associated with elevated risk
of PCA [29]. As a result, HOXB13, BCRA1/2 are the three basic genes recommended in PCA
screening program guidelines [30]. ATM is another combined screening gene usually for
prognostic evaluation and targeted therapy [31,32]. In addition, CHEK2, EPCAM, MLH1,
MSH2, MSH6, PALB2, NBN, PMS2, RAD51D and TP53 can be chosen depending on the
age, whether they have metastatic and family history, etc. [33].

Prostate-specific antigen (PSA) was the first biomarker to be used clinically for PCA
screening, but its under- and over-diagnosis poses drastic limitations for clinical application.
Therefore, current guidelines do not recommend PSA screening for the general population,
but only for BRCA2 carriers [33]. Combined PSA and multiparametric magnetic resonance
imaging (mpMRI) screening for BCRA carriers over 55 years of age can improve the
diagnostic accuracy [28]. In addition, more than a dozen biomarkers such as lnRNA, mRNA,
protein, amino acid and cfDNA derived from urine, blood, tissue and biopsy samples have
now been commercially developed, reflecting more advantages not only in improving
detection accuracy, but also in assessing the prognostic value of tumors in aggressive,
metastatic or non-metastatic tumors, and in monitoring treatment outcomes [34]. However,
due to cost and local availability constraints, it is currently difficult to be commonly
performed in the clinic [34].

Advances in clinical and experimental techniques have led to a deeper understand-
ing of PCA occurrence and progression, and have guided the development of advanced
and accurate early detection patterns and targeted therapies. Computer algorithms and
neural networks have facilitated the use of artificial intelligence (AI) in PCA diagnosis [35],
Gleason grading [36], identification of biopsy pathology sections [37], augmented reality
microscopy [38] and patient management [39], facilitating clinical decision making and
improving personalized management of PCA.

In the last decade, new therapies have been approved for early localized [40] and
advanced PCA [41], as well as evolving therapies such as cancer vaccines, chimeric antigen
receptor T (CAR-T) cells, bispecific T cell engagers (BiTEs), other targeted agents (e.g.,
AKT inhibitors) and various combination therapies [41] have marked an era of precision
medicine for PCA. However, there are still some challenges in the application of these
biomarkers and therapies in preclinical or clinical practice, such as the need for more
high-quality evidence for existing therapies due to the heterogeneity of tumors, the need
for systemic therapies that take into account systemic factors [42], the timing and potential
cooperation of multiple driver markers, and multiple drug resistance mechanisms, among
others [43].

2.3. Biomarkers for Male Infertility

The rapid decline of the world birthrate is a serious societal problem. In addition to
economic and behavioral factors, biological factors are another crucial impactor [44,45].
That is, human fertility is declining and will continue to fall [46]. As far as human infertility
is concerned, the male factor cannot be ignored (Figure 1). Studies have shown that
men with impaired reproductive health (including poorer semen parameters and lower
testosterone levels) have decreased general health [47], increased risk of tumors [48,49] and
mortality [50,51], as well as increased female pregnancy miscarriages and birth defects in
offspring [52,53]. Therefore, early detection of male infertility is important not only for early
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identification and correction of male fertility and fecundity, but also for the opportunity to
improve the medical status of male general health and well-being [54], and even to improve
the physical and mental health of women and future generations.
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Figure 1. Major areas of research on biomarkers related to male infertility (A) and biomarkers
commonly associated with male sperm abnormalities (B) (literature statistics from January 2012 to
July 2022).

Chromosomal abnormalities, Y chromosome microdeletions and single gene mutations
are the three major genetic factors responsible for male infertility. Of these, azoospermia
is most significantly associated with genetic abnormalities (25%) [55]. In 1976, Tiepolo
and Zuffardi first discovered that Yq11 was associated with spermatogenesis [56]. In the
1990s, further analysis of the Yq11 region identified proximal, intermediate and distal
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segments, defined respectively as azoospermia factor (AZF)a,b,c [57,58]. Among them,
AZFa and AZFb deletions are often infertile due to azoospermia, while AZFc deletion can
manifest only as oligospermia [59,60], and reproductive risk is passed on to offspring due to
microinjection of a single sperm during assisted reproduction technology (ART). Mutations
in the cystic fibrosis transmembrane conductance regulator (CFTR) are the pathogenic basis
of cystic fibrosis (CF) [61] and can lead to obstructive azoospermia (OA) due to 60–70%
congenital bilateral absence of the vas deferens (CBAVD), which accounts for 1–2% male
infertility and is the only known genetic cause of CBAVD [62], and is the only genetic factor
at play in CBAVD [63]. The study identified 17,754 genes associated with male reproductive
defects, involving 13 different phenotypes such as spermatogenesis, male reproductive
system development and sex hormone regulation. In addition to the sex chromosomes,
all other 22 pairs of autosomes are distributed with genes associated with male infertility,
with chr X, Y, 6, 17, 19 and 20 all containing more than 10% of the genes associated with
infertility [64]. However, only 1564 genes have been confirmed, and only 120 of these genes
have been assessed by the International Male Infertility Genomics Consortium (IMIGC) for
moderate, strong or clear associations with 104 infertility phenotypes [65,66]. This is partly
due to the fact that the underlying genetic causes of male infertility are the result of the
accumulation of many rare genetic events, especially a large number of common variants
with small effect sizes that have been screened for since the application of sequencing
technology [67]. On the other hand, the cost of investigation and the large amount of data
required by bioinformatic analysis have led to the problem of “small n (number of patients)
and large p (parameters)” in big data [68], leading to unstable conclusions. Understanding
the genetic factors of male reproduction and fertility helps clinical etiology diagnosis rather
than diagnosis for pathophysiological phenomena. Professional genetic counseling helps
clinical decision making by reasonably predicting the likelihood of sperm extraction from
the testes during reproductive age, using preimplantation genetic testing (PGT) to block
genetic defects, and developing pharmacogenetics to provide safer, more effective and
economical drug treatment options for patients.

