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Abstract

The recently discovered possibility of manipulating, through current-induced spin-
orbit fields, the order parameter of a certain family of metallic antiferromagnets,
such as Mn2Au, whose magnetic state can be characterized through conventional
magnetoresistive effects, has attracted the attention of the spintronics community.
This is due to the advantages that they present with respect to their ferromagnetic
counterparts, such as the absence of stray fringing fields, inherent frequencies in
the elusive THz band, and high critical Néel temperatures. Furthermore, the fact
that the propagating antiferromagnetic solitons are not prone to deformation dur-
ing their ultrafast dynamic processes allows envisioning full-antiferromagnetic all-
spintronics devices that beat current von Neumann architectures in terms of oper-
ating speeds, energy efficiency, and miniaturization. In this context, we have in-
vestigated the relativistic and topological signatures of domain walls in spin space
using analytical tools and atomistic spin dynamics simulations. In this sense, we
have been able to verify that emulating the in-plane magnetization stability of an-
tiferromagnetic systems through strong hard-axis axis anisotropies in ferromagnets
allows to delay the Walker breakdown and access to relativistic magnetic texture dy-
namics. On the other hand, focusing on the case of the antiferromagnet Mn2Au, it
has been possible to reduce the analytical description of quasistatic magnetic soliton
dynamics to a Newton-like second-order differential expression which highlights
its pseudoparticle behavior as well as to predict its after-pulse displacement based
on its steady-state relativistic mass. Moreover, it has been proven that in this anti-
ferromagnetic material it is possible to access a highly nonlinear dynamic domain
wall regime under sufficiently large external stimuli, producing the appearance of
additional pairs of magnetic textures preserving the overall topological charge as
well as the transient propagation of one of the nucleated magnetic solitons at super-
magnonic velocities. Additionally, the total or partial release of the exchange-based
self energies of two antiferromagnetic domain walls with different relative chiral-
ities through topologically-mediated collisions has been analyzed, being possible
to obtain information about their topological charges through the induced thermal
footprint in the electronic and phononic reservoirs.
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Extracto

La recientemente descubierta posibilidad de manipular, a través de campos de ti-
po espín-órbita inducidos por corrientes eléctricas, el parámetro de orden de una
cierta familia de materiales antiferromagnéticos metálicos, tales como Mn2Au, cu-
yo estado magnético puede ser caracterizado a través de efectos magnetorresistivos
convencionales, ha atraído la atención de la comunidad científica en el campo de la
espintrónica. Esto se debe a las ventajas que presentan este tipo de sistemas en com-
paración con sus contrapartes ferromagneticas, tales como inexistencia de campos
demagnetizantes significativos, frecuencias inherentes en la banda elusiva del THz
y altas temperaturas críticas tipo Néel. Además, debido a que los solitones antiferro-
magnéticos no tienden a deformarse durante sus procesos dinámicos ultrarrápidos,
es posible hipotetizar su inclusión en aparatos puramente espintrónicos conforma-
dos por materiales antiferromagnéticos que puedan superar el rendimiento actual de
las arquitecturas de tipo von Neumann en términos de velocidad de operación, efi-
ciencia energética y miniaturización. En este contexto, hemos investigado las trazas
relativistas y topológicas de paredes de dominio en el espacio de espín, empleando,
para ello, herramientas analíticas y simulaciones dinámicas de espines átomicos. En
este sentido, hemos sido capaces de verificar que, asegurando la estabilidad de la
magnetización en el plano en reposo en materiales ferromagnéticos, lo cual ocurre
en materiales antiferromagnéticos de forma natural, a través de fuertes anisotropías
de eje díficil, es posible retrasar la ruptura tipo Walker y obtener textures magnéticas
que se propagan en el marco relativista. Por otro lado, centrándonos en el caso del
material antiferromagnético Mn2Au, hemos podido reducir la descripción analítica
de solitones magnéticos en regímenes dinámicos cuasiestacionarios a una expresión
diferencial newtoniana de segundo orden, lo cual pone de manifiesto que se com-
portan como pseudopartículas y, además, hemos hallado que es posible predecir el
desplazamiento que estos experimentan tras apagarse el pulso magnético de tipo
espín-órbita a través de su masa relativista en estado estacionario. Adicionalmente,
hemos demostrado que, en este sistema antiferromagnético, las paredes de dominio
pueden acceder a una régimen dinámico altamente no lineal bajo la acción de estí-
mulos externos lo suficientemente grandes, lo cual da como resultado la aparición
de pares adicionales de texturas magnéticas, preservando la carga topológica global,
así como la propagación transitoria de uno de los solitones magnéticos nucleados a
velocidades supermagnónicas. Asimismo, hemos analizado la liberación total o par-
cial de las autoenergías de canje de dos paredes de dominio antiferromagnéticas con
diferenes quiralidades relativas a través de colisiones mediadas por topología, pu-
diéndose conocer cuáles eran sus cargas topológicas a través de las huellas térmicas
inducidas en los reservorios de electrones y fonones.
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1

Chapter 1

Introduction

Nowadays the ever-increasing information production trend is accompanied by its
processing in big data centers and its online digital-based storage. To the current de-
mand could be added in the near future the envisioned internet-based interconnec-
tivity in the search for a smart way of living, known as Internet-of-Things. The main
problem resides in that currently the 11% of the annual global electricity consump-
tion is destined for the information and communication sector. This, in conjunction
with the inherent greenhouse gas emission, motivate the search for more efficient
industrial processes with the smallest possible environmental footprint [1].

Modern semiconductor-based computers rely on von Neumann-like architec-
tures, where information processing and storage take place in different locations, re-
sulting in detrimental speed and efficiency [2, 3]. In the case of transistor-dominated
schemes, the implementation of computation-in-memory schemes such as bioin-
spired neural networks becomes highly unfathomable due to the required on-chip
densities [4, 5]. It is precisely due to these miniaturization limitations that the ir-
ruption of the actual spintronics-based non-volatile energy-efficient computer mem-
ories occurred [6]. Beyond this, all-spintronics-based computers could overcome
the current parallel computing and multiprocessor paradigms [7, 8], which could
be done through the combination of state-of-the-art magnetic memories with spin-
based logic circuits, which would reduce the current power leakage and heat dissi-
pation [9–11].

1.1 Spin-dependent transport in multilayered systems

Based on the synergy between industry and basic research, the birth of spintronics
took place at the end of the last century through the implementation of high res-
olution magnetoresistive (MR) heads to interpret the digital information encoded
in the ferromagnetic (FM) domains of mechanical non-volatile random-access hard-
disk drives (HDD) [12–14]. Coupled inductive read-and-write paths had previously
been substituted by the implementation of scanning heads based on the anisotropic
magnetoresistance (AMR) effect, where the relative orientation between the applied
charge current and the magnetization gives rise to a resistance-dependent signal [15–
17], as it is represented in Fig. 1.1 (a). With the advent of sophisticated deposition
techniques [18–20], it was possible to exploit the spin-dependent electron transport
through nanometric multilayered systems, which allowed a significant increase in
the stored information density due to the enormous increase in the reading sensitiv-
ity [21]. The first reproducible experimental phenomenon in the field of spintronics
was the giant magnetoresistance (GMR) effect, which allows switching between two
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different resistive states based on the quantum-based spin-dependent scattering of
the conduction electrons passing through a system composed of two FM layers sep-
arated by a non-magnetic (NM) spacer, a structure known as spin valve (SV) [22–24],
which it is depicted in Fig. 1.1 (b). Less than a decade later, it was possible to imple-
ment the tunnel magnetoresistance (TMR) effect at room temperature, based on the
spin-dependent quantum tunneling of electrons through thin insulating barrier sep-
arating two FM layers, a structure known as magnetic tunnel junction (MTJ), being
the process represented in Fig. 1.2 (a), which allowed to obtain a resistive signal two
orders of magnitude greater than the one observed in devices based on the GMR
effect [25–27]. In both types of structures, SV and MTJ, both FM sheets are coupled
through a moderate NM spacer-governed Ruderman-Kittel-Kasuya-Yosida (RRKY)
interaction, which dictates their relative magnetization orientation [28–32]. More-
over, one of the FM layers is usually in direct contact with an extra antiferromagnetic
(AFM) sheet, pinning its magnetization direction through the so-called assistive ex-
change bias effect [33, 34]. However, the continuous effort to store more information
in a smaller space entails certain limitations, since to ensure the prevalence of the
information, the anisotropy has to be increased to ensure their thermodinamic sta-
bility, hindering at the same time the magnetic field-based information writability,
problems which lie at the heart of the magnetic recording trilemma [35, 36].

Figure 1.1: (a) In the AMR effect framework in FM materials, when the applica-
tion direction of the non-polarized charge current, j, is parallel to the magnetiza-
tion of the medium, a low resistance, R, state takes place , while when the injected
current is perpendicular to the system polarization, a high R scenario will occur.
(b) Schematic representation of the spin-dependent electron scattering involving the
FM-based GMR effect. When the magnetization of both FM is arranged in a parallel
fashion, the electrons will suffer fewer scatting events after crossing the NM mate-
rial (low resistance, R, state) than when both FM are antiparallel polarized (high R
scenario). Adapted from [37].

1.2 Current-induced magnetoelectric effects

The limitations of the HDD-based magnetic recording, such as the superparamag-
netic limit and a millisecond-constrained information access speed [38, 39], moti-
vated the search for magnetic solid-state memories with higher on-chip integrabil-
ity. It was in this context that MR random-access memories (MRAM) arose, usually
composed of several MTJ acting as bits of information [6, 40]. The first magnetic
field-assisted prototypes employed complicated architectures where simultaneous
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stimuli along the orthogonal word and bit lines caused the switching of the differ-
ent storage units [41]. Due to the energy inefficiency of this intrincate arrangement,
some alternatives were proposed such as adopting a thermal-assisted scheme where
a Joule heating-based switching field reduction was induced by coupling the free
layer with an AFM with a blocking temperature different from that of the pinned
sheet [42, 43], but most of the efforts were focused on obtaining a magnetic field-free
approach to the problem. In this sense, it was proposed to base the writing mecha-
nism on the current-induced spin-transfer torque (STT) phenomena, in which a cur-
rent injected into a pinned FM layer becomes spin-polarized, resulting in an angular
momentum transfer from the conduction electrons to the free FM sheet [44, 45], lead-
ing to the precession and/or switching of its magnetization [46–49], as it can be seen
in Fig. 1.2 (b). The STT-based MTJ technological interest transcends the information
storage field, since they can also be used as tuneable low-power microwave nano-
oscillators with great applicability in wireless devices [50, 51]. This is because the
STT can act as an antidamping-like torque, leading to steady-state coherent preces-
sion regimes [52, 53]. Interestingly, compact nano-oscillators-based arrays are very
sensitive to their neighbours dynamics, but this approach is still far from the brain-
like energy efficiency and requires online training algorithms [54–56]. Despite the
advantageous STT-based nanosecond writing process, the need to employ large cur-
rent densities to increase the switching velocity can lead to the dielectric breakdown
of the thin oxide barriers of a MTJ [57].

e
e
e

e

e
e
e
e

Figure 1.2: (a) Scheme of the mechanism of the TMR effect in FM-based systems.
When the magnetization of both FM is arranged in a parallel fashion, the tunneling
probability of the electrons through the insulating tunnel barrier (TB) is greater (low
resistance, R, state) than when both FM are polarized antiparallel, situation in which
the probability is lower (high R scenario). Adapted from [58]. (b) Graphic depiction
of the STT in FM-based systems. The electrons that make up the charge current
applied to a FM are polarized in the same direction as the underlying magnetization,
producing a transfer of angular momentum between these electrons and the second
FM after crossing the spacer between them, inducing a torque in its magnetization.
Adapted from [59].

In this context, the use of materials with sizable spin-orbit coupling (SOC) can
mitigate some of the disadvantages of STT-based excitation schemes, since the emer-
gent effective field is based on the relative orientation of the injected current with
respect to the crystallographic structure of the system, being independent of a refer-
ence magnetic configuration layer [60]. The first mechanism that can be mentioned
in this regard is the spin Hall effect (SHE), in which an unpolarized charge current
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produces a transverse pure spin current [61–64], being represented in Fig. 1.3 (a).
On the other hand, the Edelstein effect (EE) is based on the production of a non-
equilibrium bulk spin polarization perpendicular to an externally applied electric
field [65–68], which it is exposed in Fig. 1.3 (b). It should be noted that, in contrast
to the case of the SHE, the EE requires the simultaneous presence of the SOC with
a broken inversion symmetry [69]. Although these phenomena can be achieved in
single FM layers, they are usually combined with NM heavy metals (HM) due to
their stronger SOC, which allows to generate a magnetization torque due to the in-
duced interfacial spin accumulation [70–72]. Even if this interfacial-induced sym-
metry breaking scheme allows decoupling the reading and writing channels [73],
perpendicularly magnetized FM require an AFM-induced assistive field to achieve
a real magnetic field-free deterministic magnetization switching [74, 75]. However,
devices based on the spin-orbit torque (SOT) show great advantages over its STT-
governed counterpart, such as higher reliability, endurance, and sub-nanosecond
switching speeds [1, 76].

Figure 1.3: (a) Conversion of an unpolarized charge current, j, into a chargeless pure
spin current, js, due to the SO-based SHE in a FM system. Adapted from [77]. (b)
Appearance of a non-equilibrium bulk spin polarization perpendicular to an elec-
tric field, E, generated in the FM sample due to the injection of a charge current, j,
through the SO-based EE. Adapted from [59].

1.3 Spin-orbit-based ferromagnetic soliton dynamics

The transition regions of multidomain structures, known as domain walls (DW),
are of special interest due to their potential mobility and topologically-based stabil-
ity [78–81], whose position in a sample can be used to encode information. In this
sense, the non-volatile solid-state magnetic storage device known as racetrack mem-
ory stands out, where the dynamics of magnetic texture arrays in three-dimensional
schemes is exploited [82]. Of special interest is the case in which the dynamics of
the one-dimensional (1D) magnetic solitons is excited through current-induced spin
polarization transfer-based mechanisms, since in this case the magnetic textures will
move in the same direction regardless of their relative topological charges [83–85].
On the other hand, if magnetic fields were used for this purpose, adjacent magnetic
textures with opposite chiralities would annihilate each other, causing a loss of in-
formation [86, 87], both processes being schematized in Fig. 1.4 (a). This type of
sequential storage architecture is very promising because it is as cheap as HDD and
as fast and reliable as MRAM, being its efficiency based on obtaining the maximum
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stable DW velocity at reasonable current densities [82, 88]. However, it is necessary
to have great control over the pinning processes to define the bit length and take
into account the unwanted stray fields that can disturb the densely packed DW ar-
rays [89, 90]. Besides this, far from the thermally-activated stochastic creep motion,
in FM exist an external stimulus-based threshold for the steady-state DW dynamics,
known as Walker breakdown (WB), where the soliton enters an unstable regime due
to the emergent oscillatory dynamical trend of the texture [91–93].

