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Valdés for their help and the time we spent together.

Thanks should also go to the Departament of Quantitative Methods and to the
directors of the Doctoral Programme, Marta Escapa Garćıa and Maŕıa Paz Moral Zuazo,
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Chapter 1

Introduction

Generalized linear models (GLM) are commonly used to model the response variable
when working with count data (McCullagh and Nelder, 1989). However, count data
regression models commonly exhibit overdispersion, a phenomenon generated when the
data shows a larger variance than the one that would be expected from the specifica-
tion of the model itself (Hinde and Demétrio, 1998). This situation is also known as
extra-Poisson or extra-binomial variation when the response variable is assumed to fol-
low either a Poisson or a binomial distribution, respectively. Fitting a model without
taking into account the presence of overdispersion may result in standard errors under-
estimation, among other problems, which can lead to an inferential process that may
be incorrect (Hinde and Demétrio, 1998). One of the possible causes for overdisper-
sion is the presence of correlation among the values of the variable under study for the
different units considered in the specific data set being analysed (Hinde, 1982). This
is specially common with spatial data, where observations in locations that are closer
in space tend to show similar values, a phenomenon known as spatial autocorrelation
(Getis, 2008). Consequently, these issues must be taken into account in order to obtain
reliable inference processes for the estimated parameters in the proposed model.

Overdispersion has been extensively studied in the literature, particularly for the
case of response variables which follow a Poisson or a binomial distribution. A common
way to deal with overdispersion in these cases is to modify the mean-variance relation
for the model by scaling it with a dispersion parameter larger than one, and then use a
quasi-likelihood approach for the estimation (McCullagh and Nelder, 1989). For overdis-
persed count data following a Poisson distribution, perhaps the most popular model is
the negative binomial model, initially proposed by Margolin, Kaplan and Zeiger (1981),
who applied their proposed model to data from a mutagenicity assay for the Salmonella
bacteria. They were able to model the variability and, hence, the precision, when repli-
cating plate environments by means of the extra-Poisson variation parameter. The
normal or log-normal Poisson models, proposed by Hinde (1982), included a random
effect following a normal distribution in the linear predictor, with a variance given by
the extra parameter, so that it allowed for the possible existing overdispersion in the
model specification itself. This model has been used for the analysis of cancer death
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rates by Breslow (1984), where he proposed two estimation methods by weighted least
squares in three steps. Results indicated that there was a clear evidence of variability in
the data that the Poisson model failed to capture, an issue that was resolved with the
fitting of the normal Poisson model with the extra overdispersion parameter included in
it.

Williams (1975) proposed the beta-binomial model for the case of binomial responses.
This model assumed that the probability of success from the binomial distribution is a
random variable following a beta distribution, which includes an additional parame-
ter to model the extra-binomial variation. Williams (1982) also modified the logistic
linear model by incorporating an extra-binomial variation component and proposed a
methodology for computing the maximum likelihood estimates of the regression param-
eters based on iterated re-weighted least squares. He applied his proposal to a data set
where it was required to model the proportion of germinating seeds of two different types
and root extracts, finding similar results when comparing his model’s estimates to those
from other models previously proposed in the literature. The normal binomial model
can be obtained as an extension of this model by considering that the extra-binomial
variation component follows a normal distribution (Quintero-Sarmiento, Cepeda-Cuervo
and Núñez-Antón, 2012).

Most overdispersion models assume the existence of constant dispersion in the data
but, in a considerable number of cases, dispersion could behave differently. Therefore,
models have been developed to allow for the dispersion to vary as a function of some
explanatory variables. Hinde and Demétrio (1998) and McCullagh and Nelder (1989)
mentioned the idea of the joint modelling of the mean and dispersion parameters. Dou-
ble exponential families were introduced and applied to specific settings for the binomial
and Poisson cases by Efron (1986). These distributions allow to model the mean of
exponential family distributions, as well as to be able to capture the possible existing
overdispersion in count data by specifying a regression model for the dispersion param-
eter. Quintero-Sarmiento, Cepeda-Cuervo and Núñez-Antón (2012) proposed Bayesian
extensions of overdispersion models, such as the negative binomial and the normal Pois-
son models for count data, where they assumed regression structures both for the mean
and for the dispersion parameters, and, therefore, they were able to specify the so-called
generalized overdispersion models.

Two of the most common model specifications to account for spatial dependence
in the data are the Conditional Autoregressive (CAR) model (Besag, 1974) and the
Simultaneous Autoregressive (SAR) model (Whittle, 1954). These models incorporate
the spatial correlation by assuming a conditional covariance structure specified by means
of a spatial neighbourhood matrix. Wall (2004) examined the correlation structures
that these models imply in detail by fitting them to SAT scores from students in the
USA, which led to finding conterintuitive results given that the assumed CAR and SAR
structures for this data implied spatial correlations among some states that did not
correspond to reality or to the specific data set characteristics.

Besag (1974) introduced autoregressive models for count data, such as the auto-
binomial and auto-Poisson models, among others, by following the SAR model structure.
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These models, however, present the disadvantage that they can only account for negative
spatial autocorrelation in the data (Kaiser and Cressie, 1997). The spatial autoregressive
Poisson model was proposed by Lambert, Brown and Florax (2010), who assumed a SAR
model’s structure for the mean of the response variable, for which a two step limited
information maximum likelihood estimation method was also proposed. They analysed
a data set concerning firm births in the different states in the USA for the period 2000-
2004, and concluded that this proposed model and estimation method allowed them to
better understand how geographical determinants can affect the firm births under study.

In the context of Bayesian regression models for count data, spatial dependence is
commonly addressed by specifying a hierarchical model, including a set of random effects
in the linear predictor of a GLM, for which spatially correlated prior distributions are
usually assumed. In this way, the CAR model’s structure has been extended by the
well known Besag-York-Mollié (BYM) model (Besag, York and Mollié, 1991), where
the spatial dependence in the data is incorporated by means of a spatially correlated
prior with intrinsic CAR distribution, and an extra-variability is also included with
a set of uncorrelated random effects. This model, in particular, is widely used for
estimating relative risks in small areas in disease mapping (Lawson, 2008). A comparison
between this model and alternative models applied in this area can be found in Best,
Richardson and Thomson (2005). Another distribution also frequently found in the
literature for spatial random effects is the one proposed by Leroux, Lei and Breslow
(2000). Alternative variants of prior distributions that have been proposed can be also
consulted in Lee (2013).

More recently, a new parametrization of the BYM model has been developed with
the proposal of the so-called BYM2 model, which allows for a more comprehensible
interpretation of the parameters and, in addition, it offers some specific improvements
over the BYM model (Riebler et al., 2016). Morris et al. (2019) applied the BYM2 model
to a data set of motor vehicle crashes from 2005 to 2014, where school-age pedestrians
resulted injured in the city of New York, and explored socio-demographic factors related
to their occurrence. They concluded that the BYM2 model offered a good fit to this data
and was also able to identify areas with increased risk of pedestrian injuries in crashes,
and to establish positive relationships between this risk and the number of people who
commute to work by walking, bicycle and public transport.

In order to be able to address the issue of spatial autocorrelation in the data, Cepeda-
Cuervo, Córdoba and Núñez-Antón (2018) proposed the spatial conditional models for
overdispersed spatial count data, where they assumed that part of the overdispersion can
be explained by the spatial neighbourhood structure in the proposed models. This model
accounts for the spatial dependence in the data by incorporating a spatial term in the
linear predictor with a parameter that estimates the intensity of the spatial association.
By adopting a Bayesian framework, the authors applied these models to infant mortality
data from Colombia and to mother’s postnatal period screening test, obtaining a good fit
and being able to model the positive spatial dependence, as well as accounting for data
overdispersion. Additionally, to allow for nonconstant overdispersion, extensions of the
generalized overdispersion models in Quintero-Sarmiento, Cepeda-Cuervo and Núñez-
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Antón (2012) were also proposed by incorporating spatial neighbourhood structures
in the regressions for the mean and the variance and, thus, proposing the so-called
generalized spatial conditional overdispersion models.

Regarding spatio-temporal data, besides the possible existence of spatial autocorre-
lation, temporal dependence might also be present (Cressie and Wikle, 2011). This type
of data is quite common to be found in disease mapping (Lawson, 2008), a discipline
that aims to study the geographic distribution of diseases and forecast their behaviour
and spread. Some of the most popular models for spatio-temporal data include those
proposed by Bernardinelli et al. (1995), who included the temporal correlation in the
regression structure by means of a parametric trend. In addition, Knorr-Held (2000)
formulated non parametric models, where he considered random effects with spatial and
temporal structures, as well as interactions between them.

Congdon and Southall (2005) performed an analysis of infant mortality rates in
the north of England between the years 1921 and 1970 and their relationship with
some socio-economic factors. The authors fitted several Poisson models to these data,
including random effects with different spatial and temporal structures. These models
allowed them to identify the characteristics which aggravated the inequalities in the
infant mortality rates among the districts under study.

Carroll et al. (2016) illustrated a new approach for Bayesian spatio-temporal model
selection within the disease mapping context. The authors proposed a multivariate
space time mixture model, where they included weights that allowed them to deter-
mine if the most appropriated linear predictor was the one that included a spatial or
a temporal term, or a mixture of both. By means of a simulation study they found
that their proposed model also offered the best fit, besides being the least vulnerable
to misspecification issues, and also allowing them to accommodate a large number of
linear predictors. In addition, they illustrated its usefulness by fitting it to a data set
concerning the incidence of skin melanoma in the counties of Georgia, USA, from 1999
to 2007.

Gómez-Rubio et al. (2019) proposed a Bayesian hierarchical model for the joint
analysis of multiple diseases, controlling the correlation in the data with weights for
the shared and specific effects, which allow to identify diseases with similar spatial and
temporal patterns. They analysed causes of death by oral cavity, esophagus and stomach
cancer in Spain, by province, from 1996 to 2004. By fitting their proposed model, they
were able to identify areas with increased risk, and they also found evidence of the
existence of a strong correlation between the spatial distribution of oral and esophagus
cancer.

When fitting Bayesian models, it is not always possible to obtain analytically closed
form expressions for the posterior distribution (Gelman et al., 2013). Therefore, it
is necessary to be able to approximate this distribution by computational methods.
One of the most extended examples of these approximation methods is the Markov
chain Monte Carlo (MCMC) approach, an algorithm that generates simulated samples
from the posterior distributions of the regression parameters by the Gibbs sampling
method, a special case of the Metropolis-Hastings algorithm (Geman and Geman, 1984;
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Gamerman and Lopes, 2006; Gelman et al., 2013). An alternative to these computational
algorithms, such as the MCMC methods in the Bayesian estimation mentioned above,
is the integrated nested Laplace approximation (INLA) algorithm (Rue, Martino and
Chopin, 2009), which is based on the deterministic numerical computation of posterior
distributions approximations.

There are several software packages available for the estimation of Bayesian models,
such as, for example, OpenBUGS (Lunn et al., 2009), JAGS (Plummer, 2021) and the
CARBayes R package (Lee, 2013), using the MCMC approach and, the R-INLA R
package (Lindgren and Rue, 2015), which uses the INLA approach. Carroll et al. (2015)
studied models to account for spatial dependence for Poisson distributed count data in
disease mapping, and their performance was compared for the two software packages
OpenBUGS and R-INLA. More specifically, the authors fitted some models such as the
Poisson, normal Poisson, and BYM models, among others, to simulated count data
for which spatial correlation structures were implemented in different ways. Reported
results concluded that there were substantial differences in the two implementations,
specially for the estimation of the random effects, but they managed to find a good fit in
both cases by varying some of the prior settings. Moreover, they highlighted the much
shorter computation time that R-INLA required for the fitting of a model when compared
to OpenBUGS. In Vranckx, Neyens and Faes (2019), an extensive comparison of the
fitting of the BYM model with OpenBUGS, CARBayes, R-INLA and other available
software packages was also reported by fitting data from young people receiving diabetes
medication in Belgian municipalities for the year 2014. Although no covariates were used
in their analysis, the authors were able to identify locations with increased relative risk
by fitting the BYM model to the data set under study.

One of the main interests in this thesis lies in presenting and illustrating a variety
of applications of the generalized spatial conditional overdispersion models of Cepeda-
Cuervo, Córdoba and Núñez-Antón (2018) within different contexts. In these applica-
tions, we demonstrate their flexibility, clear and direct interpretation, as well as their
straightforward implementation in some of the available software packages for Bayesian
modelling. Furthermore, we also focus in developing novel and useful extensions for these
models, such as extensions for modelling spatio-temporal count data, and investigate the
variation in time of their spatial correlation. We also propose semiparametric extensions
that would allow us to capture non linear relationships between the response and the
explanatory variables and a geometric mean extension that uses the spatial lag of the
logarithm of the response variable.

Among the data sets analysed, we can find some within the context of public health,
such as the analysis of infant mortality rates and mother’s postnatal period screening test
in Colombia, the study of the impact of air pollution on respiratory health in Glasgow,
UK, and the analysis of low birth weight in Georgia, USA. Additionally, within an
epidemiological context, we analyse the spreading of COVID-19 in the municipalities
of Flanders, Belgium. Throughout this work, we compare the results we obtain when
fitting these models and propose extensions with the ones from some of models most
frequently applied in the spatial and spatio-temporal count data modelling literature,

11



such as the BYM (Besag, York and Mollié, 1991), BYM2 (Riebler et al., 2016) and
the Knorr-Held (2000) models. In addition, we also consider new alternative ways to
implement the fitting of the generalized spatial conditional overdispersion models, by
proposing an algorithm to fit double hierarchical generalized linear models in INLA.

In Chapter 2, we perform a review of regression models for spatial count data with
overdispersion, such as the spatial conditional overdispersion models (Cepeda-Cuervo,
Córdoba and Núñez-Antón, 2018), the BYM (Besag, York and Mollié, 1991) and BYM2
(Riebler et al., 2016) models, particularly focusing on the cases where the response
variable follows a Poisson or a binomial distribution. In order to be able to compare
their performance, we apply them to the study of infant mortality rates and to mother’s
postnatal period screening test in Colombia. We present the most relevant results and
also include a series of posterior predictive checks, maps of the predictions obtained and
marginal effects of the covariates present in the different models.

In Chapter 3, we propose semiparametric extensions of the generalized spatial con-
ditional overdispersion models of Cepeda-Cuervo, Córdoba and Núñez-Antón (2018),
where we consider that the relationship between a given variable and the conditional
mean of the response is given by a smooth function, allowing us to relax their linearity
assumptions. We illustrate these proposals by fitting them to the study of the infant
mortality rates and the mother’s postnatal period screening test in Colombia, where we
investigate the possible existence of such non linear relationships.

In Chapter 4, we propose the spatio-temporal conditional models as extensions of the
spatial conditional overdispersion models of Cepeda-Cuervo, Córdoba and Núñez-Antón
(2018). We apply these proposals for Poisson distributed responses to the respiratory
hospital admissions in Glasgow and, for the binomial case, to the Georgia low birth
weight data. In both scenarios, we compare the performance of such models with the
Knorr-Held (2000) models. In addition, we also propose the temporally varying spatial
lag coefficient models, which allow the coefficient for the spatial term to vary with time.

In Chapter 5, we present a study of the geographical spread of COVID-19 cases
in the municipalities of the Flanders region in Belgium during the period going from
September 2020 to January 2021. In order to be able to fit this data, we consider
the spatial conditional model of Cepeda-Cuervo, Córdoba and Núñez-Antón (2018) and
Morales-Otero and Núñez-Antón (2021). Furthermore, we also propose an extension of
these models based on the geometric mean of the incidence rates. We compare the use
of different weights matrices based on contiguity, distance, differences in covariates, and
on the mobility of individuals from one municipality to another. In addition, we carry
out a simulation study where we test the performance of such models when the spatial
correlation is given by the mobility matrix.

In Chapter 6 we propose an alternative to the MCMC approach for fitting generalized
overdispersion models. Moreover, this proposal can be used to fit double hierarchical
generalized linear models (DHGLM) (Lee and Nelder, 2006) in INLA. In particular,
we have developed an algorithm which combines INLA and the adaptive multiple im-
portance sampling (AMIS) to fit DHGLM. In this chapter, we illustrate the proposed
method with three simulation studies and by applying it to two real data examples cor-
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responding to the analysis of infant mortality rates in Colombia and to the study of the
effect of sleep deprivation on the reaction time on a number of subjects.
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Chapter 2

Spatial conditional overdispersion
models for Poisson and binomial
responses

2.1 Introduction

As already discussed in the introduction, when modelling spatial count data, the possible
existence of overdispersion and spatial correlation in the data under study are issues that
need to be taken into account. For this purpose, there are several approaches and models
that have been developed, such as the generalized overdispersion models proposed by
Quintero-Sarmiento, Cepeda-Cuervo and Núñez-Antón (2012), the spatial conditional
overdispersion models proposed by Cepeda-Cuervo, Córdoba and Núñez-Antón (2018)
and the Besag-York-Mollié (BYM) models in Besag, York and Mollié (1991), among
others. In this chapter, we review these regression models for spatial count data with
overdispersion, particularly focusing on the cases where the response variable follows
either a Poisson or a binomial distribution. In addition, we provide a comparison among
the performance of these models when applying them to real data examples.

In Sections 2.2 and 2.3, we describe the spatial conditional and generalized spatial
conditional models to be fitted to Poisson and binomial responses, respectively. In
Section 2.4, the BYM models, which will be compared to the spatial conditional models,
are presented. In Section 2.5, we describe the methods that will be used for their
estimation within a Bayesian context. In Section 2.6, we apply these models to infant
mortality rates from Colombia and present the most relevant results. In Section 2.7, the
results obtained when modelling the proportion of mothers who underwent a postnatal
period screening test in Colombia are presented. In addition, in Sections 2.6 and 2.7
we have also performed and included the comparison of the models under consideration
with the BYM models, widely used in the analysis of spatial count data. Finally, in
Section 2.8, we conclude with a discussion on the findings.

We would like to mention that the work presented in Section 2.6 has been published
by Morales-Otero and Núñez-Antón (2021).
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2.2 Overdispersion models for Poisson responses

Let us assume that the random variables Yi, for i = 1, . . . , n, represent counts with cor-
responding means E(Yi) = µi. The Poisson model generally assumes that Yi ∼ Poi(µi),
with variance Var(Yi) = µi, so that the variance is equal to the mean, a property that
is known as equidispersion. In a generalized linear model, the mean of the distribution
depends on the explanatory variables through the following regression model, known as
linear predictor:

g(µi) = x⊤
i β, (2.1)

where g(·) is a monotonic and differentiable link function, xi is the k × 1 vector of
explanatory variables for the i-th observation and β is the k × 1 vector of unknown
regression parameters that need to be estimated. For the Poisson regression model, the
natural logarithm is often chosen as the link function; that is, g(µi) = log(µi). Under
these assumptions, overdispersion would occur when there is extra-Poisson variability in
the data, so that Var(Yi) > µi.

Two of the most common models used to accommodate overdispersion in count data
for the case of response variables following a Poisson distribution are the normal Poisson
and the negative binomial models. In the normal Poisson model, the overdispersion is
corrected with the inclusion of a random effect, assumed to be normally distributed, in
the linear predictor. In this way, the normal Poisson can be written as:

log(µi) = x⊤
i β + νi, (2.2)

where xi and β are as before, and νi ∼ N(0, τ), with τ > 0, for i = 1, . . . , n. In this
model, (Yi|νi), for i = 1, . . . , n, follows a Poisson distribution with conditional mean
E(Yi|νi) = µi. Although the distribution of Yi does not have a closed form expression
(Hinde, 1982), when the variance τ of the random effects is small enough, the random
variables Yi, i = 1, . . . , n, can be considered as mixed Poisson variables, with mean and
variance that can be approximated by E(Yi) ≈ µi and Var(Yi) ≈ µi+ τµ

2
i (Dean, 1992).

The dispersion parameter τ allows for modelling the possible existing overdispersion
and, in addition, it also captures the variability unexplained by the covariates. That
is, since τ > 0, the variance is larger than that specified by the Poisson model, so
that µi + τµ2i > µi. We believe it is important to mention that the condition that the
variance τ of the random effects should be small enough (Hinde, 1982 or Dean, 1992) is
satisfied in the relevant cases in the application of this model in Section 2.6, so that the
approximations mentioned above hold.

Another frequently used model to fit overdispersed count data is the standard neg-
ative binomial or NB2 model (Hilbe, 2011). One possible way to be able to generate
this model is by considering a Poisson-gamma mixture. That is, if we assume that the
random variables mi, i = 1, . . . , n, follow a gamma distribution, such that mi ∼ G(τ, τ),
with τ > 0 a parameter that needs to be estimated, and that the random count vari-
ables Yi, i = 1, . . . , n, conditioned on µi and the random variables mi, follow a Poisson
distribution with mean E(Yi) = µimi, such that Yi ∼ Poi(µimi), then the unconditional
distribution of Yi can be derived in the following way (Hilbe, 2011):
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f(yi) =

∫ ∞

0
f(yi|mi)f(mi)dmi =

(
yi + τ − 1

yi

)(
τ

τ + µi

)τ ( µi
τ + µi

)yi

, (2.3)

which corresponds to the probability density for a negative binomially distributed count
variable, so that Yi ∼ NB(τ/(τ+µi), τ), i = 1, . . . , n, with mean E(Yi) = µi and variance
Var(Yi) = µi+ τ

−1µ2i . The dispersion parameter τ allows for the modelling of the extra-
Poisson variability because, since we have that τ > 0, then µi + τ−1µ2i > µi. Therefore,
and from the above, for the negative binomial regression model, the linear predictor is
specified for the mean µi, so that:

log(µi) = x⊤
i β, (2.4)

where xi and β are as before.

2.2.1 Spatial conditional overdispersion models for Poisson responses

One of the reasons for the existence of overdispersion in spatial data may be the possible
existing spatial correlation between the responses corresponding to the different adjacent
locations. Hence, it can be assumed that a portion of the overdispersion can be explained
by taking into account this spatial correlation. Thus, the spatial conditional overdisper-
sion regression models proposed by Cepeda-Cuervo, Córdoba and Núñez-Antón (2018)
assumed a specific spatial structure for the variable under study. That is, they assumed
that Yi, for i = 1, . . . , n, conditioned on the values in all of the neighbours of the i-th
region, except for the i-th region itself (i.e., Y∼i), follows a conditional overdispersed
distribution denoted by f(yi|y∼i), for i = 1, . . . , n. In this distribution, the conditional
mean follows a given regression structure that includes some covariates affecting the re-
sponse variable, as well as its spatial lags, together with a spatial parameter that allows
to account for the intensity of the spatial dependence that is present in the data. In the
case where the conditional distribution follows one of the aforementioned models, this
model leads to the spatial conditional Poisson, negative binomial and normal Poisson
regression models, respectively.

The spatial distribution is commonly specified by means of a neighbourhood struc-
ture, defined, for a sample of n regions, by a n × n spatial weights matrix, denoted by
W = [wij ], where its elements, wij , are the weights to be specifically used to model the
strength of the dependence between the i-th and the j-th regions. These elements are
given by the contiguity criteria chosen by the researcher, which can be based on the
boundaries of the regions or on the distance from one spatial location to the others, or
by any other alternative criteria previously proposed in the literature. It is commonly
assumed that, wij = 1, if region i is adjacent or a neighbour to region j, and wij = 0,
otherwise. First order contiguity can be specified, for example, when we use the criteria
that regions i and j are neighbours if they share at least one point in their boundaries.
Second order could also be considered if we extend the criteria by considering that i and
j are neighbours if they share a common neighbour.
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This weights matrix is usually standardized by rows, so that, if region i is adjacent
to region j, then wij = 1/ni, where ni is the number of neighbours region i has. Along
these lines, if y is the n × 1 vector of observations for a response variable Y, then the
spatial lag of Y is defined as the product of the 1×n vector corresponding to the i-th row
of the weights matrix W, Wi, and the vector y; that is, Wiy, a product representing
the averaged values of the considered variable in the neighbouring locations for the i-th
region.

In this work, we only assume first order adjacency among regions and, in addition,
that the spatial weights matrix is standardized by rows. However, we believe it is im-
portant to mention that, in Chapter 5, we present a detailed description of the different
weights matrices that can be specified, and we also propose some alternatives to the
traditional weights matrices that can be found in the literature. Moreover, in Chapter
5, we illustrate the performance of the spatial conditional overdispersion models when
considering each of these weights matrices, offering a comparison that would allow the re-
searchers to choose the structure that best accommodates the spatial underlying process
of the data under study.

The spatial conditional Poisson model is specified by assuming that the condi-
tional distribution of the variable under study follows a Poisson distribution, that is
(Yi|Y∼i) ∼ Poi(µi), with conditional mean E(Yi|Y∼i) = µi, so that its corresponding
regression model, with the previously described spatial association dependence already
incorporated, can be specified as:

log(µi) = x⊤
i β + ρWiy, (2.5)

where xi and β are as before, ρ is the parameter incorporating the first order spatial
association, Wi is the i-th row of the n×n weight matrix W that represents the spatial
neighbourhood structure assumed in the model, and y is the vector of dimension n× 1
for the observed values for the response variable under study.

The spatial conditional normal Poisson model assumes that the distribution of the
variable under study, conditioned on its neighbours excluding the i-th region itself, Y∼i,
and the normally distributed random effect νi ∼ N(0, τ), with τ > 0, follows a Poisson
distribution. That is, (Yi|Y∼i, νi) ∼ Poi(µi), with conditional mean E(Yi|Y∼i, νi) = µi, so
that its corresponding regression model, with the previously described spatial association
dependence already incorporated, can be specified as:

log(µi) = x⊤
i β + ρWiy + νi, (2.6)

where xi, β, ρ, Wi and y are as before.
In the same way, the spatial conditional negative binomial model can be also specified

if we assume that the response variable under study, conditioned on Y∼i, follows a
negative binomial distribution. That is, (Yi|Y∼i) ∼ NB(τ/(τ + µi), τ), with conditional
mean E(Yi|Y∼i) = µi, and with a regression structure given by equation (2.5).
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2.2.2 Generalized spatial conditional overdispersion models for Pois-
son responses

We believe it is important to mention that, in the spatial conditional normal Poisson
and the spatial conditional negative binomial models, a portion of the overdispersion
that may have been generated by the possible existing spatial correlation in the data
is considered to be incorporated into the model by using the specified neighbourhood
spatial structure, given by the product between the spatial weights matrix and the vector
of responses (i.e., by incorporating spatial lags of the variable under study), Wiy. The
remaining unexplained overdispersion in the data will be modelled by means of the
dispersion parameter τ . However, we should note that these models assume a constant
overdispersion, and there are cases where the dispersion in the data can vary among
groups or observations. The generalized overdispersion models proposed by Quintero-
Sarmiento, Cepeda-Cuervo and Núñez-Antón (2012) introduced Bayesian extensions of
the standard overdispersion models, where regression structures are assumed both for
the mean and for the dispersion parameter. Their model allowed for the dispersion to
vary as a function of some explanatory variables, so that dispersion can vary for the
different regions or observations in the study.

In this sense, generalized overdispersion models offer a reasonable and well justified
proposal for fitting count data with overdispersion. However, for the case of spatial count
data, they do not provide information or incorporate into the model the possible existing
spatial dependence in the data set under study, which clearly motivates the inclusion of
the spatial dependence structure in these models. Along these lines, the generalized spa-
tial conditional overdispersion regression models (Cepeda-Cuervo, Córdoba and Núñez-
Antón, 2018) assumed that the spatial count variable in their model, Yi, i = 1, . . . , n,
conditioned on the values in all of its neighbours, except the i-th region itself (i.e., Y∼i),
follows an overdispersed conditional distribution f(yi|y∼i), i = 1, . . . , n, with conditional
mean and dispersion parameter following specific regression structures that include some
covariates affecting the response variable and the spatial lags of the variable of interest.

If we now consider the case where Yi follows a Poisson distribution with mean µi, and
assume the normal Poisson model with mean structure given by equation (2.6), for the
generalized spatial conditional normal Poisson model, we will have that the conditional
mean and variance components in the random effect distribution, will be specified by
regression structures given by:

log(µi) = x⊤
i β + ρ1Wiy + νi, with νi ∼ N(0, τi), for τi > 0 and

log(τi) = z⊤i γ + ρ2Wiy,
(2.7)

where xi, β, Wi and y are as before, and ρ1 and ρ2 are the parameters that explain the
spatial association in the mean and dispersion structures, respectively. In addition, zi
is the q × 1 vector of explanatory variables for the i-th observation and γ is a vector of
dimension q×1 containing the unknown regression parameters that need to be estimated.
The generalized spatial conditional negative binomial model can be specified in the same
way, by assuming that Yi, i = 1, . . . , n, conditioned on Y∼i, follows a negative binomial
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distribution, with dispersion parameter τi > 0, and assuming the following regression
structures for both the conditional mean and dispersion parameter:

log(µi) = x⊤
i β + ρ1Wiy and log(τi) = z⊤i γ + ρ2Wiy, (2.8)

where xi, β, Wi, y, ρ1, ρ2, zi and γ are as before.

2.3 Overdispersion models for binomial responses

Let Yi, for i = 1, . . . , n, be random variables and suppose there are n clusters (or groups),
with ni observations (trials) each. A binomial regression model is specified when we
assume that these variables follow a binomial distribution Yi ∼ Bin(ni, πi), with πi
being the probability of success of a trial in cluster i. The mean and variance of Yi
would be given by E(Yi) = µi = niπi and Var(Yi) = niπi(1 − πi), respectively, for
i = 1, . . . , n. Then, a regression model is specified for the mean, or the probability of
success, by means of a logistic function so that:

log

(
µi

ni − µi

)
= logit(πi) = x⊤

i β, (2.9)

where xi is the k × 1 vector of explanatory variables for the i-th observation and β is
the k × 1 vector of unknown regression parameters that need to be estimated.

When fitting a binomial regression model, overdispersion can arise when the variance
of the data is larger than the variance specified by this model, that is, when Var(Yi) >
niπi(1−πi). In order to overcome this problem, several alternatives have been proposed
in the literature, such as the beta binomial model (see, for example, Griffiths, 1973;
Williams, 1975 and Quintero-Sarmiento, Cepeda-Cuervo and Núñez-Antón, 2012) and
the normal binomial model (see, for example, Williams, 1982 and Quintero-Sarmiento,
Cepeda-Cuervo and Núñez-Antón, 2012), among others.

In the beta binomial model, we assume that the response variable Yi, conditioned
on a random variable π∗i follows a binomial distribution, so that (Yi|π∗i ) ∼ Bin(ni, π

∗
i ).

Then, it is assumed that π∗i follows a Beta distribution, that is π∗i ∼ Beta(τπi, τ(1−πi)) ,
with an unknown parameter τ > 0, which needs to be estimated. Here, the unconditional
distribution of Yi is beta binomial, Yi ∼ BB(ni, πi, τ) with E(Yi) = niπi and Var(Yi) =
niπi(1− πi)[1 + τ(ni − 1)], where πi follows the regression structure:

logit(πi) = x⊤
i β, (2.10)

with xi and β as before. Note that the parameter τ allows us to model the overdispersion
that might be present in the data that the binomial model is not able to account for.

In order to specify the normal binomial model, a normally distributed random effect,
that is νi ∼ N(0, τ), τ > 0, is included in the regression model for the mean of a binomial
model, in this way:

logit(πi) = x⊤
i β + νi, (2.11)
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where xi and β are as before. Here, for small values of τ , the unconditional mean and
variance of Yi can be approximated as E(Yi|νi) = niπi and Var(Yi) ≈ niπi(1 − πi)[1 +
τ(ni − 1)πi(1 − πi)] respectively (Williams, 1982 and Dean, 1992). In the same way
as with the beta binomial, the normal binomial model allows us to capture the extra
binomial variability in the data by means of the dispersion parameter τ .

2.3.1 Spatial conditional overdispersion models for binomial responses

Let us assume that the variables Yi, for i = 1, . . . , n, represent counts on n regions, with
ni trials for each region. The spatial conditional overdispersion models for responses fol-
lowing a binomial distribution (Cepeda-Cuervo, Córdoba and Núñez-Antón, 2018) can
be specified if we assume that the variables Yi, conditioned on the set of values they
take in all the neighbouring locations except for the i-th area itself, denoted by Y∼i, for
i = 1, . . . , n, follow an overdispersed distribution denoted by f(yi|y∼i). When this con-
ditional distribution is one of those that we have previously mentioned in Section 2.3, we
can obtain the spatial conditional binomial, beta binomial and normal binomial regres-
sion models, respectively. The conditional mean of this distribution is then modelled via
a regression structure that includes some covariates affecting the response variable and
spatial terms, together with a spatial parameter that allows to account for the strength
of the spatial dependence that is present in the data.

To be able to capture the spatial association, Cepeda-Cuervo, Córdoba and Núñez-
Antón (2018) proposed the use of a spatial term given by the n × 1 vector A, with
elements defined the following way: Ai =

π̂∼i
1−π̂∼i

, where π̂∼i =
Wiy
Win

with Wi being the
i-th row of spatial weights matrix W, corresponding to the i-th observation, and y and
n being the vectors of observations of the response variable and the number of trials,
respectively. Here, the spatial weights matrix W is defined in the same way as in Section
2.2.1, for the spatial conditional models for Poisson distributed response variables.

The spatial conditional normal binomial model is specified by assuming that, given a
set of normally distributed random effects νi ∼ N(0, τ), τ > 0, the conditioned variables
(Yi|Y∼i, νi) follow a binomial distribution, so that (Yi|Y∼i, νi) ∼ Bin(ni, πi), where πi
follows the regression model:

logit(πi) = x⊤
i β + ρAi + νi, (2.12)

with xi and β as before, ρ is the unknown spatial parameter that needs to be estimated
and Ai is the i-th element of the spatial term A.

In the same way, we can obtain the spatial conditional beta binomial model by
assuming a beta binomial distribution on the conditioned variables (Yi|Y∼i). That is
(Yi|Y∼i) ∼ BB(ni, πi, τ), τ > 0, where πi follows the regression model:

logit(πi) = x⊤
i β + ρAi, (2.13)

with xi, β, ρ and Ai as before.
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2.3.2 Generalized spatial conditional overdispersion models for bino-
mial responses

As we have already mentioned in Section 2.2.2, generalized overdispersion models were
proposed by Quintero-Sarmiento, Cepeda-Cuervo and Núñez-Antón (2012) in order to
provide more flexibility to overdispersion models by allowing the dispersion parameter to
vary across the observations or regions. These models can be specified if we assume two
regression structures, one for the mean and another for the dispersion parameter, which
can include some given covariates or, in the case of the generalized spatial conditional
models, also spatial terms.

More specifically, the generalized spatial conditional normal binomial model is defined
so that (Yi|Y∼i, νi) ∼ Bin(ni, πi) where the random effects νi ∼ N(0, τi), τi > 0, for
i = 1, ..., n, depend on a different variance τi for each region. Here, we will have that the
conditional probability of success and the dispersion parameter, which is the variance of
the random effect, follows the regression structures:

logit(πi) = x⊤
i β + ρ1Ai + νi and log(τi) = z⊤i γ + ρ2Ai, (2.14)

with xi, β and Ai as before and ρ1 and ρ2 are the parameters that explain the spatial
association in the mean and dispersion models, respectively. In addition, zi is the q × 1
vector of explanatory variables for the i-th observation and γ is a vector of dimension
q × 1 containing the unknown regression parameters that need to be estimated.

In the same way, the generalized spatial conditional beta binomial model can be
defined if we assume that Yi ∼ BB(ni, πi, τi), where the probability of success and the
dispersion parameter follow these regression equations respectively:

logit(πi) = x⊤
i β + ρ1Ai and log(τi) = z⊤i γ + ρ2Ai, (2.15)

with xi, β, Ai, ρ1, ρ2, zi and γ as before.

2.4 Besag-York-Mollié (BYM) model

The Besag-York-Mollié (BYM) model (Besag, York and Mollié, 1991) is a Bayesian
hierarchical model widely used in the literature for fitting spatial count data, particularly
in the field of disease mapping (Lawson, 2008). It is an extension of the generalized linear
model that includes both a spatially structured and an unstructured random effect in
the regression model structure. If we let Yi, i = 1, . . . , n, represent counts for the n
different regions, the BYM model is specified by assuming that the variable under study
follows a Poisson distribution with mean E(Yi) = µi, having a mean regression structure
given by:

log(µi) = x⊤
i β + νi + ηi, (2.16)

with xi and β as before, νi is a normally distributed random effect, so that νi ∼ N(0, τ),
with τ > 0 being an unknown variance parameter that needs to be estimated, and ηi is
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an intrinsic conditional autoregressive (CAR) (Besag, York and Mollié, 1991) distributed
random effect, so that:

(ηi|η∼i,W, τη) ∼ N

(∑n
j=1wijηj∑n
j=1wij

,
τη∑n

j=1wij

)
, (2.17)

where η∼i represents the set of values of all neighbours of the i-th region, except for the
i-th region itself, W is the spatial weights matrix and τη > 0 is an unknown variance
parameter that needs to be estimated. Given that this model is able to account for
spatial dependence and also for the extra-variability in the data set not explained by the
covariates, it has a considerable potential to motivate and justify its use for the analysis
of spatial count data. However, since it is only possible to obtain information from
the data from the sum of the two random effects, but not from each of the individual
components separately, its use in this specific context has been questioned because of
the possible identifiability problems that it may present (Eberly and Carlin, 2000).

Some authors (e.g., Riebler et al., 2016) have addressed the issue of identifiability.
They proposed the BYM2 model, an extension of the BYM model that scales the spatial
component and the unstructured component, so that the mean regression structure can
be written as:

log(µi) = x⊤
i β +

1
√
τs

(√
1− ϕsνi +

√
ϕsηi

)
, (2.18)

where the random effects νi and ηi are as in the BYM model, but with a scaled variance
approximately equal to one, and τs and ϕs are unknown parameters to be estimated.
Here, the precision parameter τs captures the variance contribution from the sum of the
two random effects and the mixing parameter ϕs controls for the variance contribution of
the spatially structured component η = (η1, . . . , ηn)

⊤, whereas the variance contribution
of the unstructured random component ν = (ν1, . . . , νn)

⊤ is explained by 1− ϕs.
The main advantage of the BYM2 model is precisely the possibility it offers to be able

to separately capture the impact of the spatial dependence and the effect of the variability
or the overdispersion present in the data. The priors for these hyperparameters are
defined by means of the penalized complexity priors developed by Simpson et al. (2017).
The complexity prior for the parameter τs can be specified by assuming the probability
statement that Prob(1/

√
τs > U) = α, and, for the parameter ϕs, that Prob(ϕs <

U) = α, with U and α being fixed values that depend on the specific application under
consideration. The use of these priors has been proved to be a suitable choice in Bayesian
spatial models and, especially, for the BYM2 model, mainly due to the fact that they
favour less complex models and allow for a clearer interpretation of the parameters
(Bakka et al., 2018).

Although the BYM model is mostly used to fit Poisson distributed data, it is also
possible to model binomially distributed responses with it (Lee, 2013). The spatially
structured and the unstructured random effects would be included in the logistic re-
gression model for the probability of success (Blangiardo and Cameletti, 2015). Let us
assume that for n areas, the random variables Yi, for i = 1, . . . , n, with ni trials on each
area, follow a binomial distribution, Yi ∼ Bin(ni, πi) with πi being the probability of
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success of a trial in the i-th area. Then, the BYM model would be specified if we assume
the following regression structure for πi:

logit(πi) = x⊤
i β + νi + ηi, (2.19)

where xi, β, νi and ηi are as before.

2.5 Bayesian estimation

As we have previously mentioned, models studied here will be estimated by using a
Bayesian approach. That is, we assume that we have a sample of n independent obser-
vations, yi, for i = 1, . . . , n, from the variable Y, and we wish to estimate a parameter θ.
We will consider it as a random variable and express our beliefs about this parameter via
a prior distribution p(θ). The information available in the data about θ will be included
in the likelihood function L(y|θ), which is the joint distribution of the sample, so that, if
yi, i = 1, . . . , n, given the parameter θ, are independent and have a probability density
function given by f(yi|θ), then L(y|θ) =

∏n
i=1 f(yi|θ). In Bayesian inference, we use this

information to update our knowledge using the Bayes theorem, thus, being able to obtain
a posterior distribution for the parameter given the data, p(θ|y) ∝ L(y|θ)p(θ). In the
case of spatial conditional regression models, Cepeda-Cuervo, Córdoba and Núñez-Antón
(2018) considered the variables (Yi|Y∼i), conditioned on the assumed spatial neighbour-
hood structure, following an overdispersion distribution such as the ones mentioned in
Sections 2.2 and 2.3, and the parameter θ, to be estimated, to be independent. There-
fore, under these independence assumptions, the likelihood function can be obtained in
the usual way and, thus, the Bayesian inference process is valid.

In Bayesian analysis, vague or noninformative prior distributions for the param-
eters are usually specified in order to minimize the possible impact of prior infor-
mation, compared to the likelihood of the data, on the posterior inference. For the
regression coefficients of explanatory variables, typically normal prior distributions
with zero mean and large variances are considered. In this case, we assume that
βj ∼ N(0, 1 × 105), j = 1, . . . , k. In most software packages available for Bayesian
inference approaches, the prior distribution for the variance component in the normal
distribution is implemented on its inverse instead, which is usually labelled as the preci-
sion parameter (i.e., ψ), so that ψ = 1/τ , if τ is the variance component parameter. For
this precision parameter several prior distributions have been proposed in the literature
for Bayesian hierarchical models (Gelman, 2006), with the gamma distribution being
the most commonly used. In this way, it is assumed that ψ ∼ G(α1, α2), with α1 and
α2 being fixed and user-specified parameters. The choice of these values, α1 and α2, is
a crucial issue that needs to be addressed in a careful manner, mainly because inference
can be sensitive to their selection, specially when the data set does not have a large
number of observations available (Gelman, 2006). Specific values of α1 = α2 = 0.001 for
this prior distribution are often employed in many applications (Lawson, 2008), so that
ψ ∼ G(0.001, 0.001), which, given that its mean is equal to 1 and its variance equal to
1000, a large value, it can be considered as a vague prior. Alternative frequently used
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values that can be found in the literature are, α1 = 1 and α2 = 0.01, in Vranckx, Neyens
and Faes (2019), α1 = 0.05, α2 = 5 × 10−4 in Best, Richardson and Thomson (2005),
α1 = 1 and α2 = 0.5 in Carroll et al. (2015), and α1 = α2 = 1× 10−4 in Cepeda-Cuervo,
Córdoba and Núñez-Antón (2018), among others. Nevertheless, the choice of these pa-
rameters must be based on their adequacy to the specific application considered and its
adverse effects on the posterior inference should be appropriately assessed and studied.

Following these guidelines, for our Bayesian analysis, we will assume noninformative
prior distributions with zero mean and large variance for the regression parameters, as
well as for the spatial lag parameters included in the proposed models. For the inverse
of the dispersion parameters, ψ = 1/τ , we will specify gamma distributions with large
variances, so that ψ ∼ G(α, α), with α being a very small value. Estimation will be
carried out in OpenBUGS, JAGS and also in R-INLA for some specific cases.

Model selection will be performed by using the Deviance Information Criterion (DIC)
(Spiegelhalter et al., 2002) and the Watanabe-Akaike Information Criterion (WAIC)
(Watanabe, 2010), also known as the Widely Applicable Information Criterion, where
the models with the lowest values for these criteria would be considered as the best
fitting ones. On the one hand, DIC is based on the posterior distribution of the deviance
statistic, a measure of the model’s fit, and it is penalized by the effective number of
parameters, which is a measure representing the complexity of the model. On the other
hand, WAIC is based on the logarithm of the pointwise posterior predictive density and
receives a penalty specified by a different definition of the effective number of parameters.
This criterion has become very popular in the last few years, since it is considered as
a fully Bayesian approach (Gelman et al., 2013; Gelman, Hwang and Vehtari, 2014).
Given that each of these two measures has its own advantages and drawbacks (Gelman,
Hwang and Vehtari, 2014), we will include both of them in our analysis, since we believe
the information provided by one can be complemented by the other. Moreover, besides
these information criteria values, we will also take into account the predictive accuracy
of the fitted models to select the best fitting ones by performing posterior predictive
checks on each one of the fitted models.

In general, when comparing fitted models with an information criterion, such as the
DIC or WAIC, differences of more than 10 units between the values obtained for two
specific models under comparison are often considered as substantial, whereas differences
of less than 2 units are mostly considered as not significant (Spiegelhalter et al., 2002;
Burnham and Anderson, 2002). In the second case, the most parsimonious model is
typically chosen as the best fitting one (Lawson, 2008), which may be given by the
model with the simplest structure or where fewer covariates were included. In this
thesis, we will follow this approach. However, we should take into account that, in some
cases, we will prefer the model that makes more sense within the specific context of the
application under consideration.
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2.6 Application to infant mortality in Colombia

The data we will analyse here has been obtained from the National Statistics Department
of Colombia and corresponds to 32 departments or geographical units (areas or regions)
in this country. For each geographical unit, the available variables are: the number of
children under one year of age who died in 2005 (i.e., variable ND), the total number of
births in 2005 (i.e., variable NB), an index representing the percentage of the population
not having their basic services satisfactorily attended for the same year (i.e., variable
IBN), the amount of resources (in thousands of dollars) for academic achievement or
education and integral attention for young children provided by the government per
household in the year 2005 (i.e., variable Rec), the percentage of women over the age of
18 who had suffered physical violence from their current partners (i.e., variable Viol),
the percentage of young people (i.e., between 18 and 24 years) who were able to opt
for a higher educational level (i.e., variable HE), and the percentage of children under
one year of age who received the third dose of the polio vaccine in the year 2004 (i.e.,
variable Vac).

A similar version of this data has been previously analysed by Quintero-Sarmiento,
Cepeda-Cuervo and Núñez-Antón (2012) and Cepeda-Cuervo, Córdoba and Núñez-
Antón (2018), where the authors fitted their proposed generalized spatial conditional
models to analyse mortality rates for children under five years of age, considering the
response variable to be the number of children under five years of age who died in each
department in Colombia from 2000 up to 2005. They found evidence of overdispersion
and positive spatial autocorrelation in the data set they analysed, and they were able to
capture these specific features in the data set under study with the fitting of the proposed
models, where positive significant relations between the variables IBN and the number
of deaths for children under five years of age, as well as negative significant relations
between the variable Rec and mortality rates were found. We would like to indicate
that the data set here was directly obtained from the National Statistics Department
of Colombia because we were unable to have access to the one previously analysed by
other authors and, thus, our analysis is not applied to the same data set.

In this section, we study the mortality rates for children under one year of age in the
year 2005, and fit the models previously discussed in Section 2.2. The explanatory vari-
ables that we will include in the study constitute relevant socio-economic indicators that
can considerably affect infant mortality (Cepeda-Cuervo, Córdoba and Núñez-Antón,
2018). In order to specify noninformative prior distributions for the parameters in our
Bayesian analysis, we assume independent normal distributions, N(0, 1×105), for all the
regression parameters; that is, βj ∼ N(0, 1×105), j = 1, . . . , k, as well as for the spatial
association parameter ρ. As for the inverse of the dispersion parameters τ , ψ = 1/τ ,
based on the sensitivity analysis performed in Section 2.6.2, gamma G(1×10−4, 1×10−4)
distributions were assumed. When running the implemented software programs in Open-
BUGS, and after 10000 iterations, a burn in period of 5000 samples and considering a
thinning parameter of 10, the MCMC chains showed strong signs of convergence for all
of the parameters included in the proposed models.
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With the available information in the data set under study, we can approximate
infant mortality rates as the number of children under one year of age who died in the
year 2005 per 1000 born alive in each of the departments in Colombia. In this way, we
can obtain a new variable (i.e., the variable Rates) as:

Ratesi =
NDi

NBi
× 1000, i = 1, . . . , n (2.20)

In order to better understand the data under study, Table 2.1 includes a summary
of some descriptive statistics for the available variables in the Colombian mortality rates
data set. Here, we could highlight the fact that the variable Rec has a considerably large
range, going from 8.02 to 274.1, with a large standard deviation of 64.56. As the mean
and the median are close to around 80, there are reasons to believe that this variable
could be left skewed. However, as they are relatively close, this might be due to the
possible existence of outliers in the right part of the distribution. For example, the
largest value of this variable, that is 274.1, corresponds to the Antioqúıa department,
which is the second most populated region after Bogotá. Given this fact, and the specific
socio-demographic characteristics of this region, we do not believe that this value would
affect the analysis. We will examine this variable in more detail in Section 3.4.1 in the
next chapter.

Table 2.1: Descriptive statistics for the variables available in the study of infant mor-
tality in Colombia.

Rates ND NB Viol IBN Rec HE Vac

Median 23.17 472.50 22574.50 35.87 35.55 81.19 13.85 68.80
Mean 25.82 542.88 26731.59 34.73 37.99 84.29 15.69 69.32
SD 10.37 444.27 27567.57 5.64 17.15 64.56 10.52 10.96
Minimum 14.25 16.00 408.00 22.58 9.20 8.02 1.30 42.70
Maximum 49.33 1802.00 115890.00 44.69 79.20 274.10 52.20 94.70

At this point, it could be important to mention that the sample size of the dataset
under analysis could be considered as relatively limited, since it only includes 32 obser-
vations. In any case, this does not violate the assumptions of the models considered.
Furthermore, it has been demonstrated by the authors who have already analysed similar
versions of this data, that this fact does not affect the proposed methodology. Moreover,
we will also address this issue in Section 3.6 in the next chapter.

Figure 2.1 shows the spatial distribution of the variable Rates, representing an ap-
proximation of infant mortality rates in each department of Colombia for the year 2005.
In the map, there are clear indicators of spatial association in the data, as regions with
similar values of the variable appear to be grouped together in space. Departments lo-
cated in the east of the country, belonging to the natural region called the Amazonia,
which is located in the Amazonian rain forest, show large values of mortality rates. In
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addition, for departments located in the central part of the country, surrounding the
capital, Bogotá, smaller rates can be observed.

Figure 2.1: Spatial distribution of infant mortality rates in Colombia for the year 2005,
by department, obtained as the number of children under one year of age who died in
the year 2005 per 1000 born alive.

It is important to mention that it has seemed reasonable for authors that have pre-
viously analysed similar data sets to assume that, with regard to infant mortality rates,
regions closer in space share somehow similar socio-demographic and economic charac-
teristics, i.e. they can present similar values of infant mortality rates. As observed in the
regional map shown in Figure 2.1, we have reasons to believe that this data set may also
exhibit spatial dependence, which must be properly assessed and, if required, it should
also be appropriately included in the proposed models to be fitted to this specific data
set. An additional issue worth mentioning is the possibility that the aforementioned
association may also be related to migration, either to other regions or to the capital.
This is a topic that needs to be further explored and the appropriate data sets, if avail-
able, where infant mortality rates and migration are related, should be used. However,
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to our knowledge, such data sets are not available at the moment and, therefore, this
issue remains to be further investigated. Moreover, we believe it is out of the scope of
the research proposals presented here. Therefore, we will specify a spatial neighbour-
hood structure, represented by the n × n first order spatial weights matrix W = [wij ],
standardized by rows, with wij = 1/ni, if i is adjacent, and hence, a neighbour to region
j; that is, if they share at least one point in their boundaries, and wij = 0, otherwise.
Here, ni is the number of neighbours for the i-th region. The spatial lag of the variable
Rates is obtained by multiplying the i-th row of the spatial weights matrix W = [wij ],
Wi, and the n× 1 vector of observations for the variable Rates, that is WiRates.

In order to be able to assess the possible existence of spatial dependence in the data,
we apply the global Moran’s I test (Moran, 1948) to the variable Rates, obtaining a test
statistic value of I=0.3490, providing a p-value=0.0017. Hence, for the specific data set
under study, there is evidence against the null hypothesis that the values of the variable
Rates are randomly distributed across the different regions in Colombia. This result can
be better seen in a graphical display in Moran’s scatterplot, shown in Figure 2.2, where
the variable Rates is plotted against the spatial lag WiRates, and where a red line
represents the estimated linear regression line fitted for these two variables. The slope of
this regression is precisely Moran’s I statistic and, as can be seen in Figure 2.2, the values
of the variable for each department appear to have a positive significant correlation with
the averaged values of the variable in the adjacent regions. Hence, there is substantial
evidence for the possible existence of positive spatial autocorrelation in the data that
needs to be accounted for in the models to be fitted in the following sections.

Figure 2.2: Moran’s scatterplot for the variable Rates.
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To further confirm the previous conclusions, we have also applied Geary’s C test
(Geary, 1954) to the variable Rates, obtaining a value for the C statistic of C=0.5490,
with a p-value=0.0017. Taking into account that significant values for the C statistic
of 1 indicate no spatial autocorrelation for this test, and that values between 0 and 1
indicate positive spatial autocorrelation in the variable under study, the results obtained
for our case (i.e., C=0.5490) suggest further evidence that the variable is not randomly
distributed across the regions, but positively correlated.

2.6.1 Fitting of the spatial conditional overdispersion models

We assume that the number of children under one year of age who died in 2005 in the
i-th region; that is, the variable NDi, follows a Poisson distribution with mean µi. As we
are interested in modelling the mortality rates, we will consider that E(NDi) = µi, with
µi = NBiλi, where NBi is the total number of births in 2005 (i.e., the variable NB), and
λi represents the corresponding mortality rate. Therefore, we include the logarithm of
the total number of births log(NBi) in the linear predictor as an offset variable, so that
we can write this model as:

log(µi) = log(NBi) + β0 + β1Violi + β2IBNi + β3Reci + β4HEi + β5Vaci (2.21)

Table 2.2 includes the corresponding parameter estimates for the fitting of the Poisson
model with regression structure given in equation (2.21), together with its standard
deviations and 95% credible intervals in parenthesis, when fitted to the Colombia infant
mortality rates data set. For this model, the resulting information criteria values where
DIC = 491.7 and WAIC = 524.0. Based on the estimations for the regression coefficients,
we can observe that all the explanatory variables, except HE, are statistically significant,
as none of their 95% credible intervals includes the value zero. However, these reported
results should not be taken as an indication of a good model’s fit, mainly because it
could be a consequence of fitting the model without taking into account the possible
existence of overdispersion. In fact, if we plot the estimated mean and variance obtained
by the fitting of this model (see Figure 2.3), where the red line represents that its mean
equals its variance, we notice that most of the estimated variance values from the Poisson
model are larger than the mean, which may be a clear indication that the assumption
of equidispersion of the Poisson distribution does not seem to hold for this data set.
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Table 2.2: Parameter estimates, standard deviations and 95% credible intervals in parenthesis for the parameters in the models, and DIC and WAIC values
for the different models fitted to the Colombian infant mortality rates data set.