Compared with genomics, other omics technologies such as transcriptome, epigenome,
proteome and metabolome are more complicated. One is that these data are high-dimensional
and functionally complex. Secondly, they are dynamically changing and there is a large vari-
ability in their expression under different conditions. Thirdly, different experimental methods
and bioinformatics computational methods may lead to inconsistent experimental results [69].
Therefore, there is an urgent need to integrate bioinformatics data on the interactions between
gene expression, mutations and pathways to identify effective biomarkers for the early detection
and prognosis of reproduction and fertility.

The RNA content of spermatozoa is extremely minimal, about 10–20 fg/sperm, and
the total amount is only 1% of that of somatic cells [70]. However, there is a wide variety
of species, a large amount of transcripts and complex biological functions. The utility of
sperm RNA as a biomarker of infertility has been explored and is involved in several bio-
logical processes such as spermatogenesis, sperm movement, morphogenesis, capacitation,
fertilization, early embryogenesis and transgenerational epigenetic transmission [71–73].
In 2002, Ostermeier [74] used a computerized Boolean search strategy to match testis
microarray results with the UniGene database and identified 2416 new testis-expressed
genes. Subsequently, further data mining of the testes, pooled ejaculate and single ejaculate
spermatozoa of fertile males identified 7157, 3281 and 2780 unique expressed sequence
tags (ESTs), respectively. The automated program Onto Express was used to systemat-
ically convert genetic fingerprints into functional atlas to determine the gene ontology
and corresponding gene function for each EST mapping, and mRNA was found to be
consistent in mature sperm with that in testis, suggesting that sperm RNA can be used as a
noninvasive surrogate for testis-specific infertility and toxicology investigations [75]. Lee
and Luk et al. [76,77] successively developed the web-based GermSAGE and GermlncRNA
databases based on public expression databases. In recent years, the development of
single-cell [78] and spatial transcriptomics [79] has further revealed stage-dependent gene
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expression analysis of testicular cells. The four cellular states of human spermatogonial
stem cells (HSSC) [78], from quiescent HSSC to proliferating, metabolically active, differ-
entiated spermatogonia, and the subsequent sequential and progressive development of
spermatogonia and spermatocytes during spermatogenesis, are biologically important, and
the spatial interactions of different subpopulations of these molecules are dissected. These
studies provide valuable tools to explore some of the potential pathways of male infertility,
to better understand the genetic networks that regulate pathophysiological changes in
sperm, to identify new genes and new biomarkers, and to provide clues to predict residual
spermatogenic sites in non-OA patients during ART [80].

As is well known, proteins are the direct performers of the functions of life activities,
and metabolites are functionally regulated active substances that modulate protein inter-
actions, alter enzyme activity, change protein stability and subsequently regulate body
metabolism. Infertility is often caused by complex interactions between genetic suscepti-
bility, environmental factors and lifestyle choices. Therefore, the application of functional
genomics technologies such as proteomics and metabolomics has revealed many under-
lying molecular changes directly involved in the relevant pathophysiological processes,
establishing links between genotype and phenotype and facilitating the translation of
esoteric and complex digital codes into clinical practice. Proteomics has now uncovered
protein expression throughout the sperm and its subcellular structures and, is being used
to identify specific protein markers for various reproductive diseases [81–83]. Seminal
plasma, a mixture of secretions from several male accessory glands, is not only a carrier
of spermatozoa but also provides them with nutrients and plays an important role in
semen coagulation and liquefaction as well as in sperm motility and fertilization. Seminal
plasma also regulates sperm function and its physiological activity in the female repro-
ductive tract, especially the interaction of the female reproductive tract immune system.
Therefore, the study of seminal plasma protein and metabolic profiles can help to clarify
its correlation with semen parameters (such as abnormal semen liquefaction, sperm con-
centration, sperm count, motility and morphology) [84] and to select biomarkers of male
fertility disorders. Moreover, data from seminal plasma to understand the presence of
proteins and metabolites from the testes, epididymis, seminal vesicles and prostate, enable
the non-invasive detection of prostatitis, varicocele, and diseases such as prostate cancer
and benign prostatic hyperplasia. It is also an important avenue for virology and drug
toxicology research [85,86].