Perpendicular magnetic anisotropy-based media can host higher information
densities due to the presence of narrow DW, which can potentially move very fast
[94, 95]. Interestingly, using current densities of about 108 A/cm2 in this type of FM
media, it is possible to obtain SHE-induced velocities of the order of 400 m/s [96,
97], speeds significantly greater than using the STT for the same electrical stimulus
[88, 98]. To generate the aforementioned SOT, it is usual to put the magnetic material
in contact with a HM with strong SOC, giving rise to an interfacial Dzyaloshinskii-
Moriya interaction (DMI) due to the induced structural inversion asymmetry [99,
100], which it is represented in Fig. 1.4 (b). This extra interaction causes a sym-
metry breaking favoring a specific chirality of the texture [92, 101], prioritizing the
stabilization of Néel-like DW and a consequent delay of the WB-based threshold
[102, 103], not requiring in this case an assistive magnetic field [104, 105]. In the
same line, it is possible to exploit the surface curvature of a cylindrical nanowire
to induce a DMI-like chiral symmetry breaking that confers an extra stability to the
DW against potential internal torques [106, 107]. This results in the prevention of the
WB and allows the texture to reach speeds of the order 1 km/s and even enter a spin
wave (SW) emission regime due to exceeding its phase velocity, which is known as
the spin Cherenkov effect [108, 109].

Figure 1.4: (a) Graphical representation of the different dynamic behavior of a DW
pair with opposite relative topological charges, Q1Q2 = −1, under the action of a
magnetic field, H, and a spin polarized current, js. The green arrows correspond to
the direction of movement of each magnetic soliton, while the yellow ones exemplify
the exchange-based attraction between the pair of magnetic textures. (b) Interfacial
DMI at the boundary between a FM and a non-magnetic metal with strong SOC,
where the DMI vector, D12, related to the triangle composed of two magnetic sites,
m1 and m2, and an atom with strong SOC is perpendicular to the triangle plane.
Adapted from [110].

Beyond the non-volatile storage envisioned through racetrack memories, it is
possible to exploit the intrinsic functionalities of magnetic textures and SOC-based
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phenomena to envision sensor-based information interconnectivity and all-spintron-
ics computation architectures. On the one hand, tuneable microwave oscillators can
be generated through the pulsed SOT-induced back-and-forth motion of a DW train
through the time-dependent resistive response of the system [111], while soliton-
based sensitive schemes can be integrated relying on the variation of the spatial
properties or the number of nucleated magnetics textures in response to an external
stimulus [112, 113]. On the other hand, the possibility of carrying out on-chip logic-
in-memory computing has been proposed through the engineering of DW inverters,
taking advantage of the domain-based chiral interaction induced through the inter-
facial DMI, which serves as the building block to develop Boolean operations [114].
In the same line, it has been shown that it is possible to achieve SOT-induced mul-
tilevel switching in FM/AFM heterostructures, which has great potential to imple-
ment analog plasticity-like synaptic memristors. This can be achieved either through
the existence of an unequal threshold reversal stimulus of the sample caused by in-
homogeneities in the exchange bias effect as well as due to a continuous change in
the resistive signal of a MTJ originated by the DW displacement [74, 115, 116].

Apart from the 1D DW, there is a vast zoology of magnetic textures, among which
we can highlight the topologically-protected two-dimensional (2D) skyrmions, whose
stabilization is possible in FM/NM heterostructures due to the combination of a bro-
ken inversion symmetry-induced DMI interaction with a large SOC [117, 118]. These
solitons, in addition to being inherently stable, have some advantages over the DW,
among which its excitation through ultralow current densities stands out, poten-
tially being as fast as its 1D counterpart [119]. However, its prevalence is overshad-
owed due to the fact that, experimentally, SHE-based velocities of order of 100 m/s
have been reached in multilayered systems [120]. These speeds are lower than those
achieved by DW, and, additionally, skyrmions present non-rectilinear propagations
due to the skyrmion Hall effect [121, 122]. Despite this, due to their compact pseu-
doparticle behavior and low current-based depinning [123–125], they have been en-
visioned as robust proposals in unconventional computational approaches, because
in contrast to the von Neumann paradigms they consume less energy and present
nonlinear responses. In this context, it has been proposed to obtain uncorrelated out-
put skyrmion-based bit patterns through their thermally-activated reshuffle or ran-
dom laser-induced nucleation with potential applicability in the field of efficiency-
optimized stochastic computing [126, 127]. On the other hand, it is possible to exploit
the nonlinear resistance-based response of a pinned magnetic skyrmion reservoir to
a set of time-varying voltage pulses for pattern recognition [128].

1.4 State-of-the-art antiferromagnetic spintronics

Until now, the inclusion of an AFM in MR stacks played a support role, specifically
pinning a FM layer through the exchange bias effect. However, AFM used as active
elements in spintronics applications have notable advantages over FM. These qual-
ities include the non-generation of stray fringing fields [129, 130], zero-momentum
resonance frequencies of the order of THz [131, 132], absence of the WB understood
through the tilting of the magnetization of the DW plane at rest [133, 134], and prop-
agation speeds of the magnetic textures of the order of tens of km/s in the special
relativity framework, being only limited by the maximum magnon group velocity
of the medium [135–137] or by superluminal-like regimes accessible to contracted
magnetic solitons whose extent is comparable to the atomic spacing [138, 139]. This
is because the antiparallel alignment is accompanied by a large magnitude of the
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AFM-based intersublattice exchange interaction, tangibly greater than those pro-
vided by the DMI and FM contributions. Due to the zero net magnetization of these
systems, it is difficult both to manipulate them through static magnetic fields and
to measure their magnetic state due to their low magnetic susceptibility [140, 141].
However, in AFM it has been possible to reorient experimentally the DMI-induced
canted Néel order parameter through a time-dependent magnetic field through an
inertial-driven process [142]. Likewise, it has been proposed to induce dynamic pro-
cesses by coupling spatially asymmetric magnetic fields with the spatial variation of
the order parameter or, on the other hand, with the spatial gradient-based intrinsic
magnetization of a DW [143, 144].

Given the difficulty of exciting AFM media, special emphasis has been placed
on adapting the different current-induced phenomena that have been shown to be
efficient in FM to trigger both the order parameter switching and the dynamics of
magnetic textures. In this regard, what it is necessary to achieve an AFM-driven
process is that the local fields generated in each sublattice are staggered with respect
to those of its first antiparallel polarized neighbors [140, 141], as it is schematized
in Fig. 1.5. This is satisfied in any AFM, irrespective of the symmetry of its unit
cell, if the injected spin-polarized current exerts an antidamping-like torque on the
magnetization [134, 145–147]. On the other hand, in a pair of metallic AFM meeting
a series of stringent symmetry requirements, namely CuMnAs and Mn2Au, there
exists the AFM version of the EE, which is known as the Néel SO torque. This is
due to the fact that these systems have globally centrosymmetric with locally bro-
ken inversion symmetry crystallographic structures at the same time that their lat-
tice sites form inversion partners coinciding with their two spin sublattices, which
allows to exert field-like staggered local fields dependent on the basal in-plane cur-
rent injection direction [69, 148]. Interestingly, AFM show a memristive-like mul-
tilevel switching behavior, which can be tuned through the number of pulses and
their duration, being possible to exploit the elusive THz band due to its demon-
strated response to both current- and infrared laser-induced ultrashort stimuli [149–
151]. Nevertheless, despite the absence of stray fields in AFM, the order of magni-
tude of the small signals obtainable through the AMR and DW MR effects in metals
[152–155] and, on the other hand, through the spin Hall (SH) MR effect in insulators
[156, 157], limit the miniaturization of potential devices. In principle, this fact could
be patched up through the experimental verification of the AFM versions of the
non-SOC-dependent GMR and TMR, which are theoretically possible in this type of
materials [158–160], but which would require perfectly epitaxial samples [141]. On
the other hand, the existence of the SOC-based AMR effect has been demonstrated
using a current tunneling through an AFM towards a NM metal, being the signal
really appreciable at low temperatures [161, 162], requiring, at room temperature,
the existence of an additional FM layer with perpendicular anisotropy to induces an
out-of-plane polarization of the AFM [163].

In this sense, the difficult dynamic characterization of potentially ultrafast mag-
netic textures hinders their potential in non-volatile racetrack memories. In fact, at
the moment there are at least two proposals through thermoelectric-based effects in
metals. The first one is based on the experimental detection of the magnetic soliton
position through the nonzero magneto-Seebeck-based electric voltage induced by a
laser-induced localized temperature gradient between AFM boundaries [164] and,
the other one, in the theoretically proposed localized electronic-based heat wave
that slightly lags the ultrafast current-induced spin-orbit (SO) field-based DW dy-
namic process and that could be tracked experimentally through scanning thermal
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microscopy [165]. An alternative to be able to attest the benefits of this type of ma-
terials through experimental methods is to rely on synthetic AFM, which are com-
posed of two antiparallel-aligned FM layers coupled through the RKKY interaction
due to the presence of a NM spacer, contribution that is weaker than the intrinsic
AFM one. Along this line, in perpendicularly magnetized systems with interfacial
DMI, it has been proven that it is possible to induce the SHE-based dynamics of the
two Néel-like DW coupled to each other in each sheet of the system, reaching speeds
of the order of 750 m/s [166], notably higher than in FM and without a trace of the
undesirable WB. On the other hand, the stabilization at room temperature of indi-
vidual skyrmions has been demonstrated in this type of engineered systems [167],
while their deflection-free dynamics will require new studies that go beyond the low
speeds reported in the presence of large pinning effects and low SOT-based stimuli
[168, 169]. Experimentally, it has been possible to observe multidomain structures
and DW displacement-induced Néel order parameter switching [170, 171], while to
nucleate skyrmions it has been demonstrated that a critical temperature must be ex-
ceeded to create topologically-protected nanoislands or to induce a printing process
from an adjacent FM due to the exchange bias effect in its cooling process [172, 173].
Although at the moment only theoretical conjectures can be made beyond magnetic
storage schemes in AFM, it is interesting to mention that it has been proposed that
skyrmions in synthetic AFM can both emulate a synaptic-like behavior through the
voltage-controlled skyrmion size and its consequent MR signal tuning as well as a
neuron spiking-based process through the annihilation of these solitons [174].

Figure 1.5: Torque-based contributions, τ, experienced by two spins, represented by
their i-th magnetization vectors, mi, initially aligned antiparallel, in the presence of
(a) staggered or (b) non-staggered fields, H i. The subscripts p and d refer, respec-
tively, to the precessional and damping components, respectively, the superscript
a indicates that it has been induced by the external stimulus, and the indices m1,2
allude to the exchange interaction between the two considered atomic magnetic mo-
ments that reside in the xz easy-plane of the system. The fields H

mj
mi represent the

exchange-based contribution experienced by the j-th magnetization vector, mj, due
to the presence of the i-th atomic moment, mi.

1.5 Framework and summary of the thesis

The objective of the preceding sections has been to provide a brief overview, from
my point of view, of the current state of research of a certain part of the spintron-
ics community, with special emphasis on the potential advantages of SO field-based
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excitation methodologies, topologically-protected magnetic textures, and AFM ma-
terials. In this context, the research works exposed in this thesis in the next chapters
will be focused, especially, in the relativistic signatures experienced by DW during
their dynamic evolutions as well as in topologically-mediated processes involving
the creation or annihilation of magnetic solitons in spin space. For this, we will use
atomistic spin dynamics simulations (ASDS), carried out through a private software
from Hitachi Cambridge Laboratories, as well as analytical methods mainly based
on the absence of sizable deformations of the magnetic textures during their propa-
gation processes. The structure of this manuscript will be as follows:

• In Chap. 2 it has been introduced how to characterize the dissipative dynamic
processes in spin space based on the different magnetic contributions of the
system, as well as the conditions under which solitonic solutions exist in long-
range magnetically-ordered media whose energetically-induced stabilities can
be characterized through topological notions.

• In Chap. 3 the crucial features that dictate the stability of dynamic DW in
both FM and AFM have been discussed, as well as the impact of topology
on the propagation of magnetic textures and what kind of computational and
experimental approaches exist to characterize these soliton solutions.

• In Chap. 4 we have addressed the reduction of the dynamic DW description in
a biaxial FM to a sine-Gordon (SG) expression, a situation which is physically
consistent in the Walker-type of solutions framework in the presence of a very
large hard-axis anisotropy that constrains the magnetization in the plane at
rest of the magnetic soliton, which is validated by the relativistic traces found
through ASDS.

• In Chap. 5 we have analytically replicated the inertial signatures appearing be-
tween concatenated quasistatic DW dynamic regimes obtained through ASDS
for the AFM Mn2Au in the framework of an effective version of the nonlin-
ear σ-model, based on its multisublattice structure with different exchange-
oriented contributions, as well as its after-pulse displacement through the knowl-
edge of its steady-state relativistic mass.

• In Chap. 6 we have obtained, through ASDS, that a primal DW excited by
sufficiently large SO field-based stimuli in the AFM Mn2Au can act as a seed
for the appearance of a pair of magnetic textures preserving the overall topo-
logical charge of the system, subsequently giving rise to one of the nucleated
magnetic solitons transiently propagating at supermagnonic velocities.