Poisson Spatial conditional
Poisson

Negative binomial Spatial conditional
negative binomial

Normal Poisson Spatial conditional
normal Poisson

Intercept Mean -4.2960 -4.6131 -4.4647 -5.0672 -4.4330 -4.8410
SD (0.0902) (0.1188) (0.2109) (0.2273) (0.3171) (0.2900)
CI (-4.4710,-4.1210) (-4.8500,-4.3680) (-4.9050,-4.1010) (-5.5530,-4.4670) (-5.0610,-3.8189) (-5.4120,-4.3220)

Viol Mean 0.0066 0.0065 0.0118 0.0112 0.0109 0.0092
SD (0.0015) (0.0015) (0.0056) (0.0058) (0.0060) (0.0060)
CI (0.0036,0.0096) (0.0035,0.0093) (8.860e-04,0.0229) (1.650e-04,0.0229) (-9.898e-04,0.0230) (-0.0019,0.0217)

IBN Mean 0.0155 0.0165 0.0153 0.0167 0.0155 0.0159
SD (6.076e-04) (6.419e-04) (0.0024) (0.0023) (0.0025) (0.0023)
CI (0.0143,0.0167) (0.0153,0.0178) (0.0104,0.0200) (0.0121,0.0211) (0.0104,0.0204) (0.0113,0.0203)

Rec Mean -4.953e-04 -5.363e-04 -9.818e-04 -7.407e-04 -0.0011 -8.113e-04
SD (1.279e-04) (1.278e-04) (5.822e-04) (5.615e-04) (5.989e-04) (5.656e-04)
CI (-7.454e-04,-2.460e-04) (-7.881e-04,-2.819e-04) (-0.0021,1.756e-04) (-0.0018,3.747e-04) (-0.0023,1.118e-04) (-0.0020,2.760e-04)

HE Mean -0.0013 3.117e-04 -0.0058 3.353e-04 -0.0054 -7.355e-04
SD (9.218e-04) (0.0010) (0.0042) (0.0045) (0.0044) (0.0047)
CI (-0.0031,4.562e-04) (-0.0017,0.0023) (-0.0143,0.0025) (-0.0085,0.0091) (-0.0140,0.0033) (-0.0099,0.0091)

Vac Mean -0.0036 -0.0029 -0.0011 -5.550e-04 -0.0014 -0.0016
SD (9.417e-04) (9.291e-04) (0.0028) (0.0028) (0.0032) (0.0031)
CI (-0.0054,-0.0017) (-0.0047,-0.0011) (-0.0065,0.0045) (-0.0061,0.0051) (-0.0076,0.0050) (-0.0083,0.0043)

ρ Mean - 0.0095 - 0.0169 - 0.0149
SD - (0.0025) - (0.0065) - (0.0068)
CI - (0.0045,0.0144) - (0.0041,0.0295) - (6.637e-04,0.0290)

τ Mean - - 41.5803 46.2603 0.0277 0.0243
SD - - (13.9969) (15.4866) (0.0102) (0.0088)
CI - - (20.0300,73.6512) (21.9997,82.7505) (0.0138,0.0531) (0.0121,0.0460)

DIC 491.7 480.4 362.2 360.1 308.0 307.3
WAIC 524.0 519.6 361.8 360.3 302.3 301.3
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Figure 2.3: Estimated mean and variance scatterplot for the Poisson results after fitting
model (2.21) to infant mortality rates in Colombia.

Therefore and based on the possible existence of overdispersion, we have fitted the
overdispersion models mentioned in the previous section, starting with the normal Pois-
son model with regression structure given by equation (2.22), and the negative binomial
model with regression structure as in the Poisson model in equation (2.21). These mod-
els show considerable improvements in their DIC and WAIC values when compared to
those for the Poisson model. That is, resulting values were DIC = 308.0 and WAIC
= 302.3 for the normal Poisson model, and DIC = 362.2 and WAIC = 361.8 for the
negative binomial model. Moreover, if we carefully observe the results for the 95% cred-
ible intervals for the estimated coefficients after fitting the normal Poisson model, we
notice that, except for IBN, all the other variables are not statistically significant. In
the case of the fitting of the negative binomial model, only the variables IBN and Viol
are statistically significant. These results are justified because these models have taken
into account the overdispersion in the data set under study and, therefore, these credible
intervals become wider than those obtained when fitting the Poisson model.

log(µi) = log(NBi) + β0 + β1Violi + β2IBNi + β3Reci + β4HEi + β5Vaci

+ νi, νi ∼ N(0, τ), τ > 0
(2.22)

In addition, to be able to account for the possible spatial dependence present in the
data set under study, we have also fitted the spatial conditional Poisson and negative
binomial models, with regression structures given by equation (2.23), where the spatial
lag of the variable Rates is also included in these models. That is, we have that:
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log(µi) = log(NBi) + β0 + β1Violi + β2IBNi + β3Reci + β4HEi + β5Vaci

+ ρWiRates
(2.23)

Finally, we have also fitted the spatial conditional normal Poisson model with regres-
sion structure given in equation (2.24) and reported information criteria values of DIC
= 307.3 and WAIC = 301.3, these being the lowest information criteria values obtained
so far when compared to the rest of the models. In addition, the estimated value for the
spatial lag parameter, ρ, was ρ̂ = 0.0149(0.0068), with the value zero not included in its
95% credible interval, a clear evidence for the existence of positive spatial autocorrela-
tion in the data. Moreover, the estimated dispersion parameter was τ̂ = 0.0243(0.0088),
also indicating that, besides explaining the spatial dependence, this model also captures
the overdispersion, allowing for an extra variation given that a specific random effect
has been included for this purpose in this model.

log(µi) = log(NBi) + β0 + β1Violi + β2IBNi + β3Reci + β4HEi + β5Vaci

+ ρWiRates+ νi, νi ∼ N(0, τ), τ > 0
(2.24)

From the results reported in Table 2.2, the lowest DIC and WAIC values were ob-
tained for the spatial conditional normal Poisson model, which was considered therefore
the best fitting model. A variable selection process was performed afterwards for this
model by fitting reduced versions and comparing the information criteria values obtained
for the different models. The results for some of the fitted models shown in Table 2.3
indicate that the model with the lowest information criteria values, i.e., DIC = 306.8
and WAIC = 301.2, is the one which includes the variables Viol, IBN and Rec. However,
in this model, the variables Viol and Rec are not statistically significant, since zero is
contained in their 95% credible interval for the estimated coefficients.

The model including the variables IBN and Rec with regression structure given by
equation (2.25), which provided information criteria values of DIC = 307.4 and WAIC
= 302.3, could be a good candidate for fitting the data under study. In this model,
according to its 95% credible intervals, all of the estimated coefficients are statistically
significant. The estimated coefficient for the variable IBN was β̂1 = 0.0167(0.0018),
which indicates that, according to the model fitted to this data, infant mortality rates
have a statistically significant positive association with the percentage of people with
unsatisfied basic needs. With regard to the estimated coefficient for the variable Rec, it
was β̂2 = −0.0011(4.982e− 04), a fact that could be an indication of a statistically sig-
nificant negative association between infant mortality rates and the amount of resources
provided for academic achievement. In addition, the estimated coefficient for the spatial
term has a positive value of ρ̂ = 0.0151(0.0061), again a clear evidence of the presence
of positive spatial autocorrelation in the data.

log(µi) = log(NBi)+β0+β1IBNi+β2Reci+ρWiRates+νi, νi ∼ N(0, τ), τ > 0 (2.25)
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Table 2.3: Parameter estimates, standard deviations and 95% credible intervals in parenthesis for the parameters in the models, and DIC and WAIC values
for some of the reduced versions of the spatial conditional normal Poisson model fitted to the Colombian infant mortality rates data set.

Intercept Viol IBN Rec Vac ρ τ

DIC= 307.3 Mean -4.8298 0.0087 0.0165 -9.389e-04 -0.0017 0.0145 0.0230
WAIC= 301.7 SD (0.3218) (0.0055) (0.0018) (5.362e-04) (0.0029) (0.0061) (0.0084)

CI (-5.4881,-4.2110) (-0.0019,0.0197) (0.0127,0.0201) (-0.0020,1.010e-04) (-0.0072,0.0042) (0.0022,0.0264) (0.0111,0.0442)

DIC= 307.8 Mean -4.5858 - 0.0165 -0.0011 -8.340e-04 0.0153 0.0247
WAIC= 302.4 SD (0.2861) - (0.0019) (5.353e-04) (0.0030) (0.0063) (0.0086)

CI (-5.1450,-4.0230) - (0.0127,0.0204) (-0.0022,-9.296e-05) (-0.0069,0.0051) (0.0028,0.0277) (0.0125,0.0450)

DIC= 307.5 Mean -5.1301 0.0116 0.0158 - -9.405e-04 0.0183 0.0250
WAIC= 301.8 SD (0.2881) (0.0054) (0.0019) - (0.0030) (0.0059) (0.0085)

CI (-5.6960,-4.5760) (0.0011,0.0223) (0.0121,0.0196) - (-0.0068,0.0050) (0.0068,0.0301) (0.0125,0.0457)

DIC= 306.8 Mean -4.9505 0.0083 0.0165 -8.274e-04 - 0.0150 0.0225
WAIC= 301.2 SD (0.2588) (0.0055) (0.0018) (5.446e-04) - (0.0060) (0.0080)

CI (-5.4700,-4.4500) (-0.0026,0.0194) (0.0128,0.0200) (-0.0019,2.409e-04) - (0.0030,0.0270) (0.0113,0.0421)

DIC= 307.8 Mean -4.8702 - 0.0157 - 3.069e-04 0.0207 0.0285
WAIC= 302.0 SD (0.2594) - (0.0020) - (0.0031) (0.0061) (0.0095)

CI (-5.3800,-4.3700) - (0.0118,0.0197) - (-0.0057,0.0064) (0.0090,0.0324) (0.0147,0.0505)

DIC= 307.4 Mean -4.6479 - 0.0167 -0.0011 - 0.0151 0.0233
WAIC= 302.3 SD (0.1660) - (0.0018) (4.982e-04) - (0.0061) (0.0080)

CI (-4.9660,-4.3240) - (0.0132,0.0202) (-0.0021,-1.824e-04) - (0.0033,0.0272) (0.0119,0.0430)

DIC= 306.9 Mean -5.1912 0.0114 0.0159 - - 0.0184 0.0241
WAIC= 301.4 SD (0.2136) (0.0053) (0.0018) - - (0.0059) (0.0082)

CI (-5.6120,-4.7650) (0.0010,0.0221) (0.0124,0.0193) - - (0.0067,0.0298) (0.0123,0.0437)

DIC= 308.2 Mean -4.8478 - 0.0156 - - 0.0208 0.0272
WAIC= 303.4 SD (0.1439) - (0.0019) - - (0.0059) (0.0091)

CI (-5.1390,-4.5740) - (0.0119,0.0194) - - (0.0094,0.0323) (0.0143,0.0490)
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It is worth mentioning that the model providing information criteria values of DIC =
306.9 and WAIC = 301.4, which corresponds to the model containing the variables IBN
and Viol, with regression structure given by equation (2.26), should also be considered as
a good candidate for fitting the data set under study where, based on their 95% credible
intervals, all of the estimated coefficients are statistically significant. The estimated
coefficient for the variable IBN has a value of β̂2 = 0.0159(0.0018), a very similar value
to that obtained in the previous model for this specific coefficient. In addition, the
estimated coefficient for the variable Viol was β̂1 = 0.0114(0.0053), implying that infant
mortality rates may have a statistically significant positive relation with the percent of
women who suffered any type of physical abuse from their current partner. The spatial
coefficient estimated value was ρ̂ = 0.0184(0.0059), which represents further evidence of
the presence of positive spatial autocorrelation in the data.

log(µi) = log(NBi)+β0+β1Violi+β2IBNi+ρWiRates+νi, νi ∼ N(0, τ), τ > 0 (2.26)

In order to provide some information that could be useful for the readers about the
size of the effects of the explanatory variables in the models, we have computed estima-
tions of the marginal effects at the means for these variables in the spatial conditional
normal Poisson models in equations (2.25) and (2.26) and included the results in Table
2.4. For the variable IBN in the model in equation (2.25), this estimated marginal ef-
fect was 3.9981e-04, which means that with an increment of 1 percentage point in the
variable IBN, the mortality rate would be increased by a 0.039981%, when the other
variables are set at their mean value. Although this represents a very small effect on
the infant mortality rate, according to the credible interval (3.1469e-04,4.8580e-04), it
is indeed significant. Moreover, small effects, but significant according to their credible
intervals, were also obtained for the variable Rec in this model and for the variables Viol
and IBN for the model in equation (2.26).

Table 2.4: Marginal effects at the means for the spatial conditional normal Poisson
models in equations (2.25) and (2.26) fitted to the Colombian infant mortality rates
data set.

Mean SD 95% CI

Model in equation (2.25) IBN 3.9981e-04 (4.3043e-05) (3.1469e-04,4.8580e-04)
Rec -2.6978e-05 (1.2012e-05) (-5.0980e-05,-4.2588e-06)

Model in equation (2.26) Viol 2.7189e-04 (1.2728e-04) (2.4744e-05,5.2951e-04)
IBN 3.7891e-04 (4.2576e-05) (2.9550e-04,4.6250e-04)

In order to assess the convergence of the MCMC chains for the fitted models, we
have computed the effective sample size for estimating the means, (i.e., Neff), and the
potential scale reduction factor (i.e., R̂) for each parameter’s MCMC chain. For brevity
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of exposition, results are reported in Table 2.5 only for the models in equations (2.25)
and (2.26).

The values Neff represent the equivalent number of independent samples in each pa-
rameter’s MCMC chain. It is often considered that a minimum of 100 independent
simulations is a sufficient number for performing reasonable posterior inference (Gelman
et al., 2013). Therefore, a desirable value for Neff would be any number of at least
100. We have simulated 3 Markov chains, with 10000 iterations and discarded the first
5000 samples from each one, which leaves us with a total of 15000 samples. Taking this
into account and considering that the values of Neff for the chains of all the estimated
parameters obtained from the fitting of models in equations (2.25) and (2.26), reported
in Table 2.5, are larger than 1000, we can conclude that we have enough simulations
to correctly approximate the target distribution and that the correlation in the chains
should not affect posterior inference on the parameters. Moreover, the values R̂ are
an estimation of the potential scale reduction factor (Gelman and Rubin, 1992). Values
closer to 1 indicate convergence of the chain, whereas when values larger than 1.1 are ob-
tained, it is considered that further simulations need to be computed in order to improve
posterior inference. In this specific application, all of the R̂ values are approximately
one, which suggests that the chains for all of the parameters have successfully converged
to the target distribution.

Table 2.5: Convergence diagnostics for the spatial conditional normal Poisson models
in equations (2.25) and (2.26) fitted to the Colombian infant mortality rates data set.

Intercept Viol IBN Rec ρ τ

Model in equation (2.25) Neff 13000 - 15000 11000 7300 1500

R̂ 1.0011 - 1.0010 1.0011 1.0012 1.0023

Model in equation (2.26) Neff 2700 9600 3400 - 7800 13000

R̂ 1.0016 1.0011 1.0015 - 1.0012 1.0011

As a summary of this section, we believe it may be convenient to mention that
the results obtained from the fitting of these models in equations (2.25) and (2.26) are
consistent with the previous results obtained in Cepeda-Cuervo, Córdoba and Núñez-
Antón (2018) for a similar data set. This fact is an illustration of the usefulness of the
spatial conditional overdispersion models for being able to explain spatial dependence
and overdispersion in applications for real data sets.

2.6.2 Sensitivity analysis for the precision of the prior distributions

The prior distribution G(α, α), assumed for the inverse of the variance parameter τ for
the random effects, that is, for the precision parameter ψ = 1/τ , can have a significant
effect on the inferential process, so inference may be quite sensitive to the choice of
the fixed parameters α in this gamma distribution (Gelman, 2006). Therefore, in order
to better assess this effect and select prior distributions where it is limited or at least
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controlled for, we have performed a sensitivity analysis for the best fitting model in the
previous section, the spatial conditional normal Poisson model with regression structure
given by equation (2.25), considering different possible values for α in the gamma prior
distribution ψ ∼ G(α, α) for the precision parameter in the random effects, from α = 0.1
to α = 1e-08.

Results are included in Table 2.6, where we can observe that, for values of α = 1e-04,
as well as for smaller values, there were only small differences in the estimates in the
third decimal place for a few cases. If we also look at the posterior marginal densities
for the estimated precision parameter ψ (see right panel in Figure 2.4), no changes are
observed when setting the values for α in the prior distributions for the last five values
considered here (i.e., from α = 1e-04 up to α = 1e-08). Therefore, we believe the choice
of the value α = 1e-04 is well justified and, in addition, it does not appear to represent
any undesirable influence on the inferential process considered here.

Table 2.6: Posterior means for parameter estimates together with standard deviations,
DIC and WAIC values, for the spatial conditional normal Poisson model in the analysis
of the Colombian infant mortality rates data set with different prior distributions for the
precision parameter of the random effects.

Intercept IBN Rec ρ τ DIC WAIC

α = 0.1 -4.6488 0.0167 -0.0012 0.0153 0.0332 306.5 298.2
(0.1956) (0.0022) (6.020e-04) (0.0073) (0.0104)

α = 0.01 -4.6455 0.0167 -0.0011 0.0151 0.0245 307.2 301.6
(0.1727) (0.0018) (5.154e-04) (0.0064) (0.0083)

α = 0.001 -4.6469 0.0167 -0.0011 0.0151 0.0234 307.4 302.3
(0.1680) (0.0018) (5.017e-04) (0.0062) (0.0080)

α = 1e-04 -4.6479 0.0167 -0.0011 0.0151 0.0233 307.4 302.3
(0.1660) (0.0018) (4.982e-04) (0.0061) (0.0080)

α = 1e-05 -4.6480 0.0167 -0.0011 0.0151 0.0233 307.4 302.3
(0.1661) (0.0018) (4.981e-04) (0.0061) (0.0080)

α = 1e-06 -4.6480 0.0167 -0.0011 0.0151 0.0233 307.4 302.3
(0.1660) (0.0018) (4.981e-04) (0.0061) (0.0080)

α = 1e-07 -4.6480 0.0167 -0.0011 0.0151 0.0233 307.4 302.3
(0.1660) (0.0018) (4.981e-04) (0.0061) (0.0080)

α = 1e-08 -4.6480 0.0167 -0.0011 0.0151 0.0233 307.4 302.3
(0.1660) (0.0018) (4.981e-04) (0.0061) (0.0080)
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Figure 2.4: Posterior marginal distributions for the precision parameter ψ = 1/τ , the
inverse of the variance parameter τ for the random effects, for different values of α,
where ψ ∼ G(α, α).

2.6.3 Fitting of the generalized spatial conditional normal Poisson
model

For all of the aforementioned fitted models, it is assumed that the dispersion parameter
(i.e., τ) is constant, a fact that could not always be a reasonable assumption. Hence, we
will allow the dispersion parameter to vary with some explanatory variables by consid-
ering the so-called generalized spatial conditional models (Cepeda-Cuervo, Córdoba and
Núñez-Antón, 2018). After fitting the generalized spatial conditional normal Poisson
model for the infant mortality data in Colombia and, performing a variable selection
process, we have concluded that the best fitting model was the one where the mean
model contains the spatial lag and the dispersion model includes the variable IBN, so
that:

log(µi) = log(NBi) + β + ρWiRates+ νi, νi ∼ N(0, τi), τi > 0,

log(τi) = γ0 + γ1IBNi (2.27)

Table 2.7 reports the results from the fitting of the model in equation (2.27). The
DIC = 308.0 and WAIC = 299.1 values from the fitting of this model are quite similar to
those obtained when fitting the spatial conditional normal Poisson model and, therefore,
this does not result in a significant improvement in the model’s fitting. However, we
believe that there are some very interesting features that can be noticed from these two
fittings. On the one hand, the mean of the estimated coefficient for the variable IBN in
the dispersion model was γ̂1 = 0.0430(0.0145) and, according to its 95% credible interval,
this variable is statistically significant, which could indicate that the dispersion varies
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according to the variable IBN in such a way that in regions where the percentage of
the population not having basic services satisfactorily attended is larger, the dispersion
increases. On the other hand, the spatial parameter estimate in the mean model has a
mean with a positive value of ρ̂ = 0.0431(0.0093) and, in addition, according to its 95%
credible interval, it is also statistically significant. The significance of ρ constitutes a
clear evidence for the presence of positive spatial autocorrelation, which is appropriately
captured by the fitting of this model. Taking these facts into consideration, the fitting
of these generalized spatial conditional models would be well justified. Besides being
able to model the spatial dependence in the data, it also explains their nonconstant
dispersion.

Table 2.7: Parameter estimates, standard deviations and 95% credible intervals in
parenthesis for the parameters in the models, and DIC and WAIC values, for the gener-
alized spatial conditional normal Poisson model fitted to the Colombian infant mortality
rates data set.

µ Intercept - β ρ τ Intercept - γ0 IBN

Mean -4.9262 0.0431 -4.2186 0.0430
SD (0.2275) (0.0093) (0.6165) (0.0145)
CI (-5.3620,-4.4780) (0.0249,0.0608) (-5.4200,-2.9998) (0.0161,0.0727)

DIC= 308.0 WAIC= 299.1

As part of the posterior predictive checks required to better assess the fit of a model,
Figure 2.5 includes the scatterplots for the observed mortality rates versus the predicted
mortality rates for some of the fitted models. From the plots in Figures 2.5(a) and 2.5(b),
we can mention that the spatial conditional normal Poisson models in equations (2.25)
and (2.26) show high accuracy in the prediction of mortality rates for observed rates
under 40 whereas, for some of the values larger than 40, predictions slightly deviate from
the observed values. The scatterplot included in Figure 2.5(c) for the generalized spatial
conditional normal Poisson model in equation (2.27) shows a considerable improvement,
mainly because values of the mortality rates larger than 40 are now more accurately
predicted.
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(a) Spatial conditional nor-
mal Poisson model in equation
(2.25) fitted in OpenBUGS.

(b) Spatial conditional nor-
mal Poisson model in equation
(2.26) fitted in OpenBUGS.

(c) Generalized spatial condi-
tional normal Poisson model in
equation (2.27) fitted in Open-
BUGS.

Figure 2.5: Scatterplots for the observed versus the predicted rates obtained from
some of the models fitted to the Colombian infant mortality rates data set, fitted in
OpenBUGS.

Finally, Figure 2.6 includes histograms of the posterior predictive distributions for
the means over replicated simulations of the mortality rates, estimated from the fitting of
the spatial conditional normal Poisson model in equation (2.25) (see Figure 2.6(a)) and
equation (2.26) (see Figure 2.6(b)), and for the generalized spatial conditional normal
Poisson model in equation (2.27) (see Figure 2.6(c)). Note that the dark blue vertical line
represents the value of the mean for the observed data. As we can see from these figures,
they show how the means of the replicated data vary with respect to the actual mean of
the observed values, a fact suggesting that the considered models offer an adequate fit
to the data set under study.
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(a) Spatial conditional normal Poisson
model in equation (2.25).

(b) Spatial conditional normal Poisson
model in equation (2.26).

(c) Generalized spatial conditional normal
Poisson model in equation (2.27).

Figure 2.6: Posterior predictive checks for some of the fitted models to the Colombia
infant mortality rates data set.

2.6.4 Comparisons to the BYM model

In order to be able to compare the performance between the previous models and the
BYM model, we have decided to select the best fitting model we have so far, which is the
spatial conditional normal Poisson model, and compare its fitting to that of the BYM
model. In order to do so, we have fitted the BYM model with regression structure given
by:
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log(µi) = log(NBi) + β0 + β1Violi + β2IBNi + β3Reci + β4Vaci + νi + ηi, (2.28)

where νi, i = 1, . . . , n, is a set of normally distributed random effects so that Var(νi) = τ ,
with τ > 0, and ηi, i = 1, . . . , n, is a set of spatially structured random effects following
an intrinsic CAR prior distribution, with variance parameter τη > 0. As in the previous
models, we assume noninformative normal priors for the regression parameters; that is,
N(0, 1×10−5) and, for the precision parameters ψ = 1/τ and ψη = 1/τη, we also assume
noninformative gamma G(1× 10−4, 1× 10−4) prior distributions. Finally, for the BYM
model, we assume the same first order neighbourhood structure as before.

The fitting of this model in OpenBUGS is very unstable, since it showed drastic
changes if we slightly changed the assumed values for the prior distributions, especially
in the estimated values for the variance parameter τη of the spatially structured random
effects. In addition, in most cases, the effective number of parameters resulted in negative
values, which could be a clear sign of conflict between the prior distribution and the data
(Spiegelhalter et al., 2002).

For the reasons we have just described here, and in order to be able to compare the
performance of both models when fitting them to the data set under study, we have
fitted both the spatial conditional normal Poisson and the BYM models in R-INLA,
by setting the same values for the prior distributions, so that more stable results were
provided. In particular, the regression structure specified for the conditional mean of
the spatial conditional normal Poisson model was:

log(µi) = log(NBi)+β0+β1Violi+β2IBNi+β3Reci+β4Vaci+ρWiRates+νi, (2.29)

where νi, i = 1, . . . , n, is a set of normally distributed random effects with Var(νi) = τ >
0. Results for the estimation of the spatial conditional normal Poisson model in equation
(2.29) are reported in Table 2.8, and those for the BYM model in equation (2.28) are
included in Table 2.9, as well as estimations of reduced versions of these models.
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Table 2.8: Parameter estimates, standard deviations and 95% credible intervals in parenthesis for the parameters in the models, and DIC and WAIC values
for the reduced versions of the spatial conditional normal Poisson model fitted in INLA to the Colombian infant mortality rates data set.

Intercept Viol IBN Rec Vac ρ τ

DIC= 307.3 Mean -4.8473 0.0087 0.0164 -8.938e-04 -0.0015 0.0148 0.0231
WAIC= 301.9 SD (0.3241) (0.0057) (0.0018) (5.425e-04) (0.0029) (0.0061) (0.0082)

CI (-5.4930,-4.2117) (-0.0024,0.0200) (0.0127,0.0200) (-0.0020,1.775e-04) (-0.0073,0.0043) (0.0028,0.0269) (0.0114,0.0433)

DIC= 307.7 Mean -4.5846 - 0.0165 -0.0011 -8.525e-04 0.0153 0.0243
WAIC= 302.3 SD (0.2806) - (0.0019) (5.295e-04) (0.0030) (0.0062) (0.0084)

CI (-5.1419,-4.0332) - (0.0128,0.0202) (-0.0022,-1.062e-04) (-0.0067,0.0051) (0.0031,0.0276) (0.0123,0.0450)

DIC= 307.4 Mean -5.1410 0.0116 0.0158 - -8.776e-04 0.0185 0.0250
WAIC= 301.9 SD (0.2810) (0.0056) (0.0019) - (0.0030) (0.0058) (0.0086)

CI (-5.7002,-4.5905) (6.159e-04,0.0227) (0.0121,0.0195) - (-0.0068,0.0051) (0.0070,0.0301) (0.0127,0.0461)

DIC= 306.9 Mean -4.9464 0.0083 0.0166 -8.587e-04 - 0.0149 0.0224
WAIC= 301.5 SD (0.2573) (0.0055) (0.0018) (5.312e-04) - (0.0060) (0.0078)

CI (-5.4577,-4.4400) (-0.0026,0.0193) (0.0130,0.0201) (-0.0019,1.898e-04) - (0.0030,0.0267) (0.0113,0.0416)

DIC= 307.9 Mean -4.8797 - 0.0158 - 3.763e-04 0.0208 0.0285
WAIC= 302.3 SD (0.2624) - (0.0020) - (0.0031) (0.0060) (0.0095)

CI (-5.4002,-4.3646) - (0.0118,0.0197) - (-0.0058,0.0066) (0.0089,0.0328) (0.0148,0.0516)

DIC= 307.3 Mean -4.6489 - 0.0166 -0.0011 - 0.0153 0.0234
WAIC= 302.0 SD (0.1671) - (0.0018) (5.120e-04) - (0.0061) (0.0080)

CI (-4.9791,-4.3188) - (0.0130,0.0202) (-0.0021,-1.139e-04) - (0.0033,0.0274) (0.0120,0.0429)

DIC= 307.1 Mean -5.1920 0.0113 0.0160 - - 0.0184 0.0241
WAIC= 301.6 SD (0.2149) (0.0054) (0.0018) - - (0.0058) (0.0081)

CI (-5.6190,-4.7698) (6.868e-04,0.0220) (0.0124,0.0195) - - (0.0071,0.0298) (0.0124,0.0439)

DIC= 307.6 Mean -4.8535 - 0.0157 - - 0.0209 0.0272
WAIC= 302.3 SD (0.1475) - (0.0019) - - (0.0059) (0.0089)

CI (-5.1451,-4.5630) - (0.0120,0.0195) - - (0.0093,0.0326) (0.0143,0.0490)
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Table 2.9: Parameter estimates, standard deviations and 95% credible intervals in parenthesis for the parameters in the models, and DIC and WAIC values
for the reduced versions of the BYM model fitted in INLA to the Colombian infant mortality rates data set.

Intercept Viol IBN Rec Vac τ τη

DIC= 307.9 Mean -4.4748 0.0067 0.0173 -0.0010 -9.456e-04 0.0224 0.0260
WAIC= 302.7 SD (0.3265) (0.0073) (0.0021) (6.144e-04) (0.0031) (0.0141) (0.0251)

CI (-5.1240,-3.8324) (-0.0082,0.0207) (0.0132,0.0213) (-0.0022,1.819e-04) (-0.0070,0.0051) (0.0073,0.0601) (0.0014,0.0910)

DIC= 308.0 Mean -4.2825 - 0.0174 -0.0010 -4.280e-04 0.0185 0.0356
WAIC= 303.2 SD (0.2439) - (0.0020) (6.309e-04) (0.0030) (0.0123) (0.0305)

CI (-4.7664,-3.8020) - (0.0133,0.0214) (-0.0023,2.147e-04) (-0.0062,0.0055) (0.0052,0.0514) (0.0044,0.1147)

DIC= 307.9 Mean -4.5923 0.0058 0.0169 - 1.905e-04 0.0128 0.0668
WAIC= 302.8 SD (0.3326) (0.0082) (0.0022) - (0.0030) (0.0095) (0.0477)

CI (-5.2487,-3.9345) (-0.0106,0.0216) (0.0125,0.0211) - (-0.0056,0.0060) (0.0024,0.0377) (0.0166,0.1946)

DIC= 307.5 Mean -4.5267 0.0061 0.0174 -9.647e-04 - 0.0199 0.0302
WAIC= 302.3 SD (0.2620) (0.0071) (0.0020) (5.953e-04) - (0.0129) (0.0267)

CI (-5.0379,-4.0010) (-0.0084,0.0199) (0.0133,0.0213) (-0.0021,1.967e-04) - (0.0061,0.0544) (0.0028,0.0991)

DIC= 307.9 Mean -4.4211 - 0.0171 - 5.190e-04 0.0097 0.0742
WAIC= 303.1 SD (0.2248) - (0.0021) - (0.0028) (0.0076) (0.0503)

CI (-4.8694,-3.9808) - (0.0129,0.0212) - (-0.0050,0.0062) (0.0014,0.0295) (0.0214,0.2088)

DIC= 307.6 Mean -4.3162 - 0.0174 -9.695e-04 - 0.0170 0.0367
WAIC= 302.9 SD (0.0889) - (0.0020) (6.078e-04) - (0.0113) (0.0301)

CI (-4.4904,-4.1392) - (0.0135,0.0213) (-0.0022,2.002e-04) - (0.0047,0.0470) (0.0055,0.1151)

DIC= 307.6 Mean -4.5740 0.0057 0.0168 - - 0.0114 0.0668
WAIC= 302.7 SD (0.2781) (0.0079) (0.0021) - - (0.0085) (0.0467)

CI (-5.1153,-4.0184) (-0.0102,0.0211) (0.0126,0.0209) - - (0.0020,0.0337) (0.0175,0.1914)

DIC= 307.6 Mean -4.3831 - 0.0170 - - 0.0091 0.0718
WAIC= 303.8 SD (0.0794) - (0.0020) - - (0.0071) (0.0475)

CI (-4.5384,-4.2244) - (0.0129,0.0210) - - (0.0013,0.0275) (0.0212,0.1992)
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If we compare the results from the fitting of the spatial conditional normal Poisson
model in OpenBUGS in Table 2.3 with the one in INLA in Table 2.8, we can see that
reported results are quite similar. In some cases, the means of the estimated parame-
ters only differ in the third decimal place and, only for very few cases, in the second
decimal place. This also occurs for the estimations of the variance parameter for the
random effects, where we can only observe differences for some cases in the third decimal
place. Even though the estimations are very similar, it must be emphasized that the
computation time that R-INLA used for the fitting of each one of the models reported
in Table 2.8 was much smaller than the one used by OpenBUGS for the same model.
With regard to the information criteria values for the fitted models (i.e., the DIC and
WAIC values) reported in Table 2.9 for the BYM model, as well as those reported in
Table 2.8 for the spatial conditional normal Poisson model, we can see that the WAIC
values indicate a moderately better fit for the spatial conditional normal Poisson model
whereas differences in the DIC values are minimal and do not favour any of these models
in particular. Comparison between the performance of the spatial conditional normal
Poisson and the BYM fitted models can be better explored in Figure 2.7 (Figures 2.7(a),
2.7(b), 2.7(c) and 2.7(d)), where scatterplots of the observed versus the estimated values
obtained from the fitting of some of the reduced versions of these models are shown. In
addition, there are certain points about the fitting of the BYM model that are worth
being mentioned.

For the BYM models reported in Table 2.9, the estimated variance parameters for
both the spatially correlated and the uncorrelated random effects show overall quite large
standard deviations. For instance, in the case of the model with regression structure
given by equation (2.28), the estimated variance parameters for the random effects were
τ̂η = 0.0260(0.0251) and τ̂ = 0.0224(0.0141), making it difficult to interpret them,
especially to explain the spatial dependence or the extra-variability present in the data.
This also occurs for the model containing only the explanatory variables IBN and Rec,
where the means of the estimated variance parameters were τ̂η = 0.0367(0.0301) and
τ̂ = 0.0170(0.0113), respectively.

In any case, all of the BYM fitted models resulted in larger means for the variance
parameter estimates τη for the spatially structured random effects than those obtained
for the means for the estimates of the variance parameter τ for the uncorrelated effects.
These results may be a sign indicating that fits of the BYM model for this data are
probably giving more importance to the spatial structure assumed by the intrinsic CAR
prior for the spatial effects than to the extra-variability represented by the unstructured
effects, a fact that will be closer examined when fitting the BYM2 model in the next
section. Nevertheless, we have not been able to obtain information about the strength,
or even the type of the spatial association from the estimations in this model.

Another issue that we believe is important to mention relates to the interpretation
of significance for the estimated coefficients of the regression parameters obtained when
fitting the BYM models. According to the 95% credible intervals, the coefficient for the
variable IBN is the only one that is statistically significant for each one of the reported
models, whereas in the spatial conditional normal Poisson, the variables Rec and Viol
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were statistically significant for some cases. Hence, regarding the explanatory variables,
a direct interpretation of their statistical significance according to their credible intervals
on infant mortality rates can only be made for the variable IBN.

We have also computed the marginal effects at the means for the explanatory vari-
ables in some of the fitted BYM models, which are reported in Table 2.10. All of the
values reported there appear to be quite small, consistent with the values for the marginal
effects at the means obtained from the fitting of the spatial conditional normal Poisson
models in OpenBUGS, reported in Table 2.4 in Section 2.6.1. A difference to be noticed
in this case is that, according to their 95% credible intervals, the effects for the variables
Rec and Viol are not statistically significant for some of the models. For instance, the
effect of the variable Viol is not significant in any of the models, and the effect of variable
Rec is not significant for the BYM model.

Table 2.10: Marginal effects at the means for some of the models fitted in INLA to the
Colombian infant mortality rates data set.

Mean SD 95% CI

Spatial conditional IBN 3.9685E-04 (4.3591E-05) (3.2026E-04,4.7638E-04)
normal Poisson Rec -2.7963E-05 (1.0940E-05) (-5.1158E-05,-9.1056E-06)
model in equation (2.25)

Spatial conditional Viol 2.6068E-04 (1.3455E-04) (-9.9128E-06,4.9089E-04)
normal Poisson IBN 3.7788E-04 (4.1759E-05) (2.9543E-04,4.5364E-04)
model in equation (2.26)

BYM model including the IBN 4.1873E-04 (8.2243E-05) (2.8326E-04,6.0400E-04 )
variables IBN and Rec Rec -2.2106E-05 (1.5282E-05) (-5.3930E-05,6.3359E-06)

BYM model including the Viol 1.3015E-04 (1.7143E-04) (-2.0407E-04,4.5079E-04)
variables Viol and IBN IBN 4.1280E-04 (9.3347E-05) (2.6677E-04,6.2640E-04)

As a simple visual way of comparing the performance of the spatial conditional
normal Poisson and the BYM models fitted in INLA, we can examine the scatterplots of
the observed versus the predicted values obtained from the fitting of some of the reduced
versions of these models, specifically comparing Figures 2.7(a) and 2.7(b) with Figures
2.7(c) and 2.7(d), respectively. These plots suggest that there are no major differences
in the fitting of these two models to this data in terms of predictive accuracy.

From the issues mentioned above, we believe that, for the application considered
here, the spatial conditional normal Poisson model may be a better option to model
spatial count data following a Poisson distribution when compared to the BYM model.
However, leaving aside the fact that there were some serious issues that emerged when
fitting the BYM model with the MCMC approach, when fitting them in INLA the DIC
and WAIC values were quite similar for both models. Moreover, the spatial conditional
normal Poisson model provided information about the type and strength of the spatial
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autocorrelation that is present in the data, information that could not be obtained from
the fitting of the BYM model. Nevertheless, it is essential that we remember that the
true model is not known, nor are the true values of the strength of the spatial association
or the real overdispersion parameter.

2.6.5 Comparisons to the BYM2 model

Furthermore, we would like to explore the possibilities that the recently developed BYM2
model offers, given that it allows us to overcome the issue of nonidentifiability in the
BYM model. In order to do so, we have fitted the BYM2 model with regression structure
given by:

log(µi) = log(NBi) + β0 + β1Violi + β2IBNi + β3Reci + β4Vaci

+
1

√
τs

(√
1− ϕsνi +

√
ϕsηi

)
,

(2.30)

where νi, i = 1, . . . , n, is assumed to be a set of normally distributed random effects with
a scaled variance approximately equal to one, and ηi, i = 1, . . . , n, is a set of spatially
structured random effects following an intrinsic CAR prior distribution, each one also
with scaled variance approximately equal to one. The unknown precision parameter
τs captures the variance contribution from the sum of the two random effects, and the
mixing parameter ϕs controls for the variance contribution of the spatially structured
effect η = (η1, . . . , ηn)

⊤, whereas the variance contribution of the unstructured random
effect ν = (ν1, . . . , νm)⊤ is explained by 1− ϕs.

As in the previous models, we assume noninformative normal priors for the regression
parameters; that is, N(0, 1×10−5). For the precision and mixing parameters, complexity
priors are specified when following the approach by Simpson et al. (2017). That is, we
assume the probability statement that Prob(1/

√
τs > U) = α for the parameter τs.

By considering an upper bound for the marginal standard deviation of 0.2, and using
the rule of thumb from the aforementioned proposed approach, we can set U = 0.2/31
and α = 0.01. As for the mixing parameter ϕs, we can specify that Prob(ϕs < 0.5) =
2/3, which would represent the initial assumption that the proportion of the variability
captured by the unstructured random effect ν is larger than the one explained by the
spatially structured effect η.

Table 2.11 reports the results for the estimation of the BYM2 model in equation
(2.30), as well as some of its reduced versions. As can be seen, most of the estimations
obtained for the regression parameters by fitting the BYM2 model are quite similar to
those obtained by fitting the BYM model reported in Table 2.9 and, in addition, there
are no improvements in the information criteria values for any of the fitted models. The
parameter ϕs, associated to the amount of variability captured by the spatial structure
considered in the model, explains more than 30% of the variability in all the fitted
models. For instance, for the model in equation (2.30), this parameter’s estimate was
ϕ̂s = 0.3091(0.2219). In some cases, such as for the model including the variables IBN
and Vac, and the model only including the variable IBN, the variance explained by the
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spatial effect was more than 50% of the total variability. Therefore, in our view, the
main advantage that the BYM2 model offers over the BYM model is the possibility of
identifying the spatially structured and the overdispersion effects separately. Moreover,
the results obtained show the importance of taking into account the spatial dependence
in the data in the sense that it may be explaining a large portion of the overdispersion
in the data.

In addition, Table 2.12 includes the estimated marginal effects at the means for some
of the fitted BYM2 models. The values obtained for these effects are quite small and
greatly resemble those obtained from the BYM models previously fitted and reported in
Table 2.10.

Figures 2.7(e) and 2.7(f) show the scatterplots of the observed versus the predicted
values of infant mortality rates obtained from the fitting of some of the reduced versions
of the BYM2 model in equation (2.30). If we compare these plots to the ones from
Figures 2.7(c) and 2.7(d), respectively, no significant differences can be seen. Hence,
there are no improvements in terms prediction accuracy in the fitting of the BYM2 over
the previously fitted BYM models that can be reported.

Finally, in order to illustrate the performance of the fitted models, Figure 2.8 includes
maps of the observed infant mortality rates (i.e., variable Rates, see Figure 2.8(a)) and
of the estimated mortality rates obtained by fitting some of the models considered here.
As can be seen, the maps of the estimated mortality rates obtained by fitting the spatial
conditional normal Poisson model in equation (2.25) (see Figure 2.8(b)) and equation
(2.26) (see Figure 2.8(c)) in OpenBUGS, and for the generalized spatial conditional
normal Poisson model in equation (2.27) (see Figure 2.8(d)) suggest that these three
models, presented in Sections 2.6.1 and in 2.6.3, provided similar estimations of the
mortality rates and, in addition, that their fitted values maps are almost identical to the
map for the observed values in Figure 2.8(a).

This fact is consistent with their observed versus predicted mortality rates scatter-
plots (see Figure 2.7). Moreover, the maps for the spatial conditional normal Poisson
models considered above, fitted in INLA (see Figures 2.8(e) and 2.8(f), respectively) also
appear to be very similar to the map for the observed rates in Figure 2.8(a).

The scatterplots of the observed versus the predicted values of infant mortality rates
obtained from the fitting of the BYM (see Figures 2.7(c) and 2.7(d)) and BYM2 models
(see Figures 2.7(e) and 2.7(f)) showed no distinguishable differences in the prediction
accuracy of infant mortality rates, if we compare them with those obtained from the
fitting of the spatial conditional normal Poisson (see Figures 2.7(a) and 2.7(b)). However,
the maps for the BYM model including the variables IBN and Rec (see Figure 2.8(g)),
and for the BYM model including the variables Viol and IBN (see Figure 2.8(h)) differ
from the map of the observed rates in some of the regions. These discrepancies are also
displayed between the observed values (see Figure 2.8(a)) and the predicted values for
infant mortality rates obtained from the fitting of the BYM2 models considered here
(see Figures 2.8(i) and 2.8(j)). These facts seem to suggest that we have not been able
to correctly predict the mortality rates in some cases with the fitted BYM and BYM2
models analysed here.
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Table 2.11: Parameter estimates, standard deviations and 95% credible intervals in parenthesis for the parameters in the models, and DIC and WAIC values
for the reduced versions of the BYM2 model fitted in INLA to the Colombian infant mortality rates data set.

Intercept Viol IBN Rec Vac τs ϕs

DIC= 307.9 Mean -4.4738 0.0065 0.0174 -0.0010 -9.460e-04 41.1961 0.3091
WAIC= 302.8 SD (0.3207) (0.0071) (0.0020) (5.859e-04) (0.0030) (13.8614) (0.2219)

CI (-5.1130,-3.8447) (-0.0076,0.0203) (0.0134,0.0213) (-0.0022,1.373e-04) (-0.0069,0.0051) (20.1835,74.0994) (0.0221,0.8088)

DIC= 308.0 Mean -4.2823 - 0.0176 -0.0011 -4.666e-04 41.5126 0.3569
WAIC= 303.2 SD (0.2433) - (0.0020) (5.976e-04) (0.0030) (13.7300) (0.2215)

CI (-4.7656,-3.8043) - (0.0137,0.0215) (-0.0023,1.069e-04) (-0.0063,0.0054) (20.5930,74.0187) (0.0398,0.8267)

DIC= 308.0 Mean -4.6458 0.0071 0.0171 - 1.062e-04 36.8669 0.4602
WAIC= 302.9 SD (0.3236) (0.0078) (0.0021) - (0.0030) (11.9851) (0.2285)

CI (-5.2871,-4.0082) (-0.0085,0.0223) (0.0129,0.0213) - (-0.0058,0.0061) (18.4969,65.1399) (0.0785,0.8865)

DIC= 307.5 Mean -4.5308 0.0061 0.0175 -9.745e-04 - 42.3246 0.3228
WAIC= 302.4 SD (0.2543) (0.0069) (0.0019) (5.695e-04) - (13.9432) (0.2248)

CI (-5.0311,-4.0251) (-0.0077,0.0196) (0.0136,0.0213) (-0.0021,1.411e-04) - (21.0400,75.2899) (0.0248,0.8194)

DIC= 307.9 Mean -4.4388 - 0.0174 - 5.961e-04 36.9526 0.5309
WAIC= 303.1 SD (0.2290) - (0.0021) - (0.0029) (11.7748) (0.2105)

CI (-4.8969,-3.9920) - (0.0133,0.0215) - (-0.0051,0.0064) (18.7905,64.6248) (0.1449,0.9035)

DIC= 307.7 Mean -4.3186 - 0.0176 -0.0010 - 42.9158 0.3669
WAIC= 302.9 SD (0.0875) - (0.0019) (5.775e-04) - (13.9586) (0.2228)

CI (-4.4904,-4.1447) - (0.0138,0.0214) (-0.0022,9.322e-05) - (21.5381,75.8693) (0.0429,0.8340)

DIC= 307.7 Mean -4.6340 0.0070 0.0171 - - 38.2786 0.4719
WAIC= 302.7 SD (0.2675) (0.0075) (0.0020) - - (12.3129) (0.2283)

CI (-5.1549,-4.0989) (-0.0081,0.0217) (0.0131,0.0211) - - (19.3509,67.2822) (0.0845,0.8923)

DIC= 307.7 Mean -4.3948 - 0.0173 - - 38.4058 0.5440
WAIC= 303.1 SD (0.0788) - (0.0020) - - (12.1547) (0.2094)

CI (-4.5496,-4.2380) - (0.0133,0.0212) - - (19.6255,66.9478) (0.1539,0.9095)
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Table 2.12: Marginal effects at the means for some of the BYM2 models fitted in INLA
to the Colombia infant mortality rates data set.

Mean SD 95% CI

BYM2 model including the IBN 4.1877E-04 (4.2850E-05) (3.4240E-04,4.9881E-04)
variables IBN and Rec Rec -2.4443E-05 (1.4208E-05) (-4.9394E-05,7.8678E-07)

BYM2 model including the Viol 1.6102E-04 (1.6771E-04) (-2.1457E-04,4.3999E-04)
variables Viol and IBN IBN 4.1087E-04 (5.0080E-05) (3.1157E-04,5.0627E-04)

(a) Spatial conditional nor-
mal Poisson model in equation
(2.25) fitted in INLA.

(b) Spatial conditional nor-
mal Poisson model in equation
(2.26) fitted in INLA.

(c) BYM model including the
variables IBN and Rec fitted in
INLA.

(d) BYM model including the
variables Viol and IBN fitted in
INLA.

(e) BYM2 model including the
variables IBN and Rec fitted in
INLA.

(f) BYM2 model including the
variables Viol and IBN fitted in
INLA.

Figure 2.7: Scatterplots for the observed versus the predicted rates obtained from some
of the models fitted to the Colombian infant mortality rates data set, fitted in INLA.

49



(a) Observed infant mortality
rates.

(b) Spatial conditional nor-
mal Poisson model in equation
(2.25) fitted in OpenBUGS.

(c) Spatial conditional nor-
mal Poisson model in equation
(2.26) fitted in OpenBUGS.

(d) Generalized spatial condi-
tional normal Poisson model in
equation (2.27) fitted in Open-
BUGS.

(e) Spatial conditional nor-
mal Poisson model in equation
(2.25) fitted in INLA.

(f) Spatial conditional nor-
mal Poisson model in equation
(2.26) fitted in INLA.

(g) BYM model including the
variables the IBN and Rec fit-
ted in INLA.

(h) BYM model including the
variables the Viol and IBN fit-
ted in INLA.

(i) BYM2 model including the
variables the IBN and Rec fit-
ted in INLA.

Figure 2.8: Maps for the observed and estimated mortality rates obtained from some
of the models fitted to the Colombian infant mortality rates data set.
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(j) BYM2 model including the
variables the Viol and IBN fit-
ted in INLA.

Figure 2.8: Maps for the observed and estimated mortality rates obtained from some
of the models fitted to the Colombian infant mortality rates data set (Continued).

2.7 Application to mother’s postnatal period screening
test in Colombia

As in the the case of the study of infant mortality data from the previous section, the
data that will be analysed here has also been extracted from the National Statistics
Department of Colombia. It consists of observations of multiple variables for each one
of the 32 departments or regions in that country, which include the number of women
who gave birth to their last child between the years 1999 and 2005 and went through a
postnatal period screening test (i.e., variable Nscreen), the number of women who has
their last child after 1999 (i.e., variable NMothers), the percentage of women who had
to pay for their postnatal check-up (i.e., variable Pay), the percentage of women over
18 years old who declared to have suffered physical violence from their current partners
(i.e., variable Viol), the percentage of young people (between 18 and 24 years) who
had access to a higher educational level (i.e., variable HE) and the percentage of the
population that had basic services not being satisfactorily attended to for the year 2005
(i.e., variable IBN). These variables can be examined in more detail by consulting some
of their descriptive statistics, shown in Table 2.13.

Table 2.13: Descriptive statistics for the variables available in the study of the mother’s
postnatal period screening test in Colombia.

Nscreen NMothers Viol IBN HE Pay

Median 38.50 56.00 35.87 35.55 13.85 5.12
Mean 118.06 191.09 34.73 37.99 15.69 6.93
SD 192.16 296.61 5.64 17.15 10.52 6.32
Minimum 12.00 22.00 22.58 9.20 1.30 0.78
Maximum 672.00 993.00 44.69 79.20 52.20 27.28

This data set is a variant of the one analysed by Quintero-Sarmiento, Cepeda-Cuervo
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and Núñez-Antón (2012) and Cepeda-Cuervo, Córdoba and Núñez-Antón (2018), where
the authors fitted their proposed generalized spatial conditional models to the number
of women who gave birth to their last child between the years 1999 and 2005 and went
through a postnatal period screening test. In their analysis they found evidence of the
existence of overdispersion and positive spatial autocorrelation, issues that were properly
captured with the fitting of the proposed models. In addition, they identified significant
relations between the response variable and the variables IBN and Pay, which were
positive in the former case and negative in the latter.

In this section, we study the number of women who gave birth to their last child
between the years 1999 and 2005 and went through a postnatal period screening test,
represented by the variable Nscreen. We will assume a binomial distribution for this
response variable and we will fit the spatial conditional overdispersion models, previously
discussed in Section 2.3. The explanatory variables that we will include in the study
constitute relevant socio-economic indicators that can have a considerable impact on
this variable (Cepeda-Cuervo, Córdoba and Núñez-Antón, 2018).

In contrast to the software OpenBUGS, which was used for modelling infant mor-
tality rates in Section 2.6, here the models will be implemented by using the software
JAGS, which is also based on the MCMC approach. In the same manner as we did for
the Poisson case and as it was already explained in Section 2.6, for our Bayesian frame-
work, we will specify noninformative prior distributions for the parameters, assuming
independent normal distributions, N(0, 1× 105), for all the regression parameters; that
is, βj ∼ N(0, 1 × 105), j = 1, . . . , k, as well as for the spatial association parameter ρ.
As for the inverse of the dispersion parameters τ , ψ = 1/τ , gamma G(1×10−4, 1×10−4)
distributions were assumed in accordance with the sensitivity analysis performed in Sec-
tion 2.7.2. In any case, convergence of all the MCMC chains was achieved for all of the
parameters included in the proposed models after 10000 iterations, a burn in period of
5000 samples and considering a thinning parameter of 10.

The spatial distribution of the variable corresponding to the number of mothers who
went through a postnatal period screening test is shown in Figure 2.9. This map sug-
gests the presence of spatial autocorrelation, since large values of the variable appear
to be surrounded by similar values, which is also the case for small values. It is known
that regions that are closer in space may also share similar socio-economic characteris-
tics and, for the case for the proportion of mothers who underwent a postnatal period
screening test in Colombia, it is reasonable to believe that regions closer in space could
exhibit similar values of this variable. In fact, this hypothesis has been considered and
investigated before by other authors that have analysed a similar version of this data
set (Cepeda-Cuervo, Córdoba and Núñez-Antón, 2018). Consequently, this is an issue
which will be needed to be taken into account when modelling this variable.

For this purpose, we will consider the same spatial neighbourhood structure that was
defined in Section 2.6 for the study of infant mortality rates in Colombia. That is, a
spatial weights matrix W following the first order contiguity criteria and standardized
by rows. This matrix will be employed to obtain the spatial term which will be included
in the regression structures for the spatial conditional models we will specify. We can
define the spatial term corresponding to the i-th region in the following way:

Ai =
π̂∼i

1− π̂∼i
, with π̂∼i =

WiNscreen

WiNmothers
, (2.31)

whereWi the i-th row of spatial weights matrixW andNscreen andNmothers are the
vectors of the observations of the response variable Nscreen and the variable Nmothers,
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which represents the number of trials on each area, respectively. Note that WiNscreen
and WiNmothers are the spatial lags of the variables Nscreen and Nmothers, respec-
tively, for the i-th area.

Figure 2.9: Spatial distribution of the number of women who gave birth to their last
child between the years 1999 and 2005 and went through a postnatal period screening
test in Colombia, by department.

2.7.1 Fitting of the spatial conditional overdispersion models

Our main objective in this study is to model the number of mothers who went through a
postnatal period screening test (i.e., variable Nscreen) on each department of Colombia,
taking into account overdispersion and the spatial association that might exist. We start
by fitting a binomial model and considering that the variable Nscreen follows a binomial
distribution, where the number of trials on each region is given by the number of women
who gave birth in each of the regions (i.e., variable NMothers). That is, we assume that
Nscreeni ∼ Bin(NMothersi, πi), where πi follows the regression model:

logit(πi) = β0 + β1Violi + β2IBNi + β3HEi + β4Payi (2.32)

The results for the fitting of this model to the mother’s postnatal period screening
test data in Colombia are included in Table 2.14, where the means of the parameter
estimates, its standard deviations and its 95% credible intervals are included as well.
The information criteria values obtained for this model were DIC = 269.3 and WAIC =
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251.1. Based on the estimations for the regression coefficients for this model, we can see
that the two variables Viol and Pay are significant, since the value zero is not contained
in their 95% credible intervals, whereas the variables IBN and HE are not. However,
in this model, the possible existence of overdispersion is not being taken into account
and, hence, any inference process performed on the estimated parameters might not be
reliable.

Therefore, with the aim of addressing the possible overdispersion, on the one hand,
we have fitted the beta binomial model where we assume that πi also follows the model
in equation (2.32) and on the other hand, we have fitted the normal binomial model
where πi follows the regression structure:

logit(πi) = β0 + β1Violi + β2IBNi + β3HEi + β4Payi + νi, νi ∼ N(0, τ), τ > 0 (2.33)

The information criteria values were DIC = 228.2 and WAIC = 204.9 for the normal
binomial model and DIC = 233.5 and WAIC = 229.7 for the beta binomial model, a fact
which suggests that the former model provides a better fit than the latter, and that the
initial binomial model. Furthermore, it should be noted that, for both of these models,
the only variable that seems to be statistically significant is Pay.

