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Introduction

Content of the work

The Burnside problems are among the most important problems in group
theory in the 20th century. In this project, we will focus on the General
Burnside Problem, which asks whether a finitely generated periodic group
is necessarily finite, for which the answer is negative. It was proposed by
William Burnside in 1902 [1] and it has been subject of study all over the
20th century. In fact, it is considered one of the oldest and most influential
questions in group theory. Five years before, in 1897, he wrote the book
called “Theory of groups of finite order” [2], which was regarded for several
decades as the standard introduction to group theory.

William Burnside (1852-1927) wrote the first dissertation about groups
in English and he was the first to develop the theory of groups from a modern
abstract point of view. Burnside’s contributions to group theory and to the
study of group representations are fundamental to the subject. Ironically,
the most popular result by which he is often known is an elementary counting
lemma erroneously known as Burnside’s lemma which is not due to him,
although he quotes it in his book attributing it instead to Frobenius.

The main purpose is that someone who is not familiar with group theory
learns enough of it in order to understand advanced results. However, it is
assumed that the reader is comfortable with basic group theory concepts.

The notes are organized in three chapters. In the first chapter the reader
is introduced to commutator theory, which will be useful to define and work
with nilpotent and soluble groups, for which the answer to the General
Burnside Problem is affirmative. Then, we also study the problem for linear
groups, for which the answer is also affirmative.

In the second and third chapters some negative solutions to the General
Burnside Problem are introduced. In the second chapter, Golod-Shafarevich
groups are constructed using formal power series and polynomials in non-
commuting indeterminates. In the third chapter, we introduce Gupta-Sidki
and Grigorchuk groups, using graph theory and automorphisms of trees.
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Burnside problems

Let us now explain what is the General Burnside Problem about and
two similar and less restrictive problems that were proposed after it: the
Burnside Problem and the Restricted Burnside Problem.

Observe that every finite group is finitely generated and periodic. What
about the other implication? Regarding this question, in 1902William Burn-
side introduced what he termed “a still undetermined point” known as the
General Burnside Problem, which asks whether a finitely generated periodic
(or torsion) group is necessarily finite. This question was answered in the
negative in 1964 by Evgeny Golod and Igor Shafarevich, who gave a coun-
terexample of an infinite p-group that is finitely generated, which we will
introduce in Chapter 2.

The reason for not having an answer to the problem until 1964 is that
the requirements of being finitely generated and periodic give very little in-
formation about the possible structure of a group. Due to this difficulty,
Burnside immediately suggested a weaker formulation of the General Burn-
side Problem known as the Burnside Problem, which asks whether a finitely
generated group of bounded exponent (Definition 1.9) is necessarily finite.

Let us now introduce the concept of the free Burnside group in order to
reformulate the question. The free Burnside group of rank m and exponent
n, denoted by B(m,n), is a group withm distinguished generators x1, ..., xm
for which xn = 1 holds for all elements x of the group, and which is the
“largest” group satisfying these requirements. What we mean with the
“largest” group is that given any group G with m generators g1, ..., gm and
of exponent n, there is a unique homomorphism from B(m,n) to G that
maps the i-th generator xi of B(m,n) to the i-th generator gi of G.

Another way of constructing it is by the quotient B(m,n) = Fm/Fnm
where F is the free group of m generators, that is, the free group of rank
m. A group is called a free group if no relation exists between its group
generators other than the relationship between an element and its inverse
required as one of the defining properties of a group. Elements consist of all
words that can be built from these generators.

These definitions then lead to an alternate and more popular formulation
of the Burnside Problem: for which positive integers m,n is B(m,n) finite?
The full solution to Burnside Problem in this form is not known, since our
present state of knowledge of this problem is very incomplete. However,
there are some simple cases where the answer is affirmative.

Burnside showed a number of easy results in his 1902 original paper.
Among them, we have that B(1, n), which is the cyclic group of order n,
and the 2-torsion (abelian) group B(m,2) are both finite. Actually, B(m,2)
is the direct product of m copies of C2.
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Moreover, Burnside also showed that B(m,3) and B(2,4) are finite and
he gave an upper bound of their orders. It was not until 1940 when Sanov
proved that B(m,4) is finite, whose order is known only for m ≤ 5, which
is 212,269,2422 and 22728 for m = 2,3,4 and 5, respectively. An affirmative
answer was given for the case n = 6 by M. Hall in 1958, whose proof is much
harder than the previous ones. At present, no other values of n are known
for which B(m,n) is finite and it is still an open question whether B(2,5)
is finite or not.

In 1968 Pyotr Novikov and Sergei Adian found a counterexample to the
Burnside Problem proving that B(m,n) is infinite for all odd exponents
n ≥ 4381. This bound on the odd exponent was later improved to 665
by Adian himself in 1975, and there have been many improvements since
then in terms of even and odd exponents such that B(m,n) is infinite. In
1980 Alexander Yu. Ol’shanskii constructed the so-called Tarski monsters,
which are finitely generated infinite groups such that every nontrivial proper
subgroup is a finite cyclic group of order a fixed prime number p. He proved
that there is a Tarski p-group for every prime p > 1075. They form a famous
class of counterexamples to the Burnside Problem.

In the early 1930s, the topic was resurrected by the suggestion of a
variant on the original problem known as the Restricted Burnside Problem,
which asks whether there is a bound for the orders of all m-generated finite
groups of exponent n, where this bound depends onm and n. In other words,
it asks whether for fixed positive integers m and n there are only finitely
many (up to isomorphism) finite groups with m generators and bounded
exponent n.

It was not until 1990 when at the age of 34, Efim Zelmanov solved this
other problem in the affirmative. He was awarded a Fields Medal for this
work in 1994, which in the absence of a Nobel Prize in mathematics, is
regarded as the highest professional honour a mathematician can attain. It
is given to the most distinguished mathematicians aged 40 or under.

Motivation for doing this work

I came up with the idea of doing my Bachelor’s Thesis about group theory
once I followed the courses of Commutative Algebra and especially Algebraic
Equations with Gustavo Fernández last year. I had always had an special
interest in algebra more than in any other branch of mathematics, so I asked
him to be my supervisor and he agreed and proposed me this problem. I
agreed with him because it tied really well with the idea I initially had, since
I was keen on choosing a specific problem related to group theory.
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Chapter 1

Positive answers to the
General Burnside Problem

In this first chapter we provide some positive solutions to the General
Burnside Problem. Four of them are addressed: abelian, nilpotent, soluble
and linear groups. Before that, we are going to make a brief introduction
about commutator theory in order to introduce nilpotent and soluble groups.

All finite groups share some properties such as being finitely generated
and periodic. But, are they enough to imply that a group is finite? What
makes a group finite? This is exactly what William Burnside wanted to find,
which properties are enough to conclude that a group is finite.

In some cases, it suffices to ask for the group to be finitely generated such
that the order of the generators is finite, such as for abelian and nilpotent
groups. However, for soluble groups this is not enough and we need the
orders of all elements to be finite, not just the order of the generators.
As a counterexample, the infinite dihedral group can be generated by two
elements of order two, but it has an element of infinite order so it does not
satisfy the conditions of the General Burnside Problem and it cannot be
considered as a negative solution to it.

The whole chapter is mainly based on notes provided by my supervisor
[5] and on Derek Robinson’s book [13, Chapter 5].

1.1 Commutator theory

In this section the reader is introduced to some basic knowledge about
commutator theory, which is an important part of group theory and a very
useful tool in order to define and work with nilpotent and soluble groups in
Sections 1.2 and 1.3, respectively.

1



2 1.2. Abelian and nilpotent groups

Definition 1.1. Let G be a group and x, y ∈ G. Then, the commutator of
x and y is defined as [x, y] = x−1y−1xy.

Observe that [x, y] = x−1xy, or equivalently, xy = x ⋅ [x, y].

Definition 1.2. Let G be a group. Then, [G,G] = ⟨[x, y] ∣ x, y ∈ G⟩ is
known as its commutator or derived subgroup and we denote it by G′.

As we will see in Theorem 1.7, G′ is the smallest normal subgroup of G
giving abelian quotient, that is, G/G′ is the largest abelian quotient of G.
Two elements x and y commute if and only if [x, y] = 1, hence G is abelian
if and only if G′ = {1}.

There is a left-norm convention so that [x1, ..., xi] = [[x1, ..., xi−1], xi] is
recursively defined, which may appear in some properties of commutators.

Proposition 1.3. Let G be a group, let x, y, g ∈ G and n ∈ N. Then:

(i) [x, y]−1 = [y, x];

(ii) [x, y]g = [xg, yg] = [x, y][x, y, g];

(iii) If y and [x, y] commute, then [x, y]n = [x, yn].

Proof. Let us start proving the first property, which is trivial since we know
that [x, y]−1 = (x−1y−1xy)−1 = y−1x−1yx = [y, x]. For the second property,
[x, y]g = (x−1xy)g = (x−1)gxyg and since (x−1)g = (xg)−1 and yg = gyg,
then [x, y]g = (xg)−1xgyg = [xg, yg]. On the other hand, we also know that
xy = x ⋅ [x, y], hence [x, y]g = [x, y][[x, y], g] = [x, y][x, y, g].

Let us prove the third property by induction on n. For the base case
n = 1 it is trivial, so we assume it is true up to n − 1 and let us prove it for
n. By induction hypothesis we get that [x, y]n−1 = [x, yn−1] and since y and
[x, y] commute, then:

[x, y]n = [x, y][x, y]n+1 = (x−1y−1xy)[x, y]n−1 = x−1y−1x[x, y]n−1y
= x−1y−1x(x−1y−n+1xyn−1)y = x−1y−nxyn = [x, yn].

1.2 Abelian and nilpotent groups

The aim of this section is to show that the answer to the General Burnside
Problem is positive for abelian and more generally nilpotent groups. In order
to define nilpotent groups we need to introduce the lower central series using
commutator theory.
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It is obvious that abelian groups are positive answers to the General
Burnside Problem. Let G be an abelian group with d generators g1, ..., gd,
being d finite and o(gj) = nj <∞. Then, we know that

G = ⟨g1, ..., gd⟩ = {gi11 ⋯g
id
d ∣ 0 ≤ ij < nj}.

Thus, the cardinality of an abelian group with d generators of finite order is
bounded by the product of the orders of the generators: ∣G∣ ≤ n1n2⋯nd <∞,
hence G is finite.

Let us now define the lower central series of a group and let us use it in
order to define nilpotent groups.

Definition 1.4. Let G = γ1(G) be a group and let γi+1(G) = [γi(G),G] for
i ≥ 1. Then, {γi(G)}i∈N is called the lower central series (LCS) of G.

The lower central series of a group is descending, that is, γi+1(G) ≤ γi(G)
for all i ≥ 1. A natural question would be whether the series reaches the
trivial subgroup {1} or not, which depends on the group.

Definition 1.5. Let G be a group. We say that G is nilpotent if there exists
some n ∈ N such that γn(G) = {1}, that is, its lower central series reaches
{1}.

If G is nilpotent, the lenght of its LCS is called the nilpotency class of
G, which is denoted by c. It is indeed the smallest positive integer such that
γc+1(G) = {1}. Now, we are interested in the properties of γi(G).

Proposition 1.6. Let G be a group and H,K ⊴ G. Then, [H,K] ⊴ G.

Proof. Let x ∈H, y ∈K and g ∈ G. Then, if we conjugate [x, y] ∈ [H,K] by
g we get [x, y]g = [xg, yg]. Since H,K ⊴ G it follows that [x, y]g ∈ [H,K],
hence [H,K] ⊴ G.

Theorem 1.7. Let G be a group, let G′ be its commutator subgroup and let
also N ⊴ G. Then, G/N is abelian if and only if G′ ≤ N .

Proof.

G/N abelian⇐⇒ [x, y] = 1,∀x, y ∈ G/N ⇐⇒ [x, y] = 1,∀x, y ∈ G
⇐⇒ [x, y] ∈ N,∀x, y ∈ G⇐⇒ G′ ≤ N.

These two results give us important information about each γi(G). On
the one hand, it is obvious that G = γ1(G) is normal so recursively we deduce
that γi+1(G) = [γi(G),G] ⊴ G for all i ≥ 1. Moreover, we also know that



4 1.2. Abelian and nilpotent groups

(γi(G))′ = [γi(G), γi(G)] ≤ [γi(G),G] = γi+1(G), hence γi(G)/γi+1(G) is
abelian for all i ≥ 1.

The following theorem gives a sufficient condition for γi(G)/γi+1(G) to
be finitely generated.

Theorem 1.8. Let G = ⟨X⟩ and γi−1(G) = ⟨Y, γi(G)⟩. Then:

γi(G) = ⟨[x, y], γi+1(G) ∣ x ∈X,y ∈ Y ⟩.

Proof. One inclusion is obvious since γi+1(G) ⊆ γi(G) and [x, y] ∈ γi(G)
for all x ∈ G, y ∈ γi−1(G). In order to prove the other inclusion, we set
N = ⟨[x, y], γi+1(G) ∣ x ∈ X,y ∈ Y ⟩. First of all, let us prove that N ⊴ G.
We already know that γi+1(G) ⊴ G, so it suffices to check that [x, y]g ∈ N
for all x ∈ X, y ∈ Y and g ∈ G. By Proposition 1.3 we already know that
[x, y]g = [x, y][x, y, g], hence [x, y]g ∈ N since [x, y, g] ∈ γi+1(G).

Therefore, N ⊴ G and we can factor out N getting the quotient group
G/N . We are going to prove now that generators of γi−1(G) commute with
generators of G in G/N . Let x ∈X. Then, if y ∈ Y it is trivial that [x, y] ∈ N ,
whereas if y ∈ γi(G), then [x, y] ∈ γi+1(G) ⊆ N . In both cases [x, y] = 1 in
G/N , hence x and y commute and γi(G/N) = [γi−1(G/N),G/N] = {1}. In
particular, γi(G/N) is a subgroup of G/N , which can be written on the form
γi(G) ⋅N/N . Then, γi(G) ⋅N/N = {1} = N/N , hence γi(G) ≤ N and the
proof is completed.

Equivalently, if G = ⟨X⟩ and γi−1(G)/γi(G) = ⟨Y ⟩, then γi(G)/γi+1(G) is
equal to ⟨[x, y] ∣ x ∈X,y ∈ Y ⟩. Therefore, if G and γi−1(G)/γi(G) are finitely
generated, then γi(G) is not necessarily finitely generated but γi(G)/γi+1(G)
is. In general, for any finitely generated group G and a subgroupH it suffices
to ensure ∣G ∶ H ∣ <∞ in order to conclude H is also finitely generated (see
Lemma 1.15).

We have a bound for the number of generators of γi(G)/γi+1(G) so let
us see what happens with the order of its elements. Before that, let us recall
what is the exponent of a group.

Definition 1.9. Let G be a group whose elements have finite order (periodic
group) in which there is a bound for all these orders. The exponent of G,
which is denoted by expG, is the smallest number n such that gn = 1 for all
g ∈ G, i.e., n = lcm (o(g) ∣ g ∈ G).

The existence of such number nmeans there is a finite number of different
orders for all the elements of G, although these orders could be repeated and
G be infinite. In this case, we say that G is a group of finite exponent n
or an n-torsion group. This implies that the order of every element in G is
finite, i.e., G is periodic.



Chapter 1. Positive answers to the General Burnside Problem 5

We want to see if there is a relationship between the exponents of the
different quotients γi(G)/γi+1(G) for all i ≥ 1.

Theorem 1.10. Let G be a group and {γi(G)}i∈N its lower central series.
If exp(G/G′) is finite, then:

exp(γi(G)/γi+1(G)) ∣ exp(γi−1(G)/γi(G)) ∣ ⋯ ∣ exp(G/G′).