• In Chap. 7 we have studied through ASDS the partial or total release of the
exchange-based self-energies dynamically accumulated by two DW through
their topologically-mediated collision in the AFM Mn2Au, being possible to
distinguish the outcome of the impact through the energy redistribution to the
electron and phonon reservoirs described by the two temperature model.
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Chapter 2

Energetically-induced magnetic
texture stability in spin space

2.1 Quantum-based nature of the isolated atomic magnetic
moment

2.1.1 Discretized spectrum of the electron angular momentum eigenval-
ues

Magnetism on the atomic scale is primarily dominated by the net electronic contri-
bution, which is about three orders of magnitude greater than the nuclear one due
to their associated masses [175]. Electrons are massive charged point-like particles
which have a two sources-based magnetic moment: one linked to its orbital motion
around the positively-charged core of the atom and the other due to its intrinsic spin.
When an electron revolves around the nucleus under the influence of the Coulomb
interaction, having an associated orbital angular momentum, it constitutes a current
loop to which can be related a magnetic dipole moment [176]. While this orbital
contribution can be understood classically, the spin one cannot be interpreted in this
context, since it arises naturally in the relativistic quantum-based Dirac equation and
does not have an accurate macroscopic analog [177, 178]. The fact that a magnetic
moment can be associated with this intrinsic property, as in the orbital case, is due
to the fact that its existence is necessary to explain real experiments for, for exam-
ple, atoms with valence electrons in the s orbital, for which the orbital contribution
is zero [179, 180], and due to the precise theoretical predictions obtained by quan-
tum electrodynamics [181–184]. The total electronic magnetic moment operator, µ̂J ,
given by the sum of its orbital and spin contributions, can be associated with the
total electronic angular momentum operator, Ĵ, being expressed as

µ̂J = −γgJ Ĵ, (2.1)

where gJ represents the dimensionless g-factor associated to the total angular mo-
mentum while γ expresses the gyromagnetic ratio [185]. In quantum mechanics,
both components of the electronic angular momentum are subject to the discretiza-
tion of their eigenvalues, not being possible to accurately characterize more than one
angular momentum component of the electron simultaneously due to the Heisen-
berg uncertainty principle [186]. This non-continuous nature of the eigenvalues can
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be clearly seen through the characterization of its projection along a particular direc-
tion, for example, the z-th axis, as well as its module, which will be given, respec-
tively, by

µ̂z
J = −gJµBmJ ,

∣∣∣µ̂J

∣∣∣ = −gJµB

√
J (J + 1), (2.2)

where mJ and J codify the quantum numbers associated to the total electronic angu-
lar momentum and µB characterizes the Bohr magneton [187]. In this context, it is
possible to get an idea of what the discretized spectrum of the electronic magnetic
moments,

∣∣∣µ̂J

∣∣∣ and µ̂z
J , looks like for the case in which the quantum number of the

modulus of the vector operator takes an arbitrary value J = 2, which constrains
the associated z-th-based parameter, mJ , to the interval mJ ∈ [−2,−1, 0, 1, 2]. As it is
shown in Fig. 2.1 (a), the arrows are supposed to represent the hypothetical modulus
of the total magnetic moment of the electron, but it should be noted that the radius
of the sphere is greater than the value of its z-th component, which is misleading
because there are, in fact, no other possible projections of the operator vector along
other spatial directions, since a particle cannot have a determinate angular momen-
tum vector [186].

2.1.2 Dynamic and classical-like picture of the atomic spin angular mo-
mentum

Typically, an atom is not made up of a single electron, but of many of them. Only
those cases in which the valence shells are partly filled will have a non-zero net
atomic magnetic moment, µ̂, being its ground state governed by the combination
of its orbital and spin components. In its calculation, the Pauli exclusion principle
must be respected and, at the same time, the associated electrostatic Coulomb energy
has to be minimized, being important to take into account, in addition, the energy
hierarchy of the spin-spin, orbit-orbit, and SO interactions [176]. It must be noted,
however, that there are cases in which the orbital contribution is zero, either because
the unpaired electrons live in the s shell or due to its quenching, as it occurs for 3d
ions [188], being possible to approximate the atomic angular momentum to the spin
one, Ŝ. In this context, the time-dependent behavior of the spin angular momentum
due to the influence of its atomic environment or an external stimulus, which will
be encoded in the Hamiltonian operator, Ĥ

{
Ŝ
}

, can be explored. To do this, it is
possible to use the quantum-based equation of motion, in the Heisenberg picture
[185], for the expectation value for the i-th component of the spin operator,

〈
Ŝi
〉
,

which can be expressed as

∂t
〈
Ŝi
〉
=

1
ih̄
[
Ŝi, Ĥ

{
Ŝ
}]

=
1
ih̄

[[
Ŝi, Ŝj

] ∂Ĥ
{

Ŝ
}

∂Ŝj
+ · · ·

]
, (2.3)

where potential higher order terms in the spin operator coming from the Taylor se-
ries expansion of the associated Hamiltonian, governed by the commutation rela-
tions between different angular momentum components [186], are given by[

Ŝi, Ŝj
]
= ih̄ε ijkŜk, (2.4)

have not been explicitly included with the aim of working in the leading order in
energy. Combining Eqs. (2.3) and (2.4), it is possible to obtain, in vector form [189],
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that

∂t
〈
Ŝ
〉
= −Ŝ ×

∂Ĥ
{

Ŝ
}

∂Ŝ
+ · · · (2.5)

In the above expression, the length of the expectation value of the atomic spin
angular momentum operator is subject to discretization, as expected in the quan-
tum mechanics framework, and its value is not constant, verifying that

∣∣〈Ŝ〉∣∣ ≤
h̄ max

√
S (S + 1), where S represents the spin quantum number [190]. However,

there are some conditions under which one can transition from a quantum operator-
based description of the spin to a classical picture in which its associated angular
momentum can be considered as a continuous vector of constant magnitude rotating
in Euclidean space. First, when the magnitude of the atomic spin angular momen-
tum is large enough, such that

∣∣Ŝ∣∣→ ∞, the associated uncertainty will be small due
to the strong localization [191, 192]. On the other hand, when the reduced Planck
constant approaches zero, h̄ → 0, the graininess of the energy levels blurs, and the
contributions beyond the leading one in Eqs. (2.3) and (2.5) become negligible, giv-
ing place to the classical dynamical Liouville equation [193, 194]. In this context, the
atomic magnetic moment can be considered as a macrospin interacting with its sur-
roundings, ignoring quantum effects such as entanglement in multielectron systems
[190], which is a good approximation for systems in which the main contribution
comes from localized electrons in 4f orbitals and for high temperatures [195, 196].
Because of this, it is legitimate to evaluate the evolution of the atomic magnetic mo-
ment semiclassically in Euclidean space through the angular part of the spherical
coordinates representation of a unit atomic magnetization vector, mi, which would
be given by mi = µi/|µi|, as it is depicted in Fig. 2.1 (b).

Figure 2.1: (a) Graphical representation of the supposed spectrum of eigenvalues of
the modulus of the total electronic magnetic moment operator,

∣∣∣µ̂J

∣∣∣, and its projec-
tion along the z-th axis, µ̂z

J , for the case in which the quantum number associated to
the vector is given by J = 2. Adapted from [186]. (b) Definition of the unit magneti-
zation vector, m, in terms of the polar, θ, and azimuthal, ϕ, angular variables relative
to the Cartesian coordinate system in Euclidean space at the atomic length scale far
from the one dictated by the Planck constant, h̄.

2.2 Magnetic interactions and collective phenomena in solids

Elucidating the arrangement of the atomic magnetic moments in a solid constitutes
a multibody problem in which different causes of various kinds are involved. On
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the one hand, the electric charge distribution associated with each atom and its in-
teraction with its surroundings is known as the crystal field. However, macroscop-
ically, magnetism cannot be explained through a static approach alone, but rather
needs to take into account the relativistic motion of the electrons around the atomic
nuclei and their associated emergent magnetic field in accordance with Maxwell’s
equations. On the other hand, the spatial atomic scale involved must be taken into
account, where a classical description may not be sufficient, having to take into ac-
count the precepts of quantum mechanics such as the Pauli exclusion principle. This
has the consequence that there will be contributions to the magnetic macroscopic or-
dering of a sample with a different range and magnitude of influence with its neigh-
bors, which also depends on the potential delocalization of the electrons involved
depending on the conductivity of the system and symmetry of its unit cell.

2.2.1 Long-range classic dipole-dipole interaction

Due to the point-like nature of the electrons that contribute to the atomic magnetic
moment, they can be modeled as infinitesimally small current loops and thus be
interpreted as magnetic dipoles. In order to extrapolate this approximation to the
atomistic case and estimate the interaction energy associated to the Biot-Savart’s
law-based field created by them at every point in space, it is essential that the in-
teratomic distance is as large as possible compared to the electronic scale [197]. For
two atomic-scale magnetic dipoles with associated magnetization vectors mi and mj,
separated by a distance

∣∣rij
∣∣, this non-local energy would be given by

Edip = − µ0µ2
s

4π
∣∣rij
∣∣3 [3 (mi · r̂ij

) (
mj · r̂ij

)
−
(
mi · mj

)]
, (2.6)

where r̂ij represents a unit vector joining their centers and where µ0 and µs express
the vacuum magnetic permeability and atomic magnetic moment, respectively [198].
Even being Eq. (2.6) a valid and sufficient expression in the classical physics frame-
work, formally on its right-hand side there should be a contribution that realizes that
two different current distributions cannot occupy the same position in space [199].
In accordance with Maxwell’s equations that guarantee that the magnetic field in-
duced from the magnetization of a sample must not diverge, the flux lines arising
from each dipole of the considered system must be closed loops in such a way that
the net contribution of surface magnetic poles is minimized [200]. This associated
field depends on the size, mutual alignment, shape, and separation between atomic
magnetic moments, for which it takes into account the sum of the interaction be-
tween all the dipoles of the system [201]. Its contribution is small, but not negligible,
and it is not enough to explain the existence of long-range magnetic ordering in real
materials due to the transition temperature to these type of phases [202].

2.2.2 Short-range quantum-based exchange contribution

The interaction between two electrons, which must verify the Pauli exclusion princi-
ple due to their fermionic character, imposes that the total wavefunction product of
their overlapping must be antisymmetric under the exchange of both particles. This
can be verified if, simultaneously, both the radial part is symmetric and the spin one
antisymmetric (which is known as singlet state) and also if the roles are reversed
(in which case it will be known as triplet state). Due to the electrostatic repulsion
between both electrons, in the intra-atomic scenario, the triplet state is energetically
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favored because the antisymmetry of the radial part leads to the cancellation of the
wavefunction for the virtual case in which both particles occupy the same position
in the space [175]. In this circumstance, the total spin of the two electron system will
be non-zero, lining up parallel to each other. Although the Coulomb interaction,
which mediates the crosstalking between the fermions, is of a short-range nature, it
equally affects two electrons in nearest neighboring atoms. However, in this case,
it must be taken into account that it is possible to minimize the kinetic energy as-
sociated with an electron if it is allowed to be delocalized and not constrained in a
single atom, which gives rise to the formation of molecular-like bonding between
the two considered fermions [202, 203]. This results in the singlet state being ener-
getically favored in principle, since an antisymmetric radial part leads to a larger
orbit with a higher associated kinetic energy [176]. In this case, the electron spins
will tend to group antiparallel, giving rise to a compensated joint state concerning
their spin-based quantum numbers.

In most cases it is possible to characterize the correlation between two atomic
magnetic moments due to the overlapping of their wavefunctions through the sim-
ple functional form of the quantum-based Heisenberg model [204], which is given
by

Eexc = −∑
ij
Jij
(
mi · mj

)
, (2.7)

where Jij is known as exchange constant which accounts for the difference between
the energy of the triplet and the singlet states, such that when the spins of both elec-
trons are parallel it will have to be positive, Jij > 0, while when they are antiparallel
it will be negative, Jij < 0. This isotropic contribution is the predominant one in
most magnetic materials, being approximately seven orders of magnitude greater
than the dipole-dipole interaction, and is usually the main cause of the existence of
long-range magnetic ordering, governing the transition temperature between this
ordered state and a randomly-oriented paramagnetic one [202]. However, this type
of direct exchange is not enough to explain the magnetic properties observed in real
materials due to insufficient overlap between orbitals of neighboring atoms. This is
appreciable both in rare earths and in transition metals due to the location of their
valence electrons, cases in which it is important to also take into account the role of
the conduction electrons closest to the nucleus [176]. Real magnetic systems are more
complicated than what has been exposed so far, since they involve many atoms com-
posed of multiple electrons living in different orbitals interacting with each other, a
problem which is unsolvable exactly.

2.2.3 Antisymmetric exchange Dzyaloshinskii-Moriya interaction

Beyond the symmetric part of the exchange interaction introduced in Sec. 2.2.3, it is
also possible to find an antisymmetric contribution due to a potential low symme-
try of the atomic local environment. Based on the SOC in a medium with broken
inversion symmetry, which links the lattice with the spin space disposition, the crys-
tal field energy can be minimized through the creation of a non-collinear state. In
this way, this contribution favors a perpendicular arrangement between atomic mo-
ments, which has to compete with the predominant symmetric exchange one, giving
rise to a slightly canted arrangement with respect to the (anti)parallel distribution
between neighboring spins [175]. Analytically, this term can be modeled through
the expression

EDM = ∑
i,j

Dij ·
(
mi × mj

)
, (2.8)
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being Dij the Dzyaloshinskii vector [176]. This type of situation may be due also to
interfacial effects, such as when a FM layer is coupled with a HM-based sheet with
large SOC [205].

2.2.4 Anisotropy-induced preferential magnetization axes

In long-range magnetically-ordered media, the isotropic exchange interaction is not
able to account for the magnetization distribution in real samples. For this, there
must be some term that accounts for the preference of the atomic magnetic moments
to be oriented along certain directions of the crystal lattice or to be constrained in
some plane of the system. The fundamental contribution to this phenomenon is
known as intrinsic magnetocrystalline anisotropy, whose main source is based on
the single-ion term coming from the unquenched orbitals mediated by the SOC in
its competition with the crystal electric field created by neighboring atoms, depend-
ing on the local symmetry of the crystal [203]. In other cases, this scenario may be
due to the interatomic dipole-dipole or anisotropy exchange interactions, having a
two-ion origin [175]. There are, however, other types of anisotropies of extrinsic
origin which are based on deviations from the ideal crystal symmetry through, for
example, defects or partial order effects [206]. The most simplistic functional form
to model this phenomenology corresponds to the case of a second-order uniaxial
anisotropy term [207], which would be given by

Eani = −K ∑
i
(mi · ê)2, (2.9)

where ê denotes the unit vector along a low symmetry direction, while K accounts
for the anisotropy constant, which can be positive (K > 0), favoring the alignment
of the atomic magnetic moments of the sample along the easy-axis ê, or negative
(K < 0), preferring that the magnetization lives in the plane perpendicular to the
hard-axis ê.