2.4. Development of Female Reproductive and Infertility Biomarkers

Infertility is a highly clinically heterogeneous condition. Apart from the obvious tubal,
ovulatory and male sperm factors, many patients do not acknowledge or even realize
infertility and instead are persistent in the correction of the primary disorder. However,
so far, there are no effective etiology treatments specific for the infertility-related chronic
diseases such as polycystic ovarian syndrome (PCOS), endometriosis, premature ovarian
insufficiency (POI) and amenorrhea (Figure 2); only symptomatic treatment can be provided.
Secondly, 15% of cases remain unexplained [87]. Thus, mining biomarkers and pathways
of infertility and its related chronic diseases can provide comprehensive understanding
of the deep phenotypes of infertility, and the common and differential characters among
them, providing personalized treatment and effective prediction.

2.5. Hereditary Factors

Many of the chronic diseases associated with female infertility have a strong genetic
component. Genome-wide sequencing can identify common genetic variants. In 2010, the
first whole genome sequencing (WGS) was performed on endometriosis to explore its genetic
complexity [88]. Nineteen genetic variants on chr 1, 2, 6, 7, 9 and 12 have been reported in
several studies and are significantly associated with clinical staging (stage III/IV, rather than
stage I/II, stage B versus stage A disease were 31 versus 15%) [89–91]. In 2011, the WGSs
of Chinese Han [92] and Caucasian [93] women with PCOS were successively published,
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showing that chr 2p16.3 (rs13405728), 2p21 (rs13429458) and 9q33.3 (rs2479106) were strongly
associated with PCOS. Even if the diagnostic criteria are different, PCOS still has the same
genetic background [94]. The 24 candidate loci [95,96] comprised a hierarchical signaling
network, adapter proteins and converging associated downstream signaling cascades [97],
leading to multiple phenotypes including abnormal LH and T secretion, high AMH, insulin
resistance and follicular dysplasia [96,98]. In 2013, Elashoff et al. used WGS for the first time to
identify nearly 50,000 de novo variants in women with infertility and POI [99]. The incidence
of exonic copy number variation (CNV) associated with female infertility is about 4%, of
which about 20% are located on chr X and 11% on chr 16 [100]. It follows that reproductive
disorders associated with female infertility are often not the result of variations in a single
candidate gene, but rather the interactions of multiple genes with each other and with the
environment. Similarly, the same candidate loci may share the similar regulatory mechanisms
in male infertility [101,102], and may also cause oocyte maturation disorder, abnormal zona
pellucida and aberrant meiosis, manifesting as fertility disorders such as embryonic arrest,
recurrent miscarriages or repeated embryo implantation disorders during ART [103–105]. There
may also be a common genetic basis for clinical phenotypes [106–108] such as obesity, menstrual
disorders, pelvic floor dysfunction, lower fetal birth weight and other systemic or psychological
disorders [109–113] such as tumors, cardiovascular disease, diabetes and depression.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 23 
 

 

 

Figure 2. Biomarkers associated with common female reproductive disorders such as infertility, 

PCOS, POI and endometriosis and their proportion in the investigation of each condition. 

2.5. Hereditary Factors 

Many of the chronic diseases associated with female infertility have a strong genetic 

component. Genome-wide sequencing can identify common genetic variants. In 2010, the 

first whole genome sequencing (WGS) was performed on endometriosis to explore its 

genetic complexity [88]. Nineteen genetic variants on chr 1, 2, 6, 7, 9 and 12 have been 

reported in several studies and are significantly associated with clinical staging (stage 

III/IV, rather than stage I/II, stage B versus stage A disease were 31 versus 15%) [89–91]. 

In 2011, the WGSs of Chinese Han [92] and Caucasian [93] women with PCOS were 

successively published, showing that chr 2p16.3 (rs13405728), 2p21 (rs13429458) and 

9q33.3 (rs2479106) were strongly associated with PCOS. Even if the diagnostic criteria are 

different, PCOS still has the same genetic background [94]. The 24 candidate loci [95,96] 

comprised a hierarchical signaling network, adapter proteins and converging associated 

downstream signaling cascades [97], leading to multiple phenotypes including abnormal 

LH and T secretion, high AMH, insulin resistance and follicular dysplasia [96,98]. In 2013, 

Elashoff et al. used WGS for the first time to identify nearly 50,000 de novo variants in 

women with infertility and POI [99]. The incidence of exonic copy number variation 

