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A B S T R A C T

A locally-adapted multitemporal two-phase burned area (BA) algorithm has been developed using as inputs
Sentinel-2 MSI reflectance measurements in the short and near infrared wavebands plus the active fires detected
by Terra and Aqua MODIS sensors. An initial burned area map is created in the first step, from which tile
dependent statistics are extracted for the second step. The whole Sub-Saharan Africa (around 25M km2) was
processed with this algorithm at a spatial resolution of 20m, from January to December 2016. This period covers
two half fire seasons on the Northern Hemisphere and an entire fire season in the South. The area was selected as
existing BA products account it to include around 70% of global BA. Validation of this product was based on a
two-stage stratified random sampling of Landsat multitemporal images. Higher accuracy values than existing
global BA products were observed, with Dice coefficient of 77% and omission and commission errors of 26.5%
and 19.3% respectively. The standard NASA BA product (MCD64A1 c6) showed a similar commission error
(20.4%), but much higher omission errors (59.6%), with a lower Dice coefficient (53.6%). The BA algorithm was
processed over> 11,000 Sentinel-2 images to create a database that would also include small fires (< 100 ha).
This is the first time a continental BA product is generated from medium resolution sensors (spatial resolu-
tion= 20m), showing their operational potential for improving our current understanding of global fire im-
pacts. Total BA estimated from our product was 4.9M km2, around 80% larger area than what the NASA BA
product (MCD64A1 c6) detected in the same period (2.7M km2). The main differences between the two products
were found in regions where small fires (< 100 ha) account for a significant proportion of total BA, as global
products based on coarse pixel sizes (500m for MCD64A1) unlikely detect them. On the negative side, Sentinel-2
based products have lower temporal resolution and consequently are more affected by cloud/cloud shadows and
have less temporal reporting accuracy than global BA products. The product derived from S2 imagery would
greatly contribute to better understanding the impacts of small fires in global fire regimes, particularly in tro-
pical regions, where such fires are frequent. This product is named FireCCISFD11 and it is publicly available at:
https://www.esa-fire-cci.org/node/262, last accessed on November 2018.

1. Introduction

Biomass burning is a key element of the terrestrial carbon cycle and
a significant source of atmospheric trace gases and aerosols (Andreae
and Metlet, 2001). Depending on their size, location and timing, fires
significantly modify land surface properties, influence atmospheric
chemistry and air quality, through aerosol and gas emissions, while
modifying albedo by land use transformations (Bowman et al., 2009).

Satellite Earth observation is extensively used to detect burned areas
(BA) and active fires. BA detection is commonly based on the effects of
fire on vegetation reflectance, while the detection of active fires is
mainly based on the thermal contrast between burnings and the back-
ground (Giglio et al., 2016; Schroeder et al., 2016, 2014). In recent
years, several global burned area (BA) products have been made
available to the international community. The first released were the
Global Burned Area 2000-GBA2000 (Tansey et al., 2004), and
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GLOBSCAR (Simon et al., 2004), both from European sensors, which
were followed by the Globcarbon (Plummer et al., 2006), L3JRC
(Tansey et al., 2008), and more recently by the Copernicus Land Burned
Area. The first NASA BA product was based on the MODIS sensors:
MCD45A1 (Roy et al., 2008) and more recently the MODIS MCD64,
which is now the standard NASA BA product (last version released is
collection 6: Giglio et al., 2018). From the previous version of this
product (c5), the burned component of the Global Fire Emissions Da-
tabase-GFED was delivered (Giglio et al., 2010). Within the European
Space Agency (ESA)'s Climate Change Initiative, several global BA
products have been recently releases: FireCCI31 and FireCCI41, based
on the MERIS sensor (Alonso-Canas and Chuvieco, 2015), and
FireCCI50, based on MODIS 250m red and near infrared reflectances
(Chuvieco et al., 2018).

All currently existing global products are based on coarse spatial-
resolution sensors including MERIS (300m), MODIS (250m–500m)
and AVHRR or VEGETATION (around 1000m). With those pixel sizes,
detection of small fires (< 100 ha) becomes very challenging. Although
small fires are usually less catastrophic than large fires, they still play a
significant part in land use transformation and total emissions from
fires, particularly in tropical regions, where fires tend to be human
driven, either for agricultural expansion, grazing purposes or hunting
(Grégoire et al., 2013; Hantson et al., 2015). Extrapolating relations
between active fires and small burn patches, Randerson et al. (2012)
estimated that 26% of the global BA was the result of small fires, which

would imply increasing total BA area by 1.2M km2/year. The same
study estimated that 24% of African BA came from small fires
(0.78M km2/year). However, Hantson et al. (2013) has shown that
active fires may have missed up to 80% of all fires in tropical regions,
which add up to 50% of the total BA. Additionally, when comparing the
accuracy of different global BA products (MCD45A1, MCD64A1 and
FireCCI31) with reference perimeters derived manually from Landsat
data, omission errors showed to be higher than 65% for the tested
products (Padilla et al., 2015). All these omissions cause an under-
estimation on the greenhouse gas emissions to the atmosphere, which
should improve if small burned areas were taken into account.

The increasing availability of medium spatial resolution sensors
such as Landsat-OLI (30m) or Sentinel-2 Multi Spectral Instrument
(MSI) (10m) may soon overcome those limitations to detect smaller
fires, making possible a more accurate estimation of global BA. Several
local/regional burned area algorithms based on Landsat TM/ETM+
images were developed in the last decade (Bastarrika et al., 2011;
Goodwin and Collett, 2014; Stroppiana et al., 2015, 2012). Only recent
studies have suggested the use of medium resolution sensors to generate
global BA products. This was the case of the MODIS-Landsat data fusion
product by Boschetti et al. (2015), or the US conus BA product gener-
ated from Landsat historical archives (Hawbaker et al., 2017). One of
the main limitations of using these sensors for BA mapping is their poor
temporal resolution (8 days if both Landsat-7 and 8 are used), which
makes BA detection in tropical ecosystems challenging, due to

Fig. 1. Biome distribution for the study area according to Olson et al. (2001) for the Copernicus Sentinel-2 tiling system.

E. Roteta et al. Remote Sensing of Environment 222 (2019) 1–17

2



significant cloud cover and short post-fire signal persistence. With the
launch of the two Sentinel-2 missions and a 5-day revisiting frequency
(at the equator), this problem will be mitigated, even more if the
Landsat-8 and Sentinel-2 data are integrated.

In this paper we present a new BA algorithm adapted to MSI char-
acteristics and its implementation on a very large area and an entire fire
season to test the operational potential for producing continental scale
BA datasets from S-2 MSI data. This algorithm was developed in the
framework of the Climate Change Initiative programme of the ESA. For
this reason, we have selected the Sub-Saharan Africa (SSA) region as
study case, as it is the most burned continent and produces the larger
gas emissions (Chuvieco et al., 2018; Van Der Werf et al., 2017). The
whole 2016 year was processed, including the whole fire season in
Southern Hemisphere Africa (SHAF), and two half fire seasons in the
Northern Hemisphere (NHAF).

2. Methods

2.1. Study area

The BA Algorithm for the MSI sensor has been tested in the SSA
(Sub-Saharan Africa) covering the latitudes from 25°N to 35°S (Fig. 1).
Although fires affect a variety of ecosystems and locations, the current/
existing global BA products showed that Africa is the most affected
continent by biomass burning, comprising up to 70% of all the area
burned worldwide (Chuvieco et al., 2016, 2018; Giglio et al., 2013).
Fires occur in the corresponding dry season in both the Northern and
Southern Hemispheres, being these seasons from October to March
north to the Equator and from May to October in the south. Although
African fires show a strong variability, particularly in seasonal and daily
cycles, most fires detected by Terra and Aqua MODIS (around 90%)
were detected during the day (Giglio et al., 2006a). Fires are also af-
fected by land cover changes as the transformation of natural vegeta-
tion to croplands, decreasing the total burned area after the conversion
(Grégoire et al., 2013).

Most fires in this region are caused by human activities for the
management of crops, grazing and hunting (Grégoire et al., 2013; Lewis
et al., 2015). This area includes several biomes (Olson et al., 2001):
tropical forest (especially around the equator), tropical and subtropical
savanna (in subtropical areas), temperate grassland and savanna,
Mediterranean forest (in southern Africa), and other residual biomes
(mainly arid regions).

2.2. Data

2.2.1. Active fire data
Several BA algorithms combine detection of hotspots and changes in

reflectance over time to better discriminate burned pixels, as the
thermal contrast of fires is often more noticeable than their impact on
reflectance changes (Alonso-Canas and Chuvieco, 2015; Boschetti et al.,
2015; Fraser et al., 2000; Giglio et al., 2009; Giglio et al., 2006b;
Pereira et al., 2017). Active fire data for development of the BA algo-
rithm were obtained from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) sensor, comprising 1 km detections from the
combined 4 overpasses of the sensor on the Aqua and Terra satellites.
The precise coordinates of the hotspots were downloaded from the Fire
Information for Resource Management System (FIRMS) (https://firms.
modaps.eosdis.nasa.gov/download/, last accessed on November 2018).
The data come from the Collection 6 Near Real Time (NRT), extracted
from the standard MCD14ML fire product produced at the MODIS Fire
Science Computing Facility (SCF). Active fires were not filtered de-
pending on the quality layer.

2.2.2. Copernicus Sentinel-2 MSI
Sentinel-2 (S2) is an Earth observation mission developed by ESA as

part of the Copernicus Programme to acquire terrestrial observations in

support of environmental services and natural disaster management
(Drusch et al., 2012). The mission includes two identical satellites, S2-A
(launched in June 2015) and S2-B (launched in March 2017), providing
complementarity for the current SPOT and Landsat missions. The main
sensor is the MultiSpectral Instrument (MSI), a pushbroom scanner that
provides a wide spectral coverage over the visible, near infrared (NIR)
and short-wave infrared (SWIR) domains (amounting to 13 spectral
bands), with medium spatial resolution (from 10m to 60m depending
on the wavelength) and a wide field of view (290 km) (ESA, 2011)
(https://earth.esa.int/documents/247904/685211/Sentinel-2_User_
Handbook, last accessed on November 2018). This makes possible a
global coverage of the Earth's land surface (between 56°S and 83°N
latitudes) every 10 days with one satellite and every 5 days with 2 sa-
tellites. In this analysis only S2-A data were used because S2-B data
were not yet available when we started the processing of the BA pro-
duct.

The input data for our BA algorithm was the Level-1C product. This
product includes Top-Of-Atmosphere (TOA) reflectances with sub-pixel
multispectral registration in UTM projection and WGS84 geodetic
system in tiles of 100×100 km. The data were downloaded from the
Sentinel Scientific Data Hub (https://scihub.copernicus.eu, last ac-
cessed on November 2018), free of charge. The images were atmo-
spherically corrected using the algorithm ‘sen2cor’ v2.2.1 issued as part
of the standard Sentinel-2 Toolbox (downloadable from http://step.esa.
int/main/third-party-plugins-2/sen2cor/, last accessed on November
2018). This algorithm generates Bottom of Atmosphere (BOA) re-
flectance images, as well as several products such as Aerosol Optical
Thickness, Water Vapor and Scene Classification maps (SCL). From
these layers, only SCL was used to mask defective pixels and clouds.

2.3. Spectral analysis

A spectral sensitivity analysis was carried out as a first step for the
BA algorithm development to determine which bands and/or spectral
indices were the most suitable for BA detection. Reference perimeters
from 2016 located in 52 S2 tiles systematically distributed through all
Africa were visually created using BAMS (Burned Area Mapping
Software) methodology (Bastarrika et al., 2014), which consists in a
trained classification to detect burned areas between images from two
dates.

For each reference location 20,000 random sample points were
extracted from burned and unburned categories to analyze their spec-
tral distribution (10,000 samples for each category). The unburned
class contains every pixel that could not be classified as burned, water,
cloud or cloud shadow: urban areas, bare areas, unburned vegetated
areas, and even burned areas that were already burned in the pre-fire
date. The spectral sensitivity analysis was computed for 9 MSI bands
(all bands processed at 20m by sen2cor) as well as several common
spectral indices used in BA algorithms (Bastarrika et al., 2011; Chuvieco
et al., 2002; Huang et al., 2016; Smith et al., 2007; Stroppiana et al.,
2012; Veraverbeke et al., 2011), covering the Visible/NIR, the NIR/
Short SWIR and the Short SWIR/Long SWIR spectral spaces:

• Visible/NIR space: Enhanced Vegetation Index (EVI) (Huete et al.,
1994), Normalized Difference Vegetation Index (NDVI) (Rouse
et al., 1974), Global Environment Monitoring Index (GEMI) (Pinty
and Verstraete, 1992), Burned Area Index (BAI) (Martín and
Chuvieco, 1998), Soil-Adjusted Vegetation Index (SAVI) (Huete,
1988).

• NIR/SWIR space: Modified Burned Area Index (BAIM) (Martin et al.,
2005), Normalized Burn Ratio (NBR) (Key and Benson, 1999).

• Long SWIR/Short SWIR space: Mid-Infrared Burned Index (MIRBI)
(Trigg and Flasse, 2001), Normalized Burned Ratio 2 (NBR2)
(García and Caselles, 1991).

Spectral sensitivity analyses were performed for both post-fire
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values and multitemporal differences (post-fire and pre-fire values
subtraction). Both parametric and non-parametric analyses were car-
ried out, as recommended by different authors (Gómez et al., 2016;
Huang et al., 2016). The parametric separability index (M) that was
defined as follows (Kaufman and Remer, 1994; Lasaponara, 2006;
Smith et al., 2007):

=
−

+

M
μ μ
σ σ

| |b ub

b ub (1)

where μb and μub are the mean values of burned and unburned samples
and σb and σub the corresponding standard deviations. The separability
between classes is generally considered poor when the M index is lower
than 1, while M higher than 1 indicates a good separability (Kaufman
and Remer, 1994).

The non-parametric analysis was based on the Random Forest (RF)
Classifier, which provides an importance score for each input variable
(https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html, last accessed on November 2018). This
score measures the total decrease in node impurity averaged over all
tress of the ensemble and can be used to rank the importance of that
variable in relation to the others in the classification.

The results shown in Fig. 2 are the averages of the values of 52 S2
tiles where reference perimeters were generated.

The Mid-Infrared Burned Index (MIRBI, Eq. (2)) and the Normalized
Burned Ratio 2 (NBR2, Eq. (3)) were found to have the highest M value
between burned and unburned categories, and this behaviour is also
confirmed with the RF importance score.

= − +MIRBI ρ ρ10· 9.8· 2SWIRL SWIRS (2)

=
−

+

NBR
ρ ρ
ρ ρ

2 SWIRS SWIRL

SWIRS SWIRL (3)

where ρSWIRL and ρSWIRS are, respectively, Short Wave Infrared Long
reflectance and Short Wave Infrared Short reflectance, both adimen-
sional, and corresponding to B12 and B11 bands of MSI sensor.

Both indices were finally selected for the BA algorithm definition,
although they rely on the same spectral bands (Short and Long SWIR
bands, B11 and B12 for S2 images) because of the different distributions
of the burned/unburned category (Fig. 3), being NBR2 much more
homogeneous; this different behaviour is important when defining the
contextual stage of the algorithm when defining background (not
burned)/foreground (burned) cut-off values to maintain low commis-
sion errors. The ability of the SWIR bands when emphasizing the
burned/unburned in African environments has previously been noted,
as they are less influenced than the visible bands by scattering and are
well associated to post-fire impacts (Pereira et al., 1999; Smith et al.,
2007).

Apart from NBR2 and MIRBI, the NIR variable was also selected
(B8A band for MSI images): adding post variables is important to re-
duce changes not related to fire (specially for differentiate from crop-
lands) and this variable is shown to be one of the most significant with
the second M higher value (after MIRBI) and the fourth higher RF score
(after the BAI index that it is highly correlated with the NIR). The NIR
spectral region is known to play an important role when mapping
burned areas and is also the most stable along ecosystems (Huang et al.,
2016; Pereira et al., 1999).

Fig. 2. M separability index (first row) and Random Forest importance score (second row) mean values from 52 reference tiles sorted in descending order. The left
column shows the multitemporal difference variables while the right column shows the post-fire values.
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2.4. Algorithm

2.4.1. General overview
The proposed BA algorithm compared two consecutive Sentinel-2

acquisitions by calculating burned probability using MIRBI and NBR2
spectral indices and the NIR band derived from the L2A product
(Fig. 4). The algorithm estimated an initial BA based on fixed thresh-
olds, which were overlaid with the MCD14ML hotspots detected be-
tween the time-lapse of the two MSI acquisitions in order to define the
regions with a very high likelihood of being burned. Those BA areas
confirmed by hotspots were used to obtain tile dependent statistical
thresholds for each predictive variables in a two-phase burned strategy,
following a modified method from Bastarrika et al. (2011).

A mask of ‘not burnable’ areas was produced using the Scene
Classification Layer (SCL) generated by ‘sen2cor’, corresponding mostly
to unobserved areas (clouds and cloud shadows) and water bodies. The
pixels that satisfy the following criteria were masked out for further
processing:

• No data, saturated pixels, water and snow.

• Medium-high probability clouds and thin cirrus with a dilation of
5 pixels (100m) were used in order to obtain a more robust cloud
mask, to be applied to the image pair under consideration (low
probability clouds were not classified as not burnable, since they
included a very significant quantity of burned areas).

• Dark area pixels and cloud shadows of the SCL were not used on the
mask for the same reason as low probability clouds and because
many burned pixels in the savannas fall in these categories. A fixed
criterion based on the post-fire [t2] Long SWIR band (B12) was used
instead. Burned areas and shadows were well separated by a re-
flectance value of 0.07, so pixels where B12 < 0.07 were con-
sidered cloud shadows and therefore removed from further proces-
sing.

2.4.2. Hotspots confirmed burned pixels (HCBP)
In the first stage of the algorithm a set of burned pixels that satisfied

a fixed criteria were selected, whence tile based statistics could be used
at the second stage. To ensure initially detected pixels were in fact
burned, they had to fulfill certain conditions (described below) and had
a MODIS hotspot in the neighborhood. All the hotspots, regardless the
detection confidence and sensing angle were selected because they
were only used to confirm the spectral change observed in the Sentinel-
2 imagery.

Assuming two consecutive Sentinel 2 tiles ([t1] and [t2]), a pixel was
labeled as Hotspots confirmed burned pixels (HCBP) if it satisfied all the
following conditions:

• MIRBI ([t2]) > tile mean MIRBI ([t2])

• MIRBI difference ([t2]− [t1]) > 0.25

• NBR2 ([t2]) < tile mean NBR2 ([t2])

• NBR2 difference ([t2]− [t1]) < −0.05

• NIR ([t2]) < tile mean NIR ([t2])

• NIR difference ([t2]− [t1]) < −0.01

• It had a MODIS hotspot in between ([t1]) and ([t2]) in the 1000m
vicinity of that pixel

• It was part of a patch larger than 30 ha (750 pixels), which was
observed to be the minimum area necessary to assure that it was
actually a burned patch and no other unburned artifacts.

The thresholds for MIRBI, NBR2 and NIR multitemporal difference
(0.25, −0.05 and−0.01 respectively) were obtained analyzing the cut-
off points of the probability distributions of the burned and unburned
category at the 52 reference sites cited in Section 2.3. For the post-fire
variables, the mean of the whole tile was selected as threshold, ob-
taining and adaptive thresholds that helped reducing the commission
errors of those pixels that fulfilled the multitemporal criteria (for ex-
ample at croplands).

The aim behind this first stage of the algorithm was to obtain a set of

Fig. 3. Spectral distribution of burned and unburned categories for MIRBI, NBR2 and NIR multitemporal difference and post-fire values.
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pixels highly likely to be burned given that an active fire was observed
in the vicinity, and a spectral change according to a fire event was
shown. The remaining pixels were considered as unburned pixels. This
initial classification was used to have foreground (burned) and back-
ground (unburned) probability distributions for each tile and period
that were used in a following two-stage process.

2.4.3. Burned seeds (BS)
Burned seeds (BS) were obtained assigning as thresholds the 5thand

95thpercentiles of HCBP, depending on whether a particular variable
higher or lower the values after a fire, respectively. A pixel was iden-
tified as a BS if it satisfied all the following rules:

• MIRBI ([t2]) > MIRBI 5th percentile HCBP ([t2])

• MIRBI difference ([t2]− [t1]) > MIRBI 5th percentile HCBP ([t2]-
[t1])

• NBR2 ([t2]) < NBR2 95th percentile HCBP ([t2])

• NBR2 difference ([t2]− [t1]) < NBR2 95th percentile HCBP ([t2]-
[t1])

• NIR ([t2]) < NIR 95th percentile HCBP ([t2])

• NIR difference ([t2]− [t1]) < NIR 95th percentile HCBP ([t2]-[t1])

2.4.4. Second stage probability of burn (SSPB)
The second stage probability of burn (SSPB) was focused on redu-

cing the omission error (Bastarrika et al., 2011) and it was based ex-
clusively on MIRBI and NBR2 multitemporal difference variables given
that they had shown a much higher importance than the post-fire
variables according to the RF score. For the same reason the NIR
variable was not introduced either to avoid increasing omission errors.

The main purpose in this stage was to define a mathematical func-
tion that would make the transition from 0% (unburned pixels) to 100%
(burned pixels) probability. A logistic function was used for this pur-
pose, which provided a smooth transition between the two classes. This
approach was already used in other BA studies (Bastarrika et al., 2011;
Fraser et al., 2002; Koutsias and Karteris, 2000; Pu and Gong, 2004).
The logistic functions for MIRBI and NBR2 differences are s-shaped and
z-shaped, respectively, to reflect the fact that the former increases its
values when an area is burned while the latter decreases (Fig. 5). To
calculate the lower and upper boundaries on the logistic curve, corre-
sponding to 0% and 100% probabilities, different percentiles were ex-
tracted from the sets of burned and unburned pixels of HCBP. 90th
(MIRBI difference) and 10th (NBR2 difference) percentiles of unburned
pixels were set as the 0% probability, and the 50th percentile of burned

Fig. 4. Flowchart of the BA algorithm applied to two time-consecutive S-2 acquisitions.
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pixels was used for the 100% value. There is no symmetry between the
percentiles of both categories; anomalies were found in the set of
burned pixels when it was formed by a limited number of pixels, so a
more “central” percentile (50th, the median) is used to avoid this effect.

The final second stage probability of burn (SSPB) was obtained by
multiplying them, considering MIRBI and NBR2 probabilities were in-
dependent.

2.4.5. Final burned probability map
The BS and SSPB image were used to get the Final Burned

Probability Map (FBPM) in a two-step focus trying to balance omission
and commission errors. Unlike in Bastarrika et al. (2011), the two step
process in this algorithm did not use a region growing method but a
cost-path based approach as the SSPB image is a continuous space. For
each SSPB pixel higher than 0 probability value, the final burned
probability was the minimum probability of the route crossing prob-
abilities as high as possible from that pixel towards the BS. If pixel near
a seed was considered, the probability was high (the minimum prob-
ability that crossed the path between both is high), while when that
pixel was far away from the seeds, that probability tended to be low
given that crossed low probability burned regions.

2.4.6. Temporal application of the algorithm
Extending the temporal application of the algorithm (the definition

until now has been limited to two consecutive scenes named [t1] and
[t2]), the final set of burned pixels was created by comparing each
image [tn] to the preceding four acquisitions [tn−1, tn−2, tn−3, tn−4].
The main objective was to fill unobserved areas (masked as detailed in
Section 2.4.1) in the previous images. This gap filling process is illu-
strated in Fig. 6 (although with only 3 pre-fire dates). If the acquisition
at [tn] were compared only with the first preceding image ([tn−1]),
most burned pixels hidden by clouds in the [tn−1] image would have
been masked and they wouldn't be included in the final BA product.
Taking into account more preceding images as comparison source the
masked areas were filled using the latest pre-fire reference. Only the
pair of images with> 5 km2 (12,500 pixels) of observed (unmasked)
areas and at least one active fire between the two dates were processed
to improve the computation performance and avoid acquisitions with a
higher probability to commit commission errors; otherwise it was as-
sumed that it did not contain any burned pixel within that period.

2.4.7. Processing environment
The described BA algorithm was implemented on Calvalus proces-

sing system developed by Brockmann Consult Gmbh, Germany (http://

www.brockmann-consult.de/calvalus, last accessed on November
2018). The pre-processing consisted on running ‘sen2cor’ processor for
11,054 S2 MSI tiles, amounting for 63 TB of data. This process took
about 9 weeks. Additionally, four months were required to run the BA
algorithm for the whole 2016 year, totaling additional 87 TB of pro-
cessed data (including intermediate files). The final product was named
FireCCISFD11 (version 10, included a preliminary version covering just
the northern hemisphere of Africa, but it was only released to a few
climate users).

2.4.8. Threshold between burned and unburned areas
The confidence values for each pixel were obtained from the

probability distribution functions. Given that the result of the BA al-
gorithm was a continuous image (with confidence levels from 0% to
100%) but reference perimeters were discrete (burned/unburned), a
fixed threshold was established to convert the classification outputs into
a binary layer. Different values were tested to balance omission and
commission estimations based on the 52 tiles that were used for se-
lecting the most sensitive bands for the algorithm (see Section 2.3).
Analyzing the distribution of omission, commission and Dice coefficient
values in those 52 sites, 5% was found to be the best threshold (see
34PET example in Fig. 7). This low cut-off value was related to the
percentiles values used in Section 2.4.4, whose asymmetry caused the
logistic curves to be closer to the burned area, and to the multiplication
of MIRBI and NBR2 probabilities at the SSPB stage. No cut-off value was
used for the MCD64A1 product.

