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Abstract: Drugs have always been one of the most important concerns of families and government
officials at all times, and they have caused irreparable damage to the health of young people. Given
the importance of this great challenge, this article discusses a non-symmetric fractal-fractional order
ice-smoking mathematical model for the existence results, numerical results, and stability analysis. For
the existence of the solution of the given ice-smoking model, successive iterative sequences are defined.
The uniqueness of the solution Hyers–Ulam (HU) stability is established with the help of the existing
definitions and theorems in functional analysis. By the utilization of two-step Lagrange polynomials,
we provide numerical solutions and provide a comparative numerical analysis for different values of
the fractional order and fractal order. The numerical simulations show the applicability of the scheme
and future prediction and the effects of fractal-fractional orders simultaneously.

Keywords: ice smoking; fractal-fractional derivative; existence; stability; Lagrange polynomials
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1. Introduction

Arab traders discovered and recognized the poppy plant (Opium) for the first time in
Southwestern China and India in the 7th century. It was used as a medicine for various
diseases. The cultivation of this plant was rare, but it became prevalent in the 15th century
when European traders boosted their trades to these regions, see [1]. The European
merchants were exchanging gold and silver with the Chinese and easterners for spices and
silk. In [2], Cady says that in the 17th century, the Chinese people started smoking a mixture
of tobacco and opium. This provided an opportunity for the Europeans to become rich and
recoup their money from the Chinese by supplying opium from colonial India in the late
18th century. According to [1], the British started to supply 15 million opium addicts in
China. The cultivation of the poppy crop spread in India and even to Myanmar and Laos,
bringing profit to the Europeans. Millions of Asians became addicted to opium, and up to
1970s, all of the opium produced in this region was consumed by opium-addicted Asians.

Symmetry 2023, 15, 87. https://doi.org/10.3390/sym15010087 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15010087
https://doi.org/10.3390/sym15010087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-7186-8435
https://orcid.org/0000-0001-9320-9433
https://orcid.org/0000-0002-5262-1138
https://orcid.org/0000-0002-1574-1800
https://orcid.org/0000-0002-7990-9430
https://orcid.org/0000-0003-3463-2607
https://doi.org/10.3390/sym15010087
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15010087?type=check_update&version=1


Symmetry 2023, 15, 87 2 of 16

In this era, the narcotics syndicate arrived, and they started the refinement of opium
into heroin. The Sicilian Mafia introduced heroin into Europe and propagated it there.
Legally produced opium from Turkey was taken to France and Marseille for refinement into
heroin and transferred to the United States and Western Europe. It is a confirmed reality
that drugs have ruined the lives of the millions people throughout the world. Germany,
Japan, Pakistan, and the United States are the countries where the proportion of drug
addicts is alarming. Morphine, churse, heroin, ice (methamphetamine), cannabis, and
cocaine are the very common drugs. Among these drugs, ice claims the most addicts
worldwide. According to a paper from Dr. Nowshad Khan and Shah Fahad [3], for the first
time in world history, ice was used as drug in Japan in 1919; it was prepared in laboratories
in 1960, although, as Philip Jenkins in [4] states, it did not become the main concern of
the media and politicians until 1989 and 1990. Philip further explains that ice (smokable
crystal methamphetamine) was a threat to American society. It was used by the army
persons in World War II for prolonged duties. Ice stimulates one’s hormones and speeds
up one’s activities by up to one thousand times. In the beginning, it provides extreme
pleasure, but with the passage of time, it destroys cells in the body. Nowshad and Fahad
state that doctors have reported that ice increases one’s heart rate and blood pressure, and
it gradually makes humans lazy and weak.

To study the effects of such dangerous drugs in more detail, many different articles
have been published in which researchers conduct various types of scientific research
based on various mathematical data and models. Some of them can be mentioned, includ-
ing [5–7]. In 2013, Zeb et al. [8] designed a square-root-structured model of giving up
smoking and analyzed it via the finite difference method. In the same year, Huo et al. [9]
investigated the effect of relapse on the cessation of smoking in the context of a mathe-
matical model. Recently, in 2018, Zeb et al. published two papers on the dynamics of
cigarette smoking [10,11]. Similar to them, one can mention the other works done by other
researchers such as [12–16]. In the meantime, we can even see the high efficiency of mathe-
matical models in studying the properties and dynamics of various processes and diseases,
including the mathematical models of thermostat control [17], anthrax in animals [18], mo-
saic disease [19], Q fever [20], memristor-based circuits [21], Mump virus [22], the hybrid
system of p-Laplacial operators [23], and other biologic and engineering models [24–33].

