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Abstract: Experimental magnetic studies performed on the [{CuLX}2] system (HL = pyridine-2-
carbaldehyde thiosemicarbazone, X = Cl−, Br−, I−) point to the larger electronegativity in X, the lower
magnitude of the antiferromagnetic interactions. In order to confirm this and other trends observed
and to dip into them, computational studies on the [{CuLX}2] (X = Cl− (1), I− (2)) compounds are here
reported. The chemical and structural comparisons have been extended to the compounds obtained in
acid medium. In this regard, chlorido ligands yield the [Cu(HL)Cl2]·H2O (3) complex, whose crystal
structure shows that thiosemicarbazone links as a tridentate chelate ligand to square pyramidal Cu(II)
ions. On the other hand, iodido ligands provoke the formation of the [{Cu(H2L)I2}2] (4) derivative,
which contains pyridine-protonated cationic H2L+ as a S-donor monodentate ligand bonded to
Cu(I) ions. Crystallographic, infrared and electron paramagnetic resonance spectroscopic results are
discussed. Computational calculations predict a greater stability for the chlorido species, containing
both the neutral (HL) and anionic (L−) ligand. The theoretical magnetic studies considering isolated
dimeric entities reproduce the sign and magnitude of the antiferromagnetism in 1, but no good
agreement is found for compound 2. The sensitivity to the basis set and the presence of interdimer
magnetic interactions are debated.

Keywords: chloro; coordination chemistry; copper; density functional theory; iodo; structure;
thiosemicarbazone

1. Introduction

Molecular magnetism analyzes the influence of chemical composition and structure in
the magnetic properties of organic and coordination compounds [1]. Focusing on coopera-
tive magnetic phenomena, which are those established among interacting paramagnetic
centers, two usual magnetic behaviors can be distinguished: ferromagnetism and anti-
ferromagnetism. The simplest cooperative magnetic interactions are those involving two
centers with S = 1/2 within an isolated centrosymmetric magnetic dimer. In this case, the
ferromagnetic state will be S = 1, while S = 0 is the antiferromagnetic state. A prolific
research has been performed on dimers containing Cu(II) ions due to the presence of only
one unpaired electron in the 3d9 electron configuration of each metal center (S = 1/2). The
choice of the ligand is essential to confer simplicity and versatility to the system. Thus,
a greater denticity in the Y ligand, which means a larger number of donor atoms in the
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ligand, usually carries a structural uniformity for the rigid [CuY]n+ fragments, at least to a
certain extent. It allows a fine and easy chemical modulation in these systems, i.e., changes
in the substituents, the ancillary ligands or the counterions. A good strategy is the use of
tridentate ligands, which leads to 1–3 available positions for placing coligands, depend-
ing on the coordination number of the complexes (n = 4–6). A thoroughly explored, as
much structurally as magnetically, dimer system containing Cu(II) ions linked to tridentate
ligands is that derived from the pyridine-2-carbaldehyde thiosemicarbazone ligand (HL).

Thiosemicarbazones (TSCs) are organic molecules with azomethine (1), hydrazine (2)
and thioamide (3) functional groups (see Scheme 1) [2–27]. In the case of HL, R1 = pyridine
(py) and R2 = R3 = R4 = H (Schemes 1 and 2). The deprotonation of HL occurs from the
release of H+ ions from the hydrazine N atom and yields the anionic L− form (Scheme 2).
This ligand usually exhibits a tridentate NNS behavior (see atoms with asterisk in Scheme 2)
to give planar [Cu(HL)]2+ or [CuL]+ entities, depending on the neutral or anionic form of
the TSC in the compound [28–32]. The [Cu(HL)]2+/[CuL]+ entities generate a fourth free
position available to link ancillary ligands to yield distorted square planar (SP-4) species,
which usually incorporate one or two further ligands to generate square pyramidal (SPY-5)
or octahedral (OC-6) polyhedra (Scheme 3).
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around the Cu(II) ions to build dinuclear [{CuLX}2] compounds. In this way, two types of
dinuclear complexes are formed (Scheme 4):

• Compounds with the X coligand acting as a bridge between the [CuLX] entities giving
rise to [Cu2(µ-X)2] cores (so called X-bridged systems, Scheme 4a);

• Compounds in which the S thioamide atom (SL) is the bridge between monomers
generating [Cu2(µ-SL)2] fragments (S-bridged systems, Scheme 4b).
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In the case of complexes containing the L− anionic form, the presence of both kinds of
dinuclear systems is majority, except for highly bulky coligands [33,34] or the [CuL2] biscom-
plex [35]. However, the HL neutral form gives rise to X-bridged dimers and mononuclear
complexes [36], a feature shared with other TSC-Cu(II) compounds [37,38]. The reluctance
of the neutral HL form to be incorporated into S-bridged dimers has been interpreted as due
to the lack of electron density over the S atom in the thione C=S group, enough to establish
bonds perpendicular to the TSC plane with metals, in the opposite way of the sp3 hybrid
behavior of the C–S− thiolate anionic form [39]. In fact, as far as we are aware, there is only
one S-bridged compound containing a neutral tridentate TSC ligand linked to Cu(II) ions,
and the Cu–S distances linking neighbor monomers are as long as 2.937 Å [40]. The planarity
and structural uniformity of the [CuLX] fragments in both kinds of dinuclear compounds
make them suitable for molecular magnetic studies. In this regard, the S-bridged systems
are particularly attractive because they allow for a more efficient control of the proper-
ties, which is easily achieved by changing the nature of X. The research carried out for
years in this field has collected the results summarized in Table 1 in terms of values for
the exchange coupling J parameter, which measures the magnetic cooperativity between
the paramagnetic Cu(II) centers. The J-value was calculated by fitting the experimental
magnetic susceptibility data to the Bleaney and Bowers’s expression for copper(II) dinu-
clear compounds [41] derived from the Heisenberg isotropic Hamiltonian (H = −2JS1S2);
see Equation (1). In this Equation, N is the Avogadro’s number, β the Bohr magneton,
g the Landé factor and k the Boltzman’s constant. The table also contains the work per-
formed on the analogous [{CuL’X}2] compounds, where HL’ is pyridine-2-carbaldehyde
4N-methylthiosemicarbazone (R1 = py; R2 = R4 = H; R3 = CH3 in Scheme 1). Data reveal
that magnetic interactions in these compounds are weak, as expected considering the long
apical distance and the exchange pathway nearly perpendicular to the plane of the involved
magnetic dx2−y2 orbitals. Moreover, the results point to the influence of the coligands in
the J values of S-bridged compounds, the lower electronegative X the stronger the anti-
ferromagnetic interactions (Pauling’s electronegativities O 3.44, Cl 3.16, N 3.04, Br 2.96,
I 2.66). Thus, the [{CuLI}2] derivative shows the largest antiferromagnetic interactions
in the given series. In addition, dinuclear complexes containing the neutral HL form of
the ligand seem to exhibit lower antiferromagnetic interactions than the analogous with
deprotonated L− form. Magnetic interactions have been reported for other thiosemicar-



Inorganics 2023, 11, 31 4 of 24

bazonecopper(II) systems and evidence a majority antiferromagnetic behavior [42–47], as
those described for non-thiosemicarbazone systems [48–50].