2.2.5 Externally-induced equilibrium breaking Zeeman-like term

The application of a magnetic field along a certain direction causes the breaking of
the intrinsic symmetry of the medium, encouraging the externally-induced reorien-
tation of their magnetic moments. This type of contribution potentially competes
with the intrinsic anisotropy terms of the system, in such a way that their relative
magnitudes will define the direction along which the energy of the medium is to be
minimized [175, 176]. In this context, a Zeeman-like field, H, along the arbitrary ê-th
spatial direction, so that H = H ê, the associated energy term can be written as

EZee = −µ0µs ∑
i
(mi · H) . (2.10)

2.3 Magnetization dynamics-governed Landau-Lifshitz-Gilbert
equation

2.3.1 Phenomenological inclusion of transverse relaxation processes

The time-dependent magnetization dynamics under the action of the intrinsic phe-
nomena of the system or an external stimuli can be modeled through the Landau-
Lifshitz-Gilbert (LLG) equation. This expression can be obtained as a semiclassical
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version of the non-dissipative quantum-based Eq. (2.5) if the dissipation processes
inherent to any real system are included. Thus, in addition to a term that accounts
for the conservative uniform precession of magnetization around an effective mag-
netic field, scenario that is reflected in Fig. 2.2 (a), it is necessary to include a contri-
bution that models the decrease in its gyration radius until the local magnetic mo-
ment aligns with the direction that minimizes the energy of the system [208]. This
is consistent with the fact that in FM materials the macrospin tends to saturate in a
hysteresis loop as the external field increases and because dissipative mechanisms
are necessary to explain the absorption lines in resonance experiments [209, 210]. To
model this contribution, the most usual approach is through the phenomenological
inclusion of a term perpendicular to the precession torque, known as the Landau-
Lifshitz (LL) form [79], which can be written as

ṁ = −γ
(

m × Heff
)
− αγm ×

(
m × Heff

)
, (2.11)

which describes the precession of a local unit magnetic moment in a system, that ex-
change energy with its surroundings, around the direction dictated by the effective
magnetic field, Heff, which is depicted in Fig. 2.2 (b), being characterized by

Heff = − 1
µ0µs

δE
δm

, (2.12)

where some of the most important potential energy contributions have been intro-
duced in Sec. 2.2. The rate of energy dissipation is governed by the phenomenolog-
ical Gilbert damping parameter, α, which is mainly governed by the interaction of
the spin subsystem with the heat bath [211]. In this sense, its origin may be intrin-
sic, due to its interaction with external degrees of freedom such as phonons or other
electrons or, at the same time, by SO interaction or magnetostatic fields that cause
a misalignment between atomic magnetic moments, increasing the magnetic energy
of other spins in the system, or extrinsic, due to the presence of impurities in the
system, the hierarchy of mechanisms depending entirely on the considered material
[201, 203].

2.3.2 Rayleigh-governed description of the dissipation phenomena

Interestingly, apart from the description of the relaxation processes intrinsic to the
magnetization dynamics in long-range magnetically-ordered media given by the
LLG equation in its LL form, which are encapsulated in the second term of the right-
hand side of Eq. (2.11), there is another functional form of this expression that can be
used for the same purpose. This alternative version, which is known as the Gilbert
version of the LLG equation, can be described by

ṁ = −γ
(

m × Heff
)
+ α (m × ṁ) , (2.13)

which, if it is multiplied vectorially by m and it is considered that the magnetization
vector has a fixed length, it can be rewritten as

ṁ = − γ

1 + α2

[
m × Heff + α m ×

(
m × Heff

)]
, (2.14)

expression which approaches Eq. (2.11) in the limit α ≪ 1, differing substantially
for larger values of the damping parameter, the last referred equation being less
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realistic due to its inability to predict the existence of a minimum switching time
[201]. The more physical character of Eq. (2.13) can be glimpsed because it can
be derived through a Lagrangian formalism that takes into account that the force
acting on a moving particle in a viscous medium is proportional and antiparallel, to
a first approximation, to its velocity, which is encapsulated in what is known as the
Rayleigh dissipation function, R [212, 213]. To show this, it is possible to note that
the energy dissipation rate can be expressed, taking into account Eq. (2.12), as

R = −1
2

dE
dt

= −1
2

δE
δm

ṁ =
µ0µs

2

(
Heff · ṁ

)
, (2.15)

expression which has a term resembling what can be found in the functional forms
of the LLG equation. At this point, if one scalarly multiplies Eq. (2.13) by Heff

Heff · ṁ = α Heff · (m × ṁ) , (2.16)

and, on the other hand, by ṁ

ṁ2 = −γ ṁ ·
(

m × Heff
)

, (2.17)

it is possible to obtain two equations that allow to rewrite Eq. (2.15) in the desired
way [205]. By doing so, combining both expressions [214, 215], one arrives at

R =
αµ0µs

2γ
ṁ2. (2.18)

2.3.3 Longitudinal relaxation effects and temperature-dependent magne-
tization response

The LLG equation describes the time evolution of the unit magnetization vector,
given by Eqs. (2.11) and (2.13), being a nonlinear expression that, in general, is highly
complex and non-integrable [209]. Moreover, it only takes into account potential
transversal relaxation processes of the atomic magnetic moment with respect to the
direction of the local effective magnetic field [216]. Despite its generalizable use for
temperature-independent processes, there are situations where this scenario is not
completely satisfactory, such as in laser-induced ultrafast magnetization dynamics,
where it has been observed that the modulus of the order parameter decreases due
to longitudinal relaxation [217, 218]. To account for this type of situation, a gen-
eralization of the LLG equation, known as the LL-Bloch equation [219, 220], was
proposed, where the main contribution to the longitudinal damping comes from
high-frequency SW [221], this being a faster process than the transverse one, be-
coming, however, slower as the magnitude of the thermal effects increases [216].
To take into account the potential non-deterministic thermal fluctuations that result
in deviations from the average trajectory, it is possible to add a stochastic contri-
bution to the definition of the effective magnetic field, expressed by Eq. (2.12), in
the Langevin framework [222, 223]. Its most common functional form, suitable for
the case in which the timescale response of the thermal bath is faster than that of
the spin system, is through Gaussian white noise, in which both space and time
are uncorrelated, enabling the construction of a Fokker-Planck equation [219, 224].
Additionally, it is possible to model through the LLG equation the response of the
system for a specific temperature through the knowledge of the value of the intrin-
sic parameters of the system according to power scaling laws of the magnetization
vector modulus [225, 226].
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Figure 2.2: Time evolution of a single unit magnetic moment, m, as described by
the LLG equation in its LL form given by Eq. (2.11). (a) The magnetization vector
precesses around an effective field, Heff, expressed by Eq. (2.12), with a constant
polar angle in the absence of dissipative effects. (b) The atomic magnetic moment,
in the presence of relaxation processes, tends to align with the effective field through
a spiraling trajectory. Adapted from [209].

2.4 One-dimensional magnetic solitons in long-range mag-
netically-ordered media

2.4.1 Non-decaying localized solutions to nonlinear field theories

Interestingly, unlike in the case of wave-like solutions to linear dispersive equations,
which spread out over time, in nonlinear-governed theories as in the case of the LLG
expression that governs the magnetization dynamics in the presence of relaxation
processes, which is given irrespectively by Eqs. (2.11) and (2.13), there can be sta-
ble solutions that can potentially persist indefinitely. In particular, those non-trivial
classical solutions to nonlinear field equations that (i) are undistorted spatially local-
ized and that move at constant velocity and (ii) that after a collision process emerge
with their initial shapes and speeds, except for possible phase changes, can be re-
ferred to as solitons [227, 228]. However, it must be taken into account that there
is no universal definition for this term, and that even non-dispersive wave packets
moving uniformly, which do not verify condition (ii), are also known as solitons
while, strictly speaking, they should be called solitary waves. However, both types
of entities have in common that, to meet the dissipationless condition (i), a balance
must be found between the dispersive and nonlinear terms [229]. Clearly, the con-
cept of soliton requires more stringent conditions than for solitary waves, since to
corroborate that these reemerges unscattered, it is necessary to find time-dependent
propagating solutions involving several of these entities, while a solitary wave can
itself be a static localized solution [230].

2.4.2 Domain wall characterization in ferromagnetic one-dimensional spin
chains

2.4.2.1 Energy balance-governed inhomogeneous spin-based transition

For the case of a real non-infinite FM sample, a homogeneous state in which all the
atomic spins point in the same direction entails a very large magnetic field with its
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consequent magnetostatic energy. In order to reduce the self-energy of the medium,
well below the critical temperature of the system, the spontaneous creation of do-
mains, within which the magnetic moments are parallel oriented, whose size is, in
general, microscopic, is favourable [80, 176]. Under the premise that the magneti-
zation must be directed in such a way as to minimize the magnetic anisotropy en-
ergy of the system, the short-range exchange interaction will want the magnetization
transition between neighboring domains to be as smooth as possible [206]. These
types of soliton solutions that interpolate between two minima of the anisotropy-
based vacuum manifold, separated in this case by an angular variation of 180◦ of
the spin-based order parameter, are known as DW. For the specific case of an infinite
crystal in which there exists a uniaxial second-order easy-axis anisotropy contribu-
tion along the z-th spatial direction, the magnetization can rotate between its two
antiparalel polarization states through any plane containing the z-th axis. However,
since, for convenience, it is possible to assume that the magnetic order parameter can
only vary along the x-th spatial direction, the atomic magnetic moment has to rotate
in the yz plane, always being mx = 0, to avoid the creation of volumetric charges
(since ∇ · m = ∂xmx = 0). For this type of magnetic texture, known as Bloch-like
DW, which it is represented in Fig. 2.3 (a), there are potential surface charges at the
boundary of the sample, but their influence can be ignored because the considered
system is infinite. Thus, in this configuration the contribution of the magnetostatic
energy to the calculation of the magnetic texture profile is negligible, being entirely
governed by the anisotropy and exchange terms [205].

2.4.2.2 Analytically-based spatially-localized magnetic texture features

To address the analytical characterization of the static profile of the involved mag-
netic soliton in the absence of external stimuli, it is necessary to take, as a reference,
the number of nearest neighbors exchange-based bonds existing along the x-th tran-
sition direction of an atom located at an arbitrary position xi, being its magnetiza-
tion vector given by m (xi). In this case, the atom in the aforementioned position
has two first neighbors mediated by the FM exchange interaction encoded by the J
parameter, at a distance given by the atomic spacing a0, which can be represented as
m (xi±1). Therefore, the discretized version of the FM exchange contribution, Eexc,
can be expressed as

Eexc = −J m (xi) · [m (xi−1) + m (xi+1)] , (2.19)

where possible contributions from neighbors along the y-th spatial direction have
not been taken into account because they do not impose any type of exchange penalty
that affects the static properties of the magnetic texture. A continuum version of this
expression can be found assuming that the spin-based transition is smooth enough
by performing a 1D Taylor series decomposition up to second order along the x-th
axis with respect to the position xi of the reference atom, giving rise to

Eexc = −2J m (xi) ·
[

m (xi) +
a2

0
2
(
∂2

xm (xi)
)]

, (2.20)

where it can be seen that the first term of the right-hand side provides a constant
contribution that can be neglected. Taking into account that the magnetization or-
der parameter is a vector of fixed length, it is possible to rewrite the second term,
neglecting spatial indices, through the expression m ·

(
∂2

xm
)
= −(∂xm)2. In this
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scenario, the energy of the system, E, can be written taking into account the FM ex-
change, Eexc, given by Eq. (2.20), and anisotropy, Eani, contributions, which will be
given by

E = J a2
0 (∂xm)2 + Eani (m) , (2.21)

where Eani (m) = −Kz (m · ẑ)2, being Kz the second-order uniaxial easy-axis anisot-
ropy constant. In this context, it is convenient to abandon the vectorial description
of the system in favor of an angular-based formalism, such that the magnetization
vector, m, can be reexpressed, in spherical coordinates, as

m = (sin ϕ sin θ, cos ϕ sin θ, cos θ) , (2.22)

so that the configurational energy, E, given by Eq. (2.21), will take the functional
form given by

E = J a2
0 (∂xθ)2 + Eani (θ) , (2.23)

being the anisotropy-based contribution, in the spherical representation, expressed
as Eani (θ) = Kz sin2 θ [207].

To explore the stationary soliton-like solutions of the system described by the
exchange- and anisotropy-based configurational energy, E, given by Eq. (2.23) in its
angular description, it is possible to use the Euler-Lagrange (EL) formalism to find
the associated wave-like equation of motion, which will be given by

2J a2
0
(
∂2

xθ
)
=

∂Eani (θ)

∂θ
, (2.24)

expression which is reminiscent of the case of the Newton-dynamic description of
a classical particle in a potential lanscape given by the anisotropy-based nonlinear
contribution, Eani [231, 232]. To facilitate the manipulation of the previous expres-
sion, it is convenient to multiply it by (∂xθ) and take into account that

2 (∂xθ)
(
∂2

xθ
)
= ∂x

[
(∂xθ)2

]
, sin 2θ (∂xθ) = −∂x

(
cos2 θ

)
, (2.25)

which allows to rewrite Eq. (2.24), after its spatial integration, as

J a2
0 (∂xθ)2 + K cos2 θ = C, (2.26)

where C is an integration constant that can be characterized through the anisotropy-
governed boundary conditions given by the magnetization orientation at the DW
boundaries at spatial infinity. At this point, to obtain a soliton-like solution it is
necessary that it has a finite associated energy, E, which is possible, in view of Eq.
(2.24), when the polar angle, θ, verifies that

|x| → ∞ ⇒
{

(∂xθ) = 0,
Eani (θ) = 0,

(2.27)

which is equivalent to saying that the order parameter needs to belong to the vac-
uum manifold at spatial infinity, which, in the case of the considered uniaxial second-
order uniaxial anisotropy, Eani (θ) = Kz sin2 θ, happens when θ = nπ, where n ∈ Z

[233], as it is shown in Fig. 2.3 (b). In this scenario, because (∂xθ)|x→±∞ = 0 and
θ (x → ±∞) = (π, 0), the integration constant in Eq. (2.26), C, will be given by



22 Chapter 2. Energetically-induced magnetic texture stability in spin space

C = Kz, due to which the aforementioned expression can be reexpressed as

J a2
0 (∂xθ)2 = Kz sin2 θ, (2.28)

which shows that the exchange-based dissipation and anisotropy-based nonlinear
energy terms are compensated at any point in the system. This first-order differential
expression is usually known as Bogomolny equation or first integral of the system
(or, in the classical particle picture, as the virial theorem, relating its kinetic and
potential energies) [234, 235], which, if it is spatially integrated, can be rewritten as

∫ θ(x)

π/2

dθ

sin θ
= ± 1

a0

√
Kz

J

∫ x

X
dx, (2.29)

where it has been taken into account that, at the DW center position, given by X,
the polar angle takes the value θ (x = X) = π/2. It should be noted that the ±
sign on the right-hand side of Eq. (2.29) is due to the symmetry of Eq. (2.23) under
the transformation θ → θ + π. Since throughout the magnetic texture transition the
polar angle is constrained to the range of values given by θ ∈ (0, π), the involved
trigonometric function will always be positive in the aforementioned expression,
being the sign duality entirely governed by the spatial derivative of the angle θ,
that is, by the sense of rotation between its two defining extremes. This freedom
is what is known as the topological charge, Q, of the DW. Interestingly, the charge
nomenclature can be interpreted in line with the behavior of the magnetic soliton
under the action of an applied magnetic field along the ± z-th semiaxis, governing
whether it moves to the left or to the right along the x-th spatial direction [81, 236].