(CNV) associated with female infertility is about 4%, of which about 20% are located on 

chr X and 11% on chr 16 [100]. It follows that reproductive disorders associated with 

female infertility are often not the result of variations in a single candidate gene, but rather 

the interactions of multiple genes with each other and with the environment. Similarly, 

the same candidate loci may share the similar regulatory mechanisms in male infertility 

[101,102], and may also cause oocyte maturation disorder, abnormal zona pellucida and 

aberrant meiosis, manifesting as fertility disorders such as embryonic arrest, recurrent 

miscarriages or repeated embryo implantation disorders during ART [103–105]. There 

may also be a common genetic basis for clinical phenotypes [106–108] such as obesity, 

Figure 2. Biomarkers associated with common female reproductive disorders such as infertility,
PCOS, POI and endometriosis and their proportion in the investigation of each condition.

In addition, genome-wide sequencing is used not only to diagnose known reproduc-
tive disorders, but also to assess the risk of chromosomal abnormalities and single gene
disorders that are clearly identified at the preconception stage (i.e., PGT) [114–116] and
also to facilitate the identification of multifactorial genetic predispositions of sub-fatal
conditions [117,118], including those affecting reproductive health. The acquisition and
collation of reproduction-related research findings through genome sequencing will en-
sure the expansion of genetic assessment into new areas such as genomic prediction of
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reproductive phenotypes, pharmacogenomics and molecular embryology, further enhanc-
ing our knowledge and therapeutic tools for treating infertility and improving women’s
health [119].

2.6. Inflammatory Factors

Inflammation and infection are important factors in the progression of female repro-
ductive disorders and infertility. Since many women are asymptomatic, especially upper
genital tract infections often lack specific imaging features and laboratory tests, making
difficult a definitive clinical diagnosis and increasing the risk of reproductive sequelae
due to delayed treatment. As a result, the systematic evaluation of biomarkers can im-
prove the sensitivity and specificity of the diagnosis of pelvic inflammatory diseases and
sequelae assessment.

TroA and HtrA are proteins that are expressed during persistent chlamydia infection
in vitro. Studies presented that TroA and HtrA serology positivity is more common in
women with tubal factor infertility (TFI) than in women with other causes (TroA 45.5 vs.
19.1%, p = 0.004; HtrA 36.4 vs. 13.1%, p = 0.004) and can be developed as specific biomarkers
for chlamydia trachomatis-associated TFI [120]. Zheng et al. [121] identified 21 genes that
recognize asymptomatic sexually transmitted infection (STI)-induced endometritis and
distinguish it from non-STI pelvic pain and other diseases. Inflammatory biomarkers such
as serum amyloid A, alpha-1 acid glycoprotein, peroxiredoxin 4 (Prx4), trimethylamine-N-
oxide (TMAO), interferons (IFN)-γ, C-reactive protein (CRP)/albumin ratio, IFN γ-induced
protein 10 kDa (IP10/CXCL10), heme oxygenase-1 and procalcitonin (PCT) [122–130] are
involved in pathophysiological processes such as sex hormones, insulin, cell proliferation,
oxidative stress and lipid metabolism in PCOS, so they can be used as effective biomarkers
to predict PCOS and to predict the risk of cardiovascular disease [131,132] and chronic low-
grade inflammation in offspring [133]. A recent study [134] showed that the inflammatory
reaction coordinated by nuclear factor (NF)-κB signaling is exacerbated by abnormalities
in the estrogen receptor-β and progesterone receptor pathways, and that these pathways
are also affected by local inflammation, creating a dysregulated inflammatory-hormonal
circuit, providing new insights into the origin and pathogenesis of endometriosis. High
binding of CCR1 to RANTES enhanced the recruitment of inflammatory cells at the site of
endometriosis and correlated significantly and positively with the severity of dysmenor-
rhea, providing a potential biomarker for the pain and inflammatory response associated
with deep-infiltrating endometriosis (DIE) [135]. Ovarian natural aging is significantly
associated with immune cell infiltration and activation of inflammation-related signaling
pathways, with inflammation levels reaching a maximum during early ovarian aging and
then gradually decreasing. This provides a research basis for exploring the mechanisms of
natural ovarian aging [136].