Proof. Without loss of generality we assume that γi+1(G) = {1} and since
γi(G)/γi+1(G) is abelian, then γi(G) is abelian in this particular case. We
also know by Theorem 1.8 that generators of γi(G) are of the form [x, y]
where x ∈ G and y ∈ γi−1(G) ⊆ G so that [[x, y], y] ∈ γi+1(G) = {1}, hence y
and [x, y] commute.

Let n = exp(γi−1(G)/γi(G)), then by Proposition 1.3 we know that
[x, y]n = [x, yn]. Since y ∈ γi−1(G), then yn ∈ γi(G) and [x, y]n = [x, yn] = 1.
All in all, we have that γi(G) is abelian and all its generators [x, y] have
finite order which divides n = exp(γi−1(G)/γi(G)), hence the exponent of
γi(G) is finite and also divides n. Therefore, γi(G)/γi+1(G) is a quotient
group of finite exponent, a divisor of n. Applying this result recursively for
all i, the proof of the theorem is completed.

This theorem is very important since it implies that if the exponent of
G/G′ is finite, then the exponent of each γi−1(G)/γi(G) is also finite. Let us
use this result in order to prove that nilpotent groups are positive solutions
to the General Burnside Problem.

Theorem 1.11. Let G be a finitely generated nilpotent group such that the
generators have finite order. Then, G is finite.

Proof. Let us prove by induction that γi(G)/γi+1(G) is finite for all i ≥ 1,
hence

∣G∣ = ∣G/γ2(G)∣ ⋅ ∣γ2(G)/γ3(G)∣⋯ ∣γc(G)/γc+1(G)∣ <∞

where c is the nilpotency class of G. Since these quotients are abelian, it
suffices to check that each of them is finitely generated with generators of
finite order, or equivalently, it is a finitely generated group of finite exponent.

For the base case i = 1, the proof is almost trivial. Since G is a finitely
generated group such that the generators have finite order, then so is G/G′
and since it is abelian G/G′ is finite. In addition, the exponent of G/G′ is
finite. Now, we assume it is true up to i − 1 and let us prove it for i.

On the one hand, we know from Theorem 1.10 that exp(γi(G)/γi+1(G))
divides exp(G/G′), which is finite, hence the exponent of γi(G)/γi+1(G)
also is. On the other hand, we also know from Theorem 1.8 that if G and
γi−1(G)/γi(G) are finitely generated, which is true by induction hypothesis,
then γi(G)/γi+1(G) is also finitely generated.
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Although in this work we deal with general nilpotent groups, there is
an important characterization for the finite case, so that a finite group G is
nilpotent if and only if it is the direct product of its Sylow subgroups, which
are p-groups [13, page 130]. In particular, every finite p-group is nilpotent
for a prime p, which is proved in Problem 1.

1.3 Soluble groups

In this section our aim is to prove that the answer to the General Burnside
Problem is positive for soluble groups. Moreover, we will also introduce the
infinite dihedral group, which is an infinite finitely generated soluble group
that can be generated by some generators of finite order, but since it is not
periodic it cannot be regarded as a negative solution to the General Burnside
Problem.

Now, we need to introduce the derived series of a group in order to
characterize soluble groups. Let us first define what a soluble group is as we
saw in the third year course of Algebraic Equations.

Definition 1.12. Let G be a group. We say G is soluble or solvable if there
exists a series of subgroups {1} = Nk ⊴ Nk−1 ⊴ ⋯ ⊴ N1 ⊴ N0 = G, such that
Ni/Ni+1 is abelian for all i = 0, ..., k − 1.

Let us now introduce the derived series of a group G, which is the fastest
descending series of G such that all successive quotients are abelian.

Definition 1.13. Let G′ be the commutator subgroup of G and let us
define G(i+1) = (G(i))′ = [G(i),G(i)] for all i ≥ 1, which are known as derived
subgroups. Then, we get a descending series G = G(0) ⊵ G(1) ⊵ G(2) ⊵ ⋯,
where G(i)/G(i+1) is abelian for all i ≥ 0. We call it the derived series of G.

Let us now characterize soluble groups once defined the derived series of
a group.

Theorem 1.14. A group G is soluble if and only if its derived series reaches
the trivial subgroup {1}.

Proof. On the one hand, if there exists some k ∈ N such that G(k) = {1},
then there exists a series of subgroups {1} = Nk ⊴ Nk−1 ⊴ ⋯ ⊴ N1 ⊴ N0 = G,
such that Ni/Ni+1 is abelian for all i = 0, ..., k − 1, taking Ni = G(i) for all
i = 0, ..., k. Thus, G is soluble.

On the other hand, let us suppose G is soluble. Since the derived
subgroup is the smallest normal subgroup giving abelian quotient, then
G′ ≤ N1 and recursively we get that G(i) ≤ Ni for all i = 0, ..., k. But
since G(k) ≤ Nk = {1}, then G(k) = {1}.
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If G is soluble, then the first k for which G(k) = {1} is called the derived
length or solvable index of G. In order to show that the answer to the Gen-
eral Burnside Problem is positive for soluble groups, we need the following
auxiliary lemma, whose proof is left as a problem (see Problem 3).

Lemma 1.15. Let G be a finitely generated group and let H be a subgroup
of G of finite index. Then, H is also finitely generated.

Theorem 1.16. Let G be a finitely generated soluble periodic group. Then,
G is finite.

Proof. We are going to prove it by induction on n, the derived length of the
soluble group G. For n = 1 the result is true, since G(1) = G′ = {1} implies
G is abelian, hence G is finite. Now, we assume it true up to length n − 1
and let us prove it for n.

First of all, G/G′ is finitely generated, periodic and abelian, hence G/G′
is finite. Moreover, by Lemma 1.15 we know that since ∣G ∶ G′∣ < ∞, then
G′ is finitely generated. Now, G′ is soluble of derived length n − 1, periodic
(since G is periodic) and finitely generated, then by induction hypothesis G′

is finite. Thus, ∣G∣ = ∣G ∶ G′∣ ⋅ ∣G′∣ <∞.

Observe that just like abelian groups are nilpotent, nilpotent groups
are particular examples of soluble groups, since all conditions are fulfilled
taking the corresponding LCS. Normality of γi+1(G) over G trivially implies
normality over smaller subgroups, i.e., γi+1(G) ⊴ γi(G). Secondly, we had
also proved in Section 1.2 that each of these quotient groups γi(G)/γi+1(G)
is abelian.

However, the other implication is not true. Not all soluble groups are
nilpotent since stronger conditions are required for nilpotent groups. In fact,
we only need Ni/Ni+1 to be abelian, not necessarily Ni/Ni+1 ≤ Z(G/Ni+1),
or equivalently, [Ni,G] ≤ Ni+1. Moreover, we ask for normality in each step,
which is a weaker condition than asking for normality over G.

Let us give some examples of soluble groups that are not nilpotent. The
smallest soluble non-nilpotent group is S3 ≅ D6. On the one hand, it is
soluble because its commutator subgroup is the abelian alternating group
A3. On the other hand, it cannot be nilpotent since Z(S3) = {1}, whereas
nilpotent groups have non-trivial center, which can be easily proved. If G
is nilpotent with nilpotency class c, then γc+1(G) = [γc(G),G] = {1}. Thus,
every x ∈ γc(G) and g ∈ G commute, so γc(G) ≤ Z(G).

More generally, any finite dihedral group D2n is soluble for all n ≥ 1,
whereas it is nilpotent if and only if n is a power of 2 (see Problem 2).
Thus, we could easily check that D6 is soluble but not nilpotent since n = 3
is not a power of 2.
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Let us now introduce the infinite dihedral group, which is constructed as
an external semidirect product of C2 and C∞. The concept of a semidirect
product is a generalization of a direct product and we also have internal
and external semidirect product. We are interested in the external one,
which is a way to construct a new group from two given groups by using the
Cartesian product as a set and a particular multiplication operation.

Definition 1.17. Let H and N be two independent groups and let also
θ ∶H Ð→ Aut(N) be a group homomorphism. Then, the external semidirect
product of H and N with respect to θ, which is denoted by H ⋉θ N , is the
cartesian product H ×N with multiplication given by the following rule for
all h1, h2 ∈H and all n1, n2 ∈ N :

(h1, n1) ⋅ (h2, n2) = (h1 ⋅ h2, θ(h2)(n1) ⋅ n2).

The group homomorphism θ is known as the action of H over N and it
maps each h ∈H to an automorphism of N . The action is essential in order
to define the external semidirect product of two groups. We can prove that
H ⋉θ N is indeed a group where e = (1,1) is the neutral or identity element
and (h,n)−1 = (h−1, [θ(h−1)(n)]−1).

Let us now construct the infinite dihedral group as the external semidi-
rect product of C2 and C∞ generated by y and x, respectively. Let A be
an abelian group and let also H = ⟨y⟩ ≅ C2, then we could construct a
semidirect product H ⋉θ A by choosing θ(y) as the automorphism of order
2 which maps all elements of A to their inverse, that is, θ(y)(a) = a−1 for all
a ∈ A. Let us prove it is indeed an automorphism. It suffices to prove it is a
group homomorphism, because each element has a unique inverse, hence it
is bijective. Let a1, a2 ∈ A, then θ(y)(a1a2) = (a1a2)−1 = a−12 a−11 and since A
is abelian this is equal to a−11 a

−1
2 = θ(y)(a1) ⋅ θ(y)(a2) and we are done.

This group is called the generalized dihedral group associated to A and
it is denoted by DihA. If we take A ≅ Cn, then DihA ≅ D2n, whereas
for A = ⟨x⟩ ≅ C∞ we get the infinite dihedral group, with presentation
D∞ = ⟨x, y ∣ y2 = 1, xy = x−1⟩, where o(x) =∞ and o(y) = 2.

However, if we choose the generator yx instead of x, then we get that
D∞ = ⟨x, y⟩ = ⟨yx, y⟩. Since (yx)2 = (yx)(yx) = y2 ⋅ xy ⋅ x = x−1 ⋅ x = 1 and
yx ≠ 1, we know that it has order 2. Therefore, for soluble groups it is not
enough that the order of the generators is finite, but all elements in the
group must have finite order. We have just constructed a finitely generated
infinite group whose generators have finite order, but it is not periodic since
there exists an element x of infinite order. Thus, it cannot be taken as a
negative solution to the General Burnside Problem.
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1.4 Linear groups

In this section linear groups are introduced, for which the answer to the
General Burnside Problem is also positive. For any field K, the vector
space M(n,K) denotes the set of all square matrices of order n over K
while GL(n,K) denotes the group of invertible ones among them, with
the operation of matrix multiplication. A linear group is a group that is
isomorphic to a matrix group, that is, it is isomorphic to a subgroup of
GL(n,K) for some n ∈ N and some field K. The whole section is mainly
based on [14], but there is a mistake in the proof of Theorem 1.29 when it
is claimed that “their eigenvalues are in Ealg”. Thus, for this theorem and
the previous three lemmas we have followed [12, pages 149-154].

First of all, we will develop some facts that are closely linked to second
year linear algebra when we studied the Jordan normal form.

Definition 1.18. A matrix g ∈ GL(n,K) is said to be unipotent if all its
eigenvalues are 1 over the algebraic closure ofK. Equivalently, g is conjugate
to an upper triangular matrix with all diagonal entries 1, i.e., there exists
P ∈ GL(n,K) such that

P −1 ⋅ g ⋅ P =

⎛
⎜⎜⎜⎜
⎝

1 ∗ . . . ∗
⋱ ⋱ ⋮
⋱ ∗

0 1

⎞
⎟⎟⎟⎟
⎠

.

Definition 1.19. A matrix g ∈ GL(n,K) is said to be nilpotent if all its
eigenvalues are 0 over the algebraic closure of K, that is, there exists some
n ∈ N where gn = 0. Equivalently, g is conjugate to an upper triangular
matrix with all diagonal entries 0, i.e., there exists P ∈ GL(n,K) such that

P −1 ⋅ g ⋅ P =

⎛
⎜⎜⎜⎜
⎝

0 ∗ . . . ∗
⋱ ⋱ ⋮
⋱ ∗

0 0

⎞
⎟⎟⎟⎟
⎠

.

The Jordan normal form of unipotent and nilpotent matrices is exactly
an upper triangular matrix with all diagonal entries 1 and 0, respectively.

From now on, let us assume that K is algebraically closed without loss of
generality, otherwise we take its algebraic closure. This is because we need
that the characteristic polynomial of g, χg(X), splits into linear factors over
K, that is, all the eigenvalues of g lie in K. This way, the Jordan normal
form of g exists, which is very important for the proofs of this section. It is
also known as Jordan canonical form and we denote it by JCF.
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Lemma 1.20. A matrix g ∈ GL(n,K) is unipotent if and only if g − I is
nilpotent.

Proof. The proof is trivial. If g − I is nilpotent, then there exists some
P ∈ GL(n,K) such that

P −1 ⋅ (g − I) ⋅ P = P −1 ⋅ g ⋅ P − I =

⎛
⎜⎜⎜⎜
⎝

0 ∗ . . . ∗
⋱ ⋱ ⋮
⋱ ∗

0 0

⎞
⎟⎟⎟⎟
⎠

and if we sum the identity matrix in both sides we are done. The other
implication is similarly done subtracting the identity matrix.

Definition 1.21. In linear algebra, the trace of a square matrix A is the
sum of the elements on the main diagonal of A and we denote it by tr(A).

Equivalently, the trace of a square matrix is the sum of its eigenvalues
counted with multiplicities and it is invariant with respect to a change of
basis. Thus, the trace of a square matrix is equal to the trace of its Jordan
normal form.

Remark 1.22. Let K be a field, let k ∈K and A,B ∈M(n,K). Then, the
trace is a linear mapping:

(i) tr(A +B) = tr(A) + tr(B);

(ii) tr(k ⋅A) = k ⋅ tr(A).

Let us now prove that matrix groups are positive solutions to the General
Burnside Problem, and so are linear groups due to isomorphism.

Lemma 1.23 (Burnside’s lemma). Let K be any field and let G ⊂ GL(n,K)
be a subgroup such that the set {tr(g) ∶ g ∈ G} is finite of cardinality s.
Assume also that there is no nontrivial element of G which is unipotent.
Then, G must be finite such that ∣G∣ ≤ sn2

.

Proof. Let {g1, ..., gd} be elements in G which form a basis for V , the vector
subspace of M(n,K) spanned by elements of G. The vector space M(n,K)
has dimension n2, then d ≤ n2. In order to “count” elements of G, we
associate each g ∈ G with the ordered d-tuple (tr(g1g), ..., tr(gdg)). If the
same d-tuple is associated with x, y ∈ G, then let us prove that x = y so that
there is one-to-one correspondence between matrices and d-tuples.

If the d-tuples are equal, then tr(gi(x − y)) = 0 for all i ≤ d. Now, we
take h = I −x−1y and since {g1, ..., gd} form a basis for V , then for each k ≥ 0
there exist some βi ∈K such that hk ⋅ x−1 = (I − x−1y)k ⋅ x−1 = ∑di=1 βigi.
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Therefore, multiplying the i-th equation tr(gi(x − y)) = 0 by βi and
adding all of them we get tr((I − x−1y)k+1) = 0 for all k ≥ 0:

0 =
d

∑
i=1
βi ⋅ tr(gi(x − y)) =

d

∑
i=1

tr(βi ⋅ gi(x − y)) = tr(
d

∑
i=1
βi ⋅ gi(x − y))

= tr((
d

∑
i=1
βi ⋅ gi)(x − y)) = tr((I − x−1y)k ⋅ x−1(x − y))

= tr((I − x−1y)k ⋅ (I − x−1y)) = tr((I − x−1y)k+1).