In order to be able to capture the possible existing spatial correlation in the data, we
have also considered the spatial conditional binomial and beta binomial models, where
the probability of success follows the regression model:

logit(πi) = β0 + β1Violi + β2IBNi + β3HEi + β4Payi + ρAi (2.34)

The spatial conditional binomial produced information criteria values of DIC = 264.3
and WAIC = 250.6 and, for the spatial conditional beta binomial these values were DIC
= 231.1 and WAIC = 230.7. Furthermore, we have fitted the spatial conditional normal
binomial model, where πi follows the regression model:

logit(πi) = β0+β1Violi+β2IBNi+β3HEi+β4Payi+ρAi+νi, νi ∼ N(0, τ), τ > 0 (2.35)

For this model, the information criteria values were DIC = 224.1 and WAIC = 203.4,
which are the smallest values obtained from all the models fitted so far. Therefore, we
could consider that the best fitting model for this data set is the spatial conditional
normal binomial model and, consequently, we have performed a variable selection process
on this model by taking into account different combinations of the variables we have used
as covariates. The resulting estimates and information criteria values for some of these
model fittings are included in Table 2.15.
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Table 2.14: Parameter estimates, standard deviations and 95% credible intervals in parenthesis for the parameters in the models, and DIC and WAIC values
for the different models fitted to the mother’s postnatal period screening test in Colombia data set.

Binomial Spatial conditional
Binomial

Normal binomial Spatial conditional
normal binomial

Beta binomial Spatial conditional
beta binomial

Intercept Mean 2.0585 1.7271 2.0079 1.7248 2.0796 1.7643
SD (0.3021) (0.3183) (0.6133) (0.6542) (0.7664) (0.6271)
CI (1.4525,2.6266) (1.1212,2.3306) (0.8613,3.2419) (0.4011,2.8948) (0.5076,3.5343) (0.5409,3.0216)

Viol Mean -0.0325 -0.0336 -0.0301 -0.0321 -0.0324 -0.0333
SD (0.0078) (0.0074) (0.0173) (0.0169) (0.0204) (0.0165)
CI (-0.0479,-0.0170) (-0.0481,-0.0196) (-0.0629,0.0036) (-0.0660,5.533e-05) (-0.0709,0.0089) (-0.0667,-0.0026)

IBN Mean -0.0017 -0.0042 -0.0058 -0.0085 -0.0058 -0.0083
SD (0.0027) (0.0028) (0.0065) (0.0067) (0.0063) (0.0067)
CI (-0.0075,0.0032) (-0.0092,0.0017) (-0.0195,0.0065) (-0.0221,0.0040) (-0.0186,0.0065) (-0.0212,0.0043)

HE Mean -9.094e-04 -0.0035 0.0034 1.155e-04 0.0032 7.649e-04
SD (0.0058) (0.0060) (0.0101) (0.0102) (0.0103) (0.0099)
CI (-0.0120,0.0105) (-0.0150,0.0079) (-0.0147,0.0238) (-0.0205,0.0211) (-0.0171,0.0236) (-0.0178,0.0210)

Pay Mean -0.0604 -0.0496 -0.0547 -0.0439 -0.0546 -0.0453
SD (0.0087) (0.0091) (0.0182) (0.0181) (0.0195) (0.0193)
CI (-0.0774,-0.0438) (-0.0675,-0.0326) (-0.0911,-0.0196) (-0.0790,-0.0093) (-0.0904,-0.0147) (-0.0835,-0.0085)

ρ Mean - 0.2797 - 0.2818 - 0.2758
SD - (0.1132) - (0.1972) - (0.1932)
CI - (0.0546,0.5107) - (-0.1010,0.6857) - (-0.1224,0.6478)

τ Mean - - 0.0865 0.0844 0.0209 0.0196
SD - - (0.0471) (0.0415) (0.0111) (0.0101)
CI - - (0.0255,0.2046) (0.0250,0.1875) (0.0056,0.0479) (0.0050,0.0425)

DIC 269.3 264.3 228.2 224.1 233.5 231.1
WAIC 251.1 250.6 204.9 203.4 229.7 230.7
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Table 2.15: Parameter estimates, standard deviations and 95% credible intervals in parenthesis for the parameters in the models, and DIC and WAIC values
for some of the reduced versions of the spatial conditional normal binomial model fitted to the mother’s postnatal period screening test in Colombia data set.

Intercept Viol IBN HE Pay ρ τ

DIC = 224.1 Mean 1.7248 -0.0321 -0.0085 1.155e-04 -0.0439 0.2818 0.0844
WAIC = 203.4 SD (0.6542) (0.0169) (0.0067) (0.0102) (0.0181) (0.1972) (0.0415)

CI (0.4011,2.8948) (-0.0660,5.533e-05) (-0.0221,0.0040) (-0.0205,0.0211) (-0.0790,-0.0093) (-0.1010,0.6857) (0.0250,0.1875)
DIC = 222.8 Mean 0.7053 - -0.0133 -0.0030 -0.0230 0.2742 0.0992
WAIC = 203.4 SD (0.4150) - (0.0064) (0.0102) (0.0160) (0.2161) (0.0491)

CI (-0.1183,1.4949) - (-0.0264,-7.395e-04) (-0.0214,0.0174) (-0.0541,0.0085) (-0.1274,0.6890) (0.0334,0.2191)
DIC = 227.1 Mean 1.7818 -0.0407 - 0.0100 -0.0608 0.2002 0.0812
WAIC = 206.1 SD (0.6678) (0.0161) - (0.0073) (0.0142) (0.1840) (0.0418)

CI (0.4833,3.0527) (-0.0730,-0.0092) - (-0.0035,0.0249) (-0.0871,-0.0340) (-0.1514,0.5658) (0.0239,0.1789)
DIC = 224.5 Mean 1.7497 -0.0325 -0.0085 - -0.0444 0.2789 0.0796
WAIC = 203.6 SD (0.6515) (0.0161) (0.0046) - (0.0166) (0.1988) (0.0399)

CI (0.4700,3.0422) (-0.0632,-1.691e-04) (-0.0182,-2.344e-04) - (-0.0762,-0.0121) (-0.0990,0.6595) (0.0247,0.1743)
DIC = 218.9 Mean 0.8216 -0.0073 -0.0188 -0.0103 - 0.4715 0.1191
WAIC = 202 SD (0.5957) (0.0144) (0.0058) (0.0098) - (0.2089) (0.0551)

CI (-0.3290,2.0118) (-0.0362,0.0208) (-0.0312,-0.0084) (-0.0298,0.0084) - (0.0589,0.8763) (0.0473,0.2483)
DIC = 215.7 Mean 0.4952 -0.0050 -0.0158 - - 0.4629 0.1250
WAIC = 200.5 SD (0.5031) (0.0149) (0.0048) - - (0.2083) (0.0488)

CI (-0.4708,1.5224) (-0.0345,0.0238) (-0.0264,-0.0069) - - (0.0680,0.8681) (0.0530,0.2469)
DIC = 234.0 Mean 1.9690 -0.0425 - - -0.0586 0.1964 0.0788
WAIC = 208.3 SD (0.6362) (0.0157) - - (0.0143) (0.1799) (0.0438)

CI (0.7487,3.3148) (-0.0751,-0.0134) - - (-0.0875,-0.0310) (-0.1498,0.5387) (0.0188,0.1761)
DIC = 220.3 Mean 0.6352 - -0.0124 - -0.0240 0.2708 0.0934
WAIC = 203.1 SD (0.3468) - (0.0044) - (0.0133) (0.1980) (0.0435)

CI (-0.0425,1.3085) - (-0.0217,-0.0038) - (-0.0488,0.0024) (-0.1163,0.6472) (0.0319,0.1963)
DIC = 225.6 Mean 0.0882 -0.0103 - - - 0.4285 0.1839
WAIC = 204.6 SD (0.5424) (0.0166) - - - (0.2338) (0.0750)

CI (-0.9864,1.1713) (-0.0426,0.0228) - - - (-0.0088,0.8817) (0.0759,0.3797)
DIC = 216.3 Mean 0.3404 - -0.0154 - - 0.4389 0.1169
WAIC = 200.9 SD (0.3207) - (0.0046) - - (0.1879) (0.0493)

CI (-0.2835,0.9592) - (-0.0247,-0.0063) - - (0.0882,0.8050) (0.0494,0.2457)
DIC = 230.9 Mean 0.4649 - - - -0.0365 0.1064 0.1194
WAIC = 207.6 SD (0.3616) - - - (0.0133) (0.2026) (0.0557)

CI (-0.2507,1.1960) - - - (-0.0622,-0.0109) (-0.2870,0.5090) (0.0412,0.2495)
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The model including the two explanatory variables Viol and IBN and the model
including only the variable IBN could be considered as the best fitting models, taking
into account that their information criteria values are the smallest ones. First, we will
examine with more detail the spatial conditional normal binomial model with regression
structure for πi:

logit(πi) = β0 + β1Violi + β2IBNi + ρAi + νi, νi ∼ N(0, τ), τ > 0 (2.36)

This model produced information criteria values of DIC = 215.7 and WAIC = 200.5.
The estimated coefficient for the variable Viol was β̂1 = −0.0050 with a standard de-
viation of 0.0149. This variable is not statistically significant, as the value zero is con-
tained in its 95% credible interval. For the variable IBN the estimated coefficient was
β̂2 = −0.0158, with a standard deviation of 0.0048. The 95% credible interval for this
variable does not contain the value zero, hence IBN is statistically significant in this
model. In addition, the estimated coefficient of the spatial parameter was ρ̂ = 0.4629,
with a standard deviation of 0.2083 and it is statistically significant, as zero is not con-
tained in its 95% credible interval. This fact suggests the existence of positive spatial
correlation in the data, which is being captured by the spatial term employed.

We will also further investigate the spatial conditional normal binomial model with
the following regression structure for the probability of success:

logit(πi) = β0 + β1IBNi + ρAi + νi, νi ∼ N(0, τ), τ > 0 (2.37)

For the model where the probability of success follows the regression structure in
equation (2.37), the estimated coefficient for the variable IBN was β̂1 = −0.0154, with a
standard deviation of 0.0046. The 95% credible interval for this variable does not contain
the value zero, hence IBN is statistically significant. The estimated spatial parameter
was ρ̂ = 0.4389, with a standard deviation of 0.1879 and statistically significant according
to its 95% credible interval, again suggesting that the spatial dependence in the variable
is being explained by this term.

Finally, we have also considered the following model for a more comprehensive ex-
amination:

logit(πi) = β0 + β1IBNi + β2Payi + ρAi + νi, νi ∼ N(0, τ), τ > 0 (2.38)

Here, the estimated coefficient for the variable IBN was β̂1 = −0.0124 with a stan-
dard deviation of 0.0044, and, for the variable Pay was β̂2 = −0.0240, with a standard
deviation of 0.0133. According to their 95% credible interval, in this case only the
variable IBN is statistically significant.

These three models suggest that the probability of a woman that gives birth goes
through a postnatal period screening test tends to be smaller in regions where the index
of basic needs not satisfactorily attended have larger values, since there is evidence of
the existence of a negative statistically significant relation among these two variables.
Moreover, models where the probability of success πi followed the regression structures in
equation (2.36) and equation (2.37) indicate the existence of positive spatial correlation
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in the data, which is being captured by the spatial term employed. In these models closely
examined, we have not found evidence of any other statistically significant relationship
between the response variable Nscreen and the other covariates considered.

In Figure 2.10 we can see the scatterplots for the observed versus the predicted
proportions obtained from some of the fitted models to the Colombia mother’s postnatal
period screening test data set. The proportion of successes can be considered as a rough
approximation to the probability of successes π being modelled. Therefore, in these
plots, we can examine the predictive accuracy of the fitted models. For the spatial
conditional normal binomial models where the probability of success follows equations
(2.36), (2.37) and (2.38), we can see that the predictive accuracy behaves in a similar
way for each of the three cases. The observed and predicted proportions are distributed
fairly close to the line which would indicate that they have similar values.

(a) Spatial conditional nor-
mal binomial model in equa-
tion (2.36) fitted in JAGS.

(b) Spatial conditional nor-
mal binomial model in equa-
tion (2.37) fitted in JAGS.

(c) Spatial conditional nor-
mal binomial model in equa-
tion (2.38) fitted in JAGS.

Figure 2.10: Scatterplots for the observed versus the predicted proportions obtained
from some of the fitted models to the Colombia mother’s postnatal period screening test
data set, fitted in JAGS

We can assess the size of the effect of the explanatory variables considered in some
of the fitted models by examining their marginal effects at the means, with their results
included in Table 2.16. For the variable IBN, in the model in equation (2.36), this
effect was -0.0170, indicating that an increment of 1 percentage point in the variable
IBN would decrease the proportion of mothers that goes through a postnatal period
screening test by a 1.7%. Taking into account that the 95% credible interval of this
effect is (−0.0286,−0.0074), it can be considered as significant. Moreover, significant
effects according to their credible intervals, were also obtained for this variable in the
models in equation (2.37) and equation (2.38).
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Table 2.16: Marginal effects at the means for the spatial conditional normal binomial
models in equations (2.36), (2.37) and (2.38) fitted to the mother’s postnatal period
screening test in Colombia data set.

Mean SD 95% CI

Model in equation (2.36) Viol -0.0053 (0.0160) (-0.0377,0.0258)
IBN -0.0170 (0.0053) (-0.0286,-0.0074)

Model in equation (2.37) IBN -0.0166 (0.0050) (-0.0266,-0.0068)

Model in equation (2.38) IBN -0.0133 (0.0048) (-0.0237,-0.0040)
Pay -0.0257 (0.0142) (-0.0519,0.0026)

In order to assess the convergence of the MCMC chains for the models we have
implemented, we have computed some convergence performance diagnostics such as the
the effective sample size (i.e., Neff) and the potential scale reducing factor (i.e., R̂), which
have already been described in Section 2.6.1. Here, we have also simulated 3 Markov
chains, with 10000 iterations and a burn in period of 5000 each, where a total of 15000
samples remained. The results of the diagnostics applied, shown in Table 2.17, suggest
that there were enough independent samples for each parameter, since all values of Neff

are larger than 400. Note that, as we already mentioned in Section 2.6.1, it is generally
considered for the Neff that a value of 100 is enough to perform reasonable posterior
inference. Regarding the values obtained for R̂, we can see that they are all very close
to one, which indicates the convergence of the chains to the target distributions.

Table 2.17: Convergence diagnostics for the spatial conditional normal binomial models
in equations (2.36), (2.37) and (2.37) fitted to the mother’s postnatal period screening
test in Colombia data set.

Intercept Viol IBN Pay ρ τ

Model in equation (2.36) Neff 3000 3000 3000 - 3000 3000

R̂ 1.0005 1.0007 1.0009 - 1.0012 1.0006
Model in equation (2.37) Neff 2300 - 1600 - 420 420

R̂ 1.0014 - 1.0022 - 1.0053 1.0053
Model in equation (2.38) Neff 930 - 1500 3000 840 770

R̂ 1.0027 - 1.0021 1.0006 1.0029 1.0034

Finally, it is worth mentioning that the results obtained when fitting the models with
probability of success given by equations (2.36), (2.37) and (2.38), are consistent with
the results found by Cepeda-Cuervo, Córdoba and Núñez-Antón (2018), when analysing
a similar data set. This corroborates the fact that the spatial conditional overdispersion
models are suitable and practical when modelling real data sets by being able to explain
spatial dependence and overdispersion that can be present in this data.
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2.7.2 Sensitivity analysis for the precision of the prior distributions

As it was explained in Section 2.6.2, when the prior distribution for the precision pa-
rameter of the random effects ψ = 1/τ , the inverse of the variance, that is G(α, α),
is specified, the choice of the values α could considerably affect the posterior inference
process. Therefore, in the same way as we proceeded in the infant mortality study in
Section 2.6.2, we have performed a sensitivity analysis on the model in equation (2.36),
by considering different possible values of α, from α = 0.1 to α = 1e-08. This process is
performed in order to select a value for α which ensures that this effect is controlled for.

The results included in Table 2.18 indicate that for values of α = 1e-04, as well as
for smaller values, the differences in the estimates are insignificant, where only changes
in the third decimal place are observed for a few cases. In addition, no changes are
observed in the posterior marginal densities for the estimated precision parameter ψ,
shown in the right panel of Figure 2.11, when the value of α is set from α = 1e-04 up to
α = 1e-08. Taking these facts into account, considering the value α = 1e-04 for the prior
distribution G(α, α) would be justified since it would ensure that there is no undesirable
influence on the inferential process.

Table 2.18: Posterior means for parameter estimates together with standard deviations,
DIC and WAIC values, for the spatial conditional normal binomial model in the analysis
of the mother’s postnatal period screening test in Colombia data set with different prior
distributions for the precision parameter of the random effects.

Intercept Viol IBN ρ τ DIC WAIC

α = 0.1 0.5123 -0.0061 -0.0156 0.4712 0.1398 214.0 199.3
(0.5554) (0.0161) (0.0049) (0.2172) (0.0564)

α = 0.01 0.4955 -0.0050 -0.0160 0.4677 0.1256 215.0 200.4
(0.5122) (0.0149) (0.0048) (0.1988) (0.0505)

α = 0.001 0.4760 -0.0047 -0.0156 0.4622 0.1260 214.8 200.5
(0.5119) (0.0151) (0.0046) (0.2053) (0.0529)

α = 1e-04 0.4952 -0.0050 -0.0158 0.4629 0.1250 215.7 200.5
(0.5031) (0.0149) (0.0048) (0.2083) (0.0488)

α = 1e-05 0.4953 -0.0050 -0.0158 0.4629 0.1250 215.7 200.5
(0.5031) (0.0149) (0.0048) (0.2083) (0.0488)

α = 1e-06 0.4953 -0.0050 -0.0158 0.4629 0.1250 215.7 200.5
(0.5031) (0.0149) (0.0048) (0.2083) (0.0488)

α = 1e-07 0.4953 -0.0050 -0.0158 0.4629 0.1250 215.7 200.5
(0.5031) (0.0149) (0.0048) (0.2083) (0.0488)

α = 1e-08 0.4953 -0.0050 -0.0158 0.4629 0.1250 215.7 200.5
(0.5031) (0.0149) (0.0048) (0.2083) (0.0488)
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Figure 2.11: Posterior marginal distributions for the precision parameter ψ = 1/τ ,
the inverse of the variance parameter τ for the random effects, for different values of α,
where ψ ∼ G(α, α).

2.7.3 Fitting of the generalized spatial conditional normal binomial
model

In the previous sections, for the study of mother’s postnatal period screening test, it
has been assumed that the dispersion parameters in the fitted models are constant.
Here, in order to investigate the possibility that these parameters might depend on some
covariates or spatial terms, we have considered to fit the generalized spatial conditional
overdispersion models proposed by Cepeda-Cuervo, Córdoba and Núñez-Antón (2018).
Therefore, we have fitted different combinations of the generalized spatial conditional
normal binomial model. One of these is given by the model with probability of success
πi given by the regression structure:

logit(πi) = β0 + β1Violi + β2Payi + ρAi + νi, νi ∼ N(0, τi), τi > 0,
log(τi) = γ0 + γ1IBNi

(2.39)

Another model further examined is the one where πi follows the regression model:

logit(πi) = β0 + β1Violi + β2Payi + νi, νi ∼ N(0, τi), τi > 0,
log(τi) = γ0 + γ1IBNi + ρAi

(2.40)

Table 2.19 includes the corresponding parameter estimates for the fitting of the
generalized spatial conditional normal binomial models with regression structures given
in equations (2.39) and (2.40), together with its standard deviations and 95% credible
intervals in parenthesis.
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Table 2.19: Parameter estimates, standard deviations and 95% credible intervals in
parenthesis for the parameters in the models, and DIC and WAIC values for the gener-
alized spatial conditional normal binomial models fitted to the mother’s postnatal period
screening test in Colombia data set.

Model in equation (2.39) Model in equation (2.40)

π Intercept - β0 Mean 1.7570 2.0161
SD (0.3413) (0.2929)
CI (1.0827,2.3994) (1.4596,2.5957)

Viol Mean -0.0372 -0.0337
SD (0.0073) (0.0071)
CI (-0.0518,-0.0228) (-0.0477,-0.0201)

Pay Mean -0.0557 -0.0624
SD (0.0083) (0.0074)
CI (-0.0716,-0.0400) (-0.0759,-0.0480)

ρ Mean 0.2206 -39.0248
SD (0.1082) (14.8624)
CI (0.0125,0.4191) (-65.7017,-14.0839)

τ Intercept - γ0 Mean 14.5718 -30.5057
SD (20.9224) (15.6823)
CI (-33.9406,43.3918) (-62.8097,-4.2467)

IBN Mean -3.5596 -3.0872
SD (0.6047) (1.5349)
CI (-4.7779,-2.5861) (-6.5984,-0.7618)

DIC = 238.7 DIC = 229.7
WAIC = 245.3 WAIC = 230.1

The information criteria values obtained with the fitting of the generalized spatial
conditional normal binomial models were DIC = 238.7 and WAIC = 245.3 for the model
where πi follows equation (2.39) and DIC = 229.7 and WAIC = 230.1 for the model
where πi follows equation (2.40). These values do not show improvements, compared to
the information criteria values obtained with the fitting of the spatial conditional normal
binomial models with results shown in Table 2.15.

Furthermore, after comparing the scatterplots in Figures 2.12(a) and 2.12(b), with
the ones from Figures 2.10(a), 2.10(b) and 2.10(c), we could say that the accuracy of the
predictions obtained with the generalized models is not as good as the accuracy obtained
when fitting the spatial conditional normal binomial models. In fact, the predicted
proportions obtained appear to be considerably deviated from the observed ones. In
addition, the maps of the predicted proportions, shown in Figures 2.15(e) and 2.15(f)
show some discrepancies with the observed proportions in Figure 2.15(a) for a substantial
number of regions.
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(a) Generalized spatial condi-
tional normal binomial model
in equation (2.39) fitted in
JAGS.

(b) Generalized spatial condi-
tional normal binomial model
in equation (2.40) fitted in
JAGS.

Figure 2.12: Scatterplots for the observed versus the predicted proportions obtained
from the generalized spatial conditional normal binomial models fitted to the Colombia
mother’s postnatal period screening test data set, in JAGS.

Even though it has been shown that these models do not seem to provide a better fit
to the data than the spatial conditional normal binomial models, we believe it is conve-
nient to highlight some fact about them. For instance, the coefficient of the variable IBN
was γ̂1 = −3.5596(0.6047) for the model in equation (2.39) and γ̂1 = −3.0872(1.5349) for
the model in equation (2.40). This parameter is statistically significant in the regression
models for the dispersion in both cases, according to the 95% credible intervals, which
could be indicating that the dispersion is not constant, as was assumed before, but de-
pends on this variable in these cases. Moreover, the fact that the parameter is negative
suggests that regions that present larger values of this variable also tend to have smaller
dispersion values.

Regarding the spatial term, the value for its coefficient for the model in equation
(2.39) was ρ̂ = 0.2206(0.1082), resulting statistically significant given that its 95% cred-
ible intervals does not contain the value zero. The value obtained for the spatial param-
eter in the model in equation (2.40) was ρ̂ = −39.0248(14.8624), resulting statistically
significant according to its 95% credible interval. Hence, the spatial autocorrelation that
seems to be present in the data is being properly captured in both cases.

On the one hand, taking all of the above into consideration, we could say that the
generalized models might not be the most suitable choice to model this data, when
compared to the spatial conditional normal binomial models fitted above. On the other
hand, we have found evidence that the dispersion is accommodated properly with these
models and could vary according to some explanatory variables or even the spatial term,
whereas with the spatial conditionals it is considered as a constant parameter. It is in the
hands of the researchers to evaluate which model provides a better and more appealing
approach in their specific case study.

Finally, Figure 2.13 includes histograms of the posterior predictive distributions for
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the means over replicated simulations of the proportions, estimated from the fitting of
the spatial conditional normal binomial models in equation (2.36) (see Figure 2.13(a)),
equation (2.37) (see Figure 2.13(b)) and equation (2.38) (see Figure 2.13(c)), and by
the generalized spatial conditional normal binomial models in equation (2.39) (see Fig-
ure 2.13(d)). Note that the dark blue vertical line represents the value of the mean
for the observed data. As we can see from these figures, they show how the means of
the replicated data vary with respect to the actual mean of the observed values, a fact
suggesting that the considered models offer an adequate fit to the data set under study.

(a) Spatial conditional normal bino-
mial model in equation (2.36).

(b) Spatial conditional normal bino-
mial model in equation (2.37).

(c) Spatial conditional normal bino-
mial model in equation (2.38).

(d) Generalized spatial conditional
normal binomial model in equation
(2.39).

Figure 2.13: Posterior predictive checks for some of the fitted models to the mother’s
postnatal period screening test in Colombia data set.
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2.7.4 Comparisons to the BYM model for binomial responses

In this section, we will compare the performance between the spatial conditional overdis-
persion models fitted to the mother’s postnatal period screening test with the BYM
model for binomial responses. In the same way we proceeded for the infant mortality
study in Section 2.6.4, we have selected the best fitting model, which was the spatial
conditional normal binomial model as a point of comparison with the BYM model. For
this purpose, we have fitted the binomial BYM model with the following structure for
the probability of success:

logit(πi) = β0 + β1Violi + β2IBNi + β3HEi + β4Payi + νi + ηi, (2.41)

where νi and ηi, i = 1, . . . , n, are the normally and intrinsic CAR distributed sets of
random effects, with variance parameters τ > 0 and τη > 0, respectively. In the same
way as the previous models, we assume noninformative normal priors for the regression
parameters; that is, N(0, 1 × 10−5) and, noninformative gamma G(1 × 10−4, 1 × 10−4)
prior distributions for the precision parameters ψ = 1/τ and ψη = 1/τη. In addition,
the same first order neighbourhood structure is also assumed.

The implementation of the BYM model in JAGS is not straightforward as it would
be in R-INLA or even in OpenBUGS, which has a function for specifically specifying
CAR distributed random effects (Lawson, 2008). Nevertheless, it has been shown that
the computational times achieved when fitting models with structured random effects
are much lower with the R-INLA package (Vranckx, Neyens and Faes, 2019). Hence, we
have decided to fit these models by using the INLA approach and, in order to be able to
compare the results obtained to the estimations from the fitting of the spatial conditional
normal binomial models, we would also need to fit these models in this software package.
This is required due to the fact that information criteria values such as the DIC and
the WAIC obtained from different software such as OpenBUGS and R-INLA cannot be
directly compared (Vranckx, Neyens and Faes, 2019).

The results of the fitting of the binomial BYM model in equation (2.41) and some
of its reduced versions are included in Table 2.20. In addition, Table 2.21 includes the
results of some of the reduced versions of the spatial conditional normal binomial model
from equation (2.35) fitted in INLA, the same combinations of variables that were fitted
in JAGS and shown in Section 2.7.1, Table 2.15.
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Table 2.20: Parameter estimates, standard deviations and 95% credible intervals in parenthesis for the parameters in the models, and DIC and WAIC values
for some of the reduced versions of the binomial BYM model fitted in INLA to the mother’s postnatal period screening test in Colombia data set.

Intercept Viol IBN HE Pay τ τη

DIC = 211.5 Mean 1.9684 -0.0295 -0.0063 0.0044 -0.0523 0.0831 0.0290
WAIC = 210.9 SD (0.6270) (0.0175) (0.0062) (0.0105) (0.0178) (0.0352) (0.0352)

CI (0.7443,3.2248) (-0.0644,0.0048) (-0.0188,0.0058) (-0.0160,0.0253) (-0.0872,-0.0167) (0.0342,0.1704) (0.0018,0.1195)
DIC = 210.7 Mean 1.0882 - -0.0118 4.391e-04 -0.0344 0.0802 0.0464
WAIC = 208.2 SD (0.3604) - (0.0063) (0.0115) (0.0167) (0.0152) (0.0379)

CI (0.3878,1.8147) - (-0.0245,3.775e-04) (-0.0220,0.0234) (-0.0685,-0.0016) (0.0538,0.1131) (0.0092,0.1489)
DIC = 212.1 Mean 1.9552 -0.0373 - 0.0114 -0.0619 0.0761 0.0259
WAIC = 212.4 SD (0.6148) (0.0154) - (0.0078) (0.0148) (0.0305) (0.0296)

CI (0.7534,3.1864) (-0.0683,-0.0074) - (-0.0035,0.0273) (-0.0910,-0.0326) (0.0319,0.1499) (0.0026,0.1022)
DIC = 211.5 Mean 2.0147 -0.0276 -0.0080 - -0.0497 0.0760 0.0238
WAIC = 211.7 SD (0.6212) (0.0172) (0.0049) - (0.0168) (0.0377) (0.0349)

CI (0.7901,3.2662) (-0.0618,0.0070) (-0.0184,0.0010) - (-0.0820,-0.0152) (0.0246,0.1694) (8.726e-04,0.1079)
DIC = 210.9 Mean 1.1405 -0.0011 -0.0164 -0.0046 - 0.1076 0.1611
WAIC = 207.8 SD (0.6662) (0.0184) (0.0065) (0.0123) - (0.0682) (0.1358)

CI (-0.1593,2.4783) (-0.0391,0.0341) (-0.0294,-0.0035) (-0.0280,0.0206) - (0.0326,0.2886) (0.0222,0.5196)
DIC = 210.1 Mean 1.0328 -0.0018 -0.0148 - - 0.0893 0.1869
WAIC = 207.5 SD (0.6142) (0.0178) (0.0051) - - (0.0606) (0.1536)

CI (-0.1433,2.2843) (-0.0380,0.0325) (-0.0250,-0.0050) - - (0.0226,0.2503) (0.0318,0.5935)
DIC = 213 Mean 2.1823 -0.0394 - - -0.0615 0.0742 0.0309
WAIC = 214.5 SD (0.6043) (0.0155) - - (0.0147) (0.0430) (0.0996)

CI (1.0043,3.4007) (-0.0707,-0.0092) - - (-0.0908,-0.0323) (0.0195,0.1832) (-7.039e-04,0.1814)
DIC = 209.8 Mean 1.0894 - -0.0116 - -0.0344 0.0767 0.0328
WAIC = 208.3 SD (0.2025) - (0.0047) - (0.0151) (0.0153) (0.0280)

CI (0.7005,1.4971) - (-0.0211,-0.0027) - (-0.0650,-0.0045) (0.0499,0.1096) (0.0065,0.1080)
DIC = 213 Mean 0.8938 -0.0147 - - - 0.1225 0.2501
WAIC = 211.2 SD (0.7022) (0.0201) - - - (0.0846) (0.2081)

CI (-0.4522,2.3193) (-0.0554,0.0239) - - - (0.0318,0.3470) (0.0392,0.7960)
DIC = 209.8 Mean 0.9747 - -0.0148 - - 0.0994 0.1396
WAIC = 207.2 SD (0.2063) - (0.0049) - - (0.0661) (0.1235)

CI (0.5773,1.3905) - (-0.0248,-0.0054) - - (0.0284,0.2760) (0.0161,0.4610)
DIC = 213.4 Mean 0.6749 - - - -0.0426 0.1108 0.0329
WAIC = 213.9 SD (0.1247) - - - (0.0150) (0.0534) (0.0536)

CI (0.4370,0.9335) - - - (-0.0742,-0.0140) (0.0397,0.2449) (4.247e-04,0.1639)

66



Table 2.21: Parameter estimates, standard deviations and 95% credible intervals in parenthesis for the parameters in the models, and DIC and WAIC values
for some of the reduced versions of the spatial conditional normal binomial model fitted in INLA to the mother’s postnatal period screening test in Colombia
data set.

Intercept Viol IBN HE Pay ρ τ

DIC = 210.6 Mean 1.6970 -0.0313 -0.0087 2.860e-04 -0.0436 0.2854 0.0851
WAIC = 209.5 SD (0.6625) (0.0170) (0.0066) (0.0101) (0.0186) (0.1970) (0.0448)

CI (0.3851,3.0113) (-0.0654,0.0021) (-0.0221,0.0040) (-0.0195,0.0205) (-0.0799,-0.0062) (-0.0967,0.6830) (0.0237,0.1962)
DIC = 210.9 Mean 0.7087 - -0.0137 -0.0032 -0.0216 0.2773 0.0988
WAIC = 208.9 SD (0.4152) - (0.0064) (0.0104) (0.0153) (0.2064) (0.0476)

CI (-0.1181,1.5270) - (-0.0267,-0.0014) (-0.0236,0.0175) (-0.0514,0.0092) (-0.1245,0.6919) (0.0330,0.2170)
DIC = 211.5 Mean 1.7517 -0.0402 - 0.0098 -0.0595 0.2038 0.0842
WAIC = 211.5 SD (0.6592) (0.0157) - (0.0073) (0.0142) (0.1870) (0.0449)

CI (0.4455,3.0600) (-0.0719,-0.0097) - (-0.0040,0.0246) (-0.0877,-0.0314) (-0.1584,0.5825) (0.0222,0.1954)
DIC = 209.9 Mean 1.6998 -0.0312 -0.0087 - -0.0435 0.2841 0.0792
WAIC = 209 SD (0.6416) (0.0163) (0.0046) - (0.0160) (0.1897) (0.0418)

CI (0.4318,2.9746) (-0.0638,8.850e-04) (-0.0183,2.368e-05) - (-0.0744,-0.0111) (-0.0826,0.6680) (0.0215,0.1829)
DIC = 210.2 Mean 0.8318 -0.0073 -0.0189 -0.0104 - 0.4718 0.1172
WAIC = 207.2 SD (0.6059) (0.0148) (0.0056) (0.0098) - (0.2012) (0.0519)

CI (-0.3618,2.0352) (-0.0368,0.0217) (-0.0303,-0.0080) (-0.0294,0.0093) - (0.0756,0.8715) (0.0447,0.2454)
DIC = 209.1 Mean 0.4707 -0.0052 -0.0155 - - 0.4736 0.1228
WAIC = 205.7 SD (0.5098) (0.0149) (0.0046) - - (0.2045) (0.0512)

CI (-0.5181,1.4980) (-0.0351,0.0239) (-0.0248,-0.0066) - - (0.0716,0.8800) (0.0507,0.2490)
DIC = 213 Mean 1.9791 -0.0427 - - -0.0583 0.1928 0.0799
WAIC = 214.8 SD (0.6252) (0.0152) - - (0.0139) (0.1829) (0.0453)

CI (0.7568,3.2403) (-0.0738,-0.0133) - - (-0.0860,-0.0309) (-0.1627,0.5629) (0.0175,0.1917)
DIC = 210.1 Mean 0.6474 - -0.0123 - -0.0240 0.2635 0.0938
WAIC = 208.4 SD (0.3509) - (0.0045) - (0.0134) (0.1993) (0.0449)

CI (-0.0502,1.3373) - (-0.0216,-0.0037) - (-0.0497,0.0032) (-0.1235,0.6645) (0.0314,0.2050)
DIC = 213.2 Mean 0.0919 -0.0101 - - - 0.4217 0.1820
WAIC = 210.8 SD (0.5712) (0.0171) - - - (0.2346) (0.0725)

CI (-1.0362,1.2242) (-0.0441,0.0235) - - - (-0.0385,0.8899) (0.0781,0.3594)
DIC = 208.7 Mean 0.3353 - -0.0156 - - 0.4460 0.1157
WAIC = 205.6 SD (0.3253) - (0.0045) - - (0.1843) (0.0481)

CI (-0.3012,0.9845) - (-0.0247,-0.0069) - - (0.0815,0.8102) (0.0477,0.2341)
DIC = 213.5 Mean 0.4621 - - - -0.0368 0.1098 0.1204
WAIC = 213.8 SD (0.3728) - - - (0.0134) (0.2057) (0.0567)

CI (-0.2846,1.1924) - - - (-0.0632,-0.0101) (-0.2909,0.5244) (0.0403,0.2596)
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We can compare the results obtained by fitting the binomial BYM models from Table
2.20 with the ones obtained after fitting the spatial conditional normal binomial models,
included in Table 2.21. First of all, we can observe that the information criteria values
are very similar, not favouring any of the models in Table 2.20 over the ones in Table
2.21.

As for the estimated coefficients, although they maintain their signs, there are some
changes in their values. For example, for the binomial BYM model only including
the variables Viol and IBN, the coefficient of Viol is β̂1 = −0.0018(0.0178) and the
coefficient of IBN is β̂2 = −0.0148(0.0051), whereas, in the case of the spatial conditional
normal binomial model including the same two explanatory variables, these values were
β̂1 = −0.0052(0.0149) and β̂2 = −0.0155(0.0046), respectively. Here, only the variable
IBN is statistically significant, according to its 95% credible intervals, in both cases. In
the binomial BYM model including the variables IBN and Pay, the coefficient of IBN
is β̂1 = −0.0116(0.0047) and the coefficient of Pay is β̂2 = −0.0344(0.0151), whereas,
for the spatial conditional normal binomial model containing these two explanatory
variables, the values were β̂1 = −0.0123(0.0045) and β̂2 = −0.0240(0.0134), respectively.
Here, the variable IBN is statistically significant in both cases, but the variable Pay is
only statistically significant in the binomial BYM model.

In the cases discussed above, the estimated coefficient of the covariate IBN seems to
be slightly larger for the spatial conditional models and the variable Pay is statistically
significant only for the BYM model. In general, the effect of the covariates seems to be
rather different, as it is in the inference that can be performed on the coefficients of the
explanatory variables. This is something that we can further investigate by examining
the marginal effects at the means for the explanatory variables in some of the fitted
binomial BYM models, which are included in Table 2.22. Here, we can confirm that the
estimated size of the effects obtained from the fitting of the BYM models considered
is smaller than the effects obtained from the fitting of the spatial conditional normal
binomial models.

Moreover, the absolute values of these effects reported in INLA are slightly smaller
than the absolute values for the marginal effects at the means obtained from the fitting of
the spatial conditional normal binomial models in JAGS reported in Table 2.16 in Section
2.7.1. We also notice that the credible intervals obtained in JAGS for these marginal
effects are wider than the ones obtained with INLA. This could be due to the different
estimation methods that are used within the MCMC and the INLA approaches. In any
case, the effects obtained in both software packages are rather small, but significant for
the variable IBN.
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Table 2.22: Marginal effects at the means for some of the models fitted in INLA to the
mother’s postnatal period screening test in Colombia data set.

Mean SD 95% CI

Spatial conditional normal binomial Viol -0.0038 (0.0086) (-0.0230,0.0121)
model in equation (2.36) IBN -0.0094 (0.0027) (-0.0146,-0.0042)

Spatial conditional normal binomial IBN -0.0094 (0.0028) (-0.0142,-0.0046)
model in equation (2.37)

Spatial conditional normal binomial IBN -0.0076 (0.0027) (-0.0145,-0.0026)
model in equation (2.38) Pay -0.0140 (0.0076) (-0.0269,2.734e-04)

Binomial BYM model including the Viol -0.0017 (0.0101) (-0.0229,0.0161)
variables Viol and IBN IBN -0.0087 (0.0033) (-0.0162,-0.0025)

Binomial BYM model including the IBN -0.0089 (0.0029) (-0.0142,-0.0041)
variable IBN

Binomial BYM model including the IBN -0.0071 (0.0027) (-0.0124,-0.0025)
variables IBN and Pay Pay -0.0197 (0.0093) (-0.0373,-0.0013)

Regarding the parameter τη, which is the variance of the spatially distributed random
effect, large standard deviations were obtained for its estimates, a fact that makes it
difficult to perform inference on this term. For example, for the models where the
probability of success follows the regression in equation (2.41), the value was τ̂η =
0.0290(0.0352) and, for the model including the explanatory variables Viol and IBN,
this value was τ̂η = 0.1869(0.1536).

For some of these models, the value of the parameter τη was larger than the variance
of the unstructured random effect τ , giving more importance to the variability explained
by the spatial structure than to variability explained by the unstructured effect. This is
the case for the models containing the variables Viol, IBN and HE, the model including
Viol and IBN, the model containing only the covariate Viol and the model which only
includes the variable IBN. For the rest of the models, the values of τη are smaller than
the values for τ , giving thus more importance to the unexplained variability.

We can assess the predictive accuracy of the BYM models fitted by examining the
scatterplots of the observed versus the predicted proportions in Figures 2.14(d), 2.14(e)
and 2.14(f). We can see that these plots are also very similar to the ones obtained for
the spatial conditional normal binomial models shown in Figures 2.14(a), 2.14(b) and
2.14(c).

Finally, it could also be convenient to compare the estimations obtained for the
spatial conditional normal binomial models implemented in JAGS, in Table 2.15 and
the results obtained when fitting this model in R-INLA, shown in Table 2.21. We notice
that the values of the coefficients are very similar, which is not the case for the values
obtained for the information criteria, as these considerably differ from one software to
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the other. As we had already mentioned, the information criteria values obtained with
different software are not necessarily always equivalent and thus, cannot be directly
compared.

2.7.5 Comparisons to the BYM2 model for binomial responses

Finally, we have also fitted the binomial BYM2 model to the data set considered, which
solves the identifiability issue of the BYM model. Here, we assume that the probabilities
of success are given by equation:

logit(πi) = β0+β1Violi+β2IBNi+β3HEi+β4Payi+
1

√
τs

(√
1− ϕsνi +

√
ϕsηi

)
, (2.42)

where νi, i = 1, . . . , n, is a set of normally distributed random effects and ηi, i = 1, . . . , n
is a set of spatially structured random effects following an intrinsic CAR prior distri-
bution, each one also with scaled variance approximately equal to one. The unknown
precision parameter τs captures the variance contribution from the sum of the two ran-
dom effects, and the mixing parameter ϕs controls for the variance contribution of the
spatially structured effect η = (η1, . . . , ηn)

⊤, whereas the variance contribution of the
unstructured random effect ν = (ν1, . . . , νm)⊤ is explained by 1− ϕs.

As in the Poisson case in Section 2.6.5, here we will also assign complexity prior for
the precision and mixing parameters. Under the probability statement Prob(1/

√
τs >

U) = α, for the parameter τs, we will assume an upper bound for the marginal standard
deviation of 0.2, and set U = 0.2/31 and α = 0.01. Regarding the mixing parameter ϕs,
we will assume that Prob(ϕs < 0.5) = 2/3, which would represent the initial assumption
that the proportion of the variability captured by the unstructured random effect ν is
larger than the one explained by the spatially structured effect η. In addition, we will
assume noninformative normal priors for the regression parameters and the same first
order neighbourhood structure for the spatial weights matrix that we have been using
so far.

Table 2.23 includes the results for the estimation of the binomial BYM2 model in
equation (2.42) and some of its reduced versions. The estimations obtained for the
coefficients are very similar to the ones obtained for the BYM models in Table 2.20,
which also occurs for the information criteria values for each of the models. The mixing
parameter ϕs, explaining the amount of variability captured by the spatial structure, is
capturing approximately more than 20% of the variability in all the fitted models. As a
way to compare these results with previous ones, for example, for the model in equation
(2.42), this parameter’s estimate was ϕ̂s = 0.2499(0.2274), and, for the model including
the variable Viol, it was ϕ̂s = 0.3472(0.2339), explaining around 35% of the variability
in the model.
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Table 2.23: Parameter estimates, standard deviations and 95% credible intervals in parenthesis for the parameters in the models, and DIC and WAIC values
for some of the reduced versions of the binomial BYM2 model fitted in INLA to the mother’s postnatal period screening test in Colombia data set.

Intercept Viol IBN HE Pay τs ϕs

DIC = 211.8 Mean 1.9730 -0.0297 -0.0060 0.0041 -0.0528 17.0301 0.2499
WAIC = 212.1 SD (0.6034) (0.0168) (0.0060) (0.0101) (0.0172) (9.5273) (0.2274)

95% CI (0.7881,3.1777) (-0.0631,0.0034) (-0.0181,0.0056) (-0.0154,0.0244) (-0.0862,-0.0183) (5.7421,41.6317) (0.0088,0.8175)
DIC = 211.7 Mean 1.0562 - -0.0109 2.050e-04 -0.0338 14.1501 0.2767
WAIC = 211.4 SD (0.3199) - (0.0056) (0.0102) (0.0143) (7.0771) (0.2446)

95% CI (0.4304,1.6959) - (-0.0223,-5.217e-05) (-0.0198,0.0205) (-0.0620,-0.0053) (5.2504,32.2471) (0.0093,0.8601)
DIC = 212.3 Mean 1.9571 -0.0370 - 0.0107 -0.0621 18.3813 0.2365
WAIC = 213.5 SD (0.5915) (0.0148) - (0.0075) (0.0141) (10.7347) (0.2173)

95% CI (0.7962,3.1396) (-0.0669,-0.0083) - (-0.0035,0.0262) (-0.0899,-0.0339) (6.0476,46.4173) (0.0087,0.7902)
DIC = 211.3 Mean 2.0213 -0.0282 -0.0074 - -0.0505 18.3485 0.2363
WAIC = 212.1 SD (0.5787) (0.0159) (0.0044) - (0.0155) (10.5183) (0.2191)

95% CI (0.8866,3.1793) (-0.0598,0.0034) (-0.0166,9.140e-04) - (-0.0804,-0.0189) (6.1210,45.7448) (0.0084,0.7957)
DIC = 211.2 Mean 1.1202 -1.155e-05 -0.0163 -0.0057 - 9.2955 0.3133
WAIC = 209 SD (0.6226) (0.0165) (0.0061) (0.0113) - (3.7846) (0.2422)

95% CI (-0.0961,2.3643) (-0.0335,0.0316) (-0.0284,-0.0044) (-0.0273,0.0172) - (4.0453,18.6043) (0.0161,0.8568)
DIC = 210.4 Mean 0.9749 -4.331e-04 -0.0144 - - 9.4230 0.3311
WAIC = 208.4 SD (0.5722) (0.0164) (0.0048) - - (3.7397) (0.2396)

95% CI (-0.1205,2.1385) (-0.0337,0.0311) (-0.0240,-0.0051) - - (4.1614,18.5833) (0.0220,0.8557)
DIC = 213.9 Mean 2.1684 -0.0390 - - -0.0615 20.2426 0.1986
WAIC = 216.7 SD (0.5635) (0.0144) - - (0.0137) (13.0036) (0.1929)

95% CI (1.0742,3.3090) (-0.0682,-0.0111) - - (-0.0887,-0.0344) (6.1679,54.4461) (0.0073,0.7157)
DIC = 211 Mean 1.0584 - -0.0109 - -0.0338 15.0208 0.2713
WAIC = 211.1 SD (0.1862) - (0.0043) - (0.0133) (7.5551) (0.2423)

95% CI (0.6997,1.4341) - (-0.0196,-0.0028) - (-0.0602,-0.0071) (5.5538,34.3513) (0.0091,0.8549)
DIC = 213.7 Mean 0.7795 -0.0114 - - - 7.2307 0.3472
WAIC = 212.8 SD (0.6430) (0.0183) - - - (2.8046) (0.2339)

95% CI (-0.4538,2.0847) (-0.0487,0.0238) - - - (3.2804,14.1006) (0.0302,0.8501)
DIC = 210 Mean 0.9590 - -0.0143 - - 9.9140 0.3181
WAIC = 208.2 SD (0.1978) - (0.0046) - - (3.9162) (0.2329)

95% CI (0.5770,1.3566) - (-0.0237,-0.0054) - - (4.3864,19.5017) (0.0223,0.8401)
DIC = 214 Mean 0.6673 - - - -0.0420 12.4944 0.2328
WAIC = 215.7 SD (0.1146) - - - (0.0135) (6.1876) (0.2160)

95% CI (0.4460,0.9006) - - - (-0.0696,-0.0157) (4.6761,28.2902) (0.0082,0.7848)
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In addition, the marginal effects at the means computed for some of the fitted bino-
mial BYM2 models are included in Table 2.24. These effects are quite similar to those
obtained for the binomial BYM models shown in Table 2.22.

Table 2.24: Marginal effects at the means for some of the binomial BYM2 models fitted
in INLA to the mother’s postnatal period screening test in Colombia data set.

Mean SD 95% CI

Binomial BYM2 model including Viol -0.0013 (0.0094) (-0.0211,0.0151)
the variables Viol and IBN IBN -0.0085 (0.0030) (-0.0147,-0.0026)

Binomial BYM2 model including IBN -0.0086 (0.0027) (-0.0133,-0.0039)
the variable IBN

Binomial BYM2 model including IBN -0.0066 (0.0024) (-0.0122,-0.0029)
the variables IBN and Pay Pay -0.0199 (0.0079) (-0.0359,-0.0049)

The scatterplots of the observed versus the predicted proportions, obtained from the
fitting of some of the binomial BYM2 models, are included in Figures 2.14(g), 2.14(h)
and 2.14(i). These scatterplots are almost identical to the ones obtained from the fitting
of the binomial BYM models, showing no improvements in terms of predictive accuracy.
This confirms the fact that, although the BYM2 model does not represent a better fit
than the BYM model in terms of information criteria or, in terms of predictive accuracy,
it does offer a considerable advantage, given by the fact that it allows to quantify the
amount of variability explained by the spatial structure.

The predictive accuracy of the models can also be assessed by examining the maps
for the observed and the predicted proportions obtained from some of the fitted models
to the Colombia mother’s postnatal period screening test data set. In Figure 2.15 we
can compare the map of the observed proportions from Figure 2.15(a) with the maps of
the estimated proportions in Figures 2.15(b), 2.15(c) and 2.15(d) obtained after fitting
the spatial conditional normal binomial models where the probability of success follows
equations (2.36), (2.37) and (2.38), respectively. In general, we could say that the
predictions are accurate, as the models are able to generate estimated proportions which
are similar to the observed ones for most of the regions.

The maps of the predicted proportions obtained by fitting some of the binomial BYM
models are shown in Figures 2.15(j), 2.15(k) and 2.15(l), and for some of the binomial
BYM2 models, in Figures 2.15(m), 2.15(n) and 2.15(o). These maps are also very similar,
to the spatial conditional normal binomial models shown in Figures 2.15(g), 2.15(h) and
2.15(i), with the exception of a few regions that differ in their predictions.

In any case, taking into account that the information criteria values obtained for the
BYM and BYM2 models were almost identical to those of the spatial conditional normal
binomial models, and also, that there were no improvements in the predictive accuracy,
we believe that these models do not necessarily offer a better fit than that of the spatial
conditional models.
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(a) Spatial conditional nor-
mal binomial model in equa-
tion (2.36) fitted in INLA.

(b) Spatial conditional nor-
mal binomial model in equa-
tion (2.37) fitted in INLA.

(c) Spatial conditional nor-
mal binomial model in equa-
tion (2.38) fitted in INLA.

(d) Binomial BYM model in-
cluding the variables Viol and
IBN fitted in INLA.

(e) Binomial BYM model in-
cluding the variable IBN fitted
in INLA.

(f) Binomial BYM model in-
cluding the variables IBN and
Pay fitted in INLA.

(g) Binomial BYM2 model in-
cluding the variables Viol and
IBN fitted in INLA.

(h) Binomial BYM2 model in-
cluding the variable IBN fitted
in INLA.

(i) Binomial BYM2 model in-
cluding the variables IBN and
Pay fitted in INLA.

Figure 2.14: Scatterplots for the observed versus the predicted proportions obtained
from some of the fitted models to the Colombia mother’s postnatal period screening test
data set, in INLA.
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(a) Observed proportions. (b) Spatial conditional nor-
mal binomial model in equa-
tion (2.36) fitted in JAGS.

(c) Spatial conditional nor-
mal binomial model in equa-
tion (2.37) fitted in JAGS.

(d) Spatial conditional nor-
mal binomial model in equa-
tion (2.38) fitted in JAGS.

(e) Generalized spatial condi-
tional normal binomial model
in equation (2.39) fitted in
JAGS.

(f) Generalized spatial condi-
tional normal binomial model
in equation (2.40) fitted in
JAGS.

(g) Spatial conditional nor-
mal binomial model in equa-
tion (2.36) fitted in INLA.

(h) Spatial conditional nor-
mal binomial model in equa-
tion (2.37) fitted in INLA.

(i) Spatial conditional nor-
mal binomial model in equa-
tion (2.38) fitted in INLA.

Figure 2.15: Maps for the observed and the predicted proportions obtained from some
of the fitted models to the Colombia mother’s postnatal period screening test data set.
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(j) Binomial BYM model in-
cluding the variables Viol and
IBN fitted in INLA.

(k) Binomial BYM model in-
cluding the variable IBN fitted
in INLA.

(l) Binomial BYM model in-
cluding the variables IBN and
Pay fitted in INLA.

(m) Binomial BYM2 model
including the variables Viol
and IBN fitted in INLA.

(n) Binomial BYM2 model in-
cluding the variable IBN fitted
in INLA.

(o) Binomial BYM2 model in-
cluding the variables IBN and
Pay fitted in INLA.

Figure 2.15: Maps for the observed and the predicted proportions obtained from some
of the fitted models to the Colombia mother’s postnatal period screening test data set
(Continued).

2.8 Discussion

In this chapter we have performed a revision of Bayesian spatial conditional overdis-
persion models (Cepeda-Cuervo, Córdoba and Núñez-Antón, 2018) for area count data
and also provided a comparison with the well known Besag-York-Mollié (BYM) models
(Besag, York and Mollié, 1991), widely used in the literature for spatial count data mod-
elling. In this context, we would like to emphasize the importance of taking into account
the overdispersion, as well as the dependence that can arise from the correlation among
the values of the response variable in neighbouring locations. We believe that the spatial
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conditional models offer a good, flexible, reasonable, and worth considering alternatives
to the BYM model. Moreover, we have shown their usefulness and appropriateness by
fitting them to infant mortality and to mother’s postnatal period screening test data
from Colombia.

We have fitted these models to data sets similar to the ones analysed by Cepeda-
Cuervo, Córdoba and Núñez-Antón (2018) and we have performed a thorough analysis
of the results obtained from these fittings. We have also provided posterior predictive
checks, such as the scatterplots of observed versus fitted values and maps of the predic-
tions obtained. Moreover, we have computed the marginal effects at the means of the
covariates included in the models, offering a better understanding of their effect over the
responses. Another fact we believe is worth mentioning is the application of the BYM2
models, an innovative approach that allows to overcome the issue of non identifiability
of the BYM models. In addition, convergence diagnostics were applied and illustrated
for the MCMC chains for some of the models considered.

In the work by Cepeda-Cuervo, Córdoba and Núñez-Antón (2018), the models were
fitted using the software OpenBUGS. Here, besides using this same program, we have
also fitted models in JAGS, which follows the same MCMC approach and, in addition, we
have implemented some of the models in INLA, an alternative to the MCMC approach.
We have offered comparison between these two different approaches and highlighted their
advantages and disadvantages in each case.

The spatial conditional normal Poisson and negative binomial models were fitted
for the case of Poisson distributed response variables, showing to be good candidates
for fitting the infant mortality rates data from Colombia. Moreover, they were also
able to account for overdispersion, as well as to explain the intensity of the spatial
autocorrelation that was present in the specific data set under study. More specifically,
according to the DIC and WAIC information criteria values, the spatial conditional
normal Poisson model was selected as the best fitting model. We were able to fit this
model and its reduced versions in OpenBUGS and R-INLA and, by setting the same
prior distributions, we obtained very close results in both implementations. Given that
these two software packages are based on different methodologies, we believe it was
convenient and necessary to confirm the consistency of the estimations in both software
packages.