From Eq. (2.29) it can be obtained, after the integration process, the functional
form of the magnetic texture profile along the x-th spatial direction through its polar
angle, θ, representation, which can be expressed as

θ (x) = 2 arctan exp
[

Q (x − X)

∆0

]
, (2.30)

where ∆0 represents the DW width at rest, which is given by ∆0 = a0
√
J /K [80, 237].

In this expression it is possible to distinguish the effect of the different energy contri-
butions in the spatial extension of the magnetic texture, where the anisotropy term
advocates for an extremely narrow localized solution, without spins not aligned
with the dictated easy-axis, while the FM exchange interaction favors the opposite,
seeking the angle between neighboring spins withing the magnetic soliton transi-
tion to be as small as possible, thus favoring a wider soliton configuration [238].
Additionally, taking into account the Bogomolny expression depicted in Eq. (2.28),
which reflects the energy balance between the dispersive exchange-based interaction
and the nonlinear anisotropy-governed term, it is possible to rewrite the angular de-
scription of the configurational energy, E, given by Eq. (2.23), to find that this type
of soliton solution has, in fact, a localized energy profile, given by

E = 2Kz sech2 x − X
∆0

, (2.31)

which is independent of the involved topological charge, Q, due to the even trigono-
metric function involved, and that, if it is spatially integrated, gives rise to a finite
energy associated with the magnetic texture. As it can be seen in Eq. (2.30), there
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are two different types of DW due to the intrinsic inversion symmetries of the con-
figurational energy, E, of the system, given by Eq. (2.23), both in the polar order
parameter, θ → −θ, and in the spatial coordinate, x → −x, which are known as kink
(Q = +1) and antikink (Q = −1) solutions, which have the same associated energies
but different anisotropy-based boundary conditions at spatial infinity, which it can
be seen in Fig. 2.4 (a).

Figure 2.3: (a) Spin distribution of a Bloch DW in an infinite FM medium, in which
the magnetization rotates between two anisotropy-governed domains aligned in an
antiparallel fashion through the plane perpendicular to the x-th spatial direction
along which the magnetic moment changes. Adapted from [205]. (b) Representation
of the normalized uniaxial second-order easy-axis anisotropy distribution, Eani/Kz,
being Kz the parameter that governs its magnitude, as a function of the angular order
parameter, θ.

2.4.3 Order parameter-based description of antiferromagnetic inhomoge-
neous spin transitions

Both the functional form of the 180◦ DW profile encoded in the spatial behavior of
the angular order parameter, θ, which is characterized by Eq. (2.30), as well as its
localized energy distribution, E, which it is represented by Eq. (2.31), are equally
valid for the case of AFM media. Taking as reference the case of a 1D AFM spin
chain in which its antiparallel aligned sublattices are coupled through the exchange
parameter J , it is possible to consider, again, as it was done in the developed FM
scenario in Sec. 2.4.2.2, the existence of a uniaxial second-order easy-axis anisotropy
along the z-th spatial direction, as the one depicted in Fig. 2.3 (b), contribution which
would be characterized by the anisotropy constant Kz. To demonstrate this, it is
convenient, again, to take an arbitrary magnetic atom as a reference, which can be
located at the arbitrary position xi, while its magnetization vector will be defined
as m1 (xi). To explore the AFM behavior of the system, its first two intersublattice
nearest neighbors along the x-th spatial transition direction, located at distance a0,
must be taken into account, being characterized through the unit atomic magnetic
moment vectors m2 (xi±1). In this scenario, the associated atomistic AFM exchange-
based energy contribution, Eexc, is completely analogous to the one exposed in the
FM scenario, which is described by Eq. (2.19) in its vector form, being possible to
express it as

Eexc = −J m1 (xi) · [m2 (xi−1) + m2 (xi+1)] , (2.32)
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where the i-th subscripts attached to the atomic magnetization vectors, mi, express
their belonging to different magnetic sublattices of the system, which are antiparallel
distributed. However, because the unit atomic magnetic moment vector, m, changes
abruptly at the spatial scale given by the cutoff distance a0, it is necessary to redefine
the order parameter in such a way that it may be suitable for a description in the
continuum limit [239, 240]. In this sense, it is possible to introduce two new vectors
resulting from the linear combination of the magnetization vector of two contiguous
sublattices, m1 and m2, which will be given by

n =
m1 + m2

2
, l =

m1 − m2

2
, (2.33)

expressions which allow to rewrite the sublattice magnetization vectors as

n + l = m1, n − l = m2, (2.34)

being possible to name n as the total magnetization vector and l as the staggered
vector [241, 242].

In this context, performing a 1D Taylor series decomposition up to second order
for the atoms belonging to sublattice 2 with respect to the position xi of the reference
atom, it can be found that

Eexc = 2|J |m1 (xi) ·
[

m2 (xi) +
a2

0
2
(
∂2

xm2 (xi)
)]

, (2.35)

expression which can be rewritten in terms of the AFM vectors, n and l, through the
use of Eq. (2.34). Taking into account that n2 + l2 = 1, working in the exchange limit
framework, according to which |n|2 ≪ |l|2 [144, 243], and neglecting spatial indices,
it is possible to obtain

Eexc =
1
2

A n2 +
1
8

a (∂xl)2, (2.36)

where the AFM homogeneous, A = 8|J|, and inhomogeneous, a = 8|J| a2
0, ex-

change parameters have been introduced, taking into account, furthermore, that
since the staggered order parameter, l, is a vector of fixed length, it can be found
that l ·

(
∂2

xl
)
= −(∂xl)2. On the other hand, regarding the uniaxial second-order

easy-axis anisotropy term, encoded through the Kz parameter, it is necessary to take
into consideration the contribution of two neighboring sublattices with antiparallel
alignment, which are characterized through the magnetization vectors m1 and m2.
In this context, it is possible to write, taking into account the definition of the AFM
vectors, n and l, given by Eqs. (2.34), the anisotropy energy, Eani, in its vector form,
as

Eani = −Kz

[
(m1 · ẑ)2 + (m2 · ẑ)2

]
≃ −2Kz (l · ẑ)2, (2.37)

which has being derived in the exchange limit framework. As a result, the config-
urational energy of the system, E, taking into account Eqs. (2.36) and (2.37), can be
expressed, in spherical coordinates, taking into account the representation given by
Eq. (2.22), which is equally valid in this AFM-based description, as

E =
1
8

a (∂xθ)2 + Eani (θ) , (2.38)

where the anisotropy energy is defined as Eani (θ) = 2Kz sin2 θ, being also important
to take into account that the homogeneous contribution coming from the first term
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of the right-hand side of the exchange-based contribution given by Eq. (2.36) has
not been taken into consideration because the objective is to evaluate the associated
static DW profile. At this point, it is possible to appreciate that, compared to the FM-
based scenario exposed in Eq. (2.23), the anisotropy energy contribution, Eani (θ),
is doubled in the AFM formalism concerning a 1D spin chain, while the exchange-
governed term, Eexc, is fully equivalent to the previously mentioned case. Because
of this, the expressions concerning the DW profile, given by Eq. (2.30), and its asso-
ciated energy, expressed by Eq. (2.31), will be equally valid for the considered AFM
system, except for the fact that the static spatial extent of the magnetic soliton, ∆0,
will be smaller in this case if the FM and AFM exchange parameters, J , have the
same magnitude, being given by ∆0 = a0

√
|J |/ (2Kz), which is due to the fact that

the spatial distance between two atoms belonging to the same sublattice is given by
2a0, as it can be seen in the staggered vector-governed representation in Fig. 2.4 (b).

Figure 2.4: (a) Static localized kink and antikink solutions, given by Eq. (2.30),
expressed through the angular order parameter, θ, and their associated normal-
ized energies, E/ (2Kz), being Kz the parameter that controls the magnitude of the
anisotropy-based contribution, governed by Eq. (2.31), as a function of the normal-
ized space, (x − X) /∆0, where X represents the DW center position and ∆0 its spa-
tial extent at rest. (b) Transition from an atomic magnetization vector, m, description
of the magnetic soliton transition in an AFM spin chain, where the separation be-
tween neighboring spins is given by the atomic spacing a0, to a representation based
on the staggered vector, l, which was defined in Eq. (2.33), where the distance be-
tween magnetic moments belonging to the same sublattice is 2a0.

2.5 Energy-based topological protection notions

As it has been shown so far, magnetic solitons are localized smooth solutions of
nonlinear field equations with an associated finite total energy. Their existence is
intimately linked to the boundary conditions in spatial infinity, connecting different
anisotropy-based degenerated minima of the ground state. It should be noted at this
point that the magnetic texture solution exposed in Eq. (2.30) is stable because the
values of the angular-based polar order parameter, θ, at their endpoints are time-
independent [230, 234]. This is because the energy of non-trivial configurations has
to be conserved and kept finite, and there is no way to transfer a (semi)infinite region
lying on a certain ground state to another equivalent sector without applying an
infinite amount of energy to the system to overcome the associated potential barrier
[244, 245]. This is due to the discrete nature of the vacuum manifold, as there are
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no continuous deformations that make it possible. This is the basis of their non-
deformable nature, which allows classifying the different solutions by interpolating
between different energy minima.

To delve into this concept, it is possible to consider the case of two consecutive
anisotropy-based degenerate energy minima of the discrete vacuum manifold that
enabled the stabilization of a Bloch-like DW solitonic solution, which can be denoted
as θ− and θ+, such that they verify the condition θ = nπ, being n ∈ Z. In this sce-
nario, it is interesting to evaluate which are the four possible resulting configurations
that interpolate between these two states, that is, θ (x → ±∞) = {θ−, θ+}, {θ+, θ−},
{θ−, θ−}, or {θ+, θ+}. The first two cases allow the existence of kink/antikink so-
lutions, while the remaining ones correspond, equivalently, to the uniform ground
state or to a kink-antikink pair. In this context, it is possible to take advantage of
the fact that these disconnected regions cannot be distorted into each other with-
out violating the finite energy requirement to differentiate them through topological
notions [230, 233]. Contrary to the Noether’s theorem framework, where there are
conserved currents associated to continuous symmetries of the Lagrangian, in this
context it is possible to define a time-independent topological charge linked to the
symmetry of the vacuum manifold and which characterizes the non-deformability
of the involved soliton-like solutions [232]. To characterize the aforementioned topo-
logical invariant, it is possible to define an associated current, jµ, given by

jµ =
1
π

εµν ∂νθ, (2.39)

where µ and ν are two dummy indices in the Einstein’s summation convention,
εµν denotes the two-dimensional antisymmetric Levi-Civita tensor, and where the
right-hand side of the previous expression has been normalized to the field-based
difference between two consecutive energy minima [233, 238]. This quantity obeys a
topological conservation law due to its divergenless nature due to the commutation
of the mixed partial derivatives involved, and allows to define a charge, Q, locally
conserved under continuous deformations of the field [246], of the form

Q =
1
π

∫ +∞

−∞
(∂xθ) dx =

1
π

[θ (x = +∞)− θ (x = −∞)] , (2.40)

which depends entirely on the boundary conditions and which can only take inte-
ger values, by definition [232, 247]. Applying this equation to the case of the energy
distibution governed by the uniaxial second-order easy-anisotropy contribution, it
is possible to appreciate that of the four possible configurations previously exposed
interpolating between the different minima of the ground state, the first two can be
characterized through a non-zero topological charge, Q = ±1, while the remaining
two cases have an associated trivial one, Q = 0. Interestingly, those field configura-
tions that have the same topological charge can be deformed into each other as long
as the necessary energy is available, and therefore they are said to be homotopic, as
is the case of a kink-antikink pair and the vacuum, which reveals the additive na-
ture of the topological charge [230]. Therefore, the importance of non-equal minima
lies in the fact that, if identical, the field could be continuously deformed to a trivial
constant state, while if both boundaries are different, the order parameter must be
non-zero in its smooth transition between them [233, 244].

Interestingly, because the anisotropy-based potential energy term is periodic, it
is possible to note that there is an infinite number of discretized minima, with which
it is possible to compactify its values in R to a circle joining their ends, S1. In this
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scenario, the topological charge, Q, of a given field configuration can be related to
the number of times this new target space is wrapped around, which highlights the
angular character of the order parameter θ, as it can be seen in Fig. 2.5 (a) for dif-
ferent field configurations, concept which is known as winding number [231, 248].
However, contrary to the case of ideal systems in the classical field theory frame-
work, the anisotropy-based potential energy barrier is not infinite due to its exten-
sive character, and, at the same time, a magnetic texture in a real finite sample can
collide with the edges of the system and be annihilated. Therefore, in this context,
the topologically-based protection that hinders the deformability of a magnetic tex-
ture is a concept that helps to characterize the type of soliton-like solutions and to
explain why these magnetic textures do not decay in SW excitations of minimum en-
ergy of the magnetic medium, although its deep meaning differs from that existing
in infinite systems in the classical field theory framework. A good way to determine,
in the case of 1D DW, whether a specific magnetic soliton enjoys topological-like pro-
tection or not is to evaluate its behavior in the presence of an applied magnetic field,
H, as it is shown in Fig. 2.5 (b). If this external stimulus produces a null torque
in the spins that live in the boundaries of the magnetic texture, which are aligned
with the minimum anisotropy-based of the system, it can be said that this soliton-
like solution is topologically protected, which happens, for example, for 180◦ DW.
However, in the case of, for example, a 90◦ magnetic texture, it is not possible to
find an application direction of the magnetic field that does not exert a torque in at
least one of the homogeneously magnetized domains between which the magnetic
soliton is defined, scenario in which it could be said that this type of solution is not
topologically protected.

