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Introduction

A fundamental problem in topology is to determine if two spaces are home-
omorphic or not. Generally, the way to prove that two spaces are homeo-
morphic is to give a homeomorphism between them. In most of the cases,
though, this is a very difficult task. Thus, we could try a different approach
and try to determine which spaces are not homeomorphic. At first sight,
one can think that this is an even more difficult task, because, by defini-
tion, we would have to prove that no homeomorphism exists between the
two spaces. However, there are some properties that are invariant under
homeomorphisms, called topological properties, and so if we prove that
a space X satisfies some topological property that the space Y does not, we
can conclude that they are not homeomorphic.

One such topological property is compactness. The circle S1 is not home-
omorphic to R because S1 is compact and R is not. Another such topological
property is connectedness. Indeed, R is not homeomorphic to R2 because
removing a point from R disconnects the space, while R2 without a point
is still a connected space. These two properties are enough to distinguish
some basic topological spaces, but a more complicated machinery is needed
to distinguish, for example, most of the compact connected surfaces.

In the course Ampliación de topoloǵıa we studied the Fundamental
group. This group was introduced by Henri Poincaré (1854-1912). The
idea is to give a group structure to the loops in a topological space in such a
way that two homotopy equivalent topological spaces have isomorphic fun-
damental groups. Thus, we saw in the course that the fundamental group
can be used, for example, to prove that S1 is not contractible or to prove
that S2 is not homeomorphic to the 2-torus and to the Klein bottle. How-
ever, this group only involves 1-dimensional loops and fails to distinguish,
for example, the spheres Sn with n ≥ 2.

Homology was originally related with triangulation of manifolds. A sim-
plicial complex is a set composed of points, line segments, triangles and their
n-dimensional counterparts (see figure 1a). If a simplicial complex is home-
omorphic to a manifold we say that it is a triangulation of the manifold
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(a) A simplicial complex. Picture
taken from here.

(b) A triangulation of the 2-torus.
Picture taken from here.

Figure 1: Examples of simplicial complexes.

(see Figure 1b). The problem is that not all manifolds can be triangulated.
Topological manifolds of dimensions 2 and 3 can always be triangulated, but
there are compact 4-manifolds that admit no triangulation∗.

The first work related to what we now know as homology was ”Sopra gli
spazi di un numero qualunque di dimensioni”, published in 1871 by Enrico
Betti (1823-1892). There he described some topologically invariant numbers
that could be associated to a triangulated manifold describing the number
of “n-dimensional holes” for each n ≥ 0. These numbers were later known
as Betti numbers, and they were obtained in a purely combinatorial way
from the simplicial complex homeomorphic to the manifold. The first recog-
nisable theory of homology was published by Henri Poincaré in 1895. He
developed the simplicial homology of a triangulated manifold and create
what is now called a chain complex. In the early XX century, Emmy
Noether and, independently, Leopold Vietoris and Walther Mayer further
developed the general theory of homology groups, and introduced the mod-
ern algebraic approach to the matter.

However, it is not so easy to prove that simplicial homology groups are
homotopy-invariant. To prove this, a more general theory is used, called
singular homology. In this more general setting some properties of ho-
mology groups are more easily proven, and one can show that it is equivalent
to simplicial homology for triangulated manifolds. The price we pay for this
is that we get rid of the combinatorial aspect of homology and the compu-
tation of homology groups becomes a very hard task.

In 1949, J. H. C. Whitehead introduced a special kind of topological

∗https://en.wikipedia.org/wiki/E8_manifold

https://commons.wikimedia.org/wiki/File:Simplicial_complex_example.svg
https://commons.wikimedia.org/wiki/File:Torus-triang.png
https://en.wikipedia.org/wiki/E8_manifold


Introduction vii

spaces, called CW complexes, to meet the needs of homology and ho-
motopy theory. CW complexes are a generalization of simplicial complexes
and are more flexible, while retaining a combinatorial nature that allows for
computation. These spaces are constructed by starting with a discrete set
of points and successively attaching n-cells (spaces homeomorphic to Eu-
clidean n-balls) of increasing dimensions. It turns out that many interesting
spaces can be constructed in this way, and that many topological properties
can be deduced for these spaces just from their construction. In fact, every
compact manifold is homotopy-equivalent to a CW complex (see [1, Corol-
lary A.12]).

There are two standard ways to define CW complexes. The first way
is to define a CW complex as a space formed inductively, starting from a
discrete set of points X0, attaching some 1-cells to it to form a space X1,
attaching some 2-cells to it to form a space X2 and so forth. Many authors,
such as Allen Hatcher in [1], define them in this way, and it is generally
a good way to think about CW complexes to build intuition about their
properties. The other way is to define what a CW decomposition of a space
X is, and to define a CW complex as a topological space that admits such
a decomposition. Then, one can prove that the inductively built space ad-
mits a CW decomposition making it a CW complex, so both definitions are
equivalent. Other authors, such as John M. Lee in [2], choose this way. In
this work the second way was chosen because it makes proving some topo-
logical properties of CW complexes easier.

The objective of this work is to give an introduction to singular homology
groups, to present CW complexes and their basic properties and to discuss
the advantages these spaces have when computing their homology groups.
The work is structured as follows:

• Chapter 1: we introduce the general theory of singular homology
and prove the homotopy invariance of homology groups, following the
proof in [2, Theorem 13.8].

• Chapter 2: we define relative and reduced homology groups, and we
build an exact sequence that relates the homology groups of a quotient
X⧸A with the homology groups of X and A, mainly following [1].

• Chapter 3: we define CW complexes following [2] and we prove the
equivalence of the two possible definitions of CW complexes discussed
in the previous paragraph. We also introduce some examples of CW
complexes.

• Chapter 4: we study a special homology theory for CW complexes,
called cellular homology, and show that it is equivalent to singular
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homology for CW complexes. We use cellular homology to compute
the homology groups of some CW complexes introduced in Chapter 3.

As for the Appendices, in Appendix A we collect some solved exercises.
The computations of the homology groups of a point and the homology
groups of the sphere Sn are included there as exercises. In order to make the
work as self-contained as possible, we included in Appendix B and Appendix
C most of the preliminary results used during the work, proofs included.
The definition of singular homology groups requires some preliminaries in
commutative algebra which are included in Appendix B. The first part of
Appendix B is about free modules and the second part collects basic general
results about chain complexes and exact sequences. Appendix C contains
all the topological constructions that will be used to define CW complexes
and cellular homology. The only exception is Section C.7, which contains
part of the proof of Theorem 3.3.3. Moreover, Appendix D contains part
of the proof of the homotopy invariance of singular homology groups, and
Appendix E contains a complete proof of the Excision Theorem. These two
proofs are not included in the work due to their technical nature, but are
written there to make the work as self-contained as possible.
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Notation Glossary

Rn The euclidean n-space.
As a convention, if n = 0, we define R0 to be a singleton.

I The unit interval [0, 1].

Dn The unit disk in Rn. All points of distance 1 or less from the origin.
As a convention, if n = 0, we define D0 to be a singleton.

Bn The unit open ball in Rn. All points of distance less than 1 from the origin.
As a convention, if n = 0, we define B0 to be a singleton.

Sn The unit sphere in Rn+1. All points of distance 1 from the origin.

Br(x0) The open ball of radius r centered in x0 in the euclidean space Rn.

intA The topological interior of A.

clA The topological closure of A.

frA The topological boundary/frontier of A.

Id The identity function.⊔
i∈I Xi Disjoint union of the family {Xi}i∈I.∨
i∈I Xi Wedge sum of the family {Xi}i∈I .

X⧸A Topological quotient of X by A.

∼= Isomorphism.

M
N Quotient of R-modules N ⊆ M .⊕

Direct sum of modules/homomorphisms.

Ker f The kernel of the homeomorphism f .

Im f The image of the homeomorphism f .

A−B Set theoretic difference of A and B.



Chapter 1

Singular Homology

The goal of this first chapter is to give the definition of singular homology
groups and to prove that singular homology groups are homotopy invari-
ant. In the last part of the chapter we show the relation between path-
connectivity and homology groups.

1.1 Simplices

For every integer number n ≥ 0 we define the n-dimensional analogue of the
triangle: the n-simplex.

Definition 1.1.1. Let Rm be the euclidean space and p0, . . . , pn ∈ Rm be
n + 1 affinely independent points. The n-simplex generated by p0, . . . , pn
is the convex hull of {p0, . . . , pn}. That is,

[p0, . . . , pn] =
{ n∑

i=0

λipi ∈ Rm
∣∣∣ n∑
i=0

λi = 1, 0 ≤ λi ≤ 1, i = 0, . . . , n.
}
.

The points p0, . . . , pn are called the vertices of the n-simplex. The ordering
of the vertices determines the orientation of the simplex. The n-simplex

generated by {e0, . . . , en} ⊂ Rn+1, ei = (0, . . . ,
i
1, . . . , 0), with ordering ac-

cording to the increasing subscripts is called the standard n-simplex, and
it is denoted by ∆n. That is,

∆n = [e0, . . . , en]

=
{ n∑

i=0

λiei ∈ Rn+1
∣∣∣ n∑
i=0

λi = 1, 0 ≤ λi ≤ 1, i = 0, . . . , n.
}

=
{
(λ0, . . . , λn) ∈ Rn+1

∣∣∣ n∑
i=0

λi = 1, 0 ≤ λi ≤ 1, i = 0, . . . , n.
}
.

Specifying an ordering of the vertices determines the following canonical
homeomorphism from the standard n-simplex ∆n to the n-simplex [p0, . . . , pn]:

1



2 1.2. Singular Homology

φ[p0,...,pn] : ∆n −→ [p0, . . . , pn]

(λ0, . . . , λn) 7−→
∑n

i=0 λipi.

Definition 1.1.2. Let [p0, . . . , pn] be an n-simplex. A n-simplex generated
by a subset of {p0, . . . , pn} is called a face of [p0, . . . , pn]. If the vertex pi is
removed, we will write it as [p0, . . . , p̂i, . . . , pn].

Let ∆n = [e0, e1, . . . , en] be the standard n-simplex. The canonical
homeomorphism from the standard (n−1) simplex to the face [e0, . . . , êi, . . . , en]
of ∆n will be denoted as φi,n = φ[e0,...,êi,...,en]. That is,

φi,n : ∆n−1 −→ ∆n

(λ0, . . . , λn−1) 7→ (λ0, . . . , λi−1,
i

0, λi, . . . , λn−1).

1.2 Singular Homology

Definition 1.2.1. Let X be a topological space, and let n ≥ 0 be an integer.
A singular n-simplex in a space X is a continuous map σ : ∆n −→ X. We
will write

Ωn(X) = { σ : ∆n −→ X | σ continuous}.

Definition 1.2.2. Let X be a topological space. The free Z-module gen-
erated by Ωn(X) is called the n-dimensional singular chain group of
X and will be denoted as Cn(X). Elements of Cn(X) are called singular
n-chains.

Remark 1.2.1. Observe that equivalently, Cn(X) is the free abelian group
generated by Ωn(X). By the notation used in Section B.1, Cn(X) = ZΩn(X).
For more detailed information about free modules, see Section B.1.

Let σ : ∆n −→ X be a singular n-simplex. If we remove a vertex from
∆n, the resulting face of ∆n can be identified with ∆n−1 via the canonical
homeomorphism. Thus, the restriction of σ to this face of ∆n is a singular
(n− 1)-simplex. In order to define this restriction rigorously we will use the
face map.

Definition 1.2.3. Let X be a topological space and n ≥ 0. For each
i = 0, . . . , n we define the i-th face map as:

[ · ]i : Ωn(X) −→ Ωn−1(X)
σ 7−→ [σ]i = σ ◦ φi,n.

The face map sends each singular n-simplex to a singular (n− 1)-simplex.

Definition 1.2.4. Let n ≥ 1 and let σ : ∆n −→ X be a singular n-simplex.
We define the boundary of σ as

∂n(σ) =

n∑
i=0

(−1)i[σ]i ∈ Cn−1(X),
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if n ≥ 1. If n = 0, we define the boundary of any 0-singular simplex to be
0. That is, ∂0(σ) = 0 for any σ ∈ Ω0(X).

The extension of ∂n from the basis Ωn(X) to the whole Cn(X) is the
boundary map,

∂n : Cn(X) −→ Cn−1(X)∑
σ∈Ωn(X) λσσ 7→

∑
σ∈Ωn(X) λσ∂n(σ).

Remark 1.2.2. For any n ≥ 0, ∂n is a Z-module homomorphism by theorem
B.1.4 in Appendix B. In order to simplify the notation we may simply write
∂n = ∂ whenever it is clear which map it is.

Our goal now is to prove that the singular chain groups and the boundary
maps form a chain complex, that is, ∂n ◦ ∂n+1 = 0 for any n ≥ 0. A general
definition of chain complexes is given in Section B.2.

Theorem 1.2.1. For any n ≥ 0, the boundary maps satisfy the following
identity:

∂n ◦ ∂n+1 = 0.

Proof. If n = 0, as ∂0 = 0, then ∂0 ◦ ∂1 = 0.

For n ≥ 1, by linearity, it suffices to show by that ∂n(∂n+1(σ)) = 0 for
any singular n-simplex σ.

∂n(∂n+1(σ)) = ∂n(

n+1∑
i=0

(−1)i[σ]i ) =

n+1∑
i=0

(−1)i∂n([σ]i)

=

n∑
j=0

n+1∑
i=0

(−1)i(−1)j [[σ]i]j

=
∑

0≤j<i≤n+1

(−1)i+j [[σ]i]j +
∑

0≤i≤j≤n

(−1)i+j [[σ]i]j ,

rearranging indices in the second summation (i′ = j + 1, j′ = i) we get:

∂n(∂n+1(σ)) =
∑

0≤j<i≤n+1

(−1)i+j [[σ]i]j +
∑

0≤j′<i′≤n+1

(−1)i
′+j′−1[[σ]j′ ]i′−1.

Notice that for j < i:

φi,n+1 ◦ φj,n = φj,n+1 ◦ φi−1,n.

Indeed, for any (λ0, . . . , λn−1) ∈ ∆n−1,

φi,n+1(φj,n(λ0, . . . , λn−1)) = φi,n+1(λ0, . . . , λj−1,
j

0, λj , . . . , λn−1)
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= (λ0, . . . , λj−1,
j

0, λj , . . . , λi−2,
i

0, λi−1, . . . , λn−1),

φj,n+1(φi−1,n(λ0, . . . , λn−1)) = φi,n+1(λ0, . . . , λi−2,
i−1

0 , λi−1, . . . , λn−1)

= (λ0, . . . , λj−1,
j

0, λj , . . . , λi−2,
i

0, λi−1, . . . , λn−1).

Therefore, [[σ]i]j = [[σ]j ]i−1 for j < i. Knowing this,

∂n(∂n+1(σ)) =
∑

0≤j<i≤n+1

(−1)i+j [[σ]i]j+
∑

0≤j′<i′≤n+1

(−1)i
′+j′−1[[σ]j′ ]i′−1 = 0,

as each term in the first summation is cancelled by one in the second.

By the previous proposition the groups Cn(X) and the boundary map ∂
form a chain complex called singular chain complex. We will denote it
as (C∗(X), ∂∗). We can now define our main object to study.

Definition 1.2.5. Let X be a topological space. The homology groups
of the chain complex (C∗(X), ∂∗) are called singular homology groups.
That is, the n-th singular homology group is

Hn(X) =
Ker(∂n)

Im(∂n+1)
.

Elements of Ker ∂n are called cycles and elements of Im ∂n+1 are called
boundaries. The elements of Hn(X) are cosets of Im ∂n+1 called homol-
ogy classes. Two cycles with the same homology class are said to be
homologous, which means that their difference is a boundary.

The homology groups of a point can be computed directly from the
definition. This is done in Exercise 1 of Appendix A.

Example 1.2.1. Let X = {p} be a point. The homology groups of X are
the following:

Hn(X) ∼=

{
Z if n = 0,

0 otherwise.

1.3 Homotopy invariance of homology groups

1.3.1 Chain maps and induced homomorphisms

In this section we will show that any continuous map between two topo-
logical spaces induces a chain map between their singular chain complexes,
which induces a homomorphism between homology groups of their respective
chain complexes. See Section B.2 of Appendix B for the general definition
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and properties of chain maps.

Let X,Y be topological spaces and f : X −→ Y be a continuous map.
Notice that if σ ∈ Ωn(X), then f ◦ σ ∈ Ωn(Y ) as the composition of contin-
uous maps is continuous. Thus, we have a map

Ωn(X) −→ Ωn(Y )
σ 7→ f ◦ σ,

which can be extended to a homomorphism:

f# : Cn(X) −→ Cn(Y )∑
σ∈Ωn(X) λσσ 7→

∑
σ∈Ωn(X) λσ(f ◦ σ)

by Corollary B.1.5 in Appendix B. Observe that for any σ ∈ Ωn+1(X),

f#(∂(σ)) = f#(

n+1∑
i=0

(−1)i[σ]i ) =

n+1∑
i=0

(−1)if#([σ]i)

=
n+1∑
i=0

(−1)if ◦ (σ ◦ φi,n+1) =
n+1∑
i=0

(−1)i(f ◦ σ) ◦ φi,n+1

=
n+1∑
i=0

(−1)i[f ◦ σ]i =
n+1∑
i=0

(−1)i[f#(σ)]i = ∂(f#(σ)).

By linearity, the same holds for any sum in Cn+1(X). Thus, this sequence
of homomorphisms defines a chain map from the singular chain complex of
X to that of Y , that is, the following diagram commutes:

. . .
∂ // Cn+1(X)

⟲

∂ //

f#

��

Cn(X)

⟲

∂ //

f#

��

Cn−1(X)
∂ //

f#

��

. . .

. . .
∂ // Cn+1(Y )

∂ // Cn(Y )
∂ // Cn−1(Y )

∂ // . . .

This chain map induces a homomorphism f∗ : Hn(X) −→ Hn(Y ) in homol-
ogy groups called the homomorphism induced by f ,

f∗ : Hn(X) −→ Hn(Y )
c+ Im ∂n+1 7→ f#(c) + Im ∂n+1.

Proposition 1.3.1. Let X,Y and Z be topological spaces and f : X −→ Y ,
g : Y −→ Z be continuous maps. The following hold:

(i) (g ◦ f)∗ = g∗ ◦ f∗.

(ii) Id∗ = Id. That is, the identity map in a topological space induces the
identity map in the homology groups.
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Proof. Observe that for any σ ∈ Ωn(X),

(g ◦ f)#(σ) = (g ◦ f) ◦ σ = g ◦ (f ◦ σ) = g#(f#(σ)) = (g# ◦ f#)(σ).

Thus, by linearity, the same holds for any n-chain of Cn(X). By definition
of f∗ it is clear that (i) holds.

To show (ii), let Id : X −→ X be the identity map. Observe that for
any singular n-simplex σ, Id#(σ) = Id ◦ σ = σ so it is clear that Id# is the
identity map of Cn(X). Therefore, (ii) holds.

Remark 1.3.1. Observe that whenever f : X −→ Y is a homeomorphism
the map σ 7→ f ◦ σ from Ωn(X) to Ωn(Y ) is a bijection so the extension f#
is an isomorphism. Therefore, as a direct consequence of Lemma B.2.1 in
Appendix B we get that Hn(X) and Hn(Y ) are isomorphic for any n ≥ 0.
The goal of this chapter is to prove that homology groups are not only
isomorphic when the spaces are homeomorphic, they are isomorphic when
the spaces are homotopy equivalent too which is a weaker condition.

1.3.2 Homotopy invariance

We first start by giving some basic definitions.

Definition 1.3.1. Let X and Y be topological spaces and f, g : X −→ Y
be continuous functions. A homotopy from f to g is a continuous map

H : X × I −→ Y,

where I = [0, 1], such that for any x ∈ X, H(x, 0) = f(x) and H(x, 1) =
g(x). In this case, we say that f and g are homotopic and write f ≃ g or

f
H≃ g if we want to specify that the homotopy is given by H. In particular,

if g is a constant map we say that f is null-homotopic.

Definition 1.3.2. Let X and Y be topological spaces. A continuous map
f : X −→ Y is said to be a homotopy equivalence if there exists some
continuous map g : Y −→ X such that g ◦ f ≃ IdX and f ◦ g ≃ IdY . In this
case we say that X and Y are homotopy equivalent.

Definition 1.3.3. Let X be a topological space. We say that X is con-
tractible if it is homotopy equivalent to a point.

Definition 1.3.4. Let X be a toplogical space and let A ⊆ X be a sub-
space. A continuous map F : X × I → Y is a deformation retraction
of X onto A if for every x ∈ X and a ∈ A, F (x, 0) = x, F (x, 1) ∈ A and
F (a, 1) = a. In this case, we say that A is a deformation retraction of X.

If in the definition of a deformation retraction we add the requirement
that F (a, t) = a for every t ∈ I and a ∈ A, then F is called a strong
deformation retract, and A is a strong deformation retraction of X.



Chapter 1. Singular Homology 7

Our goal is to prove that homotopic maps induce the same homomor-
phism on homology. To prove that result we will use the following Lemma.
The definition of a chain homotopy is given in Section B.2. Due to the length
and technical nature of the proof of the Lemma, it is attached in Appendix
D.

Lemma 1.3.2. Let X be a topological space and I = [0, 1]. The chain maps
induced by

ι0 : X −→ X × I and ι1 : X −→ X × I
x 7→ (x, 0) x 7→ (x, 1)

are chain homotopic. In particular, they induce the same homomorphism in
homology groups.

Now we go for the main theorem of this Chapter.

Theorem 1.3.3. Let X and Y be topological spaces and let f, g : X −→
Y be continuous maps. If f and g are homotopic, they induce the same
homomorphism in homology groups. That is, f∗ = g∗.

Proof. We know by Lemma 1.3.2 that (ι0)∗ = (ι1)∗. Let f, g : X −→ Y be
two continuous maps homotopic by a homotopy H. Observe that for any
x ∈ X, (H ◦ ι0)(x) = H(x, 0) = f(x) and (H ◦ ι1)(x) = H(x, 1) = g(x), then

f∗ = (H ◦ ι0)∗ = H∗ ◦ (ι0)∗ = H∗ ◦ (ι1)∗ = (H ◦ ι1)∗ = g∗,

and we get the general result.

Corollary 1.3.4 (Homotopy invariance of homology groups). Let X and
Y be topological spaces and f : X −→ Y be a homotopy equivalence. Then,
f∗ : Hn(X) −→ Hn(Y ) is an isomorphism for every n ≥ 0.

Proof. If f is a homotopy equivalence, there exists some continuous map
g : Y −→ X such that g ◦ f ≃ IdX and f ◦ g ≃ IdY . By Theorem 1.3.3, for
every n ≥ 0,

g∗ ◦ f∗ = (g ◦ f)∗ = (IdX)∗ = IdHn(X),

and
f∗ ◦ g∗ = (f ◦ g)∗ = (IdY )∗ = IdHn(Y ).