Our main purpose in this paper is the analysis of a mathematical system of the
ice-smoking model with the help of the fractal-fractional operators. This specifies the
motivation of our research; the application of the fractal-fractional operators for this model
specifies the novelty of our research because we extend the previous results to a generalized
system of fractal-fractional IVPs, and their simulations of the solutions of the mentioned
system give more accurate results.

In this manuscript, the desired model of the fractal-fractional system is described
in Section 2, and some preliminaries are stated in Section 3. Via the successive iterative
sequences and limit points, we investigate the existence criterion in Section 4, and fur-
ther, we verify its uniqueness in Section 5. By defining HU-stable solutions, we analyze
this qualitative property for the given fractal-fractional ice-smoking model in Section 6.
Furthermore, the two-step Lagrange polynomials help us to derive a numerical solution,
and then we simulate the comparative results for different values of parameters of these
fractal-fractional operators in Section 7. Lastly, we complete the research via the conclusion
in Section 8.
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2. Description of the Ice-Smoking Model

Recently, in 2021, Zeb and Alzahrani [34] studied the ice-smoking model based on the
finite scheme along with the linear differential equation approach, which takes the form:

Ṡ(t) = λ− βSC− µS,

Ċ(t) = βSC− (γ + µ + ρ1)C + aCR,

Ṙ(t) = γC− (µ + ρ2)R− aCR,

Q̇(t) = ρ1C + ρ2R− µQ.

We intend to discuss the same model by the non-symmetric fractal-fractional order
structure with existence, uniqueness, stability, and numerical simulations. We proceed
as follows: 

FFM
0 Dν1,σ∗

t S(t) = λ− βSC− µS,

FFM
0 Dν,σ∗

t C(t) = βSC− (γ + µ + ρ1)C + aCR,

FFM
0 Dν1,σ∗

t R(t) = γC− (µ + ρ2)R− aCR,

FFM
0 Dν1,ρ∗

t Q(t) = ρ1C + ρ2R− µQ,

(1)

with initial conditions

S(0) = S0, C(0) = C0, R(0) = R0, Q(0) = Q0,

with S0, C0, R0, Q0 ≥ 0. Here, FFM
0 Dν1,σ∗

t stands for the fractal-fractional derivative in the
Atangana–Baleanu sense for ν1, σ∗ ∈ (0, 1]. In the model (1), the whole population is
grouped into 4 classes. They are S(t), which illustrates potential smokers and potential
non-smokers. The mentioned compartment or class is increased under the rate λ, denoting
the recruitment rate.

The compartment or category C(t) specifies the chain smokers. It is increased when
potential smokers begin to smoke under an incidence rate or under the contact rate among
the potential smokers βS(t)C(t) and aC(t)R(t) of the relapse smokers who have returned
to smoking. Note that some other individuals will leave this category under the rates
γC(t), ρ1C(t) and µC(t). Additionally, the category C(t) is increased under the rate γC(t)
in which γ is the rate at which regular smokers transfer to the reversion category. More-
over, C(t) is decreased under the rates µR(t), ρ2R(t). Accordingly, Q(t) represents the
permanent quitters.

In this model, λ is a parameter denoting the birth or migration rate to the host
population. The rate µ shows the natural death in all four categories. The rate ρ1 shows
the number of regular smokers who quit, and the rate rho2 shows the number of reversion
persons who quit. β is the incidence rate in relation to the susceptible persons to the class
of the regular smokers. Additionally, a is the relapse rate, and the rate α shows the number
of individuals who relapsed and became regular smokers.

3. Preliminaries

In this article, we presume the Banach’s space {φ(t) ∈ C([0, 1] → R)} with the
norm ‖φ‖ = maxt∈[0,1] |φ(t)|. Here, we highlight the basic notions of the fractal-fractional
calculus. This derivative is based on the Mittag–Leffler kernel, which is a non-singular
kernel. This derivative is recently recommended by several authors for the dynamical
problems and has many advantages too. Like other fractional derivatives, it possesses the
potential to have the classical results as well new solutions for the fractal and fractional
orders. Regarding the fractal-fractional operators and their basic notions, see [35,36].
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Definition 1 ([35,36]). Consider φ ∈ C((a, b),R) which is fractal differentiable on (a, b) of order
0 < $∗ ≤ 1. The fractal-fractional derivation operator for φ in the Atangana–Baleanu settings of
order 0 < κ1 ≤ 1, with the generalized kernel of the Mittag–Leffler type, is introduced as

FFM
0 Dκ1,$∗

t φ(t) =
AB(κ1)

1− κ1

d
dt$∗

∫ t

0
φ(s)Eκ1

[
− κ1

1− κ1
(t− s)κ1

]
ds,

where AB(κ1) = 1− κ1 +
κ1

Γκ1
, and

dφ(s)
ds$∗ = lim

t→s

φ(t)− φ(s)
t$∗ − s$∗ .