2.5. Validation

BA reference data were generated for a statistically derived sample
of validation sites, and compared with the FireCCISFD11 for its as-
sessment. The validation was also carried out with the now standard
NASA BA product: the MCD64A1 collection 6, derived from MODIS
data (Giglio et al., 2018, 2009), as this product is widely used by at-
mospheric and carbon modellers. This global product was derived from
high temporal resolution data (daily Terra and Aqua acquisitions,
compared to 10 days of S-2 acquisitions) but at much lower spatial
resolution than the FireCCISFD11 product (500 versus 20m). Inter-
comparison of FireCCISFD11 and MCD64A1 products was also carried
out, to analyze the seasonal and spatial differences between the two
products.

Reference perimeters were generated from multi-temporal com-
parison of Landsat imagery following standard CEOS CalVal validation
protocols (Boschetti et al., 2009). Given the different temporal

Fig. 5. Two sample logistic curves, with the s-shape for MIRBI difference and z-shape for NBR2 difference, taken from tile 28PET, period December 22, 2015/January
11, 2016. The initial thresholds are those extracted from the spectral analysis and applied to HCBP.
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resolutions of both the product and reference perimeters, which cause
inevitable differences between dates, temporally long sampling units of
around 115 days (depending on data availability) were designed to

allow a good overlap of reference perimeters with the product. Vali-
dation sites were selected from Landsat 7 and 8 scenes following similar
criteria to Padilla et al. (2015, 2014). Olson biomes (Olson et al. (2001)
and historical fire occurrence were used as stratification criteria. 45
random long sampling units were selected (Fig. 8). Every validation site
was subsampled using a 30×20 km window located in the centre of
the scene to increase sampling efficiency and simplify visual inspections
in the reference perimeters generation process.

Reference perimeters were created between all pairs of consecutive
images. First training polygons were digitized for burned and unburned
classes (plus cloud or cloud shadows when needed), which were used to
train a RF Classifier with NBR, SWIR and NIR of both dates and the
multitemporal NBR difference as input variables. After this semi-auto-
matic mapping of burns, a systematic quality control was performed
through visual inspection and training polygons were modified and
classification re-run where necessary. This procedure was iterated until
no errors were identified.

The validation of both FireCCISFD11 and MCD64A1 products was
carried out by estimating the error matrix for each validation site, ob-
taining the omission (OE) and commission (CE) error ratios for the
burned category. The Dice coefficient (DC), which is a measure of ac-
curacy that has a probabilistic meaning (Dice, 1945; Padilla et al.,
2015), was also computed; it is defined as the probability that given
that one product (the BA product or the reference perimeters) identifies
a pixel as burned, the other product will also identify it as burned
(Fleiss, 1981). Relative bias (relB) was also computed, as it indicates if
BA are overestimated or underestimated in the product. Since the
spatial resolution is different for each product (20 and 500m) and

Fig. 6. Example of the temporal application of the BA algorithm in a sample area, comparing one post-fire date ([tn]) with 3 previous pre-fire dates ([tn−1], [tn−2]
and [tn−3]). The first two rows show SWIR-NIR-Red colour composites for individual dates; the third row shows resulting burned areas using three consecutive
precedent pre-fire images. The figure illustrates how cloudy areas are filled with BA detected from previous pre-fire images, being the last aggregation the final BA
detected by the algorithm for the post-fire date ([tn]). Even though the post-fire image in this example is compared with 3 pre-fire images, 4 pre-fire dates are used in
the algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Evolution of omission and commission errors and the Dice coefficient
depending on the threshold applied to the FireCCISFD11, in a sample tile
(34PET).

Fig. 8. Location of selected Landsat scenes.
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reference perimeters (30m), the error matrices were computed by
comparing the results as vectors rather than raster images.

All these accuracy measures were computed twice: once for in-
dividual pairs of consecutive images (called short sampling unit, up to
16 days long), and again for temporal series with consecutive image
pairs (called long sampling unit, 100 days long at least, 45 in total).

3. Results

3.1. Validation of the FireCCISFD11

The results of the accuracy measures after comparing the
FireCCISFD11 product and the validation dataset are shown in Table 1.
At long sampling unit, omission error (26.5%) is higher than commission
error (19.3%), giving a negative relative bias (−9.0%) and a Dice
coefficient of 77.0%. At short sampling unit both omission and com-
mission sharply increase to over 60%, while DC decreases to 34.2%.
The relative bias remains the same, since the total burned surface does
not change between a long sampling unit and the sum of corresponding
short sampling units. The much lower accuracy of the short sampling unit
is related to the temporal differences of the acquisitions dates between
Landsat (validation source) and Sentinel-2 images.

3.2. Validation of MCD64A1

Table 2 shows the same accuracy measures after comparing the
MCD64A1 product and the validation dataset. At long sampling unit,
omissions (59.6%) were found much higher than commission (20.4%),
with a negative relative bias (−49.2%) and Dice coefficient of 53.6%.
At short sampling unit omission (66.3%) and commission (33.6%) were
slightly higher getting 44.7% Dice coefficient.

3.3. Inter-comparison of FireCCISFD11 and MCD64A1

3.3.1. Total BA
Burned area detected by FireCCISFD11 and MCD64A1 were com-

pared in a monthly basis and taking into account the sizes of the burned
patches grouped in different fire size classes: < 25 ha, 25–100 ha,
100–250 ha and>250 ha (Figs. 9 and 10). The total BA detected in the
FireCCISFD11 for the whole year 2016 (4.9M km2) was 80% larger
than the area detected by the MCD64A1 product (2.7 M km2), being
larger on every month (Fig. 9). BA were concentrated between October
and March in the Northern Hemisphere (2.3 and 1.3M km2 for the
FireCCISFD11 and MCD64A1 products, respectively), followed by sev-
eral months with a reduced fire activity, while in the Southern Hemi-
sphere the highest detection was observed between May and October
(2.6 and 1.4M km2 for the FireCCISFD11 and MCD64A1 products, re-
spectively).

Both FireCCISFD11 and MCD64A1 products detect a similar BA area

regarding to the largest burned patches (> 250 ha) (Fig. 10), but the
differences between products increase gradually as the patch size de-
creases. The maximum difference was observed for the smallest fire
patches (< 25 ha), that were detected by FireCCISFD11 more than
thirty times more than by the MCD64A1 for patches equal or< 25 ha.
Note that the MODIS minimum detectable area (a pixel) is 25 ha.

3.3.2. Spatial agreement
The fraction of burned area in a 0.05× 0.05° resolution was ag-

gregated to compare the spatial agreement between FireCCISFD11 and
MCD64A1 products (Fig. 11). Both products are shown as well the BA
fraction difference between them. Fig. 11d shows the regression be-
tween the BA fraction between both products (note FireCCISFD11 is in
X axis, and MCD64A1 in Y axis). FireCCISFD11 tends to detect larger
burned area than the MCD64A1; the slope of the regression line is lower
than 1.0 (0.703) and Fig. 11c shows in general a blue colour that notes
the positive fraction difference. Higher burned fractions in the
MCD64A1 product were observed when the FireCCISFD11 was not able
to detect burned areas because of the high cloud percentage, mostly
noticeable at the end of the 2016.

According to Table 3, where correlation is grouped by patch size,
very low spatial correlation between the two products was found for
patches below 250 ha (R2 < 0.1), while larger patches showed a much
higher correlation (R2 equal to 0.571), with a regression slope of 0.871
that notes the lower BA fraction values of MCD64A1.

Figs. 12 and 13 illustrate the differences among products in two
representative sample sites. The first one (Fig. 12), located in Senegal
(tropical and subtropical savanna ecosystems), affects shrublands and
tree cover according to the ESA CCI Land Cover map from 2015 (http://
maps.elie.ucl.ac.be/CCI/viewer/index.php, last accessed on November
2018). This sample site contains large BA detected with similar shapes
by both BA products, though smaller areas were only detected by the
FireCCISFD11. Most burned patches were detected later in the Fire-
CCISFD11 than in the MCD64A1 due to its lower temporal resolution,
but no significant differences were observed. The second (Fig. 13)
sample site, located in Zambia (temperate grassland and savanna eco-
systems) affects mostly irrigated croplands and tree covers (ESA CCI
Land Cover map). In this case fires tend to be small size, with a very
clear underestimation of the MCD64A1; correspondences are only
found for largest patches.

3.3.3. Temporal agreement
The temporal accuracy of the BA detection date was analized

comparing to de detection dates of the FireCCISFD11 and MCD64A1
against the hotspot MCD14ML acquisition dates. The date of burn
chosen in the products was the earliest burned pixel around the hotspot
(in a 1×1 km2 window, the spatial accuracy of the active fire product)
after the hotspot's date. The overlapping of active fires and
FireCCISFD11 showed that 4.2% of the hotspots didn't detect any

Table 1
Estimated accuracy of the FireCCISFD11 product, in long and short sampling units. Commission error (CE), omission error (OE), Dice coefficient (DC) and relative bias
(relB) are expressed in percentages.

Commission error (CE) Omission error (OE) Dice coefficient (DC) Relative bias (relB)

Long sampling unit 19.3 26.5 77.0 −9.0
Short sampling unit 64.1 67.4 34.2 −9.0

Table 2
Estimated accuracy of the MCD64A1 product, in long and short sampling units. Commission error (CE), omission error (OE), Dice coefficient (DC) and relative bias
(relB) are expressed in percentages.

Commission error (CE) Omission error (OE) Dice coefficient (DC) Relative bias (relB)

Long sampling unit 20.4 59.6 53.6 −49.2
Short sampling unit 33.6 66.3 44.7 −49.2
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burned area around them in the FireCCISFD11, while this percentage
was significantly higher for MCD64A1 (49.3%). Fig. 14 shows the his-
togram of the detection delay for both products. For the FireCCISFD11,
the 75.5% of the hotspots were detected in the first available image
(no> 10 days after the hotspot's date), 88.7% for BA in the second
image at the latest (no> 20 days), and almost 95% earlier than the
fourth image (no>40 days). For the MCD64A1 product the detection

delay was much lower as due to the higher temporal resolution (1 day),
68.7% of the hotspots were detected within the first acquisition after
the fire (no>1 day), 76.0% in the second image (no>2 days), and
80.0% in the fourth image (no>4 days).

Fig. 9. Distribution of burned areas by month in both FireCCISFD11 and MCD64A1 products, depending on the hemisphere.

Fig. 10. Distribution of burned area detected in FireCCISFD11 and MCD64A1 grouped by month and patch size.
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4. Discussion

This paper presents an algorithm to detect burned areas based on
Sentinel-2 MSI images and the MCD14ML MODIS active fires product.

The algorithm was implemented operationally and used to generate a
new BA product (named FireCCISFD11) that covers the Sub-Saharan
Africa for the whole 2016 year, a vast extent of approximately 25M km2

covering various biomes (tropical forest, tropical and subtropical sa-
vanna, temperate grassland and savanna, and Mediterranean forest,
according to Olson et al., 2001). This product involved processing 11 K
MSI images in a computation exercise that lasted approximately
6months.

Even though previous papers have been published using medium
resolution data for mapping BA in large regions (such as Hawbaker
et al., 2017 and Boschetti et al., 2015 in the US, or Goodwin and Collett,
2014 in Queensland, Australia) this is the first BA continental product
generated from medium resolution sensors (in this case Sentinel-2 data)
covering a single year. The algorithms by Hawbaker et al., 2017 and
Goodwin and Collett, 2014 have some similarities; all of them employ a

Fig. 11. Aggregated result for the a) FireCCISFD11 and b) MCD64A1 burned areas, representing the fraction of burned surface in a 0.05° grid cell; c) differences
between both products, and d) scatter plot and linear regression fitted for the relation between the FireCCISFD11 and MCD64A1 products.

Table 3
Linear regression analysis surface fractions depending on the patch size be-
tween FireCCISFD11 and MCD64A1 products.

Slope Intercept (%) R2

≤25 ha 0.015 0.178 0.036
25–125 ha 0.092 0.719 0.072
125–250 ha 0.023 2.343 0.001
> 250 ha 0.835 4.657 0.571
All sizes 0.703 −5.413 0.580
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supervised machine-learning approach based on single or multiple de-
cision trees, adjusted to sample burned data extracted mainly from
Landsat images. Both use lagged summaries of Landsat data as a re-
ference against which to measure change, in addition to a region-
growing algorithm, although the former used longer lags and also in-
corporated a wider range of spectral indices as predictors.

The algorithm presented here is more straightforward in this re-
spect: it relies on two very well-known spectral indices—NBR2 and
MIRBI- and the NIR spectral region, in a two-phase strategy dependent
on MODIS derived active fires. Exploiting the synergy of thermal
anomalies detected at the satellite pass and the longer-lasting burned
spectral signal is not new (charcoal/ash deposition and removing/al-
teration of the vegetation) and is the most common strategy used in
mapping BA throughout extensive areas globally (Chuvieco et al., 2018;
Giglio et al., 2009) as well as continental and regionally (Chen et al.,
2017; Merino-De-Miguel et al., 2011; Pereira et al., 2017); however, it
has barely been used at a regional/continental scale with higher spatial
resolution data (Boschetti et al., 2015). The VIIRS Active fire product
was not available at the time the algorithm was designed, but its in-
clusion can be worthwhile in the future, as it has better spatial re-
solution than the MODIS product and is likely to provide a greater re-
sponse over fires of relatively small areas patches (Schroeder et al.,
2014, 2008).

A crucial difference of the approach followed here is that after the
initialization with fixed thresholds, cut-off values are depending on the
individual tile of 100×100 km2 observed between the burned and
unburned categories in each of the six predictive variables (posterior

and multitemporal difference MIRBI, NBR2, and NIR). Consequently,
the approach should be more adaptable to the local conditions than the
data-mining models grouped by ecosystems (Hawbaker et al., 2017).
However, this tile-based focus produces sometimes a grid effect where
some tiles showed significantly more burned area detection than their
neighbours, or the other way around. This effect is sometimes more
pronounced because the criteria that must have at least one hotspot
among the pre-fire and post-fire for being processed, resulting in un-
processed tile gaps.

The algorithm mainly relied on two spectral indices (MIRBI, NBR2)
as well as the NIR reflectance, with the latter only being used at the
seeding process. Although MIRBI and NBR2 were computed from the
same two SWIR bands (B11 and B12 on the case of MSI) they have
shown to be complementary due to the different frequency distribution
that helps reducing the commission errors working together.

The accuracy estimated for the FireCCISFD11 product was quite
encouraging, with much lower omission error and commission errors
than global products. These errors increase up to 60% for both errors
when short periods of time are considered, which reflects the effects of
the date discordance between Landsat and Sentinel acquisitions and the
low temporal resolution of Sentinel-2 acquisitions. Errors were found
similar to those obtained from other authors using medium resolution
sensors with relatively small study regions (Bastarrika et al., 2011;
Goodwin and Collett, 2014; Mallinis and Koutsias, 2012; Vanderhoof
et al., 2017).

Commission errors detected in the FireCCISFD11 are mainly related
to an inaccurate masking of clouds, cloud shadows and terrain shadows

Fig. 12. Sample area of inter-comparison between FireCCISFD11 (left) and MCD64A1 (right) products, located in southeast Senegal.
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that allow locating burned seeds especially in areas where the acquired
signal is a mixture of the land surface. The second stage tends to worsen
the detection, obtaining many small size burned patches, usually below
25 ha range. The Scene Classification Layer (SCL) derived from the pre-

processing stage, when Level-1C product is converted to Level-2A data,
has shown to be complex when using to mask the scenes: cloud shadows
and low probability clouds categories detects many burned areas so they
are not used in the mask, while several clouds are still observed in the

Fig. 13. Sample area of inter-comparison between FireCCISFD11 (left) and MCD64A1 (right) products, located in Zambia.

Fig. 14. Detection delay of the a) FireCCISFD11 and b) MCD64A1 comparing to MCD14ML hotspots acquisition date.
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masked images, even applying a dilation process to high probability
clouds and medium probability cloud and thin cirrus categories. The newer
sen2cor version 2.2.1 did not improve either this critical situation. An
empirical criterion based on Long SWIR (B12) masked quite efficiently
the shadows, but a delay in the detection date of very recently burned
areas was observed -especially in the savanna biome- that showed very
low Long SWIR reflectance values (these areas are mapped at posterior
acquisitions when the burned signal is weaker and high enough to fail
the shadow criterion). Another commission source observed, also
common in BA algorithms previously published (Bastarrika et al., 2011;
Hawbaker et al., 2017; Long et al., 2018) are croplands, whose re-
flectance changes are often indistinguishable from burning, especially
in periods where these changes are coincident with fires (during the
harvest, postharvest or preplanting periods) (Korontzi et al., 2006).
Omission errors are higher than commission and they are mainly re-
lated to burned areas with low contrast with the unburned background,
due to low severity fires or the gap of time between the fire and the
acquisition where charcoal is removed and vegetation starts recovering.
In such situations, the contrast between burned and unburned back-
ground is not high enough and omissions happen since the initialization
step, and therefore the second stage criteria, consider many burned
areas as background making their detection unfeasible.

The comparison analysis between the FireCCISFD11 (20m spatial
resolution) with the widely used MCD64A1 collection 6 (based on
500m spatial resolution MODIS data) emphasised the importance of the
input source spatial resolution to map burned areas accurately.
MCD64A1, in the same validation dataset as that used for
FireCCISFD11, showed an omission error of approximately 60% for the
long sampling unit, 30% more than the FireCCISFD11. So the
FireCCISFD11 is more accurate in long sampling units due to its higher
spatial resolution, even if the MCD64A1 product is more accurate for
short sampling units, because of its higher temporal resolution allows the
day of detection to be very close to the day of burn. These omissions are
produced mainly in burned patches smaller than 250 ha, showing the
higher correlation among products for the larger patches, while com-
mission errors for both products were similar, around 20%. The lower
temporal resolution of Sentinel-2 data was reflected in detection date
accuracy of the products, with approximately 75% of the burned areas
were detected in the first acquisition after the fire (10 days), while in
the second acquisition (2 days) for the MCD64A1. This better temporal
accuracy of the fire date was also noted on the short sampling unit va-
lidation with only the 34% of commission error for MCD64A1 but up to
64% for the FireCCISFD11. The future use of both Sentinels 2 (A and B)
or the combined use of Sentinel-2 and Landsat-8 images may greatly
increase this temporal reporting accuracy for medium resolution sensor
BA products.

For the whole study area and period (January–December 2016),
FireCCISFD11 detected about 80% more BA than MCD64A1, which
underlines the relevance of underestimation of small fires in current
global products. This numbers must be qualified in the context of the
results obtained in the assessment of the products: commission errors in
the FireCCISFD11 are related to clouds/shadows that may impact in a
false higher burned detection in cloudy areas that have not been fully
validated, while commission errors of MCD64A1 are not common and
mainly related to the spatial resolution (Giglio et al., 2018, 2009). The
presence of commissions in cloud edges points to the significance of
refining clouds masks. Moreover, the validation sites were selected
proportionally to the BA in the MCD64A1 product (Section 2.5), so
areas where only small fires occur (with low burned area in MCD64A1)
may have been missed in the assessment process.

The BA mapping at medium spatial resolution of FireCCISFD11 is
crucial to improve the accuracy of the emission of greenhouse gases
into the atmosphere, and for many other applications as land man-
agement, environmental, climate change adaptation and land cover
change applications.

5. Conclusions

An automatic BA mapping algorithm based on Sentinel-2 MSI data is
presented in this paper, in order to emphasize the importance of the
spatial resolution of this sensor in mapping accurately small burned
areas. The FireCCISFD11 product in Sub-Saharan Africa generated by
this algorithm is an innovation, since there were very few BA products
at high spatial resolution (30m from Landsat data at best) covering
such a large area until now, and none derived from S2 MSI imagery (at
20m spatial resolution).

The assessment using Landsat data shows that both commissions
and omissions are much lower than those measured for global BA
products, due to the ability of the FireCCISFD11 to detect small fires
that were at a sub-pixel scale in other products. The FireCCISFD11
detects 80% more BA than the global MCD64A1 product in 2016, most
of them being burned patches smaller than 250 ha, which signals how
much the total BA may have been underestimated in global products.
However, the FireCCISFD11 is not so accurate temporally, since the
long revisit period of the S2 satellite (10 days) and the presence of
clouds delay the detection date; the revisit period will be shorter in the
future if a product with S2 data from April 2017 onwards is produced,
when both S2-A and S2-B satellites are in orbit with a 5-day revisit.

The next step for the product is to apply the algorithm at a global
scale with necessary changes, especially improving the clouds and
cloud shadows detection, which is now the main source of commission
errors. We also think the product would improve if MODIS hotspots
from the MCD14ML were replaced by VIIRS hotspots, which have a
better spatial resolution but were not available yet when we designed
this algorithm. Creating a global BA product at 20m would certainly
increase the amount of the total burned area. Its implications in dif-
ferent applications (greenhouse gas emissions, land cover changes, land
management, etc.) should be analysed in due time.
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Abstract: Four burned area tools were implemented in Google Earth Engine (GEE), to obtain regular
processes related to burned area (BA) mapping, using medium spatial resolution sensors (Landsat
and Sentinel-2). The four tools are (i) the BA Cartography tool for supervised burned area over
the user-selected extent and period, (ii) two tools implementing a BA stratified random sampling
to select the scenes and dates for validation, and (iii) the BA Reference Perimeter tool to obtain
highly accurate BA maps that focus on validating coarser BA products. Burned Area Mapping
Tools (BAMTs) go beyond the previously implemented Burned Area Mapping Software (BAMS)
because of GEE parallel processing capabilities and preloaded geospatial datasets. BAMT also allows
temporal image composites to be exploited in order to obtain BA maps over a larger extent and longer
temporal periods. The tools consist of four scripts executable from the GEE Code Editor. The tools’
performance was discussed in two case studies: in the 2019/2020 fire season in Southeast Australia,
where the BA cartography detected more than 50,000 km2, using Landsat data with commission and
omission errors below 12% when compared to Sentinel-2 imagery; and in the 2018 summer wildfires
in Canada, where it was found that around 16,000 km2 had burned.

Keywords: burned area; Australia; Canada; tools; validation; Landsat; Sentinel-2; Google Earth
Engine

1. Introduction

Biomass burning is a significant disturbance that causes soil erosion and land-cover
changes and releases greenhouse gas emissions into the atmosphere, also affecting people’s
lives and properties [1–3]. Fires are present in most types of vegetation in the world, espe-
cially grasslands, savannas, and forest, and they occur on all continents, with a significant
incidence in Africa, which accounts for 70% of the global burned area [4–6]. Therefore,
burned areas (BAs) must be detected accurately both spatially and temporally, for which
satellite Earth observation has been much used over the last few decades, especially using
coarse spatial resolution [5–14]. Global products at coarse spatial resolutions have signifi-
cant omission errors [4,15–18], but creating products at medium resolution, although more
accurate, is also quite challenging: It implies a heavy data-processing workload, and the
temporal resolution is low (typically one image every 5 to 16 days).

Using BA mapping with medium spatial resolution had been operationally quite
limited until Landsat historic imagery became freely available in 2008, since the scientific
literature on this topic had been mainly limited to single or neighboring scenes [19–21].
In addition, since 2015, the Sentinel-2 imagery has added a large volume of imagery
that makes it possible to analyze time series at a medium spatial resolution. A few BA
automatic algorithms have been developed, using time series data, especially using Landsat
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data [22–25], albeit also using Sentinel-2 [16,26], or a combination of the two [27]. So far,
the only example of a global product based on medium-resolution data is Global Annual
Burned Area Map (GABAM) [23], obtained for 2015, using Landsat data. At the continental
level, it is worth mentioning the Landsat Burned Area Essential Climate Variable (BAECV)
covering the Conterminous United States (CONUS) [25,28], the province of Queensland
in Australia for the whole Landsat historical database [29] and the sub-Saharan Africa in
2016 [16].

Despite this effort to develop automatic algorithms, supervised multitemporal image
analysis is considered to be a superior method for the purpose of mapping burned areas.
In fact, it allows for differentiation between old and new burns, and reliably detects small
spatially fragmented low-combustion completeness burns. It also enables gross errors
that may occur in satellite data to be accommodated, and differentiates between burned
and spectrally similar unburned features [30]. For example, supervised analysis of higher
spatial resolution imagery is adopted as the validation protocol for BA mapping [31].
Although visual interpretation and delineation are generally recommended [12,30,32,33],
these processes usually take the form of a supervised semi-automatic classification that
is visually checked and manually refined [15,34]. Compared to the field-based classical
methods used to report official statistics on burned areas, remote sensing-based mapping
is more objective and efficient, less labor- and time-consuming and more repeatable [35].