2.6 Zoology of magnetic solitons: vortices and skyrmions

2.6.1 Experimental stabilization of whirling magnetic textures

As it was previously introduced, solitons are solutions to nonlinear wave expres-
sions which, depending on the symmetry of the vacuum manifold, can exhibit top-
ological-like signatures that explain their potential stability. Beyond the previously
introduced localized field configurations inherent to the LLG equation in the form
of DW in (1+1)-dimensional spacetime, there are other classes of solitonic entities
that can be accommodated in spin space. Taking into account one more spatial di-
mension, it is possible to highlight, in the first place, the possibility of finding stable
magnetic vortex configurations, in which the magnetization curls in the film plane
around a core region in which the central spin is oriented perpendicular to the easy-
plane, as it is shown in Fig. 2.6 (a) [249]. Taking the case of magnetic nanodots as a
reference, the magnetization field tends to line up parallel to its perimeter in order to
minimize the creation of surface magnetic charges, which cannot be avoided in the
central region of the system due to the out-of-plane magnetic moment created to re-
duce the associated exchange energy [250]. Along the same lines, it is possible to sta-
bilize another type of topologically-protected magnetic texture known as skyrmion,
mainly in bulk magnets with broken inversion symmetry and HM/FM multilayer
systems [118, 251], due to, in both cases, the trade-off between the symmetric ex-
change and bulk or interfacial DMI [252]. For the first case, in non-centrosymmetric
crystals it is possible to go from a helical spiral state to a triangular skyrmion lat-
tice in the presence of an external magnetic field [253, 254], which prevents the im-
plementation of this type of scheme in potential devices [255]. On the other hand,
in the case of multilayered structures, it occurs when the metallic sheet presents a
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large SOC, not requiring the presence of a magnetic-based external stimulus since
the skyrmionic configuration is the ground state of the system [256, 257]. Other
alternatives to achieve the nucleation of this type of magnetic solitons encapsulate
the case of ultrathin magnetic films, based on the indirect exchange interaction of
three neighboring atoms where the non-magnetic one has a large SOC [258], or on
the competition between a perpendicular easy-axis anisotropy, with an applied mag-
netic field parallel to it, and a dipolar interaction favoring an in-plane magnetization
constriction [259, 260]. A typical skyrmion spin structure consists of, for example, its
central magnetic moment pointing downwards perpendicular to the film plane, ro-
tating its magnetization distribution radially until finally pointing antiparallel to its
core spin at the edge of the magnetic texture, as it is depicted in Fig. 2.6 (b) [261]. In
the case of AFM, it has been possible, on the one hand, to stabilize magnetic vortices
through their imprinting from a FM layer through the exchange bias effect [262, 263],
and on the other hand to do it with skyrmions in layered AFM [167].

Figure 2.5: (a) Classification of different soliton-based field configurations in the
anisotropy-based framework depicted in Fig. 2.3 (b), encoded by Eq. (2.23), through
the notion of the number of times that the unit circle is wrapped around between
energy minima to estimate the topological charge, Q, of the considered system.
Adapted from [236]. (b) Precessional torque induced by an external magnetic field,
H, in the domains between which the magnetic textures are defined, for the cases of
a topologically-protected 180◦ and a 90◦ DW whose integrity is potentially affected
by the external stimulus applied parallel to one of its ends.

2.6.2 Two-dimensional topological protection-rooted characterization

To characterize the stability of these two different classes of magnetic solitons, as
well as to be able to distinguish them from each other, it is possible to evaluate which
is the functional form of the skyrmion topological charge, N, in the case in which the
magnetization vector, m, is allowed to evolve in 2D Euclidean space. Under these
circumstances, this can be expressed as

N =
1

4π

∫
m ·
(

∂m
∂x

× ∂m
∂y

)
dx dy, (2.41)

which accounts for how many times the order parameter, m (r) = m (x, y), wraps
the unit sphere S2, being normalized to the integral of the solid angle, which guaran-
tees that its value will be a rational number [81, 241]. To facilitate the manipulation
of the previous expression, it is possible to take advantage of the radial symmetry of
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the out-of-plane magnetization component along the z-th spatial direction to param-
eterize the spherical representation of the three-dimensional magnetization vector,
m, in terms of the polar coordinates (ρ, φ), being ρ and φ the radial and azimuthal
components, respectively, so that it can be rewritten as

m = (cos ϕ (φ) sin θ (ρ) , sin ϕ (φ) sin θ (ρ) , cos θ (ρ)) , (2.42)

with which the skyrmion topological charge, N, obtains a reduced functional form
given by

N =

[
−1

2
cos θ (ρ)

]∞

0

[
1

2π
ϕ (φ)

]2π

0
= pm, (2.43)

where p and m represent, respectively, the polarity and vorticity of the considered
2D magnetic texture [264]. On the one hand, the polarity, p, characterizes the orien-
tation variation of the out-of-plane magnetization component, mz, of the considered
swirling magnetic configuration between its core, cos θ (ρ = 0) = ±1, and its bor-
der. Interestingly, it is this parameter that accounts for the fact that the skyrmions,
for which cos θ (ρ → ∞) = ±1 is verified, present integer values of the topological
charge , N, represented by Eq. (2.43), while the vortices, where cos θ (ρ → ∞) = 0,
have non-integer ones. On the other hand, due to the continuity of the order pa-
rameter, the azimuthal angle, φ, can only wrap the configuration space in mul-
tiples of 2π, with which the vorticity, m, can only take integer values, such that
m = 0,±1,±2, . . . accounting for the rotation direction of the in-plane magneti-
zation component, which allows to distinguish between different classes of vor-
tices and skyrmions [265]. The azimuthal angles of the position vector in polar
coordinates, φ, and the order parameter, ϕ, at each position are linearly related as
ϕ = mφ + χ, where χ is an offset quantity which is known as helicity. Depend-
ing on the orientation of the in-plane magnetization component, the helicity, χ, can
take different values, such as χ = 0 when it always points in the radial direction, or
χ = ±1/2 for toroidal configurations, being a continuous parameter, unlike p and
m [266]. These three parameters, polarity, p, vorticity, m, and helicity, χ, allow to
categorize the different types of 2D radially symmetric magnetic solitons.

Figure 2.6: (a) Magnetic vortex distribution in which the magnetization curls parallel
to the perimeter of the cylindrical structure around a core region where the central
spin is oriented perpendicular to the dot plane. Extracted from [267]. (b) Skyrmion
structure in which the magnetization rotates radially from its core spin, which is
polarized perpendicular to the film plane, to its magnetic-based periphery. Extracted
from [268].
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Chapter 3

Magnetic ordering-dependent
magnetic soliton dynamic behavior

3.1 Berry phase geometrical factor: a coherent states approach

3.1.1 Semiclassical treatment of the quantum-based spin eigenstates

In view of the functional form of the LLG equation, given by Eqs. (2.11) and (2.13),
taking into account only its precessional character, that is, only the first term of the
right-hand side of the aforementioned expressions, without the dissipative contri-
bution, it is worth questioning which type of Lagrangian, L, would be necessary to
replicate it. The path from the Hamiltonian formalism to the Lagrangian one in clas-
sical mechanics is to first identify the canonical coordinate pair of the system (given,
for example, by the position, ri, and linear momentum, pi, of a particle) and then
using the Legendre transformation, expressed as

L (ri, ṙi) = pi ṙi − H (ri, pi) , (3.1)

where H (ri, pi) represents the Hamiltonian of the system, being the conjugate vari-
ables (ri, pi) related through the Hamilton’s equations of motion given by

ṙi =
∂H (ri, pi)

∂pi
, pi = −∂H (ri, pi)

∂ri
, (3.2)

which allow to reexpress Eq. (3.1) solely in terms of the position, ri, and velocity, ṙi, of
the particle [269, 270]. However, this relationship is not straightforward for the case
in which the atomic moments have been modeled as unit vectors in the description
of the energetic contributions of the magnetic medium, which have been exposed
in Sec. 2.2, since the associated Hamiltonian depends on the angular-based char-
acterization of the spin orientation, given by the polar, θ, and azimuthal, ϕ, angles,
which must be correlated, but it is not obvious how. To circumvent this problem, it
is necessary to take into account the quantum-based nature of the spin, which can
be done through the construction of states, known as spin coherent states, which
result from the arbitrary rotation of the eigenstate that maximizes the projection of
the expectation value of the spin angular momentum along a quantized axis until
it lines up with the m direction [202]. To do this, taking the z-th spatial direction as
the reference axis and being S and MS the spin projection and magnetic quantum
numbers, verifying that MS = {−S,−S + 1, · · · , S − 1, S}, the starting eigenstate
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that will act as ground state will be given by |S, MS = S⟩, which fixes a spin com-
ponent, namely Sz |S, S⟩ = h̄S |S, S⟩, the rest being given by the commutation rela-
tions exposed in Eq. (2.4) [271]. In this context, the higher the magnitude of S, the
lower the associated uncertainty principle due to its strong localization, accessing
a semiclassical scenario where the quantum-mechanical average of the spin oper-
ator resembles a continuously varying vector even when the three components of
the spin operator cannot have the same eigenstate in common [191, 192]. The target
direction of rotation on the unit sphere will be characterized by a unit vector, such
that m = (sin θ cos ϕ, sin θ sin ϕ, cos θ), represented in Fig. 3.1 (a), whose eigenstate
may be defined in terms of Euler angles, which is the usual way of parameterizing
rotations in space, such that

|m⟩ = e−iSzθe−iSyϕe−iSzχ |S, S⟩ , (3.3)

where θ and ϕ represent the latitude and longitude rotation angles on the unit sphere,
being defined as θ ∈ [0, π] and ϕ ∈ [0, 2π], respectively, while the exponential term
that carries the variable χ acts only as a gauge term [272, 273]. Conveniently, it is
possible to rewrite the previous equation, up to a phase factor, as

|m⟩ =
MS=+S

∑
MS=−S

(
2S

S + MS

) 1
2

e−i(MS−S)ϕ
(

cos
θ

2

)S+MS
(

sin
θ

2

)S−MS

|S, MS⟩ , (3.4)

which is known as Wigner’s formula [185]. To corroborate that the average spin
orientation is defined along the arbitrary direction given by the vector m in the unit
sphere, it is enough that the expectation value associated with this state fulfills that
[274, 275]

⟨m| S |m⟩ = h̄S m, (3.5)

|m⟩ not being an eigenstate of S [276].
On the other hand, the internal product of two such states results in

〈
m′∣∣m〉 = (cos

θ

2
cos

θ′

2
+ sin

θ

2
sin

θ′

2
ei(ϕ−ϕ′)

)2S

, (3.6)

which reveals the general non-orthogonality of these coherent states due to the com-
mutation relations given by Eq. (2.4) between the spin components [277, 278]. From
this expression, it is possible to see that when the unit vectors m, m′ denoting in-
finitesimally close eigenstates in imaginary time are antiparallel, the overlapping
will be zero, reducing the quantum-based nature of the problem [239]. Moreover,
it is possible to appreciate that, when S → ∞, large deviations from adjacent co-
herent states are exponentially suppressed, which causes trajectories in imaginary
time to become smooth [272, 275]. On the other hand, the previous equation can be
rewritten, in the north pole parametrization for infinitesimally separated angles and
S = 1/2, as 〈

m′∣∣m〉 = 1 + iSδϕ (cos θ − 1) , (3.7)

where δϕ = ϕ′ − ϕ [272]. Moreover, these coherent states form an overcomplete set,
which can be seen through the closure relation given by∫

dµ (m) |m⟩ ⟨m| = 1, being dµ (m) =

(
2S + 1

4π

)
dm δ

(
m2 − 1

)
, (3.8)
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where dm = d (cos θ)dϕ, being this ingredient crucial in the path integral formula-
tion since it allows its insertion at every intermediate time interval [239, 279].

Figure 3.1: (a) Representation of a spin coherent state, |m⟩, obtainable from rotat-
ing the highest-weighted Sz eigenstate until it points in the direction dictated by the
unit vector, m, on the Bloch sphere definable through the polar, θ, and azimuthal, ϕ,
angles. Adapted from [280]. (b) Geometric phase acquired by a single spin, charac-
terized by the spin coherent state |m⟩, in its process of aligning adiabatically, at each
time step τj, with an external magnetic field that evolves adiabatically until forming
a closed path on the unit sphere. Adapted from [281].

3.1.2 Path integral formalism of smooth-varying spin vectors

In the Feynman’s path integral formalism, the quantum mechanical amplitude can
be reformulated as an equally weighted sum of all possible trajectories, where the
classical action, S , acts as the phase associated with the path [271]. Interestingly, in
the classical limit this integral is dominated by the trajectories of stationary phase
which minimizes the action, as expected [238]. In the spin-based case, the construc-
tion of the spin coherent states guarantees the smooth variation of their eigenstates
between intermediate steps in the possible paths due to their continuous vector char-
acter [185, 282]. In statistical mechanics, the equilibrium properties of the system
can be characterized through the canonical partition function, Z, which can provide
information about its evolution since it can be associated with the trace of the ampli-
tude transition between the initial and final states, which characterizes the sum over
all the possible paths between them [240, 283]. In this context, it is possible to write
that

Z = Tr
[
e−βT H[Ŝ]

]
=
∫

dµ (m)
〈
m
(
τf
)∣∣ e−βT H[Ŝ] |m (τi)⟩ , (3.9)

where βT represents the inverse of the thermal energy, given by βT = 1/ (kBT),
denoting kB the Boltzmann constant and T the absolute temperature [271]. In this
case, the exponential can be interpreted as an evolution operator where the inverse
of T plays the role of the imaginary time, ranging from τ = 0 to τ = h̄βT [274]. The
partition function is defined in Euclidean space-time as a result of the Wick rotation
that gives rise to sign homogeneity in the Minkowski metric and, furthermore, has
as a result that Z represents the sum over amplitudes over closed path, acting as
periodic boundary conditions [238, 271]. To deal with the internal product in Eq.
(3.9), it is possible to divide the imaginary time interval into N slices, where the
infinitesimal step is given by ∆τ = h̄βT/N. Thus, when N → ∞, the exponentiated
operators on consecutive time steps become commutative [278], and it is possible to
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introduce the identity relation exposed in Eq. (3.8) between every intermediate time
step. Using the Trotter formula [239], Eq. (3.9) can be rewritten as

Z = lim
N→∞

(
N−1

∏
j=0

∫
dµ
(
mj
))(N−1

∏
j=0

〈
m
(
τj
)∣∣ e−∆τH[Ŝ]/h̄ ∣∣m (τj+1

)〉)
. (3.10)

Taking advantage of the fact that ∆τ is small by definition, it is possible to per-
form a time-based Taylor series expansion up to first order due to the smooth time-
dependent variation of the spin’s trajectory, obtaining a more manageable expres-
sion given by

Z ≃ lim
N→∞

(
N−1

∏
j=0

∫
dµ
(
mj
))(N−1

∏
j=0

〈
m
(
τj
)∣∣ (1 − ∆τH

[
Ŝ
]

/h̄
) ∣∣m (τj+1

)〉)
, (3.11)

where the inner products of different operators of the originally exponential func-
tion are involved. To deal with this, it is possible to realize that, according to the
variational theorem, the “classical” Hamiltonian can be characterized, in accordance
with Eq. (3.5) [202], as〈

m
(
τj+1

)∣∣H
[
Ŝ
] ∣∣m (τj

)〉〈
m
(
τj+1

)∣∣m (τj
)〉 ≃ H

[
h̄S m

(
τj
)]