Definition 2 ([35,36]). Let φ be the same function considered above. Then, the fractal-fractional
integration operator in the Atangana–Baleanu settings for φ of order 0 < κ1 ≤ 1 with the kernel of
Mittag–Leffler type is given by

FFM
0 Iκ1,$∗

t φ(t) =
κ1$∗

AB(κ1)Γκ1

∫ t

0
s$∗−1φ(s)(t− s)κ1−1ds +

$∗(1− κ1)t$∗−1

AB(κ1)
φ(t),

where AB(κ1) = 1− κ1 +
κ1

Γκ1
.

By making use of a successive iterative technique, we shall accomplish the proof for
the existence criterion to the fractal-fractional model (1). For this, we operate the integral
given in Definition 2 from [36] on the proposed model (1), and we have

S(t)− S(0) =
ν1σ∗

AB(ν1)Γν1

∫ t

0
sσ∗−1(t− s)ν1−1[λ− βSC− µS]ds

+
σ∗(1− ν1)tσ∗−1

AB(ν1)
[λ− βSC− µS],

C(t)− C(0) =
ν1σ∗

AB(ν1)Γν1

∫ t

0
sσ∗−1(t− s)ν1−1[βSC− (γ + µ + ρ1)C + aCR]ds

+
σ∗(1− ν1)tσ∗−1

AB(ν1)
[βSC− (γ + µ + ρ1)C + aCR],

R(t)− R(0) =
ν1σ∗

AB(ν1)Γν1

∫ t

0
sσ∗−1(t− s)ν1−1[γC− (µ + ρ2)R− aCR]ds

+
σ∗(1− ν1)tσ∗−1

AB(ν1)
[γC− (µ + ρ2)R− aCR], (2)

Q(t)−Q(0) =
ν1σ∗

AB(ν1)Γν1

∫ t

0
sσ∗−1(t− s)ν1−1[ρ1C + ρ2R− µQ]ds

+
σ∗(1− ν1)tσ∗−1

AB(ν1)
[ρ1C + ρ2R− µQ].
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Regard the functions Vi for i = 1, 2, . . . , 4 or i ∈ N4
1, given below:

V1(t, S) = λ− βSC− µS

V2(t, C) = βSC− (γ + µ + ρ1)C + aCR,

V3(t, R) = γC− (µ + ρ2)R− aCR,

V4(t, Q) = ρ1C + ρ2R− µQ.

(3)

4. Existence Criteria

In the present part, for establishing the desired theorem on the existence property, we
provide an assumption:

(H∗) All S(t), S∗(t), C(t), C∗(t), R(t), R∗(t), Q(t), Q∗(t) ∈ L[0, 1] are continuous so
that ‖S‖ ≤ a1, ‖C‖ ≤ a2, ‖R‖ ≤ a3, ‖Q‖ ≤ a4 for some positive constants a1, a2, a3, a4 > 0.
Furthermore, we define the following constants: φ1 = βa2 + µ, φ2 = βa1 + (γ + µ + ρ1) +
aa3, φ3 = µ + ρ2 + aa2, φ4 = µ.

Theorem 1. The Lipschitz condition is valid for the kernels Vi for i ∈ N4
1 if the assumption (H∗)

fulfills and φi < 1 for i ∈ N4
1.

Proof. We first check V1(t, S) for the Lipschitz property. For this, we are helped by (H∗)
and (3) and obtain

‖V1(S)− V1(S∗)‖ = ‖(λ− βSC− µS)− (λ− βS∗C− µS∗)‖

≤ (β‖S− S∗‖‖C‖+ µ‖S− S∗‖ (4)

≤ (βa2 + µ)‖S− S∗‖

= φ1‖S− S∗‖,

where φ1 = βa2 + µ. Hence, V1 satisfies the Lipchitz condition with the Lipchitz-constant
φ1. Similarly, for V2(t, C), we have

‖V2(C)− V2(C∗)‖ = ‖(βSC− (γ + µ + ρ1)C + aCR)− (βSC∗ − (γ + µ + ρ1)C∗ + aC∗R)‖

≤
[

βa1 + (γ + µ + ρ1) + aa3

]
‖C− C∗‖ (5)

= φ2‖C− C∗‖,

where φ2 = βa1 +(γ+ µ+ ρ1)+ aa3. Hence, V2 fulfills the Lipschitz property with constant
φ2. For V3(t, R), we also have

‖V3(R)− V3(R∗)‖ = ‖(γC− (µ + ρ2)R− aCR)− (γC− (µ + ρ2)R∗ − aCR∗)‖

≤
[
‖(µ + ρ2)(R∗ − R) + aC(R∗ − R)‖

]
(6)