2.7. Single-Cell Omics and Multi-Omics

Conventional histology assumes that cells are homogeneous, but this completely
contradicts the reality of cellular heterogeneity in the organization of biological systems.
Sequencing results actually reflect the average of gene expression in a population of cells.
Therefore, sequence and expression information at the single-cell level reveals genomic
heterogeneity in biological samples at single-cell resolution, which can reveal complex het-
erogeneous mechanisms involved in disease onset and progression, thus further improving
disease diagnosis, prognosis prediction and the monitoring of drug treatment effects [137].
The normal development of germ cells and embryos is the basis of life extension, and is
a hot topic for research on infertility and other reproductive problems. The first applica-
tion of single-cell sequencing technology was in germ cells (eggs and pre-implantation
blastocyst) [138]. In 2013, Tang and Qiao’s group [139] used single-cell WGS to reveal the
morphological and dynamic changes of chromosomes during oocyte development, and to
map the precise genetic profile of individuals and reveal the chromosomal changes and
characteristics of female germ cells during meiosis. In the same year, they also developed
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single-cell transcriptome sequencing technology to map the high-precision single-cell gene
expression characteristics of human preimplantation embryos [140]. In 2018, they resolved
the DNA methylationome atlas of human preimplantation embryonic development at the
single-cell level [141]. In 2021, the profiling of DNA methylation levels and patterns at
different stages of human fetal germ cells at single-cell resolution was carried out and
revealed the epigenomic dynamics of germ cell development [142]. In addition, single-cell
omics techniques have been widely applied in the field of reproduction, including oocyte
aging [143], sex determination [144], the immune environment of endometriosis [145] and
the signaling pathway transduction mechanism of thin endometrium [146].

Single-cell omics mainly reflect only one aspect of biological systems. Multi-omics
allows a systematic understanding of information flow at different omics levels and can
provide an overall view of the pathophysiology of a disease, helping people to understand
living systems more fully, which is of great importance for research in the life sciences.
However, current multi-omics studies mainly focus on the integration and analysis of
different types and sources of data, which are divided into vertical and horizontal aspects
according to the type of data integrated. Vertical integration is targeted at a disease to
explore the complex interactions between multiple omics datasets, and to identify potential
biological pathways that support early detection and prevention of complex diseases [147],
whereas systematic investigations based on the entire regulatory network of genomics—
transcriptomics—epigenomics—proteomics—metabolomics—microbiomics phenotypes
have not yet been achieved, and currently just make medically relevant predictions for
high-risk variants at two or three of these levels. Horizontal integration explores the associ-
ation of various reproductive disorders or disorders of the reproductive system with other
systems at the same omics level to understand shared pathogenesis and hence mechanisms
underlying co-morbidity [148,149]. Depending on the methods used for data integration
and analysis, multi-omics data integration can be based on statistical methods [150,151],
ML algorithms [152–154] and deep learning neural networks [155–157], which have dif-
ferent focuses with their independent strengths and limitations. The current multi-omics
data integration and analysis address the following research questions. Firstly, the unique
characteristics [158] of samples, experimental methods and interventions during the data
integration process, as well as the fragmented nature of the relevant biological knowl-
edge [159], make data integration and cleaning extremely difficult. Secondly, although
current integration analysis methods and algorithmic models have succeeded at a scale,
they are still with limited integration capacity, as each dataset is just analyzed separately
and then the final results are combined. Thirdly, technical biases are introduced during
the data pooling that do not necessarily accurately reflect the true condition and interfere
with the ability to study biological mechanisms. Therefore, based on the improvement of
experimental techniques and the development of effective and efficient dataset integration
methods or algorithmic models, setting up evaluation methods that are compatible with
the differences between different omics data, mining knowledge and regulation implied in
the data, and enhancing the interpretability of the results will be an important direction for
the development of multi-omics.