χm =
Ng2β2

kT

 2

3 + exp
(
−2J
kT

)
 (1)

Table 1. J values (defined from a H = −2 JS1S2 Hamiltonian) along with some crystallographic pa-
rameters, for both S- and X-bridge dimer [{Cu(L/L’)X}2] systems. The first column specifies the donor
atom [X] (see X in bold, in Scheme 4). The intradimeric distances are represented as Cu···Cu’ (Å); X’ is
the apical ligand, linkages to the apical ligand are depicted as Cu···X’ (Å), and bridging angles as
Cu–X′···Cu′ (◦).

Compound [Donor Atom in the Coligand] X′ Cu···Cu′/Cu···X′ (Å) Cu–X′···Cu′ (◦) J (cm–1)

[{CuL(H2O)}2](SiF6)·4H2O [O] [51] S 3.5950(4)/2.7963(6) 89.231 +4.44

[{CuL(HCOO)}2] [O] [52] S 3.503(2)/2.820(2) 86.34(5) –2.80

[{CuL(H2O)}(1){CuL(SO4)} (2)]·H2O [O] [53] S (1), O (2) 3.365(1)/2.354(3) (1),
2.8797(16) (2) 80.49(4) (1), 101.97(13) (2) –3.21

[{CuL(NO2)}2] [O] [52] S 3.554(1)/2.918(2) 85.5(1) –3.40

[{CuLCl}2] [Cl] [54] S 3.486(2)/2.760(2) 87.01(4) –3.91

[{(CuL)2(dca *)}(ClO4)]n [N] [55] S 3.5953(2)/2.8383(1) 88.6(2)/85.4(2) –3.30

[{CuL(NCS)}2] [N] [56] S 3.450(3)/2.754(5) (a) 85.9(1) (a) –5.09

[{CuLBr}2] [Br] [54] S 3.474(1)/2.743(2) 87.12(5) –5.21

[{CuLI}2] [I] [57] S 3.455(1)/2.775(1) 85.80(4) –14.03

[{Cu(L’)(NO3)}2] [O] [57,58] S 3.4482(2)/2.7659(6) 85.83(2) +6.88

[{Cu(L’)(H2O)}(1){Cu(L’)(SO4)} (2)]·5H2O [O] [35,53] S (1), S (2) 3.435/2.8114(14) (1),
2.9114(13) (2) 82.024 (1), 84.326 (2) +5.5

[{Cu(L’)(H2O)}2][Cu(L’)(H2O)2]2(SiF6)2·8H2O [O] [51] S 3.351(2)/2.819(3) 81.81 +2.22

[{Cu(L’)Cl}2] [Cl] [51] S 3.587(1)/2.836(1) 88.47 –4.65

[{Cu(L’)Br}2] [Br] [57] S 3.577(2)/2.832(2) 88.31 –6.12

[{CuL(CH3COO)}2] [O] [59,60] O 3.442(1)/2.427(2) 103.5(1) –3.10

[{CuL(CH3CH2COO)}2] [O] [52] O 3.460(2)/2.387(2) 105.35(9) –3.30

[{CuL(tfa)}2] [O] [55] O 3.689(1)/2.632(3) 105.7(1) –3.30

[{Cu(HL)(tfa)}2][tfa]2 [O] [36,55] O 3.557(4)/2.519(4) 104.8(1) –0.20

[{Cu(HL)(SO4)}2] [O] [53,59] O 3.310(1)/2.306(2) 102.7(1) –0.75

[{Cu(L’)I}2] [I] [51] I 3.836/3.1797(6) 82.56 –4.76

* dca = dicyanamide, [N(CN)2]−; tfa = trifluoroacetato, CF3COO–; HL = pyridine-2-carbaldehyde thiosemi-
carbazone; HL′ = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone. (a) Average values. (1),(2) Different
fragments in non-centrosymmetric dinuclear compounds.

Taking into account the chemistry of these compounds, it is worth noting the coexis-
tence of Cu(II) metal ions and I− ligands in the [{Cu(L/L’)I}2] dimers [51,57]. This behavior
is relatively unusual due to the well-known trend towards the reduction to Cu(I) ions in the
presence of iodide with concomitant formation of I2. In fact, few TSC-Cu(II)-iodido com-
plexes have been reported to date, and all of them contain anionic TSCs [61–71]. Regarding
the particular system derived from HL, the crystal structure of the [Cu(TSC)Br2]·H2O has
been described [72], but studies with iodide in acid medium have not been performed
to date.

In order to get insight into the chemical and structural features of TSC-Cu-I com-
pounds, here we provide a comparative study between the iodido and chlorido chemistries
of thiosemicarbazonecopper complexes derived from HL both in acid and neutral media.
In this way, we have synthesized and characterized the [{CuLX}2] (X = Cl− (1), I− (2)),
[Cu(TSC)Cl2]·H2O (3) and [{Cu(H2L)I2}2] (4) compounds. Computational calculations are
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performed in two ways: (i) to visualize the thermodynamic differences of the chemical
behavior and (ii) to explain the magnetic properties in the [{CuLX}2] (X = Cl−, I−) S-bridged
dimers. We have found that the structural analogies in complexes containing anionic L−

are lost in the acid media. The latter originates a [Cu(HL)Cl2]·H2O compound, while the
presence of I− anions induces a reduction process leading to the formation of [{Cu(H2L)I2}2]
dinuclear Cu(I) species. Computational studies point to a larger stability of the chlorido
complexes in aqueous medium. Finally, the DFT molecular-based calculations carried out
to explain the magnetic behavior of [{CuLX}2] (X = Cl−, I−) S-bridged dimers show that the
choice of functionals largely influences the results. Notwithstanding, no success is found in
the reproducibility of the experimental results for the iodido derivative in any of the used
methods, most of which paradoxically predict ferromagnetic intramolecular interactions
for this compound.

2. Results and Discussion
2.1. Synthesis of the Compounds

Syntheses of complexes 1 and 2, with formulae [{CuLX}2] (X = Cl (1) and I (2), have
been published in different papers [54,57,59]. The present work describes a method for the
preparation of 1 based on the use of CuCl2 and aqueous medium, very slightly different to
those reported in the literature. Regarding 2, the iodide salt stabilizes de Cu(I) oxidation
state due to the reducing character of I−. Because of this, a new strategy must be used such
as that involving the very soluble CuL(ClO4) compound as a reactant, which is prepared in
situ by mixing Cu(ClO4)2 and HL in aqueous solution. The addition of NaI or KI yields the
immediate precipitation of compound 2. Both compounds, 1 and 2, can be obtained from
aqueous solutions at pH 2–8 and even slightly outside this broad range.

Ethanolic solutions favor the attainment of solids containing non-deprotonated HL
ligand due, at least in part, to the high solubility these compounds exhibit in aqueous
solutions. In the case of 3, the [Cu(HL)Cl2]·H2O is formed from the direct reaction of CuCl2
and HL in acid HCl medium. It contains Cu(II) ions linked to a neutral HL ligand. However,
the synthesis of compound 4 was carried out starting from [{CuLI}2] (2) as a reactant and
purified HI (c) as an acid. A reduction process took place yielding the [{Cu(H2L)I2}2]
compound, which contains Cu(I) ions bonded to cationic pyridinium-2-carbaldehyde
thiosemicarbazone (H2L+) species. This result emphasizes that the HL-Cu(II) system hardly
bears the incorporation of a second iodido coligand, without experiencing the reduction of
the metallic center, in good agreement with previously reported studies [64].