≤ (µ + ρ2 + a‖C‖)‖R− R∗‖

= (µ + ρ2 + aa2)‖R− R∗‖

= φ3‖R− R∗‖,
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where φ3 = µ + ρ2 + aa2. This implies that V3 satisfies the Lipchitz condition via constant
φ3. Now, for V4(t, Q), we have

‖V4(Q)− V4(Q∗)‖ = ‖(ρ1C + ρ2R− µQ)− (ρ1C + ρ2R− µQ∗)‖

≤ ‖µ(Q∗ −Q)‖

= µ‖Q−Q∗‖ (7)

= φ4‖Q−Q∗‖,

where φ4 = µ. Thus, V4 also fulfills the Lipschitz property with constant φ4. Thus,
from (4)–(7), we have that Vi for i = 1, 2, . . . , 4, satisfy the Lipschitz property, and the result
is accomplished.

Let us assume:

S(t)− S(0) =
ν1σ∗

AB(ν1)Γν1

∫ t

0
(t− s)ν1−1sσ∗−1V1(s, S(s))ds +

σ∗(1− ν1)

AB(ν1)
tσ∗−1V1(t, S(t)),

C(t)− C(0) =
ν1σ∗

AB(ν1)Γν1

∫ t

0
(t− s)ν1−1sσ∗−1V2(s, C(s))ds +

σ∗(1− ν1)

AB(ν1)
tσ0∗−1V2(t, C(t)),

R(t)− R(0) =
ν1σ∗

AB(ν1)Γν1

∫ t

0
(t− s)ν1−1sσ∗−1V3(s, R(s))ds +

σ∗(1− ν1)

AB(ν1)
tσ∗−1V3(t, R(t)),

Q(t)− R(0) =
ν1σ∗

AB(ν1)Γν1

∫ t

0
(t− s)ν1−1sσ∗−1V4(s, Q(s))ds +

σ∗(1− ν1)

AB(ν1)
tσ∗−1V4(t, Q(t)).

Now, we define the following recursive formulas for the model (1):

Sn(t)− S(0) =
ν1σ∗

AB(ν1)Γν1

∫ t

0
(t− s)ν1−1sσ∗−1V1(s, Sn−1(s))ds

+
σ∗(1− ν1)

AB(ν1)
tσ∗−1V1(t, Sn−1(t)),

Cn(t)− C(0) =
ν1σ∗

AB(ν1)Γν1

∫ t

0
(t− s)ν1−1sσ∗−1V2(s, Cn−1(s))ds

+
σ∗(1− ν1)

AB(ν1)
tσ∗−1V2(t, Cn−1(t)),

Rn(t)− R(0) =
ν1σ∗

AB(ν1)Γν1

∫ t

0
(t− s)ν1−1sσ∗−1V3(s, Rn−1(s))ds

+
σ∗(1− ν1)

AB(ν1)
tσ∗−1V3(t, Rn−1(t)).

Qn(t)−Q(0) =
ν1σ∗

AB(ν1)Γν1

∫ t

0
(t− s)ν1−1sσ∗−1V4(s, Qn−1)(s))ds

+
σ∗(1− ν1)

AB(ν1)
tσ∗−1V4(t, Qn−1)(t)),
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Theorem 2. Under assumption (H∗), the fractal-fractional ice-smoking model (1) has a solution if
we have

∆ = max [φ1, φ2, φ3, φ4] < 1. (8)

Proof. We define four functions as follows:

U1n(t) = Sn+1(t)− S(t),

U2n(t) = Cn+1(t)− C(t),

U3n(t) = Rn+1(t)− R(t),

U4n(t) = Qn+1(t)−Q(t).

(9)

Then, we find that

‖U1n(t)‖ =
ν1σ∗

AB(ν1)Γν1

∫ t

0
(t− s)ν1−1sσ∗−1‖[V1(s, Sn(s))− V1(s, S(s))]‖ds

+
σ∗(1− ν1)

AB(ν1)
tσ∗−1‖[V1(t, Sn(t))− V1(t, S(t))]‖

≤ ν1σ∗

AB(ν1)Γν1

∫ t

0
(t− s)ν1−1sσ∗−1φ1‖Sn − S‖ds

+
σ∗(1− σ1)

AB(ν1)
tσ∗−1φ1‖Sn − S‖ (10)

≤ [
ν1σ∗Γ(σ∗)

AB(ν1)Γ(ν1 + σ∗)
+

σ∗(1− ν1)

AB(ν1)
]φ1‖Sn − S‖

≤ [
ν1σ∗Γ(σ∗)

AB(ν1)Γ(ν1 + σ∗)
+

σ∗(1− ν1)

AB(ν1)
]φ1‖Sn − S‖

≤ [
ν1Γ(σ∗ + 1)

AB(ν1)Γ(ν1 + σ∗)
+

σ∗(1− ν1)

AB(ν1)
]nφn

1‖S1 − S‖.