3. Application and Development of AI in Reproductive Medicine

If identifying biomarkers is regarded as theory informatics, AI can contribute to prac-
tical informatics. Since the late 1990s, a growing number of researchers have sought to
apply AI to reproductive medicine, mainly in the areas of sperm assessment, prediction of
embryonic potential and ART pregnancy outcomes [160–162]. Traditionally, clinicians often
judge sperm function according to the count, motility and morphology, and embryos are
scored according to the number and size of blastomere, as well as the proportion of frag-
mentation. However, this way does not represent the developmental potential of gametes
well and cannot exclude genetic abnormalities. PGT can effectively identify and exclude
embryos carrying aneuploid or monogenic disease, however, its clinical implications for
those without clear clinically acceptable indications has been controversial [163,164]. Mean-
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while, its complex manipulations and invasive procedure may sometimes lead to wrong
assessment [165]. Therefore, deep learning-based AI integrated in multi-subjects such as
image segmentation, data mining, convolutional neural network (CNN), information on
the molecular network and patient characteristics are becoming an important research di-
rection for contemporary reproductive medicine (Figure 3). Hamme et al. [166] constructed
a CNN model based on the unique morphological characteristics of each embryo for three
replicates to train and validate a total of 4889 time-lapse embryo images from 400 patients
on days 3 and 5. All were matched with 100% accuracy for patient identification in a
random pool of eight patients’ embryo cohorts. Integration of this technique with imaging
systems and laboratory protocols allows for improved sample tracking. Embryologists’
assessment of embryo quality can lead to significant differences in decision making due
to subjective judgments. A 10-fold cross-validated deep neural network (DNN) was de-
veloped in Israel to provide implantation probability ratings for time-lapse video images.
Logistic regression was applied to confounding variables to compare the accuracy and
consistency of the model with embryologists’ predictions when assessing the probability
of implantation of blastocysts. The AUC for DNN was higher than for embryologists as
a whole (0.70 vs. 0.61) [167]. Cheredath et al. [168] incorporated day 5 embryo culture
medium metabolomics data and associated embryological parameters into a custom artifi-
cial neural network (ANN) model to improve the predictability of embryo implantation
potential. Several studies [161,162,169,170] have compared different ML algorithms such as
logistic regression (LR), decision trees (DT), naive Bayes (NB), random forests (RF), support
vector machines (SVM), neural networks (Nnet), back propagation neural networks (BNN),
gradient boosting decision trees (GBDT), extreme gradient boosting (XGBoost) and super
learners (SL) in pregnancy prediction and clinical decision making with good performance,
especially SVM, RF and SL. When combined with molecular fingerprinting, it can also
be used to predict the reproductive toxicity of chemicals [171]. Moreover, an AI-based
image recognition and cloud computing sperm motility testing system achieved sperm
analysis by smartphone at any time without the need for hospital visits, and more data
can be collected to aid in clinical decision making and epidemiological studies [160]. The
genetic background prediction is based on morphology and dynamics of gametes [172].
Predicting pregnancy outcomes in women with recurrent reproductive failure is based
on maternal characteristics and the immune status of the body [173]. Assessment of en-
dometrial receptivity based on weighted co-expression of existing web data mining [174]
or experimental results [175]. In conclusion, in the field of reproductive medicine, AI has
enormous potential for expansion. With the continuous progress and innovation of science
and technology, it is believed that the combination of reproductive medicine and AI will
transform the traditional medical model in terms of medical services and the doctor–patient
relationship, and achieve “patient-centred” individual and precise healthcare.

Limitations and Challenges of AI in Reproductive Medicine Applications

Although AI has made great progress in the field of reproductive biology, scientists
are beginning to consider incorporating more clinical information, test variables and
image data during neural network computing to make the calculations more accurate.
However, real-world clinical applications have not yet become a reality. First, big data are a
prerequisite for AI applications, but patient medical data are personal and face elevated
technical and management risks in the data integration process, and centralized data
storage increases the risk of leakage. Although laws and regulations for data storage [176]
have been introduced in different countries as well as internationally, how data are used
and protected is still an important topic. Second, the prerequisite for accurate computations
in AI is standard data and metadata, so that the data are expressed in human-readable
and machine-computable form, i.e., ontology [177]. Therefore, there is a need to develop
effective and interoperable applications of ontologies for data and knowledge integration
and to establish a standard reproductive medicine knowledge graph. Third, currently
developed AI is mainly aimed at the assessment and prediction of ART [178], and there



Int. J. Mol. Sci. 2023, 24, 4 11 of 22

are still many vacancies in reproductive medicine such as prevention of male and female
reproductive diseases and assessment of fertility risk, as well as how to precisely control
the dose of drugs during superovulation and avoid ovarian hyporesponsiveness or ovarian
hyperstimulation, which may be the future direction of AI.
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4. The Way from Reproduction Medical Database to Knowledge Graph

Database construction is a key segment of advancing clinical medical research. A
standardized, high-quality database is an essential foundation for subsequent statistical
analysis, and is also the key to drive medical AI towards clinical application. Medical
databases can be divided into three types in terms of function. The first type are medical
information databases (MIDs); with informatization construction in hospitals, electronic
medical records (EMRs) can be popularized in hospitals at all levels, providing the pos-
sibility of establishing MIDs [179]. This kind of database mainly consists of a patient’s
clinical diagnosis and treatment process, laboratory tests and imaging examinations. It is
convenient to extract medical information and systematically understand the process of
disease development and medical cost calculation of patients. The second type are molecu-
lar databases; with the development of sequencing and mass spectrometry technology, a
large amount of data has been generated. Therefore, in order to store and manage these
molecular data, numerous public databases have been developed, which are also the main
sources of basic medicine and bioinformatics research at present. The third type are disease
databases; this kind of database is mainly a secondary database developed on the basis of
the above two databases and other research results (e.g., literature, thesis). Researchers
integrate key information from EMR, molecular data or existing research results according
to a certain disease or drug, which helps deeper mining of phenotypes, molecular networks
and interactions [180], and offers the possibility of building knowledge graphs. On this
basis, introducing information technology such as AI and cloud computing is conducive to
the context of health, the formation of medical guidelines and the integration of clinical
decision making and health management (Figure 4).
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4.1. Status of Reproductive Medicine Database