2.2. Crystal Structure

As mentioned before, the crystal structures of compounds 1 and 2 are made up of
S-bridged [{CuLX}2] centrosymmetric dimers, with square-pyramidal Cu(II) ions bonded to
the pyridine and azomethine nitrogen atoms and to the thioamide sulfur atom of the TSC
ligand, which behaves as a NNS tridentate chelate ligand. The fourth basal plane position
is occupied by an halido ligand, and the apical vertex is formed by the S thioamide atom of
the neighbor [CuLX] moiety, which acts as a bridge [54,57].

The crystal structure of 3 contains monomeric [Cu(HL)Cl2] entities and one crystal-
lization water molecule per formula (Figure 1). The Cu(II) ion is coordinated to the NNS
chelating set of the TSC ligand and two chlorido ligands in an square pyramid fashion,
τ5 = (α − β)/60 = 0.06 (ranging from τ5 = 0 square pyramid SPY-5 to τ5 = 1 trigonal
bipyramid BPT-5 geometries) [73]. Selected distances and angles are provided in Table 2.
A choice of structural parameters (i.e., bonds, angles and non-bonding contacts) allows one
to identify the neutral (HL) vs. anionic (L−) character of the TSC ligand [74]. These param-
eters are C7–S, Cu···N3, N2···C7, Cu–N2–N3, N2–N3–C7, S–C7–N3 and S–C7–N4 whose
values in 3 are 1.7076(1) Å, 2.9068(3) Å, 2.3003(2) Å, 120.13(1)◦, 118.20(1)◦, 121.03(1)◦ and
121.78(1)◦, respectively, which fall in the range of those expected for Cu(II) compounds
containing non-deprotonated neutral TSC ligands. The lattice is stabilized with hydrogen
bonds involving the hydrazine N3, thioamide N4, apical chlorido Cl2 and water O atoms
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(see Supporting Information). π-π Interactions between pyridine and thioamide fragments of
neighbor entities are also present and, probably, anion-π interactions with Cl···C6i distances
of 3.4576(3) Å (i = −x + 1, −y, −z+1). The closest Cu(II) ions are placed at 4.182(6) Å.
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Figure 1. Crystal structure of the [Cu(HL)Cl2] unit in 3. Thermal ellipsoids are drawn at 30%
probability level.

Table 2. Selected bond distances (Å) and angles (◦) for compounds 3 and 4.

Bonds and Angles Compound 3 Compound 4

Cu–N1 2.0429(2) −
Cu–N2 1.9886(2) −
Cu–S 2.3057(2) 2.293(3)

Cu–Cl1/I1 2.2465(2) 2.6754(18)
Cu–Cl2/I2 2.5896(2) 2.6154(16)

Cu–I1′ − 2.7761(17)
C6–N2 1.2698(1) 1.252(12)
C7–N3 1.3355(1) 1.331(12)
C7–N4 1.3140(1) 1.311(12)
N2–N3 1.3453(1) 1.365(10)
C7–S 1.7076(1) 1.681(9)

X1–Cu–X2 97.20(1) 117.78(6)
S–Cu–X1 95.29(1) 118.25(9)
S–Cu–X2 96.51(1) 101.95(8)

N2–Cu–N1 78.66(1) −
N2–Cu–Cl1 162.89(1) −
N1–Cu–S 159.44(1) −

N2–Cu–Cl2 99.90(1) −
Cu–N2–N3 120.13(1) −
N2–N3–C7 118.20(1) 121.9(7)
N3–C7–N4 117.19(1) 117.4(8)
S–C7–N3 121.03(1) 120.2(7)
S–C7–N4 121.78(1) 122.4(7)

As a whole, the crystal structure of 3 strongly resembles that of the [Cu(TSC)Br2]·H2O
derivative [72]. The structural trends exhibited by 1 and 3 in the HL-Cu(II)-Cl system, i.e.,
formation of [{CuLCl}2] dimers, [Cu(HL)Cl2] monomers and even [CuL2] complexes in 1:2 metal-
to-ligand ratios, are also reflected by other TSC-Cu(II)-Cl and semicarbazone systems [75].

Compound 4 is formed with dinuclear [{Cu(H2L)I2}2] motives (Figure 2), where
each of the Cu(I) ions is bonded to a terminal I− ligand, the thioamide S atom and two
bridging iodido ligands that generate a [Cu2(µ-I)2] core. Note that the TSC ligand behaves
as monodentate, stabilizing soft-to-soft Cu(I)–S bonds, in good agreement with most of
the structures reported for TSC-Cu(I) species. The coordination polyhedron is clearly
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tetrahedral, τ4 = [360 − (α + β)]/141 = 0.88 (τ4 = 0 square planar SP-4 vs. τ4 = 1 tetrahedral
T-4 geometries) [76]. It is worth noting that the C7–S bond length is extraordinarily similar
to that in the (H2L)Cl·H2O compound, two molecules in the asymmetric unit with C7–S
bond lengths of 1.687(6) and 1.680(6) Å [77,78], and even shorter than that in the free ligand
HL·nH2O structure, 1.698 Å [55,79–81]. The intramolecular Cu···Cu’ distance is 3.662(3) Å,
while the closest intermolecular Cu(I) are 7.570(2) Å away. The shortening of both, Cu–S
and C7–S bond lengths in compound 4 with respect to those in compound 3 (see Table 2),
despite the former containing larger Cu(I) ions, could be due to the presence of a charge
transfer in 4 which is responsible for its reddish color.

Inorganics 2023, 11, x FOR PEER REVIEW 8 of 25 
 

 

 

Figure 2. Crystal structure of the [{Cu(H2L)I2}2] motives in 4. Thermal ellipsoids are drawn at 30% 

probability level. 

2.3. Infrared Spectroscopy 

Strong analogies are observed in the IR, the spectra of the compounds 1 and 2 (Figure 

3). However, 3 and 4 are different (Figures 4 and 5). Despite the great complexity, a tenta-

tive assignment for the bands can be completed (see Figures S1.4–S1.6, Table S1.2 and text 

below). 

The bands located above 3000 cm−1 are attributed to the υ(OH), υ(NH), υ(NH2) and 

υ(C=H) stretching vibrations [72,83]. A weak band observed between 3075 and 2970 cm−1 

would correspond to the stretching ν(CH) vibration. A broad band about 2650 cm−1 is pre-

sent in the spectrum of 3. This band can be attributed to the ν(NH) vibration involving the 

strong N3–H∙∙∙Oiii hydrogen bond (iii = −x+1, y−1/2, −z+1/2), with N3∙∙∙O distance of 

2.6886(2) Å .  

 

Figure 3. FTIR-ATR spectra of HL (red), 1 (blue) and 2 (green). Rectangles in black highlight the 

main differences between the spectra of the free ligand and [{CuLX}2] complexes. 