In which, for φ1 < 1 and as n → ∞, we have Sn → S. So, U1n → 0 as n → ∞.
Similarly,

‖U2n(t)‖ ≤ [
ν1Γ(σ∗ + 1)

AB(ν1)Γ(ν1 + σ∗)
+

σ∗(1− ν1)

AB(ν1)
]nφn

2‖C1 − C‖, (11)

‖U3n(t)‖ ≤ [
ν1Γ(σ∗ + 1)

AB(ν1)Γ(ν1 + σ∗)
+

σ∗(1− ν1)

AB(ν1)
]nφn

3‖R1 − R‖, (12)

‖U4n(t)‖ ≤ [
ν1Γ(σ∗ + 1)

AB(ν1)Γ(ν1 + σ∗)
+

σ∗(1− ν1)

AB(ν1)
]nφn

4‖Q1 −Q‖. (13)

By (10)–(13), when n → ∞, then U in(t) → 0, i ∈ N4
2, for φi < 1, (i = 2, . . . , 4).

Ultimately, the ice-smoking system (1) has a solution.

5. Unique Solution

For our suggested ice-smoking model (1), we follow the analysis of the unique-
ness property.
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Theorem 3. The fractal-fractional ice-smoking model (1) possesses one solution exactly if (H∗) is
satisfied and the following holds:

[ ν1Γ(σ∗ + 1)
AB(ν1)Γ(ν1 + σ∗)

+
σ∗(1− ν1)

AB(ν1)

]
φi ≤ 1, i ∈ N4

1. (14)

Proof. We assume that the conclusion of the theorem is not valid. In other words, another
solution exists for the supposed ice-smoking (I M) model (1) in the fractal-fractional settings.
Hence, S∗(t), C∗(t), R∗(t), Q∗(t) is another solution with S∗(0) = S0, C∗(0) = C0, R∗(0) =
R0, Q∗(0) = Q0 s.t.

S∗(t)− S∗(0) =
ν1σ∗

AB(ν1)Γν1

∫ t

0
(t− s)ν1−1sσ∗−1V1(s, S∗(s))ds,

+
σ∗(1− ν1)

AB(ν1)
tσ∗−1V1(t, S∗(t)), (15)

and similarly,

C∗(t)− C∗(0) =
ν1σ∗

AB(ν1)Γν1

∫ t

0
(t− s)ν1−1sσ∗−1V2(s, C∗(s))ds

+
σ∗(1− ν1)

AB(ν1)
tσ∗−1V2(t, C∗(t)), (16)

R∗(t)− R∗(0) =
ν1σ∗

AB(ν1)Γν1

∫ t

0
(t− s)ν1−1sσ∗−1V3(s, R∗(s))ds,

+
σ∗(1− ν1)

AB(ν1)
tσ∗−1V3(t, R∗(t)), (17)

Q∗(t)−Q∗(0) =
ν1σ∗

AB(ν1)Γν1

∫ t

0
(t− s)ν1−1sσ∗−1V4(s, Q∗(s))ds,

+
σ∗(1− ν1)

AB(ν1)
tσ∗−1V4(t, Q∗(t)). (18)

Now, we write

‖S− S∗‖ = ν1σ∗

AB(ν1)Γν1

∫ t

0
(t− s)ν1−1sσ∗−1‖V1 − V1(S∗)‖

+
σ∗(1− ν1)

AB(ν1)
tσ∗−1‖V1(S)− V1(S∗)‖

≤ ν1σ∗

AB(ν1)Γν1

∫ t

0
(t− s)ν1−1sσ∗−1φ1‖S− S∗‖

+
σ∗(1− ν1)

AB(ν1)
tσ∗−1φ1‖S− S∗‖

≤
[ κ1σ∗Γ(σ∗)

AB(ν1)Γ(ν1 + σ∗)
+

σ∗(1− ν1)

AB(ν1)

]
φ1‖S− S∗‖,
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so [
1−

[ ν1σ∗Γ(σ∗)
AB(ν1)Γ(ν1 + σ∗)

+
σ∗(1− ν1)

AB(ν1)

]
φ1
]
‖S− S∗‖ ≤ 0. (19)

The above inequality (19) is true if ‖S− S∗‖ = 0; accordingly, S = S∗. Similarly, from

‖C− C∗‖ ≤
[ ν1σ∗Γ(σ∗)

AB(ν1)Γ(ν1 + σ∗)
+

σ∗(1− ν1)

AB(ν1)

]
φ2‖C− C∗‖,

we arrive at [
1−

[ ν1σ∗Γ(σ∗)
AB(ν1)Γ(ν1 + σ∗)

+
σ∗(1− ν1)

AB(ν1)

]
φ2
]
‖C− C∗‖ ≤ 0.