Therefore, f∗ is a bijection.

We computed the homology groups of a point in Example 1.2.1. By
the previous result we are able to compute the homology groups of any
contractible space.

Corollary 1.3.5. Let X be a contractible topological space. Then,

Hn(X) =

{
Z if n = 0,

0 if n ≥ 1.
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1.4 Connectivity and homology groups

We are now ready to study the connection between connectivity and homol-
ogy groups.

Proposition 1.4.1. Let {Xi}i∈I be a family of topological spaces. Then, the
canonical injections ıi : Xi ↪→

⊔
i∈I Xi induce the isomorphism ⊕i∈I(ıi)∗ :⊕

i∈I Hn(Xi) −→ Hn(
⊔

i∈I Xi) for any n ≥ 0.

Proof. Let ∂i
n : Cn(Xi) −→ Cn−1(Xi) be the boundary map of the chain

C∗(Xi). Observe that the sums ⊕i∈IC∗(Xi) form a chain complex with the
boundary maps ⊕i∈I∂

i
n.

Consider the following map:

⊕i∈I(ıi)# :
⊕

i∈I Cn(Xi) −→ Cn(
⊔

i∈I Xi)∑
i∈I

∑
σ∈Ωn(Xi)

λσσ 7−→
∑

i∈I
∑

σ∈Ωn(Xi)
λσ(ıi ◦ σ).

Notice that
∑

i∈I
∑

σ∈Ωn(Xi)
λσ(ıi ◦ σ) = 0 if and only if λσ = 0 for every

σ ∈ Ωn(Xi), i ∈ I. Thus, the map is injective.

The surjectivity of the map comes from the fact that each ıi(Xi) is
disconnected from the other components in the disjoint union. Take any
σ ∈ Ωn(

⊔
i∈I Xi). ∆n is connected so the image σ(∆n) is connected too by

continuity. Thus, it is contained in some unique component ıi(Xi). There-
fore, as each restriction ıi|Xi

is a homeomorphism, (ıi |Xi
)−1 ◦ σ ∈ Ωn(Xi)

and its image by (ıi)# is obviously σ. Therefore each sum in Cn(
⊔

i∈I Xi)
can be divided into sums in which all the singular simplices are images of
simplices in a unique Cn(Xi). This means that the map is surjective.

As each (ıi)# is a chain map from (C∗(Xi), ∂
i
∗) to (C∗(⊔i∈IXi), ∂∗), the

sum⊕i∈I(ıi)# is a chain map from (⊕i∈IC∗(Xi),⊕i∈I∂
i
n) to (C∗(⊔i∈IXi), ∂∗).

Thus it induces an isomorphism (⊕i∈I(ıi)#)∗ : Hn(⊕i∈IC∗(Xi)) → Hn(⊔i∈IXi)
for every n ≥ 0. We also have an isomorphism

⊕
i∈I

Hn(Xi) =
⊕
i∈I

Ker ∂i
n

Im ∂i
n

→ ⊕i∈I Ker ∂i
n

⊕i∈I Im ∂i
n

=
Ker⊕i∈I∂

i
n

Im⊕i∈I∂i
n

= Hn(⊕i∈IC∗(Xi)),

where the equality ⊕i∈I Ker ∂i
n

⊕i∈I Im ∂i
n

= Ker⊕i∈I∂
i
n

Im⊕i∈I∂i
n

holds due to Proposition B.1.7

in Appendix B. Finally, observe that the composition of the two previous
isomorphisms is exactly ⊕i∈I(ıi)∗. Hence, ⊕i∈I(ıi)∗ is also an isomorphism.

Any topological space X is the disjoint union of its connected compo-
nents with the inclusion maps as canonical injections. Thus, Proposition
1.4.1 directly implies the following result.
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Proposition 1.4.2. Let X be a topological space and {Xi}i∈I be its con-
nected components. The inclusions ıi : Xi ↪→ X induce an isomorphism
⊕i∈I(ıi)∗ :

⊕
i∈I Hn(Xi) −→ Hn(X) for every n ≥ 0.

Proposition 1.4.3. Let X be a nonempty, path connected topological space.
Then,

H0(X) ∼= Z.

Proof. By definition, we know that H0(X) = C0(X)
Im ∂1

. We define the following
homomorphism:

ξ : C0(X) −→ Z∑
σ∈Ω0(X) λσσ 7→

∑
σ∈Ω0(X) λσ.

Since X is nonempty, Ω0(X) is nonempty. Thus, for any λ ∈ Z there is
λσ ∈ C0(X) such that ξ(λσ) = λ, so ξ is surjective.

We aim to prove that Ker ξ = Im ∂1. For any singular 1-simplex σ :
∆1 → X we have ξ(∂1(σ)) = ξ([σ]0 − [σ]1) = ξ([σ]0) − ξ([σ]1) = 1 − 1 = 0.
Thus, Im ∂1 ⊆ Ker ξ.

For the reverse inclusion, let
∑

σ∈Ω0(X) λσσ ∈ Ker ξ. This means that∑
σ∈Ω0(X) λσ = 0. The maps σ ∈ Ω0(X) map the point ∆0 = 1 ∈ R to a

point in X. Let x0 ∈ X. For any 0-simplex σ, as X is path-connected, there
is a path ασ : [0, 1] −→ X from σ(1) to x0. Let σ

′ be the singular 0-simplex
such that σ′(1) = x0. Consider the following map:

π : ∆1 −→ [0, 1]
(λ0, λ1) 7→ λ1.

The map π is continuous and set τσ = ασ ◦ π ∈ Ω1(X). Notice that

[τσ]0(1) = ασ

(
π( φ0,1(1) )

)
= ασ

(
π(0, 1)

)
= ασ(0) = σ(1) ⇒ [τσ]0 = σ,

[τσ]1(1) = ασ

(
π( φ1,1(1) )

)
= ασ

(
π(1, 0)

)
= ασ(1) = x0 = σ′(1) ⇒ [τσ]1 = σ′.

Thus,

∂1(τσ) = [τσ]0 − [τσ]1 = σ − σ′,

and

∂1
( ∑
σ∈Ω0(X)

λστσ
)
=

∑
σ∈Ω0(X)

λσ∂1(τσ) =
∑

σ∈Ω0(X)

λσσ −
∑

σ∈Ω0(X)

λσσ
′

=
∑

σ∈Ω0(X)

λσσ −
( ∑
σ∈Ω0(X)

λσ

)
σ′ =

∑
σ∈Ω0(X)

λσσ.
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This means that
∑

σ∈Ω0(X) λσσ is the boundary of
∑

σ∈Ω0(X) λστσ ∈ C1(X),
so

∑
σ∈Ω0(X) λσσ ∈ Im ∂1, which proves that Ker ξ ⊆ Im ∂1. By the first

isomorphism theorem,

H0(X) =
C0(X)

Im ∂1
=

C0(X)

Ker ξ
∼= Z.

Corollary 1.4.4. Let X be a topological space. If {Xi}i∈I are the path-
connected components of X,

H0(X) ∼=
⊕
i∈I

Z.

Proof. By Propositions 1.4.2 and 1.4.3,

H0(X) ∼=
⊕
i∈I

H0(Xk) ∼=
⊕
i∈I

Z.

Remark 1.4.1. By Corollary 1.4.4, the zero homology group is completely
determined by the path-connected components of the space. However, in
general, it is not possible to compute the rest of the homology groups just
from the definition. By Corollary 1.3.5, we know how homology groups of
contractible spaces are, but it might not be possible to make computations in
such a direct way for more complicated spaces. Singular homology groups
are easy to define and we have proved that they are homotopy-invariant,
but more work is required in order to compute the homology groups of more
topological spaces.



Chapter 2

The exact sequence for good
pairs

Let X be a topological space and let A ⊆ X be a subspace. In this second
Chapter we build an exact sequence that relates the homology groups of
the quotient space X⧸A with the homology groups of X and A. This exact
sequence will be used to compute the homology groups of the sphere Sn.
The definition of the quotient X⧸A is given in Section C.2, and the general
definition and basic properties of exact sequences are given in Section B.2.

2.1 Relative homology groups

It sometimes happens in mathematics that by ignoring a certain amount
of data one obtains a simpler theory that gives results that could not be
obtained in the original setting. An example of this is arithmetic mod n,
where one ignores multiples of n. At first, one could think that the sim-
plest analogy of this in homology would be that if A ⊆ X, then Hn(A)

would be contained in Hn(X) as a subgroup and the quotient group Hn(X)
Hn(A)

would be isomorphic to Hn(X⧸A). While this does hold in some cases, if
it held in general then homology theory would collapse since every space X
can be embedded as a subspace of a contractible space, namely the cone
CX = (X × I)/(X × {0}), which has trivial homology groups.

It turns out that if one ignores all singular chains in a subspace of a
given space we obtain a better result.

Definition 2.1.1. Let X be a topological space and let A ⊆ X be a sub-
space. As Cn(A) ⊆ Cn(X), we define the n-th relative chain group to
be the quotient

Cn(X,A) =
Cn(X)

Cn(A)
.

11
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Elements in Cn(X,A) are called relative chains.

The boundary map ∂ : Cn(X) −→ Cn−1(X) takes Cn(A) to Cn−1(A),
so it induces a quotient boundary map ∂ : Cn(X,A) → Cn−1(X,A), called
relative boundary map, that sends each relative chain c+ Cn(A) to the
class ∂(c) + Cn−1(A). Letting n vary, we obtain the following sequence:

. . .
∂−→ Cn(X,A)

∂−→ Cn−1(X,A)
∂−→ . . .

∂−→ C0(X,A) → 0 (2.1)

The relation ∂2 = 0 holds for these boundary maps since it holds before
passing to quotient groups. So (2.1) is a chain complex, called relative
chain complex, and denoted by (C∗(X,A), ∂∗).

Definition 2.1.2. The homology groups of the chain complex (C∗(X,A), ∂∗)
are called relative homology groups and are denoted by Hn(X,A).

If A = {x0} is a point, we simply write Cn(X, {x0}) = Cn(X,x0) and
Hn(X, {x0}) = Hn(X,x0).

Remark 2.1.1. From the definition of the relative boundary map we ob-
serve that:

• The elements in Hn(X,A) are represented by relative cycles. That
is, chains c ∈ Cn(X) such that ∂(c) ∈ Cn−1(A).

• A trivial relative cycle c is a relative boundary. That is, c = ∂(b)+a
for some b ∈ Cn+1(X) and a ∈ Cn(A).

These properties make precise the intuitive idea that Hn(X,A) is “ho-
mology of X modulo A”.

Let ı : Cn(A) ↪→ Cn(X) be the inclusion map and π : Cn(X) −→
Cn(X,A) be the quotient map. Consider the following diagram:

0 // Cn(A)
ı //

∂

��

Cn(X)
π //

∂

��

Cn(X,A) //

∂

��

0

0 // Cn−1(A)
ı // Cn−1(X)

π // Cn−1(X,A) // 0.

Observe that by definition of the relative boundary map the diagram is com-
mutative so ι and π are chain maps. Moreover ı is injective, π is surjective
and Im ı = Kerπ = Cn(A), so we have the following short exact sequence:

0 → Cn(A)
ı−→ Cn(X)

π−→ Cn(X,A) → 0. (2.2)
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Short exact sequences of chain complexes induce a long exact sequence in
their homology groups. This result is called Zig-zag lemma, and it is
explained and proved in detail in Lemma B.2.3 in Appendix B. Thus, relative
homology groups fit into the following long exact sequence:

. . . → Hn(A)
ı∗−→ Hn(X)

π∗−→ Hn(X,A)
∂∗−→ Hn−1(A) → . . .

. . . → H0(X,A) → 0. (2.3)

The connecting homomorphism ∂∗ : Hn(X,A) −→ Hn−1(A) has a sim-
ple description. If a class in Hn(X,A) is represented by a relative cycle
c ∈ Cn(X,A), the image is the class of ∂(c) in Hn−1(A).

There are induced homomorphisms for relative homology groups just as
there are in the non-relative, or “absolute”, case.

Definition 2.1.3. Let X, Y be topological spaces and let A ⊆ X, B ⊆ Y
be subspaces. A map f : X −→ Y with f(A) ⊆ B is called a pair map and
it is denoted as f : (X,A) −→ (Y,B).

Pair maps induce well defined homomorphisms f# : Cn(X,A) → Cn(Y,B)
in the quotient groups since the chain map f# : Cn(X) → Cn(Y ) takes
Cn(A) to Cn(B). This happens because for every σ ∈ Ωn(A), f ◦σ ∈ Ωn(B).
The relation f# ◦ ∂ = ∂ ◦ f# clearly holds as it holds before passing to
the quotient. Therefore, these new chain maps induce homomorphisms
f∗ : Hn(X,A) −→ Hn(Y,B). All the properties given in Proposition 1.3.1
also hold for the induced maps in relative homology.

We now want to give the homotopy invariance result for relative homol-
ogy. For that, we need to give the notion of homotopy for a pair.

Definition 2.1.4. Two maps f, g : (X,A) −→ (Y,B) are said to be pair
homotopic if there exists a homotopy H : X × I −→ Y from f to g such
that for any a ∈ A and t ∈ I, H(a, t) ∈ B. In that case, we will say that H
is a homotopy of pairs.

Definition 2.1.5. Let X,Y be topological spaces and A ⊆ X, B ⊆ Y .
A map f : (X,A) −→ (Y,B) is said to be a homotopy equivalence of
the pairs (X,A) and (Y,B) if there is a map g : (Y,B) −→ (X,A) such
that f ◦ g and g ◦ f are pair homotopic to IdY : (Y,B) −→ (Y,B) and
IdX : (X,A) −→ (X,A) respectively.

If such a map f exists between the pairs (X,A) and (Y,B), the pairs are
said to be homotopy equivalent.

The homotopy invariance of relative homology groups can be proven in
the same way as in the non-relative case. Observe that the two maps defined
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in Lemma 1.3.2 are pair maps (X,A) → (X × I, A× I), and one can prove
that the chain maps induced by them in the relative chain complex are chain
homotopic in the same way.

Theorem 2.1.1. If two pair maps f, g : (X,A) −→ (Y,B) are pair homo-
topic, then f∗ = g∗ : Hn(X,A) −→ Hn(Y,B).

We also have the analogue of Proposition 1.4.1 for the relative case.

Proposition 2.1.2. Let {Xi}i∈I be a family of topological spaces and a
subset Ai ⊆ Xi for each i ∈ I. Then, the canonical injections ıi : (Xi, Ai) ↪→
(⊔i∈IXi,⊔i∈IAi) induce an isomorphism ⊕i∈I(ıi)∗ :

⊕
i∈I Hn(Xi, Ai) −→

Hn(⊔i∈IXi,⊔i∈IAi).

Proof. We observe that the isomorphism in Proposition 1.4.1⊕
i∈I Cn(Xi) −→ Cn(

⊔
i∈I Xi)∑

i∈I
∑

σ∈Ωn(Xi)
λσσ 7−→

∑
i∈I

∑
σ∈Ωn(Xi)

λσ(ıi ◦ σ),

sends
⊕

i∈I Cn(Ai) to Cn(
⊔

i∈I Ai). Therefore, this map induces the follow-
ing isomorphism:

⊕i∈ICn(Xi)

⊕i∈ICn(Ai)
−→ Cn(⊔i∈IXi)

Cn(⊔i∈IAi)
= Cn(⊔i∈IXi,⊔i∈IAi).

On the other hand, we also have the following isomorphism:⊕
i∈I

Cn(Xi, Ai) =
⊕
i∈I

Cn(Xi)

Cn(Ai)
−→ ⊕i∈ICn(Xi)

⊕i∈ICn(Ai)
.

The composition of both isomorphisms is exactly

⊕i∈I(ıi)# :
⊕
i∈I

Cn(Xi, Ai) −→ Cn(⊔i∈IXi,⊔i∈IAi),

so it is also an isomorphism. The result for relative homology groups follows
as in Proposition 1.4.1.

An easy generalization of the long exact sequence of a pair (X,A) is the
long exact sequence of a triple (X,A,B) where B ⊆ A ⊆ X. As B ⊆ A,
we can consider the inclusion ı : Cn(A,B) ↪→ Cn(X,B) and the projection
π : Cn(X,B) → Cn(X,A). These are chain maps too and they form the
following short exact sequence:

0 → Cn(A,B)
ı−→ Cn(X,B)

π−→ Cn(X,A) → 0.

By Lemma B.2.3 the homology groups of each chain complex fit into the
following long exact sequence:

. . . → Hn(A,B)
ı∗−→ Hn(X,B)

π∗−→ Hn(X,A)
∂∗−→ Hn−1(A,B) → . . . (2.4)



Chapter 2. The exact sequence for good pairs 15

A fundamental property of relative homology groups is the Excision
theorem, describing when the relative homology groups Hn(X,A) are un-
affected by deleting (or excising) a subset Z ⊆ A.

Theorem 2.1.3 (Excision theorem). Let X be a topological space and Z ⊆
A ⊆ X such that the closure of Z is contained in the interior of A. Then,
the inclusion (X−Z,A−Z) ↪→ (X,A) induces isomorphisms Hn(X−Z,A−
Z) → Hn(X,A) for all n ≥ 0.

Equivalently, for subspaces A,B ⊆ X whose interiors cover X, the inclu-
sion (B,A∩B) ↪→ (X,A) induces isomorphisms Hn(B,A∩B) → Hn(X,A)
for all n ≥ 0.

The proof of this theorem involves some technical results and is included
in Appendix E. The equivalence of the two assertions is also explained there.

2.2 Reduced homology groups and the exact se-
quence for good pairs

Let X be a topological space and A ⊆ X. We want to obtain a connection
between the relative homology groups and the homology groups of the quo-
tient X/A. To do this, it is convenient to have a slightly modified version of
homology for which a point has trivial homology groups in all dimensions,
including zero. This is done by defining the reduced homology groups.
Consider the map ξ defined in Proposition 1.4.3:

ξ : C0(X) −→ Z∑
σ∈Ω0(X) λσσ 7→

∑
σ∈Ω0(X) λσ.

For σ ∈ C1(X), notice that ∂(σ) = [σ]0 − [σ]1, so ξ(∂(σ)) = 1− 1 = 0. This
means that ξ ◦ ∂ = 0 and, as ξ is surjective, we can extend the usual chain
complex to

. . .
∂n+1−→ Cn(X)

∂n−→ . . . → C2(X)
∂2−→ C1(X)

∂1−→ C0(X)
ξ−→ Z → 0. (2.5)

Definition 2.2.1. The homology groups of the chain complex (2.5) are
called reduced homology groups and are denoted as H̃n(X).

It is clear from the definition that Hn(X) = H̃n(X) for any n ≥ 1.
Moreover, as Im ∂1 ⊆ Ker ξ, the map

H0(X) −→ Z
c+ Im ∂1 7→ ξ(c),
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is a well defined surjective homomorphism. Its kernel is Ker ξ
Im ∂1

which is H̃0(X)
by definition. By the first isomorphism theorem, we get that

H0(X)

H̃0(X)
∼= Z,

which is equivalent to saying that H0(X) ∼= H̃0(X)⊕ Z.

Remark 2.2.1. Let X and Y be topological spaces. We will now show that
continuous maps f : X −→ Y also induce homomorphisms in the reduced
homology groups. Consider the diagram:

. . .
∂ // Cn(X)

f#
��

∂ // Cn−1(X)

f#
��

∂ // . . .
∂ // C0(X)

f#
��

ξ // Z

Id
��

∂ // 0

. . .
∂ // Cn(Y )

∂ // Cn−1(Y )
∂ // . . .

∂ // C0(Y )
ξ // Z // 0.

We already know that ∂◦f# = f#◦∂, so it suffices to show that ξ = ξ◦f#.
Let

∑
σ∈Ω0(X) λσσ ∈ C0(X). Indeed,

ξ(f#(
∑

σ∈Ω0(X)

λσσ)) = ξ(
∑

σ∈Ω0(X)

λσ(f ◦ σ)) =
∑

σ∈Ω0(X)

λσ = ξ(
∑

σ∈Ω0(X)

λσσ).

Thus, we have an induced homomorphism f∗ : H̃n(X) −→ H̃n(Y ) for any
n ≥ 0. This also means that if we restrict an induced homomorphism be-
tween non-reduced homology groups f∗ : Hn(X) −→ Hn(Y ) to H̃n(X) we

get the induced homomorphism between reduced homology groups H̃n(X)
f∗−→

H̃n(Y ). Thus, Theorem 1.3.3 and Corollary 1.3.4 can be reformulated for
the reduced case.

Theorem 2.2.1. Let X and Y be topological spaces and let f, g : X →
Y be continuous maps. If f and g are homotopic, they induce the same
homomorphism in the reduced homology groups.

In particular, if f is a homotopy equivalence then the induced homomor-
phism in the reduced homology groups is an isomorphism.

We are first going to relate reduced homology groups and relative ho-
mology groups by a long exact sequence. Let us extend each chain in (2.2)
as we did in (2.5). In this way, obtain the following diagram:
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...

∂
��

...

∂
��

...

∂
��

0 // Cn(A)
ı //

∂��

Cn(X)
π //

∂��

Cn(X,A)

∂��

// 0

0 // Cn−1(A)
ı //

∂��

Cn−1(X)
π //

∂��

Cn−1(X,A)

∂��

// 0

...

∂
��

...

∂
��

...

∂
��

0 // C0(A)
ı //

ξ
��

C0(X)
π //

ξ
��

C0(X,A)

��

// 0

0 // Z Id //

��

Z //

��

0

��

// 0

0 0 0

It is clear that the diagram is commutative, and the horizontal rows are
short exact sequences. Therefore, by Lemma B.2.3 there is a long exact
sequence:

. . . → H̃n(A)
ı∗−→ H̃n(X)

π∗−→ Hn(X,A)
∂∗−→ H̃n−1(A) → . . .

. . . → H0(X,A) → 0. (2.6)

From this sequence we get the following result:

Proposition 2.2.2. Let X be a topological space and x0 ∈ X be a point.
Then, for every n ≥ 0 the quotient map π : Cn(X) −→ Cn(X,x0) induces
isomorphisms π∗ : H̃n(X) −→ Hn(X,x0).

Proof. Observe that if A = {x0}, H̃n(A) ∼= 0 for every n so from the long
exact sequence (2.6) we get the following exact sequence:

0 → H̃n(X)
π∗−→ Hn(X,x0) → 0

which means that H̃n(X)
π∗−→ Hn(X,x0) are isomorphisms.

Our goal now is to study under which conditions the relative homology
groups of a pair (X,A) and the reduced homology groups of the quotient
X⧸A are isomorphic. Once we know this, we will be able to substitute

Hn(X,A) by H̃n(X⧸A) in the sequence (2.6) obtaining the desired exact
sequence.