Results obtained from the fitting of the aforementioned models were consistent with
the results obtained in previous analyses of a similar data set, reported in Cepeda-
Cuervo, Córdoba and Núñez-Antón (2018), where the authors modelled mortality rates
for children younger than five years old of age in Colombia. Their analysis found positive
significant relations with the variable explaining the index of unsatisfied basic needs
(i.e., IBN) and negative significant relations with the variable representing the resources
provided by the government for academic achievement of the population (i.e., Rec) when
assessing their effect on the infant mortality rates under study. In our case, for infant
mortality rates for children under one year of age, this significant relationships also
hold and, in addition, a positive significant relationship was also identified with the
percentage of women who had suffered physical violence from their current partners
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(i.e., Viol). As in Cepeda-Cuervo, Córdoba and Núñez-Antón (2018), in this application
we have also found evidence of positive spatial autocorrelation in the data under study.
Moreover, we have also fitted the generalized spatial conditional normal Poisson model,
which provided more flexibility by allowing the dispersion to vary as a function of some
explanatory variables.

In order to be able to compare the performance of the spatial conditional models, we
have also fitted the BYM model to the data under study. There were some difficulties
when fitting these models in OpenBUGS, which could be due to a number of problems,
such as, for example, a possible existing conflict between the data and the assumed prior
distributions (Spiegelhalter et al., 2002). In any case, these difficulties did not represent
a problem for fitting these model in R-INLA, an issue that was confirmed with the
models fitted in previous sections for this particular data set. The estimated parameters
obtained by fitting the BYM model showed quite large standard deviations, especially for
the variance parameters for both the spatially correlated and the uncorrelated random
effects. However, the model seemed to favour the spatial structure over the extra-
variability, although, because of the way these effects are specified in the BYM model,
no further information about the specific spatial dependence could be obtained from it.

Furthermore, in order to be able to provide more information than the one obtained
from the fitting of the standard BYM model, we have also fitted the BYM2 model, which
allowed us to identify the spatially structured and the unstructured effects separately.
As can be seen in the reported results, this model provided useful findings about the
amount of variability in the data that could be explained by the assumed spatial structure
in the fitted models. In addition, we were also able to conclude that no significant
improvements were suggested by the information criteria values, or in terms of posterior
predictive accuracy, when the BYM2 model was compared to the previously fitted spatial
conditional and to the BYM models.

We have also performed posterior predictive checks on the fitted models, concluding
that they can provide a reasonable accuracy in the predictions of the mortality rates
for most cases, especially for the spatial conditional normal Poisson and the generalized
spatial conditional normal Poisson models. In our view, and based on the previously
reported results, the performance of the spatial conditional normal Poisson model was
considerably better, keeping in mind that the information criteria slightly favoured it
over the BYMmodel, and also taking into account the aforementioned issues when fitting
the latter. The spatial conditional normal Poisson model allowed for the overdispersion
to be taken into account and, unlike the BYM model, it provided information on the
type, and also the strength, of the spatial association which was present in the data.
Besides, with the results obtained from the fitting of this model, appropriate and well
justified inference could be made about the regression parameters in the model.

For the case of binomially distributed response variables, the spatial conditional
normal binomial and the beta binomial models were applied to the Colombian mother’s
postnatal period screening test data set where, according to the information criteria
values and the posterior predictive checks performed, the spatial conditional normal
binomial was selected as the best fitting model. This model and its reduced versions
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provided a good fit and we were able to properly accommodate the overdispersion and
spatial dependence in the data. In this case, the software packages used to implement
the models were JAGS and R-INLA, obtaining similar results for the same models with
the same assumed prior distributions in both cases.

Reported results suggest that, in regions with large values of the variable measuring
the percentage of the population that has basic needs not satisfactorily attended (i.e.,
variable IBN), the probability that a mother goes through a postnatal period screening
test increases. This fact is consistent with the results found by Cepeda-Cuervo, Córdoba
and Núñez-Antón (2018) when analysing a similar data set. In addition, although it did
not provide a better fit than the previously fitted models, by fitting the generalized spa-
tial conditional normal binomial models, we found a statistically significant association
of the dispersion with the variable IBN, and also with the spatial term.

As was done for the infant mortality data, for the mother’s postnatal period screening
test data, we have also fitted the BYM and BYM2 models and compared them with the
best fitting models we had so far, which were the spatial conditional normal binomial
models. Here, the binomial BYM models offered no improvements neither in terms of
information criteria nor in terms of predictive accuracy. In addition, there were models
that favoured the unexplained over the spatially structured variability, whereas for other
models it was the opposite way, a fact that made it difficult to obtain a clear information
about the spatial association that was present in the data.

Finally, with regard to model implementation, we can mention that the models’ fit-
ting in the software package OpenBUGS was quite flexible, mainly because it allows the
researcher to specify any kind of Bayesian models in a very simple and intuitive way.
The same holds for JAGS, as both software are based in the BUGS programming lan-
guage, with the drawback that fitting spatial models in JAGS, especially when specifying
CAR distributions for random effects, is not as simple as it would be in OpenBUGS.
Furthermore, model implementation is straightforward in R-INLA, since most models
are already specified in this package. However, it becomes more complex when the re-
searcher wishes to employ a particular model, different from the ones already available
therein, an issue that also occurs when a different prior specification is required.

More specifically, the implementation of new prior distributions for Bayesian analysis
in R-INLA is one of the current main challenges for the developers of the package (Rue
et al., 2017). This particular fact will be illustrated in Chapter 6, where we present
a class of models that cannot be directly implemented in R-INLA and, therefore, we
propose a method that allows to fit these models in this software package. Nevertheless,
a point in favour of R-INLA is the much shorter computation time that it requires for
the fitting of a model, when compared to OpenBUGS or JAGS.
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Chapter 3

Semiparametric extensions of the
generalized spatial conditional
overdispersion models

3.1 Introduction

In the previous chapter, we have described and applied the generalized spatial condi-
tional overdispersion models in Cepeda-Cuervo, Córdoba and Núñez-Antón (2018) (See
Sections 2.2.2 and 2.3.2 in Chapter 2). Throughout this thesis, we have shown the great
advantages these models offer, since they have been shown to be able to account for
overdispersion in count data, to take into account the possible existing spatial correla-
tion, and they are also flexible enough as to allow for the dispersion to vary according
to covariates and/or spatial terms.

However, when including covariates in the regression structures for these models,
we are assuming that the possible existing relationship between each covariate and the
predictor is linear, which may not necessarily be the case, since they could be given by
another maybe non linear pattern (Ruppert, Wand and Carroll, 2003). In this sense,
smoothing methods should be considered in generalized linear models (GLM), so that
the linearity hypothesis can be relaxed. Therefore, in this chapter we propose a semi-
parametric extension of the generalized spatial conditional overdispersion models that
will allow us to capture such non linear relations.

In Section 3.2, we provide a short review of the semiparametric modelling approach.
In Section 3.3, we propose an extension of the generalized spatial conditional models in
Cepeda-Cuervo, Córdoba and Núñez-Antón (2018), so that non linear relations can be
properly captured. Sections 3.4 and 3.5 include the application of this model proposal to
the infant mortality rates and to the mother’s postnatal period screening test in Colombia
data sets, respectively. Finally, a discussion on the reported results is provided in Section
3.6.
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3.2 Semiparametric models overview

Let the variables Yi , for i = 1, . . . , n, follow a count data distribution with E(Yi) = µi
and let vi be a variable observed for the same units, i = 1, . . . , n. If we specify a
generalized linear model (GLM) for the response Yi and the covariate vi, we could, for
example, define the linear predictor so that:

g(µi) = β0 + β1vi, (3.1)

where g(·) is a given link function and β0 and β1 are the unknown intercept and the
coefficient for the covariate, respectively.

Let us now assume that the relationship between vi and the link function for the
mean is not necessarily linear, but it is given by an unknown smooth function f(·), so
that the regression structure for the mean can be specified as:

g(µi) = f(vi) (3.2)

Here, the smooth function f(·) could be modelled in many different ways that in-
clude, for example, local linear or polynomial regression, kernel smoothing and regression
splines, among others (Green and Silverman, 1994). In this work, we will focus on re-
gression splines. A spline is a piecewise function (Smith, 1979), defined for a variable
vi in a series of K fixed knots κ1, κ2, . . . , κK , which divide the range of vi into regions.
These knots are normally chosen so that κ1 < κ2 < · · · < κK .

There are numerous spline basis such as, for example, natural cubic splines, truncated
polynomials, B-splines and penalized splines, among others (Ruppert, Wand and Carroll,
2003). For example, we can mention the truncated power basis of degree p, that is:

1, vi, . . . , v
p
i , (vi − κ1)

p
+, . . . , (vi − κK)p+, (3.3)

where (vi−κk)p+ is a truncated power function with (vi−κk)p+ = (vi−κk)p if vi−κk > 0,
and (vi − κk)

p
+ = 0 otherwise, for k = 1, . . . ,K.

If the smooth function f(vi) is specified as a spline with this basis, it would be defined
in the following way:

f(vi,θ) = β0 + β1vi + · · ·+ βpvi
p +

K∑
k=1

bk(vi − κk)
p
+, (3.4)

with θ⊤ = (β0, β1, . . . , βp, b1, . . . , bK) being a vector of unknown coefficients that need to
be estimated. Note that, if defined in this way, on each interval between two consecutive
knots, f(vi) is a p-th degree polynomial having (p− 1) derivatives (Ruppert, 2002).

Basis splines or B-splines (De Boor, 1978) are widely used due to the fact that
they have certain properties that offer more numerical stability, when compared to the
truncated power basis (Ruppert, Wand and Carroll, 2003). Then, if B is the n× (K+p)
matrix of p-th degree B-splines for K knots, with elements Bi,j = Bj(vi), for i = 1, . . . , n
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and j = 1, . . . ,K + p, then the smooth function f(vi) could be written in the following
way:

f(vi,b) =

K+p∑
j=1

bjBj(vi), (3.5)

with b being the vector of unknown coefficients, that is b⊤ = (b1, . . . , bK+p).
B-splines are completely defined by the selection and location of the knots (Eilers

and Marx, 2021). In this way, having too many knots could result in overfitting, whereas
a small number of knots may not be flexible enough to represent the data. In this sense,
penalized splines or P-splines for GLMs were proposed by Eilers and Marx (1996). The
relevance of the number of knots is reduced by imposing a penalty that controls for the
smoothing of the data. Moreover, the dimensionality of the problem is also reduced to
the number of chosen knots instead of the number of observations (Ruppert, 2002).

P-splines are specified by considering a spline basis and modifying the likelihood
function by imposing a penalization based on differences between adjacent coefficients.
For example, if we consider a p-th degree B-spline basis, the smooth function f(·) would
be given by equation (3.5). Then, we could impose a penalization on the coefficients b
(i.e., λb⊤D⊤Db), so that the penalized likelihood would be:

lp(y|θ) = l(y|θ)− λ

2
b⊤D⊤Db, (3.6)

where y is the vector of observations of the response variable, l(y|θ) is the likelihood of
the data given the parameters and λ is the penalization parameter, which is considered
to be fixed. In addition, D is a (K+1)× (K+p) matrix that computes the second order
differences among adjacent coefficients of the basis.

Currie and Durbán (2002) proposed a formulation that allows to write a P-spline
regression model as a mixed model. Although the authors here only referred to Gaussian
models, the extension of their proposed methodology is also possible for GLMs, leading
to the specification of a generalized linear mixed model (Ruppert, Wand and Carroll,
2003).

In particular, if we start from the model in equation (3.2), where the smooth function
f(·) is defined with a B-spline basis, such as the one in equation (3.5), we could impose
the penalization over b and the model could be written in the following way:

g(µi) = f(vi) = β0 + β1vi + Ziα, (3.7)

where Zi is the i-th row of the n× (K+1) matrix Z, with K being the number of chosen
knots, so that Z = BD⊤(DD⊤)−1, B is the B-splines basis matrix and D as before.
In addition, α⊤ = (α1, . . . , αK+1) is a vector of independent random coefficients with
unknown variance τα, so that αk ∼ N(0, τα), τα > 0, for k = 1, . . . ,K+1. Note that β0,
β1 and vi are as before. Here, the number of knots is usually defined between K = 5 and
K = 40, depending on the size of the data set under study (Ruppert, 2002). Additional
details on this specification can be found in Currie and Durbán (2002).
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This specification is particularly useful, since it allows to employ the existing method-
ology for the estimation and inference of mixed models, which is much more appealing
than the one for nonparametric models and P-splines. In addition, it offers great flex-
ibility, as it is possible to include these semiparametric terms in any kind of model.
Moreover, the implementation of these models is quite simple when employing Bayesian
estimation approaches such as MCMC (Crainiceanu, Ruppert and Wand, 2005). A de-
tailed discussion about these advantages is included in Eilers, Marx and Durbán (2015).

Semiparametric modelling with P-splines is often found in the literature. For exam-
ple, Crainiceanu, Ruppert and Wand (2005) illustrated how to fit P-spline regression
models in the WinBUGS software package, by using the mixed models representation.
Among the examples presented therein, they included a Bernoulli model applied to a
data set concerning the wages and union membership of 534 workers in the USA for the
year 1985. A smooth function of the wage per hour was included in the regression for the
logistic function of the probability of success in the way of a mixed model specification.

Kazembe (2009) studied the determinants of fertility for women in Malawi for the
year 2000. The author fitted a Poisson regression model for the number of children ever
born per woman, where he included smooth functions of some variables specified by
using P-splines. He found evidence of the existence of non linear relations between the
response and the year of marriage, and also the age at which women got married.

Ugarte et al. (2010) studied the mortality risk of breast cancer in 50 Spanish provinces
between 1975 and 2005. For three age groups, the authors fitted a spatio-temporal model
including a smooth function of longitude, latitude and time, modelled as a P-spline.
Their results suggested a different behaviour of the mortality risks in the provinces for
each group but, in general, they observed a gradual decline, which was slower for the
oldest age group.

3.3 Semiparametric extensions of the generalized spatial
conditional overdispersion models

We propose to extend the models in Quintero-Sarmiento, Cepeda-Cuervo and Núñez-
Antón (2012) and Cepeda-Cuervo, Córdoba and Núñez-Antón (2018) so that, in addition
to being able to capture the overdispersion and the spatial correlation in the data, they
are also able to account for possible non linear relationships between the covariates and
the predictor. For brevity of exposition and, as in the previous Sections, we will only
refer to the situation when there is only one covariate under analysis for this type of non
linear relationships.

Let us consider the case where we have Poisson distributed count variables Yi, ob-
served in i = 1, . . . , n, areas. The spatial conditional normal Poisson model has been
shown to be an adequate candidate for fitting this type of data (see Chapter 2). In this
model, we assume that (Yi | Y∼i, νi) ∼ Poi(µi), for i = 1, . . . , n, where Y∼i is the set of all
the neighbours of the i-th area, excluding the i-th area itself and νi is a Gaussian random
effect, so that νi ∼ N(0, τ), with τ > 0 being the unknown dispersion parameter.

If we assume that the relationship between a variable vi and log(µi), for i = 1, . . . , n,
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is not necessarily linear, but that is given by an unknown smooth function f(·), then we
could fit the following model for the conditional mean:

log(µi) = f(vi) + ρWiy + νi, (3.8)

where Wi is the i-th row of the spatial weights matrix W and y is the vector of ob-
servations of the response variable. Therefore, Wiy is the spatial lag of the response
variable. In addition, ρ is the spatial parameter.

We propose to use the P-splines mixed model representation of the smooth function
f(·) (Currie and Durbán, 2002), described in equation (3.7), where f(vi) = β0 + β1vi +
Ziα, so that the linear predictor in equation (3.8) can be rewritten as:

log(µi) = β0 + β1vi + Ziα+ ρWiy + νi, (3.9)

where β0, β1, vi, Zi, α, ρ, Wiy and νi are as before.
Here, we could also consider the inclusion of other covariates, assuming that their

possible relationship with the predictor is linear. Therefore, let xi be the q × 1 vector
of q new covariates, corresponding to the i-th observation. If this term was included in
equation (3.9), the linear predictor would be given by:

log(µi) = β0 + β1vi + Ziα+ x⊤
i δ + ρWiy + νi, (3.10)

where δ⊤ = (δ1, . . . , δq) is the vector of unknown coefficients for the new covariates and
the remainder terms are as before.

In the case of binomially distributed response variables, we could assume, for ex-
ample, the spatial conditional normal binomial model for the variables Yi, observed in
i = 1, . . . , n, areas. That is (Yi | Y∼i, νi) ∼ Bin(ni, πi), for i = 1, . . . , n, with ni and πi
the number of trials and the probability of success on the i-th region. Assuming that
the relationship between the variable vi and the logistic function of πi, for i = 1, . . . , n,
is given by a smooth function f(·) and, considering its P-splines mixed model represen-
tation (i.e., f(vi) = β0 + β1vi + Ziα), the regression model would be defined as follows:

logit(πi) = β0 + β1vi + Ziα+ ρAi + νi, (3.11)

with Ai being the i-th element of the spatial term A (See Section 2.3.1 in Chapter 2 for
the definition of this term). In addition, β0, β1, vi, Zi, α, ρ and νi are as before. Note
that here, we could also include some covariates assuming that their possible relationship
with the predictor is linear, as was done in equation (3.10) for the Poisson case.

We also propose the semiparametric extension of the generalized spatial conditional
normal Poisson model. For example, we could include the smooth function for the
variable vi (i.e., f(vi) = β0 + β1vi +Ziα) in the regression structure for the mean, then
the model would be given by:

log(µi) = β0 + β1vi + Ziα+ x
(µ)⊤
i δ + ρ1Wiy + νi, νi ∼ N(0, τi), τi > 0,

log(τi) = x
(τ )⊤
i γ + ρ2Wiy,

(3.12)
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where x
(µ)
i , is the vector of covariates corresponding to the i-th area for the mean

structure, where we assume that their possible relationship with the predictor is linear,

and x
(τ )
i is the vector of covariates for the dispersion structure. Here, δ and γ are

the vectors of unknown coefficients for the variables in x
(µ)
i and x

(τ )
i , respectively. In

addition, ρ1 and ρ2 are the spatial parameters for the mean and dispersion structures,
respectively. Note that β0, β1, vi, Zi, α and Wiy are as before.

In the same way, for the generalized spatial conditional normal binomial model, the
model can be specified as:

logit(πi) = β0 + β1vi + Ziα+ x
(µ)⊤
i δ + ρ1Ai + νi, νi ∼ N(0, τi), τi > 0,

log(τi) = x
(τ )⊤
i γ + ρ2Ai,

(3.13)

where x
(µ)
i , δ, x

(τ )
i , γ, β0, β1, vi, Zi, α, ρ1, ρ2 and Ai are as before.

At this point, it would be convenient to mention that all the models proposed in this
section can be estimated in the same usual way we have used throughout this thesis,
employing Bayesian estimation approaches such as MCMC or INLA. This is possible
thanks to the fact that we are considering the P-splines representation of the smooth
function as a mixed model, since we only need to include the terms corresponding to
the matrix Z in the regression equation, together with their associated random effects
α. Therefore, it is really only necessary to estimate one additional parameter, given by
the precision of these random effects.

3.4 Application to infant mortality in Colombia: Poisson
models

In this section, we will fit the proposed semiparametric models to the infant mortality
data in Colombia, which was presented in Section 2.6, Chapter 2. Let us recall that this
data set consists of multiple variables observed for n = 32 departments in this country,
which included the number of children under one year of age who died in 2005 (i.e.,
variable ND), the total number of births in 2005 (i.e., variable NB), an index representing
the percentage of the population not having their basic services satisfactorily attended
for the same year (i.e., variable IBN), the amount of resources (in thousands of dollars)
for academic achievement or education and integral attention for young children provided
by the government per household in the year 2005 (i.e., variable Rec), the percentage of
women over the age of 18 who had suffered physical violence from their current partners
(i.e., variable Viol), the percentage of young people (i.e., between 18 and 24 years) who
were able to opt for a higher educational level (i.e., variable HE), and the percentage of
children under one year of age who received the third dose of the polio vaccine in the
year 2004 (i.e., variable Vac).

In addition, the infant mortality rates can be approximated as the number of
children under one year of age who died in the year 2005 per 1000 born alive in
each of the departments in Colombia, so that the variable Rates can be obtained as
Ratesi = NDi/NBi×1000, for i = 1, . . . , n. Here, it would be useful to mention that the
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spatial structure of the data is represented by the spatial weights matrix W following
the contiguity of order one criterion.

In this study, we wish to investigate whether there are non linear relationships be-
tween each covariate available in this data set and the mean of the response variable,
which is the number of children under one year of age who died in 2005 (i.e., variable
ND). Therefore, we have fitted different alternative models, where some of them have
included the smooth term associated with each variable and others have excluded it.
Then, we have assessed the statistical significance of the included terms, the behaviour
of the curve and the information criteria values obtained for each of the fitted models.
For brevity of exposition here, we will only illustrate the results obtained for four of
these models, where we assume vi to be any of the variables under study, observed for
the i = 1, . . . , n, regions.

The first model considered (i.e., Model 1) is a spatial conditional normal Poisson
model where we assume that (NDi | ND∼i, νi) ∼ Poi(µi), for i = 1, . . . , n. Here, we
include the explanatory variable vi, for i = 1, . . . , n, the spatial lag of the rates (i.e.,
WiRates) and the random effect (i.,e., νi) in the regression structure for the conditional
mean, so that it can be written in the following way:

log(µi) = log(NBi) + β0 + β1vi + ρWiRates+ νi, νi ∼ N(0, τ), τ > 0 (3.14)

Note that the logarithm of the number of births (NBi) has been included as an offset in
order to be able to model the mortality rates (see Section 2.6.1 in Chapter 2).

The second alternative (i.e., Model 2) is also a spatial conditional normal Poisson
model, but where we consider the relationship between the covariate and the mean of
the response to be given by a smooth function f(·). Here, we will use the mixed model
representation of f(·) (i.e., f(vi) = β0 + β1vi + Ziα), specifying the model proposed in
equation (3.9), so that the regression structure is as follows:

log(µi) = log(NBi) + β0 + β1vi + Ziα+ ρWiRates+ νi,

νi ∼ N(0, τ), τ > 0, αk ∼ N(0, τα), τα > 0
(3.15)

The third model (i.e., Model 3) is a generalized spatial conditional normal Poisson
model, where we include the covariate as a fixed effect in the regression structure for
the conditional mean and the spatial lag in the structure for the variance parameter. In
particular, the model is as follows:

log(µi) = log(NBi) + β0 + β1vi + νi, νi ∼ N(0, τi), τi > 0

log(τi) =γ + ρWiRates
(3.16)

Finally, the last considered model (i.e., Model 4) is a generalized spatial conditional
normal Poisson model, including the smooth term for the variable vi, that is f(vi) =
β0 + β1vi + Ziα, in the regression structure for the conditional mean. Note that this is
the model proposed in equation (3.12) and, for this particular case, it is specified as:

log(µi) = log(NBi) + β0 + β1vi + Ziα+ νi,

νi ∼ N(0, τi), τi > 0, αk ∼ N(0, τα), τα > 0

log(τi) =γ + ρWiRates

(3.17)

85



Note that the term Ziα will be computed in the way shown in equation (3.7), where
the number of knots considered will be K = 5, so that Z is a 32× 6 matrix and we have
k = 1, . . . , 6 random coefficients αk. This quantity has been chosen due to the limited
sample size of the data set under study (i.e., n = 32) and also, taking into account the
fact that, according to Ruppert (2002), this number of knots is considered to be enough
as to ensure flexibility for most applications.

Regarding the estimation of the models, they will be implemented in the JAGS soft-
ware package, using the MCMC approach, where we will specify the same noninformative
prior distributions we have assumed in previous chapters. In particular, normal priors
for the fixed effects (i.e., N(0, 1e-05)) and gamma priors for the precision parameters
of the random effects (i.e., G(1e-04, 1e-04)). In addition, model comparison will be car-
ried out by using the Deviance Information Criterion (DIC) and the Watanabe-Akaike
Information Criterion (WAIC).

3.4.1 Fitting of the semiparametric generalized spatial conditional
over-dispersion models for Poisson responses

Tables 3.1 to 3.5 include the mean, standard deviation and credible interval for the
estimated parameters, and DIC and WAIC values obtained after fitting the four models
described in the previous Section, considering each of the variables Viol, IBN, Rec, HE
and Vac, respectively. Note that in equations (3.14) to (3.17) the term vi represents the
variable under study corresponding to the i-th region.

In order to assess the relationship obtained between the variable and the predictor,
Figures 3.1 to 3.6 include the estimated curves obtained for the two models considering
the smooth terms for each one of the variables included in the study (i.e., Models 2 and 4).
Let us recall that the smooth function f(·) is being represented by f(vi) = β0+β1vi+Ziα.
Therefore, the estimated curve can be obtained as f̂(vi) = β̂0 + β̂1vi + Ziα̂. See Eilers
and Marx (2021) for a detailed explanation on how to visualize these curves.

In these figures, the red curve represents the estimated mean obtained for f̂(vi) and
the green bands, its 95% credible interval. We will assume that there is evidence of
the existence of a non linear relationship between the covariate under study and the
predictor in the cases where it is not possible to draw a straight line that falls within the
band corresponding to the credible interval. In other words, if such line can be fitted
within the band, we will consider that, if there exists a relationship between the variable
and the predictor, there is no reason to believe it may not be linear.

The first variable under study is Viol, with results reported in Table 3.1. Here, we
can compare the four models according to their DIC and WAIC values. The smallest
ones are given for Model 2, which is the spatial conditional normal Poisson model that
includes the smooth function of the variable Viol in the regression equation for the
conditional mean. However, the fixed effect in this model is not significant, according
to its 95% credible interval and, moreover, the curve obtained from this model shown
in Figure 3.1(a) does not suggest any relationship different than the linear one between
Viol and the conditional mean of the mortality rates.
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In addition, the largest information criteria values were obtained for Model 4, that is
the generalized spatial conditional normal Poisson model which also includes the smooth
function of Viol. In this case, although the credible interval band is wider than the one
from Model 2, the curve shown in Figure 3.1(b) does not suggest any evidence of the
existence of any relationship other than the linear one either.

Table 3.1: Results obtained from the fitting of the four models considered for the
variable Viol.

Model 1 Model 2 Model 3 Model 4

Intercept Mean -4.8764 -4.7905 -4.7055 -4.5109
SD (0.3999) (0.4842) (0.4496) (0.5441)

95% CI (-5.6581,-4.0843) (-5.6841,-3.7910) (-5.5405,-3.7803) (-5.4625,-3.3438)
Viol Mean 0.0103 0.0081 0.0300 0.0265

SD (0.0107) (0.0136) (0.0137) (0.0155)
95% CI (-0.0113,0.0315) (-0.0214,0.0326) (0.0013,0.0541) (-0.0067,0.0528)

ρ Mean 0.0314 0.0312 -0.1239 -0.1840
SD (0.0101) (0.0099) (0.1108) (0.1327)

95% CI (0.0110,0.0514) (0.0118,0.0500) (-0.3446,0.0565) (-0.4538,0.0424)
τ Mean 0.1028 0.1019 - -

SD (0.0296) (0.0297) - -
95% CI (0.0601,0.1752) (0.0592,0.1710) - -

τα Mean - 0.0740 - 0.1112
SD - (0.3476) - (0.3681)

95% CI - (8.302e-05,0.5596) - (1.143e-04,0.7699)
γ Mean - - 0.8453 2.1268

SD - - (2.6006) (2.9927)
95% CI - - (-3.4355,5.9506) (-3.0422,8.1330)

DIC 309.1 308.8 314.3 317.8
WAIC 293.3 293.2 297.5 298.3
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(a) Curve obtained for Model 2 (b) Curve obtained for Model 4

Figure 3.1: Curves obtained for the semiparametric models considering the variable
Viol.

For the variable IBN, with results included in Table 3.2, Model 3 has the lowest
information criteria values (i.e., DIC = 312 and WAIC = 295.7). In this model, the
smooth function of the variable is not included and hence, its relationship with the
conditional mean is assumed to be linear. In addition, the values for Model 4, which
does consider the smooth term for the variable, were DIC = 312.5 and WAIC = 296, very
close to that of the best fitting model. The curves shown in Figure 3.2 might give a slight
sense that the relationship between the variable and the conditional mean resembles an
exponential function, especially the one obtained for Model 4 (i.e., Figure 3.2(b)), which
has a narrower credible interval band. However, given that it would still be possible to
fit a straight line that falls within this interval, we conclude that there is no evidence of
the existence of a relationship other than the linear one here either.
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Table 3.2: Results obtained from the fitting of the four models considered for the
variable IBN.

Model 1 Model 2 Model 3 Model 4

Intercept Mean -4.8525 -4.9358 -4.4500 -4.4510
SD (0.1465) (0.2006) (0.0582) (0.0790)

95% CI (-5.1544,-4.5692) (-5.3767,-4.5787) (-4.5626,-4.3337) (-4.6169,-4.2905)
IBN Mean 0.0158 0.0174 0.0172 0.0176

SD (0.0019) (0.0032) (0.0014) (0.0017)
95% CI (0.0121,0.0196) (0.0120,0.0252) (0.0144,0.0200) (0.0143,0.0211)

ρ Mean 0.0207 0.0227 0.1863 0.2007
SD (0.0059) (0.0064) (0.0584) (0.0640)

95% CI (0.0093,0.0324) (0.0101,0.0353) (0.0775,0.3055) (0.0745,0.3307)
τ Mean 0.0272 0.0255 - -

SD (0.0091) (0.0089) - -
95% CI (0.0144,0.0489) (0.0126,0.0474) - -

τα Mean - 0.0622 - 0.0145
SD - (0.2119) - (0.0475)

95% CI - (9.068e-05,0.4354) - (7.632e-05,0.1037)
γ Mean - - -8.2272 -8.6307

SD - - (1.5231) (1.6897)
95% CI - - (-11.2720,-5.4117) (-12.0734,-5.3016)

DIC 312.8 315.6 312 312.5
WAIC 295.9 296.6 295.7 296

(a) Curve obtained for Model 2 (b) Curve obtained for Model 4

Figure 3.2: Curves obtained for the semiparametric models considering the variable
IBN.

The results obtained for the variable Rec, shown in Table 3.3, indicate that the best
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fitting model, according to the information criteria values, is Model 2, which includes
the smooth term for this variable. In addition, Model 1 also provides a similar fit in
terms of DIC and WAIC. However, the variable Rec is not statistically significant in any
of these two models. Moreover, from the curve shown in Figure 3.3(a), it is not possible
to infer any evidence that indicates the existence of a relationship other than the linear
one between the variable and the conditional mean.

Small information criteria values, close to the ones from Model 2, were also obtained
for Model 4, which is the generalized spatial conditional normal Poisson model where
the smooth term is included in the regression structure for the mean and the spatial
lag in the variance structure. In this case, the curve obtained from this model, shown
in Figure 3.3(b), does seem to show a non linear behaviour, as it changes according
to the values of the variable Rec. In particular, it suggests that for regions where the
amount of resources provided by the government for academic achievement or education
is less than 100 thousand dollars, when the value of this variable increases, the mortality
rates decrease. For regions with values of Rec between 100 and 200 thousand dollars,
the mortality rates increase when the resources increase, and for values larger than 200,
the mortality rates decrease again when the resources increase. These results will be
discussed in more detail in Section 3.4.3.

Table 3.3: Results obtained from the fitting of the four models considered for the
variable Rec.

Model 1 Model 2 Model 3 Model 4

Intercept Mean -4.5407 -4.4801 -3.4357 -3.0185
SD (0.3294) (0.3711) (0.1380) (0.3061)

95% CI (-5.1827,-3.8776) (-5.1597,-3.7142) (-3.7589,-3.2119) (-3.4602,-2.2699)
Rec Mean -1.527e-04 -5.127e-04 -0.0029 -0.0043

SD (0.0010) (0.0014) (0.0013) (0.0020)
95% CI (-0.0022,0.0018) (-0.0036,0.0018) (-0.0051,-8.830e-05) (-0.0091,-0.0011)

ρ Mean 0.0328 0.0322 -0.1176 -0.2210
SD (0.0111) (0.0113) (0.0817) (0.0736)

95% CI (0.0111,0.0549) (0.0103,0.0541) (-0.2712,0.0412) (-0.3675,-0.0750)
τ Mean 0.1066 0.1045 - -

SD (0.0321) (0.0303) - -
95% CI (0.0625,0.1841) (0.0607,0.1765) - -

τα Mean - 0.0909 - 1.2826
SD - (0.5946) - (4.2924)

95% CI - (8.347e-05,0.7141) - (0.0159,8.2577)
γ Mean - - 0.7308 2.6717

SD - - (1.9564) (1.6612)
95% CI - - (-3.0569,4.4696) (-0.5804,6.0385)

DIC 309.1 308.9 314.2 309.6
WAIC 293.3 293.5 296 293.1
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(a) Curve obtained for Model 2 (b) Curve obtained for Model 4

Figure 3.3: Curves obtained for the semiparametric models considering the variable
Rec.

Here, it could be useful to mention that, for Figure 3.3(b), the credible interval band
becomes considerably wider from the value 150 onwards. Therefore, we should examine
the variable Rec in more detail, for what we can rely on the information offered by the
boxplot for this variable, shown in Figure 3.4. We can see that there might be less
information available for this variable, given that the third quartile of the distribution
is located between 100 and 150. Moreover, we can observe that there is an outlier
given by the point located beyond the value of 250, which corresponds to the region of
Antioqúıa. Let us recall that the presence of this outlier was already discussed in Section
2.6 in Chapter 2. Due to this fact, we should be particularly careful when performing
inference regarding this last part of the curve, since it might not be as reliable as the
one before the value of 150.

Figure 3.4: Boxplot of the variable Rec.

For the variable HE, results are reported in Table 3.4. We can see that the best
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fitting model is Model 2, the spatial conditional normal Poisson model which includes
the smooth term for the variable. Here, the fixed effect for the variable is statistically
significant but the spatial lag is not. In any case, the curves in Figure 3.5 do not suggest
any relationship other than a linear one.

Finally, for the last variable under study, which is Vac, results are reported in Table
3.5. Here, we can see that the generalized spatial conditional normal Poisson models
(i.e., Models 3 and 4) have the largest DIC and WAIC values among the four models. In
addition, in Models 1 and 2, the fixed effect for Vac is not significant. In any case, the
curves shown in Figure 3.6 do not indicate any evidence of the existence of non linear
relationships between the variable and the predictor.

Table 3.4: Results obtained from the fitting of the four models considered for the
variable HE.

Model 1 Model 2 Model 3 Model 4

Intercept Mean -3.7109 -3.5142 -3.3161 -3.3017
SD (0.3400) (0.4596) (0.0848) (0.1222)

95% CI (-4.3788,-3.0498) (-4.3434,-2.5215) (-3.4912,-3.1496) (-3.5397,-3.0560)
HE Mean -0.0202 -0.0202 -0.0263 -0.0225

SD (0.0061) (0.0072) (0.0048) (0.0062)
95% CI (-0.0324,-0.0085) (-0.0342,-0.0060) (-0.0359,-0.0166) (-0.0345,-0.0102)

ρ Mean 0.0119 0.0061 -0.0749 -0.0779
SD (0.0109) (0.0133) (0.0536) (0.0504)

95% CI (-0.0092,0.0335) (-0.0217,0.0310) (-0.1829,0.0279) (-0.1828,0.0157)
τ Mean 0.0736 0.0712 - -

SD (0.0216) (0.0209) - -
95% CI (0.0424,0.1241) (0.0402,0.1222) - -

τα Mean - 0.1153 - 0.0992
SD - (0.5689) - (0.5977)

95% CI - (9.274e-05,0.8647) - (1.416e-04,0.6843)
γ Mean - - -0.9012 -0.9304

SD - - (1.2974) (1.2079)
95% CI - - (-3.3154,1.8178) (-3.0842,1.6519)

DIC 310.2 308.3 313.6 312.4
WAIC 293.2 293.5 295.6 295.4
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(a) Curve obtained for Model 2 (b) Curve obtained for Model 4

Figure 3.5: Curves obtained for the semiparametric models considering the variable
HE.

Table 3.5: Results obtained from the fitting of the four models considered for the
variable Vac.

Model 1 Model 2 Model 3 Model 4

Intercept Mean -4.3322 -4.4556 -3.4822 -3.5351
SD (0.4216) (0.5778) (0.5890) (0.6678)

95% CI (-5.1826,-3.5302) (-5.7295,-3.4455) (-4.6033,-2.3583) (-4.8126,-2.2538)
Vac Mean -0.0038 -0.0020 -0.0039 -0.0025

SD (0.0055) (0.0075) (0.0092) (0.0103)
95% CI (-0.0145,0.0073) (-0.0147,0.0141) (-0.0212,0.0140) (-0.0219,0.0172)

ρ Mean 0.0344 0.0345 0.0189 0.0151
SD (0.0098) (0.0100) (0.0737) (0.0747)

95% CI (0.0154,0.0535) (0.0145,0.0544) (-0.1752,0.1244) (-0.1865,0.1266)
τ Mean 0.1031 0.1029 - -

SD (0.0306) (0.0301) - -
95% CI (0.0601,0.1759) (0.0593,0.1748) - -

τα Mean - 0.0865 - 0.0696
SD - (0.5922) - (0.2958)

95% CI - (8.740e-05,0.6770) - (8.653e-05,0.5498)
γ Mean - - -2.4486 -2.3575

SD - - (1.8513) (1.8602)
95% CI - - (-5.0482,2.4843) (-5.0600,2.6644)

DIC 309 309.5 313.6 314.7
WAIC 293.8 293.8 296 296

93



(a) Curve obtained for Model 2 (b) Curve obtained for Model 4

Figure 3.6: Curves obtained for the semiparametric models considering the variable
Vac.

3.4.2 Comparison with the best fitting model

Let us recall that, in Section 2.6.1, Chapter 2, the best fitting model obtained for the
mortality rates in Colombia was the spatial conditional normal Poisson model which
included the variables IBN, Rec, as well as the spatial lag of the rates. Since, for one of
the models fitted in the previous section, we found evidence of a non linear relationship
between the variable Rec and the mortality rates, we believe it may be of interest to
investigate whether this non linear relationship is also present in the aforementioned
model from Chapter 2. In particular, for this model, the regression structure for the
mean was specified so that:

log(µi) = log(NBi) + β0 + β1Reci + β2IBNi + ρWiRates+ νi,

νi ∼ N(0, τ), τ > 0
(3.18)

In order to evaluate if a non linear relationship between the predictor and the variable
Rec is present in this model, we consider the inclusion of a smooth term for this variable,
given by the P-splines mixed model representation of the smooth function of Rec (i.e.,
f(Reci) = β0 + β1Reci + Ziα), so that the regression structure is as follows:

log(µi) = log(NBi) + β0 + β1Reci + Ziα+ β2IBNi + ρWiRates+ νi,

νi ∼ N(0, τ), τ > 0, αk ∼ N(0, τα), τα > 0
(3.19)

Note that, in this chapter, we have used the software package JAGS for model fitting,
whereas in Section 2.6.1, Chapter 2, the models were fitted in OpenBUGS. As a direct
comparison among models fitted in different software packages cannot be performed
(see Morales-Otero and Núñez-Antón, 2021), here we will employ JAGS to fit the two
considered models, so that we are able to compare them.
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The results obtained from the fitting of the models in equations (3.18) and (3.19)
are included in Table 3.6. Here, the model where the smooth term for the variable
Rec was included (i.e., model in equation (3.19)) has slightly smaller DIC and WAIC
values than those obtained for the model that considers the variable Rec only as a fixed
effect (i.e., model in equation (3.18)). However, for the model including the smooth
term for Rec, the fixed effect for this variable and the spatial term are not statistically
significant. Moreover, from the curve shown in Figure 3.7, we can see that, in this model,
no evidence of any non linear relationship between Rec and the mortality rates can be
inferred. Therefore, in this specific case, we conclude that the variable Rec is properly
specified as a fixed effect.

Table 3.6: Results obtained from the fitting of the models in equations (3.18) and
(3.19) to the infant mortality rates in Colombia.

Model in equation (3.18) Model in equation (3.19)

Intercept Mean -4.6528 -4.5839
SD (0.1636) (0.1911)

95% CI (-4.9763,-4.3374) (-4.9552,-4.1972)
Rec Mean -0.0011 -0.0011

SD (5.110e-04) (5.871e-04)
95% CI (-0.0021,-9.039e-05) (-0.0023,8.299e-05)

IBN Mean 0.0166 0.0168
SD (0.0018) (0.0018)

95% CI (0.0130,0.0203) (0.0131,0.0203)
ρ Mean 0.0154 0.0132

SD (0.0060) (0.0067)
95% CI (0.0036,0.0271) (-2.390e-04,0.0265)

τ Mean 0.0234 0.0230
SD (0.0081) (0.0083)

95% CI (0.0120,0.0428) (0.0114,0.0434)
τα Mean - 0.0150

SD - (0.0507)
95% CI - (7.974e-05,0.1031)

DIC 313.4 311.5
WAIC 295.8 295.7
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Figure 3.7: Curve obtained for the semiparametric model in equation (3.19).

3.4.3 Summary of the results obtained

We have investigated the presence of non linear relationships between the conditional
mean of the mortality rates and the variables included in the study, and in one of the
models fitted, we have found evidence of such relation for the variable Rec. This variable
represents the amount of resources provided by the government for academic achievement
or education per household, in thousands of dollars.

In this case, a smooth relationship with the predictor was observed, where the inter-
pretation was not the same for three different intervals of the values of the variable Rec.
In particular, the values of the mortality rates increased for larger values of Rec when
the resources were between 100 and 200 thousand dollars. For the rest of the values,
that is for less than 100 and more than 200 thousand dollars, the relationship was a
decreasing one.

Therefore, if the variable Rec was included in a model as a fixed effect, it is possible
that not all of its variability would be captured, so it is be advisable that a smoothing
term for this variable would be considered. For the rest of the variables, since no evidence
that indicates otherwise was found, if they were to be included in the regression structure,
they could be specified as fixed effects.

In particular, the generalized spatial conditional normal Poisson model (i.e., Model
4) that was fitted, considering the smooth function for the variable Rec, was given by:

log(µi) = log(NBi) + β0 + β1Reci + Ziα+ νi,

νi ∼ N(0, τi), τi > 0, αk ∼ N(0, τα), τα > 0

log(τi) =γ + ρWiRates,

(3.20)

where Reci is the variable corresponding to the i-th area and the rest of the terms are as
before. Note that the results obtained from the fitting of this model have been included
in Table 3.3.
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We can now examine some of the posterior predictive checks for this model. For
example, the scatterplot of the observed versus the predicted rates is shown in Figure
3.8, where we can see that the predictions are quite accurate. In addition, the map of
the resulting predictions is included in Figure 3.9(b). If we compare this map with the
map of the observed rates in Figure 3.9(a), we can see that the predictions are almost
identical to their corresponding observed values.

Finally, as was the case for the model in equation (3.20), evidence of a non linear
relationship between the mortality rates and the variable Rec was found. We have
further investigated whether there was also evidence of such non linear relationship for
the best fitting model from Section 2.6.1, in the previous chapter (i.e., Chapter 2), since
this model also included the variable Rec. The conclusion was that no evidence of
such relationship was found. Hence, the evidence suggests that this model was properly
specified by including the variable Rec as a fixed effect.

Figure 3.8: Scatterplot of the observed versus the predicted rates obtained after fitting
the model in equation (3.20).
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(a) Map of the observed mortality rates. (b) Map of the predicted mortality rates
obtained after fitting the model in equa-
tion (3.20).

Figure 3.9: Maps of the observed and the predicted mortality rates.

3.5 Application to mother’s postnatal period screening
test in Colombia

In this section, we will fit the semiparametric models proposed in Section 3.3, for bino-
mially distributed responses, to the data set that was analysed in Section 2.7, Chapter
2, concerning the mother’s postnatal period screening test in Colombia. The variables
available were the number of women who gave birth to their last child between the
years 1999 and 2005 and went through a postnatal period screening test (i.e., variable
Nscreen), the number of women who has their last child after 1999 (i.e., variable NMoth-
ers), the percentage of women who had to pay for their postnatal check-up (i.e., variable
Pay), the percentage of women over 18 years old who declared to have suffered physical
violence from their current partners (i.e., variable Viol), the percentage of young people
(between 18 and 24 years) who had access to a higher educational level (i.e., variable
HE) and the percentage of the population that had basic services not being satisfactorily
attended to for the year 2005 (i.e., variable IBN). See Section 2.7 for a more detailed
description of this data set.

Here, in order to investigate the possibility of the existence of a non linear behaviour,
the relationship of each covariate with the logistic function of the probability of success
will be assessed. Therefore, we will fit multiple models such as the ones proposed in
Section 3.3, for binomially distributed count variables. As in the previous Section, here
we will show four model alternatives that we believe are the ones that best illustrate the

98



analysis performed.
The first model considered (i.e., Model 1) is a spatial conditional normal binomial

model including the explanatory variable vi, for i = 1, . . . , n, where we assume that
Nscreeni ∼ Bin(NMothersi, πi), with the probability of success, πi, following the regres-
sion structure:

logit(πi) = β0 + β1vi + ρAi + νi, νi ∼ N(0, τ), τ > 0 (3.21)

Note that here β0 and β1 are the intercept and the unknown coefficient, respectively, Ai

is the spatial term for the i-th region and ρ is the spatial parameter.
The second model (i.e., Model 2) is also a spatial conditional normal binomial model

as Model 1, but where we consider the relationship between the covariate and the pre-
dictor to be given by the smooth function f(·). For this function, we will specify the
mixed model representation from equation (3.7) (i.e., f(vi) = β0 + β1vi + Ziα), so that
the regression structure for πi is:

logit(πi) =β0 + β1vi + Ziα+ ρAi + νi,

νi ∼ N(0, τ), τ > 0, αk ∼ N(0, τα), τα > 0
(3.22)

The third model (i.e., Model 3) is a generalized spatial conditional normal binomial
model, where we include the covariate in the regression structure for the probability of
success and the spatial term in the structure for the variance parameter. In particular,
the model for πi is the following:

logit(πi) =β0 + β1vi + νi, νi ∼ N(0, τi), τi > 0

log(τi) =γ + ρAi
(3.23)

Finally, the last model considered (i.e., Model 4) is the same generalized spatial
conditional normal binomial model as the one before, but including the smooth term for
the variable vi (i.e., f(vi) = β0 + β1vi + Ziα) in the regression structure for πi, so that:

logit(πi) =β0 + β1vi + Ziα+ νi,

νi ∼ N(0, τi), τi > 0, αk ∼ N(0, τα), τα > 0,

log(τi) =γ + ρAi

(3.24)

As in the previous Section, here we will also specify K = 5 knots, so Z is a 32 ×
6 matrix with k = 1, . . . , 6, random coefficients αk. Here, the models will also be
implemented in JAGS and noninformative priors will be assumed for the parameters.
That is, normal priors for the fixed effects (i.e., N(0, 1e-05)) and gamma priors for the
precision parameters of the random effects (i.e., G(1e-04, 1e-04)). In addition, models
will be compared with the use of the Deviance and the Watanabe-Akaike information
criteria (i.e., DIC and WAIC).
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3.5.1 Fitting of the semiparametric generalized spatial conditional
over-dispersion models for binomial responses

The results obtained after fitting the four models described above are included in Tables
3.7 to 3.10, when considering each of the variables Viol, IBN, HE and Pay, respectively.
In addition, the curves obtained for the smooth functions from Models 2 and 4 are also
shown in Figures 3.10 to 3.13, for each of the aforementioned variables.

For the first variable under study, that is Viol, we can see in Table 3.7 that the best
fitting models, according to their DIC and WAIC values, are Models 1 and 2. However,
in these models the fixed effect for the variable is not significant and neither is the spatial
term. Moreover, the curves obtained for the smooth function in Models 2 and 4, shown
in Figure 3.10, do not seem to indicate any evidence of the existence of a relationship
different than the linear one between the variable and the predictor.

Table 3.7: Results obtained from the fitting of the four models considered for the
variable Viol.

Model 1 Model 2 Model 3 Model 4

Intercept Mean 0.1070 0.0200 0.3286 0.0715
SD (0.5773) (0.6809) (0.5615) (0.7442)

95% CI (-1.0238,1.2368) (-1.3759,1.3331) (-0.7636,1.4554) (-1.4692,1.4377)
Viol Mean -0.0105 -0.0075 7.414e-04 -0.0028

SD (0.0170) (0.0206) (0.0160) (0.0216)
95% CI (-0.0447,0.0225) (-0.0452,0.0360) (-0.0310,0.0324) (-0.0424,0.0405)

ρ Mean 0.4219 0.4273 0.5631 -0.2870
SD (0.2311) (0.2345) (0.9956) (0.1949)

95% CI (-0.0139,0.8770) (-0.0354,0.8961) (-1.3211,2.5493) (-0.6615,0.0715)
τ Mean 0.1826 0.1841 - -

SD (0.0699) (0.0734) - -
95% CI (0.0793,0.3456) (0.0800,0.3651) - -

τα Mean - 0.1213 - 0.1841
SD - (0.6073) - (0.9195)

95% CI - (8.830e-05,0.9536) - (7.573e-05,1.6029)
γ Mean - - -2.5494 -1.3116

SD - - (1.5723) (0.4962)
95% CI - - (-5.7918,0.3431) (-2.2551,-0.3020)

DIC 224.5 224.4 226.2 226.4
WAIC 204.7 204.3 205.6 205.8
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(a) Curve obtained for Model 2 (b) Curve obtained for Model 4

Figure 3.10: Curves obtained for the semiparametric models considering the variable
Viol.

For the variable IBN, the results obtained from the fitting of the four models are
shown in Table 3.8. Here, the best fit corresponds to Model 3, which is the generalized
spatial conditional normal binomial model that does not consider the smooth term for
the variable, but that includes it as a fixed effect in the regression structure for the
mean, resulting statistically significant. In addition, the spatial term is included in the
regression structure for the precision parameter, resulting not statistically significant.
In any case, the curves obtained for the models including the smooth term, shown in
Figure 3.11, do not suggest any type of non linear relationship between the variable and
the predictor.

101



Table 3.8: Results obtained from the fitting of the four models considered for the
variable IBN.

Model 1 Model 2 Model 3 Model 4

Intercept Mean 0.3345 0.4201 0.9873 0.5184
SD (0.3251) (0.4007) (0.2122) (0.4296)

95% CI (-0.3183,0.9692) (-0.3328,1.2778) (0.5869,1.4134) (-0.2668,1.4218)
IBN Mean -0.0156 -0.0187 -0.0166 -0.0204

SD (0.0046) (0.0078) (0.0051) (0.0091)
95% CI (-0.0245,-0.0065) (-0.0391,-0.0069) (-0.0268,-0.0069) (-0.0425,-0.0069)

ρ Mean 0.4481 0.4754 1.8190 -0.4489
SD (0.1821) (0.1989) (1.5707) (0.2180)

95% CI (0.0885,0.7998) (0.0893,0.8639) (-1.3703,4.9559) (-0.8433,-0.0186)
τ Mean 0.1157 0.1106 - -

SD (0.0471) (0.0492) - -
95% CI (0.0481,0.2257) (0.0436,0.2334) - -

τα Mean - 0.2267 - 0.3523
SD - (1.0705) - (1.4379)

95% CI - (9.952e-05,1.8031) - (1.086e-04,2.6015)
γ Mean - - -4.9478 -1.6115

SD - - (2.5979) (0.5245)
95% CI - - (-10.4077,0.1639) (-2.6031,-0.5811)

DIC 217.7 218.8 215.8 221.9
WAIC 200.8 201 200.6 201.7

(a) Curve obtained for Model 2 (b) Curve obtained for Model 4

Figure 3.11: Curves obtained for the semiparametric models considering the variable
IBN.

Table 3.9 includes the results obtained after fitting the models considering the vari-
able HE. Here, the fixed effect is not significant in any of the four cases and neither is
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the spatial term. Moreover, the curves shown in Figure 3.12 do not suggest any clear
non linear relationship between the predictor and HE.

Finally, the results obtained when considering the variable Pay can be seen in Table
3.10. The fixed effect is significant in all the models. However, the spatial term is
not. The best fitting model according to the information criteria values is Model 2, the
spatial conditional normal binomial model that includes the smooth term for variable
Pay. Nevertheless, in Figure 3.13 we can see that the curves for models 2 and 4 do not
suggest any non linear relationship between Pay and the predictor.

Table 3.9: Results obtained from the fitting of the four models considered for the
variable HE.

Model 1 Model 2 Model 3 Model 4

Intercept Mean -0.3860 -0.1535 0.2011 0.0462
SD (0.3735) (0.7246) (0.1754) (0.8684)

95% CI (-1.1517,0.3537) (-1.9610,1.1123) (-0.1464,0.5389) (-2.2905,1.4422)
HE Mean 0.0111 0.0141 0.0103 0.0156

SD (0.0088) (0.0252) (0.0092) (0.0313)
95% CI (-0.0061,0.0287) (-0.0204,0.0817) (-0.0075,0.0283) (-0.0255,0.1025)

ρ Mean 0.4011 0.2874 0.6764 -0.1249
SD (0.2155) (0.2184) (1.0607) (0.1864)

95% CI (-0.0167,0.8323) (-0.1125,0.7293) (-1.2625,2.8473) (-0.4654,0.2799)
τ Mean 0.1784 0.1300 - -

SD (0.0704) (0.0710) - -
95% CI (0.0777,0.3463) (0.0316,0.2983) - -

τα Mean - 7.2366 - 12.2909
SD - (39.0385) - (45.1545)

95% CI - (2.083e-04,64.3950) - (5.376e-04,95.8509)
γ Mean - - -2.7245 -2.1909

SD - - (1.6651) (0.8500)
95% CI - - (-6.2064,0.3112) (-4.0603,-0.8685)

DIC 222.2 227.5 222.9 239.5
WAIC 203.2 206.5 203.8 216.1
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(a) Curve obtained for Model 2 (b) Curve obtained for Model 4

Figure 3.12: Curves obtained for the semiparametric models considering the variable
HE.

Table 3.10: Results obtained from the fitting of the four models considered for the
variable Pay.

Model 1 Model 2 Model 3 Model 4

Intercept Mean 0.4629 0.4696 0.6340 0.5327
SD (0.3717) (0.3922) (0.1051) (0.3768)

95% CI (-0.2714,1.1958) (-0.2935,1.2316) (0.4247,0.8399) (-0.1945,1.3183)
Pay Mean -0.0369 -0.0372 -0.0396 -0.0389

SD (0.0136) (0.0157) (0.0105) (0.0167)
95% CI (-0.0637,-0.0104) (-0.0686,-0.0068) (-0.0600,-0.0192) (-0.0730,-0.0064)

ρ Mean 0.1100 0.1107 1.3585 -0.0777
SD (0.2055) (0.2104) (1.6759) (0.1935)

95% CI (-0.2914,0.5199) (-0.3047,0.5399) (-1.7287,5.4112) (-0.4568,0.3677)
τ Mean 0.1191 0.1216 - -

SD (0.0550) (0.0571) - -
95% CI (0.0424,0.2489) (0.0410,0.2592) - -

τα Mean - 0.1690 - 0.2542
SD - (1.6239) - (1.9893)

95% CI - (8.493e-05,1.2968) - (8.744e-05,1.7158)
γ Mean - - -4.6883 -2.0991

SD - - (2.9807) (0.5615)
95% CI - - (-12.4338,0.3167) (-3.2226,-0.9937)

DIC 231.2 230.9 248.3 232.5
WAIC 207.7 207.2 213.7 208.3
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(a) Curve obtained for Model 2 (b) Curve obtained for Model 4

Figure 3.13: Curves obtained for the semiparametric models considering the variable
Pay.