Thus, we get that tr(hk) = 0 for all k ≥ 1, which implies that h is
nilpotent, that is, all its eigenvalues are 0. Let us prove this implication.
Assume tr(hk) = 0 for all k ≥ 1 and suppose h has some non-zero eigenvalues
λ1, ..., λr, being ni the multiplicity of each λi, hence h is not nilpotent. Let
J be the Jordan normal form of h. Then, the eigenvalues of hk are exactly
the diagonal entries of Jk, that is, the k-th powers of the eigenvalues of h
since J is upper triangular. Moreover, each λki has multiplicity ni.

Then, for each k ≥ 1 we know that tr(hk) is equal to the sum of all
the k-th powers of the eigenvalues of h counting their multiplicities, that is,
tr(hk) = ∑ri=1 ni ⋅ λki = 0 and we get the following system of r equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n1λ1+ ⋯ + nrλr = 0
n1λ

2
1+ ⋯ + nrλ2r = 0

⋮
n1λ

r
1+ ⋯ + nrλrr = 0

and if we rewrite the system of equations in matrix form we would obtain

⎛
⎜
⎝

λ1 ... λr
⋮ ⋮
λr1 ... λrr

⎞
⎟
⎠

⎛
⎜
⎝

n1
⋮
nr

⎞
⎟
⎠
=
⎛
⎜
⎝

0
⋮
0

⎞
⎟
⎠
.

If we prove that the determinant of the coefficient matrix is non-zero,
then the system has a unique solution n1 = ⋯ = nr = 0, which contradicts
the assumption that h has non-zero eigenvalues. Let us compute it:

RRRRRRRRRRRRRR

λ1 ... λr
⋮ ⋮
λr1 ... λrr

RRRRRRRRRRRRRR
= λ1⋯λr

RRRRRRRRRRRRRRRRRRR

1 ... 1
λ1 ... λr
⋮ ⋮

λr−11 ... λr−1r

RRRRRRRRRRRRRRRRRRR

.

Since all λi are non-zero eigenvalues, it suffices to check whether the latter
determinant is non-zero or not. In particular, it is the so-called Vander-
monde determinant, which is non-zero if and only if all λi are distinct, and
since these λi represent distinct eigenvalues of h we are done.
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Hence, zero is the unique eigenvalue of h, with multiplicity n, so that
h is nilpotent. Then, by the characterization of Lemma 1.20 we get that
I−h = x−1 ⋅y is unipotent, but by hypothesis there is no nontrivial unipotent
element of G, hence I = x−1 ⋅ y and x = y.

Therefore, the association between g and (tr(g1g), ..., tr(gdg)) is one-
to-one. Since the traces of the elements of G can take at most s values,
then the set of d-tuples has cardinality at most sd ≤ sn2

. This completes the
proof.

Definition 1.24. Let R be a ring. Then, the characteristic of R is the
smallest integer n ∈ N such that na = 0R for all a ∈ R, where 0R is the
additive identity, and we denote it by CharR. If no such positive integer
exists, then R is said to be of characteristic zero.

If R = K is a field, then the characteristic of K is either 0 or a prime
number p.

Theorem 1.25. Let K be any field and let N be a natural number which
is not a multiple of CharK. If G ⊂ GL(n,K) is an N -torsion group, i.e.,
a periodic group of finite exponent N , then G must be finite of cardinality
∣G∣ ≤ Nn3

.

Proof. Without loss of generality, we assume K is algebraically closed. The
vector subspace V ⊂M(n,K) generated by G has dimension at most n2 and
let {g1, ..., gd} be elements in G which form a basis for V . We just need to
check that all hypotheses from Burnside’s lemma are satisfied being Nn an
upper bound of the cardinality of the set of traces of elements in G.

If J is the Jordan normal form of g ∈ G, then JN = I since G is an
N -torsion group and gN = P −1 ⋅ JN ⋅ P = I. The diagonal entries of JN

are precisely the N -th powers of the eigenvalues of g and they are all equal
to one, hence the eigenvalues of g are N -th roots of unity. Since K is
algebraically closed, then XN −1 splits into linear factors over K, which has
exactly N roots including multiplicities, so there are at most N N -th roots
of unity. Thus, we have at most N choices for the eigenvalues of g, and since
the trace of g is equal to the sum of all its n eigenvalues, then the trace of
g has no more than Nn possibilities.

We only need to check one last condition: there is no nontrivial element
of G which is unipotent. Let us prove it by contradiction. Suppose that
I ≠ g ∈ G is unipotent and without loss of generality we assume g is upper
triangular with all diagonal entries 1, otherwise we conjugate it by a matrix
in GL(n,K). Let gij ≠ 0 be such that j − i ≥ 1 and j − i is the least possible.
Now, looking at the (i, j)-th entry of gN = I, we have that 0 = N ⋅gij , which is
a contradiction since CharK does not divide N . Thus, Lemma 1.23 implies
the assertion of this corollary since all conditions are satisfied.
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Then, it suffices to check that the (i, j)-th entry of gN is indeed N ⋅ gij .
We are going to prove by induction on the power r that the (i, j)-th entry

of gr is g
(r)
ij = r ⋅ gij , and thus the proof would be completed taking r = N .

Taking into account how gij has been chosen, we know that g
(1)
ik = g

(1)
lj = 0

for all k < j and l > i, except for g
(1)
ii = g

(1)
jj = 1. Similarly, we could easily

check that g
(m)
ik = g(m)lj = 0 and g

(m)
ii = g(m)jj = 1 for all m ≥ 1.

Let us begin with the induction. For r = 1, it trivially holds that the

(i, j)-th entry of g is exactly g
(1)
ij = gij . Now, we assume it is true up to r−1

and we need to prove it for r. Since gr = g ⋅ gr−1, then g(r)ij = ∑
n
k=1 gik ⋅ g

(r−1)
kj

holds. Moreover, we also know that g
(r)
ik = g

(r)
lj = 0 for all k < j and l > i,

except for g
(r)
ii = g

(r)
jj = 1. Thus:

g
(r)
ij = gii ⋅ g

(r−1)
ij + gij ⋅ g(r−1)jj = 1 ⋅ (r − 1)gij + gij ⋅ 1 = r ⋅ gij .

We may ask ourselves what happens if CharK = p divides N . In this
case, the last result is not true (see Problem 4). Let us refine the last
theorem by dropping the condition of bounded torsion when the group is
finitely generated. Before doing that, let us introduce the following lemmas.

Lemma 1.26. Let G ⊆ GL(n,K) for a field K and let g ∈ G be a matrix
of order m. Then, m is the least possible integer such that the minimal
polynomial of g divides Xm − 1.

Proof. Let µg(X) be the minimal polynomial of g. Since o(g) = m, then
gm = I, which implies that µg(X) ∣ Xm − 1. On the other hand, if we have
that µg(X) ∣ Xk − 1, then Xk − 1 = µg(X)f(X) for some polynomial f(X)
and gk − I = µg(g)f(g) = 0. Thus, gk = I and k ≥m.

Lemma 1.27. Let P be a prime field and let E be a finite extension of P .
Then, for every d ∈ N there is a finite number of monic polynomials of degree
d in E[X] with the property that all its roots are roots of unity.

Proof. Suppose first that E = P . If P ≅ Fp, then the result is obvious since
there are finitely many polynomials of degree d in Fp[X]. Assume now
that P ≅ Q. Let f(X) ∈ Q[X] be a monic polynomial of degree d all of
whose roots are roots of unity, say λ1, ..., λd. If λi is a primitive ni-th root
of unity, then the minimal polynomial mi(X) of λi over Q divides f(X),
which implies that φ(ni) ≤ d. Since limn→∞φ(n) = +∞, it follows that there
are only finitely many possibilities for the ni, and consequently also for the
λi. Since f(X) = (X − λ1)⋯(X − λd), we conclude that there are finitely
many possibilities for f(X).
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Now, we consider the general case when [E ∶ P ] < ∞. By considering
if necessary a normal closure of E over P , we may assume that E/P is a
normal extension. Since every extension of Fp or Q is separable, then E/P
is actually Galois. We define:

f∗(X) = ∏
σ∈Gal(E/P )

σ(f(X)) ∈ P [X]

where f(X) ∈ E[X] is a monic polynomial of degree d whose roots are all
roots of unity and similarly for f∗(X), which has degree d ⋅ [E ∶ P ]. By the
previous case, we know that there are finitely many possibilities for f∗(X)
and since f(X) ∣ f∗(X), also for f(X).

Lemma 1.28. Let L/K be a finitely generated extension and let E be the
field of elements in L that are algebraic over K. Then, [E ∶K] <∞.

Proof. Write L = K(α1, ..., αr). We argue by induction on r. If r = 1, then
E = K(α1) or K, according as α1 is algebraic or trascendental over K. In
any case, [E ∶K] <∞.

Suppose now that r > 1. By the induction hypothesis, if F is the field
of elements in L that are algebraic over K(α1), then [F ∶ K(α1)] < ∞.
Observe that E ⊆ F . If α1 is algebraic over K, then [K(α1) ∶K] <∞, hence
[E ∶K] ≤ [F ∶K(α1)] ⋅ [K(α1) ∶K] <∞.

Then, we assume that α1 is transcendental over K, hence it is also tran-
scendental over E since E/K is algebraic and the property of being algebraic
is transitive. Consider a number of elements β1, ..., βs ∈ E that areK-linearly
independent. We claim that they are also K(α1)-linearly independent. This
shows that [E ∶K] ≤ [F ∶K(α1)] <∞, which completes the proof.

Let us prove the claim. Suppose that λ1β1+⋯+λsβs = 0, with λi ∈K(α1).
If we write λi = µi/νi with µi, νi ∈ K[α1] and multiply by ν1⋯νs, then we
can further assume that λi ∈ K[α1] for every i, and hence λi = f(α1) for
some fi ∈K[X]. If some fi ≠ 0, then we set d =max{deg fi ∣ i = 1, ..., s} and
if we write λi = ai0 + ai1α1 +⋯ + aidαd1, with aij ∈K, then:

λ1β1 +⋯ + λsβs = (
s

∑
i=1
ai0βi) + (

s

∑
i=1
ai1βi)α1 +⋯ + (

s

∑
i=1
aidβi)αd1 = 0.

Since α1 is transcendental over E and all the coefficients in this linear
combination lie in E, we deduce that

s

∑
i=1
ai0βi =

s

∑
i=1
ai1βi = ⋯ =

s

∑
i=1
aidβi = 0.

Since β1, ..., βs are K-linearly independent it follows that aij = 0 for all i, j
so λi = 0 for all i = 1, ..., s. This proves the claim.
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Theorem 1.29. Let G be a finitely generated periodic subgroup of GL(n,K).
Then:

(i) G has finite exponent;

(ii) If the orders of all elements of G are not multiples of CharK, then G
is finite.

Proof. Let us start proving (i). Let G = ⟨g1, ..., gd⟩ and let L be the field
obtained by adjoining to P all matrix entries of the generators, where P is
the prime subfield ofK. One can readily check that the entries of every g ∈ G
belong also to L, since g can be written as a finite product of the generators
of G, so its matrix entries are obtained by multiplying matrix entries of the
generators and adding all these results, hence they lie in L. By Lemma 1.28,
if E is the set of elements in L algebraic over P , then [E ∶ P ] <∞.

Consider an arbitrary element g ∈ G of order m. Since the entries of g
lie in L, the minimal polynomial µg(X) of g belongs to L[X] and we also
know that µg(X) divides Xm−1. Then, all its roots are m-th roots of unity,
which are the eigenvalues of g, say λ1, ..., λd. They are algebraic over P and
since the product of these algebraic elements is also algebraic over P , then
µg(X) = (X − λ1)⋯(X − λd) ∈ E[X] which has degree d ≤ n. We can now
apply Lemma 1.27 to deduce that there are only finitely many possibilities
for µg(X), say µ1, ..., µr. Let mi be the least possible integer such that µi
divides Xmi − 1. Then, these mi form a finite set and Lemma 1.26 implies
that the order m of g lies in this finite set. This proves that there are only
finitely many possibilities for the orders of the elements of g, hence G has
finite exponent.

Finally, (ii) follows from (i) and Theorem 1.25. Since the orders of all
elements of G are not multiples of CharK, it follows that exp(G) is not a
multiple of CharK.

Corollary 1.30. The General Burnside Problem has a positive solution for
matrix groups of characteristic 0.

Proof. It trivially holds from Theorem 1.29, since CharK = 0 does not
divide the order of any element in G.

This result was given by I. Schur [15] in 1911, proving that the General
Burnside Problem has an affirmative answer for linear groups of charac-
teristic zero. Then, the adaptations needed for the proof in the case of
characteristic p were given by I. Kaplansky in 1965 [11], hence the answer
to the General Burnside Problem is positive for all linear groups. However,
we need more advanced results in ring theory in order to prove it.
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Chapter 2

Golod-Shafarevich groups

In this chapter we introduce the first negative solution to the General
Burnside Problem, which are Golod-Shafarevich groups. Golod-Shafarevich
algebras and groups, which were introduced by Russian mathematicians
Evgenii Golod and Igor Shafarevich in 1964, had been used as a powerful
tool in ring theory and group theory. They were introduced in relation to the
famous class field tower problem, which asks whether the class field tower of
any number field must be finite. It was posed by Furtwängler in 1925 and it
remained open for almost 40 years until 1964, when Golod and Shafarevich
proved that the answer to the problem is negative.

It turns out that their negative solution to the General Burnside Prob-
lem goes through the negative solution to a closely connected problem in
associative algebras known as Kurosh-Levitzki problem, which asks whether
a finitely generated nil algebra is necessarily nilpotent. We are going to con-
struct Golod-Shafarevich algebras, which are negative solutions to this latter
problem, in order to construct Golod-Shafarevich groups.

The sources we have used in this chapter are mainly the notes provided by
my supervisor [6]. We have also followed [3], [4] and [17] as main references.

2.1 K-algebras and formal power series

Before introducing the Kurosh-Levitzki problem let us make a brief intro-
duction to algebras over a field K and formal power series, which we will
use throughout the chapter.

Definition 2.1. Let K be a field and let A be a ring and a vector space
over K where multiplication is a K-bilinear map. Then, we say A is an
associative algebra over K or a K-algebra.

17
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The multiplication operation in an associative algebra A is not assumed
to be commutative, which leads to the concept of commutative and non-
commutative algebras. Throughout this chapter we are going to work with
non-commutative algebras. Moreover, an algebra does not necessarily have
an identity element with respect to multiplication. In case it has an identity
element the algebra is called unital or unitary, otherwise it is said to be
non-unital.

In the third year course of Commutative Algebra we worked with uni-
tal associative commutative algebras, in particular with the polynomial
ring K[X1, ...,Xn] and also with finitely generated K-algebras of the form
A = K[a1, .., an] where a1, ...an ∈ A, which are isomorphic to quotients of
K[X1, ...,Xn] by the first isomorphism theorem.

However, most of the results we learned can be generalised for non-
commutative and non-unital algebras, which we will use in order to construct
Golod-Shafarevich groups. Let us first introduce two important examples
of K-algebras: non-commutative polynomial algebras or free algebras and
group algebras.

Definition 2.2. A monoid is a set that is closed under an associative binary
operation and has an identity element, that is, a semigroup with an identity
element. In case all elements have an inverse, which is not necessary, then
the monoid is a group.

Definition 2.3. Let X be a fixed set, also called alphabet. Then, the free
monoid onX is the set of all finite words (or strings) of zero or more elements
of X made into a monoid using string concatenation, denoted by X∗, which
is not commutative. It has an identity element ϵ which is the unique word
of zero elements known as the empty word.

Let us define non-commutative polynomial algebras, also known as free
algebras.

Definition 2.4. Let R be a commutative ring and X = {X1, . . . ,Xd} the set
of indeterminates. Then, the free (associative) algebra over R in d variables
is the non-commutative analogue of a polynomial ring, where its elements
are polynomials in non-commuting variables. It is indeed an R-module with
X∗ as a basis, for which multiplication is defined such that the product of
two basis elements is the concatenation of the corresponding words. There-
fore, we also call it the free algebra generated by X and it is denoted by
R⟨X1, . . . ,Xd⟩ or R⟨X⟩.