Definition 2.2.2. Let X be a topological space and A ⊆ X a nonempty
closed subspace of X. The pair (X,A) is called a good pair if there exists
some open subset U ⊆ X such that A ⊆ U and A is a strong deformation
retract of U .
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Proposition 2.2.3. Let (X,A) be a good pair. The quotient map q :

(X,A) −→
(X⧸A,A⧸A

)
induces isomorphisms

q∗ : Hn(X,A) −→ Hn

(X⧸A,A⧸A)
for all n ≥ 0.

Proof. Let U be an open subset of X that strongly deformation retracts
onto A. On the one hand we have the long exact sequence for the triple
(X,U,A):

. . . → Hn(U,A)
ı∗−→ Hn(X,A)

π∗−→ Hn(X,U)
∂∗−→ Hn−1(U,A) → . . .

Observe that as A is a strong deformation retract of U the pairs (U,A)
and (A,A) are homotopy equivalent. Therefore, Hn(U,A) ∼= Hn(A,A) ∼= 0.
Thus, for any n, we have the following exact sequence:

0 → Hn(X,A) −→ Hn(X,U) → 0,

and Hn(X,A)
π∗−→ Hn(X,U) is an isomorphism.

On the other hand, U is an strong deformation retract of A, so there is
an strong deformation retraction F : U × I → A such that F (a, t) = a for

any t ∈ [0, 1] and a ∈ A. Then, we may define F : U⧸A × [0, 1] → A⧸A in
the quotient as F (q(x), t) = q(F (x, t)). It is clearly a strong deformation

retract. Therefore, as before,
(U⧸A,A⧸A

)
and

(A⧸A,A⧸A
)
are homotopy

equivalent and from the long exact sequence for the triple
(X⧸A,U⧸A,A⧸A

)
we get an isomorphism Hn

(X⧸A,A⧸A
)
→ Hn

(X⧸A,U⧸A
)
for every n ≥ 0.

Moreover, by Theorem 2.1.3 we have isomorphisms Hn(X−A,U−A) →
Hn(X,U) and Hn

(X⧸A−A⧸A,U⧸A−A⧸A
)
−→ Hn

(X⧸A,U⧸A
)
induced by

inclusions (X − A,U − A) ↪→ (X,U) and
(X⧸A − A⧸A,

U⧸A − A⧸A
)
↪→(X⧸A,U⧸A

)
respectively. These maps fit into the following diagram:

Hn(X,A) //

q∗

��

Hn(X,U)

q∗

��

Hn(X −A,U −A)oo

q∗

��
Hn

(X⧸A,A⧸A
)

// Hn

(X⧸A,U⧸A
)

Hn

(X⧸A−A⧸A,U⧸A−A⧸A
)

oo

The horizontal maps are all isomorphisms. The left isomorphisms are in-
duced by quotient maps of groups and the right isomorphisms are induced
by inclusions. Therefore, is clear that the diagram is commutative.
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Finally, as A is closed, by Proposition C.2.1 q|X−A
is a homeomorphism

and thus, the vertical map q∗ on the right hand side is an isomorphism. By
commutatvity, we have that all the maps q∗ are isomorphisms, getting the
result.

Corollary 2.2.4. Let (X,A) be a good pair. Then, for every n ≥ 0 we have
an isomorphism Hn(X,A) → H̃n(X/A).

Proof. On the one hand, notice that as the space A⧸A is a singleton con-

tained in X/A we have an isomorphism H̃n(X/A)
π∗−→ Hn(X/A,A/A) for

any n ≥ 0 by Proposition 2.2.2. On the other hand, by Proposition 2.2.3,
we have an isomorphism Hn(X,A)

q∗−→ Hn(X/A,A/A) for any n ≥ 0. Thus,
the composition

Hn(X,A)
π−1
∗ ◦ q∗−→ H̃n(X/A)

is an isomorphism for any n ≥ 0.

By the previous corollary and Remark B.2.3 we can substitute Hn(X,A)

by H̃n

(X⧸A)
in the exact sequence (2.6) and the next result follows.

Theorem 2.2.5 (The exact sequence for good pairs). Let (X,A) be a good
pair. Then, there is an exact sequence

. . . → H̃n(A)
ı∗−→ H̃n(X)

q∗−→ H̃n(X/A)
∂∗−→ H̃n−1(A) → . . .

. . . → H̃0(X/A) → {0}

where ı : A ↪→ X is the inclusion and q : X −→ X/A the quotient map.

The homology groups of the spheres Sn can be computed using Theorem
2.2.5. This is done in Exercise 2 of Appendix A.

Example 2.2.1. For any n ≥ 0, the reduced homology groups of the sphere
are the following:

H̃m(Sn) ∼=

{
Z if m = n,

0 if m ̸= n.

It is important to remark that Proposition 1.4.1 does not hold in the
reduced case. For example, let X = {p, q} be two distinct points. By
Proposition 1.4.1, H0(X) ∼= Z ⊕ Z and then, H̃0(X) ∼= Z. But this is not
the same as H̃0({p}) ⊕ H̃0({q}) = 0 ⊕ 0 = 0. The solution is to consider
the wedge sum instead of the disjoint union, that is, a ”one-point union” of
a family of topological spaces. The definition of the wedge sum is given in
Section C.3.



20 2.2. Reduced homology groups and the exact sequence for good pairs

Corollary 2.2.6. Let {Xi}i∈I be a family of topological spaces. If the wedge
sum

∨
i∈I Xi is formed at base points xi ∈ Xi so that the pairs (Xi, xi) are

good, the inclusions ιi : Xi −→
∨

i∈I Xi induce an isomorphism ⊕i∈I(ιi)∗ :⊕
i∈I H̃n(Xi) −→ H̃n(

∨
i∈I Xi).

Proof. Let X =
⊔

i∈I Xi and A =
⊔

i∈I{xi}. By definition,
∨

i∈I Xi = X⧸A.

Let ȷi : Xi ↪→ X be the canonical injection and let q : X → X⧸A be the
quotient map. Then, ιi = q ◦ ȷi for any i ∈ I.

We first show that the pair (X,A) is good. To prove this, let Ui ⊆ Xi be
the open set that strongly deformation retracts to {xi} via Fi : Ui×I → {xi}.
On the one hand, ı−1

j (A) = {xj} is closed in Xj as (Xj , xj) is a good
pair for any j ∈ I. Thus,

⊔
i∈I{xi} is a closed subset. On the other

hand, strong deformation retract of X onto A is F : X × I → A given
by F ((x, i), t) = ıi(Fi(x, t)).

Let πi : Cn(Xi) → Cn(Xi, xi) and π : Cn(
∨

i∈I Xi) = Cn

(X⧸A)
−→

Cn

(X⧸A,A⧸A
)
be quotient maps of modules. Then, by Proposition 2.1.2,

Proposition 2.2.3 and Corollary 2.2.4 we have the following sequence of iso-
morphisms:

⊕
i∈I

H̃n(Xi)
⊕i∈I(πi)∗−→

⊕
i∈I

Hn(Xi, xi)
⊕i∈I(ıi)∗−→ Hn(X,A)

π−1
∗ ◦ q∗−→ H̃n(

∨
i∈I

Xi).

This composition is precisely the map ⊕i∈I(ιi)∗.



Chapter 3

CW complexes

In this chapter we will follow [2] to provide the definition and basic prop-
erties of CW Complexes. We first define what a cell decomposition of a
space is, and we define CW complexes as spaces that have a cell decompo-
sition that meets two additional properties. In the last part of the chapter
we prove that the spaces that have been built attaching cells of increasing
dimensions are also CW complexes, showing that both definitions explained
in the introduction are actually equivalent.

3.1 Cell decompositions

Definition 3.1.1. Let n ≥ 0. An open n-cell is a topological space that is
homeomorphic to the open unit ball Bn and a closed n-cell is a topological
space that is homeomorphic to the closed disk Dn. Points are considered
both open and closed 0-cells, since we define D0 and B0 to be singletons.

For an open or closed n-cell we say that n is the dimension of the cell.

Remark 3.1.1. The fact that the dimension of a cell complex is well defined
relies on the Theorem of Invariance of Dimension. This theorem states that
no non empty open subset of Rn can be homeomorphic to any open subset of
Rm if m ̸= n. Thus, an n-cell can not be a m-cell for m ̸= n. This theorem
is proved in Exercise 4 in Appendix A.

Proposition 3.1.1. Let n ≥ 1 and let D ⊆ Rn be a compact convex subset
with nonempty interior. Then, given any point p ∈ intD, there exists a
homeomorphism F : Dn −→ D that sends 0 to p, Bn to intD and Sn−1 to
frD. In particular, D is a closed n-cell and its interior is an open n-cell.

Proof. Proof left as an exercise. See Appendix A, Exercise 6.

Definition 3.1.2. Let n ≥ 1, let D be a closed n-cell and let f : Dn → D be
a homeomorphism. We define the boundary ofD as the set frD = f(Sn−1),
and the interior of D as intD = f(Bn).

21



22 3.1. Cell decompositions

Remark 3.1.2. The boundary and the interior of a closed n-cell are well
defined because any homeomorphism Dn → Dn maps Sn−1 to Sn−1 and Bn

to Bn. This fact is proved in Excercise 3, Appendix A. Thus, if we have
two homeomorphisms f, g : Dn → D, then, since g−1 ◦ f : Dn → Dn is a
homeomorphism,

f(Sn−1) = g
(
(g−1 ◦ f)(Sn−1)

)
= g(Sn−1),

f(Bn) = g
(
(g−1 ◦ f)(Bn)

)
= g(Bn).

Let D ⊆ Rn be a compact convex subset with nonempty interior. Then,
Proposition 3.1.1 shows that D is a closed n-cell and the interior and bound-
ary of D defined in Definition 3.1.2 coincide with the topological interior and
boundary of D respectively as a subset of the euclidean space.

Examples 1. • Every closed interval in R is a closed 1-cell.

• Every compact region in the plane bounded by a regular polygon is a
closed 2-cell. A solid tetrahedron and a solid cube are closed 3-cells.

Definition 3.1.3. Let X be a nonempty topological space. A cell decom-
position of X is a partition E of X into open cells of various dimensions
such that the following condition is satisfied: for each cell e ∈ E of dimension
n ≥ 1, there exists a continuous map Φe from some closed n-cell D into X
that restricts to a homeomorphism from intD into e and maps frD into the
union of all cells of E of dimensions strictly less than n. This map Φe is
called the characteristic map for e.

Definition 3.1.4. A cell complex is a Hausdorff space X together with
a specific cell decomposition E of X. The open cells in E are typically just
called the cells of X.

Remark 3.1.3. Let (X, E) be a cell complex. Although each e ∈ E is an
open cell it might not be an open subset of X.

Lemma 3.1.2. Let (X, E) be a cell complex. For n ≥ 1, let e ∈ E be an
n-cell of X and Φ : D −→ X be its characteristic map. Then,

(i) Φ(D) = cl(e).

(ii) Φ(frD) = cl(e)− e.

In particular, cl(e)− e is contained in a union of cells of strictly less dimen-
sion than n.

Proof. Since Φ is a continuous map between a compact and a Hausdorff
space, it is a closed map. As it is closed and continuous Φ(cl(A)) = cl(Φ(A))
for any subset A ⊆ D. In particular,

Φ(D) = Φ(cl(intD)) = cl(Φ(intD)) = cl(e).
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From here, cl(e)− e = Φ(D)− Φ(intD) = Φ(D − intD) = Φ(frD), and we
deduce by definition of cell complexes that it is contained in a union of cells
of strictly less dimension.

Definition 3.1.5. Let (X, E) be a cell complex. We say that (X, E) is finite
if E is a finite set. The cell complex is called locally finite if the collection
of open cells E is locally finite.

For the general definition of local finiteness see Section C.5. We will
later see that locally finite cell complexes (and thus, finite cell complexes)
automatically satisfy the additional conditions to be a CW complex.

Remark 3.1.4. It is perfectly possible for a given space to have many
different cell decompositions. Technically, the term cell complex refers to a
space together with a specific cell decomposition.

3.2 CW complexes

For finite cell complexes the definitions given so far serve well, but for infinite
complexes to have the desired properties, two additional restrictions must
be added.

Definition 3.2.1. A CW complex is a cell complex (X, E) satisfying the
following additional conditions:

(C) The closure of each cell is contained in a union of finitely many cells.

(W) The topology of X is coherent with the family cl(E) = { cl(e) | e ∈ E }.
That is, a subset C ⊆ X is closed in X if and only if cl(e)∩C is closed
in cl(e) for any e ∈ E .

A cell decomposition of a space X satisfying (C) and (W)∗ is called a
CW decomposition of X. If a space X admits a CW decomposition we
usually say it is a CW complex and we omit writing E explicitly.

The general definition and properties of coherent topologies are given in
Section C.6.

Remark 3.2.1. Observe that by Lemma 3.1.2 and by condition (C), for
each cell e of a CW complex, cl(e)− e is contained in a finite union of cells
of strictly less dimension.

For locally finite complexes (and thus all finite ones) the two conditions
are automatically satisfied as next proposition shows.

∗The letters C and W come from the names originally J. H. C. Whitehead gave to these
two conditions. Condition (C) was called closure-finiteness, and the coherent topology
described in (W) was called weak topology.



24 3.2. CW complexes

Proposition 3.2.1. Let X be a Hausdorff space and let E be a cell de-
composition of X. If E is locally finite, then it is a CW decomposition of
X.

Proof. To prove the first condition observe that for each e ∈ E , every point
in cl(e) has a neighbourhood that intersects only finitely many cells of E by
local finiteness. Since cl(e) is compact, it can be covered with finitely many
of those neighbourhoods.

To prove the second condition, suppose that the intersection of A ⊆ X
with all cl(e) ∈ cl(E) is closed in cl(e). By Proposition C.5.1 in Appendix C,
E being locally finite is equivalent to cl(E) being locally finite. Thus, given
x ∈ X−A, letW be a neighbourhood of x that intersects the closures of only
finitely many cells, say cl(e1), . . . , cl(en). Since A ∩ cl(ei) is closed in cl(ei),
and each cl(ei) is closed in X, it follows that each intersection A ∩ cl(ei) is
closed in X. Thus, the set

W −A = W −
((

A ∩ cl(e1)
)
∪ . . . ∪

(
A ∩ cl(en)

))
is an open neighbourhood of x contained in X −A. Hence, X −A is open,
and A is closed in X.

Definition 3.2.2. Let X be a CW complex. If there is an integer n such
that all the cells of X have dimension at most n, we say that X is finite-
dimensional. Otherwise, we say it is infinite-dimensional.

If X is finite dimensional, the dimension of X is the largest integer n
such that X contains at least one n-cell. We will write it by dimX.

Remark 3.2.2. It is clear that finite complexes are always finite dimen-
sional.

Here is a case in which open cells actually are open subsets of X.

Proposition 3.2.2. Suppose that X is an n-dimensional CW complex.
Then, every n-cell of X is an open subset of X.

Proof. If n = 0, X is a discrete space. Let n ≥ 1. Suppose that e0 is an
n-cell of X and let Φ : D −→ X be the characteristic map for e0.

If we restrict the codomain of Φ and consider it as a map onto cl(e0),
Φ : D −→ cl(e0) is a continuous map between a compact and a Hausdorff
space. Thus, it is a closed map. Since it is surjective, we have that it is an
identification map†. Thus, since Φ−1(e0) = intD is open in D, it follows

†A surjective map f : X → Y is an identification map (also called a quotient map,
for example, in [2]) if it satisfies that V ⊆ Y is open if and only if f−1(V ) is open.
Equivalently, f is an identification map if it satisfies that C ⊆ Y is closed if and only if
f−1(C) is closed. For more detailed information, check [2, Chapter 2, Quotient spaces].
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that e0 is open in cl(e0).

On the other hand, if e is any other cell of X, e ∩ e0 = ∅ so e0 ∩ cl(e) is
contained in cl(e) − e. As e has dimension at most n (X is n-dimensional)
cl(e) − e is contained in a union of cells of strictly less dimension than n.
Since e0 has dimension n, it follows that e0∩cl(e) = ∅. Thus, the intersection
of e0 with the closure of every cell is open and by (W) e0 is open in X.

Definition 3.2.3. Let X be a CW complex. A subcomplex of X is a
subspace Y ⊆ X that is a union of cells of X such that if Y contains a cell,
it also contains its closure.

The following proposition follows inmediately from the definition.

Proposition 3.2.3. The union and intersection of any collection of sub-
complexes of a CW complex are themselves subcomplexes.

Theorem 3.2.4. Let X be a CW complex and Y ⊆ X a subcomplex. Then,

(i) Y is a CW complex with the subspace topology and the cell decompo-
sition that inherits from X.

(ii) Y is closed in X.

Proof. We begin proving (i). Clearly Y is Hausdorff and by definition it is
the disjoint union of its cells. In addition, for any cell e ⊆ Y a characteristic
map for e in X serves as characteristic map for e in Y , so Y is a cell complex.

To check condition (C), let e ⊆ Y be a cell of Y and note that cl(e) is
contained in a union of finitely many cells of X. Since cl(e) ⊆ Y , these cells
must also be cells of Y .

To check condition (W), let S ⊆ Y be a subset such that Y ∩ cl(e) is
closed in cl(e) for any cell e contained in Y . We have to show that S is
closed in Y . Let e0 be a cell of X that is not contained in Y . We know that
cl(e0) − e0 is contained in the union of finitely many cells of X. Some of
these, say e1, . . . , ek, might be contained in Y . Then cl(e1)∪ . . .∪cl(ek) ⊆ Y
and

S ∩ cl(e0) = S ∩
(
cl(e1) ∪ . . . ∪ cl(ek)

)
∩ cl(e0)

=
((

S ∩ cl(e1)
)
∪ . . . ∪

(
S ∩ cl(ek)

))
∩ cl(e0),

which is closed in cl(e0). As cl(e0) is closed in X, S is closed in X and
therefore in Y .

Finally to show (ii) just follow the preceding paragraph for S = Y .
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Definition 3.2.4. For each n ≥ 0, the n-skeleton of X is the subspace
Xn ⊆ X consisting of the union of all cells of dimensions less than or equal
to n.

Proposition 3.2.5. Let X be a CW complex. For any n ≥ 0, the n-skeleton
Xn is a subcomplex of X and has dimension at most n.

Proof. By definition each Xn is a union of cells of X of dimension at most
n, and we know that the closure of each cell in X is contained in a union of
cells of equal or strictly less dimension. Therefore, the closure is in Xn.

Proposition 3.2.6. Let X be a CW complex. The topology of X is coherent
with the collection of n-skeletons {Xn}n≥0.

Proof. Let A ⊆ X be a subset such that A ∩Xn is closed for every n ≥ 0.
Let e be any cell of X of dimension n. Then, cl(e) ⊆ Xn, and so A∩ cl(e) =
(A ∩Xn) ∩ cl(e) is closed in cl(e). As this happens for any cell e of X, by
condition (W) A is closed in X.

Finally we address the question of compactness, which is easy to detect
in CW complexes.

Lemma 3.2.7. In any CW complex, the closure of each cell is contained in
a finite subcomplex.

Proof. Let X be a CW complex and let e ⊆ X be an n-cell. We prove the
result by induction on n. If n = 0, e is a point. Since X is Hausdorff,
cl(e) = e so the result is true.

We assume the result for any cell of dimension less than n. By condition
(C), cl(e) − e is contained in the union of finitely many cells of dimension
lower than n, each of them contained in a finite subcomplex by induction
hypothesis. The union of these finite subcomplexes together with e is a finite
subcomplex containing cl(e).

Lemma 3.2.8. Let X be a CW complex. A subspace of X is closed and
discrete if and only if its intersection with each cell is finite.

Proof. Suppose S ⊆ X is closed and discrete. For each cell e of X, since
S ∩ cl(e) is a closed subset of the compact set cl(e), S ∩ cl(e) is compact
too. Moreover, S ∩ cl(e) is also a discrete space, and a compact, discrete
space must be finite. Hence, the intersection S∩cl(e) is finite and so is S∩e.

Conversely, suppose that S is a subset whose intersection with each cell
is finite. Let E ⊆ S. The intersection of each cell with E is also finite. By
Lemma 3.2.7 the closure of each cell e is contained in a finite subcomplex of
X, so the hypothesis implies that E∩cl(e) is finite. Thus, as X is Hausdorff,
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E ∩ cl(e) is closed in cl(e) for any cell e and by (W), E is closed in X. We
have proved that any subset of S (even S itself) is closed in X. Therefore
S is a closed and discrete subspace of X.

Theorem 3.2.9. Let X be a CW complex. A subset of X is compact if and
only if it is closed in X and contained in a finite subcomplex.

Proof. Let Y ⊆ X be a finite subcomplex and let e1, . . . , ek be the family of
cells of Y inherited from X. Then,

Y =
k⋃

i=1

cl(ei)

is a finite union of compact sets, so it is compact. Thus, any closed subset
K ⊆ X contained in a finite subcomplex must be also compact.

Conversely, suppose that K ⊆ X is compact. By contradiction, if K
intersects infinitely many cells, by choosing one point in each intersection we
obtain an infinite closed discrete subset of K which is impossible by Lemma
3.2.8. Therefore, K is contained in the union of finitely many cells, and the
closure of each such cell is contained in a finite subcomplex by Lemma 3.2.7.
Thus, K is contained in the union of all of those finite subcomplexes, which
is a finite subcomplex of X.

The following corollary immediately follows from the theorem.

Corollary 3.2.10. A CW complex is compact if and only if it is a finite
complex.

3.3 Inductive construction of CW complexes

In this final subsection we describe how to construct CW complexes by
attaching cells of succesively higher dimensions. In Section C.4 we define
adjunction spaces, which formalize the notion of “attaching” a topological
space to another.

Lemma 3.3.1. Let X be a CW complex. Let {ei}i∈I be the collection of
cells of X and for each i ∈ I, let Φi : Di −→ X be the characteristic map of
the cell ei. Then, the map Φ :

⊔
i∈I Di −→ X whose restriction to each Di

is Φi, is an identification map.

Proof. The map is clearly surjective by definition of a CW complex. More-
over, the restriction of Φ to each Di is Φ which is continuous, so Φ is con-
tinuous by Theorem C.1.3.
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Let C ⊆
⊔

i∈I Di be a closed set. Observe that each Φi is a closed map
as it is a continuous function between a compact and a Hausdorff space.
Thus, for each i ∈ I,

Φ(C) ∩ cl(ei) = Φi(C ∩Di)

is closed in cl(ei) and by (W) Φ(C) is closed in X. Therefore Φ is an
identification.

The next proposition shows that a topological space with a CW decom-
position can be seen as a space constructed by inductively attaching its
n-skeletons.

Proposition 3.3.2. Let X be a CW complex. Each n-skeleton Xn is ob-
tained from Xn−1 by attaching a collection of n-cells.

Proof. Let {eni }i∈I be the collection of n-cells of X and for each n-cell ein,
let Φn

i : Dn
i −→ X be a characteristic map. We define φ :

⊔
i∈I frD

n
i → X

to be the map whose restriction to each frDn
i is equal to the restriction of

Φn
i to frDn

i . By definition of a cell complex φ takes its values in Xn−1 so

we can form the adjunction space Xn−1
⋃

φ

(⊔
i∈I D

n
i

)
.