In 2014, the University of the Basque Country (UPV/EHU) developed a software for
supervised BA mapping, using Landsat data: Burned Area Mapping Software (BAMS). This
software was basically designed to process a pair of Landsat images at a time, allowing
for BA mapping between the two scenes, using a two-phase mapping strategy, thus
obtaining the burned polygons in a vector layer [36]. It provided good cost efficiency,
although it relied on the processing capacity of the user’s computer and was based on a
commercial GIS software. The software was widely used to create validation areas inside
the Fire_cci project [15,37,38], as well as for the USGS Burned Product initial validation,
and many other fire science-related users, environmental techniques and the commercial
community [16,28,37,39–41]. However, several limitations were also detected and discussed
with users. Firstly, it was only applicable to Landsat data and was unable to process
Sentinel-2 data. Secondly, the software was not easily maintained as metadata and the
Landsat data format changed and its proper functioning was interrupted several times.
Finally, the BAMS mapping methodology trained only the burned category and saved time
for the user, but the user was unable to control the unburned category properly; thus, a
manual edition was often necessary to remove commission errors in agricultural areas and
cloud shadows.

Google Earth Engine (GEE) is a free cloud-computing platform for satellite data
processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2
and MODIS) and planetary-scale analysis capabilities (https://earthengine.google.com
(accessed on 27 January 2021)) [42]. Since the first significant work on the topic was
published in 2013 [43], the number of studies using GEE has dramatically increased, with
more than 200 papers having been published in 2019 [44], covering all types of applications,
such as vegetation mapping and monitoring, land-cover mapping, agricultural applications,
and disaster management and Earth sciences [45]. However, there have not been so many
published papers on the fire field [23,46–48].

This study presents several tools that we have developed and released in GEE. These
tools are referred to as Burned Area Mapping Tools (BAMTs), and they cover the entire
BA mapping process: from creating a large extent BA map to creating statistically design
samples for validation studies and the actual generation of BA reference perimeters (RPs),
using both Landsat and Sentinel-2 images. The study describes these tools and provides
two case studies that were applied in the Australian fire season between 2019 and 2020,
and in the Canadian wildfires from the summer of 2018. All four tools and the user guide
are totally free and can be reached at https://github.com/ekhiroteta/BAMT (accessed on
27 January 2021).

https://earthengine.google.com
https://github.com/ekhiroteta/BAMT
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2. BAMT Tools

Four tools have been developed for BA mapping:

1. BA Cartography: The user can create a BA product over a large region and a long
period of time, from changes between two temporal images via a supervised classifi-
cation.

2. VA: for validation area (VA) selection based on several strata, in accordance with an
existing stratified random sampling methodology.

3. VA Dates: This tool serves as a bridge between VA and RP tools, providing the user
with information about which dates to use to generate RP, after having sampled the
best validation areas, i.e., identifying cloud-free dates.

4. RP: creates accurate burned areas within a small region, from changes between two
dates via a supervised classification. It is mostly oriented towards generating reference
perimeters (RPs) for a BA product’s assessment.

2.1. Datasets and Preprocessing

BAMT rely on the Landsat and Sentinel-2 datasets that are uploaded to the GEE
environment. The Landsat program is a NASA/USGS program for satellite imagery
acquisition and Earth observation [49], with a series of satellites that started acquiring
images in 1972 with Landsat-1, being the last satellite launched in 2013, and over 8 mil-
lion scenes of the Earth having been acquired since then. From its seven satellites, only
Landsat-4 and -5 Thematic Mapper (TM), Landsat-7 Enhanced Thematic Mapper Plus
(ETM +) and Landsat-8 Operational Land Imager (OLI) data are used in BAMT. They
provide continuous global coverage since 1982, acquiring images every 16 days (reduced
to 8 days in years where two satellites are operational) at 30 m of spatial resolution and
covering the visible, near infrared (NIR) and short wavelength infrared (SWIR) spec-
tral regions. From all available Landsat products in GEE, the Landsat Tier 1 Surface
Reflectance (SR) [50,51] product was the one selected, which includes atmospherically
corrected and orthorectified surface reflectance data for four visible and near-infrared
(VNIR) and two short wavelength infrared (SWIR) bands. These products are represented
by the following IDs in GEE: ‘LANDSAT/LT04/C01/T1_SR’ for Landsat-4 TM, ‘LAND-
SAT/LT05/C01/T1_SR’ for Landsat-5 TM, ‘LANDSAT/LE07/C01/T1_SR’ for Landsat-7
ETM + and ‘LANDSAT/LC08/C01/T1_SR’ for Landsat-8 OLI.

The European Space Agency (ESA) developed the Sentinel-2 mission (S2) as part of the
EU Copernicus program [52], with two satellites working simultaneously (Sentinel-2A and
Sentinel-2B) since 2017. Both incorporate the Multi-Spectral Instrument (MSI), an optical
sensor similar to those aboard the Landsat satellites, albeit with improvements in spectral,
spatial and temporal resolutions. MSI covers the globe at 10 or 20 m, depending on the
spectral band, with a revisit time of 10 days (from June 2015 onwards, when Sentinel-2 A
was launched) and 5 days (from March 2017, after the launch of Sentinel-2B) by combining
both satellites, obtaining 2–3 days of revisit time in mid-latitudes, due to the overlap
between adjacent orbits. Two Sentinel-2 products are available in GEE: Level-1C (L1C) and
Level-2A (L2A), with the corresponding ‘COPERNICUS/S2S and ‘COPERNICUS/S2_SR’
dataset IDs. The bands in the former product contain Top of Atmosphere (TOA) reflectance,
although the latter has Bottom of Atmosphere (BOA) reflectance and a scene classification
(SCL) including quality indicators such as cloud probabilities and snow [53].

Although BAMT could use L1C and L2A products, there are critical differences
between them that make the first-mentioned product preferable. On the one hand, the
topographic correction applied in L2A creation [54] gives rise to an overcorrection of
mountain shadows and an artificial effect in mountainous regions, even though this does
not occur in every image (Figure 1). On the other hand, the L2A product is not globally
produced for the completely temporal coverage of Sentinel-2; although 2019 and 2020 have
the same number of scenes for both products in GEE, 2015 and 2016 do not have any L2A
scenes, and there are only a few for 2017 and 2018 (Figure 2).
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Figure 1. The red/green/blue natural color composition in a sample area in the 30TWN Sentinel-2
(S2) tile. The upper row (a–c) is a scene from 2020/02/03, where shadows were overcorrected, while
the lower row (d–f) is a scene from 2020/01/09 without such that effect. The first column (a,d) shows
the Level-1C (L1C) product with Top of Atmosphere (TOA) reflectances; the second column (b,e)
shows the L2A product with Bottom of Atmosphere (BOA) reflectances as available in Google Earth
Engine (GEE); and the third column (c,f) represents the Level-2A (L2A) product with no topographic
correction generated by the authors.

Figure 2. Total number of L1C and L2A scenes available in GEE by year, as of January 2021.

Six reflectance bands common to all four sensors (TM, ETM +, OLI and MSI) are
employed: the three visible colors (blue, green and red), the near infrared (NIR) and two
short wavelength infrareds (short and long SWIRs). Each of these bands’ wavelengths
may vary among different sensors, but they cover an equivalent region in the spectrum
(Table 1). Landsat bands are available at 30 m spatial resolution. S2 MSI visible bands are
at 10 m and both SWIRs at 20 m; there are two NIR bands, each at a different resolution, as
indicated in Table 1.
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Table 1. Selected bands for every satellite and sensor, and their approximate wavelengths.

Satellite Landsat-4 and 5 Landsat-7 Landsat-8 Sentinel-2A and B Approximate
Wavelength (µm)

Sensor TM ETM + OLI MSI –
Product LSR LSR LSR L1C –

Blue B1 B1 B2 B2 0.45–0.52
Green B2 B2 B3 B3 0.53–0.59
Red B3 B3 B4 B4 0.63–0.68

NIR B4 B4 B5 B8 (20 m)/B8A (30
m) 0.80–0.89

Short SWIR B5 B5 B6 B11 1.55–1.70
Long SWIR B7 B7 B7 B12 2.10–2.30

Quality band pixel_qa pixel_qa pixel_qa QA60 –

SWIR, short wavelength infrared.

The Quality Assessment (QA) band for both sensors has been used to identify pixels
that exhibit adverse instrument, atmospheric or superficial conditions (Table 2). The
pixel_qa band for Landsat images indicates the presence of cloud shadows and clouds
in the 3rd and 5th bits, respectively, while the QA60 band of S2 data contains similar
information in its 10th and 11th bits, even though this does not indicate the presence of
cloud shadows. In the RP tool, the SCL is used instead of the QA60 quality band if a L2A
scene is available since it is more accurate; this SCL includes several cloud probabilities and
a cloud shadow category that are crucial for masking purposes. In addition, an empirical
threshold based on the B1 band has been employed to avoid the heavily underestimated
presence of clouds of the Level-1C product [55]: B1 higher than 1500, or a more relaxed
threshold of 2000 if SCL from L2A is used. In our developmental experiments, this band, at
60 m of spatial resolution, has shown the best performance of BA mapping in cloudy areas.

Table 2. Values and conditions applied for masking clouds and cloud shadows, depending on
the dataset.

Landsat-4 to 8 Sentinel-2 L1C Sentinel-2 L2A

pixel_qa:
3rd bit (cloud shadow)5th bit

(cloud)

QA60:
10th bit (opaque cloud)
11th bit (cirrus cloud)

B1 > 1500

SCL:
value 3 (cloud shadow)

value 8 (medium probability
cloud)

value 9 (high probability
cloud)

value 10 (thin cirrus)
B1 > 2000

The normalized difference between the most important spectral spaces for the BA
was added to the selected spectral bands described in Table 1, as follows: Normalized
Difference Vegetation Index (NDVI) [56] in the red/NIR space, Normalized Burned Ratio
(NBR) [57] in the NIR/Long SWIR and Normalized Burned Ratio 2 (NBR2) [19] in the Long
SWIR/Short SWIR space. The equations for these indices are as follows:

NDVI = (ρNIR − ρRed)/(ρNIR + ρRed) (1)

NBR = (ρNIR − ρLongSWIR)/(ρNIR + ρLongSWIR) (2)

NBR2 = (ρShortSWIR − ρLongSWIR)/(ρShortSWIR + ρLongSWIR) (3)

where ρRed = reflectance in the red band, ρNIR = reflectance in the NIR band, ρShortSWIR =
reflectance in the Short SWIR band, and ρLongSWIR = reflectance in the Long SWIR band.
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2.2. BA Cartography Tool

The purpose of this tool is to generate a BA vector map in a user-defined area and
period via a supervised classification of Landsat or Sentinel-2 data, as defined by the
‘dataset’ parameter. The flowchart of the tool below illustrates its logic (Figure 3).

Figure 3. Flowchart of the burned area (BA) Cartography tool’s algorithm.

The processing area extent has to be manually digitized in the ‘studyArea’ predefined
geometry layer of the script and could be a region, country or even a continent (the
process might lead to an error if the processing area is too large, because the user memory
could be exceeded). Two consecutive periods must be defined (by ‘date_1′, ‘date_2a and
‘date_3a parameters), namely the pre- and post-fire periods, with the second one beginning
the day following the end of the first period. The individual imagery involved in the
region, dataset and period defined are masked using the rules described in Table 2 and
the NDVI, NBR and NBR2 spectral indices are computed for each scene. Pixel-based
temporal composites are computed for both post-fire and pre-fire periods (Figure 4a,b),
taking the one with the minimum NBR from the dates available. In our experiments,
this band evidenced the best compositing performance, by maximizing or minimizing
the individual bands and spectral indices, and retaining the dates’ pixel value when the
burned signal was considered strongest. Temporal compositing has many advantages
in processing frameworks, especially if the analysis covers large areas [58]. Post-fire and
pre-fire composites are used to compute the composite subtraction (Figure 4c), and thus
another nine bands are obtained over the user-defined extent, six reflectance bands and
three spectral indices.
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Figure 4. Generation of the BA product from S2 data in a sample area located in South Sudan. (a) Pre-
fire composite derived from data between 2019/11/01 and 2019/12/31, with a Long SWIR/NIR/red
color composition; (b) post-fire composite between 2020/01/01 and 2020/02/29 with the same color
composition; (c) difference between the pre-fire and post-fire composites; (d) probability image
returned by the Random Forest (RF) classifier; (e) burned seeds (in red) shown over the previous
image; and (f) result exported in an ESRI (Environmental Systems Research Institute) Shapefile.

A Random Forest (RF) classifier is trained, using the burned and unburned samples
the user digitized in the ‘burned’ and ‘unburned’ layers within the GEE Code Editor
environment. These samples are digitized over a Long SWIR/NIR/red color composition of
the pre-fire composite, post-fire composite and pre-fire/post-fire difference visualized over
the GEE map. Among other data-mining algorithms included in GEE, such as Classification
and Regression Tree (CART) [59], Naive Bayes and Support Vector Machine (SVM) [60],
RF was selected because of the fast training and prediction involved, unconstrained by
the distribution of the predictor variables, reduced overfitting, robustness to outliers and
non-linear data. RF classification also handles unbalanced data that are common in BA
mapping. Indeed, this technique has become popular within the remote sensing community
due to the accuracy of its classifications [61]. A Random Forest classifier is an ensemble
classifier that produces multiple decision trees, using a randomly selected subset of training
samples and variables [62]. GEE implementation default parameters were maintained for
all parameters (the square root of the number of variables as the number of variables, a
0.5 fraction of input to bag per tree, unlimited maximum nodes), except for the number of
trees (500), as recommended in a study [61], and the minimum number of elements in each
node (10). Each time the user redefines burned and unburned samples and executes the
script, a probability image is obtained, with values ranging from 0% (unburned) to 100%
(burned) (Figure 4d).

The algorithm ends by applying a two-phased strategy on the output probability
image of the RF model in order to map the burned areas, an efficient strategy to balance
omission and commission errors [36,63]. Patches of pixels with a probability higher than
50% using a 4-node connection (the only group of pixels that share an edge) are labeled as
burned, as long as they contain at least one seed pixel inside. These burned seeds are pixels
with higher probability than the average of the mean RF probabilities obtained for the
training polygons (Figure 4e). When the algorithm is executed and the results visualized,
the user may modify or define more training polygons and re-run the algorithm repeatedly,
until the desired visual accuracy is obtained. The end result (only burned or unobserved
areas, but not observed and unburned areas) can be exported in ESRI (Environmental
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Systems Research Institute) Shapefile format in a 2 × 2-degree grid to the user’s Google
Drive account (Figure 4f). The grid was fixed to 2-degree tiles because larger tiles were
likely to exceed GEE user memory limit, although if the limit is still exceeded, the 2-degree
tile can be split into smaller tiles (see user guide). The polygon vector layer assigns the fire
detection date from the post-fire composite, computing the mode (most repeated date) for
each burned patch.

2.3. VA Tool

The Committee on Earth Observing Satellites (CEOS) Working Group on Calibration
and Validation (WGCV) first defined validation as ‘the process of assessing by independent
means the quality of data products derived from the system outputs’ [64]. Satellite product
performance information is required to enable users to select and use products appropri-
ately [65,66]. The independent reference data’s characteristics influence the reliability and
the degree to which validation results are representative of the validated product [33],
while the validation sampling design is critical in making the most out of the reference
data. Probability sampling designs ensure that accuracy inferences are possible on a global
scale [21].

The first inferences of global product accuracies became available a few years ago [15,34].
A great deal of attention was placed on (1) defining the sampling units by attributing
them with spatial and temporal dimensions so that accuracy inferences could be made
for specific spatial and temporal extents [33], and (2) improving the efficiency of sampling
designs to obtain accuracy inferences as precise as possible given a sample size [67]. These
methodologies were based on Landsat data, which most global BA validation exercises used.
Firstly, two sampling grids were created: a spatial grid, based on Thiessen Scene Areas
(TSAs) [68,69], and a temporal grid, consisting of two consecutive image acquisition dates.
Two levels of stratification were then applied on the spatial and temporal sampling units:
the predominant Olson biome [70], first reduced to seven main categories [33,34], and the
fire activity in each sampling unit. Depending on the study, either the BA extent provided
by the Global Fire Emissions Database version 3 (GFED3) [71] or the number of hotspots in
the MODIS active fire product [72,73] was used as a reference for fire activity, delimited
spatially by the extent of the TSA and temporally by its acquisition dates. Sampling units in
each biome were split between low and high fire activity strata, resulting in 14 strata in total.
Finally, the number of sample sizes for each stratum was computed proportionally to the
number of sampling units in the stratum. However, this method assumed that all Landsat
acquisitions were available and that the clouds did not affect them, while the ground’s
observability was not actually secured, as mentioned by Boschetti et al. [33]. In addition,
the short temporal length of sampling units (16 days between two consecutive Landsat
images) may increase the validated BA product’s estimated errors if burning dates are not
identified accurately in the global product. To solve these issues, ‘long sampling units’
have been employed in recent studies [6,14,16]. These units are typically over 100 days
long, with a minimum frequency of an available image every 16 days, whereas previous
16-days-long units are referred to as ‘short sampling units’.

The VA tool used in this study is an adaptation of this stratified random sampling
methodology, not only for sampling validation areas for coarse resolution BA products, but
also for the BA maps obtained using medium spatial resolution with the BA Cartography
tool in BAMT. Several decisions were taken to adapt the algorithm to this tool:

• Sentinel-2 data were incorporated into the analysis, as these offer better spatial and
temporal resolutions than Landsat data and should improve reference data created
for the BA validation. The user may thus choose between S2 or Landsat data (with the
‘dataset’ parameter).

• Landsat or S2 scene extents are considered as sampling units instead of TSAs. Despite
using whole TSAs when applying the stratified random sampling methodology, most
studies have only created reference data in a central window of about 20–30 km wide
and high [6,14,16,37], which the fire activity cover value used in the analysis might not
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properly represent. Therefore, the user can define the dimension of a square window
(‘dimension’ parameter), located at the center of the scene, so that the analysis may be
carried out in that specific window.

• Either the MCD64A1 [5] or the FireCCI51 [6] can be used to estimate global fire activity
to select the samples (‘globalBA’ parameter). Both products are available in GEE. The
latter has a higher spatial resolution (250 m), but was only processed between January
2001 and December 2019, while the MCD64A1 at 500 m has been systematically
processed from November 2000 up to the present.

• Optionally, several criteria of data availability are considered when creating long
sampling units: minimum length of the unit in days, minimum frequency of available
images in days and maximum cloud cover in each available image (‘minLength’,
‘minFreq’ and ‘maxCloud’ parameters, respectively).

The tool samples a number of validation areas (‘numberVA’ parameter) over a period
defined by two dates (‘date_pre’ and ‘date_post’) and spatially delimited by a polygon that
is manually defined in the ‘studyArea‘ layer. Firstly, it selects the predominant Olson biome
and computes the burned surface (according to the BA product, MCD64A1 or FireCCI51)
in each sampling unit. Then, it splits the units into 14 strata, consisting of 7 Olson biomes
and two low/high BA strata. The validation areas are then sampled from each stratum
proportionally to the number of sampling units in it.

If the optional criteria of data availability are applied, long sampling units that do not
fulfil these criteria are removed, and the stratified random sampling is then applied to the
remaining units. This assures a long data series with frequent cloud-free data from which
high-quality reference data will be created.

2.4. VA Dates Tool

The validation areas sampled by the VA tool do not propose the specific images to
be used for reference data creation, and only the scene is identified. Since the CEOS Land
Product Validation team recommends that reference fire perimeters be obtained from
multitemporal pairs of images in order to properly date the validation period, this tool
identifies the images available in the specified scene and period. The identified images also
meet a cloud cover criterion the user defines to ensure only cloud-free images are shown.

2.5. RP Tool

Validation of remote-sensing-derived products requires independent reference data
and must be obtained with minimum error, either by visual interpretation [12,30,32] or
by applying a semi-automatic algorithm followed by visual checking and manual refine-
ment [15,34,74]. Coarse spatial resolution BA products have been validated in accordance
with the protocol endorsed by the Committee on Earth Observation Satellites (CEOSs),
which is based on product comparison with BA maps interpreted from higher spatial
resolution satellite multi-date image pairs [32]. Validating medium spatial resolution BA
products is more challenging because interpreting multi-date higher spatial resolution data
with a temporal resolution high enough to capture the rapidly evolving burning is expen-
sive and often unavailable, and requires a large and representative independent reference
dataset collected via a suitable spatiotemporal sampling, in order to obtain statistically
rigorous accuracy measures [27].

This tool focuses on easing the BA mapping process between two single Landsat or
Sentinel-2 scenes with the highest possible accuracy, so they can then be used as reference
perimeters (RPs) for lower spatial resolution BA assessment purposes, in accordance
with the CEOS’s BA assessment protocol. The BA mapping process is similar to the BA
Cartography tool in that it digitizes ‘burned’ and ‘unburned’ samples, a RF model with
the same parameters is trained, and the user may redefine the training samples until the
result is accurate enough, which is then exported in an ESRI Shapefile to the user’s Google
Drive account. A label is attached for each polygon, indicating whether it was burned or
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unobserved accordingly. However, there are some significant differences compared to the
BA Cartography tool:

• Spatially, BA detection is limited to a window located at the center of a Landsat
or Sentinel-2 scene. The user defines the width and height of the window (‘re-
gion_dimension’ parameter).

• Temporally, two single scenes are used for BA detection instead of temporal compos-
ites, defined by two dates. The VA Dates tool can be used to identify the dates with
available images.

• For Sentinel-2 derived RP, the SCL image is selected to mask clouds and cloud shadows
due to its higher accuracy, if an L2A scene is available on the corresponding date; if
there is no L2A scene, QA60 and B1 bands are used. L1C TOA reflectance is used to
map BA in both cases.

• A more permissive probability threshold defines the burned seeds because the region
of interest is smaller and both burned and unburned areas have greater homogeneity
across the image. Instead of the average of mean probabilities used in the BA Cartog-
raphy tool, the minimum among mean probabilities in each burned training polygon
is used as the threshold.

• RP from Landsat data are obtained at 30 m, but Sentinel-2 based RP can be obtained
at both 20 and 10 m (depending on the ‘resolution’ parameter). If a 10 m output
resolution is selected, the B8 band is used instead of B8A (at 20 m) in the NIR region,
and this is joined to the visible bands at 10 m (blue, red and green) and both SWIR
bands at 20 m. If the 20 m output resolution is selected, the B8A is used as the NIR
band. Figure 5 shows how bands at different resolution can be combined, where the
NBR index at 10 m is significantly more accurate than the same index at 20 m, despite
both indices deriving from the same SWIR band at 20 m.

Figure 5. Effect of the NIR band’s spatial resolution on the Normalized Burned Ratio (NBR) spectral index, in a sample area
from 2020/01/13 located in South Sudan. (a) Shows the B8 band (NIR at 10 m); (b) the B8A band (NIR at 20 m); (c) the B12
band (Long SWIR at 20 m); (d) NBR at 10 m (derived from B8 and B12 bands); (e) NBR at 20 m (deriving from B8A and B12
bands); and (f) the Long SWIR/NIR/red color composition at 10 m. Both NBR indices were computed by using the same
B12 band at 20 m.
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2.6. Case Studies in Southeast Australia and Canada

We selected two case studies to demonstrate BAMT’s applicability for BA mapping at
medium spatial resolution data. In the Southeast Australia (SEA) fire season between 2019
and 2020, the set of four BAMT described in this paper were applied by employing Landsat
data to map BA and Sentinel-2 for validation purposes. The second case study employed
only the BA Cartography tool to map Canada’s burned areas in the summer of 2018, using
Sentinel-2 data, and the areas were then compared to the Canadian National Fire Database
fire polygon data available from the Canadian Wildland Fire Information System (CWFIS).

2.6.1. Southeast Australia

The area selected in the SEA case study comprises four different states and territories,
covering an area of 1.05 M km2: New South Wales (NSW), Victoria (VIC), Australian
Capital Territory (ACT) and Jervis Bay Territory (JBT) (Figure 6a). In this area, the selected
2019/2020 fire season was unusually severe, as bushfires were consequently exacerbated
by extreme weather conditions and further caused several social impacts [75–77]. A BA
product detected between the 1 September 2019 and 30 April 2020 was created, using the
BA Cartography tool, employing 2-month-long Landsat composites, both for post- and
pre-fire conditions. Therefore, the fire season was divided into 4 bimonthly periods (1
September to 31 October, 1 November to 31 December, 1 January to 29 February, and 1
March to 30 April). Although most fires in SEA were extinguished by the end of February
2020, some were not detected until March 2020 as a result of the gaps caused by clouds
in Landsat images. For each post-fire composite, the previous bimonthly composite was
used as the pre-fire condition, e.g., the BAs from January to February 2020 were detected
by comparing their composite with the November–December 2019 period.

Figure 6. Location maps of the study areas in (a) Southeast Australia and (b) Canada.

The VA tool sampled 10 validation sites, consisting of 50 × 50 km2 windows located
at the center of the S2 tiles. The sites were sampled by applying the optional criteria
of data availability, and thus a minimum length of 100 days, a minimum frequency of
20 days between consecutive images and a maximum cloud cover of 30% were required
for each long sampling unit. This way, the sampled validation sites were guaranteed to
contain frequently available cloud-free S2 images. The MCD64A1 BA product was used
as a reference for fire activity. Reference perimeters for each pair of consecutive images
in these validation sites were created at 20 m, using the RP tool, in 50 × 50 km2 squares
at the center of the S2 tiles. Any pixel that was not observed in any single image was
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labeled as unobserved for the entire validation period, and only pixels observed through
the whole period remained. Among the observed pixels, burned areas were made up of
pixels burned in any pair of images. For their part, the accuracy metrics were based on
the error matrix approach [78] between the Landsat BA map and the reference perimeters.
The commission and omission errors (CEs and OEs, respectively) and the Dice coefficient
(DC) were computed for each validation area and also globally. The DC is defined as the
probability that one classifier (product or reference data) may identify a pixel as burned,
given that the other classifier also identifies it as burned [15,79,80].