From now on let X = {X1, . . . ,Xd}. If R = K is a field, then X∗ is a
basis of K⟨X⟩ as a vector space over K, and any element of K⟨X⟩ can be
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uniquely written as

∞
∑
k=0

∑
i1,...,ik∈{1,...,d}

λi1,...,ikXi1Xi2⋯Xik

where λi1,...,ik are elements of K and all but finitely many of these are zero,
since elements are polynomials and not series. Unlike in polynomial rings,
variables do not commute.

The universal property of non-commutative polynomial algebras is the
same as for commutative ones since in both cases polynomials are described
uniquely as a sum of monomials. In order to fully determine a K-algebra
homomorphism between a polynomial algebra and a K-algebra B, it suffices
to give the images of all the free generators, mapping each Xi to any element
bi ∈ B. Thus, f(X1, ...Xn) is mapped to f(b1, ..., bn).

Subalgebras of non-commutative (unital or non-unital) algebras can be
generated in a similar way as for the commutative case. Let A be a unital
non-commutative algebra and some elements a1, ..., ad ∈ A, then these ele-
ments generate a subalgebra of A denoted by K⟨a1, . . . , ad⟩. By definition,
it is the intersection of all subalgebras containing a1, ..., ad and its elements
are polynomials in K⟨X1, . . . ,Xd⟩ evaluated in the generators a1, ..., ad.

On the other hand, if A is non-unital and generated by a1, ..., ad ∈ A,
its elements are described as non-commuting polynomials without constant
term in these generators. There is a canonical way of constructing a unital
algebra B from A. The idea is to construct B as the cartesian product
of K and A, identifying elements in B as tuples (λ, a) where λ ∈ K and
a ∈ A. Addition is defined by (λ1, a1) + (λ2, a2) = (λ1 + λ2, a1 + a2), scalar
multiplication is defined by µ ⋅(λ, a) = (µλ,µa) and multiplication is defined
by (λ1, a1) ⋅ (λ2, a2) = (λ1λ2, λ1a2 +λ2a1 + a1a2). Then, (1,0) is the identity
element of B, hence it is unital.

In order to simplify the notation we identify (λ,0) with λ and (0, a) with
a, so that (λ,0) + (0, a) = (λ, a) corresponds to the element λ + a. Thus,
B =K⊕A = {λ+a ∣ λ ∈K,a ∈ A}. In addition, if A is generated by a1, ..., ad,
then B is also generated by the same generators so that B =K⟨a1, ..., ad⟩.

Let us now introduce group algebras over a field K, which we will use
for the Kurosh-Levitzki problem in Section 2.2.

Definition 2.5. LetK be a field and G a group under multiplication. Then,
the group algebra of G over K, which is denoted by K[G], is the set of all
(formal) linear combinations of finitely many elements of G with coefficients
in K, so that elements are of the form ∑

g∈G
λgg where λg ∈K.

Group algebras have also a universal property. Suppose that we want
to construct a K-algebra homomorphism φ between K[G] and a K-algebra
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B. It suffices to give the images of all elements of G, which are not free
generators of K[G], so images cannot be arbitrarily chosen. In this case, we
need to ensure these two conditions:

(i) φ(g) ∈ B×, ∀g ∈ G;

(ii) φ(gh) = φ(g)φ(h), ∀g, h ∈ G.

Equivalently, φ∣G∶GÐ→ B× must be a group homomorphism.

Finally, let us introduce formal power series and the ring of formal power
series, which we will use while working with Hilbert series and computing
inverse series in Section 2.3.

Definition 2.6. A formal power series is an infinite sum whose terms are of
the form anX

n where Xn is the n-th power of a variable X and an is called
the coefficient of Xn. They can be seen as a generalization of polynomials
where the number of terms is allowed to be infinite and with no requirements
of convergence or they can also be seen as objects that just record a sequence
of coefficients.

Definition 2.7. Let R be a commutative ring. Then, the set of all formal
power series in a variable X with coefficients in R is denoted by R[[X]]
and it is called the ring of formal power series in X over R. The elements
of R[[X]] are infinite expressions of the form f(X) = a0 + a1X + a2X2 +⋯,
where an ∈ R for all n ∈ N.

R[[X]] has indeed a ring structure where addition and multiplication are
defined just as for the polynomial ring R[X] and it is commutative since R
is. We know polynomials are particular cases of formal power series, hence
it is clear that R[X] is a subset of R[[X]] and that the algebraic operations
of these two rings agree on this subset.

It would be great to ask for invertible elements in this ring. For instance,
1+X is invertible since the geometric series formula is also valid in R[[X]]:

(1 +X)−1 = 1

1 +X
=
∞
∑
n=0

Xn = 1 +X +X2 +⋯

However, the ring R[[X]] is not a field because, for example, X is not
invertible in R[[X]]. The following proposition gives a necessary and suffi-
cient condition for a series to be invertible in R[[X]].

Proposition 2.8. Let R be a commutative ring and let f(X) = ∑∞n=0 anXn

be a formal power series in R[[X]]. Then, f(X) is invertible if and only if
a0 is invertible in R.
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Proof. We need to determine if there exists g(X) = ∑∞n=0 bnXn ∈ R[[X]]
such that f(X)g(X) = 1. Expanding the product we have

f(X)g(X) = (
∞
∑
n=0

anX
n) ⋅ (

∞
∑
n=0

bnX
n) =

∞
∑
n=0
(
n

∑
k=0

akbn−k)Xn.

Comparing the coefficients of Xn on both sides of f(X)g(X) = 1 we realise
that g(X) satisfies the equation if and only if a0b0 = 1 and∑nk=0 akbn−k = 0 for
all n ≥ 1. Then, a0b0 = 1 is a necessary condition, hence a0 must be invertible
in R. Moreover, it is indeed a sufficient condition since recursively defining
bn = −a−10 ∑nk=1 akbn−k the second condition is also satisfied.

Corollary 2.9. Let R = K be a field. Then, a formal power series in
K[[X]] is invertible if and only if the constant term a0 is non-zero.

2.2 The Kurosh-Levitzki problem

The Kurosh-Levitzki problem was posed in the early 1940s by Alexander
G. Kurosh and Jakob Levitzky and it asks whether a finitely generated nil
algebra is necessarily nilpotent, for which the answer is negative. However,
if we ask for a bound for the degrees of nilpotency of all elements we get
a variant of the problem known as the Ordinary Kurosh-Levitzki problem.
In this case, the conclusion that A is nilpotent is true, but we are only
interested in the general case.

Definition 2.10. An element a ∈ A is nilpotent if there exists an integer
n ≥ 1 such that an = 0, and the minimum of such integers is called degree of
nilpotency of a. We say that A is a nil algebra if every a ∈ A is nilpotent
and A is a nilpotent algebra if there exists some integer n ≥ 1 such that
An = {a1⋯an ∣ ai ∈ A,∀i ∈ {1, ..., n}} = {0}.

Observe that nil algebras do not contain identity element 1 since it is
not a nilpotent element. Obviously, nilpotent algebras are nil, whereas the
converse is not always true. The following theorem gives a sufficient condi-
tion for finitely generated nil algebras to be nilpotent, whose proof is left as
a problem (see Problem 6).

Theorem 2.11. If A is a finitely generated nil algebra, then A is nilpotent
if and only if A is finite dimensional.

The Kurosh-Levitzki problem is closely connected to the General Burn-
side Problem, in that negative answers to one problem lead to negative
answers to the other one and vice versa. We are interested in proving just
one direction, but we could also construct a negative answer to the Kurosh-
Levitzki problem over any fieldK of characteristic p from a finitely generated
infinite p-group (see Problem 7).
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Let A be a negative solution to the Kurosh-Levitzki problem over a field
K of characteristic p generated by a1, ..., ad and let B = K⊕A be a unital
algebra, for which we have the multiplicative group B×. We want to get a
finitely generated infinite p-group G ≤ B×, a negative solution to the GBP.
Later on we will construct Golod-Shafarevich algebras, which are negative
solutions to the Kurosh-Levitzki problem, and applying this result we get the
corresponding negative solutions to the GBP known as Golod-Shafarevich
groups.

Since A is a nil algebra of characteristic p, then 1 +A is a subgroup of
B× and it is indeed a p-group. For every a1, a2 ∈ A we get that

(1 + a1)(1 + a2) = 1 + (a1a2 + a1 + a2) ∈ 1 +A.

Moreover, every element a ∈ A is nilpotent, that is, there exists n ≥ 1
such that an = 0. Then, there exists also m ∈ N such that pm ≥ n and
hence ap

m = 0. Finally, we get that (1 + a)pm = 1 + apm = 1 and hence
(1 + a)−1 = (1 + a)pm−1 ∈ 1 +A.

Any subgroup of 1 + A is a p-group and we want G to be a finitely
generated infinite p-group. Let us take G = ⟨1 + a1, . . . ,1 + ad⟩ ≤ 1 + A,
where a1, ..., ad are the generators of A. It remains to prove G is infinite,
for which we need to construct an algebra homomorphism φ that goes from
K[G] to B, both K-algebras. As we have seen in Section 2.1, we need a
group homomorphism φ∣G∶G Ð→ B× in order to define φ. Since G belongs
to B× it suffices to choose the identity map 1G and φ is surjective because
G generates B as a unital algebra.

Since A is not nilpotent, then by Theorem 2.11 it is infinite dimensional.
This implies dimK B =∞, and by surjectivity of φ, ∣G∣ = dimKK[G] =∞ as
desired.

2.3 Golod-Shafarevich algebras and groups

Our main goal in this section is to construct Golod-Shafarevich algebras,
which are negative solutions to the Kurosh-Levitzki problem. As explained
in the previous section, this automatically gives Golod-Shafarevich groups.
Let us fix the notation we are going to use throughout this section in order
to make it clear from scratch.

Definition 2.12. A unital algebra S is said to be graded if it has a direct

sum decomposition into K-subspaces: S = S0⊕S1⊕S2⊕⋯ =
∞
⊕
n=0

Sn, where

S0 =K1S and SiSj ⊆ Si+j for all i, j ≥ 0. We say that the elements of Si are
homogeneous elements of degree i.
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The free algebra S = K⟨X1, . . . ,Xd⟩ is a finitely generated, graded and
unital algebra. Each Sn is a subspace whose basis is the set of words of
X∗ of length n, so dimK Sn = dn. Let T denote the set of polynomials of S

without constant term, T =
∞
⊕
n=1

Sn. Similarly as we have done before, T is

non-unital and S =K⊕T .
In order to get a negative solution to the Kurosh-Levitzki problem, our

aim is to find a suitable ideal N of S and consider the quotient algebra
Q = S/N =K1Q⊕A, where A = T /N is the negative answer we are looking
for and K1Q = K + N/N ≅ K/K ∩ N ≅ K, since K ∩ N = {0}. Let us
simplify the notation and write Q =K⊕A. Since T is finitely generated as
an algebra, then A also is by taking the cosets as its generators. Therefore,
we need A to be a nil algebra and infinite dimensional, which is equivalent
to satisfying these two conditions:

(i) For every f ∈ T , some power of f is in N , i.e., every element in A is
nilpotent.

(ii) dimK Q = ∞. In fact, since dimK Q = 1 + dimK A, then A is infinite-
dimensional if and only if Q is.

We search for an ideal N satisfying both properties, which is generated
by a sequence of homogeneous polynomials {f1, f2, . . .} with finitely many
polynomials of every degree, say kn polynomials of degree n. We assume
that polynomials have at least degree 2, hence k0 = k1 = 0. An arbitrary
element of the homogeneous two-sided ideal N = (f1, f2, . . .) is of the form

∑
i∈N

gifihi where gi, hi ∈ S and only finitely many summands are non-zero.

Similarly as we have done for S, the homogeneous ideal N can also be

decomposed as a direct sum of K-subspaces: N =
∞
⊕
n=0

Nn, where Nn ⊆ Sn is

the set of homogeneous polynomials of degree n in N . Since Nn is a vector
subspace of Sn, then we can take a complement Bn such that Sn = Nn⊕Bn,
hence Bn ≅ Sn/Nn. Let us define the vector subspace B =

∞
⊕
n=0

Bn ≤ S so that

we get the following isomorphism as vector spaces:

Q = S/N ≅
∞
⊕
n=0

Sn/Nn ≅
∞
⊕
n=0

Bn = B.

Therefore, S = N⊕B and observe that Q and B are isomorphic as vector
spaces, so that Q is infinite-dimensional if and only if B is, which is easier to
work with. Our goal is to get infinitely many Bn different from zero so that B
is infinite-dimensional, and thusQ is infinite-dimensional. Let bn = dimK Bn,
then equivalently we want to find a suitable sufficient condition such that
bn > 0 for infinitely many n.
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Lemma 2.13 (The fundamental inequality of Golod-Shafarevich). Let S be
the free algebra K⟨X1, . . . ,Xd⟩ and let N be the ideal generated by homoge-
neous fi ∈ S of degree di with 2 ≤ d1 ≤ d2 ≤ ⋯, where di tends to infinity. Let
ki be the number of generators fi of degree i and let bi = dimK Bi. Then:

bn ≥ d ⋅ bn−1 −
n

∑
i=2
kibn−i for n ≥ 1.

Proof. Let R = ⟨f1, f2, . . .⟩ be a linear graded (since all fi are homogeneous)
subspace overK. Every element of N = (f1, f2, . . .) is of the form ∑∞i=1 gifihi,
where gi, hi ∈ S and only finitely many summands are non-zero. Then, it
follows that N = SRS.

Moreover, we also need to realise that T = SS1, hence S = SS1 +K and
since R is a linear subspace over K, then RK = R. Finally, let us remark
that R ⊆ T and NS = N , hence NR ⊆ NSS1 = NS1. All in all, we get the
following chain of equalities and inclusions:

N = SRS = SR(SS1 +K) = NS1 + SRK = NS1 + SR
= NS1 + (N +B)R ⊆ NS1 +BR.

For a fixed n ≥ 2 we get that Nn ⊆ Nn−1S1 +
n

∑
i=2
RiBn−i, hence

dimNn ≤ (dimNn−1)(dimS1) +
n

∑
i=2
(dimRi)(dimBn−i).

Observe that the sum starts from i = 2 since all fi are homogeneous of
degree at least 2. Let us recall that dimNn = dimSn − dimBn = dn − bn and
dimRi = ki. Then,

dn − bn ≤ (dn−1 − bn−1) ⋅ d +
n

∑
i=2
kibn−i

hence

bn ≥ d ⋅ bn−1 −
n

∑
i=2
kibn−i.

Definition 2.14. Let B =
∞
⊕
n=0

Bn be a graded vector space and let also

bi = dimK Bi <∞ for all i. Then, the associated Hilbert series is the formal
power series ∑∞n=0 bntn.

Let∑∞n=0 antn and∑∞n=0 bntn be two series. We write∑∞n=0 antn ≤ ∑∞n=0 bntn
provided that an ≤ bn for all i ≥ 0. Observe that we do not want the Hilbert
series associated to B to be a polynomial, hence we need bn > 0 for infinitely
many n.



Chapter 2. Golod-Shafarevich groups 25

Theorem 2.15 (Golod-Shafarevich Theorem). With the above notation we
have that

(1 − dt +
∞
∑
n=2

knt
n)(

∞
∑
n=0

bnt
n) ≥ 1.

Proof. In the fundamental inequality of Golod-Shafarevich, if we multiply
tn and we sum over n we get that

∞
∑
n=1

bnt
n ≥

∞
∑
n=1

d ⋅ bn−1tn −
∞
∑
n=1
(
n

∑
i=2
kibn−i)tn.