EMR systems of reproductive medicine are usually developed by different commercial
companies, so there are problems such as different levels of system development and
inconsistent information collection, making it difficult to integrate the wide variety of
systems into a large multi-centre database and to promote data sharing. Secondly, regard-
less of the country, ART is under strict governmental supervision. As a result, national
health authorities or professional societies collect and publish annual clinical and embryo
laboratory data from each centre on the appropriate websites, but these data often require
special permissions to access, and such statistical data are used more primarily for na-
tional and societal technical quality control and for setting industry standards, making
it difficult to carry out more in-depth data mining. Apart from that, we can also retrieve
reproduction-related information from other health or disease databases to study their
relation to human reproduction. For example, Houtchens et al. [181] used real-world data
from IQVIA (an administrative claims database) to explore the impact of multiple sclero-
sis on female live birth rates, infertility diagnosis and infertility treatment. Martin et al.
captured reproductive toxicity data in the Toxicity Reference Database (ToxRefDB) [182]
to analyze the reproductive toxicity of chemicals from multi-generations. Beyond that,
reproduction-related databases are still scarce, with problems such as a single database
structure, inadequate information and limited clinical guidance (Table 1). Thus, much
exciting work remains to be carried out.

Table 1. Examples of reproduction-related databases and knowledge graphs.

Database Name Website Development Agencies Characteristic

Society for Assisted Reproductive
Technology (SART) https://www.sart.org US ART Society

One of the largest reproductive
medicine societies in the world, with

over 90% of fertility centres in the US as
members. Annual assisted reproduction
statistics and industry standard setting

in the US.

https://www.sart.org
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Table 1. Cont.

Database Name Website Development Agencies Characteristic

International Committee
Monitoring Assissted

Reproductive Technologies
(ICMART)

https://www.icmartivf.org International Conference
Services

It takes a leading role in the development,
collection and dissemination of worldwide

data on ART through its World Report
series.

Centers for Disease Control and
Prevention (CDC) https://www.cdc.org US CDC Annual assisted reproduction statistics and

industry standard setting in the US.
European Society of Human

Reproduction and Embryology
(ESHRE)

https://www.eshre.eu/en ESHRE Annual assisted reproduction statistics and
industry standard setting in Europe.

Human Fertilisation and
Embryology Authority (HFEA)

https:
//www.bionews.org.uk UK Department of Health

It is responsible for the regulation and
inspection of all UK clinics offering in vitro

fertilization, artificial insemination and
human egg, sperm or embryo storage. It is

also responsible for human embryo research.
Chinese Society of

Reproductive Medicine (CSRM)
http://csrm1.meetingchina.

org/msite/main/cn Chinese Medical Association Annual assisted reproduction statistics and
industry standard setting in China.

Massachusetts Outcomes Study
of Assisted Reproductive
Technology (MOSART)

-

MGH Center for Child and
Adolescent Health Research

and Policy, MassGeneral
Hospital for Children, US

It linked the SART Clinical Outcomes
Reporting and the Massachusetts Pregnancy

to Early Life Longitudinal (PELL) data
systems, to provide a strong basis for further
longitudinal ART outcomes studies. It also

supports the continued development of
potentially powerful linked clinical-public

health databases [183].
The Catalog of Genes

Associated with Different
Forms of Lowered Semen

Quality Caused by Impaired
Spermatogenesis (HGAPat)

https:
//www.sysbio.ru/hgap/ Novosibirsk State University

A catalog of human genes associated with
lowered semen quality (HGAPat) and

analyzed their functional characteristics
[184].

MeiosisOnline https://mcg.ustc.edu.cn/
bsc/meiosis/index.html

University of Science and
Technology of China

A manually curated database for tracking
and predicting genes associated with

meiosis [185]

Male Fertility Gene Atlas
(MFGA)

https:
//mfga.uni-muenster.de

Germany Centre of
Reproductive Medicine and

Andrology, University
Hospital Münster

It enables a more targeted search and
interpretation of OMICS data on male

infertility and germ cells in the context of
relevant publications [186].

SpermBase http://www.spermbase.org

Department of Physiology
and Cell Biology, University

of Nevada School of
Medicine, Reno, Nevada

A database for sperm-borne RNA contents
[187]

GermlncRNA http://germlncrna.cbiit.cuhk.
edu.hk/

The Chinese University of
Hong Kong

A unique catalogue of long non-coding
RNAs and associated regulations in male

germ cell development [76].

Dragon Exploration System for
Toxicants and Fertility

(DESTAF)

http:
//cbrc.kaust.edu.sa/destaf

King Abdullah University of
Science and Technology

(KAUST), Thuwal, Saudi
Arabia

A database of text-mined associations for
reproductive toxins potentially affecting

human [188].

GermSAGE http:
//germsage.nichd.nih.gov

Eunice Kennedy Shriver
National Institute of Child

Health and Human
Development

A comprehensive SAGE database for
transcript discovery on male germ cell

development [77].

Reproductive and
developmental toxicology

(REPROTOX)

http://www.fda.gov/cder/
Offices/OPS_IO/default.htm US FDA

The database is suitable for QSAR modeling
and human hazard identification of untested

chemicals [189].