Figure 2. Crystal structure of the [{Cu(H2L)I2}2] motives in 4. Thermal ellipsoids are drawn at 30%
probability level.

The E configuration around the C6=N2 bond is favored due to the presence of an
intraligand N1–H···N2 bond. It contrasts with the original E configuration in compound 3,
as a result of the coordination to the metal ion. N1 and N2 exhibit a syn conformations with
respect to the C5–C6 bond, while S and N2 are anti with respect to the C7–N3 linkage. Both
conformations and the mentioned configuration exactly reproduce those of the free H2L+

cation in the (H2L)Cl·H2O compound [77]. Weak π-π interactions are established between
TSC chains of neighbor dimers (minimum distances of 3.583(11) Å N3···N2i, i = −x + 2,
−y + 1, −z + 1 and 3.409(19) Å C3···C3ii, ii = −x + 2, −y, −z + 1) and anion-π interactions
with Nl···I2iii distances of 3.627(9) Å (iii = −x + 3/2, y−1/2, −z + 1/2).

As far as we are aware, the accumulation of three I− ligands around any metal center
in TSC complexes only has one precedent in the analogous [Hg2(HL”)I4] compound that
contains Hg(II) ions linked to the benzaldehye 4N,4N-dimethylthiosemicarbazone [82] in a
way identical to that in 4.

2.3. Infrared Spectroscopy

Strong analogies are observed in the IR, the spectra of the compounds 1 and 2 (Figure 3).
However, 3 and 4 are different (Figures 4 and 5). Despite the great complexity, a tentative
assignment for the bands can be completed (see Figures S1.4–S1.6, Table S1.2 and text below).
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The bands located above 3000 cm−1 are attributed to the υ(OH), υ(NH), υ(NH2) and
υ(C=H) stretching vibrations [72,83]. A weak band observed between 3075 and 2970 cm−1

would correspond to the stretching ν(CH) vibration. A broad band about 2650 cm−1 is
present in the spectrum of 3. This band can be attributed to the ν(NH) vibration involving
the strong N3–H···Oiii hydrogen bond (iii =−x + 1, y−1/2,−z + 1/2), with N3···O distance
of 2.6886(2) Å.

The strong band observed at 1608 cm−1 mode in the HL free ligand could be attributed
to the υ(C=N) stretching modes from the pyridine and azomethine nitrogen atoms and
bending vibration of the terminal amino group δ(N4–H). This band increases in energy for
complexes, which could be related to the π-backdonation from the full metal orbitals to the
ligand ones. In addition, there are two relevant intervals at 1595–1510 and 1455–1430 cm−1,
known as tioamide I and II bands [51], which are attributed to mixtures of the stretching
and deformation modes of the C–S, C–N and N–H bonds in the thioamide group. The very
strong band at 1520 cm−1 in the free HL ligand completely vanishes on complexation in
compounds with anionic (L−) or neutral (HL) ligand, including 1, 2 and 3 (see the rectangles
in Figures 3 and 4). However, it remains slightly shifted to 1509 cm−1 in compound 4,
keeping the intensity (Figure 5). This band could be attributed to vibration modes rich in
hydrazine δ(N3–H) contribution. The lack of this band in compound 3 could be due to the
influence of the conformation in this absorption. In this sense, note the anti-conformation
exhibited by S and N2 with respect to the N3–C7 bond in free HL and free or coordinated
cationic H2L+ forms, which contrasts with the syn conformation in metal complexes where
the TSC acts as a tridentate ligand.

It must be pointed out that bands in the 1640−1580 cm−1 region are more intense
than those at 1490−1400 cm−1 for compounds with the neutral thiosemicarbazone ligand,
as 3. The opposite tendency is observed for copper(II) complexes containing anionic
deprotonated TSC, such as 1 and 2 (see regions A and B in Figure S1.7). This ratio of
intensities is useful to distinguish the presence of neutral (HL) vs. anionic (L−) forms in the
metal complexes.

Multiple bands appear around 1380–1000 cm−1, which are attributed to thioamide III [84].
The absorption at 820 cm−1 in HL is assigned to the thioamide IV mode, with high υ(C=S)
contribution. This band disappears in the compounds 1–3 whose TSC ligand behaves like
a tridentate ligand (NNS system) (rectangles in Figures 3 and 4). This disappearance has
been related to the loss of thione C=S character in TSC upon coordination of the metal ion.
On the contrary, complex 4 preserves this band without losing intensity, in good agreement
with the results with TSC monodentate ligands linked to Cu(I) ions through the thioamide
S donor atom [85]. Notwithstanding the traditionally assumed interplay between this band
and the double-bond character of the C7–S linkage, the presence of this feature could be also
related to the influence of the aforementioned anti-conformation around the N3–C7 bond
on the coupled C7–S vibration modes. This feature is common to free HL, cationic H2L+

species and some complexes with Cu(I) ions where HL behaves as a monodentate S-donor
ligand [86,87]. Several bands in the 780–720, 685–615, 780–720 and 435–415 cm−1 ranges are
assigned to different in-plane and out-of-plane vibrational modes of the pyridine ring [88].

2.4. Electronic Paramagnetic Resonance

As it has been previously reported, [{CuLX}2] (X = Cl− and I−) exhibit rhombic (g1 = 2.183,
g2 = 2.053 and g3 = 2.033) and isotropic (g = 2.074) signals, respectively [54,57].

The EPR spectrum of compound 3 shows an axial signal with g‖ = 2.209 and g⊥ = 2.050 [72].
The spectra of 1 and 3 are characteristic of dx2−y2 ground states, similar to those arisen from
Cu(II) centers in square-based pyramidal environments. The spectroscopic and magnetic
behaviors of these chlorido species are parallel to those in the bromido ones [54,72]. On
the other hand, the isotropic curve in 2 is compatible with several interpretations, such
as dynamic Jahn–Teller effects, dipolar interactions and magnetic exchange influences. In
contrast to the others, compound 4 does not show any significant EPR signal, which is



Inorganics 2023, 11, 31 10 of 24

consistent with the presence of diamagnetic Cu(I) species, except for a very small amount
of impurities of the [{CuLI}2] reactant used as starting material (Figure S1.9d).

2.5. Computational Studies
2.5.1. Thermodynamics

In order to consider the reasons to explain the differences in the behavior of the iodide
and chloride anions, the thermodynamics of the reactions of the different possibilities of the
copper complexes has been theoretically calculated for both the neutral (HL) and the anionic
(deprotonated) (L−) ligands. In the case of the complexes with the HL neutral ligand, the
formation of the chlorido derivatives seems to be thermodynamically more favored than
the formation of the iodido derivatives (see Table 3). Geometrically, the substitution of
aqua ligands with chlorido or iodido ligands mostly lead to pseudooctahedal structures or
square pyramids (derived from the octahedral geometry moving away one of the ligands;
see Figures S2.1 and S2.2).

Table 3. Free energy of the reactions for the successive substitution of aqua ligands with iodide or
chloride in [Cu(HL)(OH2)3]2+.