Rewriting our inequality we have

(
∞
∑
n=0

bnt
n) − 1 ≥ dt(

∞
∑
n=0

bnt
n) − (

∞
∑
n=2

knt
n)(

∞
∑
n=0

bnt
n)

and taking the Hilbert series associated to B as common factor we finally
get

(1 − dt +
∞
∑
n=2

knt
n)(

∞
∑
n=0

bnt
n) ≥ 1.

From this inequality we can get a negative answer to the Kurosh-Levitzki
problem. Let us now look for sufficient conditions for Q =K⟨X1, . . . ,Xd⟩/N
to be infinite-dimensional.

Theorem 2.16. If all coefficients of (1 − dt +∑∞n=2 kntn)−1 = ∑∞n=0 cntn are
non-negative, then Q is infinite-dimensional.

Proof. If the inverse series has non-negative coefficients, we can multiply it
on both sides of the inequality in Theorem 2.15 and we get the following:

∞
∑
n=0

bnt
n ≥ (1 − dt +

∞
∑
n=2

knt
n)−1 =

∞
∑
n=0

cnt
n ≥ 0.

Thus, bn ≥ cn ≥ 0 for all n. It suffices to prove that the inverse series cannot
be a polynomial in order to get cn > 0 for infinitely many n, and thereby
similarly for bn. Let us prove it by contradiction assuming that the inverse is
a polynomial of degree s, f(t) = ∑sn=0 cntn, such that all ci are non-negative
coefficients. Then,

(1 +
∞
∑
n=2

knt
n) ⋅ f(t) = 1 + dt ⋅ f(t).

On the right-hand side we get a polynomial of degree s + 1. The coefficient
for ts+1 in both sides must coincide, that is, k2cs−1 + ⋯ + ks+1c0 = dcs ≠ 0.
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Therefore, there is at least one ki among k2, ..., ks+1 which is non-zero and
comparing coefficients at degree s + i we get cs ⋅ ki +∑sn=1 ki+ncs−n = 0.

This is a contradiction since cs ⋅ ki > 0 and ∑sn=1 ki+ncs−n ≥ 0, which
completes the proof.

Theorem 2.17. Suppose that with the previous notation we have kn ≤ sn
for all n. If all coefficients of the inverse series (1 − dt +∑∞n=2 sntn)−1 are
non-negative, then Q is infinite-dimensional.

Proof. If kn ≤ sn for all n, then 1 − dt +∑∞n=2 kntn ≤ 1 − dt +∑∞n=2 sntn. We
get that (1 − dt +∑∞n=2 sntn)(∑∞n=0 bntn) ≥ 1 and we are in the same case as
in Theorem 2.16.

Let us now think about bounding kn with the same constant s for all
n. This will provide us a very interesting result, although it is not the final
sufficient condition we are looking for.

Corollary 2.18. If kn ≤ (d−1)2/4 for all n, then Q is infinite-dimensional.

Proof. Assume kn ≤ s for all n. We are going to compute the inverse series
of 1−dt+∑∞n=2 stn explicitly, for which we need to recall from Calculus I the
power series representations for some particular functions, such as

1

1 − at
=
∞
∑
n=0
(at)n and

1

(1 − at)2
=
∞
∑
n=0

n(at)n−1. (2.1)

Since we are working with formal power series we do not worry about con-
vergence. Then:

1 − dt +
∞
∑
n=2

stn = (1 + t + t2 +⋯) − (d + 1)(t + t2 +⋯) + (s + d)(t2 + t3 +⋯)

= 1

1 − t
− (d + 1) t

1 − t
+ (s + d) t2

1 − t
= 1 − (d + 1)t + (s + d)t2

1 − t
.

Therefore, if we take s = (d − 1)2/4 we get (1 − d+1
2 t)2 in the numerator,

hence the inverse series is (1− t)(1− d+12 t)−2. Using (2.1) and making all the
calculations (see Problem 8) we obtain the following series:

(1 − dt +
∞
∑
n=2

stn)
−1

=
∞
∑
n=0
(d + 1

2
)
n−1

[(d + 1) + n(d − 1)
2

]tn

= 1 + dt + 3d2 + 2d − 1
4

t2 +⋯

All the coefficients of the inverse series are non-negative if kn ≤ s = (d−1)2/4
for all n. Thus, Q is infinite-dimensional by Theorem 2.17.
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We want to go just one step further and in greater generality our goal is
to bound kn ≤ sn in such a way that 1 − dt +∑∞n=2 sntn = (1 − λt)2/(1 − µt).
If we multiply both sides by 1 − µt we get

1 − (µ + d)t + (s2 + µdt2) +
∞
∑
n=3
(sn − µsn−1)tn = 1 − 2λt + λ2t2

and if we equal the coefficients of tn on both sides we get the following
system of equations:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2λ = d + µ
s2 + µd = λ2

sn = µsn−1, for n ≥ 3
⇐⇒

⎧⎪⎪⎨⎪⎪⎩

s2 = (d − µ/2)2

sn = µn−2(d − µ/2)2, for n ≥ 2
.

Thus, we get that sn = ϵ2(d−2ϵ)n−2 for all n ≥ 2, where ϵ = d−µ/2. Now,
if we fix 0 < ϵ < d so that d− ϵ > 0 and again using (2.1) we get the expansion
of the inverse series as a power series with non-negative coefficients (see
Problem 8):

(1 − dt +
∞
∑
n=2

snt
n)
−1

= 1 − (d − 2ϵ)t
(1 − (d − ϵ)t)2

=
∞
∑
n=0
(d − ϵ)n−1[d + (n − 1)ϵ]tn.

Corollary 2.19. If kn ≤ ϵ2(d − 2ϵ)n−2 for all n with a fixed 0 < ϵ < d, then
Q is infinite-dimensional.

Thus, we have found a suitable sufficient condition for Q to be infinite-
dimensional. Now, we want A = T /N to be a nil algebra in order to get a
negative solution to the Kurosh-Levitzki problem. In other words, for every
polynomial f ∈ T there must be an exponent m such that fm ∈ N . In order
to get that, we fix ϵ such that 0 < ϵ < (d − 1)/2, hence d − 2ϵ > 1 and we
construct our ideal N recursively defining N(k) = (f1, . . . , fnk

), such that the
following properties are satisfied:

(i) For every f ∈ T of degree at most k, some power of f is in N(k).

(ii) In the sequence of homogeneous polynomials f1, . . . , fnk
, the number

of polynomials of degree n is less or equal to ϵ2(d − 2ϵ)n−2 for all n.

We are going to proceed by induction on k. We first fix ϵ and we construct
the sequence {f1, f2, . . .} step by step. For the base case k = 0, we do not have
any non-zero constant polynomial f ∈ T , then it suffices to set N(0) = {0}.

Now, by induction hypothesis let N(k−1) = (f1, . . . , fnk−1
) such that for

every polynomial f ∈ T with degree less than k, we have that fm ∈ N(k−1)
for some m. We need to prove that adding some new homogeneous poly-
nomials of higher degree than the previous ones, let us denote them by
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fnk−1+1, . . . , fnk
, for every f ∈ T of degree k we can find a suitable M such

that fM ∈ N(k) = (f1, . . . , fnk
). Moreover, we have to take into account

that the number of new polynomials of degree n we add must be less than
ϵ2(d − 2ϵ)n−2 for every n.

Let f = c1X1 + ⋯ + cdXd + c1,2X1X2 + ⋯ + cd,...,dXk
d be the gen-

eral expression for a polynomial of degree k belonging to T , and thus
fM = cM1 XM

1 + ⋯ + cMd,...,dX
kM
d . We have to see it from another point of

view, considering the coefficients as commuting indeterminates and fM as a
homogeneous polynomial of degree M in c1, . . . , cd,...,d whose coefficients are
homogeneous polynomials in X1, . . . ,Xd. These homogeneous polynomials
are indeed the ones we are going to add to the sequence.

Let us understand it with an example. For f = c1X1+ c2X2 + c3X3, we
would have the following expression for the square:

f2 = c21X2
1 + c22X2

2 + c23X2
3 + c1c2 (X1X2 +X2X1)

+ c1c3 (X1X3 +X3X1) + c2c3 (X2X3 +X3X2). (2.2)

This particular case for d = 3, k = 1 and M = 2 is a second degree
polynomial in commuting variables c1, c2 and c3. Thus, the set of new
homogeneous polynomials we would add to the sequence is

{X2
1 , X

2
2 , X

2
3 , X1X2 +X2X1, X1X3 +X3X1, X2X3 +X3X2}

which correspond to the homogeneous polynomials in X1, X2 and X3 which
are regarded as coefficients.

Observe that if M >max{deg fi ∣ i = 1, ..., nk−1}, the degrees of the new
homogeneous polynomials we add to the sequence are between M and kM ,
hence we only have to care about the number of new polynomials of degree
n to be bounded by ϵ2(d − 2ϵ)n−2 for all n between M and kM . But which
is the total number of new homogeneous polynomials we are adding to the
sequence? The answer to this problem is easy.

The total number of homogeneous polynomials we are adding is exactly
the same as the number of monomials of degree M in the commuting in-
determinates c1, . . . , cd,...,d. This equality holds since there is a one-to-one
correspondence between these monomials and their respective coefficients in
fM , which are homogeneous polynomials in X1, . . . ,Xd of degree between
M and kM . Let us consider the previous example f = c1X1+ c2X2 + c3X3.
Then, looking at (2.2) we observe that the homogeneous polynomial corre-
sponding to c21 is X2

1 and the one corresponding to c1c2 is X1X2 +X2X1,
among others.

Let c1, . . . , cd,...,d be the commuting indeterminates and q = d+ d2+⋯+ dk
be the total number of them. In order to compute the number of monomials
of degree M in these q commuting indeterminates, we can draw a parallel
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with a well-known combinatorial problem which consists in computing the
total number of ways in which M identical balls can be distributed into q
different boxes. In this case, the M balls would be the degrees we have to
distribute among c1, . . . , cd,...,d since we look for monomials of degree M and
the q boxes correspond to these commuting indeterminates. We know from
the second year course of Discrete Mathematics that the solution to this
problem is (M+q−1q−1 ).

At the beginning we have fixed ϵ in such a way that d − 2ϵ > 1 and q
is also fixed for each k-th step of the induction. Then, there exists an M
big enough such that (M + q − 1)q−1 ≤ ϵ2(d − 2ϵ)M−2. This happens because
d − 2ϵ > 1 and M is in the exponent whereas in (M + q − 1)q−1 it is in the
base. Therefore, when M tends to infinity ϵ2(d − 2ϵ)M−2 increases faster
than (M + q − 1)q−1 and we have the following chain of inequalities:

(M + q − 1
q − 1

) ≤ (M + q − 1)q−1 ≤ ϵ2(d − 2ϵ)M−2 ≤ ϵ2(d − 2ϵ)n−2.

This way, the number of new homogeneous polynomials of degree n we
add is bounded by ϵ2(d−2ϵ)n−2 for all n betweenM and kM , hence we have
completed our construction at the k-th step.

Let {fnk−1+1, ..., fnk
} be the set of new homogeneous polynomials we add

at the k-th step and N(k) = (f1, . . . , fnk
). Then,

N(0) ⊂ N(1) ⊂ N(2) ⊂ ⋯ ⊂ N(k) ⊂ ⋯

is an ascending chain of recursively defined ideals. Let us takeN = ⋃∞k=0N(k).
Then, A = T /N is a nilpotent finitely generated nil algebra, hence a nega-
tive solution to the Kurosh-Levitzki problem. These algebras are known as
Golod-Shafarevich algebras.

Now, let A be a Golod-Shafarevich algebra over a fieldK of characteristic
p generated by X1, ...,Xd as a K-algebra and let Q =K⊕A. Then, we have
previously seen at Section 2.2 that G = ⟨1 +X1, . . . ,1 +Xd⟩ ≤ Q× is a finitely
generated infinite p-group, hence a negative solution to the General Burnside
Problem. These groups are called Golod-Shafarevich groups.
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Chapter 3

Gupta-Sidki and Grigorchuk
groups

In the last chapter we introduce some other negative solutions to the
General Burnside Problem which are known as Gupta-Sidki and Grigorchuk
groups. The construction of these particular groups is done by using graph
theory and groups of automorphisms of p-adic rooted trees acting on the set
of vertices of the trees. These constructions show the existence of finitely
generated infinite p-groups for some fixed prime p.

In the case of the Gupta-Sidki group p is an odd prime, whereas for
Grigorchuk groups p = 2. The orders of the elements in these groups are un-
bounded, hence we cannot consider them as negative answers to the Burnside
problem where the torsion is bounded.

The main references we have followed in the first two sections of this
chapter are the notes provided by my supervisor [6, 7]. In Section 3.3 we
have also followed [10] and [16].

3.1 Groups of automorphisms of p-adic rooted trees

Let us first define p-adic rooted trees, the groups of automorphisms of
these trees and some basic notions in order to introduce Gupta-Sidki and
Grigorchuk groups. All the concepts of this section can be generalised for
any integer p ≥ 2, in fact, the particular cases p = 2 and p = 4 correspond to
Grigorchuk groups, which are introduced later in Section 3.3.

However, in order to construct the Gupta-Sidki group associated to p we
want p to be an odd prime, so from now on we assume p is an odd prime.
Let us first define some basic concepts about p-adic rooted trees.

31
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Definition 3.1. A tree T is a connected graph with no cycles and we say
that it is rooted if it has a special vertex labelled as the root, which is
denoted by ϕ.

The root serves as a point of reference for other vertices in the tree, and
we usually keep it at the top in order to list other vertices below it.

Definition 3.2. A vertex v is a descendant of u if u and v are connected and
vertex v is listed below u, so that it belongs to the next level. Equivalently,
we could say that u is an ancestor of v.

Definition 3.3. A rooted tree T is p-adic if every vertex has exactly p
descendants.

From now on, we assume T is a p-adic rooted tree.

Definition 3.4. A path is a sequence {u1, . . . , uk} of vertices of T starting
at the root such that ui+1 is a descendant of ui for i = 1, ..., k − 1.

Regarding the notation, in order to label the vertices of the p-adic tree we
use the alphabetX which is customary to take asX = Z/pZ = {0,1, . . . , p−1}.
Then, we form words in X and using string concatenation the set of all finite
words is the free monoid X∗, as we have seen in Definition 2.3. These words
represent vertices of the tree, in fact, the root is labelled as the empty word
ϕ and its p descendants form the first level which corresponds to X. Then,
each of these p vertices has p descendants and so on, hence in total there
are pn vertices on the n-th level.

We denote by Xn = {x1x2 . . . xn ∣ xi ∈ X} the set of all words of length
n, which represent vertices on the n-th level.

ϕ

0 1 2

00 01 02 10 11 12 20 21 22

← 1.Level

← 2.Level

Figure 3.1: First two levels of a 3-adic rooted tree.

Definition 3.5. An automorphism f of T is a bijection of the set of vertices
V (T ) that preserves incidence, that is, if u and v are connected, then f(u)
and f(v) also are.
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The set of all automorphisms, AutT , is a group with respect to compo-
sition.

Example 3.6. These are two examples of automorphisms of a p-adic tree:

(i) The identity map is an automorphism.

(ii) Rooted automorphisms: the automorphism fσ permutes rigidly the
main subtrees according to a permutation σ of Sp, such that fσ(ϕ) = ϕ
and fσ(xv) = σ(x)v, for all x ∈ X,v ∈ X∗. Notice that the order of fσ
is equal to the order of σ ∈ Sp.

rootϕ

0
1

2

T0 T1 T2

← 1. Level is permuted

← The 3 main subtrees
are rigidly permuted

σ σ

σ

Figure 3.2: Rooted automorphism of the 3-adic tree corresponding to
σ = (0,1,2) ∈ S3.

Proposition 3.7 (General properties of automorphisms). If f ∈ AutT ,
then:

(i) f(ϕ) = ϕ;

(ii) f(Xn) =Xn , ∀n ≥ 0 (the n-th level is fixed);

(iii) f sends a descendant of u to a descendant of f(u), so it sends paths
to paths;

(iv) If we know the image of a vertex u, then we know the images of all
vertices in the path from ϕ to u.