3.5.2 Summary of the results obtained

In this section, we have assessed the behaviour of the relationships between each of the
covariates available in the data set under study and the probability of success of women
going through a postnatal period screening test. In order to do this, we have included
a smooth function of each variable in the models, which was specified by means of a
P-splines mixed model representation. In this specific application, we have not found
any evidence of any relationship different than the linear one between the logistic model
for the probability of success and the independent variables under study. Therefore, we
have no reasons to believe that if any of these variables was included in a study, their
effect would be inappropriately captured by fixed linear coefficients.

3.6 Discussion

In this chapter, we have proposed an extension of the generalized spatial conditional
overdispersion models in Cepeda-Cuervo, Córdoba and Núñez-Antón, 2018 that allows
to capture possible existing non linear relationships between the variables under study
and the predictor. For the smoothing of such variables, we have considered P-splines
in their mixed models representation proposed by Currie and Durbán (2002), which
simplifies the fitting of the models and the inferential process in great manner, when
compared to the nonparametric methodology. In particular, we have proposed the semi-
parametric generalized spatial conditional normal Poisson and binomial models, where
the smoothing term is included in the regression structure for the conditional mean.

These model proposals have been illustrated with two applications to real data ex-
amples, where we have investigated the type of relationship obtained when including
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the smoothing term in the models. In addition, we have assessed their behaviour by
performing their comparison with other alternatives excluding the smoothing term.

We have fitted the models for Poisson responses to the infant mortality rates in
Colombia data set, finding evidence of the existence of a non linear relationship between
the mortality rates and the variable Rec, for one of the considered models. The effect
of this variable on the mortality rates showed a behaviour that decreased, increased and
decreased again according to the value of the variable, hence, clearly showing a non linear
effect. For the remaining variables considered, there was no indication of any evidence
of a non linear relationship.

Additionally, the proposed semiparametric models for binomially distributed re-
sponses were fitted to the data concerning the mother’s postnatal period screening test
in Colombia. In this case, we did not find any evidence of the existence of non linear
relationships between the variables under study and the probability of success.

The applications presented here can be considered as good illustrating examples for
the proposed semiparametric models. However, given the limited sample size of the data
sets under analysis (i.e., N = 32 observations), we specified a number of 5 knots for the
definition of the smooth functions of the variables, taking into account that this quantity
is usually between 5 and 40 (Ruppert, 2002). Therefore, we did not consider it necessary
to perform any additional comparison to settings with more than 5 knots. In this sense,
perhaps other data sets could be explored, so that smoothing with a larger number of
knots can be studied.

Nevertheless, in these applications, we believe that we have been able to illustrate
how non linear relationships between variables and the predictor can be detected so
that their effect can be properly expressed in the regression models. Moreover, we
believe that the proposed extension of the generalized spatial conditional models offers a
great advantage because of the possibility of including semiparametric terms that allow
for capturing these possible non linear relationships, adding even more value to these
models.
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Chapter 4

Spatio-temporal extensions of the
spatial conditional overdispersion
models

4.1 Introduction

Spatio-temporal data arise in many fields of study, since researchers are often interested
in studying a phenomenon observed in several locations and time periods, characterizing
its behaviour and perhaps, forecasting it. An example of one of these fields is given
by disease mapping (Lawson, 2008; Blangiardo and Cameletti, 2015). This type of
data often exhibit correlation among regions and time units (Cressie and Wikle, 2011).
Therefore, both issues need to be taken into account when fitting regression models to
these data. It is also necessary to investigate the interaction between the spatial and the
temporal dimensions and, in addition, to study the dynamic relationship of the spatial
processes in time.

In this chapter, we review some of the most frequently used models in the spatio-
temporal context. In addition, we propose some extensions of the spatial conditional
overdispersion models in Cepeda-Cuervo, Córdoba and Núñez-Antón (2018) to allow
for the modelling of spatio-temporal data. In Section 4.2, we describe some models
often found in the literature, such as the ones proposed by Bernardinelli et al. (1995)
and Knorr-Held (2000). The proposed spatio-temporal conditional models and the tem-
porally varying spatial lag coefficient models are presented in Sections 4.3 and 4.3.1,
respectively. We assess the performance of these proposals by fitting them to the respi-
ratory hospital admissions in Glasgow and to the low birth weight in Georgia data sets,
with their corresponding results included in Sections 4.4 and 4.5, respectively. In these
two sections we also include a comparison with the Knorr-Held (2000) model proposals.
This chapter ends in Section 4.6 with a discussion of the results for the different models
fitted here.
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4.2 Spatio-temporal models for count data

Let us assume that the random variables Yij , for i = 1, . . . , n, and j = 1, . . . , J , represent
counts for n regions in J time periods each. In addition, we will also assume that
these variables follow a count data distribution, denoted by f(yij) with means µij ; that
is, E(Yij) = µij , where f(·) could be a Poisson, a binomial, or any other count data
distribution. In generalized linear models, a regression structure for the means µij is
commonly specified as:

g(µij) = x⊤
ijβ, (4.1)

where g(·) is a monotonic and differentiable link function, xij is the k × 1 vector of
explanatory variables for the i-th area in the j-th time period, and β is the k × 1
vector of unknown regression parameters that need to be estimated. The function g(·) is
usually assumed to be the logarithmic or the logistic function in the presence of Poisson
or binomial distributed response variables, respectively. Note that this specific mean
structure for µij is commonly known as the linear predictor.

There are several models that have been proposed in the literature to account for
spatio-temporal autocorrelation. For example, one model frequently applied is the one
proposed by Bernardinelli et al. (1995), which includes a parametric linear time trend in
the linear predictor. In particular, under this specification, the means µij are modelled
as:

g(µij) = β + νi + γ0timeij + γitimeij , (4.2)

where g(·) is a link function, β is an unknown intercept term to be estimated and νi is a
normally distributed random effect, that is νi ∼ N(0, τν), with τν > 0, for i = 1, . . . , n.
In addition, time is a variable representing the time unit (i.e., day, month, year, or any
other) and γ0 is an unknown coefficient, so that the term γ0timeij represents a global
linear temporal trend. Note that γ0 is the fixed coefficient that quantifies the slope
of the line that describes the evolution of the time series between two time periods.
Furthermore, γi is an interaction random effect between area and time that would explain
the difference between the global and the local time trend for each region (Blangiardo
and Cameletti, 2015). For this effect, it is usually assumed that γi ∼ N(0, τγ), with
τγ > 0, for i = 1, . . . , n.

It could be useful to mention that Bernardinelli et al. (1995) also described the
possibility of specifying a spatially structured prior distribution for the effects γi, which
can depend on a specific neighbourhood structure. In addition, although the authors
did not consider the inclusion of explanatory variables in their original formulation, it
would be straightforward to consider this model extension by including them in the
linear predictor in equation (4.2).

Another well known, and perhaps the most commonly applied model to spatio-
temporal count data, was proposed by Knorr-Held (2000), who considered a dynamic
nonparametric formulation. Here, a series of unstructured and structured random effects
is included in the linear predictor, so that the means µij follow the regression structure:

g(µij) = x⊤
ijβ + νi + ηi + δj + ϕj , (4.3)
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where νi and δj are unstructured random effects for space and time, respectively, and ηi
and ϕj are spatially and temporal structured random effects, respectively. In addition,
g(·), xij and β are as before.

In general, a Besag-York-Mollie (BYM) (Besag, York and Mollié, 1991) specifica-
tion is assumed for the spatial random effects, with νi a normally distributed random
effect, that is νi ∼ N(0, τν), with τν > 0, for i = 1, . . . , n, and ηi following an intrinsic
conditionally autoregressive prior distribution (ICAR), so that:

(ηi|η∼i,W, τη) ∼ N

(∑n
l=1wilηl∑n
l=1wil

,
τη∑n

l=1wil

)
, for i = 1, . . . , n, (4.4)

where η∼i represents the set of values of all neighbours of the i-th region, except for the
i-th region itself, W is the spatial weights matrix and τη > 0 is an unknown variance
parameter that needs to be estimated. Note that W is a spatial neighbourhood structure
that could be given by contiguity, distance or any other criterion.

The term δj is a normally distributed random effect for the temporal dimension,
so that δj ∼ N(0, τδ), τδ > 0 , for j = 1, . . . , J . For the structured temporal random
effect ϕj , a random walk process of order one (RW1) can be specified. That is, we could
assume that the differences (ϕj−ϕj−1) follow a Normal distribution, so that (ϕj−ϕj−1) ∼
N(0, τϕ), for j = 2, . . . , J , and ϕ1 ∼ N(0, τϕ), with τϕ > 0. Additionally, for this effect,
an autoregressive prior (AR1) can also be considered, so that ϕj ∼ N(ρϕϕj−1, τϕ) for
j = 2, . . . , J , and ϕ1 ∼ N(0, τϕ), with ρϕ being the autoregressive parameter and τϕ > 0.
Note that random walk or autoregressive priors of higher order could also be specified.

Moreover, Knorr-Held (2000) also proposed to include a spatio-temporal interaction
term ϵij , so that the means µij are modelled in the following way:

g(µij) = x⊤
ijβ + νi + ηi + δj + ϕj + ϵij (4.5)

For this term, an unstructured normal prior distribution with zero mean and variance
τϵ > 0 is often assumed, so that ϵij ∼ N(0, τϵ), for i = 1, . . . , n and j = 1, . . . , J .
However, other structured prior distributions could also be considered by combining
different effects (Lawson, 2008). This term would allow us to capture the variability
of the temporal trend of the response variable for the different regions (Blangiardo and
Cameletti, 2015).

4.3 Proposed models: Spatio-temporal conditional models

In this section, we propose some extensions of the spatial conditional models in Cepeda-
Cuervo, Córdoba and Núñez-Antón (2018) that will allow us to model spatio-temporal
count data. In these proposals, the regression structure for the mean will include, for each
time period, the lag term of the response variable under study. The parameter associated
with this term, would represent the strength of the global spatial autocorrelation which
can be present in the data. In this sense, positive significant values would suggest positive
spatial autocorrelation in the whole time period considered and, negative significant
values, negative spatial autocorrelation.
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In particular, we assume that the response variables Yij , conditioned on the values of
all the neighbours of the i-th region, but not including the i-th region itself (i.e., Y∼ij),
and for the j-th time period, follow a count data distribution f(·), with conditional
means E(Yij |Y∼ij) = µij , for i = 1, . . . , n and j = 1, . . . , J , following the regression
structure:

g(µij) = x⊤
ijβ + ρWiyj , (4.6)

where Wi is the i-th row of the n× n spatial weights matrix W, yj is the n× 1 vector
of observations for all n spatial units for time period j, and ρ is the parameter that
captures the strength of the spatial association. Additionally, g(·), xij and β are as
before.

In these models, by including the spatial lags Wyj , together with the spatial coef-
ficient ρ, it is possible to account for the spatial dependence on the whole time period.
Note that Wyj are n × 1 vectors representing the spatial lags of the response variable
for each time period, for which we will assume that the spatial structure does not change
over time and, hence, that the spatial matrix W remains invariant.

Furthermore, in order to be able to take into account the temporal correlation that
might be present in the data, as well as its interaction with the possible existing spatial
correlation, we propose to include in the model a set of random effects such as the ones
that were proposed by Knorr-Held (2000) and were described in the previous section for
equation (4.5).

Therefore, we assume that Yij , conditioned on Y∼ij and on the random ef-
fects νi, δj , ϕj and ϵij , follows a count data distribution f(·), with conditional mean
E(Yij |Y∼ij , νi, δj , ϕj , ϵij) = µij , for i = 1, . . . , n and j = 1, . . . , J , so that:

g(µij) = x⊤
ijβ + ρWiyj + νi + δj + ϕj + ϵij , (4.7)

where g(·), xij , β, Wi, yj , ρ, νi, δj , ϕj and ϵij are as before.
For Poisson distributed responses, we will assume that (Yij |Y∼ij , νi, δj , ϕj , ϵij) ∼

Poi(µij), for i = 1, . . . , n and j = 1, . . . , J , where the conditional mean
E(Yij |Y∼ij , νi, δj , ϕj , ϵij) = µij follows the regression structure:

log(µij) = x⊤
ijβ + ρWiyj + νi + δj + ϕj + ϵij (4.8)

In the case of binomially distributed responses, we consider that the number of tri-
als on each region i and time period j, is denoted by nij , so that we can assume that
(Yij |Y∼ij , νi, δj , ϕj , ϵij) ∼ Bin(nij , πij), where πij is the probability of success of a trial in
region i and time period j. In order to be able take into account the possible existent spa-
tial dependence, Cepeda-Cuervo, Córdoba and Núñez-Antón (2018) proposed to include
the spatial term A, already described in Chapter 2, Section 2.3.1, for cross-sectional
data.

We propose to adapt this term for the case of spatio-temporal data. Hence, we define
A as an n× J matrix, where each column Aj corresponds to the n× 1 vector of spatial
terms for the j-th time period. Each of the elements of this vector will be denoted by
Aij , so that Aij =

π̂∼ij

1−π̂∼ij
, where π̂∼ij =

Wiyj

Winj
with Wi being the i-th row of spatial
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weights matrix W, corresponding to the i-th region, and yj and nj being the vector of
observations of the response variable and the vector of the number of trials, respectively,
for the j-th time period.

Therefore, we specify a regression structure on the probability of success πij where
we will include the spatial terms Aij , described above, together with a spatial parameter
ρ, that will explain the spatial dependence in the data for the whole time period. In
particular, πij is modelled in the following way:

logit(πij) = x⊤
ijβ + ρAij + νi + δj + ϕj + ϵij , (4.9)

where xij , β, Wi, yj , ρ, νi, δj , ϕj and ϵij are as described before.
We believe it is important to mention that, with regard to the possible existence of

overdispersion in the data, these models would be able to account for it. For example,
the inclusion of the unstructured areal random effect would take into account the extra-
variability in the regions that the spatial lag terms might not able to explain. In addition,
the temporal random effect can capture the overdispersion across time not explained by
the structured temporal effect. Finally, the interaction term would be able to capture
the overdispersion that would still be present after taking the other effects into account.

Finally, it would also be useful to highlight that the models proposed in equations
(4.8) and (4.9) can be considered as extensions for spatio-temporal data of the spa-
tial conditional normal Poisson and the spatial conditional normal binomial models,
respectively, proposed by Cepeda-Cuervo, Córdoba and Núñez-Antón, 2018 within the
cross-sectional data context.

4.3.1 Proposed models: Temporally varying spatial lag coefficient
models

The spatial conditional models have been shown to be quite flexible alternatives for mod-
elling spatial count data (Cepeda-Cuervo, Córdoba and Núñez-Antón, 2018; Morales-
Otero and Núñez-Antón, 2021). The fact that the spatial autocorrelation is captured
by a fixed effect or parameter allows us to specify different extensions for these models
within the spatio-temporal context. One of these possibilities could be the specification
of a temporally varying coefficient for the spatial term that is included in the linear
predictor.

Varying coefficient models were proposed by Hastie and Tibshirani (1993), where the
authors introduced the so called effect modifiers, meaning that the coefficient of a given
covariate is allowed to vary smoothly as a function of another variable. This could be
any variable, including factors such as time, age, gender or any other variable/factor.

Franco-Villoria, Ventrucci and Rue (2019) provided a thorough revision on varying
coefficient models, indicating that they are especially useful when the effect of a covariate
might depend on some other covariate, that could represent time or space. The authors
describe how, for the temporal case, these coefficients can be defined as unstructured
effects, or given by structures dependant of time, such as random walks or autoregressive
processes, among others.
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In a spatio-temporal context, when applying the proposed spatio-temporal condi-
tional models given by equation (4.7), we could assume that time might influence the
effect of the spatial lag on the response variable under study. A random coefficient on
the spatial term would allow for this term to have a different effect on the response for
each time period.

Therefore, we propose the temporally varying spatial lag coefficient model, where we
assume that, in the spatio-temporal conditional model in equation (4.7), the coefficient
for the spatial lag is the sum of a fixed coefficient, ρ0, and a random coefficient, ρj , that
varies according to the time units j = 1, . . . , J . In particular, we specify the following
regression structure for the conditional mean:

g(µij) = x⊤
ijβ + (ρ0 + ρj)Wiyj + νi + δj + ϕj + ϵij , (4.10)

where g(·), xij , β, Wi, yj , ρ, νi, δj , ϕj and ϵij are as before. These models can be
specified for Poisson or binomial responses, by assuming a proper link function, g(·),
such as the logarithmic or the logistic function, respectively.

Here, we propose three possible ways in which the temporal varying coefficient could
be specified. One possibility could be to consider an unstructured normal distribution,
that is ρj ∼ N(0, τρ), with τρ > 0, for j = 1, . . . , J . Another way would be given by a
random walk process of order one (RW1), so that (ρj−ρj−1) ∼ N(0, τρ), for j = 2, . . . , J
and ρ1 ∼ N(0, τρ), with τρ > 0. Lastly, an autoregressive prior (AR1) could also be
considered, so that ρj ∼ N(ωρj−1, τρ) for j = 2, . . . , J , and ρ1 ∼ N(0, τρ), with ω being
the autoregressive parameter to be estimated and τρ > 0.

The estimated value obtained for ρ0 would represent the strength of the spatial
dependence among the regions for the whole time period considered, whereas, the esti-
mated values obtained for ρj would indicate whether the spatial association increases or
decreases with time. This would allow us to examine the variability of the coefficient of
the spatial lag from one time unit to the others.

Taking into account the value obtained for ρ0, a positive estimated value of ρj would
suggest that for time period j, the strength of the spatial association is larger than that
indicated by ρ0. On the contrary, a negative estimated value of ρj would indicate that,
for the j-th time period the spatial autocorrelation is weaker. If ρ̂j ≈ 0, this would mean
that there are no significant changes in the spatial correlation pattern for the j-th time
period, with respect to that of ρ0.

Finally, it could be useful to mention that the proposed temporally varying coefficient
model can relate to the one proposed by Bernardinelli et al. (1995), described in Section
4.2, in the way that they assumed an interaction between space and time given by a
spatially varying coefficient for the temporal trend.

4.4 Application to respiratory hospital admissions in Glas-
gow

In this section, we study a data set concerning the impact of air pollution on the respi-
ratory health of the population living in each of the n = 271 regions or statistical sectors
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belonging to the Scotland National Health System’s board of Greater Glasgow and the
Clyde Valley, Scotland, for a time period of J = 5 years (i.e., from 2007 to 2011). This
data set is presented as an example in Lee, Rushworth and Napier (2018) and can be
obtained from the R package CARBayesdata (Lee, Rushworth and Napier, 2018).

The variables available for each region and time period are the observed number of
respiratory hospital admissions (i.e., variable Y ), the expected number of respiratory
hospital admissions (i.e., variable E), the yearly average modelled concentrations of
particulate matter less than 10 microns (i.e., variable PM10), the average property price
in each region and year, given in hundreds of thousands of pounds (i.e., variable Price)
and the proportion of the working age population who are in receipt of job seekers
allowance (i.e., variable JSA). Table 4.1 includes some descriptive statistics for each one
of the years under study.

Table 4.1: Descriptive statistics for the variables available in the study of respiratory
hospital admissions in Glasgow.

Observed=Y Expected=E

2007 2008 2009 2010 2011 2007 2008 2009 2010 2011

Median 70.0 75.0 73.0 76.0 80.0 84.3 88.9 85.7 91.6 92.4
Mean 75.3 81.0 78.1 78.4 83.2 87.6 92.1 89.3 96.0 96.8
SD 32.8 37.0 34.2 33.0 35.0 22.4 23.7 22.7 24.7 24.9
Min. 15.0 10.0 20.0 23.0 20.0 44.5 47.4 44.7 47.6 49.2
Max. 194.0 208.0 190.0 213.0 189.0 164.3 173.8 164.8 180.5 180.3

PM10 JSA

2007 2008 2009 2010 2011 2007 2008 2009 2010 2011

Median 13.8 12.2 10.7 11.4 12.9 2.5 2.8 4.5 4.6 4.8
Mean 13.9 12.3 10.9 11.5 13.0 2.9 3.2 4.8 5.0 5.1
SD 2.0 1.5 1.5 1.5 1.7 1.8 1.9 2.5 2.7 2.8
Min. 9.9 9.0 7.8 8.5 9.6 0.3 0.4 1.0 0.6 0.7
Max. 19.6 18.4 17.3 17.7 18.8 8.6 8.5 12.7 13.8 13.1

Price

2007 2008 2009 2010 2011

Median 1.2 1.2 1.1 1.1 1.1
Mean 1.3 1.3 1.2 1.2 1.2
SD 0.6 0.5 0.5 0.6 0.6
Min. 0.6 0.5 0.5 0.2 0.3
Max. 4.3 3.7 4.0 3.8 4.0

Note that the expected number of respiratory hospital admissions represents the
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number of admissions that would be expected in each region and year if the population in
the specific region behaved as the standard or overall population does. In Lee, Rushworth
and Napier (2018), this variable was obtained by using indirect standardization and the
national age and sex specific admissions rates.

If the population is divided into S subsets (or strata), according to the individuals’

age and sex, we can compute the rate of admissions r
(S)
l for each of the l = 1, . . . , S

subsets, by dividing the number of observed admissions (i.e., Yl) by the population (i.e.,
Pl) in stratum l, so that:

r
(S)
l =

Yl
Pl
,

where Yl =
∑n

i=1

∑J
j=1 Yijl and Pl =

∑n
i=1

∑J
j=1 Pijl, with Yijl and Pijl being the number

of cases and the population, respectively, in the stratum l for the i-th area and the j-th
time period.

Therefore, the expected number of cases will then be obtained in the following way:

Eij =
S∑
l=1

r
(S)
l Pij

The standardized incidence ratio (SIR) is often employed in the context of disease
mapping. It allows to compare the disease rate of the population in each specific area
and the rate of the standard population in the whole area under study (Moraga, 2018).
In this case, it can be obtained by dividing the number of respiratory hospital admissions
by the expected counts, that is SIRij = Yij/Eij , for i = 1, . . . , n and j = 1, . . . , J .

Figure 4.1 shows the spatial distribution of the SIR’s for the respiratory hospital
admissions in Glasgow for every year under study. A SIR value larger than one, for a
specific region and time unit (i.e., SIRij > 1), indicates that, for this region and year,
the incidence of the disease for that population is larger than expected. On the contrary,
values smaller than one (i.e., SIRij < 1) suggest that the incidence in the i-th region for
the j-th time period is smaller than it would be expected.

Special attention would need to be given to the population living in regions with SIR
values larger than one, since they would have an increased risk of suffering from serious
respiratory problems. In general, regions with the highest incidence are concentrated in
the central areas to the east of the map, corresponding to the Glasgow City council, a
pattern that is maintained over the years under study.

In addition, Figure 4.1 also allows us to observe how the spatial distribution of the
incidence changes over time for some of the regions in the periphery. For example, for the
region labelled as IZ Sixteen, belonging to the West Dunbartonshire council and located
in the north of the area under study, we can see how the SIR considerably increases in
the year 2011. This can be better seen in Figure 4.2, where we have included the maps of
the SIR’s for the last three years, highlighting the region IZ Sixteen by enclosing it in a
red box. In order to be able to clearly distinguish the behaviour of the region IZ Sixteen
for the last three years under study, we have decided to illustrate this in a separate figure
from that included in Figure 4.1.
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Figure 4.1: Spatial distribution of the SIR’s in Glasgow by region and year.
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Figure 4.2: Spatial distribution of the SIR’s in Glasgow by region for the last three
years under study, where the region labelled as IZ Sixteen is indicated with a red box.

Lee, Rushworth and Napier (2018) indicated that the covariates included in this
study are suitable for explaining the respiratory hospital admissions in Glasgow for
the regions and time period under study, and they found evidence for the statistical
significance of the relationship of these variables with the modelled disease risks. In
addition, the authors confirmed that there were signs of the presence of spatio-temporal
autocorrelation in this data. The applied regression model was able to capture the
spatio-temporal autocorrelation by incorporating a random effect with a multivariate
autoregressive prior distribution.

In this section, we will mainly focus on evaluating the performance of the models
proposed in Section 4.3 by fitting them to the data set presented here. Furthermore, we
also wish to compare them with the models proposed by Knorr-Held (2000), previously
described in Section 4.2, which we believe are the most commonly used by practitioners
in spatio-temporal applications.

In our specific Bayesian framework, we will specify noninformative prior distributions.
In particular, normal priors with large variances for all the coefficients βk, for k = 0, . . . , 3
(i.e., βk ∼ N(0, 1e-05)) and also, for the spatial parameter ρ (i.e., ρ ∼ N(0, 1e-05)). For
the precision parameters (i.e., for ψν = 1/τν , ψη = 1/τη, ψδ = 1/τδ, ψϕ = 1/τϕ and
ψϵ = 1/τϵ), we will assume vague gamma priors, so that ψ(·) ∼ G(1e-04, 1e-04).

In order to be able to justify the selected values for these priors, we have carried
out a sensitivity analysis and include its results in Section 4.4.3. In addition, all the
models will be fitted in R-INLA and we will assume that the spatial structure of the
data under study is represented by a spatial weights matrix W, following the contiguity
of order one criterion. This criterion was selected after conducting tests where we fitted
the models considering other matrices following different criteria, finding that there were
no significant differences in the results obtained.

4.4.1 Fitting of the spatio-temporal models

It is known that the SIR’s can provide a preliminary indicator about the increased
incidence of a disease. However, these quantities do not take into account the information
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from neighbouring areas, or the spatial and temporal autocorrelation that may exist in
the data. Moreover, they are sensitive to extreme values given by low population in
some areas.

Therefore, it is often preferred to estimate the relative risks of a disease by fitting
regression models, which can include a series of covariates and terms such as spatial or
temporal effects, among others, that can serve as proxies of the characteristics of the
areas under study. The relative risk θij represents the risk of infection of the population
in the i-th region and j-th time period, relative to the risk of the population in general
in the whole area under study.

In this specific application, our aim is to model the risk of the population living in
each area and time period, for having a respiratory disease that leads the patient to
hospitalisation, taking into account the spatio-temporal autocorrelation that might be
present in the data. To this end, let us suppose that the observed number of respiratory
hospital admissions, Yij , for each region and year considered, follows a Poisson distri-
bution with mean µij , that is Yij ∼ Poi(µij), for i = 1, ..., n and j = 1, ..., J . If θij
represents the relative risk in region i and time period j being modelled, it is assumed
that the mean µij is a product of the risk and the expected count, that is µij = θijEij .
Then, we specify a regression model for µij , including the covariates available, which is
given by:

log(µij) = log(Eij) + β0 + β1JSAij + β2Priceij + β3PM10ij , (4.11)

where the expected number of respiratory hospital admissions, Eij , is incorporated as
an offset term in the natural logarithmic scale, so that we are able to model the relative
risk θij .

In order to account for the spatio-temporal autocorrelation that is presumed to be
present in the data, we will fit a spatio-temporal model such as the one proposed by
Knorr-Held (2000), described in equation (4.5) in Section 4.2. Therefore, we assume
that the observed number of respiratory hospital admissions on each region and time
unit, given the random effects νi, ηi, δj , ϕj and ϵij , follows a Poisson distribution. That
is, (Yij |νi, ηi, δj , ϕj , ϵij) ∼ Poi(µij), with means µij = Eijθij , for i = 1, . . . , n and j =
1, . . . , J . Here, a regression structure for µij is specified, so that:

log(µij) = log(Eij) + β0 + β1JSAij + β2Priceij + β3PM10ij

+ νi + ηi + δj + ϕj + ϵij ,
(4.12)

with ηi a spatial ICAR distributed random effect, (i.e., ηi ∼ ICAR(0, τη), τη > 0) and νi
an unstructured spatial random effect (i.e., νi ∼ N(0, τν), τν > 0) that will explain the
spatial dependence and the extra-variability, respectively, in the areal dimension. The
temporal dependence is captured by an effect following a random walk process of order
one, that is ϕj ∼ N(ϕj−1, τϕ), for j = 2, . . . , J , and ϕ1 ∼ N(0, τϕ), with τϕ > 0, and δj
an unstructured random effect for the temporal dimension (i.e., δj ∼ N(0, τδ), τδ > 0).
Finally, the interaction effect ϵij will account for the remaining variability that could
still be present (i.e., ϵij ∼ N(0, τϵ), τϵ > 0).

Note that we have used the random walk process of order one for the structured
temporal effect ϕj , following the proposals in Knorr-Held (2000), Lawson (2008) and
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Blangiardo and Cameletti (2015), which is the simplest temporal structure that can be
specified for this term. According to these authors, a random walk process of order two
could be considered if the objective of the study was to perform predictions, which is
not what we intend in this specific application.

The results obtained after fitting the models in equations (4.11) and (4.12), as well
as some of their reduced versions are shown in Table 4.2. For all the fitted models,
the covariates included were statistically significant, according to their 95% credible
intervals.

The coefficients obtained for the variables PM10 and JSA were always positive, indi-
cating that large values of the concentration of particulate matter less than 10 microns,
and also that large values of the proportion of the working age population receiving
job seekers allowance, are associated with an increase of the relative risk of respiratory
hospital admissions. Note that for the model only including the spatially structured
and unstructured random effects ηi and νi, respectively, the variable JSA did not result
statistically significant. For the variable Price, the coefficient was always negative, sug-
gesting that regions with larger property price values have less risk of respiratory hospital
admissions. These results are consistent with the ones obtained by Lee, Rushworth and
Napier (2018).

The smallest information criteria values (DIC = 10378 and WAIC = 10336) were
obtained for the model where the linear predictor, besides the explanatory variables,
includes only the spatially unstructured and structured random effects, νi and ηi, re-
spectively, and the spatio-temporal interaction term ϵij . That is, the model with linear
predictor:

log(µij) = log(Eij) + β0 + β1JSAij + β2Priceij + β3PM10ij + νi + ηi + ϵij (4.13)

Moreover, when including the temporal effects δj and ϕj in the linear predictor, the
DIC and WAIC values increase. Hence, these terms do not seem to offer improvements
in the fitting of the models according to these information criteria. In addition, when
including the interaction term ϵij these values considerably decrease. Therefore, in
this specific case, it appears that the temporal correlation is better explained by the
interaction term than with the separate temporal effects. We should indicate that, for
this specific model, all of the other temporal effects (δj and ϕj) are most likely captured
by ϵij .

Figure 4.3 includes the maps of the estimated relative risks obtained after fitting the
model in equation (4.13) to the respiratory hospital admissions data in Glasgow, for each
of the years under study. These estimations are very similar to the observed SIR values,
shown in Figure 4.1. As was already observed in the spatial distribution of the SIR’s,
here the regions with the highest relative risk of infection are also located in the central
areas of Glasgow. This behaviour is stable for the different years, with small changes
that are most visible for the peripheral regions.
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Table 4.2: Parameter estimates, standard deviations and 95% credible intervals in parenthesis for the parameters in the models, and DIC and WAIC values
for the spatio-temporal Poisson model and some of its reduced versions, fitted to the respiratory hospital admissions in Glasgow data set.

Intercept PM10 JSA Price τν τη τδ τϕ τϵ

DIC = 14094 Mean -0.598 0.042 0.060 -0.283 - - - - -
WAIC = 14110 SD (0.026) (0.002) (0.002) (0.009) - - - - -

95% CI (-0.648,-0.547) (0.039,0.045) (0.057,0.063) (-0.300,-0.266) - - - - -
DIC = 10727 Mean -0.150 0.007 -0.001 -0.108 0.025 0.196 - - -
WAIC = 10926 SD (0.054) (0.003) (0.003) (0.022) (0.007) (0.037) - - -

95% CI (-0.256,-0.043) (9.44e-04,0.013) (-0.007,0.004) (-0.150,-0.065) (0.013,0.041) (0.134,0.280) - - -
DIC = 10730 Mean -0.375 0.017 0.031 -0.136 0.015 0.122 0.006 - -
WAIC = 10929 SD (0.090) (0.006) (0.005) (0.021) (0.005) (0.030) (0.005) - -

95% CI (-0.551,-0.196) (0.005,0.029) (0.021,0.041) (-0.176,-0.094) (0.007,0.027) (0.075,0.194) (0.001,0.020) - -
DIC = 10734 Mean -0.369 0.016 0.032 -0.137 0.015 0.120 0.007 0.006 -
WAIC = 10934 SD (0.087) (0.006) (0.005) (0.021) (0.005) (0.030) (0.033) (0.008) -

95% CI (-0.541,-0.198) (0.004,0.029) (0.022,0.042) (-0.177,-0.095) (0.007,0.027) (0.074,0.191) (1.99e-05,0.160) (2.17e-04,0.027) -
DIC = 10389 Mean -0.441 0.019 0.057 -0.187 0.015 0.052 0.003 0.008 0.011
WAIC = 10352 SD (0.102) (0.007) (0.006) (0.023) (0.004) (0.018) (0.010) (0.009) (0.001)

95% CI (-0.642,-0.240) (0.004,0.033) (0.046,0.068) (-0.233,-0.141) (0.008,0.025) (0.025,0.094) (-1.48e-04,0.021) (5.72e-04,0.031) (0.009,0.014)
DIC = 10387 Mean -0.446 0.019 0.056 -0.188 0.016 0.050 0.013 - 0.011
WAIC = 10351 SD (0.111) (0.008) (0.006) (0.024) (0.004) (0.018) (0.013) - (0.001)

95% CI (-0.663,-0.226) (0.005,0.034) (0.045,0.067) (-0.234,-0.141) (0.009,0.026) (0.023,0.092) (0.002,0.046) - (0.009,0.013)
DIC = 10378 Mean -0.250 0.017 0.013 -0.178 0.017 0.136 - - 0.011
WAIC = 10336 SD (0.071) (0.004) (0.004) (0.027) (0.006) (0.032) - - (0.001)

95% CI (-0.390,-0.110) (0.009,0.025) (0.004,0.022) (-0.230,-0.126) (0.007,0.030) (0.087,0.211) - - (0.009,0.013)
DIC = 10406 Mean -0.575 0.031 0.063 -0.224 0.028 - 0.023 0.010 0.012
WAIC = 10364 SD (0.086) (0.006) (0.005) (0.021) (0.003) - (0.027) (0.013) (0.001)

95% CI (-0.744,-0.406) (0.020,0.043) (0.052,0.073) (-0.266,-0.182) (0.022,0.035) - (2.89e-05,0.071) (4.57e-04,0.042) (0.010,0.014)
DIC = 10405 Mean -0.578 0.032 0.062 -0.225 0.028 - 0.011 - 0.012
WAIC = 10364 SD (0.094) (0.006) (0.005) (0.021) (0.003) - (0.010) - (0.001)

95% CI (-0.762,-0.392) (0.020,0.043) (0.052,0.072) (-0.267,-0.183) (0.022,0.035) - (0.002,0.039) - (0.010,0.014)
DIC = 10410 Mean -0.280 0.025 0.018 -0.246 0.051 - - - 0.013
WAIC = 10357 SD (0.072) (0.004) (0.005) (0.026) (0.007) - - - (0.001)

95% CI (-0.421,-0.139) (0.017,0.033) (0.009,0.027) (-0.296,-0.196) (0.039,0.066) - - - (0.010,0.015)
DIC = 10662 Mean -0.612 0.039 0.065 -0.279 - - - - 0.043
WAIC = 10513 SD (0.054) (0.003) (0.003) (0.017) - - - - (0.002)

95% CI (-0.718,-0.506) (0.033,0.046) (0.059,0.072) (-0.312,-0.247) - - - - (0.039,0.047)
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Figure 4.3: Maps of the estimated relative risks, for the different years under study,
obtained from the spatio-temporal model in equation (4.13), fitted to the respiratory
hospital admissions in Glasgow data set.
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4.4.2 Fitting of the spatio-temporal conditional models

In this section, we fit the proposed spatio-temporal conditional models and compare the
results obtained with the models fitted in the previous section. Note that, in this case,
we are interested in modelling the relative risks and, for this reason, we will include
the spatial lags of the SIR’s in the regression model. Let us recall that we proceeded
in a similar way in Chapter 2, Section 2.6.1, where we fitted the spatial conditional
Poisson models for the infant mortality rates in Colombia, including the spatial lag of
the observed rates in the regression structure for the conditioned means.

Therefore, we assume that (Yij |Y∼ij , νi, δj , ϕj , ϵij) ∼ Poi(µij), for i = 1, . . . , n and
j = 1, . . . , J . Here, for the means µij = Eijθij , we specify the following regression
structure:

log(µij) = log(Eij) + β0 + β1JSAij + β2Priceij + β3PM10ij + ρWiSIRj

+ νi + δj + ϕj + ϵij ,
(4.14)

where Wi is the i-th row of the spatial weights matrix and SIRj is the vector of obser-
vations of the SIR’s for the j-th time period. The elements of this vector are given by
the number of respiratory hospital admissions divided by the expected counts, in each
of the regions considered. In addition, the random effects νi, δj , ϕj and ϵij are as before.

The results obtained from the fitting of this model and some of its reduced versions
are included in Table 4.3. Here, we can see that all the covariates were statistically
significant, according to their 95% credible intervals. The estimated values for their
coefficients are very similar to those obtained when fitting the models from the previous
section, and, thus, providing evidence of the same relationships between the covariates
included in the study and the respiratory hospital admissions. In addition, the spatial
lag coefficient is also statistically significant for all the models considered. Moreover, it
has always a positive value, indicating that this term is properly capturing the positive
spatial autocorrelation present in the data.

When compared to the spatio-temporal models from Table 4.2, these models have
smaller DIC and WAIC values. For example, these values for the spatio-temporal model
in equation (4.12) were DIC = 10389 and WAIC = 10352, and for the spatio-temporal
conditional model in equation (4.14), were DIC = 10373 and WAIC = 10343, much lower
values which indicate that the latter model offers a better fit than the former.
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Table 4.3: Parameter estimates, standard deviations and 95% credible intervals in parenthesis for the parameters in the models, and DIC and WAIC values
for the spatio-temporal conditional Poisson model and some of its reduced versions, fitted to the respiratory hospital admissions in Glasgow data set.

Intercept PM10 JSA Price ρ τν τδ τϕ τϵ

DIC = 13481 Mean -0.814 0.024 0.049 -0.226 0.468 - - - -
WAIC = 13497 SD (0.028) (0.002) (0.002) (0.009) (0.019) - - - -

95% CI (-0.868,-0.760) (0.021,0.028) (0.046,0.052) (-0.243,-0.208) (0.431,0.505) - - - -
DIC = 10720 Mean -0.670 0.011 0.005 -0.147 0.579 0.052 - - -
WAIC = 10914 SD (0.064) (0.003) (0.003) (0.020) (0.040) (0.006) - - -

95% CI (-0.795,-0.544) (0.005,0.016) (-5.40e-04,0.011) (-0.186,-0.107) (0.500,0.658) (0.041,0.064) - - -
DIC = 10735 Mean -0.764 0.017 0.036 -0.161 0.474 0.033 0.005 - -
WAIC = 10931 SD (0.083) (0.005) (0.005) (0.019) (0.040) (0.004) (0.004) - -

95% CI (-0.926,-0.600) (0.006,0.027) (0.027,0.045) (-0.198,-0.125) (0.395,0.553) (0.026,0.042) (8.49e-04,0.016) - -
DIC = 10737 Mean -0.761 0.016 0.037 -0.161 0.474 0.033 0.002 0.005 -
WAIC = 10933 SD (0.077) (0.005) (0.005) (0.019) (0.040) (0.004) (0.005) (0.009) -

95% CI (-0.911,-0.610) (0.006,0.026) (0.028,0.046) (-0.197,-0.125) (0.395,0.552) (0.026,0.041) (-4.63e-05,0.010) (1.07e-04,0.026) -
DIC = 10373 Mean -0.800 0.017 0.052 -0.182 0.463 0.025 0.002 0.007 0.011
WAIC = 10343 SD (0.083) (0.006) (0.005) (0.021) (0.048) (0.003) (0.009) (0.009) (0.001)

95% CI (-0.964,-0.636) (0.006,0.028) (0.042,0.062) (-0.222,-0.141) (0.368,0.557) (0.020,0.031) (-7.38e-05,0.015) (3.38e-04,0.028) (0.009,0.013)
DIC = 10373 Mean -0.802 0.017 0.051 -0.182 0.464 0.025 0.007 - 0.011
WAIC = 10344 SD (0.090) (0.006) (0.005) (0.021) (0.048) (0.003) (0.006) - (0.001)

95% CI (-0.979,-0.625) (0.006,0.029) (0.041,0.061) (-0.223,-0.141) (0.370,0.558) (0.020,0.031) (0.001,0.024) - (0.009,0.013)
DIC = 10377 Mean -0.781 0.018 0.017 -0.195 0.611 0.036 - - 0.011
WAIC = 10342 SD (0.075) (0.004) (0.004) (0.023) (0.048) (0.004) - - (0.001)

95% CI (-0.927,-0.635) (0.011,0.025) (0.009,0.025) (-0.239,-0.151) (0.517,0.705) (0.028,0.045) - - (0.009,0.013)
DIC = 10633 Mean -0.828 0.024 0.053 -0.224 0.450 - - - 0.037
WAIC = 10506 SD (0.055) (0.003) (0.003) (0.016) (0.038) - - - (0.002)

95% CI (-0.935,-0.721) (0.017,0.031) (0.047,0.060) (-0.257,-0.192) (0.376,0.525) - - - (0.033,0.041)
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The model with the smallest information criteria values (i.e., DIC = 10373 and WAIC
= 10343) is the one where all the terms have been included. In addition, another model
with a very similar fit was the one where the structured temporal random effect, ϕj ,
was excluded from the linear predictor (i.e., DIC = 10373 and WAIC = 10344). Taking
into account that the inclusion of this term does not offer any improvement in terms
of information criteria, we will select the latter as the best fitting model. In particular,
this model follows the regression structure:

log(µij) = log(Eij) + β0 + β1JSAij + β2Priceij + β3PM10ij + ρWiSIRj

+ νi + δj + ϵij
(4.15)

Let us recall that the information criteria values for the best fitting spatio-temporal
model obtained in the previous section were DIC = 10378 and WAIC = 10336. Note
that the WAIC value is smaller than the one obtained for the model in equation (4.15).
However, we are including here the temporal effect δj , an extra term that could be
increasing the value of the penalization that this criterion receives.

Figure 4.4 shows the maps of the estimated relative risks obtained from the fitting
of the model with linear predictor in equation (4.15). These predictions are very similar
to the ones obtained from the model in equation (4.13), shown in Figure 4.3, and hence,
to the SIR’s obtained for this data, shown in Figure 4.1, which suggests that these two
models are both able to provide accurate predictions.
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Figure 4.4: Maps of the estimated relative risks, for the different years under study,
obtained from the spatio-temporal conditional model in equation (4.15), fitted to the
respiratory hospital admissions in Glasgow data set.
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4.4.3 Sensitivity analysis for the precision of the prior distributions

As was already discussed for the infant mortality study, in Chapter 2, Section 2.6.2, when
including random effects in a model, the choice of the initial values for the prior distribu-
tions assigned to the precision parameters could highly influence the posterior inference
processes. Therefore, we have performed a sensitivity analysis for these parameters,
which we illustrate here for the model with linear predictor in equation (4.15). We have
considered different values α, from α = 0.1 to α = 1e-08, for the precision parameter in
the random effects ψν = 1/τν , ψδ = 1/τδ, and ψϵ = 1/τϵ, where ψ(·) ∼ G(α, α).

Table 4.4 includes the parameters’ estimates, DIC and WAIC values obtained after
fitting the models for the different values of α in ψν ∼ G(α, α). Here, the value of
the prior distribution only changes for the parameter ν, whereas the priors of the other
precision parameters remain invariant. The same information is included in Tables 4.5
and 4.6, for the parameters τδ and τϵ, respectively. We can see how the values obtained
for the estimates are exactly the same, at least up to their fourth decimal place, when
the value of α changes from α = 1e-04 up to α = 1e-08.

Figure 4.5 shows the posterior densities obtained after fitting the models for each
value of α, where figures 4.5(a), 4.5(b) and 4.5(c) correspond to the precisions of the
random effect ν, δ and ϵ, respectively. On the left panels we can see all the posteriors,
whereas on the right panels, only the distributions from the value α = 1e-04 up to the
value α = 1e-08 are included, where we can see that for these values the distributions
do not change. Therefore, we believe that the choice of α = 1e-04 is well justified.
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Table 4.4: Posterior means for parameter estimates together with standard deviations, DIC and WAIC values, for the
spatio-temporal conditional Poisson model in the analysis of the respiratory hospital admissions in Glasgow data set with
different prior distributions for the precision parameter of the random effect τν .

Intercept PM10 JSA Price ρ τν τδ τϵ DIC WAIC

α = 0.1 -0.8032 0.0174 0.0503 -0.1815 0.4656 0.0261 0.0078 0.0105 10372 10343
(0.0905) (0.0058) (0.0052) (0.0210) (0.0485) (0.0030) (0.0074) (0.0010) 10373 10343

α = 0.01 -0.8033 0.0174 0.0509 -0.1824 0.4645 0.0247 0.0101 0.0105 10373 10344
(0.0895) (0.0058) (0.0051) (0.0209) (0.0481) (0.0027) (0.0116) (0.0010) 10373 10344

α = 0.001 -0.8025 0.0173 0.0511 -0.1823 0.4638 0.0248 0.0071 0.0105 10373 10344
(0.0898) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0061) (0.0011) 10373 10344

α = 1e-04 -0.8025 0.0173 0.0511 -0.1824 0.4638 0.0247 0.0071 0.0105 10373 10344
(0.0898) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0062) (0.0010) 10373 10344

α = 1e-05 -0.8025 0.0173 0.0511 -0.1824 0.4638 0.0247 0.0071 0.0105 10372 10343
(0.0898) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0062) (0.0010) 10373 10343

α = 1e-06 -0.8025 0.0173 0.0511 -0.1824 0.4638 0.0247 0.0071 0.0105 10373 10344
(0.0898) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0062) (0.0010) 10373 10344

α = 1e-07 -0.8025 0.0173 0.0511 -0.1824 0.4638 0.0247 0.0071 0.0105 10373 10344
(0.0898) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0062) (0.0010) 10373 10344

α = 1e-08 -0.8025 0.0173 0.0511 -0.1824 0.4638 0.0247 0.0071 0.0105 10373 10344
(0.0898) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0062) (0.0010) 10373 10344
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Table 4.5: Posterior means for parameter estimates together with standard deviations, DIC and WAIC values, for the
spatio-temporal conditional Poisson model in the analysis of the respiratory hospital admissions in Glasgow data set with
different prior distributions for the precision parameter of the random effect τδ.

Intercept PM10 JSA Price ρ τν τδ τϵ DIC WAIC

α = 0.1 -0.7955 0.0164 0.0527 -0.1813 0.4593 0.0245 0.0883 0.0106 10374 10344
(0.1453) (0.0059) (0.0051) (0.0208) (0.0480) (0.0028) (0.0819) (0.0010) 10374 10345

α = 0.01 -0.7986 0.0168 0.0520 -0.1818 0.4612 0.0246 0.0150 0.0106 10373 10344
(0.0980) (0.0058) (0.0051) (0.0208) (0.0480) (0.0028) (0.0126) (0.0010) 10373 10344

α = 0.001 -0.8017 0.0172 0.0513 -0.1822 0.4633 0.0247 0.0078 0.0105 10373 10344
(0.0906) (0.0058) (0.0051) (0.0208) (0.0481) (0.0029) (0.0065) (0.0011) 10373 10344

α = 1e-04 -0.8025 0.0173 0.0511 -0.1824 0.4638 0.0247 0.0071 0.0105 10373 10344
(0.0898) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0062) (0.0010) 10373 10344

α = 1e-05 -0.8025 0.0173 0.0511 -0.1824 0.4639 0.0248 0.0070 0.0105 10374 10344
(0.0898) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0061) (0.0010) 10374 10345

α = 1e-06 -0.8026 0.0173 0.0511 -0.1824 0.4639 0.0248 0.0070 0.0105 10373 10344
(0.0898) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0061) (0.0010) 10373 10344

α = 1e-07 -0.8026 0.0173 0.0511 -0.1824 0.4639 0.0248 0.0070 0.0105 10373 10344
(0.0898) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0061) (0.0010) 10373 10344

α = 1e-08 -0.8026 0.0173 0.0511 -0.1824 0.4639 0.0248 0.0070 0.0105 10373 10344
(0.0898) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0061) (0.0010) 10373 10344
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Table 4.6: Posterior means for parameter estimates together with standard deviations, DIC and WAIC values, for the
spatio-temporal conditional Poisson model in the analysis of the respiratory hospital admissions in Glasgow data set with
different prior distributions for the precision parameter of the random effect τϵ.

Intercept PM10 JSA Price ρ τν τδ τϵ DIC WAIC

α = 0.1 -0.8036 0.0173 0.0516 -0.1831 0.4629 0.0245 0.0082 0.0113 10373 10325
(0.0903) (0.0058) (0.0052) (0.0210) (0.0486) (0.0029) (0.0081) (0.0010) 10373 10342

α = 0.01 -0.8028 0.0173 0.0512 -0.1825 0.4638 0.0247 0.0080 0.0106 10373 10344
(0.0898) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0076) (0.0010) 10373 10344

α = 0.001 -0.8025 0.0173 0.0511 -0.1824 0.4638 0.0247 0.0071 0.0105 10373 10344
(0.0899) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0062) (0.0010) 10373 10344

α = 1e-04 -0.8025 0.0173 0.0511 -0.1824 0.4638 0.0247 0.0071 0.0105 10373 10344
(0.0898) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0062) (0.0010) 10373 10344

α = 1e-05 -0.8025 0.0173 0.0511 -0.1824 0.4638 0.0247 0.0071 0.0105 10373 10325
(0.0898) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0062) (0.0010) 10373 10342

α = 1e-06 -0.8025 0.0173 0.0511 -0.1824 0.4638 0.0247 0.0071 0.0105 10373 10344
(0.0898) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0062) (0.0010) 10373 10344

α = 1e-07 -0.8025 0.0173 0.0511 -0.1824 0.4638 0.0247 0.0071 0.0105 10373 10344
(0.0898) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0062) (0.0010) 10373 10344

α = 1e-08 -0.8025 0.0173 0.0511 -0.1824 0.4638 0.0247 0.0071 0.0105 10373 10344
(0.0898) (0.0058) (0.0051) (0.0209) (0.0481) (0.0029) (0.0062) (0.0010) 10373 10344
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(a) Posterior marginal distributions for the precision parameter ψ = 1/τν ,
the inverse of the variance parameter τν

(b) Posterior marginal distributions for the precision parameter ψ = 1/τδ,
the inverse of the variance parameter τδ

(c) Posterior marginal distributions for the precision parameter ψ = 1/τϵ,
the inverse of the variance parameter τϵ

Figure 4.5: Posterior marginal distributions for the precision parameters ψν = 1/τν ,
ψδ = 1/τδ and ψϵ = 1/τϵ, for different values of α, where ψ(·) ∼ G(α, α).
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4.4.4 Fitting of the temporally varying spatial lag coefficient models

In order to illustrate the temporally varying spatial lag coefficient model proposed in Sec-
tion 4.3.1, we have selected the best fitting spatio-temporal conditional model obtained
so far (i.e., model with linear predictor in equation (4.15)), and included the spatial
lag with the temporally varying coefficient in this regression structure. Specifically, the
model that will be fitted is the following:

log(µij) = log(Eij) + β0 + β1JSAij + β2Priceij + β3PM10ij + (ρ0 + ρj)WiSIRj

+ νi + δj + ϵij
(4.16)

Here, we have considered the three alternatives for the specification of ρj described in
Section 4.3.1. First, we have specified an autoregressive model of order one, that is,
ρj ∼ N(ωρj−1, τρ) for j = 2, . . . , J , and ρ1 ∼ N(0, τρ), with ω being the autoregressive
parameter and τρ > 0. Then, a random walk process of order one was considered, so
that ρj ∼ N(ρj−1, τρ) for j = 2, . . . , J , and ρ1 ∼ N(0, τρ), with τρ > 0. Finally, we have
also specified an unstructured normal distribution where ρj ∼ N(0, τρ), with τρ > 0.
Note that νi and δj are as before.

For each of these specifications, we have fitted two models, one that includes the
temporally unstructured random effect δj and another one where it was excluded. We
have decided to do this in order to be able to compare the models which take into account
the temporal correlation only by means of the random coefficient ρj for the spatial lag,
with models that, besides including this coefficient, also take into account the remaining
temporal dependence that could still be present. The results obtained after fitting the
six models have been included in Table 4.7.

We should mention here that the prior distribution that will be assigned to the preci-
sion parameter ψρ = 1/τρ is a gamma with a large variance (i.e., ψρ ∼ G(1e-04, 1e-04)).
In addition, in the case of the AR1 process, for the autoregressive parameter ω we will
consider a normal prior with a large variance (i.e., ω ∼ N(0, 1e-05)).

The information criteria values obtained are very similar for all the models, moving
from DIC = 10371 to DIC = 10373 and from WAIC = 10341 to WAIC = 10343, values
which are also very close to the ones obtained for the spatio-temporal conditional mod-
els shown in Table 4.3. Moreover, these values show a very slight improvement when
compared to the best fitting model chosen in equation (4.15), which were DIC = 10373
and WAIC = 10344.

With regard to the fixed effect ρ0, for all the models fitted here, it is statistically
significant and its coefficient has a positive estimated mean of approximately ρ̂ = 0.43,
capturing the positive spatial autocorrelation present in the whole time period. The
values obtained for ρj represent the variation of this spatial correlation on each time
unit, which can be better assessed in the plots shown in Figure 4.6. Each of these
corresponds to one of the fitted models, where the red line represents the estimated
mean obtained for ρj , according to the year, and the green bands correspond to its 95%
credible interval. Here, we can see how the effect of the spatial lag over the response,
which is the number of respiratory hospital admissions, changes with time.
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We notice that the credible interval bands are narrower for the models that do not
include the temporal random effect δj . For these models, we can see that the estimated
mean of ρj has the largest value for the year 2008 and then, it decreases from that
year on. This suggests that in this year is where the strongest spatial autocorrelation is
found in the data and, that it becomes weaker for the following years. Only for the year
2009, the effect is nearly zero, meaning that in this year, the spatial dependence is well
explained by the fixed parameter ρ0.

In addition, for the model where ρj follows the AR1 process, and the temporal effect is
not included, we can see that the autoregressive parameter ω is statistically significant.
This indicates a dependence of this term on its past value, which would be properly
captured by this effect.