Male Infertility Knowledgebase
(MIK) http://mik.bicnirrh.res.in/

ICMR-National Institute for
Research in Reproductive

Health, India

A platform for review of genetic information
on male infertility, identification pleiotropic
genes, prediction of novel candidate genes

for the different male infertility diseases and
for portending future high-risk diseases

associated with male infertility [64].

Endometriosis Knowledgebase http:
//www.ek.bicnirrh.res.in

ICMR-National Institute for
Research in Reproductive

Health, India

The database includes genes, pathways,
gene ontologies and and protein functions

common to endometriosis [190].

CDC, Centers for Disease Control and Prevention; US, United States; FDA, Food and Drug Administration;
ICMR, Indian Council of Medical Research; MGH, Mass General Hospital; QSAR, quantitative structure–activity
relationship; UK, United Kingdom.
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4.2. Constructing Clinical Reproductive Explainable Knowledge Graph Based on Ontology

Knowledge graph is a special kind of database for knowledge management and the
provision of efficient knowledge services. It is a collection of knowledge based on a gen-
eral database from which knowledge points are purposefully extracted and organized
according to a certain knowledge system for orderly collation and analysis. Building a
knowledge graph on the basis of a knowledgebase starts with semantic disambiguation
of natural language, using ontologies as support for semantic differentiation and correct
understanding of utterances; ontologies are then used to build a schema layer that provides
a common understanding of relevant domain knowledge, highlighting and emphasizing
concepts and the connections between concepts. Phenotypic information about diseases is
often incomplete, inaccurate or even erroneous, which limits the accuracy and efficiency of
phenotype-based analysis in diagnosing diseases. On the basis of large-scale, high-quality
general knowledge graphs, diverse molecular, clinical and image information is collected,
analyzed, evaluated, processed and stored according to certain themes, and various trivial
and fragmented knowledge is interconnected in the form of graphs, turning disordered
data into knowledge networks and quickly obtaining logical relationships between knowl-
edge and knowledge, allowing for top-down and bottom-up deep phenotype mining,
thereby classifying diseases with precise subtypes and effectively predicting progression
and regression. At the same time, the construction of the explainable AI system avoids
the inherent defects of algorithmic black boxes, improves the ability to analyze and solve
problems, has the ability to diagnose and treat and can meet the personalized needs of
diverse users and realize intelligent healthcare.

In conclusion, with the development of informatics technology, health and medical
big data based on biology and omics are increasingly and systematically collected, with the
features of massive data scale, high-speed data exchange and various data types. To identify
characteristic biomarkers and their regulatory networks related to human reproductive
disease through differential analysis of these big data. These biomics data and clinical data
are fused across repositories, pools knowledge from large-scale electronic medical records,
disease-related life-omics, third-party knowledge bases and other evidence sources, and
builds a “gene-pathway-disease-symptom-treatment-drug” knowledge graph of precision
medicine. Using explainable AI to improve the accuracy, reliability, causality, transparency,
safety and fairness of knowledge, the system forms a disease-related knowledgebase for
precision medicine.
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Abbreviations

AI Artificial intelligence mRNA Messenger RNA
ANN Artificial neural network NF Nuclear factor
ART Assisted reproductive technology OA Obstructive azoospermia
AZF Azoospermia factor PCA Prostate cancer
BiTEs Bispecific T cell engagers PCOS Polycystic ovary syndrome
CAR-T Chimeric antigen receptor T PCT Procalcitonin
CAVD Congenital absence of the vas deferens PGT Preimplantation genetic testing
CBAVD Congenital Bilateral Absence of the Vas Deferens POI Premature ovarian insufficiency
CF Cystic fibrosis Prx4 Peroxiredoxin 4
cfDNA Circulating free DNA PSA Prostate-specific antigen
CFTR Cystic fibrosis transmembrane conductance regulator STI Sexually transmitted infection
chr Chromosome TBI Translational bioinformatics
CNN Convolutional neural networks TCGA The Cancer Genome Atlas
CNV Copy number variation TFI Tubal factor infertility
CRP C-reactive protein TMAO Trimethylamine-N-Oxide
DIE Deep-infiltrating endometriosis ToxRefDB Toxicity Reference Database
DNN Deep neural network WGS Whole genome sequencing
EMR Electronic medical record ML Machine learning
ESTs Expressed sequence tags LR Logistic regression
GWAS Genome-wide association studies DT Decision trees
HOXB13 Homeobox B13 NB Naive Bayes
HSSC Human spermatogonial stem cells RF Random forests
IFN Interferons SVM Support vector machines
IMIGC International Male Infertility Genomics Consortium Nnet Neural networks
IVF In vitro fertilization BNN Back propagation neural networks
lnRNA Long non-coding RNA GBDT Gradient boosting decision trees
MID Medical information database XGBoost Extreme gradient boosting
mpMRI Multiparametric magnetic resonance imaging SL Super learners
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