Proof. Observe that every vertex is connected to p+ 1 vertices (its ancestor
and its p descendants), except for ϕ and that is why f(ϕ) = ϕ.

Let us prove f(Xn) =Xn by induction on n. For the base case n = 0 we
are in (i) so we assume it is true up to n−1 and we have to prove it for n. Since
Xn is finite and f is bijective, then it suffices to prove that f(Xn) ⊆ Xn.
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Let v ∈Xn and u ∈Xn−1 be connected, so that v is a descendant of u. Since
f preserves incidence, then f(v) is either the ancestor or a descendant of
f(u) ∈ Xn−1. By induction hypothesis we know that f(Xn−2) = Xn−2 and
since f is bijective, if f(v) ∈ Xn−2, i.e., f(v) is the ancestor of f(u), then
we have that also v ∈ Xn−2 which is a contradiction. Thus, f(v) ∈ Xn is a
descendant of f(u) and we have also proved the third property.

Finally, the fourth property follows from the third one, since we are
sending paths to paths. If we know f(u), it follows that its ancestor is the
image of the ancestor of u and recursively we get the images of all vertices
in the path from ϕ to u.

Once we have defined automorphisms of T and their properties, the idea
is to describe them without giving explicitly all images of all vertices. In
order to do that, we have to introduce the concepts of the label and the
portrait of an automorphism.

Let u ∈ X∗ be an arbitrary vertex and its descendants are of the form
ux where x ∈X = {0,1, . . . , p − 1} and let also f ∈ AutT . Then, there exists
a permutation α ∈ Sp such that u0 is mapped to f(u)α(0), u1 is mapped to
f(u)α(1) and so on.

Definition 3.8. We call such α the label of f at the vertex u, and we denote
it by α = f(u). The collection of the labels of f at all vertices is called the
portrait of f .

The main formula to use labels is f(ux) = f(u)f(u)(x), for all u ∈ X∗
and x ∈X. This leads to a general expression for every vertex u = x1x2⋯xn
in the tree:

f(u) = f(ϕ)(x1) f(x1)(x2) f(x1x2)(x3) . . . f(x1x2⋯xn−1)(xn). (3.1)

Conversely, any portrait on the tree defines an automorphism by using
(3.1) to define f(u) for every vertex u. Thus, there is a one-to-one corre-
spondence between automorphisms of the tree and portraits.

Definition 3.9. The stabilizer of the n-th level, which is denoted by st(n),
is the set of all automorphisms in AutT such that all vertices up to the n-th
level (included) are fixed.

In addition, st(n) is a normal subgroup of AutT of finite index, which
is proved in Problem 10.

Definition 3.10. Let f ∈ AutT and u ∈ X∗ be a vertex of T . Then,
the section of f at u, denoted by fu, is the automorphism of T defined by
f(uv) = f(u)fu(v) for all v ∈X∗.
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Example 3.11. Let us show two examples of portraits where sections can
be easily identified. On the left-hand side (see Figure 3.3) we have the
portrait of the rooted automorphism corresponding to σ = (0,1, . . . , p − 1),
whereas on the right-hand side (see Figure 3.4) the one of an automorphism
belonging to st(n), which clearly fixes the first n levels.

σ

1 1. . . . . . . . .

1 1
.
.
.
1

.
.
.
1

1
.
.
.
1

1
.
.
.
1

Figure 3.3: Portrait of the rooted
automorphism corresponding to σ =
(0,1, . . . , p − 1).

1

. . .1

1 1. . .

1 1. . .

.
.
.

1

1

.
.
.

1 ← Level n-1

any permutations

Figure 3.4: Portrait of an arbitrary
automorphism belonging to st(n).

Proposition 3.12. Let f ∈ st(n) for any n ≥ 1. Then, the following map is
a group isomorphism:

ψn ∶ st(n)Ð→ AutT × pn⋯ ×AutT
f z→ (fu)u∈Xn

Proof. Let us first prove ψn is a group homomorphism. We have to check
whether ψn(fg) = ψn(f)ψn(g), or equivalently, (fg)u = fugu. We know
from Problem 9 that (fg)u = fu gf(u) and since in this case f(u) = u for
every u ∈Xn, then we are done.

Let us now prove it is a bijection. It is obvious that kerψn = {1AutT },
since it consists of the set of automorphisms in st(n) such that the section
at every vertex on the n-th level is 1AutT . By definition of st(n), only
1AutT satisfies this property (see Figure 3.4), hence ψn is injective. Let
us prove ψn is also surjective. For each vertex u on the n-th level, we
choose an arbitrary automorphism of T as fu. We have seen that portraits
fully determine automorphisms, so we are done since for levels up to n we
have identity elements as labels in the portrait (see again Figure 3.4), and
consequently f ∈ st(n).

In order to construct the Gupta-Sidki group for each odd prime p in
Section 3.2, we need to introduce one more thing: recursively defined auto-
morphisms.
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Let b ∈ st(1) be defined by ψ1(b) = (a, a−1,1, . . . ,1, b), where a is the
rooted automorphism corresponding to σ = (0,1, . . . , p − 1). This recursive
definition makes sense and it defines an automorphism since we can draw
its portrait (see Figure 3.5).

1

a−1a 11 1

a−1a 11 a−1a 1a−1a 11 a−1a 1

1

a−1a 1 1a−1a 1 1

. . .

. . .

. . .

1
.
.
.

1

.
.
.

1

1
.
.
.

1

.
.
.

1

1
.
.
.

1

.
.
.

1

1
.
.
.

1

.
.
.

1

Figure 3.5: Portrait of b ∈ st(1), which is recursively defined by ψ1(b) =
(a, a−1,1, . . . ,1, b).

As we can observe in the picture above, the first level is fixed and hence
b ∈ st(1). In addition, the descendants of the rightmost vertex are fixed in
every level and the same pattern is repeated recursively.

3.2 Gupta-Sidki group

The principal aim of this section is to introduce the associated Gupta-
Sidki group for each odd prime p and prove that it is a finitely generated
infinite p-group, hence a negative solution to the General Burnside Problem.
The construction of the Gupta-Sidki groups was due to Narain Gupta and
Said Sidki [9] in 1983.

The Gupta-Sidki groups have some remarkable properties such as being
just-infinite and residually finite, that is, they are infinite groups with all
proper quotients finite and the intersection of all their normal subgroups of
finite index is trivial.

Let p be an odd prime and let us define the associated Gupta-Sidki
group, for which we are going to use the notions of the previous Section 3.1.

Definition 3.13. Let T be a p-adic rooted tree. The Gupta-Sidki group is
the finitely generated group G = ⟨a, b⟩ ≤ AutT , where a is a rooted automor-
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phism corresponding to σ = (0,1, . . . , p − 1) ∈ Sp and b ∈ st(1) is recursively
defined by ψ1(b) = (a, a−1,1, . . . ,1, b).

On the one hand, the order of a is equal to the order of σ ∈ Sp since it
is rooted, so o(a) = o(σ) = p. On the other hand, since ψ1 is a group ho-
momorphism we know that ψ1(bp) = (1,1, . . . , bp) and looking to its portrait
this defines the identity map. Thus, o(b) divides p, but since b is not the
identity map and p is a prime, then o(b) = p.

Let us now introduce some basic concepts we will need for the next
proposition.

Definition 3.14. Let G be a group and let H and K be two subgroups of
G. Let also NG(H) = {x ∈ G ∣Hx =H} be the normalizer of H in G. Then,
we say that K normalizes H if K ≤ NG(H).

In particular, H is a normal subgroup of G if and only if G normalizes
H, that is, NG(H) = G. This is trivial since by definition H ⊴ G if Hg = H
for all g ∈ G, which is equivalent to saying that g ∈ NG(H).

Definition 3.15. Let G = ⟨X⟩ be a group and H ≤ G. We define the normal
closure of H as the smallest normal subgroup of G containing H, which we
denote by HG.

It is easy to show that HG = ⟨hg ∣ h ∈ H,g ∈ G⟩, which we are going to
leave as a problem (see Problem 13).

Let us now fix some notation. We will denote ba
i = bi for every i ∈ Z.

Since a has order p, if i ≡ j (mod p), then bi = bj .

Proposition 3.16. Let stG(1) = G ∩ st(1) ⊴ G. Then, G = ⟨a⟩ ⋉ stG(1)
where stG(1) = ⟨b⟩G = ⟨b0, b1, . . . , bp−1⟩.

Proof. First of all, let us prove that stG(1) = ⟨b⟩G. Since b ∈ stG(1), then
it is obvious that ⟨b⟩G ≤ stG(1) ⊴ G, so it suffices to prove that the indices
of ⟨b⟩G and stG(1) in G are equal. We know that G = ⟨a, b⟩ and b ∈ stG(1),
hence G/ stG(1) = ⟨a, b⟩ = ⟨a⟩ and ∣G ∶ stG(1)∣ = o(a) divides o(a) = p. Thus,
the index is either 1 or p, but since stG(1) ≠ G we get ∣G ∶ stG(1)∣ = p.
Similarly, we get that ∣G ∶ ⟨b⟩G∣ = p and equality holds.

Secondly, we need to check that ⟨b⟩G = ⟨b0, b1, . . . , bp−1⟩. We know that
⟨b⟩G ⊇ ⟨b0, b1, . . . , bp−1⟩ so let us prove the other inclusion. It suffices to
check that N = ⟨bi ∣ i ∈ Z⟩ = ⟨b0, b1, . . . , bp−1⟩ is a normal subgroup of G,
which is equivalent to proving that G = ⟨a, b⟩ = NG(N). This is satisfied if
a, b ∈ NG(N). On the one hand, b ∈ N ⊆ NG(N) and on the other hand, we

have that bai = (ba
i)a = bai+1 = bi+1 ∈ N , hence a ∈ NG(N).
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Finally, we need to prove that G = ⟨a⟩ ⋉ stG(1), that is, G can be de-
composed as the internal semidirect product of ⟨a⟩ and stG(1). These three
conditions must be satisfied:

(i) ⟨a⟩ ≤ G and stG(1) ⊴ G;

(ii) G = ⟨a⟩ ⋅ stG(1);

(iii) ⟨a⟩ ∩ stG(1) = {1}.

We already know that (i) is satisfied. The second condition is also ful-
filled since ⟨b⟩ ≤ stG(1) ⊴ G, so that G = ⟨a, b⟩ = ⟨a, stG(1)⟩ = ⟨a⟩ ⋅ stG(1).
Finally, the third condition also holds since o(a) = p and a ∉ stG(1).

The main goal of the last proposition is to prove that any g ∈ G can be
written as g = ai bj1 bj2 ⋯ bjr , with i, j1, ..., jr ∈ {0,1, ..., p − 1}. Let us call
length of g to the smallest r for which such an expression exists and let us
denote it by l(g). Since G = ⟨a, b⟩, then g can be written as product of these
generators (we do not need inverses since they have finite order), so in order
to get the previous expression we move all a to the left hand side. Whenever
we move ai to the left through b we get bai = aibai = aibi. Therefore, for any
g = ai1b⋯aidbaid+1 ∈ G where all ik lie in {0, ..., p − 1}, the length of g is at
most d.

Theorem 3.17. The Gupta-Sidki group G = ⟨a, b⟩ is an infinite p-group.

Proof. We are going to split the proof in two parts. Firstly, we are going to
prove that G is infinite and in the second part that G is indeed a p-group.

Let ψ1∶ st(1) Ð→ AutT × p⋯ × AutT , where ψ1(b) = (a, a−1,1, . . . ,1, b)
and let ψ be its restriction to stG(1). Then, it suffices to give the images
of the generators of stG(1) in order to define ψ completely, which are given
by (ba)x = bσ−1(x) as we have proved in Problem 9. Observe that all the
components of the images, which are p-tuples, are in G for each generator.
Then, this holds true for every g ∈ stG(1).

ψ ∶ stG(1)Ð→ G ×G × p⋯×G
b0 z→ (a, a−1,1, . . . ,1, b)
b1 z→ (b, a, a−1,1, . . . ,1)
⋮

bp−1 z→ (a−1,1, . . . ,1, b, a)

Let π1 ∶ G ×
p⋯ ×G Ð→ G be the projection on the first component and

consider the composition π1 ○ ψ. Our claim is that this composition is a
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surjective map. It suffices to prove that a and b have preimages, which is
trivial since (π1 ○ ψ)(b0) = a and (π1 ○ ψ)(b1) = b. Thus, G must be infinite
since ∣G ∶ stG(1)∣ = p and π1 ○ψ ∶ stG(1)Ð→ G is surjective. Otherwise, both
groups would be finite and ∣ stG(1)∣ ≥ ∣G∣, which is a contradiction.

In the second part of the proof we are going to show that G is a p-group.
Let us prove that o(g) is a power of p by induction on l(g), the length of g.
For the base case l(g) = 0, we have that g = ai so o(g) is either 1 or p. Now,
we assume it is true up to l(g) < r and we have to prove it for l(g) = r. We
consider two different cases for g ∈ G of length r.

The first case is that g ∈ stG(1). Then, g can be represented as a word
in b0, ..., bp−1, that is, g = w(b0, ..., bp−1) and ψ(g) = (w(a, b,1, ...,1, a−1), ...).
For each of these components, the length is at most the number of b’s that
appear in the word representing it. If the length of the first component is
less than r, by induction hypothesis it has p-power order. Otherwise, all the
bi arising in the word that represents g are equal to b1, since (π1 ○ψ)(b1) = b.
In that case g = br1 and since o(b1) = p, then o(g) is either 1 or p. We use
the same argument for the rest of the components.

The order of ψ(g) is the least common multiple of the orders of all its
components, in this case the maximum among them. Thus, the order of
ψ(g) = ψ1(g) is a p-power. Moreover, since ψ1 is a group isomorphism, then
o(g) = o(ψ1(g)) and we are done.

The second case is that g ∉ stG(1). Let g = aibj1bj2⋯bjr , such that
i, j1, ..., jr ∈ {0,1, ..., p − 1} and i ≠ 0. Since stG(1) ⊴ G and ∣G ∶ stG(1)∣ = p,
then gp ∈ stG(1). Let us compute gp:

gp = (aibj1bj2⋯bjr)
p⋯(aibj1bj2⋯bjr) = bj1+i(p−1)⋯bjr+i(p−1)⋯bj1⋯bjr

where for each jk have that {jk, jk + i, jk +2i, ..., jk + i(p−1)} = {0,1, ..., p−1}
in Z/pZ. This holds because multiplication by i /≡ 0 (mod p) and ad-
dition of jk are indeed bijections in Z/pZ. Therefore, we deduce that
{bjk , bjk+i, bjk+2i, ..., bjk+i(p−1)} = {b0, b1, ..., bp−1} for every k ∈ {1,2, ..., r}, and
hence gp is a product of b0, ..., bp−1 in some order, where each bi appears ex-
actly r times, once per each jk. Thus, every component of ψ1(gp) = ψ(gp)
is a product of r times a, r times a−1 and r times b, in some order. This
implies that each of these components can be written in the form bi1 bi2 ⋯ bir
so that they belong to stG(1), with length at most r. By the first case, all
components have order a power of p, hence o(gp) is a power of p and so is
o(g).

More generally, one can consider G = ⟨a, b⟩ where a is a rooted automor-
phism which corresponds to σ = (0,1, . . . , p− 1) as before and b ∈ st(1) is re-
cursively defined by ψ1(b) = (ae1 , ae2 , . . . , aep−1 , b) with e1, e2, ..., ep−1 ∈ Z/pZ,
not all zero. Previous proofs for the Gupta-Sidki group can be adapted in
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order to show G is always infinite, and that G is periodic if and only if
e1+e2+⋯+ep−1 = 0 in Z/pZ. These are called GGS-groups, i.e., Grigorchuk-
Gupta-Sidki groups. Observe that for p = 2, the condition e1 = 0 cannot
happen, so we do not obtain a periodic group in this case.