Let us recall that the information criteria values for each of the six fitted models
are almost identical, and that the values obtained for the coefficient ρj are also very
similar. In addition, we have also seen that including the temporal effect does not offer
any improvements in model’s fitting and that, when including it, the credible intervals
for the estimated mean of the temporally varying coefficient for the spatial lag become
wider. Therefore, we will consider the model where the simplest structure is specified
for ρj , that is, where ρj ∼ N(0, τρ), τρ > 0, for j = 1, . . . , J , and, where the temporal
random effect δj is excluded from the linear predictor as the best fitting model for this
data set.

In any case, by considering a temporally varying coefficient for the spatial lag term,
we have taken a step further in the spatio-temporal conditional model proposals. This
has allowed us to have valuable information about the variation of the strength of the
spatial autocorrelation according to each time period under study.
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Table 4.7: Parameter estimates, standard deviations and 95% credible intervals in parenthesis for the parameters in the models, and DIC and WAIC values
for the temporally varying spatial lag coefficient model, fitted to the respiratory hospital admissions in Glasgow data set.

AR1 for ρj RW1 for ρj Unstructured Gaussian for ρj

Intercept Mean -0.8028 -0.8090 -0.7993 -0.8071 -0.8023 -0.8091
SD (0.0835) (0.0804) (0.0829) (0.0802) (0.0838) (0.0807)

95% CI (-0.9666,-0.6386) (-0.9670,-0.6512) (-0.9618,-0.6363) (-0.9647,-0.6498) (-0.9667,-0.6376) (-0.9678,-0.6507)
PM10 Mean 0.0176 0.0183 0.0172 0.0179 0.0176 0.0183

SD (0.0058) (0.0057) (0.0058) (0.0056) (0.0058) (0.0057)
95% CI (0.0062,0.0289) (0.0071,0.0294) (0.0059,0.0285) (0.0068,0.0290) (0.0061,0.0290) (0.0071,0.0296)

JSA Mean 0.0552 0.0554 0.0561 0.0561 0.0554 0.0556
SD (0.0054) (0.0053) (0.0053) (0.0053) (0.0054) (0.0054)

95% CI (0.0445,0.0658) (0.0450,0.0658) (0.0455,0.0664) (0.0456,0.0664) (0.0447,0.0659) (0.0450,0.0660)
Price Mean -0.1796 -0.1795 -0.1791 -0.1790 -0.1797 -0.1798

SD (0.0209) (0.0208) (0.0208) (0.0208) (0.0208) (0.0208)
95% CI (-0.2204,-0.1386) (-0.2203,-0.1386) (-0.2199,-0.1382) (-0.2198,-0.1381) (-0.2205,-0.1389) (-0.2206,-0.1389)

ρ0 Mean 0.4348 0.4313 0.4319 0.4299 0.4345 0.4303
SD (0.0491) (0.0486) (0.0488) (0.0485) (0.0491) (0.0486)

95% CI (0.3385,0.5314) (0.3360,0.5268) (0.3361,0.5278) (0.3347,0.5252) (0.3384,0.5310) (0.3349,0.5258)
ω Mean 0.3777 0.7008 - - - -

SD (0.4072) (0.2041) - - - -
95% CI (-0.5868,0.9027) (0.1959,0.9634) - - - -

τρ Mean 0.0077 0.0206 0.0086 0.0102 0.0093 0.0110
SD (0.0080) (0.0302) (0.0119) (0.0113) (0.0136) (0.0102)

95% CI (5.705e-04,0.0283) (0.0023,0.0919) (5.502e-04,0.0373) (0.0016,0.0392) (3.614e-04,0.0422) (0.0020,0.0384)
τν Mean 0.0243 0.0242 0.0242 0.0241 0.0242 0.0241

SD (0.0028) (0.0028) (0.0028) (0.0028) (0.0028) (0.0028)
95% CI (0.0191,0.0301) (0.0190,0.0300) (0.0192,0.0301) (0.0191,0.0299) (0.0192,0.0300) (0.0192,0.0300)

τδ Mean 0.0023 - 0.0015 - 0.0020 -
SD (0.0096) - (0.0039) - (0.0029) -

95% CI (-7.365e-05,0.0159) - (4.747e-06,0.0075) - (8.294e-05,0.0089) -
τϵ Mean 0.0105 0.0105 0.0106 0.0106 0.0105 0.0106

SD (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010)
95% CI (0.0086,0.0126) (0.0086,0.0127) (0.0086,0.0127) (0.0087,0.0127) (0.0086,0.0127) (0.0087,0.0127)

DIC = 10372 DIC = 10372 DIC = 10372 DIC = 10372 DIC = 10373 DIC = 10371
WAIC = 10342 WAIC = 10342 WAIC = 10341 WAIC = 10342 WAIC = 10343 WAIC = 10342
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(a) Model with AR(1) struc-
ture.

(b) Model with RW(1) struc-
ture.

(c) Model with unstructured
Gaussian distribution.

(d) Model with AR(1) struc-
ture, excluding δj .

(e) Model with RW(1) struc-
ture, excluding δj .

(f) Model with unstructured
Gaussian distribution, exclud-
ing δj .

Figure 4.6: Estimated mean and its credible interval, obtained for ρj after fitting the
considered temporally varying spatial lag coefficient models.

4.5 Application to low birth weight in Georgia

The data set we will analyse in this section has been obtained from the Online Analytical
Statistical Information System (OASIS) database of the Georgia Department of Public
Health (DPH). It consists on the number of live births on each of the n = 159 counties
in the state of Georgia, USA, for J = 10 years, from 2010 up to 2019 (i.e., variable NB)
and on the counts of infants with low birth weight (i.e., variable LBW) in these counties,
for the same time period. Table 4.8 includes some descriptive statistics for these two
variables for the different years under study.

Birth weight is recorded for infants within the first hours after birth and it is con-
sidered to be low when it is less than 2500 grams. A low weight at birth is associated
with an increased risk of death of these neonates, when compared to those who present
a normal birth weight. In addition, it has also been related to the development of a large
number of health conditions and chronic diseases (Cutland et al., 2017).
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Table 4.8: Descriptive statistics for the variables available in the study of low birth
weight in Georgia.

NB LBW

Year Median Mean SD Min. Max. Median Mean SD Min. Max.

2010 273.0 840.7 1859.9 14.0 12912.0 26.0 82.1 177.5 1.0 1383.0
2011 272.0 831.7 1850.9 20.0 12928.0 26.0 78.1 173.8 3.0 1370.0
2012 272.0 818.3 1816.8 17.0 12622.0 25.0 76.6 169.2 1.0 1263.0
2013 260.0 808.2 1799.1 19.0 12371.0 25.0 76.5 171.5 2.0 1288.0
2014 268.0 822.5 1845.5 11.0 12732.0 27.0 78.0 176.4 1.0 1393.0
2015 269.0 826.0 1856.8 14.0 12593.0 23.0 78.5 176.7 0.0 1298.0
2016 257.0 817.2 1824.9 13.0 12251.0 25.0 80.0 183.5 1.0 1343.0
2017 254.0 812.3 1826.9 13.0 12277.0 26.0 80.5 181.0 1.0 1319.0
2018 259.0 792.8 1752.1 15.0 11668.0 25.0 80.1 181.6 1.0 1339.0
2019 259.0 794.0 1742.4 14.0 11662.0 26.0 79.6 175.6 0.0 1223.0

Similar versions of this data set have been previously studied in the literature. Law-
son (2008) carried out a study of very low birth weight (i.e., less than 1500 grams) in
the counties of Georgia from 1994 to 2004, fitting a binomial model including temporal
and spatial terms with different specifications. Additionally, Blangiardo et al. (2013)
fitted a Poisson disease mapping model to low birth weight in these same regions, from
2000 to 2010. In these two applications, the authors found evidence of spatio-temporal
correlation in the data sets under study. We believe it is important to mention that here,
we analyse a more recent database, as compared to other applications where data from
previous years have been studied. For example, this is the case of the data set analysed
by Blangiardo et al. (2013).

In Figure 4.7, we can examine the spatial distribution of the number of low birth
weight births in the counties of Georgia, from 2010 up to 2019 (i.e., variable LBW).
We can see that there is a concentration of large values of this variable in the northern
regions of the state, corresponding to Atlanta city and its surroundings. This pattern
seems to be constant in time, as very little variation is observed across years.
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Figure 4.7: Spatial distribution of the low birth weight (LBW) in Georgia by counties
and year.

We can also compute the proportion of the number of low weight births over the
total of births in each county and year, generating the spatial distribution that can be
observed in the maps in Figure 4.8. Here, we can see a different pattern from the one
we observed in the total counts, as proportions seem to be more disseminated in space.
However, from the year 2016 and on, there seems to be a certain concentration of high
values in the southwestern regions of the state.

Therefore, in this section we will study this data set by fitting the spatio-temporal
conditional models proposed in Section 4.3. Additionally, we will compare their perfor-
mance with the Knorr-Held models, discussed in Section 4.2. Note that since there were
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no other variables available to be included in the study as fixed effects, we will only take
into account spatial terms, and the variability will be explained with structured and
unstructured random effects.

All the models will be fitted in R-INLA, where, for the parameters, we will as-
sume the same noninformative prior distributions considered in the previous section for
the analysis of the respiratory hospital admissions in Glasgow. That is, normal priors
with large variance (i.e., N(0, 1e-05)) for the fixed effects and vague gamma priors (i.e.,
G(1e-04, 1e-04)) for the precision parameter of the random effects. The appropriate-
ness of the values chosen for the priors of the precisions will be assessed in a sensitivity
analysis, which will be included in Section 4.5.3.

In addition, we compared the results obtained after fitting the models for different
spatial weights matrices and found no considerable differences. Therefore, the spatial
weights matrix W we will assume for all models is the one that follows contiguity of
order one criterion.
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Figure 4.8: Spatial distribution of the proportion of low birth weight (LBW) in Georgia
by counties and year.

4.5.1 Fitting of the spatio-temporal models

We assume that the variable representing the counts of low birth weight (i.e., variable
LBW) follows a binomial distribution, where the number of births is the number of trials
on each region and time period (i.e., variable NB). That is, LBWij ∼ Bin(NBij , πij), for
i = 1, . . . , n, and j = 1, . . . , J , with πij being the probability of success of a trial on each
region and time period.

In order to take into account the spatio-temporal autocorrelation, we consider the
Knorr-Held (2000) model in equation (4.5). In these models, we assume that the variables
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LBWij , conditioned on the random effects νi, ηi, δj , ϕj and ϵij , follow a binomial distri-
bution, that is (LBWij |νi, ηi, δj , ϕj , ϵij) ∼ Bin(nij , πij), for i = 1, . . . , n and j = 1, . . . , J ,
with πij modelled so that:

logit(πij) = β + νi + ηi + δj + ϕj + ϵij , (4.17)

where β is an intercept to be estimated, νi is an unstructured spatial random effect
(i.e., νi ∼ N(0, τν), τν > 0) and ηi is an ICAR distributed random effect, (i.e., ηi ∼
ICAR(0, τη), τη > 0). In addition, δj is an unstructured temporal random effect (i.e.,
δj ∼ N(0, τδ), τδ > 0) and ϕj is a random effect following a random walk process of
order one, that is ϕj ∼ N(ϕj−1, τϕ), for j = 2, . . . , J and ϕ1 ∼ N(0, τϕ), with τϕ > 0.
Finally, ϵij is an unstructured interaction effect (i.e., ϵij ∼ N(0, τϵ), τϵ > 0).

The results obtained from the fitting of this model and some of its reduced versions
have been included in Table 4.9. Here, the lowest information criteria values were ob-
tained for the model in equation (4.17), the one that includes all the random effects (i.e.,
DIC = 10294 and WAIC = 10325) and for the model excluding the temporally structured
effect ϕj (i.e., DIC = 10295 and WAIC = 10324). We will consider the simpler model,
that does not include ϕj , as the best fitting model for further analysis. In particular, in
this model, the regression structure specified for πij is:

logit(πij) = β + νi + ηi + δj + ϵij , (4.18)

where β, νi, ηi, δj and ϵij are as before.
Additionally, in Figure 4.9 we can see the maps of the estimated proportions obtained

after fitting the model in equation (4.18). Here we can clearly observe a concentration of
high values in the southwestern regions, which is similarly observed in all the years under
study. When comparing these estimated proportions with the observed ones, in Figure
4.8, we can see some noticeable differences, mostly given by the spatial concentration of
high values found in the predicted proportions, which is not that strongly appreciated
in the observed ones.
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Table 4.9: Parameter estimates, standard deviations and 95% credible intervals in parenthesis for the parameters in the models, and DIC and WAIC values
for the spatio-temporal binomial model and some of its reduced versions, fitted to the low birth weight in Georgia data set.

Intercept τν τη τδ τϕ τϵ

DIC = 10500 Mean -2.2103 0.0413 - - - -
WAIC = 10566 SD (0.0172) (0.0053) - - - -

95% CI (-2.2441,-2.1764) (0.0320,0.0529) - - - -
DIC = 10491 Mean -2.2032 0.0115 0.0615 - - -
WAIC = 10555 SD (0.0102) (0.0041) (0.0214) - - -

95% CI (-2.2237,-2.1832) (0.0051,0.0210) (0.0318,0.1146) - - -
DIC = 10394 Mean -2.2033 0.0123 0.0602 0.0012 - -
WAIC = 10453 SD (0.0154) (0.0049) (0.0226) (6.595e-04) - -

95% CI (-2.2339,-2.1730) (0.0052,0.0241) (0.0282,0.1159) (4.226e-04,0.0029) - -
DIC = 10393 Mean -2.2033 0.0117 0.0614 2.372e-04 5.757e-04 -
WAIC = 10450 SD (0.0115) (0.0041) (0.0209) (2.417e-04) (4.762e-04) -

95% CI (-2.2262,-2.1807) (0.0053,0.0213) (0.0316,0.1129) (3.785e-05,8.633e-04) (1.107e-04,0.0018) -
DIC = 10294 Mean -2.2046 0.0116 0.0603 2.658e-04 5.848e-04 0.0033
WAIC = 10325 SD (0.0117) (0.0041) (0.0214) (2.997e-04) (5.113e-04) (7.536e-04)

95% CI (-2.2280,-2.1816) (0.0052,0.0212) (0.0304,0.1134) (3.170e-05,0.0010) (9.468e-05,0.0020) (0.0020,0.0050)
DIC = 10295 Mean -2.2047 0.0114 0.0616 9.853e-04 - 0.0034
WAIC = 10324 SD (0.0146) (0.0044) (0.0225) (5.756e-04) - (7.637e-04)

95% CI (-2.2336,-2.1759) (0.0049,0.0218) (0.0302,0.1172) (2.894e-04,0.0025) - (0.0021,0.0051)
DIC = 10307 Mean -2.2051 0.0114 0.0605 - - 0.0048
WAIC = 10331 SD (0.0106) (0.0041) (0.0212) - - (8.368e-04)

95% CI (-2.2263,-2.1843) (0.0051,0.0208) (0.0310,0.1130) - - (0.0033,0.0066)
DIC = 10303 Mean -2.2116 0.0412 - 2.721e-04 6.185e-04 0.0033
WAIC = 10335 SD (0.0180) (0.0053) - (2.992e-04) (6.084e-04) (7.548e-04)

95% CI (-2.2469,-2.1762) (0.0318,0.0527) - (2.653e-05,0.0010) (8.588e-05,0.0022) (0.0020,0.0050)
DIC = 10303 Mean -2.2116 0.0412 - 0.0010 - 0.0034
WAIC = 10334 SD (0.0199) (0.0053) - (6.414e-04) - (7.648e-04)

95% CI (-2.2508,-2.1724) (0.0318,0.0526) - (2.846e-04,0.0027) - (0.0021,0.0051)
DIC = 10316 Mean -2.2120 0.0409 - - - 0.0048
WAIC = 10342 SD (0.0172) (0.0053) - - - (8.381e-04)

95% CI (-2.2458,-2.1781) (0.0316,0.0524) - - - (0.0033,0.0066)
DIC = 10676 Mean -2.2301 - - - - 0.0476
WAIC = 10606 SD (0.0074) - - - - (0.0029)

95% CI (-2.2447,-2.2155) - - - - (0.0421,0.0536)
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Figure 4.9: Maps for the predicted proportions, for the different years under study,
obtained from the spatio-temporal model in equation (4.18), fitted to the low birth
weights in Georgia data set.

4.5.2 Fitting of the spatio-temporal conditional models

In this section, we will fit the proposed spatio-temporal conditional models for binomial
responses, described in Section 4.3, to the low birth weight data in Georgia. Therefore,
we assume that the variables LBWij , conditioned on the values of all the neighbours
of the i-th region, but not including the i-th region itself, and on the random effects
νi, δj , ϕj and ϵij , follow a binomial distribution, that is (LBWij |LBW∼ij , νi, δj , ϕj , ϵij) ∼
Bin(nij , πij), for i = 1, . . . , n and j = 1, . . . , J . For the probability of success πij , we
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specify a regression structure in the following way:

logit(πij) = β + ρAij + νi + δj + ϕj + ϵij , (4.19)

where Aij are the elements of the spatial term A, which is an n×J matrix with columns
Aj , corresponding to the n × 1 vector of spatial terms for the j-th time period. Each

of the elements of this vector is defined so that Aij =
π̂∼ij

1−π̂∼ij
, with π̂∼ij =

WiLBWj

WiNBj
.

Here, LBWj and NBj are the vectors of observations for the j-th time period for the
variables LBW and NB, respectively. Note that νi, δj , ϕj and ϵij are as before.

The results obtained after fitting the model in equation (4.19) and some of its reduced
versions are shown in Table 4.10. Regarding the spatial parameter ρ, its estimated
coefficient is positive and statistically significant for all the fitted models, indicating
that there is positive spatial autocorrelation, which is being explained by this term.

If we compare these results with the ones obtained for the spatio-temporal models
included in Table 4.9, we can see that they offer a similar fit, in terms of information
criteria. For example, for the spatio-temporal model in equation (4.17) these values were
DIC = 10294 and WAIC = 10325 and, for the conditional model in equation (4.19), they
are DIC = 10296 and WAIC = 10325.

The model with the smallest DIC and WAIC values was the one where all the random
effects were included (i.e., DIC = 10296 and WAIC = 10325) and, also, for the one where
the structured temporal effect was excluded (i.e., DIC = 10296 and WAIC = 10324).
Hence, we will consider the simpler model as the best fitting one, where the probability
of success follows the regression structure:

logit(πij) = β + ρAij + νi + δj + ϵij (4.20)

In the maps of the estimated proportions obtained after fitting the model in equation
(4.20), included in Figure 4.10, we can see the same concentration of high values in the
southwestern regions that was observed in Figure 4.9, for the spatio-temporal model in
equation (4.18). Therefore, the predictive accuracy of both models appears to be quite
similar.
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Table 4.10: Parameter estimates, standard deviations and 95% credible intervals in parenthesis for the parameters in the models, and DIC and WAIC
values for the spatio-temporal conditional binomial model and some of its reduced versions, fitted to the low birth weight in Georgia data set.

Intercept ρ τν τδ τϕ τϵ

DIC = 13963 Mean -2.5010 2.5048 - - - -
WAIC = 13986 SD (0.0207) (0.1916) - - - -

95% CI (-2.5417,-2.4603) (2.1285,2.8806) - - - -
DIC = 10471 Mean -2.4985 2.5575 0.0345 - - -
WAIC = 10534 SD (0.0425) (0.3494) (0.0045) - - -

95% CI (-2.5816,-2.4150) (1.8703,3.2417) (0.0266,0.0444) - - -
DIC = 10407 Mean -2.3785 1.4925 0.0370 9.590e-04 - -
WAIC = 10469 SD (0.0475) (0.3862) (0.0049) (5.749e-04) - -

95% CI (-2.4712,-2.2846) (0.7325,2.2486) (0.0284,0.0476) (2.931e-04,0.0025) - -
DIC = 10404 Mean -2.3733 1.4466 0.0372 1.919e-04 4.196e-04 -
WAIC = 10465 SD (0.0465) (0.3841) (0.0049) (1.951e-04) (3.618e-04) -

95% CI (-2.4641,-2.2817) (0.6902,2.1980) (0.0284,0.0477) (3.111e-05,7.123e-04) (7.500e-05,0.0014) -
DIC = 10296 Mean -2.4511 2.1241 0.0351 2.165e-04 3.345e-04 0.0037
WAIC = 10325 SD (0.0527) (0.4429) (0.0047) (2.425e-04) (3.589e-04) (7.841e-04)

95% CI (-2.5543,-2.3476) (1.2544,2.9928) (0.0269,0.0453) (3.129e-05,8.460e-04) (2.801e-05,0.0013) (0.0023,0.0054)
DIC = 10296 Mean -2.4638 2.2361 0.0350 5.503e-04 - 0.0039
WAIC = 10324 SD (0.0536) (0.4481) (0.0047) (4.086e-04) - (7.955e-04)

95% CI (-2.5685,-2.3583) (1.3559,3.1140) (0.0266,0.0449) (1.118e-04,0.0016) - (0.0025,0.0056)
DIC = 10302 Mean -2.5221 2.7524 0.0338 - - 0.0046
WAIC = 10327 SD (0.0499) (0.4194) (0.0045) - - (8.248e-04)

95% CI (-2.6199,-2.4241) (1.9283,3.5749) (0.0258,0.0435) - - (0.0031,0.0064)
DIC = 10605 Mean -2.7028 4.2769 - - - 0.0422
WAIC = 10520 SD (0.0405) (0.3596) - - - (0.0026)

95% CI (-2.7824,-2.6235) (3.5714,4.9828) - - - (0.0373,0.0475)
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Figure 4.10: Maps for the predicted proportions, for the different years under study,
obtained from the spatio-temporal conditional model in equation (4.20), fitted to the
low birth weights in Georgia data set.

4.5.3 Sensitivity analysis for the precision of the prior distributions

We have performed a sensitivity analysis in order to properly assess the values specified
for the prior distributions of the precision parameters estimated in the models fitted in
this study. For brevity of exposition, in this section we only show the results obtained
for the model in equation (4.20).

In Tables 4.11, 4.12 and 4.13 we have included the estimates, DIC and WAIC values
obtained when fitting the models corresponding to different specifications of α in ψ(·) ∼
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G(α, α) for the precisions ψν = 1/τν , ψδ = 1/τδ, and ψϵ = 1/τϵ, respectively. For each of
these parameters, the values considered for α were from α = 0.1 to α = 1e-08. In each of
these three tables we can see some small differences in the estimates obtained. In general,
for ψν = 1/τν , ψδ = 1/τδ, and ψϵ = 1/τϵ, from the value α = 1e-04, differences in the
third decimal place are observed for a considerable number of cases, whereas variations
in the second decimal place only appear in a few number of cases.

Additionally, in Figure 4.11 we can see the marginal posterior densities of the preci-
sion parameters for the different values of α. In particular, in Figure 4.11(b), we can see
that for the precision parameter ψδ = 1/τδ there are some slight differences among the
marginal posteriors from the value α = 1e-04 and on. Such differences are not observed
for the other parameters analysed and, in any case, they do not seem to represent any
major stability issues from the value α = 1e-04 and on. Therefore, we believe that it is
a reasonable and well justified choice.

Table 4.11: Posterior means for parameter estimates together with standard deviations,
DIC andWAIC values, for the spatio-temporal conditional binomial model in the analysis
of low birth weight in Georgia data set with different prior distributions for the precision
parameter of the random effect τν .

Intercept ρ τν τδ τϵ DIC WAIC

α = 0.1 -2.4609 2.2108 0.0366 5.437e-04 0.0038 10296 10324
(0.0538) (0.4498) (0.0048) (4.239e-04) (8.022e-04) 10296 10324

α = 0.01 -2.4630 2.2295 0.0351 5.592e-04 0.0038 10296 10324
(0.0537) (0.4491) (0.0047) (4.081e-04) (8.002e-04) 10296 10324

α = 0.001 -2.4637 2.2352 0.0350 5.501e-04 0.0038 10296 10324
(0.0535) (0.4479) (0.0047) (4.060e-04) (7.962e-04) 10296 10324

α = 1e-04 -2.4638 2.2361 0.0350 5.503e-04 0.0039 10296 10324
(0.0536) (0.4481) (0.0047) (4.086e-04) (7.955e-04) 10296 10324

α = 1e-05 -2.4636 2.2346 0.0349 5.744e-04 0.0038 10296 10324
(0.0536) (0.4484) (0.0047) (4.265e-04) (7.959e-04) 10296 10324

α = 1e-06 -2.4636 2.2346 0.0349 5.743e-04 0.0038 10296 10324
(0.0536) (0.4484) (0.0047) (4.264e-04) (7.959e-04) 10296 10324

α = 1e-07 -2.4636 2.2346 0.0349 5.744e-04 0.0038 10296 10324
(0.0536) (0.4484) (0.0047) (4.265e-04) (7.960e-04) 10296 10324

α = 1e-08 -2.4636 2.2346 0.0349 5.744e-04 0.0038 10296 10324
(0.0536) (0.4484) (0.0047) (4.265e-04) (7.959e-04) 10296 10324
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Table 4.12: Posterior means for parameter estimates together with standard deviations,
DIC andWAIC values, for the spatio-temporal conditional binomial model in the analysis
of low birth weight in Georgia data set with different prior distributions for the precision
parameter of the random effect τδ.

Intercept ρ τν τδ τϵ DIC WAIC

α = 0.1 -2.4388 2.0140 0.0354 0.0281 0.0037 10298 10326
(0.0732) (0.4429) (0.0047) (0.0146) (7.889e-04) 10297 10326

α = 0.01 -2.4432 2.0538 0.0353 0.0037 0.0037 10296 10325
(0.0555) (0.4419) (0.0047) (0.0019) (7.895e-04) 10296 10324

α = 0.001 -2.4553 2.1614 0.0351 9.367e-04 0.0038 10296 10324
(0.0533) (0.4428) (0.0047) (5.690e-04) (7.937e-04) 10296 10324

α = 1e-04 -2.4638 2.2361 0.0350 5.503e-04 0.0039 10296 10324
(0.0536) (0.4481) (0.0047) (4.086e-04) (7.955e-04) 10296 10324

α = 1e-05 -2.4658 2.2539 0.0349 5.047e-04 0.0038 10296 10324
(0.0539) (0.4517) (0.0047) (4.054e-04) (7.974e-04) 10296 10324

α = 1e-06 -2.4661 2.2564 0.0349 4.964e-04 0.0038 10296 10324
(0.0540) (0.4523) (0.0047) (4.032e-04) (7.977e-04) 10296 10324

α = 1e-07 -2.4661 2.2567 0.0349 4.954e-04 0.0038 10296 10324
(0.0540) (0.4523) (0.0047) (4.028e-04) (7.976e-04) 10296 10324

α = 1e-08 -2.4661 2.2567 0.0349 4.955e-04 0.0038 10296 10324
(0.0540) (0.4523) (0.0047) (4.028e-04) (7.976e-04) 10296 10324
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Table 4.13: Posterior means for parameter estimates together with standard deviations,
DIC andWAIC values, for the spatio-temporal conditional binomial model in the analysis
of low birth weight in Georgia data set with different prior distributions for the precision
parameter of the random effect τϵ.

Intercept ρ τν τδ τϵ DIC WAIC

α = 0.1 -2.4891 2.4532 0.0341 4.532e-04 0.0064 10292 10289
(0.0551) (0.4635) (0.0046) (3.828e-04) (8.512e-04) 10295 10317

α = 0.01 -2.4680 2.2725 0.0348 5.384e-04 0.0042 10296 10324
(0.0538) (0.4509) (0.0047) (3.986e-04) (7.954e-04) 10296 10324

α = 0.001 -2.4642 2.2394 0.0349 5.568e-04 0.0039 10296 10324
(0.0536) (0.4488) (0.0047) (4.139e-04) (7.974e-04) 10296 10324

α = 1e-04 -2.4638 2.2361 0.0350 5.503e-04 0.0039 10296 10324
(0.0536) (0.4481) (0.0047) (4.086e-04) (7.955e-04) 10296 10324

α = 1e-05 -2.4644 2.2420 0.0349 5.371e-04 0.0039 10296 10324
(0.0535) (0.4481) (0.0047) (4.120e-04) (8.068e-04) 10296 10324

α = 1e-06 -2.4647 2.2442 0.0348 5.370e-04 0.0039 10296 10324
(0.0535) (0.4481) (0.0047) (4.263e-04) (7.995e-04) 10296 10324

α = 1e-07 -2.4647 2.2444 0.0348 5.350e-04 0.0039 10296 10324
(0.0536) (0.4483) (0.0047) (4.249e-04) (8.019e-04) 10296 10324

α = 1e-08 -2.4647 2.2444 0.0348 5.348e-04 0.0039 10296 10324
(0.0536) (0.4483) (0.0047) (4.248e-04) (8.024e-04) 10296 10324

146



(a) Posterior marginal distributions for the precision parameter ψ = 1/τν ,
the inverse of the variance parameter τν

(b) Posterior marginal distributions for the precision parameter ψ = 1/τδ,
the inverse of the variance parameter τδ

(c) Posterior marginal distributions for the precision parameter ψ = 1/τϵ,
the inverse of the variance parameter τϵ

Figure 4.11: Posterior marginal distributions for the precision parameters ψν = 1/τν ,
ψδ = 1/τδ and ψϵ = 1/τϵ, for different values of α, where ψ(·) ∼ G(α, α).
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4.5.4 Fitting of the temporally varying spatial lag coefficient models

In this section, we will fit the proposed temporally varying spatial lag coefficient model,
described in Section 4.3.1, to the low birth weight data in Georgia. In order to do this,
we will consider the model in equation (4.20), which is the best fitting spatio-temporal
conditional model obtained so far, and specify the following regression structure for πij :

logit(πij) = β0 + (ρ0 + ρj)Aij + νi + δj + ϵij (4.21)

For the random coefficient ρj , we will specify different alternatives, which are the same
ones considered in Section 4.4.4, for the temporally varying coefficient spatial condi-
tional models fitted to the data corresponding to the respiratory hospital admissions
in Glasgow. These are, an autoregressive model of order one (i.e., ρj ∼ N(ωρj−1, τρ)
for j = 2, . . . , J , and ρ1 ∼ N(0, τρ), with ω being the autoregressive parameter and
τρ > 0), a random walk process of order one (i.e., ρj ∼ N(ρj−1, τρ) for j = 2, . . . , J , and
ρ1 ∼ N(0, τρ), with τρ > 0) and an unstructured Gaussian process (i.e., ρj ∼ N(0, τρ),
with τρ > 0, for j = 1, . . . , J).

In Table 4.14 we have included the results obtained after fitting the model in equation
(4.21) for the three alternatives considered for ρj . Here, we have fitted two models for
each of the three specifications; one where we include the temporal unstructured random
effect δj and another one where we exclude it. The DIC and WAIC values obtained are
very similar for the six models and also, very close to the values obtained for the spatio-
temporal conditional model in equation (4.20).

The fixed effect ρ0 resulted statistically significant and the value of its coefficient was
approximately equal to two for all the models. Moreover, the estimates obtained for ρj ,
which represent the temporal variation of the spatial correlation with respect to the one
implied by the spatial parameter ρ0, can be better assessed by examining Figure 4.12. In
these plots, corresponding to each one of the six fitted models, the red curve represents
the estimated mean value of ρj and the green bands, its 95% credible intervals, for the
years considered.

Here, we can observe the temporal variation of this coefficient, which behaves in
a very similar way in all the six models considered. In general, we see how the value
decreases from the year 2011 and it begins to increase from 2014. Then, it slightly
decreases again from 2018. This suggests that the strongest spatial dependence in the
data is found for the year 2018 and the weakest, approximately, between the years 2011
and 2014. For the years 2010 and 2016 the effect is close to zero, which suggests that
the estimated value obtained for the global spatial parameter ρ0 would properly explain
the spatial correlation in these cases.

In addition, note that for the model corresponding to the AR1 process for ρj and
δj is excluded, we have obtained a significant value for the autoregressive parameter ω,
indicating that this term might depend on its past value, being properly captured by
this effect.
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Table 4.14: Parameter estimates, standard deviations and 95% credible intervals in parenthesis for the parameters in the models, and DIC and WAIC
values for the temporally varying spatial lag coefficient model, fitted to the low birth weight in Georgia data set.

AR1 for ρj RW1 for ρj Unstructured Gaussian for ρj

Intercept Mean -2.4461 -2.4480 -2.4400 -2.4420 -2.4523 -2.4521
SD (0.0535) (0.0533) (0.0533) (0.0531) (0.0537) (0.0541)

95% CI (-2.5507,-2.3406) (-2.5524,-2.3431) (-2.5444,-2.3353) (-2.5462,-2.3376) (-2.5575,-2.3466) (-2.5580,-2.3459)
ρ0 Mean 2.0763 2.0925 2.0218 2.0403 2.1318 2.1286

SD (0.4510) (0.4512) (0.4490) (0.4491) (0.4519) (0.4582)
95% CI (1.1881,2.9580) (1.2055,2.9760) (1.1401,2.9024) (1.1584,2.9207) (1.2442,3.0178) (1.2296,3.0267)

ω Mean 0.4076 0.6371 - - - -
SD (0.3590) (0.2366) - - - -

95% CI (-0.4595,0.8805) (0.0617,0.9495) - - - -
τρ Mean 0.0444 0.0648 0.0272 0.0276 0.0227 0.0483

SD (0.0363) (0.0641) (0.0253) (0.0222) (0.0299) (0.0359)
95% CI (0.0071,0.1408) (0.0114,0.2347) (0.0034,0.0935) (0.0052,0.0868) (3.147e-04,0.0997) (0.0090,0.1423)

τν Mean 0.0353 0.0352 0.0353 0.0355 0.0350 0.0351
SD (0.0047) (0.0047) (0.0047) (0.0048) (0.0047) (0.0047)

95% CI (0.0270,0.0455) (0.0269,0.0454) (0.0270,0.0456) (0.0268,0.0455) (0.0268,0.0452) (0.0268,0.0453)
τδ Mean 3.076e-04 - 2.034e-04 - 5.798e-04 -

SD (4.466e-04) - (1.986e-04) - (8.789e-04) -
95% CI (2.333e-05,0.0014) - (3.472e-05,7.320e-04) - (4.087e-05,0.0026) -

τϵ Mean 0.0036 0.0036 0.0036 0.0036 0.0038 0.0037
SD (7.829e-04) (7.803e-04) (7.774e-04) (7.786e-04) (7.926e-04) (7.908e-04)

95% CI (0.0023,0.0053) (0.0023,0.0053) (0.0023,0.0053) (0.0022,0.0053) (0.0024,0.0055) (0.0024,0.0055)

DIC = 10296 DIC = 10295 DIC = 10294 DIC = 10293 DIC = 10295 DIC = 10295
WAIC = 10324 WAIC = 10323 WAIC = 10324 WAIC = 10323 WAIC = 10324 WAIC = 10323
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(a) Model with AR(1) struc-
ture.

(b) Model with RW(1) struc-
ture.

(c) Model with unstructured
Gaussian distribution.

(d) Model with AR(1) struc-
ture, excluding δj .

(e) Model with RW(1) struc-
ture, excluding δj .

(f) Model with unstructured
Gaussian distribution, exclud-
ing δj .

Figure 4.12: Estimated mean and its credible interval, obtained for ρj after fitting the
considered temporally varying spatial lag coefficient models.

In any case, let us recall that the DIC and WAIC values did not favour any of these
six models in particular when compared among them, and that they gave very similar
estimated values for the coefficients. This leads us to prefer the simpler specification, in
this case given by the unstructured Gaussian process. In addition, although these models
do not offer great improvement in terms of model fitting when compared to the spatio-
temporal conditional binomial models, we believe we can obtain useful interpretation of
the spatial parameters given by its variation in time.

4.6 Discussion

In this chapter, we have reviewed some of the most frequently applied regression models
in the spatio-temporal count data literature. Moreover, we have proposed some exten-
sions of the spatial conditional models of Cepeda-Cuervo, Córdoba and Núñez-Antón
(2018) that allow for the modelling of spatio-temporal data. These proposals have been
fitted to real data examples and their performance has been compared with the widely
applied spatio-temporal Knorr-Held (2000) model. Model comparison was carried out
using the DIC and WAIC information criteria, and by performing posterior predictive
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checks.
Our first proposal is a direct extension of the models of Cepeda-Cuervo, Córdoba and

Núñez-Antón (2018), also given by the inclusion of a spatial lag term in the regression
structure for the conditional mean of the response variable under study. In this case,
the spatial lag is computed for each time unit, assuming that the spatial structure,
which is represented by a given spatial weights matrix, is the same for all the time units
considered. We have denoted these proposals as spatio-temporal conditional models and
they have been considered for Poisson and binomially distributed responses, although
they could also be specified for any other count data distribution.

In addition, we have also proposed another extension derived from the already pro-
posed spatio-temporal conditional models. Here, we define the spatial lag coefficient
as the sum of two terms; one fixed parameter and a temporally structured random co-
efficient, for which we proposed different specifications. This allows the spatial term
parameter to vary in the temporal dimension, leading to the temporally varying spatial
lag coefficient model proposals.

The first application presented corresponds to the study of respiratory hospital ad-
missions in the statistical sectors of Glasgow, from the year 2007 to 2011 (Lee, Rushworth
and Napier, 2018). Here we assumed that the conditioned response follows a Poisson
distribution and we fitted the spatio-temporal conditional models. In this case, lower
information criteria values were obtained for the spatio-temporal conditional models,
when compared to the spatio-temporal models of the Knorr-Held type, which were also
fitted to the same data set. In addition, our results were consistent with those obtained
by Lee, Rushworth and Napier (2018).

Furthermore, we have also fitted the proposed temporally varying spatial lag coeffi-
cient models to this data set, which also offered a better fit in terms of DIC and WAIC
values, when compared to the previously fitted models. This proposal allowed us to
identify the year 2008 as the one with the strongest spatial autocorrelation, and that
this dependence became weaker from that year on.

The other application included the study of the low birth weight in the counties of
Georgia, from 2010 to 2019, which corresponds to a more recent database than the ones
analysed in other studies in the literature. The spatio-temporal and the conditional
models were fitted to these data, assuming a binomial distribution for the response
variable. These models offered similar results in terms of information criteria, as well
as in terms of predictive accuracy. In this case, the temporally varying spatial lag
coefficient models suggested that the spatial autocorrelation began to increase around
the year 2012, and that it was the strongest for the year 2018.

In general terms, we have found that the proposed models were able to provide a
similar, and in some specific cases, a better fit in terms of information criteria than some
of the already existing models in the literature, such as the ones proposed by Knorr-Held
(2000). In the two applications presented, both the spatio-temporal and the conditional
models offered similar predictive accuracy. Moreover, the temporally varying spatial lag
coefficient models allowed us to have a better idea of the behaviour and of the variation
of the spatial autocorrelation across the time units under study.
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Chapter 5

Spatial autoregressive modelling
of COVID data: Assessment of
weights matrix neighbourhood
alternatives

5.1 Introduction

The analysis of spatial data has become widely spread in epidemiology, specially because
location can be an important surrogate for lifestyle, environment, as well as genetic and
other factors and, therefore, it can provide important insights for public health data
analysis. In order to be able to take the possible existing spatial correlation into account,
very common spatial regression models for count data make use of a spatially structured
random effect, which is structured according to a given spatial weights matrix.

In this context, two of the most popular models in spatial disease mapping are
the Besag-York-Mollié (BYM) model (Besag, York and Mollié, 1991) and the BYM2
model (Riebler et al., 2016). These models were described in Chapter 2, where they
were applied to the analysis of infant mortality rates and to mother’s postnatal period
screening test in Colombia. Let us recall that the BYM model incorporates spatial
dependence by means of two unobserved latent effects, namely a spatially unstructured
random effect and a spatially structured random effect following an Intrinsic Conditional
Autoregressive (ICAR) prior (Besag, 1974). In the BYM2 model the latent effect is a
weighted average of these two random effects. Another random effects model frequently
found in the literature is the Leroux model (Leroux, Lei and Breslow, 2000). These
models are generally estimated using Bayesian inferential methods.

An alternative to these models is given by the spatial conditional overdispersion
models, also denoted as spatial auto-regressive models (see Cepeda-Cuervo, Córdoba
and Núñez-Antón, 2018 and Morales-Otero and Núñez-Antón, 2021). These models
include a spatial lag of the response variable in the regression model specification, which
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allows to capture the spatial dependence on the spatial neighbouring regions. These
were also described in Chapter 2 and applied to the same data sets mentioned before.

The conditionally autoregressive model (CAR) or auto-Poisson scheme was previ-
ously proposed by Besag (1974). However, in the way it was originally defined, there
was the need to impose the restriction that the spatial autoregressive parameter is non
positive, so that the conditional distribution exists. This is a consequence of the fact
that, if the range of the response variable considered in the study is infinite, the spatial
terms could cause the model to be explosive. Zeger and Qaqish (1988) and Held, Höhle
and Hofmann (2005) proposed several models for analysing time series data. In the case
of counts, they considered a Poisson model which included the logarithm of the past
counts in the mean regression specification. These models are able to account for both
positive and negative temporal autocorrelation. In this paper, we will elaborate on the
latter models in the context of spatial epidemiology.

In the aforementioned models, the relationship between two regions is described by
a spatial weights matrix, for which several different specifications have been developed
(see Anselin, 2002). In most cases, this matrix is fixed and previously specified, a choice
that may have an impact on the results of the analysis. Therefore, it is very important
for researchers to be able to study how to best describe the spatial structure of the data.
Traditionally, spatial weights matrices are based on the adjacency of regions or on the
distance among regions. However, there may be situations where the association is not
given by the geographical proximity but, instead, it depends on some other connectivity
structure or even on the specific characteristics of the regions under study.

In this sense, Earnest et al. (2007) studied the influence of different specifications of
spatial weights matrices on the smoothing properties of the CAR model. The authors
fitted the models to a data set corresponding to birth defects in Australia, obtaining con-
siderable differences in the results, which provided clear evidence about the importance
of the proper choice of the spatial structure. Case, Hines and Rosen (1993) explored spa-
tial autocorrelation in a data set corresponding to government expenditure in the USA
from 1970 to 1985. The authors implemented different spatial weights matrices based
on contiguity and distance and, in addition, they proposed the use of a similarity matrix
based on the inverse of the difference of the values that a given covariate takes in each
state. They concluded that the similarity matrix based on the variable that represents
the percentage of population which is black considerably improved the performance of
the model. Ejigu and Wencheko (2020) proposed a weights matrix that took into account
geographical proximity and covariate information simultaneously. The authors fitted an
autoregressive spatial model to the Meuse river heavy metals data set, and compared
the performance of the proposed weights with other alternatives frequently used in the
literature. They concluded that their proposed weights led to a better justification and
motivation of the spatial structure present in the data under study.

After the beginning of the pandemic, a considerable number of research manuscripts
about the spatial modelling of COVID-19 have been published. For example, D’Angelo,
Abbruzzo and Adelfio (2021) studied its spread in the Northern Italian provinces from
February to April 2020, corroborating the effectiveness of the implementation of the
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lockdown in this country by applying a BYM model to the two periods from before
and after the decree of the measure. In addition, the authors fitted spatio-temporal
models for the number of cases in all the Italian provinces from February to October
2020, finding that the temporal evolution was independent of the spatial correlation.
In addition, they were able to identify areas with the most elevated risk of infection.
Note that no covariates were included in the study, since the authors did not intend to
determine risk factors in the population.

Johnson, Ravi and Braneon (2021) studied the monthly number of cases and deaths
related to COVID-19 between March and December 2020 in USA counties and their
relation with social vulnerability of the population in each of the regions. They fitted
spatio temporal Poisson models for each of these two outcomes, including socio-economic
and environmental variables, and assumed a BYM2 model for the spatial effects. The
authors characterized the spatio-temporal pattern of the spread of the disease and the
fatalities across the country and identified risk factors in the population such as the
proportion of non-white people and the proportion of people without a higher education
level, among others.

Konstantinoudis et al. (2022) analysed the weekly number of deaths for several re-
gions in Europe during the period going from 2015 to 2019. They fitted a hierarchical
Poisson model to this data, where the spatial autocorrelation was captured by means of
a BYM2 model. In this way, they were able to predict the deaths in 2020 and evaluate
the excess of mortality in each of the regions for this year.

Natalia et al. (2022) studied the evolution of COVID-19 cases per two weeks in
the municipalities of Belgium from June to December 2020. The authors used a spatio-
temporal Poisson model with a BYM model specification to take into account the spatial
dependence. As proxies for the socio-economic status, they used the mean income and
the number of students having a higher education level. Their conclusions suggested
that there was an increased incidence after the reopening of higher education facilities.

In this chapter, we propose an alternative to the auto-Poisson models that is able to
account for positive spatial autocorrelation. It is a modification of the spatial conditional
models in Cepeda-Cuervo, Córdoba and Núñez-Antón (2018) to account for the spatial
autocorrelation that might be present in the data. The spatial conditional auto-Poisson
model is described in Section 5.2.1, and the extension is motivated and introduced in
Section 5.2.2. Additionally, we also investigate the use of several spatial weights matrices
in the computation of the spatial lag and propose some new possible structures to be im-
plemented, which are discussed in Section 5.2.3. An illustration of the methodology and
comparison of the different models is provided in Section 5.3. In addition, a comparison
with the BYM2 model is included in Section 5.4 and a simulation study is included in
Section 5.5. We end with a discussion in Section 5.6.

We believe it is important to mention that the work presented in this chapter is a
collaboration with Christel Faes and Vicente Núñez-Antón. It has been included in a
paper which was submitted for publication and it is currently under review.
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5.2 Methodology

This section reviews the spatial conditional overdispersion models proposed by Cepeda-
Cuervo, Córdoba and Núñez-Antón (2018) (see Chapter 2 for a more detailed description
of these models) in the context of epidemiological applications. Thereafter, we propose
an extension of the autoregressive model and discuss possible weights matrices that could
describe the underlying spatial dependency structure.

5.2.1 Review of the spatial conditional autoregressive model

The spatial conditional overdispersion models were developed to fit spatial count data,
allowing to capture overdispersion and to explain the spatial dependence that may exist
in the data, as suggested by Cepeda-Cuervo, Córdoba and Núñez-Antón (2018). These
authors assume that the dependent variable Yi, for regions i = 1, . . . , n, follows a con-
ditional distribution f(yi | y∼i), where yi represents the observed count in region i and,
y∼i, the values in all of the neighbouring regions of the i-th region (without including
the i-th region itself). A spatial autoregressive term, more specifically, the lag of the re-
sponse variable, is incorporated in the regression model specification for the conditional
mean E(Yi | Y∼i). The inclusion of such spatial dependence in the model can explain
part of the overdispersion.

In an epidemiological context, interest often goes towards the modelling of the rates
of a disease. In this case, Morales-Otero and Núñez-Antón (2021) assumed that the
conditioned response variable (Yi | Y∼i, νi), the total number of cases for i = 1, . . . , n,
follows a Poisson distribution, with conditional mean µi so that E(Yi|Y∼i, νi) = µi = Piri,
with Pi being the population size and ri representing the disease rate in the i-th region,
for i = 1, . . . , n. They proposed the following regression structure for the conditioned
means:

log(µi) = log(Pi) + x⊤
i β + ρWir+ νi, (5.1)

where an autoregressive component is included for the rates, i.e., Wir =
∑n

j=1wijrj ,
which is a weighted average of the observed rates ri = yi/Pi, with weights specified
by the spatial weights matrix W. Here, xi is a vector of explanatory variables for
the i-th observation, β a vector of unknown regression parameters that need to be
estimated and ρ the unknown spatial autoregressive parameter. In addition, a normally
distributed random effect νi ∼ N(0, τ), with τ > 0, is included to allow for additional
unstructured overdispersion in the counts. Note that the assumed spatial structure is
given by the matrix W, where its elements, wij , are weights that represent the strength
of the relationship between regions i and j. Section 5.2.3 includes a detailed description
about the different ways these weights can be defined.

There is a certain similarity between the spatial conditional model considered in this
work and the auto-Poisson model (Besag, 1974), with the disadvantage that the latter
only allows for negative autocorrelation. We address this issue in the next section.
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5.2.2 Geometric mean spatial conditional model

Zeger and Qaqish (1988) proposed several models to account for temporal autocorrelation
in time series data, including one for count data, where they suggested the use of a
Poisson model that incorporates the logarithm of the past counts in the regression model
for the logarithm of the mean instead of the past counts. In particular, they assumed
a Poisson distribution for the variables Yj , representing counts for j = 1, . . . , J time
periods, so that Yj ∼ Poi(µj), with means µj following the regression model:

log(µj) = x⊤
j β +

q∑
l=1

θl[log(y
∗
j−l)− x⊤

j−lβ], (5.2)

where q represents all the previous counts and θl, for l = 1, . . . , q, are unknown parame-
ters that need to be estimated. To ensure the existence of the logarithm when there are
zero counts, the authors propose the use of the term y∗j−l = max(yj−l, c), with 0 < c < 1
a parameter that is assumed to be known. In addition, xj and β are as before.

The authors also propose an alternative to the linear predictor in equation (5.2),
where the model for the means would be:

log(µj) = x⊤
j β +

q∑
l=1

θl{log(yj−l + c)− log[exp(x⊤
j−lβ)]}, (5.3)

Knorr-Held and Richardson (2003) proposed the use the term log(yj−1 + 1) in order
to overcome the issue of the nonexistence of the logarithm, so that it is equal to zero
when there are no cases. Held, Höhle and Hofmann (2005) proposed to regress the mean
directly on the past counts instead, but assuming an identity link.

Following the ideas in Zeger and Qaqish (1988) and Knorr-Held and Richardson
(2003), we propose the following geometric mean spatial conditional model for count
data. As before, we assume a Poisson model for the conditioned response outcomes,
that is (Yi|Y∼i, νi) ∼ Poi(µi), with conditional mean E(Yi|Y∼i, νi) = µi = Piri, following
the regression model:

log(µi) = log(Pi) + x⊤
i β + ρWi log(r) + νi (5.4)

This model closely resembles the model in equation (5.1), but here the autoregressive
component is a weighted average of the logarithms of the rates, instead of the rates.
Zeger and Qaqish (1988) indicated that a model such as this does allow for positive
autocorrelation, which is indeed common in spatial epidemiology. It can be easily seen
that the smoothed estimates of the rates are estimated as:

r̂i = exp(x⊤
i β̂) exp

 1

ni

n∑
j=1

w∗
ij log(rj)

ρ̂

exp(νi)

= exp(x⊤
i β̂)r

ρ̂
i exp(νi), (5.5)
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with w∗
ij representing the non-standardized spatial weights, ni being the number of

neighbours of region i, and ri being the geometric mean of the rates included in the
vector of rates r. Note that the geometric mean of a sample X = {x1, x2, . . . , xn} is

defined as (
∏n

i=1 xi)
1
n , which can also be expressed as exp

[
1
n

∑n
i=1 log(xi)

]
, when xi > 0,

for i = 1, . . . , n.
Here, the estimated value obtained for the spatial parameter ρ would represent how

the incidence rate in one region resembles the geometric mean of the rates in its neigh-
bours. Therefore, the use of the logarithm of the rates in the autoregressive component
has an important epidemiological interpretation.

5.2.3 Spatial weights matrices

This section discusses different possible choices for specifying the weights wij used in the
proposed model in equation (5.4).

Spatial weights matrices based on contiguity

The spatial structure based on contiguity or adjacency is defined by the spatial weights
matrix W, where wij = 1, if region i is adjacent or a neighbour to region j, and wij = 0,
otherwise. Different criteria can be assumed to specify whether two regions are adjacent,
for example, the Queen contiguity criterion assumes that regions i and j are neighbours
if they share at least one point in their boundaries. Most commonly the spatial weights
matrix is standardized by rows, so that if region i is adjacent to region j, then wij = 1/ni,
where ni is the number of neighbours region i has. In this way, the spatial lagWiy can be
viewed as a spatial average of the values that the variable takes in all of its neighbouring
locations.

First order contiguity is specified when we consider that regions i and j are neighbours
if they share at least one point in their boundaries. Extending this criteria by considering
that i and j are neighbours if they share a common neighbour, we can define second order
contiguity. Third order contiguity can be specified the same way, when it is assumed that
regions i and j are adjacent if they share a common neighbour of order two. Contiguity
of higher order is also possible to specify by following these ideas.

Spatial weights matrices based on distance

An alternative way to define a spatial structure is to consider a spatial weights matrix
where its elements are defined as a function of the distance among the central points
of the polygons representing the regions, called the centroids, si (i = 1, . . . , n). Inverse
distance weights are specified as wij = 1/∥si − sj∥, with ∥si − sj∥ being the Euclidean
distance between regions i and j. In addition, in the negative exponential criteria the
weights are defined so that wij = exp (−∥si − sj∥).

Finally, we can also define the distance band weights, with band width given by a
critical threshold h. In particular, it is considered that regions i and j are neighbours if
their centroid lies within the chosen band. Let si be the centroids of the regions under
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study, for a given threshold h, then wij = 1 if the Euclidean distance between si and sj
is smaller than h, that is ∥si − sj∥ < h, and wij = 0 otherwise.

Covariate-based similarity (or difference) matrices

Ejigu and Wencheko (2020) proposed a weights matrix W, which not only takes into
account geographical proximity, but also a specific covariate’s information. Given an
environmental variable ei, for i = 1, . . . , n, regions with centroids si, they define the
following structure for the weights:

wij = exp{−[α|ei − ej |+ (1− α)∥si − sj∥]}, (5.6)

where α is a previously fixed chosen value between zero and one, |ei− ej | is the absolute
difference in the value of the environmental covariate between regions i and j and ∥si−sj∥
is the Euclidean distance between the centroids of regions i and j. The elements in the
diagonal of this matrix are zero and it is row standardized. As α approaches zero, the
weights give more relevance to the geographical distance, and, when it approaches one,
the covariate differences receive more importance.

Following this idea, we also propose an alternative covariate-based similarity matrix,
where we will consider both environmental and socio-economic variables to impact the
weight among regions. Let W be a traditional weights matrix based on contiguity,
distance, or any other criteria, with elements wij , and D an n×n matrix with elements
dij = 0 if i = j and:

dij = exp(−|ei − ej |), for i ̸= j, (5.7)

We then propose the use of the matrix W ◦D, which is the Hadamard (or element-wise)
product of matrices W and D. In this way, small weights are given to neighbouring
regions with large differences in the values of the covariate and to distant regions, while
large weights are given to neighbouring regions with similar covariate information and
that are geographically close to each other.

Mobility matrix

The previous proposals presented here for the weights matrices are a representation of
how close (in space) and/or how similar (in terms of covariate information) regions are.
Another characteristic to define the weights matrix is to assess how much contact there
was among individuals in the different areas. This is of special interest when considering,
for example, an outcome that depends on the contact behaviour, such as is the case in
infectious disease incidence. As a proxy for the contact behaviour, and based on mobile
phone data (Ensoy-Musoro et al., 2022), the mobility among regions can be used. That
is, each element mij in the mobility matrix M is defined as the mean proportion of time
that people from region i have spent in region j in a given time period. This matrix
would then clearly represent a different type of connectivity structure among regions.
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5.2.4 Review of the BYM2 model

In order to offer some comparison of the proposed methods with other models employed
in the disease mapping literature, we will also consider the fitting of the BYM2 model
(Riebler et al., 2016). In this model, it is assumed that (Yi | νi, ηi) ∼ Poi(µi), with
conditional mean E(Yi | νi, ηi) = µi = Piri following the regression structure:

log(µi) = log(Pi) + x⊤
i β +

1
√
τs

(√
1− ϕsνi +

√
ϕsηi

)
, (5.8)

where νi and ηi are unstructured normally and intrinsic conditionally autoregressive
(ICAR) distributed random effects, respectively, but with variance scaled to approx-
imately one. In addition, τs is a precision parameter that controls for the variance
contribution from the sum of the two random effects and ϕs is a mixing parameter that
captures the proportion of the variance explained by the spatially structured random
effect. Note that 1 − ϕs represents the proportion of the variance explained by the
unstructured random effect.