This implies ‖C− C∗‖ = 0 and C = C∗. Additionally,

[
1−

[ ν1σ∗Γ(σ∗)
AB(ν1)Γ(ν1 + σ∗)

+
σ∗(1− ν1)

AB(ν1)

]
φ3
]
‖R− R∗‖ ≤ 0.

This inequality is true, if ‖R − R∗‖ = 0; accordingly, R = R∗. In similar manner,
the inequality

[
1−

[ ν1σ∗Γ(σ∗)
AB(ν1)Γ(ν1 + σ∗)

+
σ∗(1− ν1)

AB(ν1)

]
φ4
]
‖Q−Q∗‖ ≤ 0.

is valid if ‖Q − Q∗‖ = 0, which gives Q = Q∗. Therefore, the ice-smoking model (1)
contains a unique solution.

6. Hyers–Ulam Stability

The notion of Hyers–Ulam-Stability (HU-stability) is investigated for the solutions of
the suggested ice-smoking model (1).

Definition 3. The fractal-fractional ice-smoking system (1) is termed as HU-stable if ∃ ηi > 0,
i ∈ N4

1 provided that ∀ ςi > 0, i ∈ N4
1 and for each (S∗, C∗, R∗, Q∗) satisfying

∣∣FFM
0 Dν1,σ∗

t S∗(t)− V1(t, S∗)
∣∣ ≤ ξ1,

∣∣FFM
0 Dν1,σ∗

t C∗(t)− V1(t, C∗)
∣∣ ≤ ξ2,

∣∣FFM
0 Dν1,σ∗

t R∗(t)− V1(t, R∗)
∣∣ ≤ ξ3,

∣∣FFM
0 Dν1,σ∗

t Q∗(t)− V1(t, Q∗)
∣∣ ≤ ξ4,

(20)

(S, C, R, Q) exists, satisfying the ice-smoking system (1); further, we have

‖S− S∗‖ ≤ η1ξ1,

‖C− C∗‖ ≤ η2ξ2,

‖R− R∗‖ ≤ η3ξ3,

‖Q−Q∗‖ ≤ η4ξ4.

where Vi, i ∈ N4
1 are introduced in (3).
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Remark 1. Consider that the function S∗ is a solution of the first inequality (20) iff a continuous
map h1 exists (depending on S∗) so that (a) |h1(t)| < ξ1, and

(b) FFM
0 Dν1,σ∗

t S∗(t) = V1(t, S∗) + h1(t).

Similarly, one can indicate such a definition for each of the solutions to the inequalities (20) by
finding hi for i ∈ N4

2.

Theorem 4. Let the hypothesis (H∗) be true. Then, the fractal-fractional ice-smoking model (1) is
HU-stable if [ ν1Γ(σ∗ + 1)

AB(ν1)Γ(ν1 + σ∗)
+

σ∗(1− ν1)

AB(ν1)

]
φi ≤ 1, i ∈ N4

1.

Proof. Let ξ1 > 0 and the function S∗ be arbitrary so that∣∣FFM
0 Dν1,σ∗

t S∗(t)− V1(t, S∗)
∣∣ ≤ ξ1.

In view of Remark 1, we have a function such as h1 with |h1(t)| < ξ1, which satisfies

FFM
0 Dν1,σ∗

t S∗(t) = V1(t, S∗) + h1(t).

Accordingly, we obtain

S∗(t) = S0 +
ν1σ∗

AB(ν1)Γ(ν1)

∫ t

0
(t− s)ν1−1sσ∗−1V1(s, S∗(s))ds +

σ∗(1− ν1)

AB(ν1)
tσ∗−1V1(t, S∗(t))

+
ν1σ∗

AB(ν1)Γ(ν1)

∫ t

0
(t− s)ν1−1sσ∗−1h1(s)ds +

σ∗(1− ν1)

AB(ν1)
tσ∗−1h1(t).

Consider S as the unique solution of the fractal-fractional ice-smoking model (1). Then,
it becomes

S(t) = S0 +
ν1σ∗

AB(ν1)Γ(ν1)

∫ t

0
(t− s)ν1−1sσ∗−1V1(s, S(s))ds +

σ∗(1− ν1)

AB(ν1)
tσ∗−1V1(t, S(t)).