3.3 Grigorchuk groups

In the last section we introduce Grigorchuk groups, in particular the first
Grigorchuk group (also known simply as Grigorchuk group), which was first
constructed in a 1980 paper [8] by the mathematician Rostislav Grigorchuk
providing another counterexample to the General Burnside Problem. In
1984 he proved that this group has intermediate growth, that is, faster than
polynomial but slower than exponential. In fact, this was the first finitely
generated group proven to show such growth, answering the open problem
posed by John Milnor in 1968 of whether such a group existed.

In order to find a finitely generated periodic infinite group, the first idea
can be to think whether the same construction as for the Gupta-Sidki group
is possible for p = 2. However, if G = ⟨a, b⟩ ≤ AutT such that o(a) = o(b) = 2,
we obtain a dihedral group of order 2n where n = o (xy) is possibly ∞, so
either it is periodic and finite or infinite but not a periodic group. Thus,
we have to think about other possibilities such as taking a third generator
of G or increasing the order of the two generators. Based on this idea we
introduce the Grigorchuk groups.

Definition 3.18. Let T be a 2-adic rooted tree. The first Grigorchuk group,
also known simply as the Grigorchuk group, is the finitely generated group
Γ = ⟨a, b, c, d⟩ ≤ AutT , where a is a rooted automorphism corresponding to
σ = (0,1) ∈ S2 and b, c, d ∈ st(1) are recursively defined in such a way that
ψ1(b) = (a, c), ψ1(c) = (a, d) and ψ1(d) = (1, b).

Definition 3.19. Let T be a 4-adic rooted tree. The second Grigorchuk
group is the finitely generated group G = ⟨a, b⟩ ≤ AutT , where a is a rooted
automorphism which corresponds to σ = (0,1,2,3) ∈ S4 and b ∈ st(1) is
recursively defined by ψ1(b) = (a,1, a, b).

We are not going focus on second Grigorchuk group, but it is indeed an
infinite 2-group generated by two elements of order 4.

Let us go deeper into the first Grigorchuk group Γ = ⟨a, b, c, d⟩, where
a, b, c and d are defined as above. These four generators are automorphisms
of order 2 since o(a) = o(σ) = 2 and in case of b, c and d it suffices to
look at portraits (see Figure 3.7 for b2). In fact, ψ1(b2) = (a2, c2) = (1, c2),
ψ1(c2) = (1, d2) and ψ1(d2) = (1, b2), hence b2 = c2 = d2 = 1.
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b

a c

a d

b1

Figure 3.6: Portrait of b ∈ st(1) re-
cursively defined as ψ1(b) = (a, c).

b2

1 c2

1 d2

b21

Figure 3.7: Portrait of b2 = 1.

Portraits are very useful while working with recursively defined automor-
phisms since they provide us a lot information and they completely deter-
mine automorphisms. For instance, we can use them to check that b, c and
d commute with each other and bc = d = cb, hence ⟨b, c, d⟩ = {1, b, c, d = bc} is
an abelian group of order 4 isomorphic to C2 ×C2. From bc = d we deduce
that dc = b and bd = c. Since b, c and d depend from each other, any two of
them generate Γ along with a, hence Γ = ⟨a, b, c⟩ without loss of generality.

For the first Grigorchuk group we have similar results as for Gupta-
Sidki groups. The first one is the analogue of Proposition 3.16, whose proof
is given in Problem 14.

Proposition 3.20. The first Grigorchuk group Γ can be decomposed as
Γ = ⟨a⟩ ⋉ stΓ(1) where stΓ(1) = ⟨b, c⟩Γ = ⟨b, ba, c, ca⟩.

Theorem 3.21. The first Grigorchuk group Γ is an infinite 2-group.

Proof. First of all, let us prove that Γ is infinite. It suffices to see that
π1 ○ ψ ∶ stΓ(1) Ð→ Γ is surjective, where π1 is the projection on the first
component and ψ ∶ stΓ(1) Ð→ Γ × Γ is given by ψ(b) = (a, c), ψ(ba) = (c, a),
ψ(c) = (a, d) and ψ(ca) = (d, a).

In order to prove that π1○ψ is surjective, it suffices to prove that a, c and
d have preimages, since they generate Γ. This is trivial since (π1 ○ψ)(b) = a,
(π1 ○ ψ)(ba) = c and (π1 ○ ψ)(ca) = d. Thus, Γ is infinite.

In the second part of the proof we have to show that Γ is a 2-group. Let
us prove it by induction on l(g) = min{k ∈ N ∣ g = w1⋯wk, wi ∈ {a, b, c, d}}.
For l(g) = 0 it is trivial and for l(g) = 1 we know that all a, b, c and d are of
order 2. Let us recall that bc = d, dc = b and bd = c, hence every element in
Γ = ⟨a, b, c, d⟩ can be written as a product of the generators, alternating a
with either b, c or d over and over. Let us assume it is true for l(g) < k and
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we have to prove it for l(g) = k. We are going to prove it in different ways
for k odd and for k even.

Let k be odd. Then, g is either of the form g = aua = ua or g = uxv where
u, v ∈ {b, c, d}. In the first case, l(u) = k − 2 and by induction hypothesis
o(ua) = o(u) is a power of 2. In the second case, we have that l(x) = k − 2
and gu = ugu = xvu = xu′ where u′ ∈ {b, c, d}. By induction hypothesis,
o(gu) = o(g) is a power of 2.

Let k = 2l be even. Without loss of generality g = aw1aw2⋯awl, where
wi ∈ {b, c, d}. Otherwise, if g = w1aw2⋯awla we take the conjugate by a and
we are in the first case. We have to consider again two different cases.

If l = 2m is even, then g ∈ stΓ(1) since the number of a’s is even and
g = wa1w2⋯wa2m−1w2m. Thus, ψ(g) = ψ(wa1)ψ(w2)⋯ψ(w2m) = (g0, g1) where
l(g0), l(g1) < k. By induction hypothesis both have order a power of 2, hence
o(g) = o(ψ(g)) = lcm(o(g0), o(g1)) is also a power of 2.

If l = 2m − 1 is odd, then g ∉ stΓ(1) since the number of a’s is odd, but
g2 ∈ stΓ(1), where g2 = wa1w2⋯wa2m−1w1w

a
2⋯w2m−1. Thus:

ψ(g2) = ψ(wa1)ψ(w2)⋯ψ(wa2m−1)ψ(w1)⋯ψ(w2m−1) = (g0, g1).

In total there are k = 2(2m − 1) factors, which are either 1 or one of the
generators, so that g0 and g1 have length at most k. Suppose that wj = d
for some j, then ψ(d) = (1, b) and ψ(da) = (b,1), which implies that in both
elements g0 and g1 one of the k factors is the identity element and hence g0
and g1 have length less than k. Thus, the proof is completed by induction
hypothesis since o(g) = 2 ⋅ o(g2) = 2 ⋅ o(ψ(g2)) = 2 ⋅ lcm(o(g0), o(g1)) is also a
power of 2.

If wj ≠ d for all j, then all wj are either b or c. Looking at ψ(b), ψ(ba),
ψ(c) and ψ(ca) we deduce that all the factors of g0 and g1 alternate between
a and either c or d, depending on whether wj is equal to b or c, respectively.
Thus, g0 and g1 have length k and we cannot apply induction, but let us
prove that their orders are a power of 2 and hence o(g) also is. Suppose
that wj = c for some j. Then, d is one of the factors of g0 and g1 so we are
in the previous case for some factor being equal to d, hence we are done. In
the worst case, that is, if wj = b for all j, then g0 and g1 are products of
alternating factors a and c, in fact, g1 = ga0 . We are in the previous case for
some factor being equal to c, and hence the proof is completed.



Appendix A

Solved problems

A.1 Problems of Chapter 1

Problem 1. Prove that every finite p-group is nilpotent, given a prime
number p.

Solution. Let G be a p-group, that is, the order of G is pn for some n ≥ 0.
Then, let us prove by induction on n that G is nilpotent.

For the base case n = 0, G = {1} is trivially nilpotent. Let us now assume
it is true up to n − 1 and we have to prove it for n. We are going to split
the proof in two parts. Firstly, let us show that if G ≠ {1}, then Z(G) ≠ {1}
and secondly, we are going to prove that G is indeed nilpotent.

Let n ≥ 1, hence G ≠ {1} is a finite non-trivial p-group. Let Z(G) be
the center of G and let CG(x) = {g ∈ G ∣ xg = x} be the centralizer of x in
G. Let also C1, ..,Cr be all the conjugacy classes of G of cardinality greater
than 1 and let x1, ..., xr be their representatives, respectively. Then, the
class equation of G is:

∣G∣ = ∣Z(G)∣ +
r

∑
i=1
∣G ∶ CG(xi)∣

where ∣G ∶ CG(xi)∣ = ∣Ci∣ is a power of p greater than 1, since {1} ≠ Ci ⊆ G
for all i = 1, ..., r. Since ∣G∣ is a power of p and the sum of ∣Ci∣ is a multiple
of p, the same happens with ∣Z(G)∣. In particular, ∣Z(G)∣ > 1.

Now, let us prove that G is nilpotent. Since {1} ≠ Z(G) ⊴ G, then
G/Z(G) is a p-group of order pr where r < n, hence by induction hypothesis
it is nilpotent and let c− 1 be its nilpotency class. Then, γc(G/Z(G)) = {1}

43
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and similarly as we have done in the proof of Theorem 1.8 we get that
γc(G) ≤ Z(G). Then, γc+1(G) = [γc(G),G] = {1} so that G is a nilpotent
group, with nilpotency class c.

Problem 2. Prove that any finite dihedral group D2n is soluble for all n ≥ 1,
whereas it is nilpotent if and only if n is a power of 2.

Solution. Firstly, let us prove that a finite dihedral group D2n is soluble
for all n ≥ 1. We have seen in Section 1.3 that D2n ≅ DihA, which can be
constructed as an external semidirect product of cyclic groups H = ⟨y⟩ ≅ C2

and A = ⟨x⟩ ≅ Cn. In this case, D2n is an internal semidirect product of
cyclic subgroups ⟨y⟩ and ⟨x⟩, where y is a reflection of order 2 and x is a
rotation of order n. Its presentation is D2n = ⟨x, y ∣ xn = y2 = 1, xy = x−1⟩.

Let us take ⟨x⟩ ⊴ D2n, so that the quotient D2n/⟨x⟩ = ⟨y⟩ is cyclic and
hence abelian, just like ⟨x⟩. Therefore, D2n is soluble taking the series of
subgroups {1} ⊴ ⟨x⟩ ⊴D2n.

Secondly, we have to prove that D2n is nilpotent if and only if n is a
power of 2. If n is a power of 2, then D2n is a 2-group and we know from
Problem 1 that it is nilpotent. On the other hand, let us prove that if n is
not a power of 2, then D2n is not nilpotent.

Let n = 2km for some k ≥ 0 and an odd m. Then, let us take h = x2k and
let H = ⟨h⟩. We know from the presentation of D2n that xy = x−1, hence
hy = h−1 and it is obvious that hx = h. Thus, hg is equal to h or h−1 for all
g ∈ D2n, which implies that [h, g] = h−1hg is either 1 or h−2 for all g ∈ D2n.
Therefore, [H,D2n] = ⟨h2⟩ ≤H. Moreover, since x is of order n = 2km, then
h has order m and H is a subgroup of order m. Observe that h2 has also
order m since gcd(m,2) = 1, hence H = ⟨h2⟩ and [H,D2n] =H. Recursively,
we get that [H,D2n, i. . .,D2n] =H for all i ≥ 1.

If D2n is a nilpotent group with nilpotency class c, then we get that
[H,D2n, c. . .,D2n] ≤ γc+1(D2n) = {1}, but we have just seen that it is H,
hence D2n cannot be nilpotent.

Problem 3. Let G be a finitely generated group and let H be a subgroup
of G of finite index. Prove that H is also finitely generated.

Solution. Let X be a finite generating system of G so that G = ⟨X⟩ and we
consider Y =X∪X−1 and T a left transversal of H in G, i.e., every left coset
of H contains exactly one element of T . Thus, ∣T ∣ = ∣G ∶ H ∣ < ∞. Without
loss of generality 1 ∈ T .

Firstly, we prove that for every y ∈ Y , t ∈ T there exist elements t′ ∈ T
and hy,t ∈ H such that y ⋅ t = t′ ⋅ hy,t. Since left cosets of the subgroup H
form a partition of G, then y ⋅ t ∈ G lies in exactly one left coset and since
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T is a left transversal that coset is of the form t′H for some t′ ∈ T . Then,
y ⋅ t ∈ t′H or equivalently y ⋅ t = t′ ⋅ hy,t for some hy,t ∈H.

Secondly, we prove {hy,t ∣ y ∈ Y, t ∈ T} is a generating set of H. Since Y
is a generating set of G and Y = Y −1, we can write any h ∈ H as h = y1⋯yr
where yi ∈ Y for i = 1, ..., r. Let us now take yr and since 1 ∈ T we could
apply the previous property such that yr = yr ⋅ 1 = tr ⋅ hyr,1 for some tr ∈ T
and hyr,1 ∈ H. Similarly, we get that yr−1 ⋅ tr = tr−1 ⋅ hyr−1,tr and recursively
we continue with the procedure until we get y1 ⋅ t2 = t1 ⋅ hy1,t2 .

Finally, we get that for an arbitrary element h ∈ H, h = t1 ⋅ hy1,t2⋯hyr,1,
where t1 ∈ T and hy1,t2 , ..., hyr,1 ∈ H. Since H is a subgroup of G, then
t1 ∈ H. In addition, since H itself is a left coset containing 1 ∈ T , then
T ∩H = {1} and t1 = 1. Thus, {hy,t ∣ y ∈ Y, t ∈ T} is a generating set of H
and ∣{hy,t ∣ y ∈ Y, t ∈ T}∣ ≤ ∣Y ∣ ⋅ ∣T ∣ <∞, i.e., H is finitely generated.

Problem 4. Let K be a field an let G ⊆ GL(n,K) be a periodic group
of finite exponent N . Prove that if CharK = p divides N , then G is not
necessarily finite.

Solution. It suffices to find a counterexample. Let us take the unitriangular
matrix group for n = 2, UT (2,K) ≤ GL(2,K):

UT (2,K) =
⎧⎪⎪⎨⎪⎪⎩
(1 λ
0 1
)
RRRRRRRRRRR
λ ∈K

⎫⎪⎪⎬⎪⎪⎭
, where(1 λ

0 1
) ⋅ (1 µ

0 1
) = (1 λ + µ

0 1
) .

Looking at how multiplication works in UT (2,K), it is easy to check
that UT (2,K) ≅ (K,+). Suppose K is infinite with CharK = p, K = Fp(X)
for instance. Then, p ⋅a = 0 for all a ∈K. In fact, since p is prime every non-
zero element a ∈K has order p and exp (K,+) = p. Due to the isomorphism
between (K,+) and UT (2,K) we deduce that exp (UT (2,K)) = p, hence
UT (2,K) ≤ GL(2,K) is a p-torsion group, but it is an infinite group.

Problem 5. Let G = ⟨X⟩ be a group. Prove that G′ = ⟨[x, y] ∣ x, y ∈X⟩G.

Solution. Let N = ⟨[x, y] ∣ x, y ∈ X⟩G ⊴ G and let us prove that N = G′.
Since [x, y] ∈ G′ and G′ ⊴ G, it is trivial that N ⊆ G′ so we have to prove the
other inclusion. Let us take G/N and generators x, y ∈ G/N , with x, y ∈ X.
Since [x, y] ∈ N , then [x, y] = 1, hence all generators commute with each
other and G/N is abelian. Thus, by Theorem 1.7 we know that G′ ≤ N and
the proof is completed.
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A.2 Problems of Chapter 2

Problem 6. Prove that a finitely generated nil-algebra A is nilpotent if and
only if A is finite-dimensional.