Consider the map Φ : Xn−1
⊔(

⊔i∈I D
n
i

)
−→ Xn that is equal to the

inclusion on Xn−1 and to Φn
i∈I on each Dn

i . Since it makes the same identi-

fications as the quotient map of the space Xn−1
⋃

φ

(⊔
i∈I D

n
i

)
, if we show

that Φ is an identification map, by uniqueness of quotient spaces‡ we get
that Xn is homeomorphic to the adjunction space, as desired.

On the one hand, the restriction of Φ to Xn−1 is the inclusion map
Xn−1 ↪→ Xn, which is continuous from Proposition 3.2.6. On the other
hand, the restriction of Φ to each Dn

i is Φn
i which is continuous by defini-

tion. Thus, Φ is continuous. It is also clear that it is surjective.

To conclude that it is an identification map it is left to show that if

Φ−1(B) is closed in Xn−1
⊔(

⊔i∈I D
n
i

)
for some B ⊆ Xn, then B is closed

in Xn. Notice that Φ
−1(B) being closed means that Φ−1(B)∩Xn−1 is closed

in Xn−1 and that each Φ−1(B) ∩Dn
i is closed in Dn

i .
On the one hand, Φ|Xn−1

is the inclusion Xn−1 ↪→ Xn. Hence, Φ
−1(B)∩

Xn−1 = (Φ|Xn−1
)−1(B ∩Xn−1) = B ∩Xn−1 and by the first assertion B ∩

Xn−1 is closed in Xn−1, which means that B ∩ cl(e) is closed in cl(e) for all
cells of dimension strictly smaller than n. On the other hand, Φ|Dn

i
= Φn

i and

Φ−1(B) ∩Dn
i = (Φn

i )
−1(B ∩ cl(eni )) is closed in Dn

i by the second assertion.

‡Check [2, Theorem 3.75]
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Characteristic maps are closed maps so Φn
i ((Φ

n
i )

−1(B∩cl(eni ))) = B∩cl(eni )
is closed in cl(eni ). Thus, the intersection of B with the closure of each n-cell
of Xn is also closed and therefore, B is closed in Xn.

The next theorem shows the converse of the previous proposition: it
shows that a space built by attaching cells of successively higher dimensions
is a CW complex, which means that the two definitions of CW complexes
are equivalent.

Theorem 3.3.3. Suppose that X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ . . . is a sequence of
topological spaces satisfying the following conditions:

(i) X0 is a non empty discrete space.

(ii) For each n ≥ 1, Xn is obtained from Xn−1 by attaching a (possibly
empty) collection of n-cells.

Then X =
⋃

n≥0Xn has a unique topology coherent with the family {Xn}n≥0,
and a unique cell decomposition making it into a CW complex whose n-
skeleton is Xn for each n.

Proof. By hypothesis, X0 is a discrete nonempty space and for each n ≥ 1,
we have attached a union of some closed n-cells

⊔
i∈In D

n
i to Xn−1 by an

attaching map ϕn :
⊔

i∈In frD
n
i → Xn−1. Let qn : Xn−1

⊔(
⊔i∈In D

n
i

)
→ Xn

be the quotient map of the adjunction space. By Proposition C.4.1 in
Appendix C, qn embeds each Xn−1 in Xn as a closed subspace and each⊔

i∈In D
n
i −

⊔
i∈In frD

n
i =

⊔
i∈In intD

n
i as an open subspace.

We give a topology on X by declaring a subset C ⊆ X to be closed if
and only if C ∩Xn is closed for each n ≥ 0. It is immediate that this is a
topology: the unique topology on X coherent with {Xn}n≥0.

With this topology each Xn is a subspace of X. If C ⊆ X is closed in X,
each C ∩Xn is closed by definition of the topology. Conversely, if C ⊆ Xn

is closed in Xn, since each Xm−1 is closed in Xm it follows that C ∩Xm is
closed in Xm for any m ≥ 0 and thus C is closed in X.

Next we define the cell decomposition of X. Note that Xn − Xn−1 is
an open subset of Xn homeomorphic to

⊔
i∈In intD

n
i , which is a disjoint

union of open n-cells. For every n ≥ 1, we define the n-cells of X to be the
components {eni }i∈In = {qn(intDn

i )}i∈In of Xn−Xn−1. These are subspaces
of Xn, and hence of X, and X is the disjoint union of all of them and X0.
For each n-cell enj , we define the characteristic map Φn

j : Dn
j −→ X as the

composition

Dn
j ↪→ Xn−1

⊔(
⊔i∈In Dn

i

) qn−→ Xn ↪→ X,



30 3.3. Inductive construction of CW complexes

where the first and last maps are inclusions and the one in the middle is
the quotient map. The first inclusion is continuous because inclusions in
disjoint union spaces are continuous. The last inclusion is continuous by the
definition of the topology. So it is clear that Φn

j is continuous. Moreover,
we have built the attaching spaces so that qn maps the boundary of each
closed n-cell to Xn−1 so it is clear that Φn

j maps frDn
j to Xn−1. Finally, the

restriction of Φn
j to intDn

j is equal to the inclusion of intDn
j into the disjoint

union, an embedding, followed by the restriction of qn into intDn
j , which is

a homeomorphism onto enj , and finally the inclusion into X. Thus, Φn
j|intDn

j

is a homeomorphism onto enj . This proves that X has a cell decomposition
for which Xn is the n-skeleton for each n ≥ 0. Since the n-cells of any such
decomposition are the components of Xn − Xn−1, this is the unique such
cell decomposition.

To show that X is a cell complex, it is left to prove that it is Hausdorff.
This proof is quite technical and it is included in Section C.7.

To finish the proof we show that X satisfies conditions (C) and (W). If
X contains only finitely many cells we can stop here because every finite
cell complex is automatically a CW complex. For the general case, first we
prove by induction on n that these conditions are satisfied by Xn for each n.
They obviously hold for X0 since it is a discrete space. Suppose they hold
for Xk, 0 ≤ k < n, that is, suppose that Xk is a CW complex if 0 ≤ k < n.

To prove that Xn satisfies (C), notice that for any k-cell with 1 ≤ k ≤ n,
cl(eki ) − eki = Φ(eki ) is a compact subset of the CW complex Xk−1, and
therefore by Theorem 3.2.9 it is contained in a finite subcomplex of Xk−1.
Therefore cl(eki ) is contained in a union of finitely many cells.

To check (W), suppose that B ⊆ Xn has a closed intersection with cl(e)
for any cell e in Xn. Since B ∩ cl(eki ) is closed in cl(eki ) for every k-cell
eki for 0 ≤ k < n and Xn−1 satisfies condition (W), B ∩ Xn−1 is closed
in Xn−1. Also, B ∩ cl(eni ) is closed for any n-cell eni . Then, q−1

n (B) is
closed in Xn−1

⊔(
⊔i∈In Dn

i

)
because, on the one hand, q−1

n (B) ∩ Xn−1 =
q−1
n|Xn−1

(B ∩Xn−1) is closed in Xn−1, and on the other hand q−1
n (B)∩Dn

i =

q−1
n|Dn

i

(B ∩ cl(eni )) is closed in Dn
i . Therefore, B is closed in Xn by definition

of the quotient topology on Xn.

Finally, we show thatX itself satisfies conditions (C) and (W). Condition
(C) follows because the closure of each cell lies in some Xn, and Xn is a CW
complex. To prove (W), suppose B ⊆ X has a closed intersection with cl(e)
for every cell e in X. Then by the discussion in the preceding paragraph
B ∩ Xn is closed of any n ≥ 0, so B is closed in X by definition of the
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topology on X.

We finish the section talking about quotients of CW complexes.

Theorem 3.3.4. Let X be a CW complex and let Y ⊆ X be a subcomplex.
Then, the quotient X⧸Y inherits a CW complex structure from X.

Proof. Let {eni }i∈In be the collection of n-cells of X and Φn
i : Dn

i → X be
the characteristic map of each eni .

Let q : X → X⧸Y be the quotient map. By Theorem 3.2.4 Y is closed in

X so q|X−Y
: X−Y → X⧸Y −Y⧸Y is a homeomorphism by Proposition C.2.1.

Let us give a cell decomposition of X⧸Y . Observe that Y⧸Y is a point,
so all cells contained in Y become 0-cells in the quotient.

The n-cells of X − Y are embedded as n-cells in X⧸Y by q. The charac-
teristic maps of the cells can be taken to be the compositions

Dn
i

Φn
i−→ X − Y

q−→ X⧸Y − Y⧸Y .

As q|X−Y
is a homeomorphism it is clear that it is is a characteristic map.

As X is Hausdorff, X⧸Y is Hausdorff too so it is a cell complex.
Conditions (C) and (W) follow for this cell decomposition by definition

of the quotient topology.

3.4 Examples of CW complexes

We finish the chapter giving some examples of Cell and CW decompositions.

3.4.1 Examples of cell decompositions that are not CW de-
compositions

These two examples have been taken from [2].

Example 3.4.1 (Failure of condition (W)). Let X ⊆ R2 be the union of
the closed line segments from the origin to (1, 0) and to the points (1, 1

n) for
n ∈ N with the subspace topology. Call ℓ0 to the line segment to (1, 0) and
ℓn to the line segment to (1, 1

n).

Define a cell decomposition as follows:

• The 0 cells are (0, 0), p0 = (1, 0) and pn = (1, 1
n).

• The 1-cells are the line segments minus their endpoints: en = ℓn −
{(0, 0), pn}, n ∈ N ∪ {0}.
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It is clearly a cell decomposition. Moreover, the closure of each 0-cell is
the 0-cell itself, and the closure of each 1-cell is cl(en) = en∪{pn}∪{(0, 0)} =
ℓn so condition (C) holds.

However, condition (W) does not hold. The intersections of E = {( 1n ,
1
n2 )}n∈N

with the cells of X are closed but the set itself is not closed in X, because
it has the origin as a limit point and (0, 0) /∈ E.

Example 3.4.2 (Failure of condition (C)). We define a cell decomposition
of D2 as follows:

• Countably many 0-cells consisting of
{(

cos(2πn ), sin(2πn )
)}

n∈N
.

• Countably many 1-cells consisting of the open arcs between the 0-cells.

• A single 2-cell consisting of the interior of the disk.

Condition (W) does hold because the closure of the 2-cell is the whole
space D2 so if a subset has closed intersection with the closures of all the
cells in particular the intersection with D2 is closed, which means that it is
closed in D2. Condition (C) does not hold, though. For example, the closure
of the 2-cell is not contained in a union of finitely many cells.

3.4.2 Examples of CW decompositions

Example 3.4.3 (Graphs). A CW complex of dimension less than or equal
to 1 is a graph. The 0-cells are the vertices and the 1-cells are the edges of
the graph.

Example 3.4.4 (A CW decomposition of R). A cell decomposition of R is
obtained by defining the 0-cells to be the integers, and the 1-cells to be the
intervals (n, n+ 1) for n ∈ Z with characteristic maps [n, n+ 1] → R given
by inclusion. The conditions (C) and (W) follow because it is a locally finite
decomposition.

Example 3.4.5 (CW decomposition of Sn). We give a CW decompositon
of Sn with only one 0-cell and one n-cell. The 0 cell is the north pole
N = (0, . . . , 0, 1) and the n-cell is Sn − N . A characteristic map for the
n-cell is

Φ : Dn −→ Sn

x 7→ (2
√

1− |x|2 x, 2|x|2 − 1),

which collapses frDn = Sn−1 to N .

Example 3.4.6 (The infinite dimensional sphere). We give a CW decom-
position of Sn with two cells of each dimension 0, . . . , n. We will build it
inductively:
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• Start with S0, a discrete space of two points.

• For each n ≥ 1, obtain Sn from Sn−1 by attaching two n-cells Dn ⊔ Dn

with an attaching map

ϕn : frDn ⊔ frDn = Sn−1 ⊔ Sn−1 −→ Sn−1

whose restriction to each Sn−1 is the identity on Sn−1.

We obtain a CW decomposition of Sn which has Sk as the k-skeleton for
each k = 0, . . . , n. Continuing this process, we obtain an infinite dimensional
CW complex S∞ =

⋃
n≥0 Sn with two cells in every dimension. It contains

every sphere Sn as a subcomplex.

Example 3.4.7 (Wedge sum of spheres). Let X =
∨

i∈I Sn be a wedge sum
of spheres formed by gluing the north poles N ∈ Sn. A CW decomposition
is given as follows:

• A 0-cell, the base point [N ] ∈
∨

i∈I Sn.

• A n-cell for each sphere in the wedge sum. A characteristic map Φi

for each cell is

Dn Φ−→ Sn
ıi
↪→

⊔
i∈I

Sn q−→
∨
i∈I

Sn,

where Φ is the map defined in Example 3.2.5, ıi is the inclusion and q
the quotient map.

Let X be a CW complex and consider the quotient of the n-skeleton by
the (n−1)-skeleton Xn⧸Xn−1

. This is a CW complex with an n-cell for each

n-cell of X and a 0-cell. Consider the wedge sum of spheres
∨

i Sn, joining
as many spheres as n-cells of X. This is also a CW complex with the same
number of n-cells as X and a 0-cell. There is really one way of adjoining
those n-cells to a point (send all boundaries to the 0-cell) so this two spaces
must be homeomorphic.

Example 3.4.8 (The real projective space). The real projective space RPn

is defined as the quotient space of Rn+1−{0} under the equivalence relation
x ∼ y if y = λx for some λ ̸= 0. Restricting to vectors of length 1, one
can also define RPn to be the quotient space of Sn with antipodal points
identified.

If n = 0, RPn is just a point, so it is a 0-cell. If n ≥ 1, let Dn
⧸∼

be the quotient space of Dn identifying antipodal points of frDn = Sn−1.
Observe that [x] 7→ [(x,

√
1− ||x||2)] defines a homeomorphism Dn

⧸∼ −→
Sn⧸∼ = RPn. This map identifies frDn

⧸∼ = frSn−1
⧸∼ with the points
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[(x1, . . . , xn−1, 0)] ∈ RPn. Since frDn = Sn−1 with antipodal points identi-
fied is just RPn−1, we conclude that

RPn = Dn ∪q RPn−1,

where q : Sn−1 → Sn−1
⧸∼ = RPn−1 is the quotient map.

It follows by induction that RPn has a CW complex structure with one
k-cell for each k = 0, . . . , n. If we continue this process, the union RP∞ =
∪n≥0RPn is a cell complex with one cell in each dimension.

Example 3.4.9 (The complex projective space). The complex projective
space CPn is defined as the quotient space of Cn+1 − {0} under the equiv-
alence relation x ∼ y if y = λx for some λ ̸= 0. Equivalently, CPn is the
quotient of the unit sphere S2n+1 ⊆ Cn+1 with x ∼ y if y = λx with |λ| = 1.

If n = 0, CP0 is just a point, so it is a 0-cell. Let n ≥ 1. The points
in S2n+1 ⊆ Cn with last coordinate real and nonnegative are of the form
(z,

√
1− |z|) ∈ Cn × C with |z| ≤ 1. Let D be the the set containing

such points. Then, the map z 7→ (z,
√
1− |z|) from D2n ⊆ Cn to D is a

homeomorphism. D contains a copy of the sphere S2n−1, consisisting of the
points (z, 0) ∈ D with |z| = 1. We identify the points x, y ∈ S2n−1 ⊆ D if
y = λx with |λ| = 1, and we show that the inclusion D ↪→ S2n+1 induces a

homeomorphism D⧸∼ → S2n+1
⧸∼ = CPn in the quotient.

To that aim, we distinguish two cases. On the one hand, if (z1, . . . , zn, zn+1) ∈
S2n+1 with zn+1 ̸= 0,

(z1, . . . , zn, zn+1) ∼
zn+1

|zn+1|
(z1, . . . , zn, zn+1)

=
(zn+1z1
|zn+1|

, . . . ,
zn+1zn
|zn+1|

, |zn+1|
)
∈ D,

and this is the unique representative of its class in D. On the other hand,
any point (z1, . . . , zn, 0) ∈ S2n+1 is identified with the same elements in both
quotients. Thus, it is a homeomorphism.

As CPn−1 = S2n−1
⧸∼ ⊆ D⧸∼, from this description of CPn as the quo-

tient D⧸∼ it follows that

CPn = D ∪q CPn−1,

where q : S2n−1 → S2n−1
⧸∼ = CPn−1 is the quotient map. Observe that D

is a closed cell of dimension 2n. Therefore, by induction we get that CPn is
a CW complex with a 2k-cell for each k = 0, 1, . . . , n.

Continuing this inductive construction, the union CP∞ = ∪n≥0CPn has
a CW complex structure with a cell in each even dimension.
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Cellular Homology

In this final chapter we will study the homology groups of CW complexes.
We will see that the homology groups of a CW complex are closely related
to the CW decomposition of the space.

4.1 The cellular chain complex

We aim to apply the results in Chapter 2 to get an alternative chain complex
for CW complexes whose homology groups are equivalent to those of the
usual singular chain complex.

Lemma 4.1.1. Let X be a CW complex. Then, for every n ≥ 1, (Xn, Xn−1)
is a good pair.

Proof. By Theorem 3.2.4 we know that Xn−1 is closed in Xn. Let {eni }i∈In
be the family of n-cells of X. Choose a point zi ∈ eni in each cell and let
Z = {zi}i∈In . The intersection of Z with the closure of the cells of dimension
smaller than n is empty, and the intersection with each cl(eni ) is {zi} which
is closed in cl(eni ). Thus, Z is closed in Xn.

Set U = X − Z ⊂ Xn such that Xn−1 ⊆ U and it is open in Xn.
Since each eni − {zi} deforms to cl(eni ) − eni ⊆ Xn−1, we conclude that U
deformation retracts strongly to Xn−1.

The next lemma enables us to build the cellular chain complex.

Lemma 4.1.2. Let X be a CW complex. Then,

(i) Hm(Xn, Xn−1) is trivial for m ̸= n and is free abelian for m = n, with
a basis in one-to-one correspondence with the n-cells of X.

(ii) Hm(Xn) is trivial for m > n. In particular, if X is finite dimensional
then Hm(X) = {0} for m > dimX.

35
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(iii) The map Hm(Xn) → Hm(X) induced by the inclusion Xn ↪→ X is an
isomorphism for m < n and surjective for m = n.

Proof. For n ≥ 0, let {eni }i∈In be the collection of n-cells of X. To prove (i),
we know by Lemma 4.1.1 that (Xn, Xn−1) is a good pair and in Example

3.4.7 we showed that Xn⧸Xn−1
is homeomorphic to

∨
i∈In S

n. Thus, by

Corollaries 2.2.4 and 2.2.6 we get that for every m ≥ 0,

Hm(Xn, Xn−1) ∼= H̃m(Xn⧸Xn−1
) ∼= H̃m(

∨
i∈In

Sn)

∼=
⊕
i∈In

H̃m(Sn) =

{
⊕i∈InZ if n = m,

0 if n ̸= m.

Thus (i) holds. Now, let ık : Xk ↪→ Xk+1 be the inclusion map. Consider
the exact sequence of the pair (Xn, Xn−1),

. . . → Hm+1(Xn, Xn−1) → Hm(Xn−1)
(ın−1)∗−→ Hm(Xn) → Hm(Xn, Xn−1) → . . .

If m ̸= n, we know that Hm(Xn, Xn−1) = 0 so the exact sequence tells us
that (ın−1)∗ is surjective. If m ̸= n− 1, Hn+1(Xn, Xn−1) = 0 and the exact
sequence tells us that (ın−1)∗ is injective. Fixing m, consider the following
sequence of induced homomorphisms:

Hm(X0)
(ı0)∗−→ Hm(X1)

(ı1)∗−→ . . .
(ım−2)∗−→ Hm(Xm−1)

(ım−1)∗−→ Hm(Xm)

(ım)∗−→ Hm(Xm+1)
(ım+1)∗−→ . . . (4.1)

As we showed in the previous paragraph, (ık)∗ is an isomorphism for every
k ̸= m−1,m. We also know that (ım−1)∗ is injective and (ım)∗ is surjective.
Therefore, as X0 is a discrete set of points, if m > n,

0 ∼= Hm(X0) ∼= Hm(X1) ∼= . . . ∼= Hm(Xn).

Thus (ii) holds.

IfX is finite dimensional, (iii) holds from (4.1). The proof of (iii) whenX
is infinite dimensional requires more work. Observe that for any σ ∈ Ωm(X),
σ(∆m) is compact so by Theorem 3.2.9 it is contained in the union of finitely
many cells. Thus, for every singular chain

∑
σ∈Ωm(X) λσσ ∈ Cm(X) there

exists some k ≥ 0 such that
∑

σ∈Ωm(X) λσσ ∈ Ωm(Xk).

Write, for short, ∂k
m = ∂m|Cm(Xk)

. Let ȷn : Xn ↪→ X be the inclusion

map. We first show that (ȷn)∗ is surjective if m ≤ n. As said before, for
any m-cycle c ∈ Ker ∂m there exists some k ≥ 0 such that c ∈ Cm(Xk).
Since Ker ∂k

m = Ker ∂m ∩ Cm(Xk), we have that c ∈ Ker ∂k
m. There are two

options:
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• If k ≤ n, we are done because Ker ∂k
m ⊂ Ker ∂n

m and the homology
class of c is in Hm(Xn).

• If k > n, then Xk is a finite dimensional CW complex and Xn ⊂ Xk, so
by the finite dimensional case of (iii) there is a surjection Hm(Xn) →
Hm(Xk) induced by the inclusion Xn ↪→ Xk. Thus, there is a cycle
c′ ∈ Ker ∂n

m homologous to c, and so, (ȷn)∗(c
′+Im ∂n

m+1) = c+Im ∂m+1.

Finally, we show that (ȷn)∗ is injective if m < n. If we have that

(ȷn)∗
( ∑
σ∈Ω(Xn)

λσσ + Im ∂n
m+1

)
=

∑
σ∈Ω(Xn)

λσ(σ ◦ ȷn) + Im ∂m+1 = 0,

this means that
∑

σ∈Ω(Xn)
λσ(σ◦ȷn) ∈ Im ∂m+1 and there is some k ≥ n such

that
∑

σ∈Ω(Xn)
λσ(σ ◦ ȷn)+Im ∂k

m+1 ∈ Hm(Xk). From the finite dimensional
case of (iii), if n > m there is an isomorphism Hm(Xn) → Hm(Xk) induced
by inclusion Xn ↪→ Xk. Thus, if the homology class of

∑
σ∈Ω(Xn)

λσ(σ ◦ ȷn)
is zero in Hm(Xk), the homology class of

∑
σ∈Ω(Xn)

λσσ is zero in Hm(Xn).