The BA product’s temporal accuracy was assessed by comparing product detection
dates and VIIRS (Visible Infrared Imaging Radiometer Suite) active fire dates [81]; these
hotspots were derived at 375 m from the Visible Infrared Imaging Radiometer Suite sensor
aboard the Suomi-NPP satellite. For each VIIRS hotspot, the burned pixel temporally
closest to the hotspot was chosen within a 375 × 375 m2 window around the active fire
(the active fire product’s spatial accuracy). This closest burned pixel was considered to be
part of the burned area whose fire was detected, and its date was compared with that of
the hotspot.

2.6.2. Canada

The second case study is located in the 10 provinces of Canada: British Columbia (BC),
Alberta (AB), Saskatchewan (SK), Manitoba (MB), Ontario (ON), Québec (QC), Newfound-
land and Labrador (NL), Prince Edward Island (PE), Nova Scotia (NS) and New Brunswick
(NB) (Figure 6b). This covers the whole of Canada, except for the three territories (Yukon,
Northwest Territories and Nunavut), amounting to a total of 6.06 M km2. The 2018 fire
season was quite severe, especially in BC, which experienced its worst fire season on
record [82] with more than 2000 fires and 1.35 million hectares burned [83,84]. Fires mostly
occurred between May and August [85]. Since a 4-month period could be quite difficult to
handle in such a large study area, only fires from July and August were detected in this
case. However, since some fires from August were not observed in S2 data until September,
the period was extended to include this third month.

The BA product was obtained from Sentinel-2 MSI data at 20 m, using the BA Cartog-
raphy tool. Reference perimeters were not created by using BAMT tools in this case study,
but instead were downloaded from the website of the Canadian Wildland Fire Information
System (CWFIS) (https://cwfis.cfs.nrcan.gc.ca/datamart (accessed on 27 January 2021)).
These perimeters consisted of polygons with an associated burning date. Since the perime-
ter accuracy varied among provinces as a result of the different mapping techniques [86,87]
and some were observed as having coarser spatial resolution than the BA product, only a
visual comparison was made, and commission and omission errors were not computed.
The BA map’s temporal accuracy was assessed in the same way as in SEA, by comparing
burned area dates and VIIRS hotspots.

3. Results
3.1. Southeast Australia
3.1.1. BA Cartography

The BA map for the 2019/2020 fire season in SEA was generated, using the BA
Cartography tool, divided into four independent periods. Table 3 shows the number of
burned and unburned training polygons digitized in each period, and the number of
times (iterations) the script was executed until a visually satisfactory result was obtained
throughout the study area. A larger number of burned samples than unburned samples
were defined (52 vs. 34 for all four periods), especially in the first period, where finding
the balance between removing noise and not omitting burned areas proved difficult. The
number of iterations was equal to or lower than 10 in three periods, with the exception of
the first period in which double iterations were required. Processing time depended on
the number of fires and noise that affected mainly the BA vectorization process: while the
November–December period required 29 h, the March–April period completed the process

https://cwfis.cfs.nrcan.gc.ca/datamart
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in just 10.5 h. The number of Landsat scenes processed in each period varied between 869
and 938, amounting to a total of 3653 scenes processed over the whole fire season.

Table 3. The number of training polygons, iterations, exporting time needed and number of images processed over each
period in Southeast Australia (SEA) and Canada.

Post-Fire Period
Number of Training Polygons

Iterations
Processing Time

(Hours)
Number of Images

Burned Unburned

1 September–31 October
2019 26 15 20 11.0 938

1 November–31
December 2019 9 4 10 29.0 936

1 January–29 February
2020 10 8 9 14.5 910

1 March–30 April 2020 7 7 6 10.5 869
Aggregated period 52 34 45 64.0 3653

1 July–30 September
2018 (Canada) 9 10 11 244.4 254,660

A total burned area of 52,700 km2 was mapped, most of it in NSW (around 40,000 km2,
75% of the total BA) (Figure 7). VCT was the next most affected state with 12,400 km2

(23%), with the ACT with 660 km2 far behind (1%); no BA was found in the JBT, due to its
small surface area (only 67 km2). The BA map contains some unobserved areas due to high
cloud coverage; areas burned during these cloudy dates were not detected on the BA map.

Figure 7. BA detected in SEA from Landsat data from September 2019 to March 2020.

3.1.2. Validation

Figure 8 shows the 10 S2 validation areas sampled by the VA tool. Despite the pres-
ence of several Olson biomes in SEA (Mediterranean forest, temperate forest, temperate
grassland and savanna, and tropical and subtropical savanna), the validation sites were
located mainly in the temperate forest biome, which was the most affected biome. Val-
idation periods varied from four to six months long, from the beginning of September
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2019 to mid-January or the end of February 2020 (Table 4). Each period contains between
8 and 12 cloud-free images.

Figure 8. Validation areas of 50 × 50 km2 that the validation area (VA) tool sampled, based on S2
scenes, and the BA from the map derived from Landsat data.

Table 4. Sampled validation areas, their validation periods and validation results. All accuracy measures (commissions,
omissions and Dice coefficients) are expressed in percentages.

Tile
Validation Period Accuracy

Start End Length in
Days

Number of
Images CE OE DC

56HKJ 2019/09/02 2020/02/19 170 10 13.6 10.8 87.8
56HKG 2019/09/22 2020/02/29 160 8 10.6 2.9 93.1
56HKH 2019/09/02 2020/02/19 170 9 11.4 8.0 90.3
56JML 2019/09/03 2020/01/21 140 9 19.2 10.3 85.0
56JMN 2019/09/02 2020/01/10 130 11 7.2 16.4 87.9
56HKF 2019/09/07 2020/02/29 175 8 14.6 7.6 88.8
56JMM 2019/09/02 2020/01/21 140 12 13.9 13.5 86.3
55HEV 2019/09/10 2020/02/22 165 8 7.2 10.5 91.1
55HEA 2019/09/10 2020/01/18 130 9 5.6 6.1 94.1
56JLN 2019/09/02 2020/01/10 130 11 3.3 3.0 96.9

Aggregated – – – – 11.8 8.9 89.6

CE, commission error; OE, omission error; DC, Dice coefficient.

For each tile, the RPs were created from every pair of consecutive images within the
validation period (an illustrative example is shown in Figure 9a–h); results of all image
pairs were merged in a final layer (Figure 9i), where only pixels observed over the whole
period remained unmasked. Table 4 and Appendix A Figure A1 show the results obtained
from the accuracy assessment, with both commission and omission errors being lower
than 20% in all 10 validation sites. Omissions for the burned category ranged from 3% to
16%, while commissions varied between 3% and 19%. The largest errors were found in the
56JML S2 tile, where the boundary between burned and unburned forest was difficult to
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identify, which increased both CE and OE. The aggregated results for all 10 tiles appeared
closely in line, with higher commission (11.8%) than omission (8.9%), and a DC of 89.6%.

Figure 9. Reference perimeters in tile 56JML. (a–h) Perimeters created between consecutive images,
from 3 September 2019 to 21 January 2020; (i) final merged reference perimeter (RP).

3.1.3. Temporal Accuracy

Despite low commission and omission errors, the BA product’s temporal accuracy
was not assessed using reference perimeters, since the validation periods were long enough
to cover the whole fire season (five to six months), but, rather, by comparing dates from
VIIRS hotspots. The distribution of the temporal delay between VIIRS hotspots and the
BA detection is shown in Figure 10. Burned pixels were found for 86.5% of the hotspots,
while the rest were located either in cloudy areas and croplands where no BA was detected,
or close to burned patches but beyond their perimeters, an issue other authors have also
mentioned [81]. In most cases (96.0%), the burned pixel was detected later than the hotspot:
55.7% within a temporal window of 30 days after the hotspot’s detection, and 95.3% within
a window of 60 days after the hotspot.

3.2. Canada

Burned areas in Canada were only processed in one unique period, within the second
half of the 2018 fire season (July–September). The number of training polygons and
iterations required was similar to those for the study area in SEA (Table 3); however, the
processing took longer (slightly more than 10 days), because the extent of the study area
was almost six times larger (6.06 M km2 vs. 1.05 M km2 in SEA). In addition, a larger
processing extent implies finding more heterogeneity, which caused the BA detection
algorithm to produce more noise than in SEA. This further caused the process to take even
longer. More than 250,000 S2 scenes were processed in the course of generating the map.
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Figure 10. Temporal disagreement between the BA product and VIIRS (Visible Infrared Imaging
Radiometer Suite) hotspots in SEA. A positive difference means the BA was detected later than
the hotspot.

A total of 16,165 km2 of burned areas in total were detected in the processed period,
with most of the areas being in BC (10,069 km2), followed by ON, AB, MB, SK and QC, with
burned areas ranging between 860 and 1780 km2 (Table 5). Very few areas were detected in
the remaining four provinces, mainly in NB, NS and PE (between 0 and 4 km2 in each). The
total burned surface detected by the CWFIS reference perimeters was practically identical
(16,501 km2) (Figure 11), and more than half of this surface (9986 km2) was detected by
both CWFIS perimeters and the BA S2 product in the same locations. A similar surface was
detected in BC, ON and MB, with around 60% of it being common burned areas and the
remaining 40% of the areas differing spatially. In AB, SK and QC, the S2 product detected
most areas from CWFIS perimeters; however, this contained much larger burned areas. No
BA was detected in the CWFIS perimeters in NL, NB, NS and PE, similar to the BA product
where few areas were mapped.

Table 5. Total burned surface by province in Canada according to the BA product and Canadian
Wildland Fire Information System (CWFIS) perimeters, and the common BA between both, expressed
in square kilometers.

Province BAMT CWFIS Common BA

BC 10,069 12,711 7633
ON 1778 1881 1142
AB 1175 97 83
MB 1146 1309 755
SK 1061 297 222
QC 868 205 151
NL 58 0 0
NB 5 0 0
NS 2 0 0
PE 2 0 0

TOTAL 16,165 16,501 9986
BAMT, Burned Area Mapping Tool; BC, British Columbia; AB, Alberta; SK, Saskatchewan; MB, Manitoba; ON,
Ontario; QC, Québec; NL, Newfoundland and Labrador; PE, Prince Edward Island; NS, Nova Scotia; and NB,
New Brunswick.
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Figure 11. Comparison between BA maps derived from Sentinel-2 data (a) and CWFIS (b) perimeters, in a sample area
located in Central British Columbia.

We found several reasons for these differences. The lower spatial accuracy of the
perimeters caused most underestimations of the BA product in comparison to CWFIS
perimeters. We observed that these perimeters defined the general boundary of the burned
patch, mostly by smoothening limits and including pixels located outside the BA; they also
failed to represent unburned islands inside burned patches (the first two rows in Figure 12).
The BA product did not omit important BA due to high cloud coverage, since the whole
period was observed within the three-month-long period and every pixel was observed
at least once. On the other hand, two main sources were found for higher estimations in
the BA product than in CWFIS perimeters (mostly in AB, SK and QC). Firstly, many areas
burned in June (just before the processed period began) were not observed until July or
August; these areas were thus detected as having burned between July and September
in the BA map, but not in the CWFIS perimeters for that same period. This is the main
reason why larger burned areas were detected in the BA product. Secondly, the algorithm
in mountainous regions produced some noise, mainly in BC and AB, where different
mountain shadow shapes throughout the year were confused with burned areas (the third
row in Figure 12).

The distribution of temporal delay between VIIRS hotspots and the BA detection is
shown in Figure 13. Burned pixels were found for 93.4% of the hotspots; in most cases
(99.1%), the burned pixel was detected after the hotspot, 30.4% within a temporal window
of 30 days after the hotspot was detected, and 97.0% within a window of 60 days after the
hotspot. Differences of more than two months were found only for 2.1% of the hotspots.
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Figure 12. Comparison between the BA Sentinel-2 product generated by BAMT and CWFIS perime-
ters in three sample areas in Canada: the first row (a–c) is located in S2 tile 10UCF, west of Prince
George (BC); the second row (d–f) in tile 17TNN, north of Gran Sudbury (ON); and the third row
(g–i) in tile 10UGD, near Valemount (BC) in the Rocky Mountains. The first (a,d,g) and second (b,e,h)
columns show the pre- and post-fire conditions, respectively, and the third column (c,f,i) represents
the BA from the S2 product and CWFIS perimeters.

Figure 13. Temporal disagreement between the BA product and VIIRS hotspots in Canada, measured
in days. A positive difference means the BA was detected after the hotspot.

4. Discussion

This manuscript presents the Burned Area Mapping Tools (BAMTs), a set of tools
developed under the Google Earth Engine (GEE) platform [42] for BA analysis with
medium spatial resolution data (Landsat and Sentinel-2) that covers the BA mapping,
the selection of statistically significant validation sites and imagery [33], and the genera-
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tion of reference perimeters. The tools consist of four scripts using the JavaScript Earth
Engine API that are executed from the GEE Code Editor, and these can be reached at
https://github.com/ekhiroteta/BAMT (last accessed January 2021). The new tools exploit
the cloud computing capabilities of the GEE platform (https://earthengine.google.com/,
(accessed on 27 January 2021)) and take advantage of the Landsat and Sentinel-2 analysis-
ready datasets, in addition to other BA-related products such as the MCD64A1 [5] and
ESA FireCCI51 [6] products that have already been uploaded to the platform. Publishing
BAMT as open-source code and using the GEE Code Editor allow the code to be easily
maintained and improved for both the authors and the community. These tools came
into being as a natural evolution of the BAMS software [36], which had hitherto been
confined to Landsat data and processed under a commercial GIS software limited to the
local server’s processing capability.

Both BA Cartography and RP tools included in BAMT make BA detection easier
by using a supervised classification, via change detection by a Random Forest classifier,
followed by a two-stage mapping approach [63]. While BA Cartography is designed to
generate a BA map at a regional or country scale, by identifying BA during a relatively
long period (one to a few months), using two temporal composites that represent the pre-
and post-fire spectral conditions, the RP tool creates high-quality reference data for BA
validation by analyzing the spectral changes between two single dates over a single scene
extent. The main process in both cases consists of a supervised classification based on an
RF model, whose predicted burned probabilities are used for BA mapping in a two-stage
approach [63]. The user must define several training sample polygons (both burned and
unburned) and visually analyze the results iteratively, until an acceptable result is obtained.
RF is an ensemble learning-method classification that constructs a multitude of decision
trees and outputs the class represented by the mode of the individual trees’ classes [88]. This
classifier has become popular within the remote-sensing community, due to the accuracy
of the classification [61] and particularly in those researches related to BA mapping, both at
medium [23,37,89,90] and coarse resolution data [91,92]. RF is essentially based on several
binary trees whose predictions are combined into a single model, adapting well to the BA
signal variability [93] and in accordance with the recommendations that involve using
several spectral indices and bands to ensure accurate BA mapping [94,95]. In comparison
to BAMS, where the user has to select the spectral indices to be used, RF naturally ranks
the features according to how well they improve the purity of the node, and nodes with
the largest decrease in impurity form at the start of the trees, offering a less subjective
and straightforward method for selecting the variables with greater contribution in the
classification. Another difference, when compared to BAMS that only trained the burned
category, is that using a RF model implies identifying both burned and unburned samples.
The ability to train the unburned category has improved the ability to reduce commission
errors, and reduces the manual edition of the obtained BA Cartography, especially in areas
spectrally similar to burned areas, such as croplands and cloud shadows [16,23,28,63].

BAMT applicability within the GEE environment has been demonstrated as a means
for mapping fires at medium spatial resolution over large areas. In the devastating fire
season between 2019 and 2020 in Southeast Australia (SEA), a region larger than 1 M
km2 was processed with a minimum user-dedication (around 90 training samples were
collected) and three days’ processing time (64 h involving more than 3500 Landsat scenes),
obtaining a BA vector map of around 56,000 km2 for the eight-month period covering the
fire season. For the case study of Canada, a larger area was processed (6 M km2), and the
BA map was obtained by using a higher spatial resolution (20 m) and a shorter re-visit
period (five days) imagery. More than 250,000 Sentinel-2 images were involved in a single
three-month-long period analysis in a process that took only 10 days. The BAMT have
shown to be not only cost-effective, but also reliable, and the results in SEA, where the
BA map was validated using Sentinel-2 data, achieved a ‘reasonable’ categorized accuracy
requirement below a 15% error rate [96]. This error is standing as similar or slightly more
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https://github.com/ekhiroteta/BAMT
https://earthengine.google.com/
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accurate than automatic BA mapping processes with medium spatial resolution published
in literature on the topic, which are within the 20–50% range [16,22,23,26,28,29,41,95].

High cloud coverage can cause omissions in some areas in the BA map when using the
BA Cartography tool. This effect was detected in SEA, mainly east of the Australian Capital
Territory next to the sea (Figure 7); this area had not been observed on a single date during
either the pre- or post-fire period, and so was exported as an unobserved area. Users can
solve this problem by defining longer periods of time, thus including more cloud-free
images. We also found some residual commissions, mostly located west of longitude
145◦E and deriving from croplands, since their spectral signal following harvesting is often
indistinguishable from burned areas. However, they accounted for very small portions
of the total BA. In Canada, when the BA map generated by BAMT was compared to the
reference perimeters downloaded from the Canadian Wildland Fire Information System’s
(CWFIS) website, 40% omissions of BA were obtained. A visual analysis of both maps
showed that the undetected areas of the BAMT-derived product were not real omissions,
but rather overestimations in CWFIS perimeters related to various sources used at different
spatial resolutions [86,87]. In addition, the positive difference in BAMT mapped BA was
related to a delay in detection due to clouds and commission errors in mountainous regions.

The total burned area detected by the BAMT coincided with what has been detected
in different global BA products or by other studies (Figure 14). In SEA, the MCD64A1 [5]
product detected 55,800 km2 from September 2019 to April 2020 (as opposed to 52,700 km2

in the case of our Landsat product), with similar amounts in NSW, VIC and ACT. Signif-
icantly larger burned areas were also observed within the same period: 71,600 km2 [97]
(Filkov in Figure 14). In Canada, the global products MCD64A1 and FireCCI51 [6] detected
less burned areas than the BA S2 product: 14,153 and 10,610 km2, respectively (16,165 km2

in the case of our product). However, MCD64A1 was very similar to the S2 product in
BC, ON and MB; larger differences were found in AB, SK and QC, mainly due to areas
burned in June before the S2 product’s period began. FireCCI51 differed the most from
our product, especially in BC, where the global product omitted more than 30% of the
burned areas.

Figure 14. Comparison of burned surfaces by several studies, in SEA and Canada. Note that the vertical axis is logarithmic,
and that several regions are not represented because of insignificant BA: Jervis Bay Territory (JBT) in SEA, and NL, NB, NS
and PE in Canada.

The BA maps obtained using BAMT evidenced a significant detection delay when
compared to VIIRS active fires. This delay is related to the lower temporal resolution of
Sentinel-2 or Landsat data that worsens in cloudy areas. For example, in SEA, 40.3% of
pixels were detected at least one month after the hotspot’s date, with the largest differences
being found in the south of the study area, around the border between New South Wales
and Victoria. In this area, fires burning in January were not detected until March because
of cloud cover persistence. In Canada, the delay was even more severe and 70% of pixels
were detected at least one month later, even though Sentinel-2 data (with a higher temporal
resolution) were used. Another source for the delay was the temporal compositing criteria
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that minimize the NBR index of the time series subject to consideration in creating a
temporal composite. The minimum NBR does not always correspond to the first observable
burned date, due to atmospheric effects of the acquisitions, smoke, sun angle or delayed
mortality [98]. In addition, BA pixels that are members of the same polygon record only
a unique date (the most frequent one): For example, if the largest section of the polygon
was observed later than the other sections of the fire because of clouds, these later date
would be assigned to the whole polygon. Moreover, creating BA maps over longer periods
to reduce unobserved areas, as mentioned previously, may affect the product’s temporal
accuracy, as unrelated but adjacent burned areas could be merged into a single polygon
and assigned the same date.

BA tools are complemented by the VA tool that selects the locations and periods repre-
senting the full range of conditions present in a statistically robust way [15,33]. This tool
conforms to Stage 3 Validation, as defined by the Committee on Earth Observation Satellites
(CEOS) Land Product Validation subgroup. Initially developed for global BA product
validation, the tool has been adapted to medium spatial resolution, taking advantage of
the Landsat and Sentinel-2 GEE catalogs for the data-availability criteria, and overcoming
the major difficulties attached to handling the dataset calendar [33] and the MCD64A1 and
FireCCI51 BA products that have already been uploaded to the system. Unfortunately, both
global products have been reported to as underestimating small fires [4,6,15], which may
alter the real distribution of low and high fire activity strata. A good alternative could be a
combination of previous BA products with VIIRS active fire dataset that provides a greater
response to fires over relatively small areas [81,99], but this dataset is not systematically
available within the GEE environment.

Known Limitations

Several limitations have been identified for these BAMT tools, both in their devel-
opment and their implementation. Here we would like to address the most important of
these limitations.

We are aware that the most time-consuming task in mapping BA is vectorizing the RF
probability raster to ensure the two-phase focus strategy (getting the areas with a probability
higher than 50% that have at least one seed inside). This process, especially when large
areas are processed by using the BA Cartography tool, and despite the process being split
in chunks of 2◦ × 2◦ rectangles, may exceed the GEE user memory limit, depending on
the number and geometrical complexity of the polygons, which prevent the successful
conclusion of the mapping process. Other GEE raster methods used in segmentation,
such as Simple Non-Iterative Clustering (SNIC) [100] or connected component grouping
algorithms, have also been tested, but discarded due to their not being able to implement a
rigorous two-stage focus. In addition, processing very large areas (at a country or continent
level) could considerably slow down the iterative supervision of both the training and
assessment process.

Critical omission errors can occur when cloud coverage is persistent throughout the
processed period. Our initial recommendation in such cases is to extend the period subject
to analysis, thus increasing the probability of finding cloud-free scenes that still maintain
the burned signal [93]. However, we should advise being careful to define a processing
period longer than the fire recurrence, since the BA mapping process can only detect one
burning per analyzed period (with a burning date coinciding with the minimum NBR value
of the time series). This interval depends on the fire regime and biome, and it may vary
from a couple of months in tropical regions to several years at high latitudes [21,101,102].

When working with Sentinel-2 data, some adopted decisions must be clarified. Firstly,
the 10 m output is solely applied to the RP tool, taking advantage of the Sentinel-2 bands
at the highest spatial resolution. In the case of the BA Cartography tool, a heavy noise was
observed in the RF probability that prevented a good accuracy when working at 10 m of
resolution over large extents. Similarly, both tools exclusively use the L1C product, due to
artifacts detected in the topographic correction in the Level-2A creation by the ESA Sen2cor
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processor [54]; the SCL, contained in the L2A product, is limited in terms of masking cloud
probabilities and shadows exclusively in the RP tool.

We should also clarify the fact that the dates obtained for the BA Cartography tool have
to be considered with caution, as the burning date depends on native medium temporal
resolution of the data (5–10 days for Sentinel-2 and 8–16 days for Landsat), that may still
be delayed because of cloud cover and the use of temporal NBR composites. In addition,
the dissolution process of fires burned on different dates in a unique polygon increases this
delay.

Finally, users should note that, although commission errors in croplands and shadows
have improved from the previous BAMS software [36], they may still persist to a minimal
extent. We recommend paying attention to increasing omission errors when defining
suitable unburned samples to avoid detecting these land-cover classes.

The VA tool may serve for a wide section of the scientific community as a way of
implementing the stratified random sampling methodology for assessment purposes.
Implementation was challenging due to the complex design of the algorithm [15,33], and
it is quite dependent on the GEE user memory limit and periods and extents where the
analysis is carried out. We should warn that the GEE user memory limit is easily exceeded
when using the optional data availability criteria, since the tool analyzes the availability,
frequency and cloud coverage of several long temporal series. However, not applying
these optional criteria could result in sampling long units with images that are too cloudy.
We should also note that the central subset sample selected by the VA tool might contain
more clouds than desired, because the cloud cover information is taken from the metadata
of the whole scene, rather than being computed from the central subset.

5. Conclusions

This paper describes the Burned Area Mapping Tools (BAMTs) as a continuation
and improvement on the previous BAMS software [36]. The tools take advantage of the
huge cloud-computing and processing capacities of Google Earth Engine (GEE), and the
Landsat and Sentinel-2 preloaded datasets to obtain a very cost- and time-effective system
for mapping and validating burned areas (BA), using medium spatial resolution data.

The tools’ performance was demonstrated in two different case studies, the first in
the catastrophic 2019/2020 fire season in Southeast Australia, covering a region of 1 M
km2 over eight months, and the second in Canada over the summer of 2018, covering
a larger extent (6 M km2). In the first study, a BA map was obtained by using Landsat
data and was validated in 10 Sentinel-2 validation sites selected by a stratified random
sampling methodology. More than 52,700 km2 of burned areas was mapped, and validation
results showed omission and commission errors below 12%, according to Sentinel-2 data.
Similarly, a burned surface of more than 16,000 km2 was mapped by using Sentinel-2 data
in Canada, and several discrepancies were detected in comparison to the National Fire
Database downloaded from the CWFIS Datamart.