Solution. On the one hand, let A be nilpotent. Then, we have the following
descending chain of ideals A ⊇ A2 ⊇ A3 ⊇ ⋯ ⊇ An = {0}, for some n ∈ N. If
a1, ..., ad generate A as an algebra, then the monomials of degree i in the
generators a1, ..., ad generate A

i/Ai+1, hence the dimension is finite for every
i = 1, ..., n − 1. The sum of all these dimensions is indeed the dimension of
A, hence we are done.

On the other hand, if A is finite-dimensional, it suffices to see that it is
impossible to get Ai = Ai+1 ≠ {0}, hence Ai = Aj for all j ≥ i. In particular,
Ai = A2i = Ai ⋅ Ai ≠ {0}. Then, take a left ideal L ≠ {0} of Ai, which is
minimal with the property AiL = L. Its existence is obvious since Ai is a
left ideal satisfying this property. Take now l ∈ L such that Ail ≠ {0}. Then,
we get that Ai(Ail) = Ail ⊆ L, and by minimality of L equality holds, hence
L = Ail.

Therefore, l = xl for some x ∈ Ai and hence (1 − x)l = 0. Observe that
(1−x) is invertible since x is nilpotent and (1−x)(1+x+⋯+xn−1) = 1−xn = 1
for some n ∈ N. This implies l = 0, which is a contradiction since Ail ≠ {0}
and we are done.

Problem 7. Prove that every finitely generated infinite p-group G can be
used to construct a negative solution to the Kurosh-Levitzki problem over
any field K of characteristic p.

Solution. Let G = ⟨g1, ..., gd⟩. We are going to prove that the negative solu-
tion to the Kurosh-Levitzki problem is in particular the augmentation ideal
of the group algebra K[G], denoted by ∆, which is the set of elements

∑
g∈G

λgg ∈K[G] such that ∑
g∈G

λg = 0.

Then, since K[G] = K⊕∆ and dimkK[G] = ∣G∣ = ∞ we get that
dimK∆ = ∞ and by the previous problem it is not nilpotent. Observe
that ∆ = ⟨g − 1 ∣ g ∈ G⟩ as a vector space over K. This can be easily proved
taking into account the definition of the augmentation ideal and the general
expression for elements in ∆ ⊆K[G], which is

∑
g∈G

λgg = ∑
g∈G

λg(g − 1) + ∑
g∈G

λg = ∑
g∈G

λg(g − 1).

Since G = ⟨g1, ..., gd⟩ and xy − 1 = (x − 1)(y − 1) + (x − 1) + (y − 1) for
all x, y ∈ G, we deduce that ∆ = K[g1 − 1, ..., gd − 1], that is, ∆ is a finitely
generated K-algebra.
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It remains to prove that ∆ is a nil algebra. An arbitrary element x ∈ ∆
is of the form ∑

g∈S
λg(g − 1) where S is a finite subset of G.

We know that K has characteristic p and G is a p-group, so let us fix
pm =max{o(g) ∣ g ∈ S}. Then, we get the following:

xp
m

= ∑
g∈S

λp
m

g (gp
m

− 1) = 0

and hence every element in ∆ is nilpotent. Thus, the augmentation ideal ∆
is a negative solution to the Kurosh-Levitzki Problem.

Problem 8. Compute explicitly the inverse series of Corollary 2.18 and
2.19 in order to show that all coefficients are non-negative.

Solution. We will use the power series representations (2.1) from Chapter 2.
Let us start with (1−dt+∑∞n=2 stn)−1 = (1− t)(1− d+12 t)−2, where s = (d+12 )

2.

(1 − dt +
∞
∑
n=2

stn)
−1

= (1 − t)(1 − d + 1
2

t)
−2

= (1 − t)
∞
∑
n=0

n(d + 1
2
)
n−1

tn−1

=
∞
∑
n=0
(n + 1)(d + 1

2
)
n

tn −
∞
∑
n=0

n(d + 1
2
)
n−1

tn

=
∞
∑
n=0
(d + 1

2
)
n−1

[(n + 1)(d + 1
2
) − n]tn

=
∞
∑
n=0
(d + 1

2
)
n−1

[(d + 1) + n(d − 1)
2

]tn.

Secondly, let us compute (1 − dt +∑∞n=2 sntn)−1 where sn = ϵ2(d − 2ϵ)n−2
for all n ≥ 2.

(1 − dt +
∞
∑
n=2

snt
n)
−1

= 1 − (d − 2ϵ)t
(1 − (d − ϵ)t)2

= (1 − (d − 2ϵ)t)
∞
∑
n=0

n(d − ϵ)n−1tn−1

=
∞
∑
n=0
(n + 1)(d − ϵ)ntn − (d − 2ϵ)

∞
∑
n=0

n(d − ϵ)n−1tn

=
∞
∑
n=0
(d − ϵ)n−1[(n + 1)(d − ϵ) − n(d − 2ϵ)]tn

=
∞
∑
n=0
(d − ϵ)n−1[d + (n − 1)ϵ]tn.
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A.3 Problems of Chapter 3

Problem 9. Let f, g ∈ AutT and h ∈ st(1). Let also u ∈ X∗, x ∈ X and
let a be a rooted automorphism corresponding to the permutation σ. Prove
the following properties of sections:

(i) (fg)u = fu gf(u);

(ii) (ha)x = hσ−1(x).

Solution. Let v ∈ X∗ and let us start with the first property. On the one
hand, we have that (fg)(uv) = (fg)(u)(fg)u(v). On the other hand, we
get the following expression which implies that (fg)u = fu gf(u):

(fg)(uv) = g(f(uv)) = g(f(u)fu(v)) = g(f(u))gf(u)(fu(v))
= (fg)(u)(fugf(u))(v).

Let us now prove the second property. We need to realise that since h ∈ st(1),
then ha ∈ st(1). On the one hand, (ha)(xv) = (ha)(x)(ha)x(v) = x(ha)x(v).
On the other hand, we get the following expression:

(ha)(xv) = a(h(a−1(xv))) = a(h(σ−1(x)v))
= a(σ−1(x)hσ−1(x)(v)) = xhσ−1(x)(v).

This completes the proof, since looking at both expressions we deduce that
(ha)x = hσ−1(x).

Problem 10. Prove that st(n) is a normal subgroup of AutT of finite index
for n ≥ 0 and hence AutT is residually finite.

Solution. Let Tn be a finite truncated tree, which has only n levels. Let us
now consider the natural restriction homomorphism:

ϕ ∶ AutT Ð→ AutTn
f z→ f ∣Tn

which is clearly surjective since in order to get f1 ∈ AutTn, it suffices to
choose an arbitrary automorphism in AutT with the same labels at all the
vertices on the first n − 1 levels. Moreover, the kernel of ϕ is the set of
all automorphisms in AutT such that the label at all the vertices on the
first n − 1 levels is the identity. This is exactly st(n), as we can observe in
Figure 3.4, hence by the first isomorphism theorem kerϕ = st(n) ⊴ AutT
and AutT / st(n) ≅ AutTn, which is finite. Thus, ∣AutT ∶ st(n)∣ < ∞. In
addition, since the intersection of all st(n) for n ≥ 0 is trivial, then AutT is
residually finite.
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Problem 11. Use Zelmanov’s positive solution to the Restricted Burnside
Problem to show that the Burnside Problem has positive solution in the
class of residually finite groups: if G is a finitely generated group of finite
exponent and G is residually finite, then G is finite. As a consequence, if T
is a p-adic rooted tree, then AutT does not contain any subgroups providing
a negative solution to the Burnside Problem.

Solution. Assume that G can be generated with m elements and also that
exp(G) = n < ∞. By way of contradiction, suppose G is infinite. In par-
ticular, if K is the bound provided by Zelmanov’s result for m generators
and exponent n, then there exist K + 1 different elements g1, ..., gK+1 ∈ G.
Now, since G is residually finite, there exists N ⊴ G of finite index not
containing all products gig

−1
j ≠ 1, with 1 ≤ i ≠ j ≤ K + 1. Then, G/N is

finite and ∣G/N ∣ ≥ K + 1. Moreover, G/N is also finitely generated with at
most m generators and of finite exponent a divisor of n, so by Zelmanov’s
result the bound for the order of G/N is at most K and we have reached a
contradicition.

As a consequence, if T is a p-adic rooted tree, then AutT does not con-
tain any subgroup G providing a negative solution to the Burnside Problem,
since G is residually finite. This can be proved similarly as for AutT , with
stG(n) ⊴ G.

Problem 12. Let G be the Gupta-Sidki p-group, for p an odd prime. By the
previous problem, we know that exp(G) =∞, that is, that G has elements of
arbitrarily high order. In this problem, we prove this result without relying
on Zelmanov’s positive solution to the Restricted Burnside Problem. For
simplicity, we assume that p ≥ 5.

(i) Prove that G′ × {1} ×⋯ × {1} ⊆ ψ(G′).

(ii) Prove that the projection of ψ(G′) on the first component, that is
π1 ○ ψ(G′) is the whole G.

(iii) Prove by induction on k ≥ 1 that G has an element agk of order greater
or equal to pk, with gk ∈ G′.

Solution. Let us start proving (i), for which we need to recall that ψ is
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defined in the following way:

ψ ∶ stG(1)Ð→ G ×G × p⋯×G
b0 z→ (a, a−1,1, . . . ,1, b)
b1 z→ (b, a, a−1,1, . . . ,1)
⋮

bp−1 z→ (a−1,1, . . . ,1, b, a)

Let h = [a, b]. We have seen in Problem 5 that G′ = ⟨h⟩G = ⟨hg ∣ g ∈ G⟩.
Our goal is to find some x ∈ G′ such that ψ(x) = (h,1, ...,1). Looking at the
images of every bi for p ≥ 5, we know that ψ([b0, b1]) = ψ([b, ba]) = (h,1, ...,1)
where [b, ba] ∈ G′. We also know from the proof of Theorem 3.17 that
π1 ○ ψ ∶ stG(1) Ð→ G is surjective, that is, for every g ∈ G there exists
some y ∈ stG(1) such that ψ(y) = (g,∗, ...,∗). Thus, since ψ is a group
homomorphism we get that ψ([b, ba]y) = ψ([b, ba])ψ(y) = (hg,1, ...,1) where
[b, ba]y ∈ G′, which implies that G′ × {1} ×⋯ × {1} ⊆ ψ(G′).

Let us now prove (ii), that is, π1 ○ψ(G′) = G. On the one hand, we know
that ψ([b, a]) = ψ(b−1ba) = ψ(b−1)ψ(ba) = (a−1b, a2, a−1,1, ..., b−1). On the
other hand, if we take the conjugates by powers of a and using property (ii)
from Problem 9, we get that ψ([b, a]a) = (b−1, a−1b, a2, a−1,1, ...,1) and so
on. In fact, if we conjugate [b, a] by ai the image is obtained by shifting the
components of ψ([b, a]) to the right i times. Therefore, π1(ψ([b, a])) = a−1b
and π1(ψ([b, a]a)) = b−1, where [b, a], [b, a]a ∈ G′. Since G = ⟨a−1b, b−1⟩, it
follows that π1 ○ ψ(G′) = G.

Finally, we are going to prove (iii) by induction on k ≥ 1. For the base
case k = 1 it is trivial if we take gk = 1. Then, we assume it is true up to k
and let us prove it for k + 1. By (i) we know that there exists some hk ∈ G′
such that ψ(hk) = (gk,1, ...,1), and by (ii) we also know that there exists
some x ∈ G′ such that ψ(x) = (a,∗, ...,∗). Thus, ψ(xhk) = (agk,∗, ...,∗) and
o(xhk) ≥ o(agk) ≥ pk. By (i) again, there exists some gk+1 ∈ G′ such that

ψ(gk+1) = (xhk,1, ...,1). Then, we know that (agk+1)p = ga
p−1

k+1 g
ap−2

k+1 ⋯g
a
k+1gk+1

and if we apply ψ using property (ii) from Problem 9, we get the following:

ψ((agk+1)p) = ψ(ga
p−1

k+1 )⋯ψ(gk+1) = (1, ...,1, xhk)⋯(xhk,1, ...,1)
= (xhk, xhk, ..., xhk).

Hence, o(agk+1) = p ⋅ o(xhk) ≥ pk+1, as desired.

Problem 13. Prove that HG = ⟨hg ∣ h ∈H,g ∈ G⟩.

Solution. We know that the normal closure of H is the smallest normal
subgroup of G containing H, let us call it K. Each h ∈H lies in K and since
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K is normal, hg ∈ K for all g ∈ G and thus ⟨hg ∣ h ∈ H,g ∈ G⟩ ≤ K. On the
other hand, it suffices to prove that ⟨hg ∣ h ∈H,g ∈ G⟩ is a normal subgroup
of G, which completes the proof. It is obvious that the set {hg ∣ h ∈H,g ∈ G}
is stable under all conjugations of G and hence the group it generates also
is. Therefore, K = ⟨hg ∣ h ∈H,g ∈ G⟩.

Problem 14. Prove that the first Grigorchuk group can be decomposed as
Γ = ⟨a⟩ ⋉ stΓ(1) where stΓ(1) = ⟨b, c⟩Γ = ⟨b, ba, c, ca⟩.

Solution. First of all, let us prove that stΓ(1) = ⟨b, c⟩Γ. Since b, c ∈ stΓ(1) we
know that the normal closure of ⟨b, c⟩, denoted by ⟨b, c⟩Γ, must be a subgroup
of stΓ(1) ⊴ Γ. Then, it suffices to prove that the indexes of ⟨b, c⟩Γ and stΓ(1)
in Γ are equal. We know that Γ = ⟨a, b, c⟩, hence Γ/ stΓ(1) = ⟨a, b, c⟩ = ⟨a⟩ and
∣Γ ∶ stΓ(1)∣ = o(a) divides o(a) = 2, but since a ∉ st(1) we get ∣Γ ∶ stΓ(1)∣ = 2.
Similarly, we also get that ∣Γ ∶ ⟨b, c⟩Γ∣ = 2, hence stΓ(1) = ⟨b, c⟩Γ.

Secondly, we need to check that ⟨b, c⟩Γ = ⟨b, ba, c, ca⟩. It is obvious that
⟨b, c⟩Γ ⊇ ⟨b, ba, c, ca⟩ so we have to prove the other inclusion. Since ⟨b, c⟩Γ is
the normal closure of ⟨b, c⟩ ≤ Γ, it suffices to check that N = ⟨b, ba, c, ca⟩ ⊴ Γ,
which is equivalent to proving that Γ = ⟨a, b, c⟩ = NΓ(N). This is satisfied
if a, b, c ∈ NΓ(N), which is true since b, c ∈ N ⊆ NΓ(N) and b, c, ba, ca ∈ N
where b = (ba)a and c = (ca)a, hence a ∈ NΓ(N).

Finally, we need to prove that Γ = ⟨a⟩ ⋉ stΓ(1), that is, Γ can be de-
composed as the internal semidirect product of ⟨a⟩ and stΓ(1). These three
conditions must be satisfied:

(i) ⟨a⟩ ≤ Γ and stΓ(1) ⊴ Γ;

(ii) Γ = ⟨a⟩ ⋅ stΓ(1);

(iii) ⟨a⟩ ∩ stΓ(1) = {1}.

We already know that (i) is satisfied. The second condition is also fulfilled
since ⟨b, c⟩ ≤ stΓ(1) ⊴ Γ, and hence Γ = ⟨a, b, c⟩ = ⟨a, stΓ(1)⟩ = ⟨a⟩ ⋅ stΓ(1).
Finally, the third condition also holds since o(a) = 2 and a ∉ stΓ(1).
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