Hence,

∣∣S∗(t)− S(t)
∣∣ ≤ ν1σ∗

AB(ν1)Γ(ν1)

∫ t

0
(t− s)ν1−1sσ∗−1∣∣V1(s, S∗(s))−W1(s, S(s))

∣∣ds

+
σ∗(1− ν1)

AB(ν1)
tσ∗−1∣∣V1(t, S∗(t))− V1(t, S(t))

∣∣
+

ν1σ∗

AB(ν1)Γ(ν1)

∫ t

0
(t− s)ν1−1sσ∗−1∣∣h1(s)

∣∣ds

+
σ∗(1− ν1)

AB(ν1)
tσ∗−1∣∣h1(t)

∣∣
≤
[ ν1σ∗Γ(σ∗)

AB(ν1)Γ(ν1 + σ∗)
+

σ∗(1− ν1)

AB(ν1)

]
φ1
∣∣S∗(t)− S(t)

∣∣
+
[ κ1$∗Γ($∗)

AB(κ1)Γ(κ1 + $∗)
+

σ∗(1− ν1)

AB(ν1)

]
ξ1.
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In consequence,

∥∥S∗ − S
∥∥ ≤

[ ν1Γ(σ∗+1)
AB(ν1)Γ(ν1+σ∗) +

σ∗(1− ν1)

AB(ν1)

]
ξ1

1−
[ ν1Γ(σ∗ + 1)

AB(ν1)Γ(ν1 + σ∗)
+

σ∗(1− σ1)

AB(ν1)

]
φ1

. (21)

If, we take

η1 :=

[ ν1Γ(σ∗ + 1)
AB(ν1)Γ(ν1 + σ∗)

+
σ∗(1− ν1)

AB(ν1)

]
1−

[ ν1Γ(σ∗ + 1)
AB(ν1)Γ(ν1 + σ∗)

+
σ∗(1− ν1)

AB(ν1)

]
φ1

,

then
∥∥S∗ − S

∥∥ ≤ η1ξ1. Similarly, we have

‖C∗ − C‖ ≤ η2ξ2, ‖R∗ − R‖ ≤ η3ξ3, ‖Q∗ −Q‖ ≤ η4ξ4.

Thus, the fractal-fractional ice-smoking model (1) is HU-stable, which ends the
argument.

7. Numerical Algorithm

In this section, we describe the numerical scheme in relation to the fractal-fractional ice-
smoking model (1). For this, we have received help from the technique regarding the two-
step Lagrange polynomials. For the numerical scheme, consider the linear general differen-
tial equation FFM

0Dν1,σ∗
t ϑ(t) = V(t, ϑ(t)), where ϑ(0) = ϑ0 is the initial value. The latter

equation can be rewritten with respect to the Atangana–Baleanu fractla-fractional derivative
as AB

0Dν1,σ∗
t ϑ(t) = σ∗tσ∗−1V(t, ϑ(t)) = Y(t, ϑ(t)). With the help of the fractal-fractional

integral operator that has a kernel of the generalized Mittag–Leffler type, we obtain

ϑ(t) = ϑ(0) +
1− ν1

AB(ν1)
Y(t, ϑ(t)) +

ν1

AB(ν1)Γν1

∫ t

0
vσ∗−1(t−v)ν1−1Y(v, ϑ(v))dv.

By replacing t with tn+1, we have

ϑn+1 = ϑ(0) +
1− ν1

AB(ν1)
Y(tn, ϑ(tn)) +

ν1

AB(ν1)Γν1

∫ tn+1

0
vσ∗−1(tn+1 −v)ν1−1Y(ϑ, ϑ(v))dv. (22)

According to two-step Lagrange polynomials, we have

V(x, ϑ(t)) =
(x− t`−1)V(t`, ϑ(t`))

t` − t`−1
− (x− t`)V(t`−1, ϑ(t`−1))

t` − t`−1

=
V(t`, ϑ(t`)(x− t`−1)

t` − t`−1
− V(t`−1, ϑ(t`−1))(x− t`)

t` − t`−1

=
V(t`, ϑ`)(x− t`−1)

h
− V(t`−1, ϑ`−1)(x− t`)

h
.

In this case, if we use the aforesaid Lagrange polynomial to (22), we obtain

ϑn+1 = ϑ(0) +
1− ν1

AB(ν1)
V(tn, ϑ(tn))

+
ν1

AB(ν1)Γν1

n

∑
`=1

[
V(t`, ϑ(t`))

h

∫ t`+1

t`
(v− t`−1)(tn+1 −v)ν1−1dv

− V(t`−1, ϑ(t`−1))

h

∫ tn+1

t`
(v− t`)(tn+1 −v)ν1−1dv

]
.
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Further, we solve the above integral equation and obtain

ϑn+1 = ϑ0 +
1− ν1

AB(ν1)
V(tn, ϑ(tn))

+
ν1hν1

AB(ν1)Γ(ν1 + 2)

n

∑
`=1

[
V(t`, ϑ(t`))

(
(n + 1− `)ν1(n− `+ 2 + ν1)

− (n− `)ν1(n− `+ 2 + 2ν1)

)

− V(t`−1, ϑ`−1)

(
(n + 1− `)ν1+1 − (n− `+ 1 + ν1)(n− `)ν1

)]
.