BAMT proved to be a cost-effective methodology for BA mapping; in Canada, the
BA vector map involved more than 250,000 Sentinel-2 scenes and was produced with
minimum user-intervention (19 training polygons and 11 iterations in total) in 10 days. In
Australia, more than 3500 Landsat scenes were involved in the process, with the algorithm
being trained with 130 samples in total (over four different periods) and the BA vector
map being obtained in less than three days. The validation tools completed the suite in
embracing the BA mapping tools.

The tools consist of four JavaScript API scripts executable from the Google Earth
Engine Code Editor that can be reached at https://github.com/ekhiroteta/BAMT (accessed
on 27 January 2021). Data created for this study are available at the same repository.
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Figure A1. Committed and omitted errors in the 10 validation areas in SEA.
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ABSTRACT: 

 

Due to the high variability of biomes throughout the country, the classification of burned areas is a challenge. We calibrated a 

random forest classifier to account for all this variability and ensure an accurate classification of burned areas. The classifier was 

optimized in three steps, generating a version of the burned area product in each step. According to the visual assessment, the final 

version of the BA product is more accurate than the perimeters created by the Chilean National Forest Corporation, which 

overestimate large burned areas because it does not consider the inner unburned areas and, it omits some small burned areas. The 

total burned surface from January to March 2017 was 5,000 km2 in Chile, 20 % of it belonging to a single burned area in the Maule 

Region, and with 91 % of the total burned surface distributed in 6 adjacent regions of Central Chile. 

 

 

                                                                 
* Corresponding author 

1. INTRODUCTION 

Fires are a tremendous hazard to both natural resources and 

human activities. Every year, more than 4 Mkm2 (Chuvieco et 

al., 2019) of land burn globally, causing significant ecological 

and economic consequences, and associated climatological and 

health effects as a result of fire emissions (O’Donnell et al., 

2011; Thelen et al., 2013; Van Der Werf et al., 2017). In Chile, 

there has been a continuous increase in the number of fires 

occurred in the country since 1975. The average annual 

reported burned area was around 100.000 ha with an average 

fire size of 10 ha. However, the devastating fires that affected 

the Central region of Chile in 2017 marked a breaking point and 

possibly signalled a change in the fire regime of the country. 

More than 500.000 ha were burned, more than 1.000 homes 

were consumed by the fire and 11 deaths were the tragic result 

of Chile 2017 fire season. 

 

It is expected that due to climate change Central Chile will 

experience longer drought periods and higher temperatures, 

which will result in dryer fuels available for burning favouring 

longer and more intense fire seasons with larger and more 

severe forest fires (Rogers et al., 2011). These conditions 

highlight the importance of the implementation of a system to 

report the area affected by forest fires accurately and in a timely 

manner, so the proper forest management decisions could be 

making efficiently. 

 

In recent decades, remote sensing products have positioned as a 

valuable resource to monitor Earth dynamics. In particular, 

burned area estimates generated from satellite data have 

provided systematic global information for ecological analysis 

of fire impacts, climate, and carbon cycle models, and fire 

regime studies, among many others (Beverly et al., 2011; 

Canadell et al., 2010; Mouillot et al., 2014; Van Der Werf et al., 

2017). Burned area mapping from satellite images has been 

performed using a broad set of methods and sensors, from 

coarse to very high spatial resolution, such as Advance Very 

High Resolution Radiometer (AVHRR), SPOT-VEGETATION, 

MODIS, or MERIS (Alonso-Canas and Chuvieco, 2015; Oliva 

et al., 2011; Roy et al., 2005; Silva et al., 2005; Tansey et al., 

2008; Zhang et al., 2003), Landsat TM, ETM and OLI 

(Bastarrika et al., 2011; Hawbaker et al., 2017; Koutsias and 

Karteris, 2000), Worldview or Ikonos (Dragozi et al., 2014; Wu 

et al., 2015). 

 

The recent successful launches of Sentinel-2A (2015) and 

Sentinel-2B (2016) marked the beginning of a new era in the 

development of remotely sensed products, as the combined 

detections of both satellites reduced the revisit time to 5 days. In 

addition, Sentinel-2 Multispectral Imager (MSI) sensor improve 

upon their predecessors by providing information at 10 and 20 

m and including a wider range of spectral bands (Drusch et al., 

2012). The enhanced characteristics of Sentinel-2 MSI make the 

sensor specially indicated to fill current gaps in knowledge and 

improve current products. The enhanced spatial resolution of 

Sentinel-2 allows a more detailed analysis of fire perimeters, as 

well as a better definition of small fires (<25 ha) which will be 

most likely missed in coarser resolution products (Roteta et al., 

2019). 

 

The design of a burned area algorithm requires considering the 

vast diversity of ecosystems affected by fires, since the spectral 

response and the burn severity of the burned areas differ greatly 

among ecosystems. That is why novel studies have explore the 

use of machine learning techniques, such as Random Forest 

(Ramo and Chuvieco, 2017), neural networks (Ba et al., 2019), 

support vector machines (Dragozi et al., 2014) or genetic 

programming (Cabral et al., 2018), or the application of object-

based analysis (Dragozi et al., 2014; Shimabukuro et al., 2015). 

The most extended approaches are based on (i) using active fire 

detections to guide the sample selection used to compute the 

burned area statistics introduced in the algorithm (Alonso-

Canas and Chuvieco, 2015; Fraser et al., 2000; Giglio et al., 

2009; Pu et al., 2007), or (ii) applying the two-phase strategy 

method which in a first instance identifies the strong burned 

spectral response and in a second phase delineates the rest of 

the burned area by applying contextual classifiers (Alonso-

Canas and Chuvieco, 2015; Bastarrika et al., 2011; Oliva et al., 

2011). 

 

Due to the diverse climatic conditions, Chile has a vast diversity 

of ecosystems expanding from North to South, which produces 

an important variety of spectra representing burned areas and 
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many other land cover classes. This creates particular conditions 

for burned area algorithm generalization, making the process 

very challenging. Due to the complexity in the spectral 

responses of burned area we selected the Random forest method 

(Breiman, 2001) to develop an automatic burned area 

classification algorithm. We use random forest because of its 

ability to integrate data from different sources, being insensitive 

to outliers and non-normal distributions, and its efficient 

computing performance. Random forest has also been used in 

different areas of forest fire research, particularly for fire 

regimes characterization (Archibald et al., 2009), fire 

occurrence prediction (Oliveira et al., 2012), and  burned area 

discrimination (Ramo and Chuvieco, 2017). 

 

In this study we analyse the application of the random forest 

method for burned area discrimination in Chile. The 

classification model is applied to the whole Chilean territory. 

Therefore, we aim to accurately map the area affected by both 

forest and agricultural fires. We explore the optimization of the 

classifier calibration and analyse the effects of increasing the 

variability included in the training sample to obtain the most 

accurate results. 

 

2. METHODOLOGY 

2.1 Study area 

Chile is a South American country located in the south-west of 

the continent, between the Andes and the Pacific Ocean. It is 

350 km wide from west to east in its widest point, but more than 

4000 km long from north to south. Due to its length, several 

biomes can be found in this country, from deserts in the north, 

to Mediterranean and temperate forests in the center and 

subpolar forests in the south (Olson et al., 2001). Fires are most 

common in Central Chile, between latitudes 30°S and 40°S 

since the Atacama Desert in the north does not contain enough 

vegetation to be affected by fires, and the forests in the south 

are too cold and moist to burn. In this study, only areas burned 

from January to March 2017 were detected and analysed. 

  

2.2 Sentinel-2 MSI data 

In June 2015, the first of the Sentinel-2 mission satellites was 

launch. The Sentinel-2A satellite provides data at 10, 20 and 60 

m of spatial resolution. This satellite provided a temporal 

resolution of 10 days, which was reduced to 5 days after the 

launching of Sentinel-2B satellite on March 2017 established at 

an complimentary orbit. However, since the period from 

January to March 2017 was analysed in this study, Sentinel-2B 

images were not available for most fires yet. 

 

Input data for this BA detection was the Level-1C product, 

which includes Top-Of-Atmosphere (TOA) reflectances. The 

Level-2A product with Bottom-Of-Atmosphere (BOA) 

reflectances is preferable, but in the moment of processing the 

data for this study L2A products were not uploaded to GEE. 

The L1C product contains 13 bands ranging from the visible 

region of the spectrum to the red edge, Near Infrared (NIR) and 

Short-Wavelength Infrared (SWIR) (Drusch et al., 2012). In this 

study we work at 20 m spatial resolution. 

 

2.3 Google Earth Engine 

Google Earth Engine (GEE, https://earthengine.google.com/) is 

a cloud-computing platform to process satellite data, developed 

by Google. The platform includes access to a large database of 

various satellite imagery datasets and a powerful ability of data 

processing, which makes it suitable for processing large 

amounts of data (otherwise too heavy to process) or for 

implementing and publishing various applications to the public. 

To operate efficiently with GEE the only requirement is a good 

internet connexion. The GEE API is available with the 

JavaScript programming language, a code editor where 

algorithms are developed and a map to visualize results. 

 

2.4 Temporal composites 

Burned areas were detected analysing the spectral differences 

observe on land covers after the fire, so two dates were 

required: pre-fire and post-fire dates. Only areas burned in the 

post-fire date that were unburned in the pre-fire date were 

detected as burned. We decided to compute temporal 

composites to avoid the low data availability found in South 

Chile due to the frequent cloud coverage. Therefore, the pre- 

and post-fire dates are not images acquired on a single date, but 

temporal combination of images acquired over several months. 

 

The post-fire composite was generated by minimizing the 

Normalized Burn Ratio spectral index (NBR) (Key and Benson, 

1999) over the images acquired from January 1st to March 31st  

2017, covering most of the fire season. This minimization 

selects burned pixels while dismissing most clouds, cloud 

shadows and snow. The same minimization was applied over 

the pre-fire period, corresponding to October-December 2016. 

 

2.5 Development of the generalized Random Forest model  

2.5.1 Workflow: The BA detection in this study was carried 

out in three steps: 1) selecting sample dataset from different 

study areas, 2) training a Generalized Random Forest (GRF) 

model with these data, and 3) applying the GRF to classify BA 

for all the Chilean territory. After generating a BA product, we 

inspected it visually. Based on the classification errors 

observed, new training sites were to improve the resulting BA 

product. Three iterations were needed to optimize the final 

product, thus generating three different versions, each more 

accurate than the previous. 

 

2.5.2 Training data: In each training site, burned and 

unburned polygons were defined manually to train a Random 

Forest model specific of each training site. A two-phase strategy 

was then applied over the burn probability image obtained for 

each study area. First identifying seeds with a strong burned 

signal (using as threshold the minimum among the mean burn 

probabilities from all training polygons) and then extending the 

burned areas by applying a less strict threshold (50% burn 

probability). This way, we produced reference perimeters for 

every training site. From the classification of the training sites, 

we randomly selected the training dataset (burned and unburned 

samples) used to obtain the GRF. 

 

Ten study areas were used for the first version (v1), located 

between latitudes 33°S and 37°S where most of the 2017 fires 

occurred. We sampled 1000 random points from each category 

(burned and unburned) and study area, with a total of 20,000 

training points for introduced in the GRF-v1 model. 

 

In the second version (v2), we added four new training sites. 

Two around latitudes 38 and 39°S, where agricultural fires are 

most common and where overestimation of BA was observed. 

Another around latitude 47°S to include sample points 

representing the subpolar biome in the south. The last one 

located between latitudes 31-32°S represented the desert from 

northern Chile where we observed commission errors. More 

than 27,000 points were used to train the GRF-v2 model. 
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In the third and final version (v3), eight additional training sites 

were used. We distributed them throughout Chile (latitudes 30 

and 50°S). The training sites were located where we observed a 

higher presence of errors. Therefore, some of them did not 

contain any burned area, in which case only training points for 

the unburned class were sampled. With a total of 22 study areas, 

the GRF model was trained with almost 40,000 sample points. 

 

2.5.3 The generalized Random Forest model: The Random 

Forest model (RF) (Breiman, 2001) for each version was 

created considering 100 decision trees and a minimum of 10 

leaves in every branch or node. The model was then trained 

with the corresponding sampled points and a total of 27 

variables: 

 

 9 original post-fire bands from product L1C: Blue (B2), 

Green (B3), Red (B4), red edge (B5, B6, B7), NIR (B8A), 

and Short and Long SWIR (B11, B12). 

 4 post-fire spectral indices: Normalized Difference 

Vegetation Index (NDVI) (Rouse et al., 1974), 

Normalized Burn Ratio (NBR) (Key and Benson, 1999), 

Normalized Burn Ratio 2 (NBR2) (García and Caselles, 

1991), and Mid-Infrared Burned Index (MIRBI) (Trigg 

and Flasse, 2001). 

 13 variables representing the temporal difference between 

pre- to post-fire composites of the bands and indexes 

exposed above. 

 Relative difference NBR (RdNBR) (Miller and Thode, 

2007). 

 

Finally, the GRF classifier was applied on pre- and post-fire 

composites, resulting in a probability image with values from 0 

% (unburned) to 100 % (burned). To obtain the last BA map, a 

two-phase strategy was used on this image, resulting in a binary 

layer of burned and unburned areas; a 100% threshold was used 

for identifying seeds, and 50% to extend burned areas around 

seeds. 

 

2.6 Validation strategy 

All three versions of the BA product were visually inspected 

after their generation, comparing them with pre-fire and post-

fire temporal composites. These composites were first assigned 

a SWIR-NIR-Red colour composition, as shown in Figure 1. 

BA products were also compared with perimeters conceded by 

the National Forest Corporation (CONAF). By this comparison, 

we evaluated the goodness of the classification, identified the 

errors and decided whether more study areas should be 

included, and where. 

 

3. RESULTS AND DISCUSSION 

3.1 Version comparison 

The classification errors observed throughout Chile were mainly 

due to cloud or relief shadow, and harvested croplands 

classified as burned.  Figure 1 and 2 compare all three BA 

versions produced for two training sites. Burned areas are 

detected with very similar shapes in all of them, but small BA 

corresponding to croplands misclassified as BA are filtered out 

in later versions. Only the largest agricultural fields remain in 

GRF-v3, which have a higher burn probability. 

 

In Figure 2, most BA correspond to agricultural fires, but there 

are many pixel groups belonging to cloud shadows. These 

shadows are detected as burned in GRF-v1 but are mostly 

removed in GRF-v3 due to the inclusion of new training sites 

with this kind of noise. After visual validation of GRF-v3, we 

decided that the result was the most accurate product that we 

could produce. 

 

3.2 Separability analysis 

After a Random Forest model has been trained, it is possible to 

know the importance that each variable had when creating the 

decision trees. In , the three most important variables are 

shown, along with their cumulative importance, for every 

version of the BA product. According to this Table, the RdNBR 

is always the most important or second most important variable 

in these RF models, followed by the temporal differences of 

NBR and NBR2. Differences of the MIRBI index and post-fire 

values of the B7 band appear only once. 

 

According to the cumulative importance, the three most 

important variables are sufficient to approach 50 % of 

importance in the decision trees. Nevertheless, the cumulative 

importance of these variables decreases slightly in later 

 
Figure 1. Comparison of different versions of the BA product (yellow line) in a sample area located in the Santiago Metropolitan 

Region. The background image is the postfire image composite resulting from the combination of the available images from 

January 1st to March 31st. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 

2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 

https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-337-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165585

 

 

339



 

versions, since more study areas were included and sample 

points became more heterogeneous, indicating that more 

variables were needed to decide whether a pixel was burned or 

unburned. 

 

Table 1. The most important variables of the RF model and 

their cumulative importance in all three versions. 

BA Product 

version 

1st 

position 

2nd 

position 

3rd 

position 

Cumulative 

importance 

GRF-v1 RdNBR dNBR dNBR2 46.6 % 

GRF-v2 dNBR RdNBR B7 43.7 % 

GRF-v3 RdNBR dNBR2 dMIRBI 41.5 % 

 

3.3 Comparison with reference data 

The BA product was compared with the official BA perimeters 

produced by CONAF. A quick view to both perimeters in 

Figure 3 was enough to see that the BA detected in this study 

were more accurate than those by CONAF, since the later did 

not account for the unburned islands inside the BA perimeter. 

The mismatch between BA perimeters due to inclusion of 

unburned island has also been reported in previous studies 

(Ramo and Chuvieco, 2017). 

 

While our BA product works at 20 m, CONAF perimeters seem 

to have a lower spatial resolution, since the border of the 

polygons are smoother.  

 

We also observed that some pixels without a strong burned 

signal were classified as unburned by the GRF-v3 BA product. 

It is difficult to decide which BA delineation is correct in this 

case based only on the colour composition from Figure 3. 

Vegetation under the canopy might be burned, which is difficult 

to distinguish from satellite imagery if the upper canopy 

remains unburned and green. 

 

Overall, the CONAF perimeters seem to generally overestimate 

burned areas when compared to the GRF-v3 BA product. There 

are also some small BA that are not identified by CONAF. 

 

3.4 Product assessment 

According to GRF-v3 BA product, around 5,460 km2 were 

burned in Chile in January, February and March 2017, a 

considerable increase compared to the average annual 1,000 

km2. From this total surface, 20 % corresponds with burned 

areas larger than 1,000 km2 (Figure 4). In fact, this corresponds 

to a single burned area located in the Maule Region. 47 % of 

the burned surface was divided in BA between 10 and 1000 

km2, and 67 % of the total burned surface (3,660 km2) was 

represented in burned patches larger than 10 km2. Only 33 % of 

the burned surface (1,800 km2) corresponds to BA smaller than 

10 km2. 

 

When analysing the burned surfaces by region, we found that 

most of the BA is in Central Chile (Figure 5), as expected. The 

Maule Region contains 2240 km2 of burned surface, 41 % of 

the total. Following by O’Higgins (735 km2, 13.4 %), Biobío 

(640 km2, 11.7 %), Araucanía (550 km2, 10 %), Ñuble (470 

km2, 8.6 %) and Santiago Metropolitan Region (320 km2, 5.9 

%). All these 6 regions amount to 91 % of the total burned 

surface in Chile. In the four northern regions we accounted only 

2 km2 of burned surface. Even though there are some small BA 

areas in these regions, most of the detected BA are commission 

errors due to relief shadows. 

 
Figure 2. Comparison of different versions of the BA product in a sample area located in the Araucanía Region. 

 

 
Figure 3. Comparison between BA product (red) and CONAF perimeters (yellow) in a sample area located in the Biobío Region. 
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4. CONCLUSIONS 

This study presents the optimized calibration of a generalized 

random forest model which could be applied to classify burned 

area in Chile automatically. We showed the importance of the 

training sample in the classification result and the need to 

include a diverse set of land covers and burned area conditions 

to unsure the accuracy of the fil product, supporting previous 

studies (Colditz, 2015). We produced a BA classification which 

improved current BA perimeters offered by CONAF, since our 

product considers unburned patches inside burned areas, detects 

more small BA areas and includes agricultural fires. In addition, 

it is implemented in GEE ensuring the operational efficiency of 

the methodology. 

 

 
Figure 5. Total burned surface by region. 
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Abstract: A preliminary version of a global automatic burned-area (BA) algorithm at medium
spatial resolution was developed in Google Earth Engine (GEE), based on Landsat or Sentinel-2
reflectance images. The algorithm involves two main steps: initial burned candidates are identified by
analyzing spectral changes around MODIS hotspots, and those candidates are then used to estimate
the burn probability for each scene. The burning dates are identified by analyzing the temporal
evolution of burn probabilities. The algorithm was processed, and its quality assessed globally
using reference data from 2019 derived from Sentinel-2 data at 10 m, which involved 369 pairs of
consecutive images in total located in 50 20 × 20 km2 areas selected by stratified random sampling.
Commissions were around 10% with both satellites, although omissions ranged between 27 (Sentinel-
2) and 35% (Landsat), depending on the selected resolution and dataset, with highest omissions being
in croplands and forests; for their part, BA from Sentinel-2 data at 20 m were the most accurate and
fastest to process. In addition, three 5 × 5 degree regions were randomly selected from the biomes
where most fires occur, and BA were detected from Sentinel-2 images at 20 m. Comparison with
global products at coarse resolution FireCCI51 and MCD64A1 would seem to show to a reliable
extent that the algorithm is procuring spatially and temporally coherent results, improving detection
of smaller fires as a consequence of higher-spatial-resolution data. The proposed automatic algorithm
has shown the potential to map BA globally using medium-spatial-resolution data (Sentinel-2 and
Landsat) from 2000 onwards, when MODIS satellites were launched.

Keywords: burned-area mapping; Landsat; Sentinel-2; active fires; global; Google Earth Engine

1. Introduction

Fire disturbance is one of the Essential Climate Variables (ECV) defined by the
Global Climate Observing System (GCOS) program [1], since it affects land-cover changes,
soil erosion, emissions of gases and aerosols into the atmosphere, and people’s lives [2–4].
Burned areas (BA) and active fires have been detected by satellite Earth observation,
the main purpose of which is to obtain a better understanding of fire regimes to analyze
their effect on climate change, since both fires and climate have a mutual effect on the
fact that fire can be affected by droughts and high temperatures [5], and climate change
is impacted by biomass burning and greenhouse gas emissions into the atmosphere [3],
among many other factors.

The first global BA products were released almost two decades ago based on data
at coarse spatial resolution (>100 m): GBA2000 and GLOBSCAR, derived from SPOT-
Vegetation and ATSR-2 sensors respectively, both at 1 km resolution [6,7]. GLOBSCAR was
later modified and released again as Geoland2 [8,9]. NASA released two BA products,
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MCD45A1 [10] and MCD64A1 [11], both derived from MODIS data at 500 m. MCD64A1 is
now NASA’s standard BA product, and its collection 6 is the latest version, released in
2018 [12]. On the other hand, the Fire_cci project, which is part of the Climate Change Initia-
tive program of the European Space Agency (ESA), has released several global BA products
at coarse resolution: first FireCCI31 and FireCCI41 based on MERIS at 300 m [13,14],
and then FireCCI50 and FireCCI51 from MODIS data at 250 m [15,16]. The FireCCI51 is
currently the most accurate among existing global BA products at coarse spatial resolution,
according to recent assessments [16].

However, these global products omit many burned areas, especially those smaller
than the product’s spatial resolution. It was estimated, based on the MCD64A1 prod-
uct and distribution of thermal anomalies, that around 25% of the actual global burned
area corresponds to small fires, and that they are being omitted [17], but later studies
comparing the same global product at coarse resolution and regional products based on
Sentinel-2 data at 20 m in Africa have shown that up to 55% of the total BA is missed,
mainly because of the almost total absence of small fire patches (<100 ha) by MODIS prod-
ucts [18,19]. Accuracy reports of global BA products show the same trends. Most global
products have higher omissions than commissions, with the former being around 70% for
MCD64A1 and FireCCI51 products [16,20,21]. Small fire patches should thus be detected
from higher-spatial-resolution data to reduce these omissions and better estimate the actual
burned areas.

Global or continental BA products at medium resolution (<100 m) have not been
released until recently. The only up-to-date global BA product at this resolution is the
Global Annual Burned-Area Map (GABAM), which was obtained from Landsat-8 OLI
data, and initially contained BA from 2015 at 30 m [22]; recently, the whole temporal
series from 1985 to 2020 has also been processed and released [23,24]. Unfortunately,
this global product indicates whether a pixel has been burned in the corresponding year,
but not the burning date. ESA’s Fire_cci project released a continental product at medium
resolution for one year, obtained from Sentinel-2 MSI imagery at 20 m: FireCCISFD11 [18],
containing areas burned in 2016 in Sub-Saharan Africa, where 70% of the global BA are
reported to occur [12,17]. Some BA products and algorithms at a national and regional level
are the Landsat Burned-Area Essential Climate Variable (BAECV) in the Conterminous
United States (CONUS) [25,26], BA detected in the Australian province of Queensland [27]
and savannas in southern Burkina Faso [28], all of them using Landsat images as main
input data, and also 2017 fires in Italy [29] and the Iberian Peninsula [30] from Sentinel-
2 data. There has also been some attempts to merge Landsat and Sentinel-2 datasets
in one algorithm [31], MODIS and Landsat data [32], as well as integrating data from
optical and SAR sensors [33,34]. However, despite multiple approaches to detect BA
automatically at medium spatial resolution, most of them have been adapted and limited to
the corresponding region’s specific spectral characteristics, with the algorithm developed
for GABAM being the only one applied at a global scale.

Processing BA at medium spatial resolution requires enormous capacities for data
storage and processing, which proves challenging when working at a global scale. This has
been made possible by Google Earth Engine (GEE), a free cloud-computing platform with
several satellite data catalogs at different spatial resolutions (mainly MODIS, Landsat and
Sentinel-2) and global-scale analysis capabilities [35]. Even though the first significant work
on the topic was published almost a decade ago [36] and a significant number of studies
has used GEE since then [37], there are still few published works on the field of burned
areas [38–42], especially at a global scale [22].