Isomer ∆G (kcal/mol)

[Cu(HL)(OH2)3]2+ + Cl− → [Cu(HL)Cl(OH2)2]+ + H2O

[Cu(HL)Cl(OH2)2]+ trans −29.99

[Cu(HL)Cl(OH2)2]+ cis −34.39

[Cu(HL)(OH2)3]2+ + 2Cl− → [Cu(HL)Cl2(OH2)] + 2H2O

[Cu(HL)Cl2(OH2)] trans −54.46

[Cu(HL)Cl2(OH2)] cis1 −43.81

[Cu(HL)Cl2(OH2)] cis2 −43.60

[Cu(HL)(OH2)3]2+ + 3Cl− → [Cu(HL)Cl3]− + 3H2O

[Cu(HL)Cl3]− −56.37

[Cu(HL)(OH2)3]2+ + I− → [Cu(HL)I(OH2)2]+ + H2O

[Cu(HL)I(OH2)2]+ cis1 −0.91

[Cu(HL)I(OH2)2]+ trans −2.06

[Cu(HL)I(OH2)2]+ cis2 −1.17

[Cu(HL)(OH2)3]2+ + 2I− → [Cu(HL)I2(OH2)] + 2H2O

[Cu(HL)I2(OH2)] trans −2.02

[Cu(HL)I2(OH2)] cis1 −1.15

[Cu(HL)I2(OH2)] cis2 −1.75

[Cu(HL)(OH2)3]2+ + 3I− → [Cu(HL)I3]− + 3H2O

[Cu(HL)I3]− −1.01
∆G Gibbs free energy. The labels cis and trans refer to the relative position of the aqua ligand that was substituted
in the complex [Cu(HL)(OH2)3]2+ before the optimization of the geometry.

Depending on the pH of the reaction, the ligand thiosemicarbazone can undergo
deprotonation. In the case of the deprotonated ligand, the successive substitution of aqua
ligands with chloride or iodide can be simulated as well. The structures obtained for the
different possibilities of substitution are collected in Figures S2.3 and S2.4. As in the case of
the non-deprotonated thiosemicarbazone ligand, the formation of the chlorido complexes
seems to be favored over the formation of the iodido complexes (see Table 4). In the
case of the iodido complexes, only the formation of the square pyramid obtained through
the substitution of one aqua ligand seems to be slightly favored. The geometry of the
complexes obtained through substitution of one or two aqua ligands with chlorido ligands
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are square pyramids through decoordination of one water molecule. In the case of the total
substitution of the aqua ligands, it forms a distorted octahedral structure. Interestingly, the
iodido derivatives keep the water coordinated to the copper.

Table 4. Free energy of the reactions for the successive substitution of aqua ligands with iodide or
chloride in [CuL(OH2)3]2+.

Isomer ∆G (kcal/mol)

[CuL(OH2)3]+ + Cl− → [CuLCl(OH2)2] + H2O

[CuLCl(OH2)2] cis1 −30.59

[CuLCl(OH2)2] trans −28.58

[CuLCl(OH2)2] cis2 −30.52

[CuL(OH2)3]+ + 2Cl− → [CuLCl2(OH2)]− + 2H2O

[CuLCl2(OH2)]− trans −47.96

[CuLCl2(OH2)]− cis1 −39.35

[CuLCl2(OH2)]− cis2 −39.48

[CuL(OH2)3]+ + 3Cl− → [CuLCl3]2− + 3H2O

[CuLCl3]− −35.33

[CuL(OH2)3]+ + I− → [CuLI(OH2)2] + H2O

[CuLI(OH2)2] cis1 −0.87

[CuLI(OH2)2] trans 1.67

[CuLI(OH2)2] cis2 −0.54

[CuL(OH2)3]+ + 2I− → [CuLI2(OH2)]− + 2H2O

[CuLI2(OH2)]− trans 0.30

[CuLI2(OH2)]− cis1 1.61

[CuLI2(OH2)]− cis2 0.74

[CuL(OH2)3]+ + 3I− → [CuLI3]2− + 3H2O

[CuLI3]− 3.33

∆G Gibbs free energy. The labels cis and trans refer to the relative position of the
aqua ligand that was substituted in the complex [CuL(OH2)3]+ before the optimization of
the geometry.

2.5.2. Magnetic Properties

In order to clarify the underlying reasons for the magnetic properties in compounds 1
and 2, DFT (B3LYP functional) calculations by using the experimental atomic coordinates of
the dinuclear structural unit of the complex were performed. These studies were extended
to other compounds given in Table 1, which contain neutral HL/HL’ or deprotonated
L−/L’− forms of the TSC ligands. In the following discussion, the values given for the
magnetic exchange J parameter are those derived from the Heisenberg isotropic spin
Hamiltonian H = −2JS1S2, see Scheme 5. Therein, 2J = ES=0 − ES=1 = E, where ES=0 is
calculated with the broken symmetry approach (BS); see details below and in Materials
and Methods.

Taking into account that compound 2 exhibits the largest antiferromagnetic interac-
tions in the series given in Table 1, it was our first choice to perform DFT calculations.
Surprisingly, the results of the theoretical calculations predicted intradimer ferromagnetic
interactions for 2 (Table 5). Two main features differentiate 2 from other compounds where
the same methodological approach has yielded excellent results [89]: (i) the presence of heavy
iodido ligands linked to Cu(II) ions and (ii) the connectivity of the [CuLI] monomers through
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S-bridging centers to form S-bridged dimers containing [Cu2(µ-SL)2] cores (Figure 6a). Aiming
to check the influence of the iodido coligands, the [{CuL(HCOO)}2] compound was assayed,
reviewing an S-bridged centrosymmetric dimer with the same TSC and formato HCOO−

coligands bonded to the Cu(II) ions through light O atoms (Figure 6b). Again, a ferromagnetic
result was obtained, opposite to the antiferromagnetic experimental behavior.
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and (f) [{Cu(HL)}2(ox)]2+ dinuclear entities in [{Cu(HL)}2(ox)](NO3)2.

Considering that the disagreements between experimental and calculated magnetic
interactions could be due to the influence of the S-bridging centers, the [{CuL(tfa)}2]
dinuclear complex was analyzed, reviewing an antiferromagnetic X-bridged dimer where
trifluoroacetato coligands depict a [Cu2(µ-O)2] bridging fragment (Figure 6c). The output
was also ferromagnetic.
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At this stage, when none of the calculations reproduced the sign of the experimental
magnetic interactions, we checked if the neutral (HL) or anionic (L−) form of the TSC
ligand could play any role. Note that the thione (C=S) contribution is greater in HL, while
a (C–S−) thiolate-like character dominates in (L−). A structurally very similar compound
to [{CuL(tfa)}2] containing neutral HL ligand is the antiferromagnetic [{Cu(HL)(tfa)}2][tfa]2
derivative (Figure 6d). Once again, the calculations performed on the [{Cu(HL)(tfa)}2]2+

cationic dinuclear entity resulted in ferromagnetism. However, the magnitude of the ferro-
magnetic interactions seemed to follow the experimental trend that suggests a neutral HL
form leads to lower antiferromagnetic interactions (Table 5). Finally, we tried to reproduce
this trend by comparing the calculations on [{CuL}2(ox)]·2H2O and [{Cu(HL)}2(ox)](NO3)2
compounds, whose dinuclear entities contain L− and HL forms of the ligand, respectively
(Figure 6e,f). The latter is the only ferromagnetic compound reported in Table 6. As can be
seen, despite the disagreement in the sign of the magnetic interaction in [{CuL}2(ox)]·2H2O,
the influence of the ligand seems to be supported too.