In this model, the spatial neighbourhood structure that is usually assumed is the one
based on contiguity of first order. Although some other structure might be specified,
this model requires the spatial matrix to be symmetrical (Wall, 2004). In addition, for
the parameters τs and ϕs, penalized complexity priors are generally assumed (Simpson
et al., 2017).

Comparison of the spatial conditional model with the BYM and the BYM2 models
has been previously performed by Morales-Otero and Núñez-Antón (2021), research
already included in Chapter 2. Their results showed that, when compared to the spatial
conditional model, they offered a similar fit in terms of information criteria. However,
the BYM and BYM2 models did not provide additional information about the type and
strength of spatial autocorrelation that was present in the data.

5.2.5 Model estimation and selection

All models considered here are fitted using the integrated nested Laplace approximation
(INLA) approach, in the R-INLA package. It should be noted, however, that, in general,
any software methodology that allows for estimation of a generalized linear mixed model
can be used to implement this model. This is a great advantage of the proposed method,
as one is not restricted to complex estimation tools for fitting spatial models. Model
comparison is carried out by using the Deviance Information Criterion (DIC) (Spiegel-
halter et al., 2002) and the Watanabe-Akaike Information Criterion (WAIC) (Watanabe,
2010), where their smallest values indicate the best fitting model.

5.3 Illustration of methodology

5.3.1 Data Exploration

We investigate the spatial distribution of COVID-19 from September 2020 until Jan-
uary 2021 among the Flemish municipalities. Figure 5.1 shows the observed incidence of
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COVID-19 per 100,000 inhabitants in Flanders’ municipalities in the time period con-
sidered, which was the time of the second wave in Belgium. It can be observed that not
all areas presented the same impact in the second COVID-19 wave.

Figure 5.1: Spatial distribution of the incidence of COVID-19 per 100,000 inhabitants
in Flanders’ municipalities from 2020-09-01 to 2021-01-31.

The data under analysis includes information on the 300 municipalities of the Flan-
ders area in Belgium, which is available at the website of the Belgian Institute for Public
Health (Sciensano) (https://epistat.wiv-isp.be/covid/). Table 5.1 includes some descrip-
tive statistics for the variables available across municipalities. The outcome of interest
is the number of confirmed COVID-cases from 2020-09-01 to 2021-01-11, summarized
by the variable N.cases. The population size in the area is denoted as P, and incidence
is the number of COVID-19 cases in this time period per 100,000 inhabitants. There
are also two additional variables available which can be considered as proxies for the
socio-economic status and demography of the municipality. These are the percentage of
households with a discount on the electricity meter (budgetmeters) and the percentage
of single-parent households (single house).

Table 5.1: Descriptive statistics for the variables available across municipalities.

Median Mean SD Min. Max.

N.cases 544.00 801.24 1570.14 1.00 24387.00
P 15036.50 22097.14 36156.40 79.00 529247.00
incidence 3358.87 3564.18 1235.74 1265.82 8023.07
single house 7.88 8.02 1.25 5.30 15.30
budgetmeters 1.12 1.23 0.68 0.00 6.86
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5.3.2 Model Estimates

The COVID-19 incidence map in Figure 5.1 suggests the presence of spatial autocor-
relation in the data, as municipalities with similar values of COVID-19 incidence are
grouped together in space. Therefore, we will further analyse this data by implementing
spatial models that account for the spatial dependence. Additionally, we will explore
different choices for the spatial weights matrix to be included in the fitted models.

We fit both the spatial conditional normal Poisson model in equation (5.1) (Section
5.2.1) and the proposed geometric mean spatial conditional normal Poisson model in
equation (5.4) (Section 5.2.2). As we do not wish to pre-specify the weights in the
weights matrix W, we use the different weights matrices described in Section 5.2.3, and
compare the fitting of the different models by using their DIC and WAIC values. Note
that, in this specific application, we do not include any covariates in the linear predictor,
as we focus on the spatial modelling by means of the autoregressive terms and on the
comparison of the performance of such models.

We believe it is important to mention the fact that, at the beginning of this research,
the variables available were included in the model as covariates. However, the results
obtained suggested that they did not offer any improvements in models’ fitting in terms
of information criteria. Therefore, in this specific study, we decided to only employ them
when computing the proposed weights matrices based on similarities. It should also be
noted that, in this study, we do not aim to identify any risk factor in the spreading of
the infection, but to investigate the spatial correlation that may exist in the data and
find the structures that best accommodate it.

The results obtained for the fitting of these models are included in Tables 5.2 and 5.3,
which were fitted by considering ten different options for the weights matrix. First, we
have used the spatial weights matrices based on the adjacency among regions (contiguity
of first and third order). Second, weights were based on the distance among the cen-
troids of the regions (inverse distance, negative exponential distance and distance band
method). Third, weights matrix were based on the product between covariate differ-
ences and traditional spatial weights, as proposed in Section 5.2.3. For these similarity
matrices, the spatial weights matrices considered are the ones based on contiguity of
first order, and that based on the distance band. The variables used to measure whether
regions have a similar socio-economic status are single house and budgetmeters. Finally,
the mobility matrix was also considered.

Figure 5.2 shows the heatmaps of the weights matrices considered here. Heatmaps
use colours to represent the values of the weights for each matrix. Thus, white would
indicate that the weights are zero for those municipalities. That is, heatmaps are graph-
ical representations for the individual weights in each of the different weights matrix
structures. More specifically, matrices following the inverse and the negative exponen-
tial distance only have zeros in their diagonal, for the weights wii, i = 1, . . . , n, whereas
the rest of the matrices have a larger percentage of weights that are zero. Moreover,
matrices presenting the largest number of connected areas are the ones following the
contiguity of order three and the mobility matrix. Finally, matrices where the contigu-
ity of order one criterion is considered are the ones that present the smallest number of
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connected regions and, hence, the ones having the largest percentage of weights that are
zero.

(a) Heatmap of the spatial weights matrix fol-
lowing contiguity of order 1.

(b) Heatmap of the spatial weights matrix fol-
lowing contiguity of order 3.

(c) Heatmap of the spatial weights matrix fol-
lowing inverse distance.

(d) Heatmap of the spatial weights matrix fol-
lowing negative exponential.

Figure 5.2: Heatmaps of the spatial weights matrices considered.
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(e) Heatmap of the spatial weights matrix fol-
lowing distance band.

(f) Heatmap of the similarity spatial weights
matrix combining contiguity order 1 and the
variable budgetmeters.

(g) Heatmap of the similarity spatial weights
matrix combining distance band and the vari-
able budgetmeters.

(h) Heatmap of the similarity spatial weights
matrix combining contiguity of order 1 and the
variable single house.

Figure 5.2: Heatmaps of the spatial weights matrices considered (Continued).
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(i) Heatmap of the similarity spatial
weights matrix combining distance band
and the variable single house.

(j) Heatmap of the mobility matrix.

Figure 5.2: Heatmaps of the spatial weights matrices considered (Continued).
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Table 5.2: Results obtained after fitting the spatial conditional normal Poisson models to the COVID-19 incidence data in Flanders,
for the different weights matrices considered.

Weights matrix β̂ ρ̂ τ̂

Contiguity of order 1 DIC = 3015.6 Mean -4.3779 27.9278 27.8299
WAIC = 2947.7 SD (0.0414) (1.1205) (2.4400)

95% CI (-4.4593,-4.2967) (25.7277,30.1287) (23.2868,32.8680)

Contiguity of order 3 DIC = 3019.1 Mean -4.4245 29.2200 18.0993
WAIC = 2942.7 SD (0.0597) (1.6368) (1.5422)

95% CI (-4.5419,-4.3074) (26.0055,32.4342) (15.2166,21.2709)

Inverse distance DIC = 3018 Mean -5.6489 63.0826 19.3191
WAIC = 2941.2 SD (0.1202) (3.3331) (1.6462)

95% CI (-5.8853,-5.4131) (56.5380,69.6293) (16.2424,22.7046)

Negative exponential DIC = 3022.1 Mean -6.0063 73.1322 12.6599
WAIC = 2941.4 SD (0.2207) (6.1524) (1.0624)

95% CI (-6.4402,-5.5731) (61.0492,85.2137) (10.6724,14.8430)

Distance band DIC = 3013.5 Mean -4.5140 31.4797 24.6629
WAIC = 2938.4 SD (0.0505) (1.3703) (2.1204)

95% CI (-4.6134,-4.4149) (28.7899,34.1716) (20.7059,29.0307)

W ◦D single house and DIC = 3015.9 Mean -4.3490 27.1208 26.9563
Contiguity of order 1 WAIC = 2946.9 SD (0.0411) (1.1121) (2.3552)

95% CI (-4.4300,-4.2684) (24.9376,29.3054) (22.5668,31.8139)

W ◦D single house and DIC = 3012.6 Mean -4.4899 30.9698 27.6089
Distance band WAIC = 2940.3 SD (0.0459) (1.2463) (2.3962)

95% CI (-4.5802,-4.4000) (28.5236,33.4184) (23.1419,32.5503)

W ◦D budgetmeters and DIC = 3015.7 Mean -4.3598 27.4999 29.0054
Contiguity of order 1 WAIC = 2949.4 SD (0.0396) (1.0736) (2.5564)

95% CI (-4.4378,-4.2821) (25.3922,29.6088) (24.2465,34.2842)

W ◦D budgetmeters and DIC = 3012.2 Mean -4.5130 31.6566 27.0085
Distance band WAIC = 2938.7 SD (0.0474) (1.2925) (2.3358)

95% CI (-4.6063,-4.4200) (29.1197,34.1958) (22.6523,31.8233)

Mobility DIC = 3029.9 Mean -4.2698 25.1133 22.0095
WAIC = 2972.6 SD (0.0445) (1.2129) (1.9735)

95% CI (-4.3571,-4.1824) (22.7263,27.4908) (18.3415,26.0931)
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Table 5.3: Results obtained after fitting the geometric mean spatial conditional normal Poisson models to the COVID-19 incidence
data in Flanders, for the different weights matrices considered.

Weights matrix β̂ ρ̂ τ̂

Contiguity of order 1 DIC = 3018 Mean -0.7863 0.7695 22.4881
WAIC = 2945.1 SD (0.1223) (0.0360) (1.9380)

95% CI (-1.0265,-0.5462) (0.6988,0.8402) (18.8708,26.4785)

Contiguity of order 3 DIC = 3020.5 Mean -0.8845 0.7402 15.7244
WAIC = 2942.1 SD (0.1616) (0.0476) (1.3309)

95% CI (-1.2020,-0.5672) (0.6468,0.8336) (13.2348,18.4591)

Inverse distance DIC = 3017.9 Mean 3.7527 2.1075 19.1440
WAIC = 2941 SD (0.3804) (0.1122) (1.6297)

95% CI (3.0056,4.4999) (1.8872,2.3279) (16.0966,22.4940)

Negative exponential DIC = 3022.1 Mean 4.9186 2.4510 12.7087
WAIC = 2941.4 SD (0.6950) (0.2050) (1.0668)

95% CI (3.5537,6.2834) (2.0485,2.8535) (10.7116,14.9004)

Distance band DIC = 3013.3 Mean 0.2414 1.0705 25.0003
WAIC = 2938.6 SD (0.1569) (0.0461) (2.1514)

95% CI (-0.0666,0.5495) (0.9799,1.1612) (20.9854,29.4322)

W ◦D single house and DIC = 3018 Mean -0.8108 0.7621 22.5347
Contiguity of order 1 WAIC = 2945.3 SD (0.1209) (0.0356) (1.9427)

95% CI (-1.0484,-0.5733) (0.6922,0.8320) (18.9093,26.5355)

W ◦D single house and DIC = 3012.3 Mean 0.2155 1.0617 28.1287
Distance band WAIC = 2940.4 SD (0.1436) (0.0422) (2.4449)

95% CI (-0.0663,0.4975) (0.9789,1.1446) (23.5714,33.1695)

W ◦D budgetmeters and DIC = 3017.8 Mean -0.7804 0.7703 23.6219
Contiguity of order 1 WAIC = 2946.3 SD (0.1181) (0.0347) (2.0452)

95% CI (-1.0124,-0.5485) (0.7021,0.8385) (19.8088,27.8381)

W ◦D budgetmeters and DIC = 3012 Mean 0.2676 1.0764 27.5007
Distance band WAIC = 2938.9 SD (0.1478) (0.0434) (2.3800)

95% CI (-0.0226,0.5579) (0.9912,1.1616) (23.0584,32.4024)

Mobility DIC = 3033.8 Mean -1.7658 0.4823 14.8418
WAIC = 2960.6 SD (0.1148) (0.0338) (1.2750)

95% CI (-1.9925,-1.5414) (0.4155,0.5484) (12.4600,17.4657)
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When comparing the models’ fit related to the different weights matrices included in
Table 5.2, it can be seen that parameter estimates can differ considerably. The estimated
value for the autoregressive parameter ρ is large and statistically significant, according
to its 95% credible interval, in all models, an indication that there is a clear sign for
the existence of spatial autocorrelation. Interpretation of the value of the estimated
parameter is difficult, however.

The information criteria values obtained for the fitting of these models indicate that
the best fit among the models accounting only for contiguity or distance among regions
is for the distance band spatial weights (DIC = 3013.5 and WAIC = 2938.4). The next
best fitting model is the one using the contiguity of order one criterion (DIC = 3015.6
and WAIC = 2947.7). As for the models taking into account the similarity in socio-
economic status, the combination of single house or budgetmeters and distance bands
are the best fitting models (DIC = 3012.6 and WAIC = 2940.3, and DIC = 3012.2 and
WAIC = 2938.7, respectively). For the model considering the mobility matrix, we can
conclude that, according to the information criteria, this model did not provide a good
fit.

Similar results are observed in Table 5.3, where the fitting of these models appears
to be very similar to the ones in Table 5.2, according to the information criteria values.
Here, the models with the smallest DIC and WAIC values were the ones using the simi-
larity matrix of the distance band and single house or budgetmeters (DIC = 3012.3 and
WAIC = 2940.4, and DIC = 3012 and WAIC = 2938.9, respectively). In these weights
matrices, larger weights are specified for regions that lie within the distance band and
have similar values of these variables. Therefore, the fitting of these models suggests that
this structure could be properly explaining the underlying spatial dependence, assuming
that the variables considered represent the socio-economic or demographic characteristics
of the population in these areas.

Regarding the spatial autoregressive parameter ρ, here the spatial lag is also sig-
nificant for all the fitted models, indicating that the spatial autocorrelation is being
properly captured. Moreover, the interpretation of this parameter can be useful in order
to quantify how much the spatial structure considered can influence the resemblance of
the incidence rate in a region to the geometric mean of the incidence rates of its neigh-
bours. In the models where the distance band matrix was used, the parameter ρ has
posterior mean approximately equal to 1, and, thus, in this setting, we find that the rate
in a municipality is close to the geometric mean of the rates in the municipalities within
the distance band. For the models where the specified weights matrix was either the
exponential or the inverse distance, the estimated values of ρ was approximately equal
to two, suggesting that the rate in a municipality is the square of the geometric mean
of the rates of its neighbours. For the remaining models, this parameter’s estimated
value was smaller than one. For example, in the model with the mobility matrix, it was
ρ̂ = 0.4823, suggesting that, for this connectivity structure, the rate in a municipality is
approximately the squared root of the geometric mean of the rates of its neighbours.

In Figure 5.3, we include the maps of the predicted incidence obtained after fitting
some of the geometric mean spatial conditional normal Poisson models considered. If
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we compare these maps with the observed incidence map shown in Figure 5.1, we can
see that, in general, the predictions are quite accurate, as they are very similar to
the observed incidence. In addition, when compared to each other, we note that the
predictions obtained differ only for a small number of municipalities.

Furthermore, scatterplots of the observed versus the predicted rates, obtained from
the fitting of these models are included in Figure 5.4, where it can be seen that the
fitted models show high accuracy in the prediction of the incidence rates. In the plots
included in Figure 5.4, we can see a point at the beginning of the line which always seems
to fall away from it. This point corresponds to the municipality of Herstappe, which has
only one positive COVID-19 case for the whole period under analysis and a population
of only 79 individuals. Note that, after Herstappe, the next municipality with fewer
cases is Zuienkerke, with a total number of positive cases of 60 and a population of 2709
individuals. This may be the reason that could explain the fact that the predicted rate
of Herstappe is mostly dominated by the information provided by its neighbours.

(a) Predicted incidence obtained from the model using the spatial matrix
following the contiguity of order one criterion, fitted to the COVID-19 data
in Flanders.

Figure 5.3: Predicted incidence obtained from some of the geometric mean spatial
conditional normal Poisson models considered, fitted to the COVID-19 data in Flanders.
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(b) Predicted incidence obtained from the model using the spatial matrix fol-
lowing the distance band criterion, fitted to the COVID-19 data in Flanders.

(c) Predicted incidence obtained from the model using the similarity spatial
matrix combining the differences in the variable budgetmeters and the dis-
tance bands criterion, fitted to the COVID-19 data in Flanders.

Figure 5.3: Predicted incidence obtained from some of the geometric mean spatial
conditional normal Poisson models considered, fitted to the COVID-19 data in Flanders
(Continued).
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(d) Predicted incidence obtained from the model using the mobility matrix,
fitted to the COVID-19 data in Flanders.

Figure 5.3: Predicted incidence obtained from some of the geometric mean spatial
conditional normal Poisson models considered, fitted to the COVID-19 data in Flanders
(Continued).

(a) Model where the spatial matrix follows
the contiguity of order one criterion.

(b) Geometric mean model where the spa-
tial matrix follows the contiguity of order
three criterion.

Figure 5.4: Scatterplots of the observed versus the predicted rates obtained for some
of the fitted models.
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(c) Model where the spatial matrix follows
the negative exponential distance criterion.

(d) Geometric mean model where the spa-
tial matrix follows the distance bands crite-
rion.

(e) Model for the similarity spatial weights
matrix combining distance band and the
variable budgetmeters.

(f) Geometric mean model for the sim-
ilarity spatial weights matrix combining
distance band and the variable budget-
meters.

Figure 5.4: Scatterplots of the observed versus the predicted rates obtained for some
of the fitted models (Continued).
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(g) Model for the mobility matrix. (h) Geometric mean model for the mobility
matrix.

Figure 5.4: Scatterplots of the observed versus the predicted rates obtained for some
of the fitted models (Continued).

In addition, Figure 5.5 shows the marginal posterior distribution of the parameters
estimated from some of the fitted models, where it can be verified that the normality
assumption holds.

We can also check the distributional assumptions in the fitted models, which is a
Poisson distribution, where the overdispersion is accommodated by means of the inclu-
sion of a random effect in the regression for the mean. This can be achieved by using the
distribution check function from the R package inlatools (Onkelinx, 2019). Here, sim-
ulations are drawn from the model and the empirical cumulative distribution function
(eCDF) is computed for the observed response and for the simulated data, so that they
can be compared.

Figure 5.6 includes the plots which illustrate these comparison results. In each figure,
the black line is the result of dividing the eCDF of the observed data by the median of
the eCDF’s of the simulated data sets, and the grey bands represent the 95% credible
intervals of the simulated data. In addition, the dotted horizontal line placed at 100%
indicates where the ratio of the eCDF’s is equal to one. If the eCDF is inside the credible
intervals, which is the case for all of the models fitted here, the assumed distribution
in the model seems to be a plausible one. Moreover, given that the eCDF is quite
close to the reference line, these results suggest that the data is well modelled with this
distribution.
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(a) Geometric mean model where the spatial matrix follows the contiguity of order
one criterion.

(b) Geometric mean model where the spatial matrix follows the distance band
criterion.

(c) Geometric mean model for the similarity spatial weights matrix combining
distance band and the variable budgetmeters.

Figure 5.5: Posterior densities from the parameters estimated for some of the fitted
models.
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(d) Geometric mean model for the mobility matrix.

Figure 5.5: Posterior densities from the parameters estimated for some of the fitted
models (Continued).

(a) Geometric mean model where the spatial
matrix follows the contiguity of order one cri-
terion.

(b) Geometric mean model where the spatial
matrix follows the distance band criterion.

Figure 5.6: Distribution check for some of the fitted models.

174



(c) Geometric mean model for the similar-
ity spatial weights matrix combining distance
band and the variable budgetmeters.

(d) Geometric mean model for the mobility
matrix.

Figure 5.6: Distribution check for some of the fitted models (Continued).

After examining the results obtained in this section, we could conclude that, on the
one hand, with the proposed model we present an appealing interpretation of the spa-
tial parameter, given by the geometric mean of the incidence rates. We have shown
how this interpretation can change for the different fitted models, indicating how much
the spatial structure considered explains the spatial autocorrelation by means of the
geometric mean of the rates in the neighbouring regions. On the other hand, by ex-
amining different weights matrices, we can have a better idea of the underlying spatial
dependence structure of the data. When the similarity matrices based on the distance
band were used, the information criteria values were similar to the model considering
the traditional distance band matrix. Therefore, taking into account that they provide
similar predictions and similar fit, we believe that, for the specific data set considered,
this weights matrix could represent a proper choice for modelling the spatial underlying
structure of the data.

5.4 Comparison to the BYM2 model

In this section, we will fit the BYM2 models to the COVID-19 data in Flanders. However,
we should stress here that one of our main goals in this thesis is to present the geometric
mean proposal as a new extension of the spatial conditional Poisson model in Cepeda-
Cuervo, Córdoba and Núñez-Antón (2018). In these models, the interpretation of the
spatial parameters is different from that of the BYM2 model. Furthermore, the spatial
conditional and the geometric mean models offer the possibility of specifying any weights
matrix in a straightforward way, as it is used for computing a spatial lag. In our view, this
feature makes these models more appealing for investigating different spatial structures,
which is another one of our goals here. In the case of the BYM2 model, this is not
straightforward due to its limitations, where the assumed spatial structure needs to be
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symmetric, which is not the case, for example, for the mobility matrix we have employed
before.

Nevertheless, we believe it can be useful to compare the performance of the proposed
methods with that of the BYM2 model, often employed in disease mapping applications.
Therefore, we consider the model in equation (5.8), where, in order to specify the penal-
ized complexity priors and following Simpson et al. (2017), for the precision parameter
τs we assume that Prob(1/

√
τs > 0.2/31) = 0.01 and, for the mixing parameter ϕs,

Prob(ϕs < 0.5) = 2/3. The results obtained after fitting this model to the COVID-19
data in Flanders are included in Table 5.4.

Table 5.4: Results obtained after fitting the BYM2 model to the COVID-19 incidence
data in Flanders.

Mean SD 95% CI

β̂ -3.3924 0.0039 (-3.4002,-3.3848)
τ̂s 12.0567 1.1313 (9.8847,14.3180)

ϕ̂s 0.9757 0.0202 (0.9231,0.9979)

DIC = 3006.9 WAIC = 2932.9

Let us recall that, in the previous section, the smallest DIC was obtained for the ge-
ometric mean model using the similarity matrix of the distance band and budgetmeters
(DIC = 3012) and the smallest WAIC was given for the model using the distance band
criterion (WAIC = 2938.6). For the BYM2 model, we can see that the DIC and WAIC
values obtained are slightly lower than those obtained for the previous models. In addi-
tion, the value obtained for the mixing parameter, ϕ̂s = 0.9757, suggests that more than
97% of the variability in the data is being explained by the spatially structured effect.

Regarding the predictive accuracy of this model, Figure 5.7 includes the map of the
predicted incidence obtained from its fitting, where we can see that the predictions are
very accurate when compared to the map of the observed incidence in Figure 5.1, and
also very similar to the ones obtained in the previous section for our proposed methods
(see Figure 5.3). The scatterplot of the observed versus the predicted incidence rates is
included in Figure 5.8, showing some issues in some of the municipalities.

Despite the fact that the information criteria values favoured the BYM2 model and
that its predictive accuracy is similar to the one from the geometric mean model, we
restate our goal here of presenting the geometric mean proposal, which can be viewed as
an alternative to the BYM and BYM2 models, and to investigate the weights matrices
which best reflect the spatial underlying process.

There are situations where the spatial conditional models might offer a better fit than
the BYM and BYM2 models, or viceversa. We believe that the choice of the model to fit
should depend on the specific objective of the study. For example, Morales-Otero and
Núñez-Antón (2021) reported that, given by the information criteria values obtained,
the spatial conditional and the BYM and BYM2 models offered a very similar fitting to
the infant mortality data they studied. In addition, in Morales-Otero, Gómez-Rubio and
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Núñez-Antón (2022), the spatial conditional models were employed in order to illustrate
a new fitting approach in INLA.

Figure 5.7: Predicted incidence obtained from the fitting of the BYM2 to the COVID-
19 data in Flanders.

Figure 5.8: Scatterplot of the observed versus the predicted rates obtained from the
fitting of the BYM2 to the COVID-19 data in Flanders.

5.5 Simulation study

Based on the previous results, the fitted models suggest a strong spatial correlation in
the data, which is clearly better explained by the distance band spatial weights matrix.
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This implies that, for the data under study, the underlying spatial process is closely
related to this spatial structure. We wish to investigate the performance of the selection
of the weights matrix, and study the sensitivity of the parameters to a misspecified
neighbourhood matrix.

Therefore, we have carried out a simulation study, where we induce correlation in
the response variable following the mobility matrix structure. For this purpose, we
have implemented a Gibbs sampling algorithm, which allowed us to generate spatially
autocorrelated Poisson data by repeatedly sampling from conditional distributions (see
Jackson and Sellers, 2008). In our specific case, we define a set of initial values for
the parameters β, ρ and τ and, on each iteration, we draw Poisson samples, where the
mean is conditioned on the values of the previous iteration. For k = 1, we draw Poisson
samples from an uncorrelated mean:
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for i = 1, . . . , n.

(5.9)

Then, if we perform a total number of S∗ iterations, for k = 2, . . . , S∗, the algorithm
follows, so that:
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(5.10)
We have defined twelve different scenarios, given the true values for the parameters,

which can be consulted in the first column to the left in Table 5.5. For each case, we
have simulated S∗ = 500 data sets (with the number of areas n = 300), and discarded
half of them, so that S = 250 simulations for each scenario remained. We have fitted
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three models to each simulated data set, one using the mobility matrix to compute the
spatial lag, another one using the contiguity of order one spatial weights matrix, and a
third one using the inverse distance spatial weights matrix.

In order to assess the performance of the models fitted to the simulated data,

and compare the results, we have computed the bias
[
(
∑S

s=1(θ̂s − θ)/S
]
, the variance[∑S

s=1(θ̂s − θ̂)2/(S − 1)
]
, and the mean squared error (MSE)

[∑S
s=1(θ̂s − θ)2/S

]
of the

estimations, where θ represents the true value of a parameter, θ̂s its resulting estimate

for data set s and θ̂ is the arithmetic mean of the resulting estimates. The values ob-
tained are included in Table 5.5. Here, we can see how, in general, the bias is smaller
for the models where the mobility matrix was used.

For the scenarios where the parameters’ true values were β = −2 and ρ = 0.5 (i.e.,
first two scenarios), the smallest bias was obtained for the estimations for the model using
the mobility matrix, indicating that this is the model where the resulting estimates are
closer to the true values of the parameters. However, when the true value for β changed
to −0.5 (i.e., third and fourth scenarios), the smallest bias was obtained for the model
using the contiguity criterion for the weights matrix, which seems to suggests that the
value given to the intercept β is having a significant impact on the results.

In the scenarios where the true value for ρ is set to 0.2, the bias of the estimates
considerably increases when using the mobility matrix. In fact, the estimations with
smallest bias are obtained for the model using the inverse distance criterion for the
spatial matrix. This can be due to the fact that here we are setting a small value for
the spatial parameter and, thus, forcing the mobility connectivity structure to have a
smaller relevance in the simulated data.

In addition, for the parameters’ true values β = −2 and ρ = 0.9, the smallest bias
of the estimates was also obtained for the mobility matrix. Given that, in this case,
we are setting a large value for the spatial parameter, more relevance is given to this
structure. However, when β = −0.5 and ρ = 0.9, the models using the contiguity and
the mobility matrix produce similar values for the bias of the estimations, meaning that,
for this specific setting, the spatial structure is not so clearly defined.

Finally, from the results included in Table 5.5, for the precision parameter τ , no
significant changes were observed in the bias of the estimations when changing this
parameter’s value from 5 to 15.
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Table 5.5: Results obtained from the models using different weight matrices, fitted to the simulated data sets.

Fitted model: Mobility Contiguity Inverse distance

True value β ρ τ β ρ τ β ρ τ

β = −2, Bias 0.172 0.044 0.806 -0.718 -0.187 -6.863 12.064 3.049 -6.362
ρ = 0.5, Variance 0.001 9.554e-05 0.198 0.009 5.979e-04 0.060 0.220 0.014 0.077
τ = 15 MSE 0.031 0.002 0.846 0.524 0.036 47.160 145.754 9.312 40.547

β = −2, Bias 0.347 0.088 0.319 -0.487 -0.130 -1.303 10.892 2.751 -1.217
ρ = 0.5, Variance 0.002 1.412e-04 0.011 0.008 5.422e-04 0.007 0.155 0.010 0.008
τ = 5 MSE 0.123 0.008 0.113 0.245 0.017 1.705 118.791 7.577 1.489

β = −0.5, Bias 0.232 0.233 0.406 0.037 0.027 -0.219 2.623 2.639 -0.296
ρ = 0.5, Variance 5.188e-05 4.861e-05 4.743e-04 4.612e-05 4.658e-05 6.047e-04 8.466e-04 7.994e-04 6.370e-04
τ = 5 MSE 0.054 0.054 0.166 0.001 7.769e-04 0.049 6.883 6.966 0.088

β = −0.5, Bias 0.187 0.189 1.181 -0.010 -0.018 -1.285 2.612 2.632 -1.367
ρ = 0.5, Variance 1.230e-04 1.219e-04 0.014 1.306e-04 1.354e-04 0.017 0.003 0.003 0.017
τ = 15 MSE 0.035 0.036 1.409 2.215e-04 4.489e-04 1.669 6.824 6.932 1.886

β = −2, Bias 0.138 0.055 0.855 -0.539 -0.219 -0.318 0.224 0.088 -0.317
ρ = 0.2, Variance 0.002 2.455e-04 0.052 0.002 3.419e-04 0.053 0.233 0.038 0.053
τ = 15 MSE 0.020 0.003 0.783 0.293 0.048 0.153 0.282 0.045 0.153

β = −2, Bias 0.229 0.092 0.307 -0.501 -0.203 0.045 -0.066 -0.029 0.045
ρ = 0.2, Variance 0.002 2.518e-04 0.003 0.001 2.337e-04 0.003 0.126 0.020 0.003
τ = 5 MSE 0.054 0.009 0.097 0.252 0.042 0.005 0.130 0.021 0.005

β = −0.5, Bias 0.083 0.131 0.308 -0.095 -0.156 0.171 -0.071 -0.118 0.169
ρ = 0.2, Variance 2.894e-05 6.806e-05 3.599e-04 2.482e-05 5.930e-05 4.238e-04 0.001 0.003 4.254e-04
τ = 5 MSE 0.007 0.017 0.095 0.009 0.024 0.030 0.006 0.017 0.029
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Table 5.5: Results obtained from the models using different weights matrices, fitted to the simulated data sets (Continued).

Fitted model: Mobility Contiguity Inverse distance

True value β ρ τ β ρ τ β ρ τ

β = −0.5, Bias 0.082 0.130 0.928 -0.104 -0.171 0.440 -0.058 -0.095 0.438
ρ = 0.2, Variance 8.460e-05 2.060e-04 0.007 6.376e-05 1.633e-04 0.010 0.003 0.008 0.010
τ = 15 MSE 0.007 0.017 0.869 0.011 0.029 0.203 0.007 0.017 0.201

β = −2, Bias 0.106 0.012 110.710 0.584 0.117 -14.665 63.681 7.041 -14.651
ρ = 0.9, Variance 0.002 6.859e-05 26846.151 0.301 0.004 7.995e-04 30.127 0.357 8.334e-04
τ = 15 MSE 0.013 2.227e-04 38995.408 0.640 0.018 215.050 4085.262 49.935 214.643

β = −2, Bias 0.191 0.020 13.815 0.410 0.093 -4.615 61.910 6.859 -4.664
ρ = 0.9, Variance 0.002 7.673e-05 84.823 0.339 0.004 0.403 28.125 0.336 7.499e-04
τ = 5 MSE 0.039 4.853e-04 275.350 0.506 0.013 21.701 3860.889 47.386 21.756

β = −0.5, Bias 0.353 0.075 0.327 0.295 0.054 -2.981 15.885 3.387 -3.219
ρ = 0.9, Variance 4.726e-04 2.239e-05 0.026 0.002 1.038e-04 0.002 0.106 0.005 0.002
τ = 5 MSE 0.125 0.006 0.132 0.089 0.003 8.891 252.426 11.474 10.362

β = −0.5, Bias 0.174 0.037 0.647 0.194 0.033 -11.888 15.331 3.287 -12.256
ρ = 0.9, Variance 3.587e-04 1.640e-05 0.401 0.002 1.107e-04 0.007 0.379 0.018 0.006
τ = 15 MSE 0.031 0.001 0.819 0.040 0.001 141.331 235.405 10.822 150.208
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Regarding the predictive accuracy of the models, we can evaluate it by computing
the mean squared predictive error (MSPE) of the simulated rates for each simulated data

set
[
MSPEs =

∑n
i=1(r

(s)
i − r̂

(s)
i )2/n

]
(Carroll et al., 2015). In this way, we can obtain

an average for the model fitted for each of the 250 data sets generated for each scenario,
so that MSPE =

∑S
s=1(MSPEs)/S. Note that the models with the lowest values of the

MSPE would be considered as the best fitting ones. The results obtained are included
in Table 5.6, where we can see that, in general, the MSPE is small in every scenario,
but the smallest values are mostly obtained for the models in which the mobility matrix
was used to compute the spatial lag of the log-rates.

Table 5.6: Average of the MSPE values obtained from the models using different
weights matrices, fitted to the simulated data sets.

True values Mobility Contiguity Inverse distance

β = −2, ρ = 0.5, τ = 15 2.323e-06 5.173e-05 5.601e-05

β = −2, ρ = 0.5, τ = 5 9.659e-07 2.994e-05 3.190e-05

β = −0.5, ρ = 0.5, τ = 5 1.765e-06 1.223e-05 1.212e-05

β = −0.5, ρ = 0.5, τ = 15 2.292e-06 4.135e-05 4.204e-05

β = −2, ρ = 0.2, τ = 15 2.764e-06 1.793e-05 1.796e-05

β = −2, ρ = 0.2, τ = 5 1.683e-06 1.004e-05 1.005e-05

β = −0.5, ρ = 0.2, τ = 5 3.518e-06 6.521e-06 6.540e-06

β = −0.5, ρ = 0.2, τ = 15 5.497e-06 1.594e-05 1.598e-05

β = −2, ρ = 0.9, τ = 15 6.441e-06 9.049e-06 9.917e-06

β = −2, ρ = 0.9, τ = 5 4.254e-06 9.247e-06 9.594e-06

β = −0.5, ρ = 0.9, τ = 5 8.752e-07 5.207e-05 4.737e-05

β = −0.5, ρ = 0.9, τ = 15 2.551e-06 1.071e-04 9.862e-05

Moreover, we have counted the number of times that the information criteria values
were smaller in each case so that we can check how many times the “correct” model was
selected as the best fitting one. These results are included in Table 5.7. Most of the
times, with a very few exceptions, the model where the mobility matrix was used, was
selected with the smallest DIC and WAIC values. This indicates that we can indeed,
based on the model selection criteria, select the underlying true neighbourhood matrix.
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Table 5.7: Number of times that the information criteria values selected each of the
models fitted to the simulated data sets as the best fitting ones.

True values Mobility Contiguity Inverse distance

β = −2, ρ = 0.5, τ = 15 DIC 250 0 0
WAIC 250 0 0

β = −2, ρ = 0.5, τ = 5 DIC 250 0 0
WAIC 250 0 0

β = −0.5, ρ = 0.5, τ = 5 DIC 250 0 0
WAIC 250 0 0

β = −0.5, ρ = 0.5, τ = 15 DIC 250 0 0
WAIC 250 0 0

β = −2, ρ = 0.2, τ = 15 DIC 243 0 7
WAIC 247 0 3

β = −2, ρ = 0.2, τ = 5 DIC 247 0 3
WAIC 247 0 3

β = −0.5, ρ = 0.2, τ = 55 DIC 250 0 0
WAIC 250 0 0

β = −0.5, ρ = 0.2, τ = 15 DIC 244 3 3
WAIC 244 4 2

β = −2, ρ = 0.9, τ = 15 DIC 250 0 0
WAIC 248 0 2

β = −2, ρ = 0.9, τ = 5 DIC 250 0 0
WAIC 230 1 19

β = −0.5, ρ = 0.9, τ = 5 DIC 250 0 0
WAIC 210 9 21

β = −0.5, ρ = 0.9, τ = 15 DIC 250 0 0
WAIC 249 0 1

From the results obtained in the simulation study, we can conclude that it is essential
to evaluate whether the spatial structure used in a study is the most adequate one.
For most of the spatial modelling applications, the spatial weights matrix employed to
describe the spatial structure of the region under study is the one following the contiguity
of order one criterion. However, we believe it has been clearly shown that this is not
always necessarily the best choice.

In this specific study, it has been shown that when the mobility matrix is the un-
derlying structure, and the model is misspecified, in general, the bias of the estimations
is larger than the bias obtained for the model using the mobility matrix. Moreover,
information criteria values such as the DIC and WAIC and, also predictive accuracy
measures such as the MSPE, have favoured the correctly specified model, selecting it as
the best fitting one in almost all cases.
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5.6 Discussion

In this chapter, we have studied the geographical spread of COVID-19 cases in the
municipalities of the Flanders region in Belgium during the period going from Septem-
ber 2020 to January 2021. In order to be able to fit these data, we have considered
the Bayesian spatial conditional model proposals (Cepeda-Cuervo, Córdoba and Núñez-
Antón, 2018; Morales-Otero and Núñez-Antón, 2021), which assume the incidence of
cases is conditional on the incidence of cases in the other regions. These models offer a
great flexibility and also the possibility that considering different weights matrices can
be done in a direct and very simple way.

We have proposed a geometric mean spatial conditional model, where the logarithm
of the rates is employed for computing the spatial lag component. This model offers
an interpretation of the spatial parameter ρ based on the geometric mean, representing
how the incidence rate in one region resembles the geometric mean of the rates in its
neighbours. We have compared these proposed models with the ones in Cepeda-Cuervo,
Córdoba and Núñez-Antón (2018), finding that our proposal provides a similar fit, but
offers a particular and straightforward interpretation within the context of the specific
data set under analysis.

We have fitted these models by using different definitions for the weights matrices
employed to compute the spatial lag, such as the classical ways of accounting for spatial
autocorrelation based on contiguity and distance. Moreover, we have proposed alterna-
tive weights matrices based on a combination of the similarity of a certain variable in
the different locations and the distance between these regions. Additionally, we have
also studied the use of the mobility matrix in modelling the COVID-19 incidence data
in Flanders, which is given by the proportion of time individuals from one municipality
spent in a different one.

In order to offer a comparison of the proposed methods with other commonly used
models employed in disease mapping applications, we have fitted the BYM2 model to
the data set under analysis. Here, we should highlight the flexibility of the proposed
geometric mean over the BYM2 model, given by the straightforward way in which the
weights matrix can be included in the model, allowing different structures to be specified
in a very simple manner.

Results suggest a strong spatial correlation in the data, which is best explained by
the distance band spatial weights matrix. This implies that, for the data under study,
the underlying spatial process is well explained and modelled by this spatial structure.
Nevertheless, we wished to further investigate the performance of the proposed methods
when the correlation among the different municipalities is given by another connectivity
pattern, such as, for example, the mobility matrix. To accomplish this additional ob-
jective, a simulation study was carried out, where we induce correlation in the response
variable based on the mobility matrix, and we have been able to appropriately verify
that the models are able to identify the correct spatial structure for most of the cases
under study.
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Chapter 6

Fitting double hierarchical
generalized linear models with
the integrated nested Laplace
approximation

6.1 Introduction

When fitting the generalized overdispersion models in Quintero-Sarmiento, Cepeda-
Cuervo and Núñez-Antón (2012) and Cepeda-Cuervo, Córdoba and Núñez-Antón (2018)
to the infant mortality data and to the mother’s postnatal period screening test data, in
Chapter 2, we found that they could not be directly implemented in INLA. Moreover,
as these models can be included in the class of double hierarchical generalized linear
models (DHGLM) (Lee and Nelder, 2006), we have developed a method that allows us
to fit DHGLM in this R package.

DHGLM provide a unique approach to modelling highly structured data sets allowing
for additional flexibility, particularly when modelling the dispersion parameters. The
class of DHGLM encompasses a large variety of models, such as standard generalized
linear models (GLM), mixed effects models, random coefficient models, semiparametric
models and many others. A typical DHGLM includes a linear mixed-effects term to
model the mean, as well as several terms to model the scale parameters of the likelihood
and/or random effects present in the model.

Estimation of DHGLM can be approached in different ways. Lee and Nelder (2006)
proposed the use of the H-likelihood for model fitting and Rönneg̊ard et al. (2010) used
penalized quasi-likelihood. Bayesian inference on DHGLM allows us to estimate the
different effects and parameters in the model and estimate their uncertainty by means
of the joint posterior distribution.

Because of the different structured terms and effects in DHGLM, model fitting can
become a daunting task. Popular methods such as Markov chain Monte Carlo (MCMC)
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could take a long time and many simulations to converge. The integrated nested Laplace
approximation (INLA) (Rue, Martino and Chopin, 2009) approach is an appealing option
because of its short computation time. However, DHGLM are a class of models that are
not currently implemented in the R-INLA package for the R programming language.

In order to fit models that cannot be currently implemented in INLA, given their
specific structure, there have been some developments to combine INLA with other
methods, such as Markov chain Monte Carlo (MCMC) methods (Gómez-Rubio and
Rue, 2018; Gómez-Rubio, 2020), and importance sampling (IS) and adaptive multiple
IS (AMIS) algorithms (Berild et al., 2022).

In this chapter, we propose fitting DHGLM with the use of the AMIS-INLA approach
(Berild et al., 2022). We show how this class of models can be fitted in this way, providing
specific details for the implementation of the algorithms in the cases where variables
following Gaussian, Poisson and negative binomial distributions are modelled. Lee and
Noh (2012) described ways of modelling the variance of the random effects for DHGLM.
We have focused on modelling the precision instead, but the approach presented here
can also be used to model the variance or standard deviation, if required.

In Section 6.2, we describe the class of models that DHGLM encompass. In Section
6.3, we offer some details about the INLA estimation approach. In Section 6.4, we
present the proposed method that uses the IS/AMIS with INLA to fit DHGLM. Section
6.5 includes simulation studies for three different models considered to illustrate our
proposals. Section 6.6 includes some applications to real data examples. In these two
sections, we also include some diagnostics and, for each case, specific details on the
implementation of the proposed method. In Section 6.7, we provide comparison on the
computation times for the two approaches obtained for each of the fitted models. We
end this chapter with a discussion in Section 6.8.

Finally, we believe it is important to mention that the work presented in this chapter
is a collaboration with Virgilio Gómez-Rubio and Vicente Núñez-Antón and that it has
been recently published (Morales-Otero, Gómez-Rubio and Núñez-Antón, 2022).

6.2 Double Hierarchical Generalized Linear Models

Suppose Yi, for i = 1, . . . , n, are random variables following a distribution from the
exponential family (McCullagh and Nelder, 1989). That is, their probability distribution
function can be written as:

f(yi; θi, ϕ) = exp

{
yiθi − b(θi)

ϕ
+ c(yi, ϕ)

}
, (6.1)

where yi is the observation corresponding to the variable Yi, θi is a parameter, ϕ is a
known positive constant value labelled as the scale or dispersion parameter, and b(·) and
c(·) are given known functions.

It is known that E(Yi) = µi = b′(θi) and that Var(Yi) = ϕV (µi), with V (µi) = b′′(θi)
being a variance function. Different forms for ϕ and V (µi) for some known distributions
are included in Table 6.1, where σ2 is the variance parameter for the normal distribution,
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ni is the number of observations on each trial for the binomial distribution and k is the
dispersion parameter or size of the negative binomial distribution.

Table 6.1: Different form of ϕ and V (µi) for some known distributions.

Distribution ϕ V (µi)

Normal ϕ = σ2 V (µi) = 1
Poisson ϕ = 1 V (µi) = µi

Negative binomial ϕ = 1 V (µi) = µi + k−1µ2i
Binomial ϕ = 1 V (µi) = µi

(
ni−µi

ni

)
For example, for a variable Yi having a negative binomial distribution, its probability

mass function can be specified as:

f(yi; pi, k) = P (Yi = yi) =

(
yi + k − 1

yi

)
pki (1− pi)

yi , (6.2)

where pi is the probability of success on a Bernoulli trial, with 0 < pi < 1, for i =
0, . . . , n, and yi would represent the number of failures before the k-th success occurs. If
the parameter k is considered fixed, this distribution belongs to the exponential family
(Agresti, 2002).

In order to illustrate how to obtain ϕ and V (µi) for this distribution, let us take the
exponential of the logarithm of f(yi; pi, k), so that:

exp{log(f(yi; pi, k))} = exp

{
k log(pi) + yi log(1− pi) + log

(
yi + k − 1

yi

)}
(6.3)

Here, if we consider that θi = log(1− pi), then we would have that log(pi) = log(1− eθi)
and the equation above becomes:

exp{log(f(yi; pi, k))} = exp

{
yiθi + k log(1− eθi) + log

(
yi + k − 1

yi

)}
(6.4)

From equation (6.4), we can obtain b(θi) and ϕ, so that b(θi) = −k log(1 − eθi) and
ϕ = 1. Taking into account that θi = log(1− pi), the first derivative of b(θi) is:

b′(θi) =
keθi

1− eθi
=
k(1− pi)

pi
(6.5)

In addition, the second derivative is:

b′′(θi) =
keθi

(1− eθi)2
=
k(1− pi)

p2i
(6.6)

Let us recall that, from equation (6.1), for distributions belonging to the exponential
family, the mean is given by E(Yi) = µi = b′(θi), hence, in this case we have that E(Yi) =
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µi =
k(1−pi)

pi
. Additionally, the variance was Var(Yi) = ϕV (µi), with V (µi) = b′′(θi), so

that, for the negative binomial we have V (µi) = k(1−pi)
p2i

. If we take into account that

the mean is µi =
k(1−pi)

pi
, then we can write pi in terms of µi, so that pi =

k
µi+k .

Therefore, V (µi) can be rewritten in terms of µi as:

V (µi) =
k(1− pi)

p2i
=
µi
pi

=
µi

k/(µi + k)
=
µi(µi + k)

k
= µi + k−1µ2i (6.7)

Note that, if we consider pi = k
µi+k in the distribution function of the negative

binomial in equation (6.2), we obtain this distribution in the same form as was shown
in Section 2.2, in Chapter 2. Also note that, in Chapter 2, we labelled the dispersion
parameter for the negative binomial as τ , whereas here we have labelled it in a different
manner (i.e., k), so that it can be clearly distinguished from the precision parameters
that we will employ in Sections 6.5 and 6.6.

Let us also illustrate this process for the binomial distribution, with probability mass
function given by:

f(yi; pi, ni) = P (Yi = yi) =

(
ni
pi

)
pyii (1− pi)

ni−yi , (6.8)

where 0 < pi < 1, for i = 0, . . . , n. Following the same process as before, that is, taking
the exponential of the logarithm of f(yi; pi, ni), we obtain:

exp{log(f(yi; pi, ni))} = exp

{
yi log(pi) + (ni − yi) log(1− pi) + log

(
ni
pi

)}
= exp

{
yi log

(
pi

1− pi

)
+ ni log(1− pi) + log

(
ni
pi

)} (6.9)

If we consider here that θi = log
(

pi
1−pi

)
, then pi =

eθi

eθi+1
and log(1−pi) = log

(
1

eθi+1

)
=

− log(1 + eθi). Therefore, equation (6.9) becomes:

exp{log(f(yi; pi, ni))} = exp

{
yiθi − ni log(1 + eθi) + log

(
ni
pi

)}
From the equation above, we can obtain b(θi) and ϕ, so that b(θi) = ni log(1 + eθi) and
ϕ = 1. The first derivative of b(θi) is:

b′(θi) =
nie

θi

1 + eθi
= nipi (6.10)

In addition, the second derivative of b(θi) is:

b′′(θi) =
nie

θi(1 + eθi)− eθinie
θi

(1 + eθi)2
=

nie
θi

(1 + eθi)2
= nipi(1− pi) (6.11)
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Since, for the distributions belonging to the exponential family, the mean is E(Yi) =
µi = b′(θi), then, for the binomial distribution we have that E(Yi) = µi = nipi. Ad-
ditionally, the variance is Var(Yi) = ϕV (µi), with V (µi) = b′′(θi), hence, here we have
V (µi) = nipi(1 − pi) = µi(1 − pi). Taking into account that the mean is µi = nipi, we
can write pi =

µi

ni
, so that we obtain:

V (µi) = µi(1− pi) = µi

(
1− µi

ni

)
= µi

(
ni − µi
ni

)
(6.12)

In order to obtain the form of ϕ and V (µi) for the normal and the Poisson distribu-
tions, shown in Table 6.1, similar processes to the ones we have illustrated for the case
of the negative binomial and the binomial distributions can be carried out.

A generalized linear model (GLM) (McCullagh and Nelder, 1989) is defined when
a regression model is specified for the mean via a link function g(·), obtaining a linear
predictor for the i-th observation, so that:

g(µi) = ηi = x⊤
i β, (6.13)

where xi is a vector of explanatory variables and β is a vector of unknown regression
parameters to be estimated.

GLMs were further extended by Lee and Nelder (2006) by proposing the DHGLM,

which are specified given two sets of random effects u
(µ)
i and u

(ϕ)
i , for i = 1, . . . , n, so that

the conditional mean and variance of the response variables Yi are E(Yi | u(µ)i , u
(ϕ)
i ) = µi

and Var(Yi | u(µ)i , u
(ϕ)
i ) = ϕiV (µi), respectively, for i = 1, . . . , n. The random effects

depend on the variance (or precision) parameters λi > 0 and αi > 0, for i = 1, . . . , n, i.e.,

(u
(µ)
i (λi), u

(ϕ)
i (αi)). Here, regression models for the mean, for the dispersion parameters

and for the parameters of the random effects are specified, so that:

g(µ)(µi) = x
(µ)⊤
i β(µ) + z

(µ)⊤
i u

(µ)
i

g(λ)(λi) = x
(λ)⊤
i β(λ)

g(ϕ)(ϕi) = x
(ϕ)⊤
i β(ϕ) + z

(ϕ)⊤
i u

(ϕ)
i

g(α)(αi) = x
(α)⊤
i β(α),

(6.14)

where x
(.)
i are vectors of explanatory variables included in the regression structures, with

corresponding vectors of unknown coefficients β(.), for µ, λ, ϕ and α. In addition, z
(.)
i

are vectors of explanatory variables included in the regression structures for µ and ϕ.
As we have previously mentioned, estimation of this model can be done by using

the H-likelihood proposed by Lee and Nelder (2006), and also penalized quasi-likelihood
proposed by Rönneg̊ard et al. (2010). Bayesian methods have been widely employed to
fit highly parametrized hierarchical models in the context of DHGLM (see, for example,
Bonner et al., 2021, and references therein). In Cepeda-Cuervo, Córdoba and Núñez-
Antón (2018) and Morales-Otero and Núñez-Antón (2021), the authors used MCMC
methods to fit generalized overdispersion models, where regression structures depending
on some covariates were specified both for the mean and for the dispersion parameters.
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6.3 Integrated Nested Laplace Approximation

The integrated nested Laplace approximation (INLA) was first proposed by Rue, Martino
and Chopin (2009) to provide fast approximate Bayesian inference for latent Gaussian
Markov random field (GMRF) models. Given a set of n observed variables Yi, for
i = 1, . . . , n, usually with a distribution from the exponential family, the density of
Yi, i = 1, . . . , n, may depend on some vector of hyperparameters θ1. In addition, the
mean of Yi, E(Yi), will be linked to a linear predictor ηi on the covariates using a
convenient link function g(·) so that g[E(Yi)] = ηi.

The linear predictor may include different terms, as fixed and/or random effects, so
that the distribution of all these terms is a GMRF with zero mean and precision matrix
Q(θ2), that may depend on some other vector of hyperparameters θ2. To simplify
notation, we will often use θ = (θ1,θ2) to refer to the vector of all the hyperparameters.
In addition, the vector of latent effects will be denoted by ζ.

In a Bayesian framework, the aim is to compute the posterior distribution of the
latent effects and hyperparameters, p(ζ,θ | D), and to be able to make inference about
them. Here, D represents the available data, which will include the vector of observations
for the response, y = (y1, . . . , yn), and, possibly, other covariates required to define the
fixed and random effects in the latent GMRF. Using Bayes’ rule, this joint posterior
distribution can be written as:

p(ζ,θ | D) ∝ L(D | ζ,θ)p(ζ,θ)

Here, L(D | ζ,θ) represents the likelihood of the data, while p(ζ,θ) is the joint prior
distribution of the latent effects and hyperparameters. This is often expressed as
p(ζ,θ) = p(ζ | θ)p(θ). Note that p(ζ | θ) is a GMRF and p(θ) is often defined as
the product of univariate distributions as hyperparameters are considered to be inde-
pendent a priori.

The joint posterior distribution p(ζ,θ | D) is often highly multivariate and difficult
to estimate. For this reason, Rue, Martino and Chopin (2009) focused on estimating the
marginal posterior distributions of each of the latent effects ζj in ζ and hyperparameters
θl in θ. In this way, approximations p̃(ζj | D) and p̃(θl | D) for p(ζj | D) and p(θl | D),
respectively, are obtained.

In addition, INLA can be used to obtain an approximation to the marginal likelihood
of the model, p(D), which is often difficult to compute. Other important quantities for
model selection and model choice are available in the R-INLA package that implements
the INLA method (Gómez-Rubio, 2020).

As discussed in the next section, INLA cannot fit DHGLM directly, but INLA can
be embedded into the model fitting process to be able to easily fit these models.

6.4 Model Fitting

DHGLM do not fall into the class of models that INLA can fit due to their particular
structure, which includes different hierarchies on the mean and scale parameters. How-
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ever, as explained below, DHGLM can be expressed as conditional latent GMRF models
after conditioning on some model parameters. This idea of fitting conditional models
with INLA has been exploited by several authors (see, for example, Gómez-Rubio and
Rue, 2018) to increase the number of models that can be fitted with INLA.