In this study, we present a preliminary locally adapted automatic BA algorithm
designed for global application at medium spatial resolution implemented in the GEE
environment, based on Landsat or Sentinel-2 reflectance images and MODIS active fires.
An initial quality assurance was carried out on 50 sites covering several biomes and land
covers. Existing global BA products obtained from coarse-resolution data (MCD64A1 and
FireCCI51) were also assessed in the same dataset and the impact of employing medium
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spatial resolutions data was evaluated. In addition, three large sites (5 × 5 degrees)
were also processed and compared with existing global BA products to assess detection
confidence both temporally and spatially.

2. Methodology
2.1. Input Data

The BA algorithm proposed in this manuscript focuses on Landsat and Sentinel-2
as imagery source. The Landsat program was developed by NASA and USGS for satel-
lite image acquisition and Earth observation [43]. A total of 7 satellites in total have
been launched successfully over several years, of which two are currently operational.
Short wavelength infrared (SWIR) bands, required by our algorithm, are only acquired
by three sensors: Thematic Mapper (TM) aboard Landsat-4 and Landsat-5 satellites, En-
hanced Thematic Mapper Plus (ETM+) on Landsat-7, and Operational Land Imager (OLI)
on Landsat-8. Data from the Landsat-4 satellite cannot be used by the algorithm explained
in this study, since the TM sensor aboard ceased to transmit data in 1993, which only leaves
three Landsat satellites. Each satellite has a revisit period of 16 days, which is reduced to
8 days if images from different satellites are combined; there is, however, a short period
with a revisit period of 16 days, between the last images from May 2012 of the TM on
Landsat-5 and Landsat-8’s first data from April 2013. Landsat images are delivered in
scenes about 185 km wide and 170 km high, in accordance with the Worldwide Reference
System (WRS) [44,45], and all bands required by the algorithm are acquired at 30 m of
spatial resolution. This study uses the Landsat Surface Reflectance (LSR) Tier 1 product,
with Bottom-of-Atmosphere (BOA) reflectance [46,47]; the IDs of the datasets in GEE are
‘LANDSAT/LT05/C01/T1_SR’ (Landsat-5 TM), ‘LANDSAT/LE07/C01/T1_SR’ (Landsat-7
ETM+) and ‘LANDSAT/LC08/C01/T1_SR’ (Landsat-8 OLI).

Similar to the Landsat program, the European Space Agency (ESA) has developed the
Sentinel-2 mission (S2) for Earth observation, which is part of the Copernicus program [48].
It consists of a constellation with two satellites—Sentinel-2A and Sentinel-2B—each with
a revisit period of 10 days, or 5 days by combining both satellites; the first satellite was
launched in June 2015, and the second in March 2017. Each scene covers 110 × 110 km2,
in accordance with the Military Grid Reference System (MGRS) [49]. Bands acquired
by the MultiSpectral Instrument (MSI) have different spatial resolutions ranging from
10 to 20 and 60 m; the main bands of the algorithm (NIR and two SWIRs) are at 20 m,
although there is also a second NIR band at 10 m. Both Level-1C (L1C) and Level-2A (L2A)
products are available in GEE; L1C contains Top-of-Atmosphere reflectance, while L2A has
Bottom-of-Atmosphere reflectance after the atmospheric correction is applied. A Scene
Classification (SCL) is also generated in the L2A product, which labels the presence of
clouds, cloud shadows, water and snow on the scene [50]. Unfortunately, the L2A product
is not consistently processed for the complete S2 temporal series, and while all L1C scenes
from 2019 up to the present have been processed to obtain L2A scenes, there are only a
few L2A scenes available for 2017 and 2018, and none at all for 2015 and 2016 (Figure 1).
Therefore, the algorithm uses either L1C or L2A scenes depending on L2A availability.
Their IDs in GEE are ‘COPERNICUS/S2’ and ‘COPERNICUS/S2_SR’, respectively.

Three bands are required for BA detection in total, namely the Near Infrared (NIR)
and two Short Wavelength Infrared (SWIR) bands, all of which are commonly used for
BA detection [6,7,12,16,18,22,51]. Another band on the visible blue color and the quality
band are used to mask clouds, and the visible red color band to reduce confusions with
croplands. The exact width and location of these bands in the spectrum may vary slightly
depending on the sensor, but they cover a similar spectral region (Table 1). For S2 data,
the B8A and B8 bands have 20 and 10 m of spatial resolution, respectively, and are selected
depending on the resolution at which BA are detected. Similarly, selection of the quality
band depends on the product employed; for L2A scenes the SCL is used, and QA60 for L1C.
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Table 1. Bands and approximate wavelengths used by the algorithm.

Band Landsat-5
TM

Landsat-7
ETM+

Landsat-8
OLI

Sentinel-2A&B
MSI

Approximate
Wavelength (µm)

Blue B1 B1 B2 B2 0.45–0.52
Red B3 B3 B4 B4 0.64–0.68
NIR B4 B4 B5 B8A (20m)/B8 (10m) 0.80–0.89

Short SWIR B5 B5 B6 B11 1.55–1.70
Long SWIR B7 B7 B7 B12 2.10–2.30

Quality band pixel_qa pixel_qa pixel_qa QA60 (L1C)/SCL (L2A) -

The BA algorithm relies on hotspots, for which there is only one product in GEE:
MCD14DL, consisting of MODIS Collection 6 Near-Real-Time active fires, at 1000 m of
spatial resolution [52]. The product is already rasterized by defining a 1-km-wide bounding
box around the hotspot, and a confidence level from 0 to 100% is provided. The dataset is
presented as a daily product, and so the detection date is known for each hotspot, but not
the exact burning time. The dataset’s ID in GEE is ‘FIRMS’.

Finally, two additional products are used to identify different land covers (LC). On the
one hand, the International Geosphere-Biosphere Program (IGBP) classification in the
MCD12Q1 product [53], derived from MODIS data at 500 m, was used to reduce confusions
at croplands and urban areas. The Copernicus Land-Cover map [54] developed at a higher
spatial resolution (100 m) is also available in GEE but only for the period between 2015 and
2019, and MODIS LC map was preferred due to its longer covered period (from 2001 to
2019). On the other hand, the Global Surface Water (GSW) mask at 30 m obtained from
Landsat data [55] is used to mask water bodies. This water mask contains an ‘occurrence’
band, which indicates the frequency of water presence in each pixel between 1984 and
2019, with values from 0 to 100%. The respective GEE IDs of these two datasets are
‘MODIS/006/MCD12Q1’ and ‘JRC/GSW1_2/GlobalSurfaceWater’.

2.2. Algorithm

The algorithm may be run separately on both S2 and Landsat data. The former
have better spatial and temporal resolutions and thus are more accurate for BA detection,
although Landsat data cover a much longer period, since the corresponding satellites have
been operable since the mid-1970s. However, this algorithm is not operable for data before
November 2000, as it relies on MODIS hotspots that are only available from that date
onwards. The BA algorithm proposed creates one monthly BA map at a time, and so it
should be run 12 times to cover the whole year. The area processed by the algorithm is
bounded by a tile of the Military Grid Reference System (MGRS), irrespective of whether
BA derive from S2 data (already delivered in the MGRS grid) or from Landsat images (in
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the WRS). BA can be detected at 10 or 20 m of spatial resolution with S2 data, or at 30 m
with Landsat data.

The flowchart of the BA algorithm is shown in Figure 2. It relies on one reflectance
band, the Near Infrared (NIR), and three spectral indices, NBR, NBR2, and MIRBI, cov-
ering the most significant spectral areas in BA mapping; the Blue, Red and Long SWIR
reflectance bands are also used to remove clouds, croplands, and cloud shadows, respec-
tively. For every month, the spectral changes around hotspots are analyzed to identify
burned candidate pixels (BC), from which burned and unburned samples are extracted.
Locally adapted probability functions are defined based on those samples, and images
from the data series are then classified, with each pixel being assigned a static burned
probability value (Pst); depending on the temporal evolution of Pst for each pixel, a dynamic
probability (Pdy) is computed. The final BA map is obtained by retaining the pixels with
the maximum dynamic probability and segmenting the result to remove noise and reduce
commissions. Since the algorithm is implemented in GEE, its design is restricted by the
platform’s memory and processing limitations.
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2.2.1. Pre-Processing

The first step involved with the BA algorithm prepares the data for BA detection,
mainly by obtaining the required images, reducing the amount of data, masking clouds,
cloud shadows and water bodies, and computing spectral indices.

The algorithm creates a monthly map located in one MGRS tile at a time. For every
month (henceforth referred to as ‘processing month’), images from 5 consecutive months
are selected (called ‘processing period’), including two previous ones and a further two
subsequent months (Figure 3). S2 data are already delivered in the MGRS grid, and so S2
scenes are simply selected by metadata filtering. However, Landsat data are originally in
the WRS, and must be filtered and clipped by the extent of the MGRS tile, and the scenes
acquired on the same day are then merged. Processing BA from Landsat data using the
native WRS scenes was previously considered, but combining images from adjacent orbit
swaths in overlapping areas was not plausible and prevented the full potential of the data
catalog from being exploited properly; moreover, at high latitudes, this meant that every
region would be processed several times—once per each orbit swath covering the region,
which would prolong the process considerably. The selection of L1C or L2A scenes for S2
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data depends on L2A availability in GEE, as mentioned previously. When both options
are available, L2A scenes are preferred and used by the algorithm, but if the number of
available L2A images is less than 90% of the number of L1C scenes in the same area and
period, then L1C scenes are used instead.
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Figure 3. The temporal location of different periods, in relation to the sample processing month
in June. All three periods may ultimately be shorter than indicated here, depending on the filters
applied in the pre-processing to reduce the data series.

A 5-month-long processing period in a MGRS tile near the Equator may contain
30 S2 scenes, with one image every 5 days (if both S2A and S2B satellites were already
operable at the time), or 60 scenes if the tile is in the overlapping area between two orbit
swaths. Similarly, an MGRS tile at the Equator may contain Landsat scenes from up to
38 different dates if located between two orbit swaths and with two operable satellites
(Landsat-5 and 7 between 2000 and 2012, or Landsat-7 and 8 from 2013 forwards). However,
the number of scenes can increase considerably at higher latitudes, where multiple orbit
swaths overlapping each other may result in one image every day or around 180 images in
the 5-month-long period. Since the implementation of the algorithm in such a large data
series exceeds GEE’s user memory limit, several filters are applied to reduce the amount of
data while maintaining the most meaningful scenes. In each step, if the data series resulting
from the previous step contains more than 50 images, the following are removed:

1. Images with a cloud percentage over 90%
2. Images with a cloud percentage over 80%
3. Images with a cloud percentage over 70%
4. Images with a cloud percentage over 60%
5. Images with a cloud percentage over 50%
6. Images from the first and last months of the original 5-month-long period
7. Images from the first half of originally the second month, and from the last half of

originally the fourth month

If all filters need to be applied, 1.5 months will have been removed from the beginning
and end of the original processing period, and the data series will only be 2 months long.

Once the number of images is reduced, undesired artifacts are then masked. The qual-
ity bands are used to mask clouds and cloud shadows, which are indicated in the 3rd
and 5th bits in Landsat images, and in the 10th and 11th bits in L1C scenes of S2 images;
since the SCL image in S2 L2A scenes have several categories, 7 different values are masked
in total (Table 2). Residual clouds and snow not represented in the quality bands are
masked in all three datasets by applying an empirical threshold of 0.2 in the visible blue
band, where both burned and unburned areas have lower values than clouds and snow.
Water bodies are not represented in the S2 L1C quality band, and so a mask obtained from
the GSW product is used for both S2 and Landsat data. A conservative threshold is chosen
here, masking every pixel with a frequency over 10% in the ‘occurrence’ band.

Finally, three spectral indices are computed for every image in the series: the Nor-
malized Burn Ratio or NBR [56], the Normalized Burn Ratio 2 or NBR2 [57], and the
Mid-Infrared Burned Index or MIRBI [58]. Their formulas are listed below:

NBR = (ρNIR − ρLongSWIR)/(ρNIR + ρLongSWIR), (1)

NBR2 = (ρShortSWIR − ρLongSWIR)/(ρShortSWIR + ρLongSWIR), (2)
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MIRBI = 10 ρLongSWIR − 9.8 ρShortSWIR + 2 (3)

where ρNIR, ρShortSWIR and ρLongSWIR refer to reflectance in the NIR, Short SWIR, and Long
SWIR bands, respectively.

Table 2. Values from the quality bands masked as clouds and cloud shadows, depending on
the dataset.

Landsat-5 to 8
pixel_qa

S2 L1C
QA60

S2 L2A
SCL

3rd bit (cloud shadow)
5th bit (cloud)

10th bit (cloud)
11th bit (cirrus)

1 (saturated or defective)
3 (cloud shadows)

6 (water)
8 (medium prob. clouds)

9 (high prob. clouds)
10 (thin cirrus)

11 (snow)

Henceforth, the algorithm is mainly based on the NIR band and the NBR, NBR2,
and MIRBI indices. The importance of these bands and indices in discriminating BA has
already been analyzed and observed [18,22,59–61], and they ensure coverage of three
different areas of the spectrum commonly used for BA detection (NIR, Short SWIR and
Long SWIR) [11,13,16,18,26,27,29,31]. The NIR band selected for S2 data depends on the
spatial resolution at which BA are to be detected: B8A at 20 m, and B8 at 10 m.

2.2.2. Sampling

After the algorithm’s pre-processing step, burned candidate pixels (BC) between two
dates are detected based on spectral changes around hotspots, and samples for burned
and unburned categories are extracted from these burned pixels, which correspond to
the values observed before and after the burning of the pixel; these samples will later be
used to classify images and detect BA. This identification of BC pixels is loosely based on
the way burned seed pixels were identified in another study conducted for BA detection
in Italy [29].

Before selecting BC pixels, clouds and cloud shadows that may have remained after the
pre-processing step are further masked with two conservative thresholds, removing pixels
with the following reflectance: Blue > 0.15 OR LongSWIR < 0.05. Pixels belonging to
urban areas in the LC map obtained from MODIS data are likewise masked. This further
masking is only applied in this sampling step of the algorithm, but not in the classification
step described in the next section. Hotspots from the MCD14DL product at 1000 m,
obtained from MODIS data, are filtered according to their confidence level, with those with
a value lower than 80% being removed.

The possibility of being burned is considered for every pixel in the MGRS tile by
comparing the temporal evolution of the NBR spectral index and the location and timing
of active fires. For every pixel and by analyzing every pair of consecutive images in the
processing month, if the pixel is covered by a hotspot between two consecutive dates, it is
considered to have burned between these dates; if hotspots are found between several
pairs of images, the one with the largest drop in NBR values is chosen (Figure 4). The dates
between which the pixel is considered to have burned are labeled as tpre and tpost.

As a result, two acquisition dates with an active fire in between are obtained for every
pixel in the MGRS tile (tpre and tpost), except for those where no MODIS hotspot was found.
Two composite images are formed with values for every pixel from the corresponding pre-
and post-fire dates (Figure 5a,b). A third temporal change image is created by a simple
subtraction between tpost and tpre composites (dt, Figure 5c).
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Figure 5. Resulting composites and selected BC pixels, in the same sample area where the pixel from Figure 4 was
located. (a) shows the composite image with values from the tpre dates, with the LongSWIR/NIR/Red color composition;
(b) composite image from tpost dates, with the same color composition; (c) dt, temporal change between tpre and tpost dates;
and (d) BC pixels in red. Black areas correspond to pixels for which no corresponding MODIS hotspot was found in the
processing month.

BC pixels, from which burned and unburned samples will later be extracted, are de-
tected by analyzing the spectral signal in the tpost composite and temporal change between
composites. Three groups of bands must be defined for such purpose, from which candi-
date pixels will later be identified. These groups of bands are:

1. Temporal change of NBR, NBR2, and MIRBI spectral indices and NIR reflectance:
dNBR, dNBR2, dMIRBI, and dNIR

2. NBR, NBR2, and MIRBI spectral indices at tpost
3. Red reflectance at tpost

The first group of bands corresponds to temporal changes. First, the Otsu threshold is
computed (Otsui) for each band i, this threshold being the optimum value that separates
the image in two classes by minimizing the inter-class variance, considering that pixels
have a bimodal distribution [62]. At the same time, two additional values are computed
for each pixel: the mean value of the band over the two months prior to the pre-fire date
(meanpre,i), and the mean value over two months following the post-fire date (meanpost,i)
(Figure 4). In any band i (NBR, NBR2, MIRBI and NIR), pixels are labeled as BC pixels in
that band if they meet two conditions, as shown in this formula for band NIR:

BCdNIR = (dNIR < OtsuNIR) AND (meanpost,NIR −meanpre,NIR < OtsuNIR/2), (4)
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The temporal change being larger than the Otsu threshold ensures that there was
some significant spectral change in the BC pixel that might be caused by a fire. Meanwhile,
the difference between mean values from both periods also denotes that this change was
prolonged over time, even though this requirement is not so strict (only half the Otsu
threshold), because the vegetation may recover during the post-fire period (Figure 4).
Please note that the conditions above are suitable for spectral indices and reflectance
that decrease when burned (NBR, NBR2 and NIR), while the MIRBI index increases its
values in burned areas, and so opposite signs should be used in such case. Additionally,
the presence of hotspots does not necessarily mean the presence of burned areas, and so
some empirically obtained minimum values for Otsu thresholds are required to reject
false detections: −0.05, −0.05, 0.25 and −0.02 for dNBR, dNBR2, dMIRBI, and dNIR
bands, respectively. If the threshold computed initially in any band is closer to 0 than this
minimum, then it is replaced by this value.

The second group of bands is based on post-fire values (NBR, NBR2, and MIRBI at
tpost). The Otsu threshold is also computed for each band among the pixels in the composite.
The BC pixels in each band (BCpost,NBR, BCpost,NBR2 and BCpost,MIRBI) are simply those with
a value lower than the threshold (higher in the case of MIRBI). This makes sure that BC
pixels, in addition to the drop observed in the first group of bands, evidence the strongest
burned signals in the image, since some events unrelated to fires (such as deforestation
and floods) could exhibit a sudden decrease similar to burned areas even if they did not
show such a strong-burned signal on the post-fire date. The NIR reflectance band was
not included in this case, because its post-fire reflectance was found to be too variable in
some biomes.

Finally, the third group is based on only one band: tpost reflectance in the visible
red band, with pixels with a reflectance below Otsu threshold being labeled as burned
candidates (BCpost,Red). This band was primarily included because according to literature
on the subject it is the best band to discriminate between burned areas and agricultural
false positives [60], since croplands are a well-known source of commission errors in BA
mapping due to their spectral similarity to burned areas [18,22,26,27].

Final BC pixels are selected by combining BC pixels from the three previous groups
of bands:

• In the first group of bands, pixels must be labeled as BC in at least 3 out of 4 bands
(BCdNBR, BCdNBR2, BCdMIRBI, and BCdNIR)

• In the second group, they must be labeled as BC in at least 2 out of 3 bands (BCpost,NBR,
BCpost,NBR2 and BCpost,MIRBI)

• In the third group, being labeled as BC in the Red reflectance band at tpost (BCpost,Red)
is mandatory

The result is a group of pixels with a strong-burned signal, located both spatially and
temporally around a MODIS hotspot (Figure 5d).

Even though the criterion for the red reflectance band at tpost removes many false pos-
itives from croplands, further restrictions are applied in the first group of bands. For pixels
identified as crops in the IGBP classification of the MCD12Q1 product at 500 m, the thresh-
olds used in both conditions are multiplied by 2:

BCdNIRcrops = (dNIR < 2·OtsudNIR) AND (meanpost,NIR −meanpre,NIR < OtsudNIR), (5)

The criteria for detecting BC pixels are quite strict to avoid commissions, and selected
pixels represent burned areas with a high severity, frequently omitting pixels with a lower
severity. Next, 1000 samples are extracted in total from the BC pixels. The unburned
category is composed by NIR, NBR, NBR2, and MIRBI values of BC pixels in the pre-fire
composite (tpre), while the same values in the post-fire composite (tpost) form the burned
category. Thus, all samples are in the same pixels, although unburned values were observed
before the BC pixels were burned, with burned values being observed after the burning.
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These unburned and burned samples will then be used as training samples for image
classification.

Finally, to avoid false detections as a consequence of hotspots not pointing to actual
burned areas, two criteria must be met along the sampling step of the algorithm:

• Hotspots filtered temporally between composites’ dates must cover a minimum sur-
face of 5 km2 in the whole MGRS tile

• Burned candidate pixels must cover a minimum surface of 1 km2

If either criterion fails, the algorithm assumes that no area was burned in the region or
that the available data are insufficient for the purpose of detecting any BA. In such case,
the algorithm skips the following image classification step and returns an output image
with no BA.

2.2.3. Image Classification

Samples extracted in the previous section are employed to classify the individual
scenes from the pre-processed series. The strict masking used at the beginning of the
sampling step is not applied here; the data series resulting from the pre-processing is used
instead. For each band (NIR, NBR, NBR2, and MIRBI), a probability function is defined
based on a logistic function, which is a smooth transition between two classes, this having
already been used for BA detection in several studies [18,63–66]. The function is s-shaped
for the MIRBI index, but z-shaped for the rest of the bands (Figure 6). To define the bound-
aries of the logistic curve, the 95th percentile of the burned samples and the 5th percentile
of the unburned samples are computed, with the objective being to adjust the logistic curve
between these two percentiles. However, the strict criteria for BC pixel detection may have
omitted pixels with lowest burn severity, and so the logistic curve is shifted closer to the
unburned distribution. Therefore, a midpoint between both percentiles, located halfway
between both values, and the 5th unburned percentile are used as boundaries of the curve,
which correspond to 100% and 0% of probability values, respectively. If the distributions
of both categories overlap each other, the 95th burned percentile may be higher than the
5th unburned percentile; in this case, the logistic curve is adjusted between the midpoint
and the 95th burned percentile (NIR in Figure 6). Additionally, note the reverse order of all
parameters for the MIRBI spectral index. BA detection in croplands is more restricted than
in other LC categories: the upper boundary of the logistic curve, corresponding to a 100%
probability, is placed at the 50th percentile or median of the burned distribution.

Along with the probability function, the discriminability of burned areas is also mea-
sured for each band. This is computed using the M separability index (Equation (4)) [67],
which has been employed in several studies for BA detection [18,30,68–70].

M = |µb − µub|/(σb + σub), (6)

where µb and µub are the mean values of burned and unburned samples, respectively,
and σb and σub the standard deviations of the same categories.

The four probability functions are applied on every image of the data series, each on
the corresponding band, which results in four probability images for every date in the
series (Figure 7a–d), with values ranging from 0% (unburned) to 100% (burned). These are
aggregated into one probability image by computing a weighted average, with the weight
being equal to the square of the separability index, using the following formula:

Pst = ∑ Pi Mi
2/∑ Mi

2, (7)

where Pi and Mi are the probability and the separability index of the band i (NIR, NBR,
NBR2, or MIRBI). This Pst value, referred to as static probability, indicates the probability of
being burned on that date (Figure 7e), regardless of whether the pixel was already burned
on a previous date in the series.
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Figure 7. The probability of burn in a sample area from 13th July 2018, in tile 53LME, at 20 m
(S2 data), according to: (a) the NIR reflectance band; (b) the NBR spectral index; (c) the NBR2 index;
(d) the MIRBI index; and (e) the aggregated result (weighted average), Pst. The image in (f) is a
LongSWIR/NIR/Red color composition. The M separability indices for NIR, NBR, NBR2, and MIRBI
were 1.0, 1.8, 2.7 and 2.3, respectively.

Once every image in the data series has been assigned the static probability (Pst),
the temporal evolution of this Pst is analyzed to detect the date immediately after the



Remote Sens. 2021, 13, 4298 12 of 34

pixel was burned. For this purpose, a second probability, called dynamic probability (Pdy),
is computed for every pixel from every date in the data series based on three measures:

1. Ppre: mean Pst during previous two months, up to the corresponding date
2. Pt: Pst on the corresponding date
3. Ppost: mean Pst during next two months, immediately after the corresponding date

The mean probabilities from the previous and following months (Ppre and Ppost) are
weighted averages, with highest weights for dates closer to the day for which Pdy is being
computed. A logistic function is used to estimate these weights based on the distance
from the central day; this function is adjusted to fit in the over-4-month-long period,
with weights reaching the 0 value after a distance of two months (Figure 8). This weighted
average enables burned pixels to be detected in biomes where the vegetation is regenerated
in a few weeks, such as in tropical regions [71–73].
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High values of Pdy should only be found when pixels are observed as having burned
for the first time, which should correspond to the first available image after the actual
burning date. These fires appear as sudden increases in static probabilities and are main-
tained high over several consecutive acquisitions: a low probability on previous dates
(Ppre) and high values on the corresponding date and following ones (Pt and Ppost) are
required. The following formula is used to compute this dynamic probability:

Pdy = (100% − Ppre) · Pt · Ppost, (8)

A low Pdy will be computed for pixels already burned on previous dates, since those
pixels will show a high Ppre (Figure 9). Similarly, sudden increases in Pst values that
decrease again in the next image, usually belonging to clouds and cloud shadows unmasked
in the pre-processing step, will have a low Pdy, because the Ppost from the following dates
will be low. However, clouds and shadows, despite having a low Pdy, may cause a decrease
in dynamic probability on a nearby date that corresponded to an actual burning (Figure 9b).