Let X be a CW complex. Using Lemma 4.1.2, the long exact sequences
for the pairs (Xn+1, Xn), (Xn, Xn−1) and (Xn−1, Xn−2) fit into the following
diagram:

0

0

''

Hn(Xn+1) ∼= Hn(X)

55

. . .

Hn(Xn)

66

ȷn

((

Hn−2(Xn−2)

;;

. . . // Hn+1(Xn+1, Xn)

∂n+1
77

dn+1 // Hn(Xn, Xn−1)
dn //

∂n

))

Hn−1(Xn−1, Xn−2) //

∂n−1
66

. . .

Hn+1(Xn+1)

ȷn+1
66

Hn−1(Xn−1)

ȷn−1
66

)). . .

::

0

55

. . .

0

0

%%

H1(X2)

88

H1(X1)
ȷ1

%%

99

. . . // H2(X2, X1)
d2 //

∂1
99

H1(X1, X0)
d1 //

∂1

%%

H0(X0) // 0

H2(X2)

ȷ2
99

H0(X0)

Id
77

''
H0(X1) ∼= H0(X)

%%
0,

(4.2)

where dn is defined to be dn = ȷn−1 ◦∂n for every n ≥ 2, d1 = ∂1 and d0 = 0.
The composition dn ◦ dn+1 contains two succesive maps in one of the exact
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sequences and thus, it is zero. Therefore, the horizontal row in diagram
(4.2) is a chain complex, called cellular chain complex. The homology
groups of this chain complex are called cellular homology groups of X.
We temporarily denote them by HCW

n (X). We will later show that, in fact,
these groups are isomorphic to the singular homology groups.

Remark 4.1.1. We proved in Lemma 4.1.2 that Hn(Xn, Xn−1) is free with
basis in one-to-one correspondence with the n-cells of X, so one can think of
the elements of Hn(Xn, Xn−1) as formal linear combinations of the n-cells
of X.

Theorem 4.1.3. Let X be a CW complex. For all n ≥ 0, the following
isomorphism holds:

Hn(X) ∼= HCW
n (X).

Proof. If n = 0, from the exact sequence of the good pair (X1, X0) in dia-
gram (4.2) we get that

HCW
0 (X) =

H0(X0)

Im ∂1
∼= H0(X1) ∼= H0(X).

Let n ≥ 1. We know by Lemma 4.1.2 that Hn(Xn+1) ∼= Hn(X). Moreover,
from the exact sequence of the pair (Xn+1, Xn) in diagram (4.2), we get that

Hn(X) ∼=
Hn(Xn)

Im ∂n+1
.

We can also observe in diagram (4.2) that ȷn is injective. Thus, ȷn(Im ∂n+1) =
Im(ȷn ◦ ∂n+1) = Im dn+1. Moreover, by the first isomorphism theorem, we
get Hn(Xn) ∼= Im ȷn = Ker ∂n.

Thus, if n = 1 we have that ȷ1 induces the following isomorphism:

H1(X) ∼=
H1(X1)

Im ∂2
−→ Ker ∂1

Im d2
= HCW

1 (X).

Finally, if n ≥ 2, the map ȷn−1 is injective in the same way so Ker dn =
Ker(ȷn−1 ◦ ∂n) = Ker ∂n. Thus, ȷn induces an isomorphism

Hn(X) ∼=
Hn(Xn)

Im ∂n+1
−→ Ker ∂n

Im dn+1
=

Ker dn
Im dn+1

= HCW
n (X).

Remark 4.1.2. We list some direct consequences of the previous result:

(i) Most of the time we will no more use the notation HCW
n (X) to distin-

guish cellular homology groups from singular homology groups as we
have proved that they are isomorphic.
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(ii) The homology groups do not depend on the CW complex structure of
X.

(iii) If X is a CW complex with no n-cells, then Hn(X) = 0.

(iv) In general, if X is a CW complex with k n-cells Hn(Xn, Xn−1) is free
abelian on k generators so the subgroup Ker dn must be generated by
at most k elements, hence also the quotient Ker dn

Im dn+1
. Thus, Hn(X) is

generated by at most k elements.

4.2 Homology groups of some CW complexes

We finish by computing the homology groups of two CW complexes given
in Section 3.4.2 directly from the cellular chain complex.

Example 4.2.1. The homology groups of the sphere Sn with n ≥ 2 follow
immediately from the cellular chain complex. We consider Sn, n ≥ 2, with
the CW decomposition given in Example 3.4.5. It has a 0-cell and a n-cell.
The cellular chain complex is the following:

. . . 0 Z 0 . . . 0 Z 0.
dn+2 dn+1 dn dn−1 d2 d1 d0

We conclude that if n ≥ 2,

Hm(Sn) =
Ker dm
Im dm+1

∼=

{
Z if m = n, 0,

0 otherwise.

The homology groups of the sphere S1 also follow from the cellular chain
complex. Its cellular chain complex is the following:

. . . 0 Z Z 0.
d3 d2 d1 d0

We know that Hm(S1) = 0 for every m ≥ 2 as S1 only has a 0-cell and a
1-cell. We also know that H0(S1) ∼= Z as S1 is path-connected, so d1 = 0
and H1(S1) ∼= Z.

Observe that the result agrees with what we obtained in Example 2.2.1.

Example 4.2.2. The cellular chain complex can be used to compute the
homology groups of the complex projective space CPn. In Example 3.4.9
we saw that CPn has a CW complex structure with a 2k-cell for each k =
0, . . . , n.. Thus, the cellular chain complex is the following:

0 Z 0 Z . . . Z 0 Z 0.
d2n+1 d2n d2n−1 d2n−3 d3 d2 d1 d0
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Therefore,

Hm(CPn) =
Ker dm
Im dm+1

∼=

{
Z if m = 0, 2, . . . 2n,

0 otherwise.

In the same way we can obtain the homology groups of CP∞.

Hm(CP∞) =
Ker dm
Im dm+1

∼=

{
Z if m is even,

0 if m is odd.

4.3 Final remarks

It is clear from Section 4.2 that the cellular chain complex is a great ad-
vantage to compute homology groups of CW complexes, even if the CW
complex is infinite-dimensional. The homology groups of many more CW
complexes can be computed using cellular homology, but a more explicit
formula for the boundary maps dn is needed. It is possible to get an explicit
formula for dn that depends only on the n-cells of a CW complex and their
characteristic maps, called cellular boundary formula. However, due to
the extent of this work it has not been possible to include it here, but the
reader can learn more in [1, Page 140].

In conclusion, although the definition of the cellular chain complex re-
quires many preliminary results, cellular homology is undoubtedly an effi-
cient tool for computing the homology groups of CW complexes.



Appendix A

Solved Exercises

Exercise 1. Let X = {p} be a point. Show that the homology groups of
X are the following:

Hn(X) ∼=

{
Z if n = 0,

0 otherwise.

Solution. First observe that for any n ≥ 0, a map σ : ∆n −→ {p} must be
the constant map sending all ∆n to p. Constant maps are continuous, so
Ωn(X) contains just the constant map. If we call σn to this map, Ωn(X) =
{σn}. Therefore,

Cn(X) = { λσn | λ ∈ Z } ∼=
λσn 7→λ

Z.

If n ≥ 1, take any (λ0, . . . , λn−1) ∈ ∆n−1. Then,

[σn]i(λ0, . . . , λn−1) = σn(φi,n(λ0, . . . , λn−1))

= σn(λ0, . . . , λi−1,
i
0, λi, . . . , λn−1) = p

for all i = 0, . . . , n. This means that [σn]i = σn−1, for all i = 0, . . . n.
Knowing this, for any λ ∈ Z, we get that

∂n(λσn) = λ∂n(σn) = λ
n∑

i=0

(−1)i[σn]i = λ
n∑

i=0

(−1)iσn−1

=

{
0, if n is even,

λσn−1, if n is odd.

Thus, if n is odd, Ker ∂n = {0} and, as n+1 is even, Im ∂n+1 = {0}. If n is
even, in the same way, Ker ∂n = Cn(X) and Im ∂n+1 = Cn(X).

Thus, n-th homology group if n ≥ 1 is Hn(X) = Ker ∂n
Im ∂n+1

= 0.

41
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If n = 0, as ∂0 = 0, Ker ∂0 = C0(X) and Im ∂0 = {0}. Then, the
homology group is

H0(X) =
C0(X)

{0}
∼= C0(X) ∼= Z.

Exercise 2. Use the exact sequence for the pair (Dn,Sn) and the fact that
Dn
⧸Sn ∼= Sn−1 to show that

H̃m(Sn) ∼= H̃m−1(Sn−1) ∼=

{
Z if m = n,

0 if m ̸= n.

Solution. Let (X,A) = (Dn,Sn). Observe that Dn
⧸Sn ∼= Sn−1. Dn is con-

tractible so H̃m(Dn) ∼= {0} for any m. Thus, applying Theorem 2.2.5 to the
good pair (Dn, Sn) we get the following exact sequence:

{0} → H̃m(Sn) −→ H̃m−1(Sn−1) → {0} (A.1)

Therefore, H̃m(Sn) ∼= H̃m−1(Sn−1) for any m ≥ 1. We compute the groups
by induction on n.

For n = 0, S0 consists of two disconnected points so H̃0(S0) ∼= Z and
H̃m(S0) ∼= {0} for any m ≥ 1.

If n ≥ 1, Sn has one connected component so H̃0(Sn) = H0(Sn)
Z = Z

Z
∼= 0

and by induction hypothesis and (A.1)

H̃m(Sn) ∼= H̃m−1(Sn−1) ∼=

{
Z if m = n,

0 if m ̸= n.

The non-reduced homology groups are

Hm(S0) ∼=

{
Z⊕ Z if m = 0,

0 if m ≥ 1

and for n ≥ 1,

Hm(Sn) ∼=

{
Z if m = 0, n,

0 otherwise.

Exercise 3. Let f : Dn → Dn be a homeomorphism. Show that f(Sn−1) =
Sn−1 and f(Bn) = f(Bn).
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Solution. If we show that f(Sn−1) = Sn−1. Then,

f(Bn) = f(Dn − Sn−1) = f(Dn)− f(Sn−1) = Dn − Sn−1 = Bn.

Suppose that there is some q ∈ f(Sn−1) such that q /∈ Sn−1, that is, q ∈ Bn.
Let q = f(p), p ∈ Sn−1. Then, the restriction

f|Dn−{p} : Dn − {p} −→ Dn − {q}

is a homeomorphism and induces the isomorphism

Hm(Dn − {p}) → Hm(Dn − {q})

for any m ≥ 0. Since p ∈ Sn−1, Dn −{p} is homotopy equivalent to a point.
Since q ∈ Bn, Dn − {q} is homotopy equivalent to Sn−1. Thus,

0 ∼= Hm(Dn − {p}) ∼= Hm(Dn − {q}) ∼= Z,

which is imposible. Therefore, f(Sn−1) = Sn−1.

Exercise 4 (Theorem of invariance of dimension). Let n,m ≥ 1. Show
that if two nonempty subsets U ⊆ Rn and V ⊆ Rm are homeomorphic, then
m = n.

Solution. Let p ∈ U . For any k ≥ 0, by the Excision Theorem,

Hk

(
Rn,Rn − {p}

) ∼= Hk

(
U, (Rn − {p}) ∩ U

)
= Hk

(
U,U − {p}

)
.

From the long exact sequence (2.6) for the pair (Rn,Rn − {p}), we get the
following exact sequence for any k ≥ 1:

0 → Hk(Rn,Rn − {p}) → H̃k(Rn − {p}) → 0.

Thus, for any k ≥ 1, Hk(Rn,Rn − {p}) ∼= H̃k(Rn − {p}). Since Rn − {p} is
homotopy equivalent to Sn−1, we get the following result:

Hk

(
U,U − {p}

) ∼= Hk

(
Rn,Rn − {p}

) ∼= {
Z if k = n,

0 otherwise .
(A.2)

In the same way one can prove that for any q ∈ V , k ≥ 1,

Hk

(
V, V − {q}

) ∼= {
Z if k = m,

0 otherwise .
(A.3)

A homeomorphism h : U → V induces isomorphisms

Hk

(
U,U − {p}

)
→ Hk

(
V, V − {h(p)}

)
,

for any k ≥ 0. Thus, from (A.2) and (A.3) we must have n = m.
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Exercise 5. Let n ≥ 1.

(i) Show that Sn−1 is not a retract of Dn.

(ii) (Brouwer’s fixed point theorem). Show that any continuous map f :
Dn → Dn has a fixed point.

Solution. Let ı : Sn−1 ↪→ Dn be the inclusion map. If r : Dn → Sn−1 is a
retraction, then r ◦ ı = IdSn−1 . Then, by Proposition 1.3.1, the composition

H̃n−1(Sn−1)
ı∗−→ H̃n−1(Dn)

r∗−→ H̃n−1(Sn−1)

is the identity map on H̃n−1(Sn−1) ∼= Z. But this is not possible since
ı∗ = r∗ = 0 because H̃n−1(Dn) ∼= 0. Thus, (i) holds.

Knowing this, we show Brouwer’s fixed point theorem. By contradiction,
suppose that f : Dn → Dn does not have a fixed point. That is, f(x) ̸= x for
any x ∈ Dn. Then, we can construct a unique ray from f(x) to x and follow
the ray until it intersects the boundary Sn−1 (see Figure A.1). Calling this
intersection point F (x), we define a function F : Dn → Sn−1 by x 7→ F (x).
This function is continuous and observe that if x ∈ Sn−1, the intersection
point F (x) is x itself, so F (x) = x. Therefore, we have a retraction of Dn

to Sn−1, which is impossible by (i).

Figure A.1: An illustration of the retraction F for n = 2. Picture taken
from here.

Exercise 6. Let D ⊆ Rn be a compact convex subset with nonempty inte-
rior. Show that given any point p ∈ intD, there exists a homeomorphism
F : Dn −→ D that sends 0 to p, Bn to intD and Sn−1 to frD. In particular,
D is a closed n-cell and its interior is an open n-cell.

https://commons.wikimedia.org/wiki/File:Brouwer_fixed_point_theorem_retraction.svg
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Figure A.2: Each closed ray starting at the origin intersects the boundary
in a point. Picture taken from [2, Page 128].

Solution. Let p ∈ intD. We can replace D with its image under the trans-
lation x 7→ x − p which is a homeomorphism of Rn with itself, so we can
assume that p = 0 ∈ intD. Then, there is some ϵ > 0 such that the open
ball Bϵ(0) is contained in D. Using the dilatation x 7→ x

ϵ , we may assume
that Bn = B1(0) ⊆ D.

The main claim of this proof is that each closed ray starting at the origin
intersects frD in exactly one point (see Figure A.2).

Let R be such a closed ray. As D is compact, D ∩R is compact. Thus,
there is a point x0 ∈ D ∩ R at which the distance to the origin takes its
maximum. This point lies clearly in frD.

To show it is unique, we show that the line segment from 0 to x0 consists
entirely of interior points of D, except for x0 itself. As frD = D − intD,
this proves that x0 is unique. Any point on this segment other than x0 can
be written as λx0 for some 0 ≤ λ < 1. Take any z ∈ B1−λ(λx0) and let
y = z−λx0

1−λ . Notice that

|y| = |z − λx0|
|1− λ|

<
1− λ

1− λ
= 1

Thus, y ∈ Bn ⊆ D. Since y and x0 are both in D and z = λx0+(1−λ)y,
by convexity, z ∈ D. Thus the open ball B1−λ(λx0) is contained in D, which
means that λx0 is an interior point.

We now define a map
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f : frD −→ Sn−1

x 7→ f(x) = x
|x|

It maps the point x to the point where the line segment from the origin to x
intersects the unit sphere Sn−1. Since we have proved that each such segment
intersects frD in exactly one point, the map is a bijection. Moreover, f is
the restriction of a continuous map so it is continuous. Therefore, as f is a
bijection between a compact and a Hausdorff space, it is a homeomorphism.
Finally, we define

F : Dn −→ D

x 7→ F (x) =

{
|x|f−1( x

|x|), if x ̸= 0,

0, if x = 0.

The map F is continuous if x ̸= 0 because f−1 is. Observe that as D ⊆ Rn

is compact, it is bounded so f−1 : Sn−1 −→ frD is a bounded function. This
implies that F (x) → 0 as x → 0, so F is continuous at the origin.

Geometrically, F maps each radial line segment connecting 0 with a point
y ∈ Sn−1 linearly onto the radial segment from 0 to the point f−1(y) ∈ frD.
Thus, by convexity, it is clear that F takes values in D.

Since points on disctinct rays are mapped to distinct rays and each ra-
dial segment is mapped linearly, F is injective. It is also surjective because
each point in D is on some ray from 0.

Again, since F is a continuous bijection between a compact and a Haus-
dorff space, we conclude that it is a homeomorphism.



Appendix B

Preliminaries in Algebra

B.1 Free modules

In all this work R is a unitary commutative ring.

Definition B.1.1. Let A be a set and let R be a ring. We define the
following set:

R(A) =
{ ∑

a∈A

λaa
∣∣∣ λa ∈ R, λa = 0R for all a ∈ A except for finitely many of them

}
.

Proposition B.1.1. Let A be a set and let R be a ring. The set R(A) is an
R-module with the following operations: for any

∑
a∈A λaa ,

∑
a∈A µaa ∈

R(A) and r ∈ R,

(i)
∑

a∈A λaa +
∑

a∈A µaa =
∑

a∈A(λa + µa)a,.

(ii) r ·
∑

a∈A λaa =
∑

a∈A(rλa)a,.

Remark B.1.1. Notice that the elements
∑

a∈A λaa are just formal sums.

Moreover, one can embed any B ⊆ A into R(A) via the following embedding:

ι: B −→ R(A)

x 7→
∑

a∈A λaa, λa =

{
1R, if a = x

0R, if a ̸= x,

and we can identify B with ι(B). Abusing the notation we will say that
B ⊂ R(A). In the same way, if B ⊆ A, we can embed R(B) ⊆ R(A) via the
following map:

R(B) −→ R(A)∑
b∈B λbb 7→

∑
a∈A λaa with λa =

{
λb, if a = b

0R, if a ̸= x.

47
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Proposition B.1.2. Let A be a set and R be a ring. Then, A is a R-basis
of R(A).

Proof. First notice that A ⊂ R(A) and each element of R(A) is a finite R-
linear combination of elements in A, so A is a generating set of R(A). We
now show that A is linearly independent. Recall that

0R(A) =
∑
a∈A

λaa ⇔ λa = 0, ∀a ∈ A.

Let I ⊂ A be a finite subset of A. Let ra ∈ R such that
∑

a∈I raa = 0R(A) .
Then,

0R(A) =
∑
a∈I

raa =
∑
a∈A

λaa where λa =

{
ra, if a ∈ I

0R, if a /∈ I

and this happens if and only if λa = 0, ∀a ∈ A. Therefore, ra = 0 for any
a ∈ I. Therefore, A is linearly independent in R(A).

Corollary B.1.3. Let A be a set and R be a ring. R(A) is a free R-module
generated by A.

Being R(A) a free R-module is equivalent to saying that all maps from
the basis A to a module can be extended to the whole R(A), as the next
Theorem shows.

Theorem B.1.4. Let A be a set, R be a ring and M an R-module. Let
f : A −→ M be a map. Then, there is a unique R-module homomorphism
f̃ : R(A) −→ M such that f̃|A = f and that is given by

f̃ : R(A) −→ M∑
a∈A λaa 7→

∑
a∈A λaf(a)

Proof. In each
∑

a∈A λaa ∈ R(A) only a finite number of λa are non-zero.
Therefore, the image

∑
a∈A λaf(a) is a finite R-linear combination of ele-

ments from M , which is on M . So the map is well defined.
Let us prove now that the map is a R-module homomorphism. For any∑

a∈A λaa,
∑

a∈A µaa ∈ R(A) and r ∈ R we have:

f̃(
∑
a∈A

λaa+
∑
a∈A

µaa) = f̃(
∑
a∈A

(λa + µa)a) =
∑
a∈A

(λa + µa)f(a)

=
∑
a∈A

λaf(a) +
∑
a∈A

µaf(a) = f̃(
∑
a∈A

λaa) + f̃(
∑
a∈A

µaa),

f̃(r
∑
a∈A

λaa) = f̃(
∑
a∈A

(rλa)a) =
∑
a∈A

(rλa)f(a) = r
∑
a∈A

λaf(a) = rf̃(
∑
a∈A

λaa).
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Thus, f̃ is a well defined R-module homomorphism.
Finally, we prove that f̃ is unique. Suppose that there exist f̃ , g̃ :

R(A) −→ M such that f̃|A, g̃|A = f . Then, f̃(a) = f(a) = g̃(a), ∀a ∈ A,
and then,

f̃(
∑
a∈A

λaa) =
∑
a∈A

λaf(a) = g̃(
∑
a∈A

λaa).

That is, f̃ = g̃.

Corollary B.1.5. Let A,B be sets, R a ring and f : A −→ B a map. Then,
the following map:

f̃ : R(A) −→ R(B)∑
a∈A λaa 7−→

∑
a∈A λaf(a)

is an R-module homomorphism. Moreover:

(i) If f is injective, then f̃ is injective.

(ii) If f is surjective, then f̃ is surjective.

(iii) If f is bijective, then f̃ is an R-isomorphism.

Proof. Notice that:

f̃(
∑
a∈A

λaa) =
∑
a∈A

λaf(a) =
∑
b∈B

(
∑

a∈f−1(b)

λa) b ∈ R(B),

so the map is well defined. Abusing the notation we can say that B ⊂ R(B).
By Theorem B.1.4 the map f̃ is a well defined R-module homomorphism.

Let f be injective. Then, if we have f̃(
∑

a∈A λaa) =
∑

b∈B µbb and

f̃(
∑

a∈A λ′
aa) =

∑
b∈B µ′

bb such that

µb =

{
λa if b = f(a)

0 otherwise

µ′
b =

{
λ′
a if b = f(a)

0 otherwise

and if f̃(
∑

a∈A λaa) = f̃(
∑

a∈A λ′
aa), then,

f̃(
∑
a∈A

λaa) = f̃(
∑
a∈A

λ′
aa) ⇐⇒ µb = µ′

b, ∀b ∈ B ⇐⇒ λa = λ′
a, ∀a ∈ A.

Thus,
∑

a∈A λaa =
∑

a∈A λ′
aa. That is, f̃ is injective.
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Now suppose that f is surjective. Take any
∑

b∈B µbb ∈ R(B). As f is
surjective, for any b ∈ B there is some a ∈ A such that f(a) = b. Thus,

f̃(
∑
a∈A

µf(a)a) =
∑
b∈B

µbb

and f̃ is surjective. (iii) folows from (i) and (ii).

B.1.1 Direct sums of modules

Definition B.1.2. Let R be a ring and {Mi}i∈I be a family of R-modules.
Their direct sum is defined as follows:⊕
i∈I

Mi =
{∑

i∈I

ai

∣∣∣ ai ∈ Mi, ai = 0Mi
for all i ∈ I except for finitely many of them

}
,

Remark B.1.2. The direct sum
⊕

i∈I Mi has obviously a R-module struc-
ture defining:

(i)
∑

i∈I ai +
∑

i∈I bi =
∑

i∈I(ai + bi).