These results prompted us to take into account a possible influence of the inter-
molecular interactions in 1 and 2, as it had been proposed for other TSC-Cu(II) dinuclear
compounds showing the same contradiction between the DFT results and the magnetic mea-
surements [90]. The DFT calculations were performed following an analogous methodology
(for details, see DFT Methodology and Computational Details) and led to the following
parameters: J = 3.8 cm−1 for complex 1 and J = 2.5 cm−1 for 2. Thus, contrary to our
antiferromagnetic experimental results, these calculations again indicated that the magnetic
interactions inside the dinuclear complex would be ferromagnetic. Taking into account
these facts, we selected three additional dinuclear models extracted from the crystal struc-
ture of complex [{CuLBr}2], arbitrarily chosen to analyze independently each interdinuclear
interaction. Only one fragment of each dinuclear complex was considered in all three cases.
Model 1 considers the interaction (J1) through the (N···H−N) hydrogen bonds (see Figure
S2.5a in Supporting Information). Model 2 considers the stacking between two [CuLBr]
units (J2, Figure S2.5b). Model 3 analyzes S···H–C interactions (J3, Figure S2.5c). In all
three cases the values obtained are antiferromagnetic: J1 = −0.9 cm−1, J2 = −0.85 cm−1 and
J3 = −0.25 cm−1. The calculated dinuclear interaction for [{CuLBr}2] was also ferromagectic
(J = 4.6 cm−1). However, the simulation of these ferromagnetic intramolecular interactions
and antiferromagnetic intermolecular interactions in the [{CuLBr}2] compound yielded
unsuccessful results with respect to the χ vs. T curve (see Figure S2.6). Because of this, it is
difficult to explain the whole antiferromagnetic behavior experimentally observed taking
into account the theoretically predicted weak magnitude of them. Note that even antifer-
romagnetic chains gave better results than any of the scenarios theoretically considered
(Figure S2.6a vs. Figure S2.6f).

Table 5. Experimental (Jexp) and calculated (Jcalc) J-values, H = −2JS1S2, using the Broken Symmetry
Approach of the Exchange Coupling Constants.

Compound Reference Jcalc (cm−1) Jexp (cm−1)

[{CuLI}2] (2) - 1.50 −14.03

[{CuL(HCOO)}2] [52] 1.50 −2.8

[{CuL(tfa)}2] [55] 1.26 −3.3

[{Cu(HL)(tfa)}2][tfa]2 [55] 1.56 −0.3

[{CuL}2(ox)]·2H2O [91] 0.03 −4.30

[{Cu(HL)}2(ox)](NO3)2 [91] 3.30 5.37

In order to examine the influence of the basis set used in the calculation of the magnetic
interaction in complexes 1 and 2 per their interplay with the energy gaps between them
(∆E = ES=0 − ES=1), we calculated exchange coupling constants J based on J = (ES=0 − ES=1) [92]
that derived from the spin Hamiltonian H = −JS1S2. Considering that in the present work
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the spin Hamiltonian is defined H = −2JS1S2, the actual values of the estimated J collected
in Table 6 are divided by two. The best correlation of the calculated values with the
experimental measurements is given with the set of basis (a) in the chlorido complex.
Nevertheless, the best correlation in both complexes (chlorido and iodido) is found when
the (f) basis set is used, reproducing an antiferromagnetic behavior that is more intense for
the iodido complex but with overestimated values.

Table 6. Calculated values using the Broken Symmetry Approach of the Exchange Coupling Constants
for complexes 1 and 2. In the second column, the J values are given according to H = −2JS1S2.

Compound Basis Set * ∆E (cm−1) J (cm−1)

1

a −10.36 −5.18
b −1.22 −0.61
c 7.20 3.60
d 6.76 3.38
e −77.61 −38.80
f −28.88 −14.44

2

a 3.38 1.69
b 2.55 1.27
c 4.61 2.30
f −72.76 −36.38

* (a) SDD for Cu and 6-31G(d,p) for the other elements. (b) SDD for Cu, S and the halogen atoms, and 6-31G(d,p)
H, C and N. (c) TZVP for Cu and 6-31G(d,p) for the other elements. (d) TZVP for Cu and SV for the other elements.
(e) LANL2DZ for Cu and 6-31G(d,p) for the other elements. (f) LANL2DZ for Cu and SV for the other elements.

The disagreement and variability in the results directed us to use other alternative
approaches using techniques designed for solids. SIESTA and VASP [93–95] are efficient
codes to perform DFT calculations on periodic systems, but they can also be used to study
the electronic structure of isolated molecules through periodically repeating images of
the molecule with enough vacuum between them. SIESTA uses localized basis sets and
VASP projector-augmented waves to expand the electronic wave functions, and in both
calculations, we have used the GGA (Generalized Gradient Approximation) in the PBE
parametrization [96] to treat the exchange–correlation energy. Starting from the experimen-
tal structure, the atomic positions were relaxed for the ferromagnetic and antiferromagnetic
configurations. The evaluation of the magnetic coupling presents opposite signs with
both codes. According to SIESTA, the [{CuLCl}2] isolated dimer is ferromagnetic with a
magnetic coupling of J = 1.97 cm−1, whereas the coupling obtained using VASP is antiferro-
magnetic, J = −1.70 cm−1. In the case of the [{CuLI}2] dimer, results obtained with SIESTA
(VASP) indicate an antiferromagnetic (ferromagnetic) ground state with J = −0.53 cm−1

(J = 0.24 cm−1).
Additional relaxations from several starting structures of compound 1 were performed

using SIESTA. The monomers were placed at different distances from each other, and a
complete minimization of the atomic positions was performed for each configuration.
Results reveal the high complexity of the energy landscape even for a single dimer. It
is remarkable that the relaxations evolved to different (local) minima, with the structure
with the minimum energy being an antiferromagnetic configuration (J = −1.53 cm−1).
The energy of this structure is ~33 meV lower than the energy of the relaxation from the
experimental positions.

We have also performed a Mulliken population analysis with SIESTA in order to
study the local magnetic moment of each atom. Each of the monomers of the dimer has
an excess/defect of electronic charge equal to −1/+1 e−. The results of Table 7 show that
the magnetic moment is not exclusively localized in the Cu atoms, with the contributions
of the S, N and Cl ions being relevant. According to these results, the delocalization of
the magnetic moment could play a relevant role to stabilize the magnetic configurations,
opening new perspectives to study this family of complexes.
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Table 7. Magnetic moments of the different atoms of each monomer of the [{CuLCl}2] dimer in 1,
obtained from Mulliken populations.