Therefore, for every image in the data series (Figure 10a–d), two series of probabilities
are obtained. The Pst maps indicate the probability of being burned on each date, even if
they have been already observed as burned in previous images (Figure 10e–h); meanwhile,
the Pdy maps show the probability of having burned on the considered date for each pixel
(Figure 10i–l), showing a high value on the first date after burning but lower probabilities
on the following dates. The BA algorithm then creates a temporal composite from this
Pdy map series, by selecting the date with highest dynamic probability for each pixel
(Figure 11a).
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Figure 9. Temporal evolution of different probabilities throughout the processing period, in three sample pixels. (a) A
pixel located in Australia, tile 53LME, at 13◦41′38.3′′S 134◦46′24.8′′E, in the same area as in Figure 7, which burned on
18 July 2018; (b) in South Sudan, tile 36NVP, at 8◦6′35.1′′N 32◦7′43.3′′E, burned on December 14th, 2018; and (c) in Brazil,
tile 21KVV, at 18◦55′7.0′′S 57◦18′0.8′′W, on 2 January 2019. All three pixels were detected from S2 data at 20 m. Grey stripes
indicate dates with cloud shadows unmasked in the pre-processing.
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The composite with the maximum Pdy may also contain pixels with low burn proba-
bility values and some areas burned on dates outside the processing month that should be
removed (Figure 11a). The best option for removing these areas would be a two-phased
strategy involving first identifying burned seeds (pixels with a strong-burned signal) and
then extending the burned region around these seeds up to a threshold [66]; this strategy
has already been used extensively for BA detection [12,13,16,18,22,25,39,41,61]. Several ap-
proaches were tested to implement this strategy, such as spatial dilation from burned seeds,
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cumulative cost maps, and grouping of connected pixels, although they all proved to be
too time- and memory-consuming and always ended up exceeding GEE’s user memory
limit. An alternative methodology was applied instead in the form of the Simple Non-
Iterative Clustering (SNIC), a non-iterative superpixel segmentation algorithm [74] already
implemented in GEE that has been shown to be efficient in terms of computation and
memory requirements [75]. An 8-neighbor connectivity was used with a 0 compactness
(disabling the spatial distance weighting) and 10 pixels as a superpixel seed location spac-
ing parameter [74], which was observed as being a balanced value between the size of the
objects and well limited burned patches. Once the object images are obtained, the mean
value of each object is then computed in GEE. Only the objects with a mean Pdy higher than
50% are labeled as burned. The segmentation also removes single pixels with probabilities
higher than 50% that are part of clusters with low BA probabilities, which would otherwise
lead to commission errors (Figure 11b).
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Finally, every pixel whose highest Pdy in the processing period was not observed in the
processing month is labeled as unburned, and pixels that could not be observed on a single
day throughout the processing month are assigned a special value of −1. The resulting BA
map contains two bands (Table 3): the Pdy value as a confidence level of the burned pixel
(Figure 11c), and the date of burn, which corresponds to the day of the year on which the
highest Pdy was observed (Figure 11d). The final BA map is exported to a GeoTIFF image
covering the corresponding MGRS tile in UTM coordinates, at 10, 20 (when using Sentinel
2 data) or 30 m (when using Landsat data) of spatial resolution.

Table 3. Bands and possible values of exported BA maps.

Confidence Level (%) Day of Burn Meaning

50–100 1–365 Burned
0 0 Unburned
−1 −1 Unobserved

2.3. Quality Assurance
2.3.1. Reference Data

The Committee on Earth Observing Satellites’ Land Product Validation Subgroup
(CEOS-LPVS) defined validation as the process of assessing by independent means the
accuracy of the data products from the system outputs [76]. Out of four validation stages
defined by CEOS-LPVS, Stage 3 requirements are usually followed by BA product valida-
tions [16,18,20,21,41,77,78], which consist of an assessment characterized in a statistically
robust way over multiple locations [79]. BA products are validated by comparison with
reference data (RD) created in multiple image pairs and located in validation sites typ-
ically selected by stratified random sampling [20,77,80,81]. These RD are generated by
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visual analysis and supervised classification from independent higher-spatial-resolution
images [82].

Validation of medium-spatial-resolution products in accordance with the CEOS proto-
col is challenging as the availability of multi-date higher-spatial-resolution data is expensive
and often unavailable [31]. Although a standard BA reference database is already available
for the scientific community, these data do not include information from 2016 onwards
(the years in which sufficient S2 data can be found) or are limited to a country or continent
(CONUS and Africa) [83], and could not be used to assess our algorithm’s performance
globally on S2 data. In this study, a quantitative assessment of our algorithm was carried
out by comparing it with BA interpreted visually from multi-date S2 data at 10 m at 50 sites.
This is a low number of sites if compared with other studies, where around 100 [77] or
over 500 [21] validation areas were used, even though those sites were composed by only
two images. A subset of 20 × 20 km2 was selected for each site instead of a complete scene
(110 × 110 km2) to obtain an accurate result by supervised classification without requiring
manual refinement. Similar sizes have already been used in other studies, especially when
this has concerned Landsat data with SLC-off problems [18,77,84]. Unfortunately, both the
RD and the results of the BA algorithm at 10 and 20 m were obtained from the same
data—S2 imagery—because generating a similar global sample from higher-resolution
data was unfeasible. Moreover, the stratified random sampling for site selection was
based on S2 data, which means that all sites have frequent available cloud-free S2 images,
making them optimum sites for BA detection using data from the same source. Therefore,
due to the small size and low number of sites, same data being used for both the RD and
the algorithm, and the site selection favoring S2 cloud-free areas, the authors prefer to use
the term ‘quality assurance’ (QA) for this exercise, rather than a validation.

The areas where the QA analysis was carried out were selected using the stratified ran-
dom sampling methodology [81], based on S2 data, with sampling units being 20 × 20 km2

windows located at the center of each MGRS tile. Although a high number of areas is
optimal in achieving an accurate estimation of errors in a global algorithm, processing of
fewer albeit representative QA sites with temporally longer periods was preferred, which is
especially crucial for assessing Landsat-based results and limiting the effect of any acqui-
sition date disagreement. This QA exercise was limited to 50 areas—with several image
pairs analyzed at each one—and is deemed to be sufficient since it covers several biomes.
This sampling methodology has already been implemented in GEE as the VA tool from
Burned-Area Mapping Tools (BAMT) [41] and, even though it could not be used globally
because it exceeds the GEE user memory limit in large areas, part of its code was used
in order to access the S2 catalog and analyze its availability in GEE. The whole analysis
was carried out for data from 2019, which is the first year when S2 L2A data have already
been consistently processed (Figure 1). First, long sampling units were selected, at least
2 months long, with a minimum frequency of one image every 20 days and cloud coverage
lower than 20%. Then, these long sampling units were assigned the predominant Olson
biome [85], reclassified into 7 main classes, and low or high fire activity in the unit’s area.
Global VIIRS active fires at 375 m were used in this study [86], which were observed as
better detecting small fires [87] than the BA products at coarse resolution typically used as
fire activity estimations [41,80,81], which tend to underestimate small fires [16,17]. Lastly,
after splitting sampling units into 14 strata according to the 7 major Olson biomes and
low and high fire activities, 50 QA areas were then randomly selected from each stratum.
The number of sites in each stratum was proportional to the total number of sampling units
and the mean fire activity in the stratum.

The 50 QA areas selected by the stratified random sampling can be seen in Figure 12.
Despite sampling units being split among 7 major Olson biomes, half of the QA sites
are in the tropical and subtropical savannas biome, because this is the biome with most
African fires, constituting 70% of global BA. The following biome with most QA sites is
tropical forests with 11 sites, most of them located either in Brazil or on the Indochinese
Peninsula; the remaining biomes contain between 1 and 4 sites. The shortest periods are
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two months long, while some cover the whole year of 2019, although most are less than
8 months long. Among all 50 sites, 419 cloud-free images were used, which means 369 pairs
of consecutive images. The complete list of QA areas and their main characteristics are
detailed in Appendix A Table A1.
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predominant Olson biomes.

For every pair of consecutive cloud-free images in each QA area, RD were created us-
ing a supervised classification, derived from S2 data at 10 m of spatial resolution. This task
was done using the RP tool for reference data creation from BAMT, implemented in
GEE [41]. Exported results were visually checked by comparing them with pre- and post-
fire color images in a local machine and reprocessed in GEE where necessary, but were
not refined or modified manually. Reference perimeters from different pairs of images at
the same QA site were merged in one final image, in which every pixel was labeled as
unburned, burned, or unobserved.

2.3.2. Accuracy Metrics

The algorithm presented in this study was run on all 50 QA sites, processing every
month included between the first and last dates of each site, and at three different spatial
resolutions: 10 and 20 m with S2 data, and 30 m with Landsat images. These BA maps
shall be referred to BAS2-10, BAS2-20, and BAL-30 from now on.

Accuracy metrics were estimated based on the error matrix approach [88,89], by com-
paring BA maps with RD at the QA sites. Commission and omission errors (CE and OE) and
the Dice coefficient (DC) were computed for each QA area, together with an aggregation
from the sum of error matrices. DC is defined as the probability for a classifier to identify a
pixel as burned, given that the other classifier also identifies it as burned [81,90,91], with the
BA maps obtained by the automatic algorithm and the RD being the two classifiers in this
case. In addition to the accuracy metrics for BAS2-10, BAS2-20, and BAL-30, the global
products FireCCI51 and MCD64A1 were also assessed at these 50 QA sites. The only global
product at medium resolution, GABAM, could not be assessed because this product lacks
the date of burn. The accuracy of the BA maps and global products was also analyzed in
different LC categories using the IGBP classification from the MCD12Q1 product at 500 m,
reclassified into 9 main classes (Table 4).
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Table 4. Reclassification of the 17 original categories from the IGBP classification in MCD12Q1.

New Categories Original LC Categories

Forests

Evergreen needleleaf forests
Evergreen broadleaf forests

Deciduous needleleaf forests
Deciduous broadleaf forests

Mixed forests

Shrublands Closed shrublands
Open shrublands

Savannas Woody savannas
Savannas

Grasslands Grasslands

Wetlands Permanent wetlands

Croplands Croplands
Cropland/Natural vegetation mosaics

Urban areas Urban and built-up lands

Snow, ice, and water bodies Permanent snow and ice
Water bodies

Barren Barren

2.3.3. Reporting Accuracy

A reporting accuracy analysis was carried out for all 5 BA products in these 50 QA
areas by comparing burning dates from VIIRS active fires and those from BA products,
following several previous studies [12,16,18,92]. After drawing a 375 × 375 m2 window
around each hotspot inside a QA site, the number of days between the hotspot and the first
burned pixel detected by BA products in the window is measured, with this burned pixel
being considered part of the BA whose fire was recorded by the hotspot. The purpose of
this indicator is to measure the BA detection delay when labeling the date of the fire.

2.4. Test Sites

In addition to the QA exercise, performance of the proposed preliminary algorithm
was tested in three large regions of 5 × 5 degrees, covering three representative biomes.
The purpose of this analysis is to ensure that the algorithm is sufficiently robust to generate
plausible results and assess the limitations of the medium-spatial-resolution algorithm,
such as acquisition gaps owing to persistent clouds or issues related to active fires.

Stratified random sampling was used to select these three sites, similar to QA site
selection; however, S2 image availability and cloud coverage were not taken into account
in this case. Sampling units, consisting of MGRS tiles, were assigned the predominant
Olson biome in the region, and the number of VIIRS hotspots detected in 2019 was used as
fire activity. Once all units had been classified into 14 strata (7 major Olson biomes and
low/high fire activity), the 3 strata with the highest mean fire activity were then selected.
One sampling unit was randomly selected from each of these 3 strata, and 5 × 5-degree
windows around these units were selected as test sites (Figure 13). The test site from Africa
is located on the eastern half of the Central African Republic and contains predominantly
tropical and subtropical savannas; the site from Central America is located between Mexico
and Guatemala and includes tropical forests; the third one is in Siberia, north of lake Baikal,
and is covered by boreal forests. The whole year of 2019 was processed at all three sites
with S2 data at 20 m (BAS2-20), which was proven to be the fastest and one of the most
accurate resolutions (see Sections 3.1 and 3.2).
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The results obtained at these test sites at 20 m were compared with three global BA
products at different resolutions: FireCCI51 at 250 m, MCD64A1 at 500 m and GABAM at
30 m. To analyze the spatial patterns of BA, the fraction of burned surface in a 0.05 × 0.05 de-
gree grid (≈5.5 × 5.5 km2 at the Equator) was compared between BAS2-20 and each
global product.

3. Results
3.1. Algorithm

The algorithm presented in this study was run in the 50 QA areas at three different
spatial resolutions (S2 at 10 and 20 m and Landsat at 30 m), with 321 monthly BA maps
in total created at each resolution. Processing times depended on the resolution selected,
with 20 m (BAS2-20) being fastest, which took 4.2 min per monthly map on average,
followed by 30 m (BAL-30) at 4.5 min/map, and with the 10 m resolution (BAS2-10) being
the slowest at 5.9 min per BA map.

3.2. Accuracy Metrics

Accuracy measures obtained by comparing the RD with our BA maps and global
products are shown in Table 5. Commissions, initially between 18–19% for global products
at coarse resolution (MCD64A1 at 500 m and FireCCI51 at 250 m), decreased up to 11%
for BA maps derived from Landsat data (BAL-30), and around 9% at both resolutions
with S2 images (BAS2-20 and BAS2-10). Similarly, omissions decreased from over 50%
to less than 35% for BAL-30 maps, and between 27–28% for maps obtained from S2 data.
Dice coefficients followed the same trend, since lowest values were found for products at
coarser resolutions (56–62%), followed by 75% for BA maps at 30 m and over 80% at 20
and 10 m. Accuracy metrics at specific QA sites area are shown in Appendix A Table A2.
No major improvement was found when processing S2 data at 10 m over 20 m, even
though both commissions and omissions decreased slightly. Around 4300 and 4000 km2 of
burned areas were detected at these 50 sites by our algorithm using S2 and Landsat data,
but significantly less by products at coarse resolution: 3355 and 2824 km2 by FireCCI51
and MCD64A1, respectively. According to RD, however, 5421 km2 had actually burned.
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Table 5. Accuracy measures for our algorithm at 3 spatial resolutions and for 2 global BA products:
commissions, omissions, and Dice coefficients, all expressed in percentages. Total burned area among
all 50 sites is also shown.

Algorithm/Product CE OE DC BA (km2)

BAS2-10 9.0 26.8 81.1 4359
BAS2-20 9.3 27.9 80.3 4309
BAL-30 11.2 34.8 75.2 3979

FireCCI51 19.1 50.0 61.8 3355
MCD64A1 18.3 57.4 56.0 2824

Figure 14 shows the accuracy measures in different LC categories. More than half the
burned area in these 50 QA areas (56.9%) was in savannas, where our algorithm performed
best with commissions between 8–9%, omissions between 18–27%, and Dice coefficients
between 81–86%, depending on the spatial resolution. Next were grasslands, with 19.3%
of total BA and slightly lower omissions but higher commissions, followed by croplands
and forests (12.7 and 10.9% of total BA, respectively), both with low commissions but also
very high omissions (45–70%). Very few areas were burned in shrublands (0.2%) or in
urban areas (0.1%), and practically none in the remaining three LC categories (snow, ice,
and water bodies, wetlands, and barren). In all these land covers, commissions were lower
for BA maps obtained from S2 data (BAS2-10 and BAS2-20) than for those from Landsat
images (BAL-30), while omissions remained in some cases. Global BA products at coarse
resolution showed significantly higher omissions in most land covers, except in croplands,
and similar or higher commissions; Dice coefficients were higher as spatial resolutions
improved, being similar only in croplands.
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3.3. Reporting Accuracy

A total of 13,730 VIIRS hotspots were located at the 50 QA sites, detected between the
corresponding first and last dates for each site. BAS2-10 maps contained some burned pixel
around 87.4% of these hotspots, with lower ratios for BAS2-20 (84.5%) and BAL-30 (78.9%).
Products at coarse resolution showed significantly lower detection percentages—41.0%
and 35.9% for FireCCI51 and MCD64A1, respectively—which means omitting around 60%
of the fires detected by VIIRS hotspots.

Over 26% of BA was detected the same day or the day after the hotspot’s date in
BAS2-10 and BAS2-20, and 17.5% in BAL-30 (Figure 15). All three of them had detected at
least 81% of BA the first 5 (for BAS2-10 and BAS2-20) or 8 days (BAL-30), which correspond
to the maximum time needed for S2 and Landsat satellites to revisit the area, respectively.
Likewise, by the time a satellite revisited the area for the second time after the hotspot’s
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date (10 and 16 days for S2 and Landsat data), BA had already been observed and detected
by the algorithm for nearly 92% of the hotspots. In comparison, global BA products
detect burned areas earlier, due to their better temporal resolution (1 day). In particular,
MCD64A1 detected 78.0% of BA the same day or one day after the hotspot, and 86.0% after
two days; FireCCI51 took longer, with only 32.1% detected the same or next day, and not
exceeding 80% of detection until the 5th day.
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3.4. Test Sites

The 3 test sites from Africa, Central America, and Siberia were covered by 122 MGRS
tiles in total, with 1464 monthly BA maps in total processed for the whole year 2019.
The process took around 5.5 days to process, or 5.4 min per monthly BA map on average.
The results obtained from this algorithm and from global products at the test site from
Africa are shown in Figure 16. A total of 144,000 km2 were burned in total in 2019 at this
site according to our algorithm, while this amount was lower in the case of FireCCI51
and GABAM (between 110,000 and 112,000 km2), and only 87,000 km2 were detected
by MCD64A1. The largest differences are seen in the northeastern corner of the site,
where many areas burned around November—according to BAS2-20—were omitted by
all global products. Most large fire patches detected were consistent across all products,
although the smallest fires were only mapped by BAS2-20 and GABAM. The scatter
plots between burned fractions and regression lines in Figure 17 point to the same trend,
since most cells have higher burned fractions in BAS2-20 than in global products. Spatially,
the most similar patterns were found between BAS2-20 and FireCCI51 with the highest
values for the slope of the regression line (0.872) and r2 (0.588), followed by MCD64A1
(0.771 and 0.477, respectively), and with the lowest correlation being for GABAM (slope and
r2 below 0.4 and 0.2).
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The same analysis at the test site from Central America is shown in Figures 18 and 19.
More than 12,800 km2 of BA were detected in 2019 according to BAS2-20, followed by
both MODIS-derived products with only half the surface (between 6000 and 6200 km2),
and GABAM with 5500 km2. The largest differences were found in areas affected by small
size fires. Very similar results were obtained for FireCCI51 and MCD64A1 (slopes between
0.75 and 0.76, and r2 around 0.59) when comparing their BA fractions with BAS2-20. At this
test site, GABAM again showed the lowest correlation.
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Figures 20 and 21 show the results from the third site in Siberia. Detected burned
surfaces by global products at coarse resolution and our algorithm differed less than
at other sites, with 6300 km2, 4500 km2, and 5200 km2 found for BAS2-20, FireCCI51,
and MCD64A1, respectively; GABAM only detected 1200 km2. Higher correlations with
FireCCI51 and MCD64A1 than at the other test sites were found at this one (r2 of 0.697
and 0.785, respectively). The fact of the slope being higher than 1 between BAS2-20
and MCD64A1 indicates an underestimation of BA by our algorithm in boreal forests.
The largest differences between BAS2-20 and coarse-resolution products were observed
in the northwestern quarter of the site, where BAS2-20 incorrectly detected the decline of
reflectance as having been burned at the end of summer in August and September.

Remote Sens. 2021, 13, x FOR PEER REVIEW 23 of 35 
 

 

 
Figure 19. Scatter plots colored by density and linear regressions between BAS2-20 and global products, based on the BA 
fraction in each 0.05 × 0.05-degree cell, at the test site from Central Africa. 

Figures 20 and 21 show the results from the third site in Siberia. Detected burned 
surfaces by global products at coarse resolution and our algorithm differed less than at 
other sites, with 6300 km2, 4500 km2, and 5200 km2 found for BAS2-20, FireCCI51, and 
MCD64A1, respectively; GABAM only detected 1200 km2. Higher correlations with 
FireCCI51 and MCD64A1 than at the other test sites were found at this one (r2 of 0.697 and 
0.785, respectively). The fact of the slope being higher than 1 between BAS2-20 and 
MCD64A1 indicates an underestimation of BA by our algorithm in boreal forests. The 
largest differences between BAS2-20 and coarse-resolution products were observed in the 
northwestern quarter of the site, where BAS2-20 incorrectly detected the decline of reflec-
tance as having been burned at the end of summer in August and September. 

 
Figure 20. Comparison of different BA products at the test site from Siberia. All areas burned in 2019 are shown, according 
to: (a) BAS2-20 map, (b) FireCCI51 product, (c) MCD64A1, and (d) GABAM (burning date unknown). 

 
Figure 21. Scatter plots colored by density and linear regressions between BAS2-20 and global products, based on the BA 
fraction in each 0.05 × 0.05-degree cell, at the test site from Siberia. 

Figure 20. Comparison of different BA products at the test site from Siberia. All areas burned in 2019 are shown, according to:
(a) BAS2-20 map, (b) FireCCI51 product, (c) MCD64A1, and (d) GABAM (burning date unknown).

Remote Sens. 2021, 13, x FOR PEER REVIEW 23 of 35 
 

 

 
Figure 19. Scatter plots colored by density and linear regressions between BAS2-20 and global products, based on the BA 
fraction in each 0.05 × 0.05-degree cell, at the test site from Central Africa. 

Figures 20 and 21 show the results from the third site in Siberia. Detected burned 
surfaces by global products at coarse resolution and our algorithm differed less than at 
other sites, with 6300 km2, 4500 km2, and 5200 km2 found for BAS2-20, FireCCI51, and 
MCD64A1, respectively; GABAM only detected 1200 km2. Higher correlations with 
FireCCI51 and MCD64A1 than at the other test sites were found at this one (r2 of 0.697 and 
0.785, respectively). The fact of the slope being higher than 1 between BAS2-20 and 
MCD64A1 indicates an underestimation of BA by our algorithm in boreal forests. The 
largest differences between BAS2-20 and coarse-resolution products were observed in the 
northwestern quarter of the site, where BAS2-20 incorrectly detected the decline of reflec-
tance as having been burned at the end of summer in August and September. 

 
Figure 20. Comparison of different BA products at the test site from Siberia. All areas burned in 2019 are shown, according 
to: (a) BAS2-20 map, (b) FireCCI51 product, (c) MCD64A1, and (d) GABAM (burning date unknown). 

 
Figure 21. Scatter plots colored by density and linear regressions between BAS2-20 and global products, based on the BA 
fraction in each 0.05 × 0.05-degree cell, at the test site from Siberia. 

Figure 21. Scatter plots colored by density and linear regressions between BAS2-20 and global products, based on the BA
fraction in each 0.05 × 0.05-degree cell, at the test site from Siberia.



Remote Sens. 2021, 13, 4298 23 of 34

4. Discussion

This paper presents a preliminary global automatic algorithm for BA detection at
medium resolution, based on the MODIS active fire product MCD14DL and primarily on
either Sentinel-2 (S2) or Landsat data. This is the only global BA algorithm based on S2
images so far, since only Landsat imagery has been used globally before [22], and algorithms
with S2 data have been limited to national or continental scales [18,29–31]. Moreover,
BA can be detected at both 20 and 10 m when using this dataset, even though the latter
resolution has not proven to be more accurate. The algorithm is completely flexible when
selecting the S2 or Landsat dataset and resolution, making it possible to produce BA in any
year at the desired resolution, if S2 or Landsat datasets are available. BA from 2000 onwards
can be processed with Landsat data at 30 m; previous years cannot be processed by this
algorithm, despite Landsat images being available, because of the lack of MODIS hotspots
for those dates. BA from 2016 onwards can also be processed at 10 or 20 m using S2 data;
processing year 2015 with S2 data is possible but discouraged, because of the low number
of available scenes (Figure 1).

The algorithm’s main process involves sampling some burned candidate pixels (BC)
around MODIS hotspots, and then classifying the image series in burn probabilities based
on spectral characteristics of these candidate pixels and detecting burned areas and dates by
analyzing their temporal trend. Using an active fire product to identify some BC pixels and
using these to classify images is not a novel feature, since this is already done by most global
or continental BA algorithms [11,13,15,16,18,32], even though many other studies do not use
hotspots to identify burned areas [10,22], especially at regional scales [25–29,31]. However,
this is one of the first studies at non-coarse resolution that analyze the temporal evolution
of spectral signals in a time series in order to establish the earliest possible detection date,
as well as requiring that a burned spectral signal continue on post-fire dates [27,29,31];
the temporal consistency requirement of unburned and burned signals before and after the
fire improves BA detection by avoiding possible commissions unrelated to fires, such as
clouds, cloud shadows, or flooding. This approach is similar to the way some global
algorithms at coarse resolution perform [10,11]. On the other hand, most BA algorithms at
medium resolution either detect burned pixels on one post-fire date [63], analyze spectral
changes between two single dates [18,30], search for anomalies in comparison with a multi-
annual average [28], or classify every image in the time series but then just select the date
with the highest probability [22,25,26], but none of them verify whether the burned signal
remains after the fire.