(ii) r ·
∑

i∈I ai =
∑

i∈I(rai).

In this module,
∑

i∈I ai = 0 if and only if ai = 0Mi for any i ∈ I.

Theorem B.1.6. Let A be a set. If we write A =
⊔

i∈I Ai as a disjoint
union of subsets of A, then,

R(A) =
⊕
i∈I

R(Ai).

Proof. For any i ∈ I, R(Ai) ⊂ R(A) so the sum is contained in R(A) and as
the union A =

⊔
i∈I Ai is disjoint it is clear that it is a direct sum because

R(Ai) ∩R(Aj) = {0} if i ̸= j. Therefore,⊕
i∈I

R(Ai) ⊆ R(A).

On the other hand, for any
∑

a∈A λaa ∈ R(A), as A =
⊔

i∈I Ai we can write:∑
a∈A

λaa =
∑
i∈I

∑
a∈Ai

λaa and R(A) ⊆
⊕
i∈I

R(Ai).

Definition B.1.3. Let {fi : Mi → Ni}i∈I be a family of R-homomorphisms.
The direct sum of this family of R-homomorphisms is the map

⊕i∈Ifi :
⊕

i∈I Mi −→
⊕

i∈I Ni∑
i∈I ai 7−→

∑
i∈I fi(ai).
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It is easy to check that it is a R-homomorphism.

Proposition B.1.7. Let {fi : Mi → Ni}i∈I be a family of R-homomorphisms.
Then,

(i) Ker
(
⊕i∈I fi

)
= ⊕i∈I Ker fi

(ii) Im
(
⊕i∈I fi

)
= ⊕i∈I Im fi

Proof. The first statement holds because 0 = ⊕i∈Ifi
(∑

i∈I ai
)
=

∑
i∈I fi(ai)

if and only if fi(ai) = 0 for any i ∈ I. The second statement holds because

Im
(
⊕i∈I fi

)
=

{ ∑
i∈I

fi(ai)
∣∣ ai ∈ Mi, ai = 0 ∀i ∈ I except for finitely many of them

}
=

⊕
i∈I

{ fi(ai) | ai ∈ Mi } =
⊕
i∈I

Im fi.

B.2 Chain complexes

In this section we define chain complexes and homology groups and study
their basic properties.

Definition B.2.1. Let R be a ring and for any integer n ≥ 0 let An be a
R-module. Let α0 be the zero map and let αn : An → An−1 be a sequence
of homomorphisms such that αn ◦ αn+1 = 0, for any n ≥ 0. The chain

. . .
αn+2−−−→ An+1

αn+1−−−→ An
αn−−→ An−1

αn−1−−−→ . . .
α2−→ A1

α1−→ A0
α0−→ {0}

is called a chain complex and is denoted by the pair (A∗, α∗).

Remark B.2.1. Notice that for any n ∈ N∪ {0}, αn ◦ αn+1 = 0 is equiva-
lent to saying that Imαn+1 ⊆ Kerαn.

Definition B.2.2. For a chain complex (A∗, α∗) we define the nth homol-
ogy group to be the quotient

Hn(A∗) =
Kerαn

Imαn+1
.

Elements of Kerαn are called cycles and elements of Imαn+1 are called
boundaries. Elements of Hn(A∗) are called homology classes. Two cy-
cles with the same homology class are said to be homologous. This means
that their difference is a boundary.
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The following lemma enables us to define maps between chain complexes.

Lemma B.2.1. Let R be a ring and A,A′, B,B′, C, C ′ be R-modules. Let
fA : A −→ A′, fB : B −→ B′, fC : C −→ C ′ be R-module homomorphisms
and let φ : A −→ B, γ : B −→ C, φ′ : A′ −→ B′, γ′ : B′ −→ C ′ be
R-module homomorphisms such that γ ◦ φ = γ′ ◦ φ′ = 0, φ′ ◦ fA = fB ◦ φ
and γ′ ◦ fB = fC ◦ γ. Then, fB induces the following homorphism:

f∗ :
Ker γ
Imφ −→ Ker γ′

Imφ′

x+ Imφ 7−→ fB(x) + Imφ′.

Moreover, if fA, fB and fC are isomorphisms, f∗ is an isomorphism too.

Proof. We know that the following diagrams commutes:

A B C

A′ B′ C ′.

φ

fA

γ

fB fC

φ′ γ′

Notice from γ ◦ φ = 0 and γ′ ◦ φ′ = 0, we have Imφ ⊆ Ker γ and Imφ′ ⊆
Ker γ′, so the quotients are well defined. We will first prove that the map
f∗ is well defined. On the one hand, we show that fB(Ker γ) ⊆ Ker γ′. Take
b ∈ Ker γ. Then,

γ′(fB(b)) = fC(γ(b)) = fC(0) = 0,

as every module homomorphism maps zero to zero. So, fB(Ker γ) ⊆ Ker γ′.
On the other hand, notice that

fB(Imφ) = { fB(φ(a)) | a ∈ A } = { φ′(fA(a)) | a ∈ A } ⊆ Imφ′

because fA(a) ∈ A′ and Imφ′ = {φ′(a′)|a′ ∈ A′}. Thus, if x + Imφ =
y + Imφ then x− y ∈ Imφ and as fB(Imφ) ⊆ Imφ′, fB(x− y) = fB(x)−
fB(y) ∈ Imφ′. Therefore, fB(x) + Imφ′ = fB(y) + Imφ′.

Moreover, as fB is a R-module homomorphism it is clear that f∗ too.
We conclude that f∗ is a well defined homomorphism.

Finally, suppose that fA, fB and fC are R-module isomorphisms. We
will show that fB(Ker γ) = Ker γ′ and fB(Imφ) = Imφ′.

For any b′ ∈ Ker γ′ ⊂ B′, as fB is surjective, there is some b ∈ B such
that fB(b) = b′. Then,

0 = γ′(b′) = γ′(fB(b)) = fC(γ(b)),
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and as fB is injective, fC(γ(b)) = 0 if and only if γ(b) = 0, which means
that b ∈ Ker γ. Therefore,

b′ = fB(b) ∈ fB(Ker γ) = { fB(b) ∈ B′ | γ(b) = 0γ }

and Ker γ′ ⊆ fB(Ker γ), getting the first equality.

To show the other equality, for any b′ ∈ Imφ′, there is some a′ ∈ A′ such
that b′ = φ′(a′) and for that a′, as fA is surjective, there is some a ∈ A such
that fA(a) = a′. Thus, we have that for any b′ ∈ Imφ′ there is some a ∈ A
such that:

φ′(fA(a)) = b′ ⇐⇒ fB(φ(a)) = b′,

which means that b′ ∈ fB(Imφ). Therefore, Imφ′ ⊆ fB(Imφ), getting the
equality.

Knowing this, it follows that f∗ is an isomorphism.

Injectivity follows because

fB(x) + Imφ′ = fB(y) + Imφ′ ⇐⇒ fB(x)− fB(y) = fB(x− y) ∈ Imφ′,

and we know that Imφ′ ⊆ fB(Imφ), so x−y ∈ Imφ and x+Imφ = y+Imφ.

To show surjectivity, take any x′+Imφ′ ∈ Ker γ′

Imφ′ . As Ker γ′ ⊆ fB(Ker γ),

there is some x ∈ Ker γ such that fB(x) = x′ and f∗(x + Imφ) = fB(x) +
Imφ′ = x′ + Imφ′.

Definition B.2.3. Consider two chain complexes (A∗, α∗), (B∗, β∗). For
every integer n ≥ 0, let Fn : An −→ Bn be a homomorphism. We say that
this collection of homomorphisms defines a chain map from (A∗, α∗) to
(B∗, β∗) if Fn ◦αn+1 = βn+1 ◦Fn+1 for every n ≥ 0. That is, if the following
diagram commutes:

. . .
αn+2 // An+1

αn+1 //

Fn+1

��

An
αn //

Fn

��

An−1
αn−1 //

Fn−1

��

. . .

. . .
βn+2 // Bn+1

βn+1 // Bn
βn // Bn−1

βn−1 // . . .

We will denote the chain map as F : A∗ −→ B∗.

By Lemma B.2.1 a chain map induces homomorphisms on homology
groups
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F∗ : Hn(A∗) −→ Hn(B∗)
c+ Imαn+1 7→ F (c) + Imβn+1,

for any n ≥ 0.

Remark B.2.2. Whenever there is no real need to specify each subscript we
will not write them in order to simplify the notation. For example, we would
write the commutativity condition as F ◦α = β ◦F with simplified notation.
Similarly, it is also common to simplify the chain complex condition αn ◦
αn+1 = 0 as α2 = 0.

We next define the notion of homotopy for chain complexes.

Definition B.2.4. Let (A∗, α∗), (B∗, β∗) be chain complexes and F, G :
A∗ −→ B∗ be chain maps. A collection of homomorphisms h : An −→ Bn+1

is called a chain homotopy from F toG if the following identity is satisfied
in each group An:

h ◦ α+ β ◦ h = G− F.

If such map exists, F and G are said to be chain homotopic.

Proposition B.2.2. Chain homotopic chain maps induce the same homo-
morphism on homology groups. That is, if F, G : A∗ −→ B∗ are chain
homotopic chain maps, then F∗ = G∗ : Hn(A∗) −→ Hn(B∗) for every n ≥ 0.

Proof. We have the following diagram

. . .
αn+2 // An+1

h

}}

FG

��

αn+1 // An

FG

��

αn //

h

}}

An−1

FG

��
h

}}

αn−1 // . . .

h

}}
. . .

βn+2 // Bn+1
βn+1 // Bn

βn // Bn−1
βn−1 // . . .

As F,G are chain homotopic, for any c ∈ Kerαn,

G(c)− F (c) = h(α(c)) + β(h(c)) = h(0) + β(h(c)) = β(h(c))

So, G(c)−F (c) ∈ Imβn+1 and G∗(c+ Imαn+1) = G(c)+ Imβn+1 = F (c)+
Imβn+1 = F∗(c+ Imαn+1).

B.2.1 Exact sequences

In this subsection we give the basic definitions and properties of exact se-
quences.

Definition B.2.5. A chain complex (A∗, α∗) is said to be an exact se-
quence if Kerαn = Imαn+1 for any n ≥ 0.
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Definition B.2.6. A 5-term exact sequence of the form

{0} // A
α // B

β // C // {0}

is called a short exact sequence.

Remark B.2.3. Consider the following exact sequence:

. . .
αn+2 // An+1

αn+1 // An
αn // An−1

αn−1 // . . .
α1 // A0

α0 // 0.

If there is an isomorphism φ : An −→ B we can “substitute” the module An

in the chain by B. Then, it is easy to check that the following sequence

. . .
αn+2 // An+1

φ ◦ αn+1 // B
αn ◦ φ−1

// An−1
αn−1 // . . .

α1 // A0
α0 // {0}

is also exact.

The following lemma will give us the tool to build exact sequences on
homology groups induced by short exact sequences of chain complexes.

Lemma B.2.3 (Zig-zag lemma). Let (A∗, α∗), (B∗, β∗), (C∗, γ∗) be chain
complexes and let F : A∗ −→ B∗, G : B∗ −→ C∗ be chain maps such that
for each n ≥ 0, there is a short exact sequence

0 // An
F // Bn

G // Cn
// 0

Then, for each n ≥ 1, there is a map ∂∗ : Hn(C∗) −→ Hn−1(A∗), called the
connecting homomorphism, such that the following sequence is exact:

. . .
∂∗ // Hn(A∗)

F∗ // Hn(B∗)
G∗ // Hn(C∗)

∂∗ // Hn−1(A∗)
F∗ // . . .

Proof. Consider the following diagram:

0

��

0

��

0

��

0

��
. . .

αn+2 // An+1

F

��

αn+1 // An

F

��

αn // An−1

F

��

αn−1 // An−2

F

��

αn−2 // . . .

. . .
βn+2 // Bn+1

G

��

βn+1 // Bn

G

��

βn // Bn−1

G

��

βn−1 // Bn−2

G

��

βn−2 // . . .

. . .
γn+2 // Cn+1

��

γn+1 // Cn

��

γn // Cn−1

��

γn−1 // Cn−2

��

γn−2 // . . .

0 0 0 0
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The hypothesis is that the diagram commutes and that the vertical columns
are exact.

To define the homomorphism ∂∗, let c+ Im γn+1 ∈ Hn(C∗) be arbitrary.
This means that c ∈ Cn and γn(c) = 0. As the columns form short ex-
act sequences, the map G is surjective and F is injective. Surjectivity of
G : Bn −→ Cn means that there exists b ∈ Bn such that G(b) = c, and
by the commutativity of the diagram G(βn(b)) = γn(G(b)) = γn(c) = 0.
Thus, βn(b) ∈ KerG. By exactness at Bn−1, there exists an element
a ∈ An−1 such that F (a) = βn(b) and again by commutativity of the diagram
F (αn−1(a)) = βn−1(F (a)) = βn−1(βn(b)) = 0. Since F : An−2 −→ Bn−2 is
injective, αn−1(a) = 0. Therefore a+ Imαn ∈ Hn−1(A∗).

We wish to set ∂∗(c+ Im γn+1) = a+ Imαn−1, but to do so we need to
check that the homology class of a does not depend on any of the choices
we made along the way.

Suppose that c′ + Im γn+1 = c + Im γn+1 ∈ Hn(C∗), then there ex-
ists c̃ ∈ Cn+1 such that c − c′ = γn+1(c̃). Let b′ ∈ Bn be such that
G(b′) = c′, and let a′ ∈ An−1 be such that F (a′) = βn(b

′). As G is sur-
jective, there is some b̃ ∈ Bn+1 such that G(b̃) = c̃. Then, G(βn+1(b̃)) =
γn+1(G(b̃)) = γ(c̃) = c− c′ so G(b− b′) = G(b)−G(b′) = c− c′ = G(βn+1(b̃))
which is equivalent to G(b − b′) − G(βn+1(b̃)) = G(b − b′ − β(b̃)) = 0, that
is, b − b′ − β(b̃) ∈ KerG. By exactness, there exists ã ∈ An such that
F (ã) = b − b′ − βn+1(b̃), and F (αn(ã)) = βn(F (ã)) = βn(b − b′ − β(b̃)) =
βn(b)− βn(b

′) = F (a)− F (a′) = F (a− a′). Since F is injective, this means
that αn(ã) = a− a′ so a+ Imαn = a′ + Imαn and the map is well defined.

In summary, we have defined a map ∂∗ : Hn(C∗) −→ Hn−1(A∗) defined
as ∂∗(c + Im γn+1) = a + Imαn, using that there is some b ∈ Bn such that
G(b) = c and F (a) = βn(b).

We now prove that the map is a homomorphism. If ∂∗(c + Im γn+1) =
a + Imαn and ∂∗(c

′ + Im γn+1) = a′ + Imαn, there exist b, b′ ∈ Bn such
that G(b) = c, G(b′) = c′ and F (a) = βn(b), F (a′) = βn(b

′). It follows
that G(b + b′) = G(b) + G(b′) = c + c′ and F (a + a′) = F (a) + F (a′) =
βn(b) + βn(b

′) = βn(b+ b′). Hence,

∂∗
(
(c+ Im γn+1) + (c′ + Im γn+1)

)
= ∂∗

(
(c+ c′) + Im γn+1

)
= (a+ a′) + Imαn = (a+ Imαn) + (a′ + Imαn)

as we proved that the map is well defined making these choices.
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It is left to prove the exactness of the following sequence:

. . .
∂∗ // Hn(A∗)

F∗ // Hn(B∗)
G∗ // Hn(C∗)

∂∗ // Hn−1(A∗)
F∗ // . . .

We will start by looking at Hn(A∗). Suppose that ∂∗(c + Im γn+2) =
a + Imα+1. Then, looking at the definition of ∂∗ there is some b ∈ Bn+1

such that F (a) = β(b), so F∗(∂∗(c + Im γn+1)) = F∗(a + Imαn) = F (a) +
Imβn = βn+1(b) + Imβn+1 = 0. Thus, Im ∂∗ ⊆ KerF∗. Conversely, if
F∗(a + Imαn+1) = F (a) + Imβn+1 = 0, there is some b ∈ Bn+1 such that
F (a) = βn+1(b) and then γn+1(G(b)) = G(βn+1(b)) = G(F (a)) = 0. This
means that G(b)+γn+2 ∈ Hn+1(C∗) and by the definition of ∂∗ we find that
∂∗(G(b) + Im γn+1) = a+ Imαn+1. Thus, KerF∗ ⊆ Im ∂∗.

Next we prove exactness at Hn(B∗). From G ◦ F = 0 it follows that
G∗◦F∗ = 0 and thus, ImF∗ ⊆ KerG∗. If G∗(b+Imβn+1) = G(b)+Im γn+1 =
0 for some b+Imβn+1 ∈ Hn(B∗), there exists c ∈ Cn+1 such that γn+1(c) =
G(b). By surjectivity of G, there is some b′ ∈ Bn+1 such that G(b′) = c, and
then G(βn+1(b

′)) = γn+1(G(b′)) = γn+1(c) = G(b). This is equivalent to
G(b)−G(βn+1(b

′)) = G(b− βn+1(b
′)) = 0, so b− βn+1(b

′) ∈ KerG = ImF .
Hence, there exists a ∈ An with F (a) = b−βn+1(b

′). Moreover, F (αn(a)) =
βn(F (a)) = βn(b − βn+1(b

′)) = βn(b) = 0 as b ∈ Kerβ, so by injectivity of
F , αn(a) = 0. This means that a ∈ Kerαn and a+ Imαn+1 ∈ Hn(A∗). We
get that, F∗(a + Imαn+1) = F (a) + Imβn+1 = (b − βn+1(b

′)) + Imβn+1 =
b+ Imβn+1 and thus, KerG∗ ⊆ ImF∗.

Finally, we prove exactness at Hn(C∗). Let c + Im γn+1 ∈ ImG∗. This
means that c + Im γn+1 = G∗(b + Imβn+1) = G(b) + Im γn+1 for some
b ∈ Bn with βn(b) = 0, so c = G(b) + γn+1(c

′) for some c′ ∈ Cn+1. As
c+Im γn+1 = (c−γn+1(c

′))+Im γn+1 = G(b)+Im γn+1 we can assume that
G(b) = c. Then, by definition, ∂∗(c+Im γn+1) = a+Imαn, where a ∈ An−1

is chosen so that F (a) = βn(b). Since F is injective and βn(b) = 0, we have
that a = 0, and therefore ∂∗(c+Im γn+1) = 0. That is, c+Im γn+1 ∈ Ker ∂∗.
Conversely, if ∂∗(c+ Im γn+1) = 0, it means that there is some b ∈ Bn such
thatG(b) = c and a ∈ An−1, a ∈ Imαn such that F (a) = βn(b). Writing a =
α(a′) for some a′ ∈ An, we find that βn(F (a′)) = F (αn(a

′)) = F (a) = βn(b),
which is equivalent to saying that βn(b)− βn(F (a′)) = βn(b− F (a′)) = 0 so
b−F (a′) ∈ Kerβn and G∗

(
(b−F (a′)) +Imβn+1

)
=

(
G(b)−G(F (a′))

)
+

Im γn+1 = G(b) + Im γn+1 = c+ Im γn+1. Therefore, Ker ∂∗ ⊆ ImG∗, which
concludes the proof.





Appendix C

Preliminaries in Topology

Here we collect a number of topological constructions and properties to be
used in the work.

C.1 Disjoint union topology

Definition C.1.1. Let {Xi}i∈I be a family of sets. The set⊔
i∈I

Xi = { (x, i) | x ∈ Xi }

is called the disjoint union of the family. The elements of this set are
ordered pairs (x, i). Here i serves as an auxiliary index that indicates which
Xi the element x comes from.

Definition C.1.2. Let {Xi}i∈I be a family of sets. The map

ıi : Xi −→
⊔

i∈I Xi

x 7−→ (x, i)

is called the canonical injection of Xi.

Remark C.1.1. It is clear that ıi is injective. The image set

ıi(Xi) = {(x, i)|x ∈ Xi}

is a ”copy” of Xi in the disjoint union and can be identified with it. Abusing
the notation we may write Xi ⊂

⊔
i∈I Xi and xi ∈

⊔
i∈I Xi for xi ∈ Xi.

Observe that for i ̸= j the sets ıi(Xi) and ıj(Xj) are disjoint even if the
sets Xi and Xj are not.

Now we define a topology over the disjoint union of topological spaces.
Let {Xi}i∈I be a family of topological spaces. Over

⊔
i∈I Xi we can take the

59
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finest topology for which all canonical injections are continuous. Explicitly,
the family of open sets is

τ = { U ⊆ ⊔i∈IXi | ı−1
i (U) ⊆ Xi is open for all i ∈ I }.

Then, (
⊔

i∈I Xi, τ) is a toplogical space.

Remark C.1.2. Observe that two components ıi(Xi) and ıj(Xj) are always
disconnected for i ̸= j.

Proposition C.1.1. Each canonical injection ıi : Xi →
⊔

i∈I Xi is a topo-
logical embedding and an open and closed map.

Proof. First we prove that ıi is open. For any open U ⊆ Xi, ıi(U) = U ×{i}
is open because

ı−1
j (U × {i}) =

{
U if j = i,

∅ if j ̸= i,

is open. Now we show that the canonical injections are closed. Let C = Xi−
U ⊆ Xi be a closed set (U open). As ıi is injective and ıi(Xi) ∩ ıj(Xj) = ∅,
for any i ̸= j,

ı(C) = ıi(Xi)− ıi(U) =
⊔
i∈I

Xi − ((∪j ̸=iıj(Xj)) ∪ ıi(U)).

The set (∪j ̸=iıj(Xj)) ∪ ıi(U) is a union of open sets as we have proved that
the canonical injections are open maps. Therefore, ı(C) is closed.

Finally we observe that if we restrict the codomain, ıi : Xi −→ ıi(Xi) is
a homeomorphism. Indeed, we know it is bijective by definition of the map
and continuous by definition of the topology. Moreover, we have proved it
is an open map to the whole domain so it is an open map. Therefore it is a
homeomorphism.

Proposition C.1.1 tells us that there is a homeomorphic copy of each Xi

in
⊔

i∈I Xi. Therefore we may write Xi ↪→
⊔

i∈I Xi or, abusing the notation,
we could also write Xi ⊆

⊔
i∈I Xi.

Proposition C.1.2. A set C ⊆
⊔

i∈I Xi is closed if and only if ı−1
i (C) is

closed for any i ∈ I.

Proof. Suppose that C =
⊔

i∈I Xi − U is closed (U open). Then, for any
i ∈ I,

ı−1
i (C) = ı−1

i (⊔i∈IXi)− ı−1
i (U) = Xi − ı−1

i (U)
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is closed as ı−1
i (U) is open.