Atoms Magnetic Moment (µB)

C 0.000
H 0.018
N 0.212
S 0.214
Cl 0.154
Cu 0.402

Total 1.000

In summary, the apparent simplicity of performing DFT calculations on the [{CuLXl}2
magnetic system turns into a difficult task due to the overestimation of the ferromagnetic
contribution as opposed to the antiferromagnetic behavior experimentally detected in these
complexes. The results are very sensitive to the structure and relative orientation of the two
monomers. The disagreement is especially astonishing for compound 4, which exhibits the
most intense antiferromagnetic interactions described for these derivatives (see Table 1).
Disagreements between the experimental magnetic parameters and those obtained with
DFT calculations have been reported before for dinuclear Cu(II) compounds [97,98]. This
fact suggests the need to address the problem through another methodological approach.

3. Materials and Methods
3.1. Materials

CuCl2, Cu(ClO4)2.6H2O, NaOH, NaI, ethyl alcohol, chlorohydric acid (HCl), hydroiodic
acid (HI), acetone, water and ether were purchased from commercial sources and used as
received. HL was synthesized according to previously reported methods [99]. Although
the syntheses of 1, 2 and 3 have been previously reported [54,57,72], the present manuscript
provides alternative methods that improve the yield and/or purity of the compounds.

3.2. Preparation of the Compounds
3.2.1. Compound 1 [{CuLCl}2]

Solid HL (0.180 g, 1 mmol) was added over a solution of CuCl2 (0.134 g, 1 mmol) in
15 mL of distilled water. The reaction mixture was stirred for 1 h. The pH of the solution
was adjusted to 4.5 with addition of a NaOH (1M) solution. After 2 h with continuous
stirring, the olive-green precipitate was filtered off, washed with three fractions of water,
acetone and ether and dried over vacuum. (Yield 0.25 g, 90%). Anal. Calc. for C7H7ClCuN4S.
1/3H2O (284.23 g mol−1): C, 29.6; H, 2.7; N, 19.7; S, 11.3%. Found: C, 29.6; H, 2.6; N, 19.4; S,
11.6%. Note that a small amount of water is included in the formula of 1 to fit the analysis.
ESI+ mass spectrometry (m/z): 240.99 [CuL]+, 319.98 [CuL(DMSO]+ and 520.90 [Cu2L2Cl]+.

3.2.2. Compound 2 [{CuLI}2]

Cu(ClO4)2.6H2O (0.743 g, 2 mmol) were dissolved in 30 mL of distilled water, and
HL ligand (0.364 g, 2 mmol) was added as a solid. The mixture is stirred for 1 h, and,
then, the mint-green suspension is filtered with gravity. Afterwards, a solution of NaI
(1.796 g, 12 mmol) was slowly added through an addition funnel while stirring. The
pH of the moss-green solution was adjusted to 4.5 with drops of a NaOH (1M) solution.
A suspension was formed and stirred for 2 h. The olive-green solid obtained is washed with
three fractions of water, acetone and ether and dried over vacuum. (Yield 0.29 g, 78%). Anal.
Calc. for C7H7CuIN4S (369.67 g mol−1): C, 22.7; H, 1.9; N, 15.2; S, 8.7%. Found: C, 21.7; H,
1.8; N, 14.9; S, 8.3%. ESI+ mass spectrometry (m/z): 240.98 [CuL]+, 319.98 [CuL(DMSO]+

and 612.84 [Cu2L2I]+.



Inorganics 2023, 11, 31 16 of 24

3.2.3. Compound 3 [Cu(HL)Cl2].H2O

An amount of CuCl2 (0.133 g, 1 mmol) was dissolved in 20 mL of ethanol, and solid HL
(0.180 g, 1 mmol) was added. The solution was acidified with drops of diluted HCl (3.5 mL,
1 mmol), and the mixture was kept with stirring for 2 h. The resulting solution was filtered
off, washed with three fractions of acetone and ether and dried over vacuum. Eventually,
a green precipitate was obtained. (Yield 0.28 g, 84%). Anal. Calc. for C7H10CuCl2N4OS
(332.70 g mol−1): C, 25.3; H, 3.0; N, 16.8; S, 9.6%. Found: C, 25.3; H, 3.0; N, 17.0; S, 9.2%.
ESI+ mass spectrometry (m/z): 241.97 [CuL]+, 319.98 [CuL(DMSO]+ and 520.90 [Cu2L2Cl]+.
Recrystallization of the powder (0.02 g) was performed by using a mixture of solvents
(methanol/acetonitrile, 1:1) previously acidified with 2 drops of HCl (c). Finally, 24 h later,
moss green crystals were collected.

3.2.4. Compound 4 [Cu2(H2L)I4]

The synthesis of this compound was carried out through the use of [{CuLI}2] (0.185 g,
0.25 mmol), which was also prepared in our laboratory, and purified HI (9.3 mL, 0.5 mmol).
Purification of HI was performed removing the plentiful I2 impurities through extraction
with CCl4 and, in a second step, with ethyl ether. The precursor was dissolved in 20 mL of
ethanol, and hydroiodic acid was added dropwise. The reaction was maintained under
stirring for 2 h. Afterwards, the orange solid was filtered, washed three times with acetone
and ether and dried over vacuum. (Yield 0.08 g, 15%). Anal. Calc. for C7H9CuI2N4S
(499.23 g mol−1): C, 16.9; H, 1.8; N, 11.2; S, 6.5%. Found: C, 17.1; H, 1.8; N, 11.7; S, 5.8%.ESI+

mass spectrometry (m/z): 240.99 [CuL]+, 319.98 [CuL(DMSO]+ and 610.84 [Cu2L2I]+. The
major amorphous powder contains small amounts of crystalline impurities of 2 and an
unknown compound, together with crystalline 4 itself (see Figure S1.10). Crystals suitable
for X-ray analysis were collected after the assay carried out by suspending [{CuLI}2] (0.056 g,
0.08 mmol) in ethanol (20 mL). Then purified HI was added (1 mL), and the mixture was
heated. The former green color turned into orange in 3 min, but the reaction was kept with
heating with an additional 20 min. An orange solid (0.045 g) was filtered off. This solid
was recrystallized in acetone. Due to the low solubility, the solution was heated, and a
small amount of acetonitrile was added. After filtering off, the solution was kept in air
for several days to dry. Two kinds of crystals were collected: green ones corresponding to
compound 2 and orange ones of 4.

3.3. Physical Measurements

Measurements of pH were carried out using a Crison micro-pH 2002 equipped
with a Crison 5204 electrode. Elemental microanalyses were collected using the Thermo
ScientificTM Model Flash 2000 CHNS/O Analyzers. ESI+ measurements were carried out
on DMSO solutions of the samples with a Bruker Esquire 3000 Plus LC-MS 6545 Q-TOF
Agilent instrument, using as mobile phase a water–methanol (70:30, v/v) mixture acidified
with formic acid (0.1%), pH ≈ 3. IR spectra were performed with a Jasco FT-IR 4200 Fourier
Transform Spectrophotometer at 4 cm−1 resolution, 64 scans, in the 4000–400 cm−1 (mid-
infrared) spectral range. The equipment is provided with an attenuated total reflectance
accessory, ATR PRO ONE Single reflection, equipped with a small PKS-DIF diamond
crystal. X-band EPR spectra were recorded on a Bruker EMX spectrometer (9–10 GHz),
equipped with a Bruker ER036TM NMR reference gaussmeter and an Agilent 53150A
microwave frequency counter to fit the magnetic field and the frequency inside the cav-
ity. All measurements were performed on powdered samples and at room temperature.
The simulations of the EPR spectra were performed using the WinEPR-SimFonia version
1.25 software [100].