+O (∆τ) , (3.12)

where terms proportional to the time difference given by ∆τ have not been made
explicit to work up to first order in the original exponential expansion. With these
ingredients, it is possible to rewrite Eq. (3.11) as [202, 271, 274]

Z =
∮

m(0)=m(h̄βT)
D m e−SE[m]/h̄, (3.13)

where the measure, D m, for paths on a unit sphere [239], has been defined as

D m = lim
N→∞

N−1

∏
j=0

dµ (m) , (3.14)

and the Euclidean action, SE [m], is given by

SE [m] =
∫ h̄βT

0
dτ {ih̄S (∂τϕ) (1 − cos θ (τ)) + H [h̄Sm (τ)]} , (3.15)

where the first term is known as Wess-Zumino or Berry phase [284], which is imag-
inary regardless of whether it is considered in Euclidean or Minkowski space-time,
this being a quality of a topological term [273], while the second one represents the
usual potential energy contributions, as those collected in Sec. 2.2. The kinetic con-
tribution, which is the result of the non-orthogonality between adjacent eigenstates,
describes the phase acquired by a spin in its process of aligning itself adiabatically
with a rotating magnetic field parallel to m

(
τj
)

at each time step [202], represented
in Fig. 3.1 (b) in the case of a closed path on the unit sphere. Moreover, its origin is
geometric, since it depends on the traced path on the unit sphere, representing the
area enclosed in its trajectory, being independent of an hypothetical explicit time de-
pendency [274]. In this framework, in line with Eq. (3.1), it is possible to see from Eq.
(3.15) that the angular coordinate ϕ has a corresponding canonical momentum, pϕ,
given by pϕ = h̄S (1 − cos θ), which makes it possible to replicate the LLG equation,
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given by Eqs. (2.11) and (2.13), without the dissipative term of its right-hand sides
[285]. Performing a Wick rotation that allows one to return to the real-valued time
formalism, t, through the expression t = −iτ, the Minkowskian action, SM, will be
given by iSM = −SE, which implies that the Lagrangian of the system, L, will be
given by

L =
µ0µs

γ
(cos θ − 1) ϕ̇ + E, (3.16)

where it has been taken into account that, for S = 1/2, it is possible to find that
Sh̄ = µ0µs/γ, given the atomic magnetic moment, µs, in this case, by µs = µB.

3.2 Walker breakdown for propagating ferromagnetic domain
walls

3.2.1 Steady-state magnetic texture translation below critical stimulus

3.2.1.1 Lagrangian dissipative formalism for biaxial ferromagnets

As a natural extension of the static DW scenario exposed for the case of a FM spin
chain in Secs. 2.4.2.1 and 2.4.2.2, it is possible to explore the dynamic behavior of
the magnetic texture in the presence of an external magnetic field, H. Previously, in
Eqs. (2.21) and (2.23), only the FM exchange-based interaction between neighboring
spins along the x-th axis, characterized by the parameter J , and the uniaxial second-
order easy-axis anisotropy contribution along the z-th spatial direction, encoded by
the constant Kz, were considered. Additionally, the existence of an additional uni-
axial second-order hard-axis anisotropy term along the x-th axis, represented by the
Kx parameter, can be taken into account. This will guarantee the constriction of the
magnetization in the yz plane, supporting the assumption made in Sec. 2.4.2.1 to
minimize the impact of magnetostatic contribution, which causes the redefinition of
the anisotropy energy, Eani, such that Eani = −Kz (m · ẑ)2 + |Kx| (m · x̂)2. It is impor-
tant to note that this anisotropy-based addition to the energy of the system, E, has
no impact on the plane where the magnetization rotates between the two consecu-
tive energy minima, so it will not affect the static properties of the magnetic texture.
Therefore, the functional form of the DW profile, given by the angular order param-
eter, θ, through Eq. (2.30), as well as its width at rest, ∆0, remain unchanged. On the
other hand, if the external magnetic field, H, is assumed to be applied along the z-th
spatial direction, H = H ẑ, it will not exert any type of torque on the spins that make
up the domain boundaries of the magnetic soliton, as it can be seen in Fig. 2.5 (b), but
it will cause potential tiltings of the inhomogeneous magnetization transition from
the yz plane, described by the azimuthal angle, ϕ. In this scenario, the Lagrangian,
L, of the system can be expressed, taking into account the parameterization of the
magnetization vector, m, in spherical coordinates [215, 286], given by Eq. (2.22), and
the Zeeman-like representation of the external stimulus-based energy, EZee, encoded
by Eq. (2.10), as

L =
µ0µs

γ
cos θ ϕ̇ + J a2

0
(
∂2

xθ
)
+
(
Kz + |Kx| sin2 ϕ

)
sin2 θ − µ0µsH cos θ, (3.17)

in accordance with what was stated in Eq. (3.16), where it must be taken into ac-
count that, unlike the parameterization in spherical coordinates used in Sec. 3.1 for
the unit magnetic moment, m, the more physical one given by Eq. (2.22) has been
used in this case. Furthermore, to characterize the dynamic evolution of a magnetic
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texture propagating in a dissipative medium, it is necessary to take into account the
associated friction-based energy losses in the magnetic medium. With this objective
in mind, it is possible to take into account the representation in spherical coordi-
nates of the Rayleigh dissipation function, R, given by Eq. (2.18) in its vector form
[212, 213], obtained through the parameterization of the magnetization encoded by
Eq. (2.22), which results in

R =
αµ0µs

2γ

(
θ̇2 + sin2 θ ϕ̇2) . (3.18)

3.2.1.2 Rigid profile-based collective coordinates formulation

To facilitate the analytical treatment of the dynamic DW behavior, it is convenient
to work on the collective coordinates framework, in which the center position, X,
of the magnetic soliton and the tilting azimuthal-based angle, ϕ, play the role of
the generalized coordinates of the system [287, 288]. To this end, it is possible to
extrapolate the static Walker-like rigid profile of the magnetic texture, characterized
by the angular order parameter, θ, through Eq. (2.30), to a time-dependent scenario
in which the aforementioned coordinates, (X (t) , ϕ (t)), are far from their values at
rest. In this line, substituting the dynamically-based Eq. (2.30) in the different polar
angle-dependent terms of Eqs. (3.17) and (3.18), it is possible to find that

cos θ = − tanh
x − X

∆
, sin θ = sech

x − X
∆

, (3.19)

(∂xθ) =
1
∆

sech
x − X

∆
, θ̇ = − (x − X) ∆̇ + ∆Ẋ

∆2 sech
x − X

∆
, (3.20)

expressions which allow one to rewrite the Lagrangian, L, and Rayleigh dissipation
function, R, as a function of the new pair of generalized terms, giving rise to

L =
µ0µs

γ
(γH − ϕ̇) tanh

x − X
∆

+

(J a2
0

∆2 + Kz + |Kx| sin2 ϕ

)
sech2 x − X

∆
, (3.21)

R =
αµ0µs

2γ

[(
(x − X) ∆̇ + ∆Ẋ

∆2

)2

+ ϕ̇2

]
sech2 x − X

∆
, (3.22)

which are given in terms of trigonometric functions. In order to obtain a manageable
set of coupled first-order differential equations, it is convenient to obtain the net
contribution of the preceding expressions through their spatial integration along the
x-th spatial direction of the 1D spin chain. In this sense, it is possible to find, in the
first instance, that [289]∫ +∞

−∞
sech2 x − X

∆
dx = 2∆,

∫ +∞

−∞
tanh

x − X
∆

dx = 2X, (3.23)∫ +∞

−∞

x − X
∆

sech2 x − X
∆

dx = 0,
∫ +∞

−∞

(
x − X

∆

)2

sech2 x − X
∆

dx =
π2∆

6
, (3.24)
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from which the spatially-integrated Lagrangian, L, and Rayleigh dissipation func-
tion, R, can be obtained through Eqs. (3.21) and (3.22) [205, 215], being given by

L =
2µ0µsX

γ
(γH − ϕ̇) + 2

[J a2
0

∆
+ ∆

(
Kz + |Kx| sin2 ϕ

)]
, (3.25)

R =
αµ0µs

γ

(
π2∆̇2

12∆
+

Ẋ2

∆
+ ∆ϕ̇2

)
. (3.26)

Through the variational principle in the context of the EL formalism, in com-
bination with the friction-like processes characterized by the Rayleigh dissipation
function, R, defined as

∂L
∂ξ

− d
dt

(
∂L
∂ξ̇

)
= −∂R

∂ξ̇
, (3.27)

it is possible to find the equations of motion of the system taking into account Eqs.
(3.25) and (3.26), which will be given by

Ẋ
∆

− αϕ̇ =
γHK

2
sin 2ϕ, (3.28)

αẊ
∆

+ ϕ̇ = γH, (3.29)

∆̇ =
12γ

αµ0µsπ2

[J a2
0

∆
−
(
Kz + |Kx| sin2 ϕ

)
∆
]

, (3.30)

where the hard-axis-based anisotropy field, HK = 2|Kx|/ (µ0µs), has been intro-
duced [290, 291]. It should be noted that, in the static scenario, in which there are
no potential tiltings the from easy-plane in the absence of an applied magnetic field,
H, the hard-axis anisotropy contribution, encoded by the |Kx| , has no impact on the
first-order differential equations concerning the DW center position, X, and width,
∆, as it might be expected. On the other hand, it is plausible to rewrite these two
expressions, given by Eqs. (3.28) and (3.29), as

Ẋ =
γ∆

(1 + α2)

(
αH +

HK

2
sin 2ϕ

)
, (3.31)

ϕ̇ =
γ

(1 + α2)

(
H − αHK

2
sin 2ϕ

)
, (3.32)

which can be decoupled for quasistatic dynamic scenarios in which there are negli-
gible deviations from the DW yz-based plane at rest, characterized by the azimuthal
angle, ϕ, which would be accompanied by small variations of the spatial extension
of the magnetic soliton, ∆, with respect to its value at rest, ∆0. In this context, for low
magnitudes of the applied magnetic field, H, it is possible to linearize the involved
trigonometric functions in Eqs. (3.31) and (3.32) to obtain a Newton-like second-
order differential equation for the center position, X, of the magnetic texture, given
by

Ẍ +
αγHK

1 + α2 Ẋ − γ2∆0HK H
1 + α2 = 0, (3.33)

that reveals the inherent inertial signatures experienced by a dynamic DW in a FM
medium, highlighting, at the same time, its pseudoparticle behavior [215, 292]. Sim-
ilarly, the same can be done with the remaining generalized coordinate, given by
the azimuthal angle, ϕ, being possible to find that its associated dynamic magnetic
soliton mass is greater than the one existing in the previous expression for its center
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position, X. This is the reason why a formalism based on Eq. (3.33) is appropriate
to describe a system with weak pinning effects, being necessary to transition to an
azimuthal angle-based formalism if these contributions become stronger [293].

Concerning the dynamic evolution of the spatial extension of the magnetic tex-
ture, ∆, given by Eq. (3.30), it is possible to appreciate that this parameter relaxes,
in a precession-free regime governed by the azimuthal angle, ϕ, towards an equilib-
rium value, ∆∗, given by

∆∗ (ϕ) =
∆0√

1 + λ sin2 ϕ
, (3.34)

where it can be seen that the DW width, ∆∗, is a time-dependent parameter due to its
dependence on the azimuthal angle, ϕ (t), where λ is a dimensionless constant given
by the hard-axis to easy-axis anisotropy ratio λ = |Kx|/Kz [91, 294]. In the dynamic
scenario in which there are no sizable azimuthal angle-dominated tiltings from the
easy-plane at rest of the magnetic soliton, the magnetic texture will propagate in a
precession-free steady-state regime, as it is depicted in Fig. 3.2 (a), according to Eq.
(3.31), where the velocity, Ẋ = v, is characterized by

v =
γ∆

1 + α2

(
αH +

HK

2
sin 2ϕ∗

)
, (3.35)

where it is verified that ϕ̇ = 0. This situation is verified as long as the anisotropy
field-based contribution, governed by HK, is capable of compensating the action of
the external stimulus, H, a condition which is characterized as

sin 2ϕ∗ =
H

HW
, (3.36)

which is fulfilled whenever |H| ≤ HW, where HW represents the so-called Walker
field, which is defined as HW = αHK/2, being given the limiting azimuthal angle-
based tilting from the DW plane at rest allowed to remain in the steady-state regime
by ϕ = π/4 [91, 215]. Interestingly, the velocity, v, of the magnetic soliton in the
aforementioned low field-governed translational stationary tendency can be rewrit-
ten through the combination of Eqs. (3.35) and (3.36), being possible to express it
through

v =
γ∆∗ (ϕ∗) H

α
, (3.37)

functional form in which it can be interpreted that during the uniform magnetic
texture motion, for a certain applied magnetic field, H, there is a constant energy
dissipation rate of the Zeeman-like contribution governed by the Gilbert damping
parameter, α [205, 295, 296]. Since the speed, v, is inversely proportional to α, it
can be deduced that the smaller the damping parameter, the larger the deviation
azimuthal angle, ϕ, from the static DW plane at rest has to be for a given magnitude
of the external stimulus, H, according to Eq. (3.36), to compensate its effect to remain
in the steady-state regimen [237].