Suppose now that for any i ∈ I, ı−1
i (C) is closed in Xi. That is, ı

−1
i (C) =

Xi − Ui for some open set Ui ⊆ Xi. Then,

C =
⊔
i∈I

Xi ∩ C =
⋃
i∈I

(C ∩ ıi(Xi)) =
⋃
i∈I

{(x, i)|ıi(x) ∈ C}

=
⋃
i∈I

(ı−1
i (C)× {i}) =

⋃
i∈I

(Xi − Ui)× {i} =
⋃
i∈I

(Xi × {i} − Ui × {i})

=
⋃
i∈I

(ıi(Xi)− ıi(Ui)) =
⋃
i∈I

ıi(Xi)−
⋃
i∈I

ıi(Ui) =
⊔
i∈I

Xi −
⋃
i∈I

ıi(Ui),

where we have used that ıi(Xi) ∩ ıj(Xj) = ∅ if i ̸= j. As we proved in
Proposition C.1.1 the maps ıi are open and the union of open sets is open,
thus,

⋃
i∈I ıi(Ui) is open. Therefore C is closed.

Finally we give the characterization of continuity of maps from the dis-
joint union space.

Theorem C.1.3 (Characteristic property of disjoint union spaces). Let
{Xi}i∈I be a family of topological spaces and Y be any topological space.
A map f :

⊔
i∈I Xi −→ Y is continuous if and only if f ◦ ıi is continuous for

any i ∈ I.

Proof. It is clear that if f is continuous then each f ◦ ıi is continuous as it is
the composition of two continuous maps. Suppose that Xi

ıi−→
⊔

i∈I Xi
f−→

Y is continuous for any i ∈ I. Then, if U ⊆ Y is open, we know that
(f ◦ ıi)−1(U) = ı−1

i (f−1(U)) is open for every i ∈ I. Thus, by definition of
the open sets in the disjoint union, f−1(U) is open in

⊔
i∈I Xi. Therefore f

is continuous.

Remark C.1.3. As we explained before, there is no problem in considering
each Xi as a subspace of

⊔
i∈I Xi. Thus, we can rewrite the definition of the

topology, Proposition B.1.2 and Theorem B.1.3 as follows:

• A set U ⊆
⊔

i∈I Xi is open if and only if Xi ∩ U is open in Xi for any
i ∈ I.

• A set C ⊆
⊔

i∈I Xi is closed if and only if Xi ∩ C is closed in Xi for
any i ∈ I.

• A map f :
⊔

i∈I Xi −→ Y is continuous if and only if f|Xi
is continuous

in Xi for any i ∈ I.
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C.2 Quotient by a set

In this section we study some special kind of quotient topological spaces.
We want to define the notion of collapsing some subspace A ⊆ X to a point.
These quotient spaces are used in Chapter 2.

Definition C.2.1. Let X be a topological space and A ⊆ X. We define
the quotient of X by the subset A as the quotient space under the following
relation:

x ∼ y ⇐⇒ x = y or x, y ∈ A,

and denote the quotient space as X⧸A.

Remark C.2.1. As a set, X⧸A is formed by equivalence classes [x] for every
x ∈ X. Observe that if x ∈ X−A, [x] = {x} and if x ∈ A, [x] = A. That is,

X⧸A =
{
{x}

∣∣ x ∈ X −A} ∪ {A
}
.

Consider the quotient map:

q : X −→ X⧸A
x 7→ [x].

By definition of quotient spaces, U ⊆ X⧸A is open if and only if q−1(U) is

open in X. We also know that C ⊆ X⧸A is closed if and only if q−1(C) is
closed in X.

Let U ⊆ X⧸A. As q is surjective, there is some V ⊆ X such that
q(V ) = U . There are two options:

• If A ∈ U , or equivalently, A ∩ V ̸= ∅, q−1(U) = V ∪A so

U is open/closed in X⧸A ⇐⇒ V ∪A is open/closed in X

• If A /∈ U , or equivalently, A ∩ V = ∅, q−1(U) = V so

U is open/closed in X⧸A ⇐⇒ V is open/closed in X

It is reasonable to think that we can identify X − A with X⧸A − A⧸A.
Although we do have a bijection in order to get a homeomorphism we must
be careful with the topology. We want to know when q|X−A

is a topological
embedding.

Example C.2.1. Consider X = R and A = Q. Which are the open sets in
R⧸Q? Let q : R → R⧸Q be the quotient map. Let U = q(V ) ⊆ R⧸Q.
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If V ∩Q = ∅, we have seen that U is open if and only if V is open. By
density of Q if V is open and nonempty it must intersect Q, so V must be
the empty set in this case. Thus, U = ∅ and all nonempty open sets in the
quotient contain Q.

Therefore, since any two nonempty open sets have nonempty intersec-
tion, the quotient is not Hausdorff. Since the space R − Q is Hausdorff
(subspace of a Hausdorff space), R⧸Q − Q⧸Q can not be homeomorphic to
R−Q.

The next result gives the conditions under which q|X−A
is a topological

embedding.

Proposition C.2.1. Let X be a topological space and A ⊆ X. Let q :
X −→ X⧸A be the quotient map. If A is either open or closed, then q|X−A

is a topological embedding.

Proof. It is clear that q|X−A
is a continuous bijection. We will prove that

q|X−A
is an open map when A is closed and in the same way one can prove

that q|X−A
is a closed map when A is open. Therefore, in either case we get

that it is a homeomorphism.

Let A be closed. As X −A is open, any subset U ⊆ X −A that is open
in the subspace X − A is also open in X. Since A ∩ U = ∅, we have that
q−1(q(U)) = U . Therefore, as U is open in X, q(U) is open in X⧸A−A⧸A.

C.3 Wedge sum

We defined the disjoint union of topological spaces in section B.1. Now we
want to join topological spaces gluing a point from each one. The idea is to
identify a point from each topological space.

Definition C.3.1. Let {Xi}i∈I be a family of topological spaces and let
xi ∈ Xi for each i ∈ I. The following quotient space is called the wedge
sum of the family {Xi}i∈I :∨

i∈I
Xi = ⊔i∈IXi⧸⊔i∈I{xi}.

C.4 Adjunction spaces

Adjunction spaces come from the idea of attaching a topological space to
another.
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Definition C.4.1. Let X and Y be topological spaces, A ⊆ Y be a closed
subset and f : A −→ X be a continuous map. We define the following
relation on X ⊔ Y : for any x, y ∈ X ⊔ Y , x ∼ y if and only if

• If x, y ∈ X, x = y.

• If x, y ∈ Y , there is some z ∈ X such that x, y ∈ f−1(z).

• If x ∈ X and y ∈ Y , f(y) = x.

It is an equivalence relation. The quotient space X ⊔ Y⧸∼ is called the
adjunction space, and it is denoted by X ∪f Y . We say that Y has been
attached to X by f .

Remark C.4.1. Roughly speaking, we identify all points in the sets {x} ∪
f−1(x) for each x ∈ f(A). The union X ⊔ Y is disjoint so we have the
following options for any x ∈ X ⊔ Y :

• If x ∈ X, [x] = {x} ∪ f−1(x).

• If x ∈ A ⊆ Y , [x] = {f(x)} ∪ {y ∈ A|f(y) = f(x)} = {f(x)} ∪
f−1(f(x)).

• If x ∈ Y −A, [x] = {x}.

Therefore if q : X ⊔ Y −→ X ∪f Y is the quotient map it is clear that
X ∪f Y is the disjoint union of q(X) and q(Y −A).

Proposition C.4.1. Let X∪fY be an adjunction space and let q : X⊔Y −→
X ∪f Y be the associated quotient map. Then,

(i) q|X is a topological embedding whose image set q(X) is a closed sub-
space of X ∪f Y .

(ii) q|Y −A
is a topological embedding whose image set q(Y −A) is an open

subspace of X ∪f Y .

Proof. We begin showing (i). Observe that the equivalence relation does
not identify any points in X with each other so q|X : X −→ q(X) is a bi-
jection. Moreover the restriction of a continuous map is continuous so it is
continuous too. We will show that the map is closed to conclude that it is
a topological embedding.

Let C ⊆ X be a closed subspace. To show that q(C) is closed we need to
show that q−1(q(C)) is closed in X ⊔Y , which is equivalent to showing that
its intersections with X and Y are closed in X and Y respectively. From
Remark C.4.1, q−1(q(C)) = C ∪ f−1(C). Thus,
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• q−1(q(C)) ∩X = C is closed in X by assumption.

• q−1(q(C)) ∩ Y = f−1(C) is closed in A by continuity of f and also
closed in Y because A is closed in Y .

So qX is a closed map. It follows, in particular, that q(X) is closed in X∪f Y .

To prove (ii), it is clear by Remark C.4.1 that q|Y −A
is a bijection and it

is continuous as it is the restriction of a continuous map. We now show it
is an open map to conclude that it is an embedding. Let U ⊆ Y −A be an
open set. Observe that q−1(q(U)) = U . Thus,

• q−1(q(U)) ∩X = ∅ which is open in X.

• q−1(q(U)) ∩ Y = U which is open in Y by assumption.

Therefore q(U) is open in X ∪f Y and q|Y −A
is an open map. It follows, in

particular, that q(Y −A) is open in X ∪f Y .

C.5 Local finiteness

Definition C.5.1. Let X be a topological space. A collection A of subsets
ofX is said to be locally finite if each point ofX has an open neighborhood
that intersects at most finitely many of the sets in A.

Here are some elementary properties of local finiteness.

Proposition C.5.1. Let X be a topological space and A be a collection of
subsets of X. Consider the collection

cl(A) = { cl(A) | A ∈ A }

Then, A is locally finite if and only if cl(A) is locally finite.

Proof. If cl(A) is locally finite, since A ⊆ cl(A) for any A ∈ A, it follows
immediately that A is locally finite.

Conversely, suppose that A is locally finite. Given x ∈ X, let V be an
open neighbourhood of x that intersects only finitely many sets {A1, . . . , An}
in A. If V contains a point y of cl(A) for some A ∈ A, then every open
neighbourhood of y contains a point of A. The neighbourhood V is also an
open neighbourhood of y and it contains a point of A, so A must be one of
the sets A1, . . . , An. Thus, the same neighbourhood V intersects cl(A) for
finitely many cl(A) ∈ cl(A).
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Proposition C.5.2. Let X be a topological space and A a locally finite
collection of subsets of X. Then,

cl(
⋃
A∈A

A) =
⋃
A∈A

cl(A).

Proof. It is true in general that the right-hand side is contained in the left
hand side so we only need to prove the reverse containment.

We will prove the contrapositive: assuming x ∈ X is not an element
of

⋃
A∈A cl(A), we show it is not an element of cl(

⋃
A∈AA) either. By

Proposition C.5.1, x has a neighbourhood U that intersects only finitely
many sets in cl(A), say cl(A1), . . . , cl(An). Then, U − (

⋃n
i=1 cl(Ai)) is an

open neighbourhood of x that intersects none of the sets in A. Therefore,
x /∈ cl(

⋃
A∈AA).

C.6 Coherent topologies

Definition C.6.1. Let X be a topological space and B be a family of
subspaces ofX whose union isX. We say that the topology ofX is coherent
with B if a set U ⊆ X is open in X if and only if U ∩ B is open in B for
every B ∈ B.

Remark C.6.1. An equivalent definition would be that X is coherent with
B if a set C ⊆ X is closed if and only if C ∩B is closed in B for any B ∈ B.

To show this let C = X − U ⊆ X. Just notice that for any B ∈ B the
set C ∩B = (X −U)∩B = (X ∩B)−U ∩B = B −U ∩B is closed in B if
and only if U ∩B is open in B. So it is clear that they are equivalent.

In either case, the “only if” implication always holds by definition of the
subspace topology on B so it is the “if” part that is significant.

Example C.6.1. If {Xi}i∈I is an indexed family of topological spaces, the
disjoint union topology on

⊔
i∈I Xi is coherent with the family {Xi}i∈I ,

thought of as subspaces of the disjoint union.

The next proposition expresses some basic properties of coherent topolo-
gies.

Proposition C.6.1. Let X be a topological space whose topology is coherent
with a family B of subspaces. Then,

(i) If Y is another topological space, a map f : X −→ Y is continuous if
and only if f|B is continuous for every B ∈ B.

(ii) The map
⊔

B∈B B −→ X induced by inclusion of each set B ↪→ X is
an identification map.
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Proof. To prove (i), notice that if f : X −→ Y is continuous it is clear that
f|B is continuous for every B ∈ B as it is the restriction of a continuous map.
Suppose that we know that f|B is continuous for every B ∈ B. Let U ⊆ Y
open. Since X =

⋃
B∈B B, we conclude that

f−1(U) = f−1(U)
⋂

X = f−1(U)
⋂

(∪B∈BB)

=
⋃
B∈B

f−1(U) ∩ B =
⋃
B∈B

f−1
|B (U)

is open because it is a union of open sets in X.

To prove (ii), observe that since X =
⋃

B∈B B, the map I :
⊔

B∈B B −→
X is surjective. Finally notice that by definition of a coherent topology,
U ⊆ X is open if and only if U ∩ B is open in B for any B ∈ B, which
is equivalent to saying that I−1(U) is open in the disjoint union

⊔
B∈B B.

Therefore I is an identification map.

Remark C.6.2. From Proposition C.6.1 it is clear that the topology of X is
coherent with a family of subspaces B if and only if it is the finest topology
on X for which all the inclusion maps B ↪→ X are continuous.

C.7 Separability of inductively built CW complexes

In the proof of Theorem 3.3.3 it is left to prove that the inductively built
space X =

⋃
n≥0Xn is Hausdorff. To show this we need some lemmas.

These three lemmas appear as exercises in [2].

Lemma C.7.1. Let X be a topological space. If for every x ∈ X there
is a continuous function f : X −→ R such that f−1(0) = {x}, then X is
Hausdorff.

Proof. Let x, y ∈ X be distinct. There is some function f : X −→ R such
that f−1(0) = {x}. Since x ̸= y, f(y) ̸= 0 and as R with the usual topology
is Hausdorff, there are some open sets U, V with empty intersection such
that 0 ∈ U, f(y) /∈ U and f(y) ∈ V, 0 /∈ V . Then, the preimages f−1(U)
and f−1(V ) are open and disjoint such that x ∈ f−1(U), y /∈ f−1(U) and
y ∈ f−1(V ), x /∈ f−1(V ).

Lemma C.7.2. Let D be a closed n-cell with n ≥ 1. Given any point p ∈
intD, there is a continuous function F : D → [0, 1] such that F−1(1) = frD
and F−1(0) = {0}.

Proof. As D is an n-cell, there is a homeomorphism D
f−→ Dn sending

f(intD) = Bn and f(frD) = Sn−1. If p ∈ intD, f(p) ∈ Dn and by Propo-
sition 3.1.1 there is a homeomorphism g : Dn → Dn that sends f(p) to 0,
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g(intDn) = g(Bn) = Bn and g(frDn) = g(Sn−1) = Sn−1. We finally define
F : D → [0, 1] as F (x) = ||g(f(x))||. It is a composition of continuous
functions so it is continuous. Moreover,

• ||g(f(x))|| = 1 if and only if g(f(x)) ∈ Sn−1, and since f(frD) =
Sn−1 = g−1(Sn−1), this happens if and only if x ∈ frD.

• ||g(f(x))|| = 0 if and only if g(f(x)) = 0, and as f(p) = g−1(0) this
happens if and only if x = p.

Lemma C.7.3. Let D be a closed n-cell with n ≥ 1. Any continuous func-
tion f : frD → [0, 1] extends to a continuous function F : D → [0, 1] that is
strictly positive in intD.

Proof. There is a homeomorphism g : Dn −→ D that sends g(Bn) = intD
and g(Sn−1) = frD. We define h : Dn → [0, 1] as

h(x) =

{
||x||f(g( x

||x||)) +
1−||x||

2 , if x ̸= 0,
1
2 , if x = 0,

and finally F = h ◦ g−1 : D → [0, 1]. Observe that h is continuous since
h(x) → 1/2 when x → 0, so F is clearly continuous. Moreover,

• If x ∈ frD, F (x) = h(g−1(x)) = f(x) since g−1(x) ∈ Sn−1.

• Observe that h(x) > 0 for any x ∈ Bn, so F (x) > 0 for any x ∈ intD.

Knowing these three lemmas, we prove the result.

Recall that in Theorem 3.3.3 we have a sequence of topological spaces
X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ . . . satisfying the following conditions:

(i) X0 is a nonempty discrete space.

(ii) For each n ≥ 1, Xn is obtained from Xn−1 by attaching a (possibly
empty) collection of n-cells.

Until now we have proved that X =
⋃

n≥0Xn,

(a) has a unique topology coherent with {Xn}: A subset C ⊆ X is closed
if and only if each C ∩Xn is closed,
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(b) has a cell decomposition where the n-cells are defined to be the com-
ponents of Xn − Xn−1, and for each n-cell enj the characteristic map
is defined to be

Dn
j ↪→ Xn−1

⊔(
⊔i∈In Dn

i

) qn−→ Xn ↪→ X

where the first and last maps are inclusions and qn : Xn−1
⊔(

⊔i∈In
Dn

i

)
→ Xn is the quotient map of the adjunction space.

By Lemma C.7.1 it is sufficient to show that for each p ∈ X there is
a continuous function f : X → [0, 1] such that f−1(0) = {p}. Let p ∈ X
be arbitrary, and let emi0 be the unique cell of dimension m containing p.
Let Φm

i0
: Dm

i0
→ X be the characteristic map of emi0 . We will define the

map inductively. We start by defining a map fm : Xm → [0, 1] as follows:
if m = 0, just let fm(p) = 0 and fm(x) = 1 for x ̸= p. If m ≥ 1, let
p̃ = (Φm

i0
)−1(p) ∈ intDm

i0
. By Lemma C.7.2 there is a continuous function

F : Dm
i0

→ [0, 1] that is equal to 1 in frDm
i0

and is equal to 0 exactly at p̃.
Define a function

f̃m : Xm−1

⊔(
⊔i∈I D

m
i

)
−→ [0, 1]

by letting f̃m = F on Dm
i0

and f̃m = 1 everywhere else. Then, since f̃ is
continuous in each component of the union, by Theorem C.1.3 it is contin-
uous. Passing to the quotient, there is a unique map fm : Xm → [0, 1] such
that f̃m = fm ◦ qm and f−1

m (0) = {p}.

Now suppose by induction that for n > m we have defined a continuous
map fn−1 : Xn−1 → [0, 1] such that (fn−1)

−1(0) = {p}.
We want to define a map f̃n : Xm−1

⊔(
⊔i∈I D

m
i

)
→ [0, 1]. Lemma C.7.3

shows that for each closed n-cell Dn
i the function fn−1 ◦ Φn

i|frDn
i

: frDn
i →

[0, 1] can be extended to a continuous function Fn
i : Dn

i → [0, 1] that has no
zeros in intDn

i . If we define f̃n by f̃n = fn−1 on Xn−1 and f̃n = Fn
i on Dn

i ,
the map is continuous and passes to the quotient to give us fn : Xn → [0, 1]
such that f̃n = fn ◦ qn whose zero set is {p}.

Finally we just define f : X → [0, 1] by letting f(x) = fn(x) if x ∈ Xn.
We have constructed those fn inductively in a way that the map is well
defined, it is continuous since the restriction to each Xn is continuous and
f−1(0) = {p}.

Therefore X is Hausdorff.
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The prism operator

The following Lemma was left without proof in Chapter 1. We used it to
prove the homotopy invariance of singular homology groups.

Lemma D.0.1. Let X be a topological space and I = [0, 1]. The chain maps
induced by

ι0 : X −→ X × I and ι1 : X −→ X × I
x 7→ (x, 0) x 7→ (x, 1)

are chain-homotopic.

Proof. We are in the following situation:

. . .
∂ // Cn+1(X)

(ιi)#

��

∂ // Cn(X)

(ιi)#

��

∂ // Cn−1(X)

(ιi)#

��

∂ // . . .

. . .
∂// Cn+1(X × I)

∂ // Cn(X × I)
∂ // Cn−1(X × I)

∂ // . . .

Our goal is to define a chain homotopy between (ι0)# and (ι1)#. For each
n ≥ 0, we would like to define a homomorphism

h : Cn(X) −→ Cn+1(X × I)

that satisfies
∂ ◦ h+ h ◦ ∂ = (ι1)# − (ι0)# (D.1)

For the standard n-simplex ∆n = [e0, e1, . . . , en] ⊂ Rn+1 we define

Ei = (ei, 0), E′
i = (ei, 1) ∈ Rn+2

They are the vertices of the following (n+1)-simplices:

∆n × {0} = [E0, . . . , En] ⊂ Rn+2

∆n × {1} = [E′
0, . . . , E

′
n] ⊂ Rn+2

Let Γi,n = φ[E0,...,Ei,E′
i,...,E

′
n]

for any n ≥ 0 and i = 0, . . . , n. That is,
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Γi,n : ∆n+1 −→ [E0, . . . , Ei, E
′
i, . . . , E

′
n] ⊂ ∆n × I

(λ0, . . . , λn+1) 7→
∑i

k=0 λkEk +
∑n+1

k=i+1 λkE
′
k−1

For any n ≥ 0 we define the map h : Cn(X) −→ Cn+1(X × I) by

h(σ) =
n∑

i=0

(−1)i(σ × Id) ◦ Γi,n,

for each σ ∈ Ωn(X) in the basis, and we extend to Cn(X) linearly. Notice
that

∆n+1
Γi,n−→ ∆n × I

σ×Id−→ X × I

so (σ × Id) ◦ Γi,n ∈ Ωn+1(X × I) and h is a well defined homomorphism.
This map is called the prism operator. Before continuing, we observe how
the face maps and Γi,n combine. We first show that

Γi,n ◦ φi,n+1 = Γi−1,n ◦ φi,n+1, (D.2)

for any i = 1, . . . , n. Indeed,

Γi,n(φi,n+1(λ0, . . . , λn)) = Γi,n(λ0, . . . , λi−1,
i

0, λi+1, . . . , λn)

=

i−1∑
j=0

λjEj +

n∑
j=i+1

λjE
′
j

= Γi−1,n(λ0, . . . , λi−1,
i

0, λj , . . . , λn)

= Γi−1,n(φi,n+1(λ0, . . . , λn)).