In particular, the vector of hyperparameters θ can be decomposed into two sets of
parameters θc and θ−c, so that the model, conditional on θc, can be fitted with INLA.
The posterior distribution of θc can then be expressed as

p(θc | D) ∝ p(D | θc)p(θc)

Here, p(θc) is the prior on θc, which is known, and p(D | θc) is the conditional (on θc)
marginal likelihood, as this is obtained after integrating out all the other hyperparam-
eters and latent effects. This quantity can be easily obtained with INLA, so that the
posterior distribution of p(θc | D) can be then estimated.

Regarding the other hyperparameters θ−c and the latent effects, their marginal pos-
terior distributions can be obtained by noting that:

p(· | D) =

∫
p(·,θc | D)dθc =

∫
p(· | θc,D)p(θc | D)dθc

The conditional posterior marginal p(· | θc,D) is provided by INLA when fitting the
model (after conditioning on θc).

In practice, an approximation for p(· | D) is obtained by weighing the posterior
conditional marginals, that is:

p̃(· | D) =
M∑

m=1

p̃(· | θ(m)
c ,D)wm

Here, M represents a number of ensembles of values of θ
(m)
c , {θ(m)

c }Mm=1, which is used
for numerical integration. In addition, wm are weights that can be computed in different
ways, depending on how the values of θc have been obtained.

For this specific purpose, Gómez-Rubio and Rue (2018) used the Metropolis-Hastings
algorithm to estimate the distribution of θc, and also used the resulting values to estimate
the remainder of the latent effects and hyperparameters. This algorithm requires fitting
a model with INLA at each iteration of the Metropolis-Hastings algorithm, which makes
it less appealing in practice. Moreover, the average of the posterior conditional marginal
distributions is computed by using the corresponding weights wm = 1/M, m = 1, . . . ,M .

Similarly, Berild et al. (2022) used the importance sampling (IS) algorithm instead,
which can be run in parallel and provides reduced computing times. In this particu-
lar case, samples of θc are obtained by using an importance distribution s(·) to obtain

{θ(m)
c }Mm=1. For each value θ

(m)
c , a conditional model is fitted with INLA, so that inte-

gration weights wm are obtained as follows:

wm ∝ p(D | θc)p(θ(m)
c )

s(θ
(m)
c )
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Weights are re-scaled so that they sum up to one. Furthermore, Berild et al. (2022)
described the use of the adaptive multiple importance sampling (AMIS) (Corneut et
al., 2012) algorithm that provides a more robust sampling method that updates the
importance distribution s(·).

Regarding model fitting of DHGLM with INLA, we can use IS and AMIS with
INLA by conditioning on some of the model hyperparameters or latent effects. These
will depend on the way in which the DHGLM is defined. Both Gómez-Rubio and Rue
(2018) and Berild et al. (2022) discussed different approaches on how to best select the
parameters in θc. In the simplest cases, the choice of θc will be clear as just a few
parameters will need to be fixed to obtain a conditional latent GMRF model. For highly
structured models, it may happen that, after conditioning on some hyperparameters
or latent effects, two or more conditionally independent submodels appear (see, for
example, Lázaro, Armero and Gómez-Rubio, 2020). These submodels can be fitted
independently with INLA. All the different cases are illustrated in Section 6.5, where
different simulations studies are developed in detail on different types of models.

However, in order to provide a more general approach to the choice of θc, we propose
the use of a graphical representation of the model. This graphical model encodes con-
ditional independence relationships among the model parameters, so that its structure
can be exploited to be able to select the best possible choice of the parameters to be
included in θc (see, for example, Cowell et al., 1999). See Section 6.5.4 for more details
and a thorough discussion about this graphical representation using the examples in the
simulation study conducted in Section 6.5.

Regarding the sampling distribution for θc, Berild et al. (2022) suggested choosing a
multivariate Gaussian distribution or a multivariate t distribution with a small number
of degrees of freedom for continuous variables. Note that some of the variables in θc
may need to be re-scaled (e.g., a precision will be sampled in the log scale). Hence,
the mean and precision of these distributions are updated at each adaptive step. For
discrete variables, the choice is not so clear. When the variables are dichotomous, Berild
et al. (2022) suggested using a binomial distribution for each of them, so that their
probabilities depend on some fixed effects (which are the parameters updated after each
adaptive step).

The choice of the parameters of the sampling distribution is crucial to obtain a good
performance of the proposed methodology. The initial parameters of the distribution
could be based on summary statistics of the observed data as rough estimates. For
example, for continuous data, when the sampling distribution is a multivariate normal,
the mean can be set to the sample mean of the observed data and the precision can
be diagonal with large values in the diagonal. Here large must be put into context
according to the scale of the parameters. Too large values of the precision will imply
that the parameter space is not conveniently explored, while too small values will imply
that samples with a very small posterior density will be sampled too often. In both cases,
bad estimates will be obtained at the adaptive steps that can result in the algorithm
requiring more steps to produce reliable estimates. This issue is thoroughly discussed in
the simulation studies in Section 6.5, and the examples in Section 6.6.
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In addition, as a general guidance, the conditional model can be fitted with INLA
given the set of possible values for the mean of the sampling distribution before running
AMIS with INLA. Different sets of values can be tested and the marginal likelihoods
compared. The one with the highest value of the marginal likelihood may be a better
candidate as it improves model fitting. This will help to be able to choose an initial
sampling distribution whose mode is close to the posterior mode of θc, so that less
adaptive steps (and, hence, simulations) are required to obtain good estimates.

Another way of assessing the performance of IS with INLA is to compute the effective
sample size and conduct graphical diagnostics, as discussed in Berild et al. (2022). The
effective sample size can be estimated as:

ne =
(
∑M

m=1wm)2∑M
m=1w

2
m

Note that this effective sample size will be the same for all the components of θc as it is
only based on the weights and not on the sampled values.

Graphical diagnostics can be produced for each variable in θc by re-ordering the
sampled values in ascending order and comparing the estimated cumulative probability
(i.e., the cumulative sum of the re-ordered weights) with the empirical cumulative proba-
bilities 1/M, . . . ,M/M , respectively. A straight line means that the estimated posterior
marginal of that specific parameter is reliable.

Monitoring the convergence of the algorithm could be conducted in a number of
ways. First of all, the effective sample size could be computed and the algorithm can
be stopped once the desired sample size has been attained. The conditional marginal
likelihood fitted at the mean of the sampling distribution after each adaptive step could
also be monitored to assess whether it keeps increasing or approaches a certain value (at
this point the algorithm can be stopped). It is worth noting that more samples could
be obtained when needed by simply resuming the simulations using updated estimates
of the parameters of the sampling distribution.

6.5 Simulation study

In this section, we carry out three different simulation studies to illustrate model fitting
of hierarchical models with different structures. In Section 6.5.1, we fit a Poisson log-
linear model with random effects, in which the log-precision of the random effects is
modelled using a linear term; in Section 6.5.2, we fit a negative binomial model in which
the log-size parameter is modelled using a linear term; and in Section 6.5.3, we fit a
Gaussian model to grouped data in which the log-precision of each group is modelled
using a linear mixed-effects model. In all cases, models are fit using MCMC and AMIS
with INLA. IS with INLA has not been considered because Berild et al. (2022) showed
that, in general, AMIS-INLA has a better performance than IS with INLA.

The aim of these simulation studies is twofold. On the one hand, we would like to
illustrate the way in which IS and AMIS with INLA can be implemented and how the
conditioning effects θc can be chosen. On the other hand, it is important to compare the
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results obtained with these methods to a gold standard. In our case, we have fitted the
models using Markov chain Monte Carlo (Brooks et al., 2011) using the JAGS software
via the R-package rjags (Plummer, 2021).

Figure 6.1 shows the representation of these models as graphical models. In ad-
dition to the different elements of the model, the conditioning parameters have been
highlighted (using a red dotted box) to illustrate which parameters are estimated using
AMIS. The marginals of all the other parameters are obtained by averaging the condi-
tional marginals resulting after fitting the conditional models with INLA. Nodes in a
shaded solid circle represent the observed response, nodes in a solid square represent the
observed independent variables, nodes in a white solid circle represent model effects and
parameters and nodes in a dotted white circle represent deterministic nodes (i.e., their
values are fully determined by the values at their parent nodes). Parameters fitted with
AMIS with INLA are in a red dotted box, whereas the conditional model fitted with
INLA is in a blue dotted box.

Yi

µi

β0 β1 xi

ui

τi

γ1γ0 zi

INLA

AMIS

(a) Poisson model with random effects with
different precisions.

Yi

µi

β0 β1 xi
ki

γ1γ0 zi

INLA

AMIS

(b) Negative binomial model with regres-
sion on the log-sizes.

Figure 6.1: Graphical representation of the models fitted in the simulation study in
Section 6.5.
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Yij

µij

β0 β1 xij

τi

γ0 γ1 zi

ui

τu

INLAAMIS

INLA

(c) Gaussian model with regression model on the likelihood log-precisions.

Figure 6.1: Graphical representation of the models fitted in the simulation study in
Section 6.5 (Continued).

When implementing AMIS, the importance distribution s(·) is assumed as a multi-
variate Gaussian in all examples. Note that this means that some parameters may be
transformed so that simulations are feasible. For example, precisions will be sampled in
the log-scale, so that samples from the log-precision are obtained. In all cases we have
computed results using a very vague distribution (with zero mean and large precision)
and another distribution based on a rough estimate of the parameters of the sampling
distribution from the observed data. This should reduce the number of iterations re-
quired to obtain a reliable model fitting. In all cases, the estimates from AMIS with
INLA are compared with MCMC estimates.

In all the examples presented below the same number of simulations has been used.
When fitting the model using AMIS with INLA, 5000 iterations have been used in the
initial step, followed by 10 new adaptive steps with 1000 simulations each. For MCMC,
a burn-in of 10000 simulations is used, plus 100000 simulations of which only one in
100 is retained, leading to a final number of 1000 samples. In addition, in the Gaussian
example in Section 6.5.3, different scenarios have also been tested (see below for details).
Finally, simulations have been carried out on a Linux Ubuntu 18.2 cluster using 60 cores
Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz.

6.5.1 Poisson model with random effects with different precisions

The first simulation study is based on a Poisson log-linear model with fixed and random
effects, so that the precision of the random effects is modelled using a linear term with
covariates. In particular, the model is:

Yi | ui ∼ Poi(µi), i = 1, . . . , n
log(µi) = β0 + β1xi + ui

ui ∼ N(0, τi), τi > 0
log(τi) = γ0 + γ1zi
β0, β1 ∼ N(0, 0.001)
γ0, γ1 ∼ N(0, 0.001)

195



Note that the Gaussian distribution N(·, ·) is defined in terms of the mean and precision,
so that τi represents the precision of the Gaussian distribution of the random effects.
A Poisson distribution with random effects is often used to model overdispersed data
(Quintero-Sarmiento, Cepeda-Cuervo and Núñez-Antón, 2012).

This model can be expressed as a latent GMRF by conditioning on θc = γ = (γ0, γ1),
resulting in a Poisson model with random effects with different precisions. This is illus-
trated in the graphical representation of the model in Figure 6.1(a). Hence, this model
will be fitted using AMIS with INLA and values of γ will be obtained by simulation.
Estimates of the posterior distribution can be obtained by using importance weights
and the posterior marginals of β0 and β1 will be obtained by weighting their conditional
marginals.

For the simulated data, we have used n = 1000, β0 = 1, β1 = 0.25, γ0 = 0 and
γ1 = 0.5. Covariate xi has been simulated using a uniform distribution between 0 and
1, and covariate zi has been simulated using a standard Gaussian distribution. Once
these values have been set, the observed value yi has been obtained by sampling from a
Poisson distribution with the resulting mean µi.

The sampling distribution for γ is a bivariate Gaussian distribution. The initial value
of the mean is vector (0, 0) and the initial value of the variance matrix is a diagonal matrix
with entries equal to 5 in the diagonal. This choice provides ample initial variability to
explore the parametric space of γ conveniently, so that accurate estimates are obtained
at the adaptive and final steps of AMIS with INLA.

Table 6.2 summarizes the estimates using the different methods and Figure 6.2 shows
the posterior marginal estimates obtained with both methods. Here, the dashed vertical
lines represent the true values of the parameters specified for the simulated data. As
can be seen, the estimates obtained with AMIS with INLA and MCMC are very similar.
The effective sample size ne obtained with AMIS with INLA in this case is 9900.914.

Table 6.2: Summary of the estimates of the Poisson model with random effects with
different precisions used in the simulation study.

AMIS MCMC

Parameter True value Mean St. dev. Mean St. dev.

β0 1 1.0531 0.0736 1.049 0.0729
β1 0.25 0.2302 0.1254 0.2347 0.1253
γ0 0 -0.0210 0.0655 -0.0484 0.0654
γ1 0.5 0.4830 0.0622 0.4787 0.0636
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Figure 6.2: Posterior marginals of the estimated parameters obtained by fitting the
Poisson model with random effects, using both the MCMC and AMIS-INLA methods.
Vertical lines represent the actual values of the parameters used when simulating the
data.

Finally, in Figure 6.3 we have included the graphical diagnostics for the parameters
in the model fitted here. As we stated in Section 6.4, a straight line in this graphical
diagnostic means that the estimates obtained for the parameters are reliable. Therefore,
in this figure, it can be seen that model fitting seems to be reasonably good.
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Figure 6.3: Graphical diagnostics for the Poisson model used in the simulation study.

6.5.2 Negative binomial with different sizes

The negative binomial distribution is also used to model overdispersed count data. In
this simulation study the logarithm of the size parameter ki of the negative binomial dis-
tribution depends on a linear term with covariates, which in turns makes the probability
to be different across observations. In particular, the model is as follows:

Yi ∼ NB(pi, ki)

pi = ki
ki+µi

log(µi) = β0 + β1xi
log(ki) = γ0 + γ1zi
β0, β1 ∼ N(0, 0.001)
γ0, γ1 ∼ N(0, 0.001)

Similarly, as in the previous example, this model can be expressed as a latent GMRF
by conditioning on θc = γ = (γ0, γ1), resulting in a negative binomial model with differ-
ent sizes. This is illustrated in the graphical representation of the model in Figure 6.1(b).
When fitting the model with AMIS with INLA, values of γ will be obtained by simula-
tion and their estimates will be computed using the importance weights. The posterior
marginals of β0 and β1 will be obtained by weighting their conditional marginals.

For our study, n = 500 observations have been simulated. Covariate xi is simulated
from a uniform between 10 and 20, and covariate zi has been simulated from a uniform
between 0 and 20. Values of zi have then been standardized before simulating the data.
Regarding the model parameters, we have used β0 = 1, β1 = 0.25, γ0 = 0 and γ1 = 5.
Once the mean and size of the negative binomial have been computed, the values of the
response variable have been sampled using a negative binomial distribution.

Likewise, as in the previous simulation study, the sampling distribution for γ is a
bivariate Gaussian distribution. The initial value of the mean is vector (0, 0) and the
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initial value of the variance matrix is a diagonal matrix with entries equal to 5 in the
diagonal. This a convenient choice for this example as well and it provides good estimates
of the model parameters (see below).

Table 6.3 summarizes the estimates using the different methods and Figure 6.4 shows
the posterior marginal estimates obtained with both methods. As can be seen, the
estimates obtained with AMIS with INLA and MCMC are very similar. The effective
sample size ne obtained with AMIS with INLA in this case is 9737.075.

Table 6.3: Summary of the estimates of the negative binomial model with different
sizes used in the simulation study.

AMIS MCMC

Parameter True value Mean St. dev. Mean St. dev.

β0 1 0.9875 0.0541 0.9893 0.0545
β1 0.25 0.2506 0.0033 0.2505 0.0033
γ0 0 -0.0879 0.0926 -0.0862 0.0931
γ1 5 4.8594 0.1861 4.8568 0.1836

Figure 6.5 shows the graphical diagnostics for the parameters estimated in the model,
where we can see that model fitting seems to be reasonably good for γ0, whereas it is
perhaps not as good for γ1, since it slightly deviates from the dotted line. This may
be due to the fact that, in this case, the initial parameters assumed for the sampling
distribution (i.e., a multivariate Gaussian with mean vector (0, 0)) might be relatively
far from the true value of γ1 (i.e., γ1 = 5). Hence, the first samples obtained for this
parameter, corresponding to the first iterations of the algorithm, would also be far from
its true value. As a consequence, the empirical cumulative distribution would differ from
the theoretical one for these initial samples. In any case, as can be seen in Figure 6.5,
the empirical cumulative distribution for γ1, at some point after the value 0.4 for the
theoretical distribution, gets considerably close to the dotted line. This would indicate
that the algorithm has been able to obtain reasonable approximations of this parameter,
a fact that can be corroborated by the results reported in Table 6.3, where these initial
values provided estimates close to the true values of each of the two parameters.
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Figure 6.4: Posterior marginals of the estimated parameters obtained by fitting the
negative binomial model with different sizes, using both the MCMC and AMIS-INLA
methods. Vertical lines represent the actual values of the parameters used when simu-
lating the data.
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Figure 6.5: Graphical diagnostics for the negative binomial model used in the simula-
tion study.

6.5.3 Gaussian model with different scale parameters

In the last simulation study we have considered the case of grouped Gaussian data so that
each group has a different precision and the log-precision is modelled on a mixed-effects
model. In particular, we consider the model:

Yij | ui ∼ N(µij , τi), τi > 0 ; i = 1, . . . , p; j = 1, . . . , ni
µij = β0 + β1xij

log(τi) = γ0 + γ1zi + ui
ui ∼ N(0, τu), τu > 0
τu ∼ Gamma(1, 0.00005)

β0, β1 ∼ N(0, 0.001)
γ0, γ1 ∼ N(0, 0.001)

Here, p represents the number of groups and ni the number of observations in group i.
The values of the parameters used in the simulations are β0 = 1, β1 = 0.25, γ0 = 0,
γ1 = 5 and τu = 1. The total number of observations is 2500, which corresponds to
p = 5 groups and ni = 500, i = 1, . . . , p. Furthermore, values of covariate xij have been
simulated from a uniform distribution between 0 and 1, while values of covariate zi have
been obtained by sampling from a uniform distribution in the interval (-1, 1).

This model is a bit more complex because the log-precision depends on both fixed
and random effects. Hence, conditioning on γ alone will not suffice to make this model a
latent GMRF. It would be possible to condition on γ and u = (ui, . . . , up) but then the
dimension of the parametric space may be difficult to handle by AMIS (in particular,
when the value of the number of groups p is large). Furthermore, estimating the random
effects ui using importance sampling may be difficult, and we prefer INLA to perform
this task.
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Instead, conditioning will be on θc = τ = (τ1, . . . , τp), which will split the main model
into two independent submodels with response variables y and log(τ ), as illustrated in
Figure 6.1(c). These two submodels can be fitted independently and the resulting log-
marginal likelihood will be the sum of the corresponding values from the two submodels,
which can be then used to compute the weights.

Note that, in this particular case, nodes τ1, . . . , τp are not stochastic nodes as they
are fully determined by γ, zi and ui. For this reason, there is no prior for them. In order
to ease the computations, and without loss of generality, we set p(τi) = 1, i = 1, . . . , p,
which will not have any effect on the computation of the marginal likelihood.

It is worth mentioning that, among the three different examples provided in the sim-
ulation study, this one is an actual DHGLM as defined in Lee and Nelder (2006) because
it includes random effects when modelling log(τi). In order to explore convergence of the
AMIS algorithm we have repeated the analysis using different sets of initial values for
the parameters of the importance distribution and number of samples (see below). This
will allow us to explore how the adaptive procedure in the AMIS algorithm behaves and
to assess the resulting estimates precision. These scenarios are:

1. Initial step of 5000 iterations, 10 new adaptive steps with 1000 simulations each,
vague initial parameters for the sampling distribution (AMIS-INLA1).

2. Initial step of 5000 iterations, 10 new adaptive steps with 1000 simulations each,
parameters informed from the data for the sampling distribution (AMIS-INLA2).

3. Initial step of 1000 iterations, 10 new adaptive steps with 1000 simulations each,
vague initial parameters for the sampling distribution (AMIS-INLA3).

4. Initial step of 1000 iterations, 10 new adaptive steps with 1000 simulations each,
parameters informed from the data for the sampling distribution (AMIS-INLA4).

5. Initial step of 5000 iterations, 10 new adaptive steps with 1000 simulations each,
vague initial parameters and large variance for the sampling distribution (AMIS-
INLA5).

6. Initial step of 5000 iterations, 10 new adaptive steps with 5000 simulations each,
parameters informed from the data for the sampling distribution (AMIS-INLA6).

In all the scenarios described above, the sampling distribution is a multivariate nor-
mal distribution for (log(τ1), . . . , log(τp)). Vague initial parameters refers to using a
mean of 0 and a variance matrix that is diagonal with all entries equal to 5. Using a
sampling distribution with parameters informed from the data refers to computing the
sample variance of each group and computing the parameters of the sampling distribu-
tion from them. In particular, the mean is the log of the vector of sample variances
and the variance matrix is diagonal with entries the variance of the log-sample variances
divided by their corresponding values of ni. If the scenario indicated that a larger vari-
ance for the sampling distribution has been used, these values are multiplied by 10. In

202



all cases these are initial values of the parameters of the sampling distribution and they
will be updated at each adaptive step.

Table 6.4 summarizes the results of the estimation of the Gaussian model with the
MCMC method. Similarly, Table 6.5 includes the results of the estimation of the Gaus-
sian model with the AMIS-INLA method, where the different scenarios are considered.
Estimation is good for all model parameters for most scenarios, with point estimates
close to that of MCMC in most cases. However, estimates of τu do not seem to be good
as AMIS with INLA tends to underestimate this parameter for scenario 3. The effective
sample sizes of AMIS with INLA range from 5.12 (scenario 3, based on 11000 simula-
tions) to 10444.68 (scenario 2, 15000 total simulations) and 51536.74 (scenario 6, based
on a total of 55000 simulations). Hence, scenario 3 is likely to produce poor estimates
due to its low effective sample size.

It is worth noting that the estimation of the posterior marginal of τu has been con-
ducted by first averaging the posterior marginal of log(τu) (the internal scale of this
parameter in INLA) and then transforming the resulting marginal to obtain that of τu.
The reason is that INLA estimates of the posterior marginal of τu were not reliable.

Furthermore, Figure 6.6 presents the estimates of the posterior marginal distributions
for the parameters obtained with MCMC, as well as for the different settings of the AMIS-
INLA algorithm. Here we can see that, for all the considered scenarios, similar posterior
marginals were obtained, except for scenario 3, which considerably deviates from the
other distributions. Let us recall that for this scenario, vague initial parameters were
assumed for the sampling distribution and, in addition, for the initial step, only 1000
iterations were used. Therefore, for these specific settings, it seems that the algorithm is
not able to properly approximate the marginal posterior distributions of the parameters.

Table 6.4: Summary of the estimates of the Gaussian model with different scale pa-
rameters used in the simulation study, obtained by fitting the model with MCMC.

MCMC

Parameter True value Mean St. dev. 95 % CI

β0 1 0.9884 0.0170 (0.9553, 1.0226)
β1 0.25 0.2864 0.0288 (0.2284, 0.3421)
γ0 0 -0.2926 0.3766 (-1.0764, 0.4184)
γ1 5 3.8365 0.7832 (2.2486, 5.3023)
τu 1 1.9128 1.2140 (0.3247, 4.7935)
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Table 6.5: Summary of the estimates of the Gaussian model with different scale pa-
rameters used in the simulation study, obtained by fitting the model with the AMIS
algorithm and INLA, for the six different scenarios considered.

AMIS-INLA1

Parameter True value Mean St. dev. 95 % CI

β0 1 0.9877 0.0174 (0.9536,1.0216)
β1 0.25 0.2874 0.0299 (0.2288,0.3458)
γ0 0 -0.3628 0.4062 (-1.1867,0.4568)
γ1 5 3.5299 0.7874 (1.9312,5.1173)
τu 1 2.1079 1.3224 (0.3525,5.4083)

AMIS-INLA2

Parameter True value Mean St. dev. 95 % CI

β0 1 0.9883 0.0163 (0.9563,1.0201)
β1 0.25 0.2866 0.0280 (0.2317,0.3414)
γ0 0 -0.2620 0.4270 (-1.1280,0.5994)
γ0 5 3.9200 0.8279 (2.2390,5.5881)
τu 1 1.9268 1.2212 (0.3193,4.9866)

AMIS-INLA3

Parameter True value Mean St. dev. 95 % CI

β0 1 0.9778 0.0244 (0.9299,1.0257)
β1 0.25 0.3028 0.0420 (0.2203,0.3850)
γ0 0 -0.9351 0.8263 (-2.6105,0.7322)
γ1 5 3.0919 1.5998 (-0.1586,6.3142)
τu 1 0.5086 0.3189 (0.0852,1.3045)

AMIS-INLA4

Parameter True value Mean St. dev. 95 % CI

β0 1 0.9882 0.0163 (0.9562,1.0202)
β1 0.25 0.2866 0.0280 (0.2316,0.3415)
γ0 0 -0.2625 0.4269 (-1.1282,0.5987)
γ1 5 3.9173 0.8276 (2.2369,5.5849)
τu 1 1.9282 1.2221 (0.3195,4.9903)

AMIS-INLA5

Parameter True value Mean St. dev. 95 % CI

β0 1 0.9882 0.0163 (0.9562,1.0201)
β1 0.25 0.2866 0.0280 (0.2316,0.3415)
γ0 0 -0.2630 0.4272 (-1.1295,0.5987)
γ1 5 3.9173 0.8282 (2.2356,5.5861)
τu 1 1.9254 1.2205 (0.3190,4.9835)
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Table 6.5: Summary of the estimates of the Gaussian model with different scale pa-
rameters used in the simulation study, obtained by fitting the model with the AMIS
algorithm and INLA, for the six different scenarios considered (Continued).

AMIS-INLA6

Parameter True value Mean St. dev. 95 % CI

β0 1 0.9882 0.0163 (0.9562,1.0201)
β1 0.25 0.2866 0.0280 (0.2316,0.3415)
γ0 0 -0.2625 0.4270 (-1.1286,0.5989)
γ1 5 3.9170 0.8279 (2.2360,5.5852)
τu 1 1.9273 1.2220 (0.3193,4.9894)

Figure 6.6: Estimates of the posterior marginals of the parameters obtained by fitting
the Gaussian model with different scale parameters, using both the MCMC and AMIS-
INLA methods, considering all scenarios for the AMIS-INLA algorithm setup.
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In Figures 6.7, 6.8 and 6.9 we have included the graphical diagnostics for the param-
eters estimated in the models fitted in this section. With the exception of scenarios 1
and 3, for which vague initial sampling distributions were specified, model fitting seems
to be very good.
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Figure 6.7: Graphical diagnostics for the Gaussian models in the simulation study
under scenarios 1 (left panel) and 2 (right panel).
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Figure 6.8: Graphical diagnostics for the Gaussian models in the simulation study
under scenarios 3 (left panel) and 4 (right panel).
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Figure 6.9: Graphical diagnostics for the Gaussian models in the simulation study
under scenarios 5 (left panel) and 6 (right panel).

6.5.4 Summary of results

The simulation studies conducted above illustrate the use of AMIS with INLA to fit
DHGLM. This approach will allow a flexible definition of the models using the R-INLA
package as well as efficient model fitting. Given that AMIS can be run in parallel,
DHGLM could be fitted in a short time provided a computer with a large number of
CPUs is available (which is not uncommon these days).

Regarding the selection of the parameters in θc, we have provided new guidelines not
discussed in Gómez-Rubio and Rue (2018) or Berild et al. (2022) by using the graphical
representation of the models in Figure 6.1. By inspecting the graphical model, it is easier
to find the parameters to condition on, so that the resulting model is a latent GMRF (see
the Poisson and negative binomial models). Furthermore, for highly structured models,
it is possible to split the model into more than one submodel (that are latent GMRF)
by conditioning on a small sample of hyperparameters, as is the case of the Gaussian
model with different scale parameters.
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The parameters in θc have been included in a red dotted box, which has been la-
belled AMIS as this is the method used to estimate the posterior distribution of these
parameters. Similarly, the conditional latent GMRF has been included in a blue dotted
line, which has been labelled as INLA because this is the method used to estimate the
posterior marginals of the parameters in this conditional model.

In a nutshell, the parameters in θc should be taken so that their dimension is as
low as possible, preferable as part of coefficients of fixed effects or precisions of random
effects, and so that they split the main model into one or more submodels that are easy
to fitted with INLA. Choosing the random effects themselves as part of θc should be
avoided as it is difficult to sample efficiently using AMIS and their dimension is likely to
increase with the size of the data.

6.6 Examples

In this section we illustrate model fitting of DHGLM with AMIS-INLA using two real
data sets. In Section 6.6.1, we describe a Poisson model with random effects with
a hierarchical structure on the precision and also a negative binomial model with a
hierarchical structure on the size parameter to analyse infant mortality in Colombia.
In Section 6.6.2, we fit a model with subject-level random slopes and precisions to
participants in a sleep deprivation study.

6.6.1 Infant mortality in Colombia

The infant mortality data in Colombia that we analyse here was already presented and
studied in Section 2.6, Chapter 2, a work also included in Morales-Otero and Núñez-
Antón (2021). In addition, similar versions of this data set have been studied in previous
research (see, for example, Quintero-Sarmiento, Cepeda-Cuervo and Núñez-Antón, 2012
or Cepeda-Cuervo, Córdoba and Núñez-Antón, 2018).

The variables available in this data set are given for each of the n = 32 departments
or regions of Colombia. Among them we can find the number of children under one year
of age who died in year 2005 (ND), the total number of births in the same year (NB), an
index that represents the percentage of people with their basic needs not satisfactorily
attended for year 2005 (IBN) and the observed mortality rates, computed as the number
of children under one year of age who died in 2005 per 1000 born alive (Rates).

As it was already seen in Section 2.6, this data presents overdispersion when fitting
a Poisson regression model for the mortality rates, a phenomenon that arises when the
real variance of the data is larger than the one specified in the model. Additionally,
we have also found evidence of the presence of spatial autocorrelation present in the
data. Therefore, these are issues that need to be taken into account if we wish to specify
regression models for this data.

The first model considered is the generalized spatial conditional normal Poisson from
Section 2.6.3, which is able to accommodate overdispersion and to explain spatial de-
pendence. This model assumes that the variable representing the number of deaths
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in each region (NDi), conditioned on the set of values it takes in the neighbouring
regions without including the i-th region itself (ND∼i), and on a set of normally dis-
tributed random effects ui ∼ N(0, τi), with τi > 0, follows a Poisson distribution, so
that (NDi | ND∼i, ui) ∼ Poi(µi), for i = 1, . . . , n.

This model allows the dispersion parameter to vary according to explanatory vari-
ables or any other terms by specifying a regression model for the variance of the random
effect. It is also able to explain the spatial association which may be present in the
data by including the spatial lag of the rates in the regression model for the mean or
in the model for the dispersion as well (see, for example, Cepeda-Cuervo, Córdoba and
Núñez-Antón, 2018 or Morales-Otero and Núñez-Antón, 2021).

The connection with DHGLM appears here because we can model the log-precisions
using a linear predictor on IBN so that log(τi) = γ0 + γ1IBNi, for i = 1, . . . , n. It is
worth mentioning that, in this particular case, the precisions are univocally determined
by the linear predictor.

Following the example from Morales-Otero and Núñez-Antón (2021), we have speci-
fied the following model:

(NDi | ND∼i, ui) ∼ Poi(µi)
log(µi) = log(NBi) + β + ρWiRates+ ui

ui ∼ N(0, τi), τi > 0
log(τi) = γ0 + γ1IBNi

β, ρ ∼ N(0, 0.001)
γ0, γ1 ∼ N(0, 0.001),

where Wi is the i-th row of a row-standardized spatial neighbourhood matrix W. Adja-
cency here is defined so that two regions are neighbours if they share at least one point
of their boundaries. Therefore, WiRates is the spatial lag of the observed mortality
rates, which in this case represents the average of Rates from the neighbours.

In the implementation of AMIS with INLA we have taken θc = γ = (γ0, γ1). The
sampling distribution is a bivariate Gaussian with vector mean (0, 0) and the variance
matrix is a diagonal matrix with entries equal to 5. In this case, 5000 simulations were
initially run, followed by 10 adaptive steps with 1000 simulations each.

Results of the estimation of this model are shown in Table 6.6 and Figure 6.10. As
can be seen, AMIS-INLA and MCMC produce close results. The effective sample size
of AMIS with INLA is 9263.002.
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Table 6.6: Summary of the estimates of the generalized spatial conditional normal
Poisson model with random effects and varying dispersion fitted to the infant mortality
data in Colombia.

AMIS MCMC

Parameter Mean St. dev. Mean St. dev.

β -4.9124 0.2306 -4.8987 0.2310
ρ 0.0427 0.0094 0.0421 0.0095
γ0 4.1951 0.6392 4.1893 0.6033
γ1 -0.0423 0.0148 -0.0421 0.0140

Figure 6.10: Posterior marginals of the estimated parameters obtained by fitting the
generalized spatial conditional normal Poisson model to the infant mortality data in
Colombia, using both the MCMC and AMIS-INLA methods.

The negative binomial model could be another option to consider in order to fit the
infant mortality data described here. Therefore, we have specified the generalized spatial
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conditional negative binomial model (Cepeda-Cuervo, Córdoba and Núñez-Antón, 2018),
where it is assumed that (NDi | ND∼i) ∼ NB(µi, ki), with µi being the conditional mean
and ki the size parameter of a negative binomial distribution. For this model, we can
specify regression structures both for the mean and dispersion parameters, which can
include the spatial lag of the rates and explanatory variables as well.

In particular, we have fitted the following model:

(NDi | ND∼i) ∼ NB(µi, ki)
log(µi) = log(NBi) + β + ρWiRates
log(ki) = γ0 + γ1IBNi

β, ρ ∼ N(0, 0.001)
γ0, γ1 ∼ N(0, 0.001)

In order to fit this model with AMIS with INLA we have also taken θc = γ = (γ0, γ1).
Conditional on θc, the resulting model is a negative binomial with different known sizes,
which is easy to fit with INLA. Sampling has been done as with the Poisson distribution.

Table 6.7 and Figure 6.11 display the results of the estimation of this model, which
show that AMIS with INLA provides very similar results to MCMC. The effective sample
size of AMIS with INLA is 9717.207 now.

Table 6.7: Summary of the estimates of the generalized spatial conditional negative
binomial model with varying dispersion fitted to the infant mortality data in Colombia.

AMIS-INLA MCMC

Parameter Mean St. dev. Mean St. dev.

β -4.8871 0.2341 -4.8933 0.2427
ρ 0.0425 0.0094 0.0423 0.0099
γ0 4.2547 0.6235 4.2553 0.6191
γ1 -0.0452 0.0142 -0.0454 0.0139
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Figure 6.11: Posterior marginals of the estimated parameters obtained by fitting the
generalized spatial conditional negative binomial model to the infant mortality data in
Colombia, using both the MCMC and AMIS-INLA methods.

Figure 6.12 presents the graphical diagnostics for the parameters in the Poisson and
negative binomial models fitted in this section. In general, model fitting is very similar
for both models and, in addition, it is reasonably good.
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Figure 6.12: Graphical diagnostics for the Poisson model (top panel) and the negative
binomial model (bottom panel) fitted to the infant mortality data in Colombia.

6.6.2 Sleep deprivation study

Belenky et al. (2003) conducted an experiment to measure the effect of sleep deprivation
on reaction time on a number of subjects. A subset of this data set is included in the R
package lme4 (Bates et al., 2015) and it includes observations for the most sleep-deprived
group for the first 10 days of the study. This data set has been analysed by different
authors (see, for example, Gómez-Rubio, 2020) using linear mixed-effects with random
slopes as the number of days under sleep deprivation seems to have a different effect on
the different subjects.

Figure 6.13 includes the subject-specific reaction times together with their corre-
sponding linear regression lines. It also illustrates the fact that variability of the reaction
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times among subjects is not uniform, with some subjects having a broader range of val-
ues than others. For this reason, we have fitted a model with random slopes per subject,
where the within subject measurements precision is assumed to be different when using
a DHGLM.
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Figure 6.13: Effect of the number of days under sleep deprivation on the different
subjects (based on code available in the lme4 package).

In particular, we have fitted the following model:

Yij | ui ∼ N(µij , τi), τi > 0 ; i = 1, . . . , p; j = 1, . . . , ni
µij = β0 + βidayij

log(τi) = γ + ui
βi ∼ N(0, τβ)
ui ∼ N(0, τu), τu > 0
τβ ∼ Gamma(1, 0.00005)
τu ∼ Gamma(1, 0.00005)
β0 ∼ N(0, 0.001)
γ ∼ N(0, 0.001)

(6.15)
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Here, p = 18 is the number of subjects and ni = 10, i = 1, . . . , p given that all
subjects have the same number of measurements in the data set. Covariate dayij is the
number of the days since the beginning of the sleep deprivation experiment. Note that
βi, i = 1, . . . , p, refers to random coefficients to allow for different per-subject slopes. It
should be emphasized that this model is similar to the one in Section 6.5.3 and that it
will be fitted in a similar way, i.e., by sampling from (log(τ1), . . . , log(τp)). Note that
the dimension of the parametric space is 18, which may be large for algorithms such as
IS and AMIS. A graphical representation of this model is shown in Figure 6.14.

Yij

µij

β0 βi dayij

τβ

τi

γ ui τu

INLAAMIS

INLA

Figure 6.14: Graphical representation of the Gaussian model fitted in the sleep depri-
vation example.

In order to select the parameters of the importance distribution we have proposed
different approaches. Initially, we assumed a multivariate normal distribution with zero
mean and a diagonal precision matrix with entries equal to 5 along the diagonal. This
provided a vague starting sampling distribution for the log-precisions that after a few
adaptation steps may get close to the actual posterior distribution. Unfortunately, this
provided very poor estimates and the results were discarded.

We noticed that importance sampling may not be efficient if the mean of the
importance distribution is far from the posterior modes and also when its variance
is too large. For this reason, we propose to use the data to obtain some rough
estimates of the posterior mean and precisions based on S2

i , the sample variance
computed using measurements from subject i. Then, the mean of the importance
distribution is (log(1/S2

1), . . . , log(1/S
2
p)) and the variance is diagonal with entries

0.05 · (log(1/S2
1), . . . , log(1/S

2
p)). In principle, this should provide a starting sampling

distribution which is close to the posterior modes and with a variance in the scale of the
posterior variances that allows for short jumps during the adaptive steps.

However, we noticed that we could obtain better initial parameters by performing
permutations of the values of (log(1/S2

1), . . . , log(1/S
2
p)), fitting the conditional model

and checking the values of the conditional marginal likelihood, so that the permutation
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with the highest value is used to set the parameters of the initial sampling distribution.
This simple prior step produced means of the sampling distribution that were very close
to the posterior mode of (log(τ1), . . . , log(τp)). In particular, 500 random permutations
were tested prior to running AMIS with INLA.

For all the models fitted in this example, AMIS with INLA has been run using an
initial adaptive step based on 1000 simulations followed by 20 adaptive steps with 1000
simulations each. MCMC is based on 10000 burn-in simulations followed by 100000
simulations, of which only 1 in 100 has been kept, so that inference is based on 1000
samples.

Results of the estimation of this model are provided in Table 6.8 and the densities
of the posterior estimations for the parameters are shown in Figure 6.15. The effective
sample size of AMIS with INLA in this case is 2.015619, which is small but seems to
provide good estimates of the marginals of the model parameters. It is worth mentioning
that we have computed the effective sample size after each adaptive step and that it
reached the value 81.14083 after 12 adaptation steps. AMIS with INLA could be stopped
after a certain effective sample size has been achieved. It is worth noting that the
estimates of log(τi) did not change considerably in the last adaptive steps.

Table 6.8: Summary of the estimates of the Gaussian model with random slopes for
each subject fitted to the sleep study data.

AMIS MCMC

Parameter Mean St. dev. Mean St. dev.

β0 0.2606 0.0034 0.2589 0.0042
τβ 8240.2229 2742.75 8002.245 2898.704
γ 7.3170 0.2003 7.2612 0.2115
τu 2.1222 0.9348 2.6565 2.2836
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Figure 6.15: Posterior marginals of the estimated parameters obtained by fitting the
Gaussian model with random slopes for each subject to the sleep study data, using both
the MCMC and AMIS-INLA methods.

Figure 6.16 includes the graphical diagnostic for the parameters in the model fitted,
which suggest that the estimates obtained are reliable.
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Figure 6.16: Graphical diagnostics for the model in the sleep deprivation study.
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Figure 6.16: Graphical diagnostics for the model in the sleep deprivation study (Con-
tinued).

6.7 Computation times

In order to provide an overview of the computation times (in seconds) required to fit
the different models discussed in the paper, Table 6.9 includes some approximate model
fitting times. We would also like to mention that establishing a direct comparison
between AMIS with INLA and MCMC is somehow difficult, mainly because of the
different implementations used for these methods. More specifically, MCMC results
have been obtained with JAGS (which is based on C++), whereas INLA with AMIS
relies of calling the inla() function repeatedly from R, which introduces a considerable
overhead.

In Table 6.9, elapsed times refer to the time required since starting the AMIS with
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INLA or the MCMC sampling and until the end of the sampling process. Time per
sample is the elapsed time divided by the total number of samples carried out. As
stated in Section 6.5, simulations have been carried out on a Linux Ubuntu 18.2 cluster
using 60 cores Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz for INLA with AMIS, and
using a single core for MCMC. Therefore, it is clear that INLA with MCMC times can
still be reduced by increasing the number of cores used in the simulations.

Finally, we would like to mention that, although times per iterations are considerably
smaller for MCMC, it is worth indicating that, while MCMC provides a sample from
the joint posterior distribution of the parameters in the model, INLA with IS provides a
sample from the parameters estimated with IS and the (conditional) posterior marginal
distributions for the remaining parameters in the model. Hence, in our view, IS with
INLA provides a more informative output per iteration than MCMC. This issue clearly
illustrates the fact that time per iteration times cannot be really directly compared
between the MCMC and IS with INLA approaches.

Table 6.9: Summary of the computation times (in seconds) required to fit the different
models using INLA with AMIS and MCMC.

Simulation studies

AMIS MCMC

Total Time per Total Time per
Model Elapsed sample Elapsed sample

Poisson 1673.41 0.11 801.24 0.0073
Negative binomial 37814.47 2.52 593.14 0.0054
Gaussian (scenario 1) 3382.17 0.22 589.52 0.0054
Gaussian (scenario 2) 3303.17 0.22 589.52 0.0054
Gaussian (scenario 3) 2209.47 0.20 589.52 0.0054
Gaussian (scenario 4) 2366.28 0.22 589.52 0.0054
Gaussian (scenario 5) 4083.92 0.27 589.52 0.0054
Gaussian (scenario 6) 23854.80 0.43 589.52 0.0054

Examples

AMIS MCMC

Total Time per Total Time per
Model Elapsed sample Elapsed sample

Infant mortality (Poisson) 2323.63 0.15 29.84 0.0003
Infant mortality (neg. binomial) 4865.71 0.32 15.97 0.0001
Sleep study 8561.52 0.41 20.73 0.0002
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6.8 Discussion

Double hierarchical models present a particular structure that models both the mean
and scale parameter of different hierarchical models with likelihood within the expo-
nential family. Hence, inference on these models can be difficult due to the different
levels and effects in the model hierarchy. We have illustrated how the integrated nested
Laplace approximation can be used to fit these models by using importance sampling
and adaptive multiple importance sampling.

In practice, this allows INLA to integrate most of the latent effects and hyperparam-
eters out so that a small subset of them is estimated using importance sampling. Given
that IS can be easily parallelized, this provides an approach that is computationally
competitive and computing times can be close to the ones provided by INLA.

We have illustrated model fitting of DHGLM by conducting three different simula-
tion studies and the analysis of two real data sets. In all cases, conducting an adaptive
multiple importance sampling provided good estimates of the model effects and hyperpa-
rameters that were similar to those obtained with Markov chain Monte Carlo methods.

For all the models presented here, we have provided graphical representations, where
we illustrate how to split the DHGLM into submodels that can be fitted with INLA, so
that the remainder parameters are fitted using adaptive multiple IS (AMIS). Moreover,
we offer guidelines on how to choose the proposal distributions. In addition, for all cases
we have also provided the effective sample sizes, computational times and graphical
diagnostics to assess the convergence of the proposed method.

Among the examples that were presented here, we can find the fitting of the general-
ized overdispersion Poisson and negative binomial models to the infant mortality rates
in Colombia, which were also illustrated in Section 2.6, Chapter 2, where the models
were fitted using OpenBUGS and JAGS, based on the MCMC approach. Therefore,
with the method proposed here, we now have an alternative to the MCMC algorithms
that uses the INLA approach for fitting generalized overdispersion models.

Although we have discussed examples with Gaussian, Poisson and negative binomial
data, the approach presented here can be applied to any of the distributions in the
exponential family and, more generally, to other likelihood distributions that can be used
together with the R-INLA software. Any model that can be expressed as a latent GMRF
by conditioning on a (small) subset of latent effects or hyperparameters is susceptible
to be fitted with IS/AMIS with INLA. In addition, we would like to mention that the
proposed method has not been developed as a substitute of MCMC, but as a tool for
INLA users

Finally, the R code used to develop the simulation study and the examples is available
from https://github.com/becarioprecario/DHGLM-INLA. In this repository, the data
for the infant mortality in Colombia in Section 6.6, and due to confidentiality constrains,
have been replaced by a simulated data set.
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Chapter 7

General discussion

The starting point of this thesis has been the study and application of Bayesian gener-
alized spatial conditional overdispersion models proposed by Cepeda-Cuervo, Córdoba
and Núñez-Antón (2018). These are generalized linear models which are able to account
for the possibly existing spatial correlation in count data by including a spatial lag of
the response variable in the regression structure for the mean. In addition, the authors
assumed that the overdispersion could be partially caused by the spatial dependence.
The remaining overdispersion that could still be present is captured by means of the in-
clusion of random effects in the model (i.e., in the spatial conditional normal Poisson and
binomial models), and by assuming mixture distributions for the response (i.e., in the
spatial conditional negative binomial and the beta binomial models). Furthermore, the
generalized versions of these models also offer the possibility of modelling the dispersion
parameter, allowing it to vary according to some covariates and/or spatial terms.

We have demonstrated their usefulness by applying them to real data examples and
by comparing them with other models widely used in the literature. Therefore, we
believe that they represent an excellent option for fitting spatial count data, especially
for performing inference about the type and strength of the spatial dependence present
in the data, when also taking into account and capturing the overdispersion.

These models are flexible enough so that they can be extended in a number of ways.
In this sense, we have developed some proposals, which, in our view, are quite valuable
and represent a considerable advance that widens the class of data that can be fitted
with them. More concretely, we have proposed models for fitting spatio-temporal count
data, semiparametric models for capturing non linear relationships and also, models
that allow us to perform inference on the geometric mean of the values of the response
variable in neighbouring locations.

In this thesis, we have used a Bayesian approach, due to the flexibility it offers in
model fitting and the fact that it allows us to perform inference for the parameters in
the models in a simple and direct manner. Here, we could highlight the advantages of
the MCMC methods, where the implementation of almost any model is mostly straight-
forward. However, for highly parametrized models, computational times can be very
large and convergence problems can arise given the potential autocorrelation that could
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exist among the chains of the parameters. An alternative to MCMC could be given by
INLA, which provides fast Bayesian inference, but we are bound to the models that are
already specified in this package, as it is difficult to incorporate new ones. In general,
all the work that has been done in this thesis was implemented in the R software, using
a series of packages for the analysis and modelling of spatial and spatio-temporal data.
The assessment of the fitted models has been performed by means of posterior predictive
checks and comparison among them was carried out with the use of information criteria
values such as the DIC and WAIC.

In Chapter 2, we focused on the spatial conditional models for Poisson and binomial
count data, applying them to the infant mortality and to the mother’s postnatal period
screening test in Colombia data sets, respectively. We evaluated the fitted models with a
number of posterior predictive checks, finding that they provided a reasonable accuracy
with regard to parameter estimation. In addition, comparisons were performed with the
BYM and BYM2 models, obtaining similar estimates. Nevertheless, with the spatial
conditional model, we were able to obtain information about the type and strength
of the spatial autocorrelation that was present in the data. Here, models were fitted
in OpenBUGS and in JAGS, following the MCMC approach and in INLA, obtaining
very similar estimates and revealing the much smaller computation times INLA needed
for model fitting, as compared to the former approach. However, we came across the
issue that the generalized models, for which regression structures are specified both for
the mean and dispersion parameters, could not be implemented in INLA. Therefore, in
Chapter 6 we developed a method that allowed us to accomplish this.

In Chapter 3, we proposed a semiparametric extension of the generalized spatial
conditional overdispersion models in Cepeda-Cuervo, Córdoba and Núñez-Antón (2018),
which is able to account for possible non linear relationships between variables that are
included in the study and the linear predictor. In particular, for the smoothing of such
variables, we have specified P-splines in their mixed model representation. We present
the application of these proposals to the infant mortality rates and to the mother’s
postnatal screening period in Colombia data sets, where we found evidence of a non
linear relationship between the mortality rates and the variable representing the amount
of resources provided by the government for academic achievement or education.

In Chapter 4, we proposed a model to fit spatio-temporal count data, which was a
direct extension of the spatial conditional model of Cepeda-Cuervo, Córdoba and Núñez-
Antón (2018), where we included the spatial lag of the response variable for each time
unit in the linear predictor. Additionally, another extension of this model was also
proposed, where we specified a random coefficient for the spatial term, which allowed
us to investigate the temporal variation of the spatial dependence. We illustrated the
models for Poisson and binomially distributed responses, being able to characterize the
spatio-temporal behaviour of the respiratory hospital admissions in Glasgow and the low
birth weight in Georgia. Here, it could be useful to mention that these proposals could
also be specified for any other count data distribution.

In Chapter 5, we have seen how these models can be extremely useful within an
epidemiological context, when we modelled the COVID-19 incidence data in the munici-
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palities of Flanders, and were able to capture the spatial dependence among the regions.
Here, these models allowed us to easily investigate different weights matrices that could
be explaining the spatial underlying process, revealing the importance of conducting
tests to further explore this issue. Furthermore, we proposed an extension where we
included the logarithm of the incidence rates instead of the rates, which allowed us to
perform inference based on the similarity of the incidence rate in one region with the
geometric mean of these rates in the neighbouring regions.

As mentioned before, an alternative method to MCMC for fitting generalized spa-
tial conditional overdispersion models in INLA was proposed in Chapter 6. This was
achieved by combining the adaptive multiple importance sampling (AMIS) algorithm
and INLA and it can be used to fit any model that belongs to the class of double hier-
archical generalized linear models (DHGLM). We illustrated the proposed method with
simulation studies and applications to real data examples, and compare the results ob-
tained with those from the MCMC approach, finding that our proposal is able to provide
good estimates.

The modelling of biostatistical data can offer important insights which may lead
to a better understanding of the different data being analysed. In order to be able to
identify the socio-economic or demographic characteristics of the population that may
have a higher impact on the phenomenon under study, the information obtained from
such studies can be extremely useful to governments or responsible authorities. In this
way, authorities would be able to optimize the investment of resources and dictate more
effective policies. In addition, modelling of infectious diseases allows us to characterize
and forecast their spread and to identify the risk factors of the population, so that
better decisions based on reliable statistical evidence can be made by the authorities.
This fact has become especially evident after the recent COVID-19 outbreak, showing
us the importance of disease mapping and epidemiology in the context of public health
policy making (see Chapter 5).

For example, in the case of the analysis of the infant mortality rates in Colombia,
performed in Chapter 2, the results obtained suggested that, if the index of unsatisfied
basic needs is reduced in some departments, their infant mortality rates may also be
reduced. In addition, if the government increases the amount of the resources provided
for academic achievement and education per household for some departments, it may
result in lower mortality rates for these regions. In the same way, the results obtained for
the study of mother’s postnatal period screening test in Colombia, suggest that reducing
the index of unsatisfied basic needs perhaps may increase the probability of a mother
going through such a medical test. Furthermore, as it was shown in Chapter 3, these
relationships may not necessarily have a linear pattern, but it may be given by smooth
functions or curves, so it would be advisable to check for this possibility in these types
of studies.

Throughout this thesis, we have seen how spatial correlation is such an important
issue in epidemiologic and public health data. One cannot neglect the major impact that
the geographical component might have on the analysis being performed. In this sense,
it is important to take into account the information that regions which are close together
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in space can provide. Moreover, estimates for small areas, with lower population can
be smoothed by considering the neighbours information. In general, a regression model
which does not take into account this information may not produce reliable estimations.
In this sense, it is strongly recommended to perform tests in order to find the spatial
structure which best accommodates the spatial underlying process of the specific area
under study (see Chapter 5). Additionally, being able to study the behaviour in time of
the spatial dependence is also of interest in many applications (see Chapter 4).

In today’s world, the analysis and modelling of such spatial and spatio-temporal data
has become a challenging task requiring faster and more efficient methods. In our modest
view, it is very important to keep methods as simple as possible and, in addition, to have
models at our disposal that are flexible enough so as to easily adapt them to the specific
needs of the application under consideration. For these and all the reasons that have
been presented in this thesis, we would certainly advice the use of our proposed spatial
conditional models, over the BYM or BYM2 models. In addition, one of the problems
researchers most commonly come across when fitting regression models for these types
of data are computational challenges (see Chapter 6). In order to overcome these issues,
and although MCMC-based software packages offer high flexibility, we would recommend
the use of INLA, which provides faster computation times. Even though there are models
that are not currently implemented in this software package, there are alternatives for
fitting these models in INLA, such as the ones we proposed in Chapter 6.

For the models we have presented here further research and extensions are also
possible in a number of directions. For example, in the case of the spatio-temporal models
presented in Chapter 4, we could assume other alternative specifications for the random
effects and for the varying coefficient of the spatial lag, such as autoregressive processes
of higher order. For these random effects, we could specify a regression structure for
their variance parameters, which would be extensions of the generalized overdispersion
models. In addition, multivariate extensions for the spatial conditional overdispersion
models that allowed to model more than one dependent variable could be also proposed.
These questions are indeed expected to be the focus of our future research.
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Berild, M.O., Martino, S., Gómez-Rubio, V. and Rue, H. (2022). Importance sampling
with the integrated nested Laplace approximation. Journal of Computational and
Graphical Statistics, 1–13. In press.

Bernardinelli, L., Clayton, D., Pascutto, C., Montomoli, C., Ghislandi, M. and Songini,
M. (1995). Bayesian analysis of space-time variation in disease risk. Statistics in
Medicine, 14(21-22), 2433–2443.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Jour-
nal of the Royal Statistical Society - Series B, 36(2), 192–236.
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Morales-Otero, M., Gómez-Rubio, V. and Núñez-Antón, V. (2022). Fitting double hier-
archical models with the integrated nested Laplace approximation. Statistics and
Computing, 32(4), 62.

Moran, P.A.P. (1948). The interpretation of statistical maps. Journal of the Royal Sta-
tistical Society - Series B, 10(2), 243–251.

Morris, M., Wheeler-Martin, K., Simpson, D., Mooney, S.J., Gelman, A. and DiMaggio,
C. (2019). Bayesian hierarchical spatial models: Implementing the Besag York
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