Unburned and burned pixels at medium resolution are usually classified either by
a machine-learning approach [22,26,27,31,39], decision trees [32], thresholding [29], or by
logistic regression [18]. Since a machine-learning approach in a time series focus was
too memory-consuming in GEE, logistic functions were used instead by this algorithm,
which allowed there to be a continuous transition between unburned and burned categories.
This is often followed by a two-phase strategy to balance commissions and omissions at
the end of the algorithm, first identifying burned seeds and then growing regions around
them. However, the process was too heavy and exceeded GEE’s user memory limits,
even though several approaches were tested. Finally, an object-oriented image analysis
focus was implemented using the SNIC algorithm, segmenting the burn probability and
retaining the clusters with a mean probability higher than 50%.

The proposed algorithm is highly dependent on active fire products, which are re-
quired in the second step of the algorithm to identify BC pixels. Several active fire products
have been developed and released in the scientific community, with the most prominent
being those obtained from MODIS data at 1000 m, and from the VIIRS sensor at 375 m.
Unfortunately, there is only one active fire product loaded in GEE, the near-real-time
MCD14DL [52], and not the standard data product, which is internally consistent and well
calibrated. FIRMS warns that the dataset is not considered to be of scientific quality [93]
and, therefore, only hotspots with a confidence level over 80% are selected to overcome this
limitation. Most other global BA algorithms also rely on active fire products but, since they
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are not limited to the products available in GEE, usually use the standard MCD14ML
product processed by the University of Maryland [94–96], which is a further-developed
and more accurate active fire product than MCD14DL [12,13,16].

Using the near-real-time and non-standard product is a significant limitation of the
algorithm. MODIS hotspots have been shown to be reliable in detecting actual BA, al-
though detection of smaller fires is limited, and show low commission errors in all land
covers except in urban areas, especially related to industrial heat sources [97]. Although our
algorithm masks urban areas before identifying BC pixels, the spatial disagreement between
the LC product and S2 or Landsat images generate residual unmasked urban areas where
BC pixels can be identified, increasing commission errors. A crucial issue when developing
and optimizing our algorithm was defining the limit where small fires were to be detected
or BC pixels were considered insufficient, owing to lack of sufficient hotspots. Two empiri-
cal thresholds were used for the surface covered by hotspots and by the BC pixels (detailed
at the end of Section 2.2.2). However, some tiles may omit all burned areas because the BC
pixels were considered to be insufficient, while in some others the algorithm may detect
enough BC pixels located in falsely detected hotspots causing significant commissions.

The quality assurance of the algorithm has been divided into three exercises. First,
the BA results were compared with reference data derived from Sentinel-2 images at 10 m,
by analyzing 369 pairs of images and located at 50 sites selected by stratified random
sampling. The sampling process took into account both the predominant biome present in
each sampling unit and the fire activity; image availability and cloud presence were also
checked to obtain meaningful long-period samples. The preliminary algorithm showed
higher omissions (27–35%) than commission errors (9–11%). It should be noted that there
is a bias here since both the BA product at 10 and 20 m (BAS2-10 and BAS2-20) and the
reference data were derived from the same dataset (S2 images). However, the BA product
at 30 m (BAL-30) was generated from a fully independent dataset (Landsat images), and the
results suggest the robust performance of the algorithm with omissions and commissions of
35% and 11%, respectively. When processing S2 images from 2016 onwards, the algorithm
can detect BA at both 20 and 10 m of spatial resolution. According to QA, the product
at 10 m performed only slightly better than the 20 m resolution, with omissions and
commissions being only 1.1% and 0.3% lower. This is caused mainly by the way the static
probabilities are computed, because it consists of a weighted average comprising four
variables where NBR2 and MIRBI (at 20 m) tend to carry more weight than NIR and NBR
(at 10 m). Moreover, processing BAS2-10 maps at the 50 QA sites took longer on average
than for BAS2-20 maps (5.9 vs. 4.2 min per monthly BA map), which suggests that the
20 m resolution is more suitable when processing BA from S2 data. Accuracy metrics
showed much better results for this algorithm than for existing global BA products at
coarse resolution, especially in terms of omissions, which were reduced from over 50% to
35% with Landsat data at 30 m, or 27–28% with S2; commissions also decreased, albeit less
significantly (Table 5). These results coincide with the trend observed for other global or
continental BA products at medium resolution such as FireCCISFD11 and GABAM [18,22],
where a greater decrease was found for omissions than for commissions, when compared
with products at coarse resolution.

The second exercise computed the reporting accuracy for BA detection. MCD64A1 was
the first product when detecting burned pixels after they had actually burned, followed by
FireCCI51, BAS2-10 and BAS2-20, and BAL-30 (Figure 15). However, taking into account
the revisit time of each satellite, our algorithm detected between 81–84% of the burned
areas in the first acquired image after the fire (the first 5 days for BAS2-10 and BAS2-20,
or the first 8 days for BAL-30), while products obtained from MODIS data, with an image
every day, detected 78% (MCD64A1) or 32% (FireCCI51) after the first day. It should be
mentioned that MCD64A1 at 500 m detects 53% of BA the exact same day as the active fire
was recorded.

The third exercise was applied to three larger test sites of 5 × 5 degrees (about
550 × 550 km2), where our BA results were compared with existing global BA products
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to assess the quality of the product. The comparison showed good concordance with
FireCCI51 and MCD64A1, especially at the test site in boreal forests, Siberia, where highest
values for r2 and slopes closest to 1 were obtained. In Africa and Central America our
BAS2-20 detected a larger burned surface, since both products at coarse resolution failed
to identify small fires; however, they managed to detect larger BA. GABAM, in contrast,
showed significant omissions when compared to other products at all three test sites,
despite its medium spatial resolution at 30 m. This may have been caused by the way
its algorithm works, since it is based on a comparison between two consecutive years,
selecting the date with the strongest burned signal from each year [22] and may also omit
burned pixels that had already burned the previous year. The total burned surface in 2019
was 163,000 km2 at these sites, according to BAS2-20; this means an increase in BA of 35%
when compared with FireCCI51 (121,000 km2), or up to 65% if compared with MCD64A1
(99,000 km2).

The performance of each product is illustrated in three representative sample areas
located at QA site 30PWQ between Ghana and the Ivory Coast (Figure 22), QA site 46QGF
in Myanmar (Figure 23) and the test site from Central America (Figure 24). BAS2-10,
BAS2-20, and BAL-30 maps (in QA areas 30PWQ and 46QGF) detected practically the same
BA, with very few differences, despite being at three different spatial resolutions and being
derived from two independent datasets. However, products at coarser resolution omitted
most small fires in all three sample areas, especially in 46QGF and Central America where
most BA are small and dispersed. GABAM seems to have detected as much burned area as
our algorithm in 30PWQ and Central America, but omitted a significant amount of BA in
46QGF, with similar results to those obtained by MODIS BA products despite its higher
spatial resolution. There are also some BA in QA area 30PWQ that were only detected by
GABAM, which may not actually be errors, but rather areas that had burned at another
time of the year, since the burning date is unknown in GABAM and BA from the whole
year 2019 are shown. The dates when BA were detected are also very similar, with coarse-
resolution products generally identifying burned pixels some days earlier, although a few
areas seem to have been detected first by BAS2-10 and BAS2-20 in tile 30PWQ.
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Figure 22. Different results in a sample area located at the QA site 30PWQ, between Ghana and Ivory Coast, the main
LC classes being savannas and grasslands. (a) S2 image from the 320th day of 2019 (November 16th), with a
LongSWIR/NIR/Red color composition; (b) S2 image from the 365th day of the same year (December 31st), with the same
color; (c–g) areas burned between these images according to BAS2-10, BAS2-20, and BAL-30 maps and FireCCI51 and
MCD64A1 global products, respectively; and (h) GABAM product from 2019, where the burning day is unknown.
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Figure 23. Different results in a sample area located at the QA site 46QGF, in Myanmar, the main LC class being croplands.
(a) S2 image from the 6th day of 2019 (6th January), with a LongSWIR/NIR/Red color composition; (b) S2 image from the
106th day of the same year (16th April), with the same color; (c–g) areas burned between these images according to BAS2-10,
BAS2-20, and BAL-30 maps and FireCCI51 and MCD64A1 global products, respectively; and (h) GABAM product from
2019, where the burning day is unknown.
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Figure 24. Different results in a sample area located at the test site from Central America, at the
border between Mexico and Guatemala, the main LC class being woody savannas. (a) S2 image from
the 48th day of 2019 (17th February), with a LongSWIR/NIR/Red color composition; (b) S2 image
from the 138th day of the same year (18th May), with the same color; (c–e) areas burned between
these images according to BAS2-20 maps and FireCCI51 and MCD64A1 global products, respectively;
and (f) GABAM product from 2019, where the burning day is unknown.



Remote Sens. 2021, 13, 4298 27 of 34

According to the exercises for quality assurance, three main sources were found for
commissions. One was partially caused by misclassifications in the land-cover map derived
from MODIS data at 500 m (the IGBP classification from product MCD12Q1). The proposed
BA algorithm applies many restrictions in croplands to avoid commissions, although not all
croplands are correctly identified on the LC map. Many agricultural fields were found to be
classified as grasslands, so they did not receive the restrictions that needed to be applied on
croplands and therefore recently harvested fields were mapped as having burned. This is
the reason most commissions in the QA are in grasslands, as shown in Figure 14—they
actually belong to croplands. This issue could be solved if a more accurate and higher-
resolution LC map were used, such as the Copernicus Land-Cover map [54], which is
already available in GEE but not used by this algorithm because it does not cover as many
years as the MCD12Q1 product. The second main source for the detected commissions is
related to reporting accuracy. Especially in the case of BAL-30 maps obtained from Landsat
data, acquisition dates did not coincide exactly with the RD period, and areas already
burned on the first date, which were not part of the BA in the reference data, might be
observed later in Landsat data. Since these areas appear as unburned in the RD but burned
in BAL-30, they were labeled as commissions. To a lesser extent, BAS2-10 and BAS2-20
maps obtained from S2 data also displayed this type of commission, albeit in this case
caused by a delay in the detection of the algorithm: around 15% of the total committed area
among the 50 QA sites was detected in just one site (tile 30NYP, located in Ghana), and was
caused by this delay in detection dates. The RP tool from BAMT used for reference data
creation [41] and the BA algorithm presented here do not use exactly the same approach for
cloud masking, and this causes areas to be observed as burned for the first time on different
dates. Despite being estimated as commissions in this QA, these areas are actually not
committed. A third source of commissions was found at the site from Siberia. Boreal forests
were found to suffer a decrease in reflectance at the end of summer in September, and the
vegetation spectral signal turned out to be similar to that of BA. If a continuous observation
of the ground is possible, then the change would seem to be gradual and not classified
as BA, although low observability due to high cloud coverage may result in this change
appearing sudden, in which case these areas will be committed as burned.

As for omissions, another three sources were identified, with the first two affecting
croplands and forests, respectively. As mentioned previously, several restrictions are
applied on croplands to reduce usual commissions, since agricultural fields after harvesting
and burned areas evidence similar spectral characteristics and are difficult to discriminate.
These restrictions succeeded in reducing commissions considerably in croplands, but at
the same time caused an increase in omissions. The second cause for omissions affects
forests and is in MGRS tiles where areas were burned in both forests and other land covers.
Because most burned forests display several degrees of burn severity, the BC pixels in the
sampling step of the algorithm tend to gather in forested areas with high burn severity.
Therefore, forests with medium to low burn severity are generally not well represented in
the samples, and since these forested areas are closer to the unburned distribution in the
samples, they are usually omitted in the final BA map. A third origin for omissions, albeit a
less significant one, was found to be related to reporting accuracy, since some BA were
detected after the last date in the RD period and labeled as omitted areas. Even though
it has not been observed in the QA areas or at test sites, there could also be a fourth type
of omission. To detect a burned pixel, the algorithm requires at least one previous and
one further subsequent observation of the pixel, although one of these may be missing
due to few available images or persistent clouds. In this case, omissions may increase
considerably, even in areas that were labeled as having been observed in the exported BA
map. This is likeliest to happen in tropical regions, where over 70% of Landsat scenes have
been observed to be covered by clouds [98] and vegetation recovers in a few weeks after
the fire [71,72]; in boreal regions, on the contrary, fire scars remain for several years [99,100],
which makes it easier to detect BA even with persistent clouds.
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Finally, the authors would like to note the importance of Google Earth Engine, a cloud-
computing platform that enables its data catalogs to be accessed with huge processing
capabilities. The use of GEE avoids the need for user technical expertise in information
technology, and previously required enormous capacities for data acquisition and stor-
age [35]. In this study, processing dense data series to detect BA proved feasible at high
speeds, taking just 4–6 min on average per monthly BA map over 110 × 110 km2 at 10, 20,
or 30 m of spatial resolution. However, several limitations were also found when designing
and implementing the algorithm on the platform. The most challenging job was finding an
efficient approach to compare individual images, since iterating on a list of images was
found to be quite memory-consuming for our algorithm implementation. Even though
large data series can be handled, iterative analyses slowed down the process considerably—
especially when computing Pdy maps, where every date needed to be compared to several
previous and following images—and this required a reduction in data. Several filters were
applied to the original list of images until no more than 50 images remained, so that our
algorithm was able to conclude the BA detection. The platform also proved to be limited
for patch and object identification, with the main limitation being a maximum size of
1024 pixels per patch, making it impossible to identify burned areas larger than 10, 41,
or 92 ha, depending on spatial resolution (10, 20, or 30 m). This was tried by way of imple-
mentation of a two-phase strategy for seed identification and region growing at the end of
the algorithm to reduce commissions, but was not achieved; similarly, other approaches
such as spatial dilation and cumulative cost maps proved too time-consuming for GEE,
as mentioned previously. The last issue was found when computing image statistics such as
Otsu thresholds or sampling pixel values, which again requires some processing capacity;
this can be solved by working at coarser scales (GEE allows extracting information at
different spatial resolutions, despite the native resolution of the image), although some
accuracy may be lost.

5. Conclusions

A new automatic global BA detection algorithm based on Landsat or Sentinel-2 re-
flectance and MODIS active fires is presented in this paper, which may be processed at
three different spatial resolutions—10, 20, or 30 m—depending on whether S2 or Landsat
data are chosen; this is still a preliminary algorithm, and a rigorous validation with inde-
pendent data should still be done in order to statistically estimate the algorithm’s accuracy,
identify error sources and therefore propose necessary modifications for the algorithm
before an operational global BA detection. The new methodology involves detecting some
burned candidate pixels around hotspots based on their spectral changes, using these
candidate pixels to classify single images from a dense time series with burn probability
values, and then analyzing the temporal evolution of these probabilities to detect BA and
their dates. The algorithm was implemented in Google Earth Engine, taking advantage
of its huge cloud-computing and processing capabilities; since the platform’s datasets
are used exclusively, BA mapping can be extended globally to any year from 2000 up to
the present.

The algorithm was processed at 50 sites from 2019 selected by a stratified random
sampling, where commissions in the range of 9–11% were obtained, and omissions varied
between 27–35%, while nearly 20% of commissions and over 50% of omissions were
observed for existing products at coarse resolution (FireCCI51 and MCD64A1), respectively.
Similarly, the algorithm was processed with Sentinel-2 data at 20 m at three larger sites,
where an increase in BA of 65% was found when compared with MCD64A1, or 35% when
compared with FireCCI51. This must be researched further to confirm a global trend, as it
would impact on current estimations of greenhouse gas emissions into the atmosphere.
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Appendix A

Table A1. 50 QA areas selected by the stratified random sampling methodology, and their biomes, first and last dates in
YYYYMMDD format (with YYYY, MM, and DD standing for the year, month, and day of month), length in days, low or
high fire activity, and number of images.

Biome Tile First Date Last Date Length (Days) Fire Activity Number of Images

Boreal forest
49WFM 20190617 20190913 88 high 5
42VWN 20190716 20191004 80 high 2

Mediterranean forest 31SEA 20190415 20190902 140 high 9

Others

38RQU 20190111 20190327 75 high 2
42RXT 20190114 20191205 325 high 24
42RXU 20190114 20191205 325 high 25
34JHT 20190103 20191219 350 low 13

Temperate forest
49SFC 20190630 20191028 120 high 7
56HLJ 20190101 20191231 364 high 14
16SBF 20190317 20191102 230 high 6

Temperate grassland
and savanna

36LVQ 20190417 20191103 200 high 10
36PUQ 20190103 20190403 90 high 6
44TPP 20190515 20191029 167 high 3

37UGQ 20190401 20191124 237 low 12

Tropical and
subtropical

savanna

33LYE 20190430 20191106 190 high 13
33LWK 20190418 20190920 155 high 11
35LNF 20190503 20191109 190 high 12
30NYP 20190102 20190313 70 high 6
35LKH 20190501 20191102 185 high 11
34MCV 20190609 20190917 100 high 7
31PCN 20191016 20191230 75 high 6
37LDD 20190801 20191204 125 high 10
36LWH 20190708 20191105 120 high 8
37LDE 20190523 20191119 180 high 10
35NPF 20190106 20190312 65 high 6
36MVS 20190522 20191014 145 high 10
55LBC 20190507 20191213 220 high 8
35NPJ 20190923 20191227 95 high 5

30PWQ 20191116 20191231 45 high 5
34PHR 20191029 20191228 60 high 6
33MXT 20190607 20190831 85 low 6
52LHJ 20190127 20191223 330 low 8
30PWR 20190110 20190420 100 low 8
34KCD 20190124 20191210 320 low 15
21KYR 20190916 20191230 105 low 4
31PBQ 20190117 20190407 80 low 4
34KBC 20190107 20191213 340 low 10
34PCU 20190113 20190428 110 low 5
37PDP 20190815 20191228 135 low 5
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Table A1. Cont.

Biome Tile First Date Last Date Length (Days) Fire Activity Number of Images

Tropical forest

46QFL 20190101 20190531 150 high 13
28PGT 20190102 20190527 145 high 10
47QLC 20190113 20190428 105 high 8
46QFG 20190101 20190426 115 high 9
21MZP 20190701 20190830 60 high 4
46QGF 20190101 20190421 110 high 10
48PVU 20190106 20190411 95 high 6
47QRA 20190117 20190422 95 high 9
21LXH 20190427 20191004 160 low 7
23LQF 20190422 20191113 205 low 4
20LKN 20190509 20190916 130 low 2

Table A2. Accuracy measures for our algorithm at 3 spatial resolutions and for 2 global BA products by QA site: commissions,
omissions, and Dice coefficients, all expressed in percentages. A dash in all 3 of the accuracy metrics means that no BA was
detected by the algorithm or product, nor in the reference data.

MGRS Tile
BAS2-10 BAS2-20 BAL-30 FireCCI51 MCD64A1

CE OE DC CE OE DC CE OE DC CE OE DC CE OE DC

49WFM 77.6 0.7 36.5 79.7 0.4 33.7 46.0 3.6 69.2 20.0 22.7 78.7 8.4 12.4 89.6
42VWN 100.0 0.0 0.0 100.0 0.0 0.0 - - - - - - - - -
31SEA 2.7 30.5 81.1 2.5 30.6 81.1 3.3 36.1 77.0 41.8 36.4 60.8 32.8 49.4 57.7
38RQU - - - - - - - - - - - - - - -
42RXT 14.2 95.4 8.8 15.8 96.3 7.1 13.6 93.4 12.2 28.2 87.0 22.0 41.9 83.7 25.4
42RXU 6.6 99.6 0.9 2.6 99.5 0.9 2.6 100.0 0.1 12.0 85.4 25.0 6.7 96.3 7.2
34JHT - - - - - - - - - - - - - - -
49SFC 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0
56HLJ 10.5 21.3 83.7 12.2 22.1 82.6 5.2 90.5 17.3 39.1 73.9 36.5 64.3 38.6 45.2
16SBF 34.8 90.2 17.1 28.5 86.5 22.8 79.6 95.6 7.3 39.5 74.0 36.4 93.7 55.2 11.0
36LVQ 6.2 14.6 89.4 6.1 16.0 88.6 6.9 23.5 84.0 8.0 61.0 54.7 6.7 71.8 43.4
36PUQ 0.2 2.9 98.4 0.3 2.9 98.4 1.1 3.5 97.7 3.4 15.0 90.4 8.1 6.5 92.7
44TPP - - - - - - - - - - - - - - -

37UGQ 2.2 69.3 46.7 2.3 70.1 45.7 1.8 75.4 39.4 27.9 98.6 2.7 24.8 92.7 13.4
33LYE 1.5 13.9 91.9 1.7 14.5 91.4 2.4 21.0 87.3 13.9 51.6 62.0 15.9 55.9 57.9
33LWK 3.3 1.5 97.6 3.4 1.7 97.4 4.6 3.7 95.8 8.7 3.6 93.8 7.3 23.8 83.7
35LNF 2.2 50.7 65.5 2.3 52.5 64.0 3.7 54.6 61.7 20.2 38.4 69.6 19.6 53.7 58.8
30NYP 23.8 12.0 81.7 23.3 13.9 81.1 22.9 27.4 74.7 38.9 53.5 52.8 20.2 92.6 13.6
35LKH 2.3 15.3 90.8 2.8 16.2 90.0 6.6 22.3 84.8 18.8 37.2 70.9 16.0 53.4 59.9
34MCV 12.1 30.7 77.5 12.3 40.9 70.6 31.3 68.9 42.8 54.3 93.8 10.9 38.2 96.6 6.4
31PCN 0.5 29.6 82.5 0.6 29.6 82.4 0.9 32.0 80.7 12.5 1.1 92.9 10.8 5.2 91.9
37LDD 6.8 37.0 75.2 7.4 39.6 73.1 14.4 60.5 54.0 25.9 70.4 42.3 27.3 68.4 44.0
36LWH 5.8 11.3 91.4 6.2 11.8 90.9 10.3 20.3 84.4 22.5 44.6 64.6 16.7 71.6 42.4
37LDE 2.8 17.8 89.1 2.8 18.5 88.6 4.8 33.3 78.4 12.5 39.7 71.4 12.3 33.9 75.4
35NPF 11.8 35.0 74.8 12.4 36.1 73.9 22.2 31.8 72.7 46.2 56.5 48.1 32.5 88.3 20.0
36MVS 1.8 15.7 90.7 1.9 16.5 90.2 2.2 27.2 83.5 9.5 20.8 84.5 8.7 33.0 77.3
55LBC 5.6 11.7 91.2 5.6 11.7 91.2 5.9 18.7 87.2 15.3 7.0 88.6 10.3 24.6 81.9
35NPJ 4.2 14.3 90.5 4.6 14.2 90.4 8.2 20.9 85.0 13.1 56.3 58.1 15.0 57.7 56.5

30PWQ 3.8 6.1 95.0 4.2 6.0 94.9 5.7 6.9 93.7 23.1 32.0 72.2 17.6 35.0 72.7
34PHR 10.4 27.3 80.2 11.6 23.2 82.2 24.2 22.8 76.5 46.8 72.9 35.9 41.1 91.5 14.9
33MXT 4.6 42.7 71.6 4.4 45.8 69.2 8.1 64.6 51.1 40.2 87.8 20.2 60.7 89.5 16.6
52LHJ 22.2 2.3 86.6 18.8 3.0 88.4 65.6 3.9 50.7 13.0 2.3 92.0 7.2 10.3 91.2
30PWR 12.2 61.5 53.5 12.8 66.6 48.3 52.8 73.0 34.3 98.2 100.0 0.1 0.0 100.0 0.0
34KCD 4.7 11.9 91.5 5.6 12.5 90.8 9.7 20.0 84.8 0.0 100.0 0.0 20.4 69.1 44.5
21KYR 99.7 95.6 0.6 99.9 99.1 0.1 96.3 26.6 7.0 0.0 100.0 0.0 0.0 100.0 0.0
31PBQ 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0
34KBC - - - - - - - - - - - - - - -
34PCU 4.9 32.0 79.3 6.0 34.5 77.2 8.5 41.4 71.4 0.0 100.0 0.0 0.0 100.0 0.0
37PDP 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0
46QFL 10.8 44.3 68.6 11.0 45.5 67.6 12.7 53.0 61.1 0.0 100.0 0.0 24.9 68.4 44.5
28PGT 4.9 33.0 78.6 5.1 34.8 77.3 9.0 44.7 68.8 24.5 65.0 47.8 31.0 55.1 54.4
47QLC 10.2 51.8 62.8 9.9 57.4 57.9 9.8 71.1 43.8 0.0 100.0 0.0 31.9 91.7 14.7
46QFG 8.5 58.5 57.1 7.7 61.6 54.2 8.9 70.2 45.0 33.5 89.1 18.7 48.4 68.6 39.1
21MZP 5.9 49.6 65.6 6.2 50.3 65.0 13.1 23.8 81.2 37.0 23.4 69.1 34.3 39.7 62.9
46QGF 4.3 22.6 85.6 4.7 27.6 82.3 15.5 33.1 74.7 40.1 70.4 39.7 41.2 88.0 20.0
48PVU 22.1 42.4 66.2 22.2 45.4 64.2 28.3 57.0 53.8 36.1 95.0 9.3 38.7 96.1 7.3
47QRA 33.1 41.5 62.4 31.9 56.0 53.5 26.4 76.3 35.9 0.0 100.0 0.0 0.0 100.0 0.0
21LXH 82.3 31.5 28.2 80.7 32.8 30.0 89.7 38.9 17.6 0.0 100.0 0.0 0.0 100.0 0.0
23LQF 98.9 50.2 2.2 99.2 59.6 1.6 99.4 68.9 1.3 0.0 100.0 0.0 0.0 100.0 0.0
20LKN 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 - - - - - -
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