Moreover,

(φj,n × Id) ◦ Γi,n−1 =

{
Γi+1,n ◦ φj,n+1 if i ≥ j,

Γi,n ◦ φj+1,n+1 if i < j.
(D.3)
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To show this, if i ≥ j,

(φj,n × Id)(Γi,n−1(λ0, . . . , λn)) = (φj,n × Id)(
i∑

k=0

λkEk +
n∑

k=i+1

λkE
′
k−1)

=

i∑
k=0

λk(φj,n × Id)(ek, 0)

+

n∑
k=i+1

λk(φj,n × Id)(ek−1, 1)

=

j−1∑
k=0

λk(ek, 0) +
i∑

k=j

λk(ek+1, 0) +
n∑

k=i+1

λk(ek, 1)

=

j−1∑
k=0

λkEk +
i∑

k=j

λkEk+1 +
n∑

k=i+1

λkE
′
k

= Γi+1,n(λ0, . . . , λj−1,
j

0, λj , . . . , λn)

= Γi+1,n(φj,n+1(λ0, . . . , λn)),

and if i < j,

(φj,n × Id)(Γi,n−1(λ0, . . . , λn)) = (φj,n × Id)(

i∑
k=0

λkEk +

n∑
k=i+1

λkE
′
k−1)

=
i∑

k=0

λk(φj,n × Id)(ek, 0)

+
n∑

k=i+1

λk(φj,n × Id)(ek−1, 1)

=

i∑
k=0

λk(ek, 0) +

j−1∑
k=i+1

λk(ek−1, 0) +

n∑
k=j

λk(ek, 1)

=

i∑
k=0

λkEk +

j−1∑
k=i+1

λkEk−1 +

n∑
k=j

λkE
′
k

=

i∑
k=0

λkEk +

j−1∑
k=i+1

λkEk−1 +

n+1∑
k=j+1

λk−1E
′
k−1

= Γi+1,n(λ0, . . . , λj−1,
j

0, λj , . . . , λn)

= Γi,n(φj+1,n+1(λ0, . . . , λn)).

Now we check if h satisfies (D.1). By linearity, it is enough to check if
the equality holds for the elements of the basis. On the one hand, by (D.3),
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for any σ ∈ Ωn(X),

h(∂(σ)) = h(
n∑

j=0

(−1)j [σ]j) =
n∑

j=0

(−1)jh([σ]j)

=

n∑
j=0

n−1∑
i=0

(−1)i+j((σ ◦ φj,n)× Id) ◦ Γi,n−1

=
n∑

j=0

n−1∑
i=0

(−1)i+j((σ × Id) ◦ (φj,n × Id)) ◦ Γi,n−1

=
∑

0≤j≤i≤n−1

(−1)i+j(σ × Id) ◦ Γi+1,n ◦ φj,n+1

+
∑

0≤i<j≤n

(−1)i+j(σ × Id) ◦ Γi,n ◦ φj+1,n+1.

On the other hand,

∂(h(σ)) = ∂(
n∑

i=0

(−1)i(σ × Id) ◦ Γi,n) =
n+1∑
j=0

n∑
i=0

(−1)i+j [(σ × Id) ◦ Γi,n]j

separating terms where i < j, i = j − 1,i = j and i > j this becomes

∂(h(σ)) =
∑

0≤i<j−1<j≤n+1

(−1)i+j(σ × Id) ◦ Γi,n ◦ φj,n+1

−
∑

1≤j≤n+1

(σ × Id) ◦ Γj−1,n ◦ φj,n+1

+
∑

0≤j≤n

(σ × Id) ◦ Γj,n ◦ φj,n+1

+
∑

0≤j<i≤n

(−1)i+j(σ × Id) ◦ Γi,n ◦ φj,n+1,

rearranging indices j = j′ + 1 in the first sum and i = i′ + 1 in the last,

∂(h(σ)) =
∑

0≤i<j′<j′+1≤n

(−1)i+j′+1(σ × Id) ◦ Γi,n ◦ φj′+1,n+1

−
∑

1≤j≤n+1

(σ × Id) ◦ Γj−1,n ◦ φj,n+1

+
∑

0≤j≤n

(σ × Id) ◦ Γj,n ◦ φj,n+1

+
∑

0≤j<i′≤n−1

(−1)i
′+j+1(σ × Id) ◦ Γi′+1,n ◦ φj,n+1.
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If we add both computations, we observe that the first and last sum cancel
out and the terms in the middle sums by (D.2) cancel out too except those
where j = 0 and j = n+ 1. That is,

h(∂(σ)) + ∂(h(σ)) = −(σ × Id) ◦ Γn,n ◦ φn+1,n+1 + (σ × Id) ◦ Γ0,n ◦ φ0,n+1

and finally notice that

(σ × Id)(Γn,n(φn+1,n+1(λ0, . . . , λn))) = (σ × Id)(Γn,n(λ0, . . . , λn, 0))

= (σ × Id)(
n∑

j=0

λkEk)

= (σ × Id)((λ0, . . . , λn), 0)

= (σ(λ0, . . . , λn), 0)

= ι0(σ(λ1, . . . , λn)),

(σ × Id)(Γ0,n(φ0,n+1(λ0, . . . , λn))) = (σ × Id)(Γ0,n(λ0, . . . , λn, 1))

= (σ × Id)(
n∑

j=0

λkE
′
k)

= (σ × Id)((λ0, . . . , λn), 1)

= (σ(λ0, . . . , λn), 1)

= ι1(σ(λ1, . . . , λn)).

Thus, (ι0)#(σ) = ι0 ◦ σ = (σ× Id) ◦Γn,n ◦φn+1,n+1 and (ι1)#(σ) = ι1 ◦ σ =
(σ × Id) ◦ Γ0,n ◦ φ0,n+1 which concludes the proof.





Appendix E

Excision theorem

E.1 The barycentric subdivision

Definition E.1.1. Let X be a topological space and let U be a collection
of subspaces of X whose interiors cover X. A singular n-chain c ∈ Cn(X) is
said to be U-small if every singular simplex that appears in c has an image
lying entirely in one of the subsets in U .

Let CU
n (X) denote the subgroup of Cn(X) consisting of U-small chains.

They form a chain complex (CU
∗ (X), ∂∗). Let HU

n (X) denote the n-th ho-
mology group of (CU

∗ (X), ∂∗) for every n ≥ 0. The goal of this section is to
prove the following result.

Proposition E.1.1. Let X be a topological space and let U be a collection of
subspaces of X whose interior cover X. Then, the inclusion map CU

n (X) ↪→
Cn(X) induces a homology isomorphism HU

n (X) → Hn(X) for any n ≥ 0.

The idea of the proof is to show that if σ : ∆n −→ X is any singular
n-simplex, there is a homologous n-chain obtained by “subdividing” σ into
n-simplices with smaller images. If we divide sufficiently finely, we can en-
sure that each of the resulting simplices will be U-small. The tricky part
is to do this in a way that allows us to keep track of the boundary operators.

Definition E.1.2. For any n-simplex [p0, . . . , pn] ⊆ Rm, we define the
barycenter of [p0, . . . , pn] to be the point

b[p0,...,pn] =
n∑

i=0

1

n+ 1
pi ∈ int([p0, . . . , pn]).

Let [p0, . . . , pn] ⊆ Rm be an n-simplex. The canonical homeomorphism
φ[p0,...,pn] : ∆

n → [p0, . . . , pn] is a singular n-simplex in Ωn(Rm). We now
give such singular simplices a name.

77
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Definition E.1.3. A singular n-simplex α ∈ Ωn(Rm) is called affine n-
simplex if α = φ[p0,...,pn] for some n-simplex [p0, . . . , pn] ⊆ Rm.

A chain in Cn(Rm) formed exclusively by affine n-simplices is called an
affine n-chain.

Remark E.1.1. Observe that the boundary of an affine n-simplex is an
affine (n− 1)-chain. Indeed, if α = φ[p0,...,pn],

∂(α) =

n∑
i=0

(−1)iφ[p0,...,p̂i,...,pn].

Definition E.1.4. Let q ∈ Rm. For any affine n-simplex α = φ[p0,...,pn] ∈
Ωn(Rm) we define an affine (n+1)-simplex q ∗α called the cone on α from
q by

q ∗ α = φ[q,p0,...,pn].

We can extend this operator to all affine n-chains by linearity.

Remark E.1.2. Observe that the cone q ∗α is the affine simplex that sends
e0 to q and whose 0-th face map is equal to α.

Lemma E.1.2. Let c ∈ Cn(Rm) be an affine chain. Then, for any q ∈ Rm,

∂(q ∗ c) + q ∗ ∂(c) = c.

Proof. We will prove the identity for an affine n-simplex α = φ[p0,...,pn]. The
result for affine n-chains follows by linearity. Indeed,

∂(q ∗ α) = ∂(φ[q,p0,...,pn]) =
n+1∑
i=0

(−1)i[φ[q,p0,...,pn]]i

= φ[p0,...,pn] +
n∑

i=0

(−1)i+1φ[q,p0,...,p̂i,...,pn] = α+ q ∗ ∂(α).

Definition E.1.5. We define the singular subdivision operator S on
affine n-chains inductively. For n = 0, set S = Id. For n ≥ 1, assume that
S has been defined for chains of dimension less than n and for any affine
n-simplex α = φ[p0,...,pn] we set

S(α) = α(b∆n) ∗ S(∂(α)),

and extend linearly to affine n-chains.
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Definition E.1.6. Let A ⊆ Rm be a compact subset of the euclidean space.
The diameter of A is

diamA = sup
{
||x− y|| | x, y ∈ A

}
Lemma E.1.3. Let α = φ[p0,...,pn] be an affine n-simplex. Let β be any of
the affine n-simplices that appear in the affine n-chain S(α). Then,

(i) β = φ[bn,...,b0], where each bi is the barycenter of an i-dimensional face∗

of [p0, . . . , pn].

(ii) diam([bn, . . . , b0]) ≤ n
n+1 diam([p0, . . . , pn]).

Proof. We start by proving (i) by induction. If n = 0, α = φ[p0] and the
claim holds because S(α) = α and b[p0] = p0.

If n ≥ 1, let α = φ[p0,...,pn]. Let bn = α(b∆n). Notice that bn is
the barycenter of [p0, . . . , pn]. Then, ∂(α) is an (n − 1)-chain, so by in-
duction hypothesis each affine singular (n − 1)-simplex in S(∂(α)) is of
the form φ[bn−1,...,b0], where each bi is the barycenter of an i-dimensional
face of [p0, . . . , pn]. Thus, each affine n-simplex in S(α) is of the form
bn ∗ φ[bn−1,...,b0] = φ[bn,bn−1,...,b0] as desired.

To prove (ii), notice that since a simplex is the convex hull of its vertices,
the diameter of [bn, . . . , b0] is equal to the maximum of the distances between
its vertices. Thus, it suffices to show that

||bi − bj || ≤
n

n+ 1
diam([p0, . . . , pn])

whenever bi and bj are barycenters of faces of [p0, . . . , pn]. We will prove it
by induction. For n = 0, there is nothing to prove. Assume the claim is
true for simplices of dimension less than n. For i, j < n, both vertices bi, bj
lie in some m-dimensional face [q1, . . . , qm] ⊆ [p0, . . . pn] with m < n. By
induction, we get

||bi − bj || ≤
m

m+ 1
diam([q0, . . . , qm]) ≤ n

n+ 1
diam([p0, . . . , pn]).

It remains only to bound the distance between bn and the other vertices.
But since bn is the barycenter of [p0, . . . , pn] itself and every other vertex bj
lies in some j-dimensional face of [p0, . . . , pn] with j < n, the distance from
bn to bj is bounded by the maximum of the distance from bn to any of the

∗We call “i-dimensional face” to the simplices obtained after removing n − i vertices
from [p0, . . . , pn]. A n-dimensional face would be the whole simplex, and a 0-dimensional
face the singleton [pi].
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vertices pj of [p0, . . . , pn]. Then, for any vertex pj ,

||bn − pj || = ||
n∑

i=0

1

n+ 1
pi − pj || = ||

n∑
i=0

1

n+ 1
pi −

n∑
i=0

1

n+ 1
pj ||

≤
n∑

i=0

1

n+ 1
||pi − pj || ≤

n

n+ 1
diam([p0, . . . , pn]).

The maximum of such distances bounds ||bn − bj ||, so this completes the
proof.

Now we need to extend the singular subdivision operator to arbitrary
(not necessarily affine) singular chains. Let X be a topological space and
σ ∈ Ωn(X). Notice that σ = σ#(ın), where ın = Id∆n = φ[e0,...,en] is an
affine n-simplex and σ# : Cn(∆

n) → Cn(X) is the chain map obtained from
the continuous map σ : ∆n → X. We define

S(σ) = σ#
(
S(ın)

)
,

and we extend linearly to all Cn(X). We may iterate S to obtain operators
S2 = S ◦ S and more generally Sk = S ◦ Sk−1.

Definition E.1.7. The mesh of an affine n-chain c =
∑

i∈I λiαi in Cn(Rm)
is the maximum of the diameters of the images of the affine simplices that
appear in c. That is,

mesh(c) = max
{

diam(αi(∆
n))

∣∣ i ∈ I
}
.

Remark E.1.3. By (ii) of Lemma E.1.3, observe that choosing k large
enough we can make the mesh of Sk(c) arbitrarily small for an affine n-
chain c, because

mesh(Sk(c)) ≤ nk

(n+ 1)k
mesh(c).

Lemma E.1.4. The singular subdivision operators S : Cn(X) → Cn(X)
have the following properties:

(i) For any continuous map f : X → Y , S ◦ f# = f# ◦ S.

(ii) ∂ ◦ S = S ◦ ∂.

(iii) Given any open cover U of X and any chain c ∈ Cn(X), there exists
some m ≥ 1 such that Sm(c) ∈ CU

n (X).

Proof. (i) follows inmediately from the definition of S. For any σ ∈ Ωn(X),

S(f∗(σ)) = S(f ◦ σ) = (f ◦ σ)∗(S(ın)) = f∗(σ∗(S(ın))) = f∗(S(σ)).
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The result for any chain in Cn(X) follows by linearity.

We prove identity (ii) by induction on n. For n = 0 it is inmediate
because S acts as the identity on 0-chains. For n ≥ 1, let σ ∈ Ωn(X). By
(i), Lemma E.1.2 and the induction hypothesis,

∂(S(σ)) = ∂
(
σ#(S(ın))

)
= ∂

(
σ#(b∆n ∗ S(∂(ın)))

)
= σ#

(
∂(b ∗ S(∂(ın)))

)
= σ#

(
S(∂(ın))− b∆n ∗ ∂(S(∂(ın)))

)
= S

(
σ#(∂(ın))

)
− σ#

(
b∆n ∗ S(∂2(ın))

)
= S

(
∂(σ#(ın))

)
− 0

= S(∂(σ)).

Again, the identity for a singular n-chain follows by linearity.

To prove (iii) observe that by Remark E.1.3 by choosing m large enough
we can make the mesh of Sm(ın) arbitrarilly small. If σ is any singular
simplex in X, by the Lebesgue number lemma, there is some δ > 0 such
that any subset of ∆n of diameter less than δ lies entirely in σ−1(U) for one
of the sets U ∈ U . In particular, if c is an affine chain in Cn(∆

n) whose
mesh is less than δ, every singular n-simplex in σ#(c) is contained entirely
in one of the open sets U ∈ U . Then, σ#(c) ∈ CU

n (X). Therefore, for
any c =

∑
σ∈Ωn(X) λσσ ∈ Cn(X) if we choose δ to be the minimum of the

Lebesgue numbers for all the singular simplices σ ∈ Ωn(X) appearing in c,
and choose m large enough so that Sm(ın) has mesh less than δ, we get that
for each σ in the chain c, Sm(σ) = σ∗(S

m(ın)) ∈ CU
n (X) and Sm(c) ∈ CU

n (X)
by linearity.

With all the machinery we have built up, we finally prove the main result
of the section.

Proof of Proposition D.1.1. The crux of the prove is the construction of a
chain homotopy between the singular subdivision operator S and the identity
map of Cn(X). That is, we aim to build a homomorphism h : Cn(X) →
Cn+1(X) satisfying

∂ ◦ h+ h ◦ ∂ = Id− S (E.1)

We define h by induction on n. For n = 0, h is the zero homomorphism.
For n ≥ 1, σ ∈ Ωn(X) we define

h(σ) = σ#
(
b∆n ∗ (ın − S(ın)− h(∂(ın)))

)
,

and extend it to the whole Cn(X) linearly. Consider a continuous map
f : X → Y . If n ≥ 1, for any σ ∈ Ωn(X) we have that

h(f#(σ)) = h(f ◦ σ) = (f ◦ σ)#
(
b∆n ∗ (ın − S(ın)− h(∂(ın)))

)
= f#

(
σ#

(
b∆n ∗ (ın − S(ın)− h(∂(ın)))

))
= f#(h(σ)).
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If n = 0 the identity h ◦ f# = f ◦ h is trivially true.
Moreover, if n ≥ 1 and if σ is a U-small singular n-simplex, for any

τ ∈ Ωn(∆
n) we have that σ ◦ τ is also U small. Thus, Imσ∗ ⊆ CU

n (X) and
h(σ) ∈ CU

n (X). This means that h maps CU
n (X) to CU

n+1(X). If n = 0 this
fact is also trivially true.

The identity (E.1) is proven by induction on n. For n = 0 it is inmediate
because h = ∂ = 0 and S = Id. Suppose it holds for (n − 1) chains in all
spaces. If σ ∈ Ωn(X), then by Lemma E.1.2 and since ∂(ın) is a (n − 1)
chain,

∂(h(σ)) = ∂
(
σ#

(
b∆n ∗ (ın − S(ın)− h(∂(ın)))

) )
= σ#

(
∂
(
b∆n ∗ ( ın − S(ın)− h(∂(ın)))

) )
= σ#

(
ın − S(ın)− h(∂(ın))

)
− σ#

(
b∆n ∗

(
∂(ın)− ∂(S(ın))− ∂(h(∂(ın)))

) )
= σ#

(
ın − S(ın)− h(∂(ın))

)
− σ#

(
b∆n ∗

(
∂(ın)− S(∂(ın))− ∂(h(∂(ın)))− h(∂2(ın))

) )
= σ#

(
ın − S(ın)− h(∂(ın))

)
− σ#

(
b∆n ∗

(
(Id− S − ∂ ◦ h− h ◦ ∂)

(
∂(ın)

) ) )
= σ#

(
ın − S(ın)− h(∂(ın))

)
− 0

= σ#(ın)− S(σ#(ın))− h(∂(σ#(ın)))

= σ − S(σ)− h(∂(σ)),

which proves identity (E.1). Let c ∈ Cn(X) be a cycle. (E.1) shows that

c− S(c) = ∂(h(c)) + h(∂(c)) = ∂(h(c)),

so S(c) differs from c by a boundary. If c ∈ CU
n (X), the difference is the

boundary of a chain in CU
n+1(X). The same holds for any Sm(c). If m ≥ 1,

by induction, if c− Sm−1(c) = ∂(a) for some a ∈ Cn+1(X), then

c− Sm(c) = c− Sm−1(c− ∂(h(c))) = c− Sm−1(c)− Sm−1(∂(c))

= ∂(h(a))− ∂(Sm−1(c)) = ∂(h(a)− Sm+1(c)).

Hence, the difference of c and Sm(c) is a boundary. Moreover, Sm(c) is also
a cycle because S commutes with ∂.

The inclusion map ι : CU
n (X) ↪→ Cn(X) is clearly a chain map so it

induces a homology homomorphism ι∗ : HU
n (X) → Hn(X). The homomor-

phism ι∗ is surjective because, by Lemma E.1.4, for any c ∈ Cn(X) we can
choose m large enough so that Sm(c) ∈ CU

n (X), and have showed above



Appendix E. Excision theorem 83

that c is homologous to Sm(c). To prove injectivity, let c + Im ∂ ∈ HU
n (X)

be such that ι∗(c + Im ∂) = 0. This means that there is some (n + 1)-
chain b ∈ Cn+1(X) such that c = ∂(b). Choose m large enough so that
Sm(b) ∈ Cn+1(X). Then,

∂(Sm(b)) = Sm(∂(b)) = Sm(c),

which differs from c by a boundary of a chain in CU
n+1(X) as showed before.

Thus, c+ Im ∂ = 0.

E.2 The Excision Theorem

Using the machinery built in the previous chapter, we prove the Excision
Theorem which was stated without proof in Chapter 2.

Theorem E.2.1 (Excision theorem). Let X be a topological space and
Z ⊆ A ⊆ X such that the closure of Z is contained in the interior of
A. Then, the inclusion (X − Z,A − Z) ↪→ (X,A) induces isomorphisms
Hn(X − Z,A− Z) → Hn(X,A) for all n ≥ 0.

Equivalently, for subspaces A,B ⊆ X whose interiors cover X, the inclu-
sion (B,A∩B) ↪→ (X,A) induces isomorphisms Hn(B,A∩B) → Hn(X,A)
for all n ≥ 0.

Remark E.2.1. The translation between the two assertions of the theorem
is obtained as follows:

• To get the second from the first, assume the hypotheses of the second
version and set Z = X − B. Then, as X = int(A) ∪ int(B), we get
Z ⊆ A ⊆ X and cl(Z) ⊆ int(A) since X − int(B) = cl(Z). Thus, as
A ∩ B = A − Z, Hn(B,A ∩ B) = Hn(X − Z,A − Z) ∼= Hn(X,A) for
all n.

• To get the first from the second, assume the hypotheses of the first
version and set B = Z − X. Since X − int(B) = cl(Z) ⊆ int(A), it
is clear that X = int(A) ∪ int(B). Therefore, as A ∩ B = A − Z,
Hn(X − Z,A− Z) = Hn(B,A ∩B) ∼= Hn(X,A) for all n.

Proof of the Excision Theorem. We prove the second version. Let A,B ⊆ X
be two subspaces whose interiors cover X. Let U = {A,B}. We know that
the inclusion CU

n ↪→ Cn(X) induces an isomorphism on homology by Propo-
sition E.1.1. This inclusion sends Cn(A) ⊆ CU

n to Cn(A) ⊆ Cn(X), so it

induces a map in the quotient ι : CU
n (X)

Cn(A) → Cn(X,A). The singular subdivi-
sion operator S defined in Section E.1 and the homeomorphism h defined in
the proof of Proposition E.1.1 also send chains in A to chains in A, so they
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induce maps S : Cn(X,A) → Cn(X,A) and h : Cn(X,A) → Cn+1(X,A) in
the quotients. These maps also satisfy equation (E.1) because they satisfied
it before passing to the quotient. Thus, in the same way as in Proposition

E.1.1 one can prove that ι : CU
n (X)

Cn(A) → Cn(X,A) induces an isomorphism on
homology.

Moreover, the inclusion Cn(B) ↪→ CU
n (X) also induces a map in the

quotient ȷ : Cn(B,A ∩ B) → CU
n (X)

Cn(A) since Cn(A ∩ B) ⊆ Cn(A). ȷ is clearly
an isomorphism since both quotient groups are free Z-modules with basis
the singular n-simplices in B that do not lie in A. Thus ȷ also induces an
isomorphism on homology.

Finally observe that the map induced by the inclusion (B,A ∩ B) ↪→
(X,A) on homology groups is precisely the composition ι∗ ◦ ȷ∗. Thus, the
map Hn(B,A ∩B) → Hn(X,A) induced by inclusion is an isomorphism.
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