Inserting the value of Y(t, ϑ(t)), it becomes

ϑn+1 = ϑ0 + σ∗tσ∗−1
n

1− ν1
AB(ν1)

V(tn, ϑ(tn))

+
σ∗hν1

AB(ν1)Γ(ν1 + 2)

n

∑
`=1

[
tσ∗−1
` V(t`, ϑ(t`))

(
(n + 1− `)ν1 (n− `+ 2 + ν1)

− (n− `)ν1 (n− `+ 2 + 2ν1)

)

− tσ∗−1
`−1 V(t`−1, ϑ`−1)

(
(n + 1− `)ν1+1 − (n− `+ 1 + ν1)(n− `)ν1

)]
.

Thus, by assuming

Φ1(n, `) := (n + 1− `)ν1(n− `+ 2 + ν1)− (n− `)ν1(n− `+ 2 + 2ν1),

Φ2(n, `) := (n + 1− `)ν1+1 − (n− `+ 1 + ν1)(n− `)ν1 ,

the numerical scheme for the integral system (2) is obtained as

S(tn+1) = S(0) + σ∗tσ∗−1
n

1− ν1

AB(ν1)
V1(tn, S(tn)) +

σ∗hν1

AB(ν1)Γ(ν1 + 2)

×
n

∑
`=1

[
tσ∗−1
` V1(t`, S(t`))Φ1(n, `)− tσ∗−1

`−1 V1(t`−1, S(t`−1))Φ2(n, `)
]

,

C(tn+1) = C(0) + σ∗tσ∗−1
n

1− ν1

AB(ν1)
V2(tn, C(tn)) +

σ∗hν1

AB(ν1)Γ(ν1 + 2)

×
n

∑
`=1

[
tσ∗−1
` V2(t`, C(t`))Φ1(n, `)− tσ∗−1

`−1 V2(t`−1, C(t`−1))Φ2(n, `)
]

,

R(tn+1) = R(0) + σ∗tσ∗−1
n

1− ν1

AB(ν1)
V3(tn, R(tn)) +

σ∗hν1

AB(ν1)Γ(ν1 + 2)

×
n

∑
`=1

[
tσ∗−1
` V3(t`, R(t`))Φ1(n, `)− tσ∗−1

`−1 V3(t`−1, R(t`−1))Φ2(n, `)
]

,

Q(tn+1) = Q(0) + σ∗tσ∗−1
n

1− ν1

AB(ν1)
V4(tn, Q(tn)) +

σ∗hν1

AB(ν1)Γ(ν1 + 2)
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×
n

∑
`=1

[
tσ∗−1
` V4(t`, R(t`))Φ1(n, `)− tσ∗−1

`−1 V4(t`−1, Q(t`−1))Φ2(n, `)
]

.

Computational Results

In this part, the numerical results about the fractal-fractional model (1) are provided
with the help of our numerical scheme. The basic data were taken from the work given
in [34]. We have: µ = 0.0001, β = 0.0005, α = 0.0002, ρ1 = 0.004, ρ2 = 0.002, γ = 0.007,
λ = 0.9, and the fractal fractional orders ν1, σ∗ = 1.0, 0.95, 0.90, 0.85.

In these figures, we can see the effect of fractal-fractional orders and dimensions on
the numerical solutions of the given model. In Figure 1, by increasing the fractal-fractional
orders and tending to the integer order, the slope of the graphs decrease, and after 120 days,
all of them become stable. In Figure 2, the opposite of this happens. By increasing the
fractal-fractional orders and tending to the integer order, the slope of the graphs is positive
and it increases, and after 120 days, all of them become stable.
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Figure 1. Simulations for the S(t) class of the fractal-fractional model (1).
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Figure 2. Simulations for the C(t) class of the fractal-fractional model (1).
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In Figure 3, we see the same behavior in the diagrams as in Figure 1. Finally, Figure 4
depicts an increase in the number of the quitter smokers by increasing the time, and all of
the diagrams experience a slight slope by tending ν1, σ∗ to the integer-order.
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Figure 3. Simulations for the R(t) class of the fractal-fractional model (1).
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Figure 4. Simulations for the Q(t) of the fractal-fractional model (1).

8. Conclusions

In this article, we have studied a fractal-fractional order ice-smoking mathematical
model (1) for the qualitative analysis and computational aspect. The qualitative work is
based on the fixed-point approach, while the numerical simulations are obtained with
the help of the Lagrange’s interpolation polynomial. For the numerical simulations, we
analyzed the fractal-fractional order ice-smoking mathematical model (1) for the orders
ν1 = σ∗ = 1.0, 0.95, 0.90, 0.85. For further new development/continuation of the study on
the subject area, we can use other fractional operators that have exponential decay type
kernels for some new ideas.
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