3.4. X-ray Crystallographic Studies

Crystal data collections were performed on a STOE StadiVari Pilatus-100 K single crys-
tal diffractometer (multilayer monochromated Mo Kα radiation, λ= 0.71073 Å). Data frames
were processed using the X-Area software package [101]. Direct methods (SIR97 [102])
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were employed to solve the structures and then refined using the SHELXL-2018 [103] com-
puter program within WINGX [104]. CCDC 2221165-2221166 contain the supplementary
crystallographic data for compounds 3 and 4.

Crystal data for compound 3: C7H10Cl2CuN4OS (M = 332.69 g/mol), monoclinic,
space group P21/c (no. 14), a = 8.5028(7) Å, b = 9.6046(7) Å, c = 14.8466(13) Å, β = 99.881(7)º,
V = 1194.48(17) Å3, Z = 4, T = 293(2) K, µ(MoKα) = 2.433 mm−1, ρcalc = 1.85 g/cm3,
13,091 reflections measured (4.862º ≤ 2θ ≤ 60º), 13,091 unique (twinned sample) which
were used in all calculations. The final R1 was 0.067 (I > 2σ(I)), and wR2 was 0.1901 (all data).

Crystal data for compound 4: C14H18Cu2I4N8S2 (M = 997.16 g/mol), monoclinic,
space group P21/n (no. 14), a = 9.570(2) Å, b = 12.589(2) Å, c = 10.821(3) Å, β = 95.48(2)º,
V = 1297.7(5) Å3, Z = 2, T = 293(2) K, µ(MoKα) = 6.577 mm−1, ρcalc = 2.552 g/cm3,
10,825 reflections measured (4.976º ≤ 2θ ≤ 55º), 2974 unique (Rint = 0.1121, Rsigma = 0.1662)
which were used in all calculations. The final R1 was 0.05 (I > 2σ(I)), and wR2 was 0.0787
(all data).

3.5. Theoretical Calculations

DFT calculations in the Thermodynamics subsection were performed using Becke’s
three-parameter B3LYP exchange–correlation functional [105,106] implemented in ORCA
5.0.3 [107,108]. The basis sets used to define the atoms were def2-SVP [109] along with the
auxiliary basis set def2/J [110] for all the elements. The empirical dispersion correction
was taken into account using Grimme’s dispersion with Becke–Johnson damping, D3BJ.
The solvent (water) effects were considered within the self-consistent reaction field (SCRF)
theory using the solvation model SMD of Trulhar et al. [111]. The optimized structures are
available in the Supporting Information as xyz files.

The single-point quantum-chemical calculations of the complexes under study in
the experimental geometries have been performed to calculate the exchange coupling
constants in transition metal complexes, as was described in previous papers [92,112,113].
The exchange coupling constants are introduced with a phenomenological Heisenberg
Hamiltonian H = −2JSi·Sj (where i and j refer to the different paramagnetic centers) to
describe the interactions between the two paramagnetic transition metals present in the
dinuclear complex. The hybrid B3LYP functional [105,106] has been used in all calculations
as implemented in Gaussian03 [114] and Gaussian09 [115] packages, mixing the exact
Hartree–Fock-type exchange with Becke’s expression for the exchange functional [116] and
that proposed by Lee–Yang–Parr for the correlation contribution [106]. Such functional
provides calculated J values in excellent agreement with the experimental values [112,117,118].
Basis sets proposed by Schaefer et al. have been employed throughout: triple-z quality
for the copper atoms [119] and double-z for main group elements [120] in the case of the
studies on interdimeric magnetic interactions. Slight differences in the calculated J values
(≤1 cm−1) were obtained for 1 and 2 in the diverse calculations carried out by Gaussian
on these compounds (even three in the case of 2 before the analysis of the influence
of the basis set), depending on the used package. The calculations on different basis
sets were carried out using the B3LYP exchange–correlation functional [105,106] and, as
indicated in Table 6, the basis sets used are 6-31G(d,p) [121], SDD [122], SV [120], TZVP [119]
and LANL2DZ [90,123].

4. Conclusions

Despite the different synthetic methods used because of the reducing character of the
I− ions, the [{CuLX}2] (X = Cl− and I−) compounds show strong analogies and give rise to
S-bridged centrosymmetric dimers that exhibit antiferromagnetic behavior. On the contrary,
acid media induce quite different features. The hard Cl− coligand stabilizes the monomeric
[Cu(HL)Cl2]·H2O compound. It contains five-coordinate square-pyramidal Cu(II) ions
linked to an NNS tridentate neutral HL ligand. However, the presence of soft iodide ions
and non-aqueous highly acid media leads to the attainment of dinuclear [Cu2(H2L)I4]
species. They contain tetrahedral Cu(I) ions bonded to cationic monodentate H2L+ lig-
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ands through the thioamide S atom, while two iodido ligands act as bridges between the
metal centers. As far as we are aware, the coordination polyhedron in this compound
exhibits the greatest accumulation of I− ligands reported for any TSC-transition metal com-
plex. Computational calculations reveal a greater thermodynamic stability of the chlorido
species in these systems. The attempts to interpret the magnetic properties of the [{CuLX}2]
(X = Cl− and I−) derivatives through computational methods show a drastic dependence
on the chosen basis set for DFT calculations. None of the calculations performed correctly
describe the sign and magnitude of the exchange interactions in the iodido 4 dimer. Com-
plementary studies including new computational methodologies are currently underway
in order to explain such divergences.
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www.mdpi.com/article/10.3390/inorganics11010031/s1, Figure S1.1: H-bonds (dotted red lines) for
compounds 3 (a) and 4 (b); Figure S1.2: π–π Stacking interactions for compounds 3 (a) and 4 (b);
Figure S1.3: Anion–π interactions for compounds 3 (a) and 4 (b); Figure S1.4: FTIR-ATR spectra of
HL (red), 1 (blue) and 2 (green). Rectangles in black highlight the main differences between the
spectra of the free ligand and [{CuLX}2] complexes; Figure S1.5: FTIR ATR spectra of compounds
1 vs. 3, rectangles frame the A and B regions (see main text); Figure S1.6: FTIR-ATR spectra of
HL (red), (H2L)Cl·H2O (green) and 4 (blue). Rectangles in black show bands in the same spectral
regions for the three compounds; Figure S1.7: FTIR ATR spectra of compounds 1 vs. 3, rectangles
frame the A and B regions (see main text); Figure S1.8: ESI+ mass spectra of compounds 1 (a),
2 (b), 3 (c) and 4 (d), in DMSO solution; Figure S1.9: X-band EPR spectra at RT of compounds 1 (a),
3 (b) and 2 (c). Impurities in 4 (d), whose spectrum has been 120-fold magnified; in dotted lines,
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ligands with chlorido ones in complex with neutral HL ligand; Figure S2.2: Substitution of aqua
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with chlorido ones in complex with anionic L− ligand; Figure S2.4: Substitution of aqua ligands
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intermolecular magnetic interactions in the [{CuLBr}2] compound.; Figure S2.6: Experimental χm vs. T
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