3.2.1.3 Hard-axis anisotropy-enabled maximum stationary velocity

Interestingly, if the expression for the equilibrium DW width, ∆∗, in the stationary
dynamic regime, given by Eq. (3.34), is substituted into the steady-state velocity
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equation, v, denoted by Eq. (3.37), it is possible to find that

v =
γ∆0HWh

α

√
1 + λ

(
1 −

√
1 − h2

)
/2

, (3.38)

where the normalized applied magnetic field is denoted as h = H/HW, and where
the functional form of the azimuthal angle in the rigid regime, ϕ∗, given by Eq.
(3.36), has been used. It should be noted that, in this case, the relationship between
the speed, v, of the magnetic texture and the external stimulus, H, is now strongly
nonlinear due to the nature of Eq. (3.36). To find the maximum velocity, vmax, that
the DW can reach below the Walker field [297], it is necessary to find the associated
reduced field, hmax, for which the previous expression reaches a stationary point
through its derivative with respect to h, which gives rise to

hmax =
2(1 + λ)1/4

(√
1 + λ − 1

)
λ

, (3.39)

equation which allows to obtain

vmax =
γ∆0HK

(√
1 + λ − 1

)
λ

, (3.40)

from which it can be inferred that, the greater the dimensionless anisotropy-based
parameter λ, the smaller the needed magnitude of the external stimulus, H, to reach
the maximum velocity obtainable in the rigid dynamic regime, as it can be seen in
Fig. 3.2 (a). For the case in which the applied magnetic field reaches the Walker field
value, H = HW, it is possible to find that Eq. (3.37) can be reexpressed to obtain the
so-called Walker velocity, vW, which is given by

vW =
γ∆0HK√
2 (2 + λ)

, (3.41)

equation which is independent of the Gilbert damping parameter, α [91, 241]. It is
remarkable to note that, if this expression is compared with the maximum attainable
DW speed, vmax, given by Eq. (3.40), giving rise to

vmax

vW
=

(√
1 + λ − 1

)√
2 (2 + λ)

λ
. (3.42)

3.2.2 Abrupt transition to an unstable magnetic soliton propagation trend

3.2.2.1 External stimulus-induced oscillatory to steady kinematics transition

If the applied magnetic field, H, exceeds the Walker field, HW, the dissipation mech-
anism governed by the Gilbert damping constant, α, is no longer capable of com-
pensating for the torque exerted by the external stimulus to keep the tilting from the
DW plane at rest below the azimuthal angle-based critical value given by ϕ = π/4,
as dictated by Eq. (3.36). In this scenario, the system enters a new dynamic regime
in which the magnetization, m, will undertake a time-dependent precession process,
which is nonlinear due to the anisotropy-based contribution governed by the uniax-
ial easy-axis parameter Kz in Eq. (3.32) [205, 237]. This has as a consequence that
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both, the time evolution of the center position, X, of the magnetic soliton and the
azimuthal angle, ϕ, given, respectively, by Eqs. (3.31) and (3.32), must be taken into
consideration to describe the dynamic behavior of the magnetic texture, contrary to
the case exposed in the rigid translational mechanism described by Eq. (3.37). In this
new propagation regime, where the stable DW dynamics are abruptly interrupted,
which is known as WB, a sharp decrease in the speed, v, of the magnetic soliton takes
place, as it is shown in Fig. 3.2 (a), while its spatial extension, ∆, which in the steady-
state process decreased as the applied magnetic field, H, increased, it will now begin
to periodically expand and contract [298, 299], being its mean value depicted in Fig.
3.2 (b). Interestingly, the precession period, T, of the magnetization can be obtained
through the dynamic equation for the azimuthal angle, ϕ, given by Eq. (3.32), which
will be characterized as

T =
π
(
1 + α2)

γHW
√

h2 − 1
, (3.43)

where it must be taken into account that tangent trigonometric function that appears
during the time integration process of Eq. (3.32) has period π. The averaged velocity
of the magnetic texture over an oscillation period, T, can be obtained from Eq. (3.29)
taking into account that, in this case, the DW width, ∆, is not constant, which results
in 〈

q̇
∆

〉
=

γHW

α (1 + α2)

[
h
(
1 + α2)−√h2 − 1

]
, (3.44)

expression that implicitly contains the variation of the spatial extension of the mag-
netic soliton [215, 300]. On the other hand, in the limit H ≫ HW, the averaged DW
velocity again becomes linearly dependent on the applied magnetic field, H, as in
Eq. (3.37), because in the dynamic expression for the azimuthal angle, ϕ, given by
Eq. (3.32) the periodic torque term present in the second term of its right-hand side
becomes negligible. Under these circumstances, the dominant contribution to the
net speed, v, of the magnetic soliton, which is described by Eq. (3.31), will be the
torque related to the damping parameter, α, which corresponds to the first term of
its right-hand side, with which it can be asserted that

v =
αγ∆H
1 + α2 , (3.45)

whereupon a steady-state regime is recovered in this limiting case [91, 215].

3.2.2.2 Field- and anisotropy-governed torque competition in the precessional
regime

To achieve a deeper insight into the different dynamical regimes experienced by a
DW in a biaxial FM under the action of an applied magnetic field, H, along the z-th
spatial direction, H = H ẑ, it is possible to perform a torque-based analysis based
on the LLG equation governed by Eq. (2.11), which it is developed in Fig. 3.3 (a).
Initially, all the spins that make up the inhomogeneous transition of the magnetic
soliton between its two domain boundaries aligned along the z-th axis will experi-
ence a precessional, τa

p, torque characterized by τa
p = γH sin θ ϕ̂, where it has been

taken into account that m = r̂, being defined by Eq. (2.22). This contribution, which
will predominate over the damping one, given by τa

d = −αγH sin θ θ̂, due to the or-
der of magnitude of the Gilbert damping parameter, α, causes an azimuthal preces-
sion around the direction of application of the external stimulus, H [237]. Referring
from now on to the case of the central spin of the magnetic texture, which is initially
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aligned along the y-th spatial direction, m = ŷ, as it is illustrated in Fig. 2.2 (a), the
applied magnetic field will cause its related torques to be given by τa

p = −γH x̂ and
τa

d = −αγH ẑ. Due to the magnetization tilting caused by the external stimulus from
the DW plane at rest, characterized by a non-null azimuthal angle, ϕ, in an evolving
counter-clockwise fashion, the appearance of a volumetric magnetic charge-based
contribution will take place, which the system will want to minimize by realigning
the referenced central spin again along the y-th axis. In the same line, the uniax-
ial second-order hard-axis anisotropy, encoded by the |Kx| parameter, will act in
the same way as the emergent demagnetizing term, whereby both effects can be re-
absorbed through the anisotropy-based restoring field, HK, given by HK = HK x̂,
from now on. Thus, in the rigid translational regime, being now given the mag-
netization vector, m, associated to the central spin by m ∝ −x̂ + ŷ, the torques as-
sociated with the anisotropy contribution can be characterized as τK

p ∝ γHK ẑ and
τK

d ∝ αγHK (x̂ + ŷ). On the other hand, the torque terms associated with the exter-
nal stimulus, H, in this tilted scenario will be denoted by τa

p ∝ −γH (x̂ + ŷ) and
τa

d ∝ 2αγH ẑ.

Figure 3.2: (a) Numerically-obtained mean speed, v, of a FM magnetic texture, nor-
malized to the Walker velocity, vW, defined by Eq. (3.41), as a function of the nor-
malized magnetic field, h, for different values of the dimensionless anisotropy-based
parameter, λ, obtained through the simultaneous resolution of Eqs. (3.28), (3.29),
and (3.30). (b) Numerically-calculated mean DW width, ∆, normalized to its rest
value, ∆0, as a function of the speed, v, of the FM magnetic soliton divided by the
Walker velocity, vW, defined by Eq. (3.41), for different values of the dimension-
less anisotropy-based parameter, λ, obtained through the simultaneous resolution
of Eqs. (3.28), (3.29), and (3.30).

As it can be seen, there is a competition between the applied magnetic field-
induced precessional, τa

p, and the hard-axis anisotropy-based damping, τK
d , torques

which can be glimpsed in the presence of the two terms, of opposite sign, in the
right-hand side of Eq. (3.32) [205]. In fact, if the precessional and damping terms are
made explicit all together in the LLG equation, given by Eq. (2.11), for the central
DW spin characterized by a polar angle given by θ = π/2, it can be found that

ṁ = γ

(
αH +

HK

2
sin 2ϕ

)
ẑ + γ

(
H − αHK

2
sin 2ϕ

)
ϕ̂, (3.46)

where the first term of the right-hand side has a functional form equivalent to that
stated in Eq. (3.31), while the second contribution is reminiscent of Eq. (3.32). This
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implies that the steady-state regime below the Walker field, HW, is dominated by a
time-dependent magnetization vector, ṁ, with a constant azimuthal angle, ϕ, being
only given by its z-th component [237]. If the precessional contribution related to the
external stimulus, H, exceeds the maximum strength of the damping-based hard-
axis anisotropy one, characterized by the Walker field, HW, the system will enter a
oscillatory dynamic regime known as WB. This propagation trend of the magnetic
soliton is non-uniform because the torque terms that control the motion of the mag-
netic texture, τa

p and τK
d , which are implicitly included in the z-th component of the

magnetization variation, ṁ , characterized by Eq. (3.46), see how their contribu-
tions vary their relative collinear arrangement in the different quadrants of the xy
plane, which is due to the involved sine trigonometric function. Because of this,
the azimuthal angle-based precession rate, ϕ̇, is not constant over time, and the DW
rotation is slower in quadrants I and II, where the hard-axis anisotropy-governed
damping torque, τK

d , is opposed to the applied magnetic field-induced precessional
torque, τa

p [205].

3.3 Stable relativistic antiferromagnetic domain walls dynam-
ics

3.3.1 Configurational energy in two sublattice antiferromagnetic spin chains

In the same way that it was done with the case of the 1D FM spin chain in Sec. 3.2,
it is plausible to analyze the dynamic behavior of an AFM DW in the presence of an
external magnetic field, H, using, for this, the static scenario exposed in Sec. 2.4.3 for
the case of a 1D spin chain. Previously, in Eq. (2.37), it was considered the situation
in which there was only a uniaxial second-order easy-axis anisotropy contribution,
encoded by the parameter Kz, along the z-th spatial direction. In this case, in accor-
dance with what was stated for biaxial FM in Sec. 3.2, the existence of an additional
anisotropic term will be taken into account, which consists of a uniaxial second-
order hard-axis anisotropy defined along the x-th axis, being characterized by the
constant |Kx|. In this way, the anisotropy-based energy contribution, Eani, will be
given, through an extrapolation of Eq. (2.37), by Eani = −2Kz (l · ẑ)2 + 2|Kx| (l · x̂)2,
in the exchange limit framework [144, 243]. As a result of this, the magnetization, m,
will be constrained in the yz plane, although in this case, as opposed to its FM coun-
terpart, potential deviations of the unit atomic magnetic moment from the plane at
rest of the magnetic soliton do not result in the appearance of sizable unwanted mag-
netostatic contributions. This is due to the antiparallel arrangement of neighboring
spins promoted by the AFM exchange interaction, being encoded through the pa-
rameter |J |, which represents the dominant term in the system. If the 1D AFM spin
chain is subjected to the action of a non-staggered magnetic field, H, applied along
the z-th spatial direction, H = H ẑ, not only its torque associated with the spins that
make up the boundaries of the DW, which are collinear to the external stimuli, will
be zero, but its effect will be almost negligible for moderate magnitudes in the inho-
mogeneous magnetization transition due to the effect of mutual partial cancellation
between neighboring spins. To characterize the related Zeeman-like energy contri-
bution, EZee, through the sum of its impact on each magnetic sublattice, according
to Eq. (2.10), it is necessary to take into account the definition of the AFM vectors, n
and l, given by Eqs. (2.33) and (2.34), which allows one to express this term as

EZee = −µ0µs [(m1 · H) + (m2 · H)] = −γh̄ (n · H) , (3.47)
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which depends solely on the non-staggered AFM vector, n [135, 136]. In this line,
taking into account the anisotropy-based, Eani, and exchange-dependent, Eexc, en-
ergy terms, the latter being made explicit by Eq. (2.36), it is possible to write the
configurational energy, E, of the system, which will be given by

E =
1
2

A n2 +
1
8

a (∂xl)2 + Eani (l)− γh̄ (n · H) , (3.48)

where, as it was defined in Sec. 2.4.3, the AFM homogeneous, A, and inhomoge-
neous, a, exchange parameters are defined, respectively, by A = 8|J| and a = 8|J| a2

0
[241].

3.3.2 Lorentz-invariant equation of motion for non-staggered fields

To characterize the dynamic response of the system under the action of the applied
magnetic field, H, it is pertinent to introduce the AFM version of the LLG equation,
which is given by Eqs. (2.11) and (2.13) for the case of a single spin or a FM medium,
to characterize the time evolution of the total magnetization, n, and staggered, l,
vectors, which, in the exchange limit [144, 241], will look like

l̇ = γ Heff
n × l, (3.49)

ṅ =
(

γ Heff
l − α l̇

)
× l + γ

(
Heff

n × n
)

, (3.50)

where Heff
n,l refer to the effective magnetic fields associated to the variables n and l,

which will be given, in this case, respectively, by Heff
n,l = − 2

γh̄
δE

δ(n,l) . In view of the
configurational energy, E, of the system, characterized by Eq. (3.48), the associated
effective magnetic fields, Heff

n,l , will be characterized by

Heff
n = 2H − 2A

γh̄
n, Heff

l =
1

γh̄

[
a
2
(
∂2

xl
)
− 2 ∂Eani (l)

∂l

]
, (3.51)

which allow evaluating the dynamic evolution of the magnetic texture in the pres-
ence of the external magnetic field, H, through the AFM LLG equations given by
Eqs. (3.49) and (3.50). Interestingly, combining the functional form of the effective
magnetic field associated with the total magnetization vector, Heff

n , made explicit in
the previous expression together with Eq. (3.49), it is possible to find that

n =
h̄

2A
l ×

[
2γ (H × l)− l̇

]
, (3.52)

from which it can be deduced that the non-staggered AFM vector, n, is a “slave”
variable whose behavior is governed not only by the external stimulus, H, but also
by the evolution of the Néel order parameter, l, and its time derivative, l̇ [277, 301].
Substituting this last equation in the dynamic Eq. (3.50) along with the expression
for the effective magnetic field associated with the staggered AFM vector, Heff

l , given
by Eq. (3.51), it can be obtained that

l ×
{(

∂2
xl
)
− 1

v2
m

l̈ − 4
a

∂Eani (l)
∂l

− η l̇ − v2
m h (h · l) + ∂t (h × l)

}
−(

l̇ · h
)

l = 0, (3.53)
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where vm represents the maximum magnon group velocity of the medium, which
is given by vm =

√
aA/h̄, h encodes the reduced magnetic field characterized as

h = 2γH/v2
m, and η denotes the dissipative parameter expressed by η = 2αh̄/a. In-

terestingly, this expression is a Lorentz-invariant second-order differential equation
in the sense that, even in the presence of external stimulus and dissipative effects, its
first two terms show a wave-like functional form, which implies that the AFM sys-
tem will show special relativity traces [136, 137], some of which are shown in Figs.
3.3 (b) and 3.4 (a), which will be detailed later in Secs. 5.4.1 and 7.3.3. This frame-
work is fundamentally different from the Galilean dynamic signatures that appear
naturally in FM, which can be made explicit, for the scenario exposed in Sec. 3.2,
where the functional form of the configurational energy, E, of the system is given by
Eq. (3.17), taking the LLG equation in its Gilbert form, which is characterized by Eq.
(2.13), through

ṁ = m ×
[

αṁ − J a2
0

h̄
(
∂2

xm
)
+

2
h̄

∂Eani (m)

∂m
− γH

]
, (3.54)

where the existence of only first-order time derivatives of the magnetization vec-
tor, m, as opposed to the AFM case exposed in Eq. (3.53), where second-order time
derivatives of the staggered vector, l, appear, can be clearly seen. It is worth men-
tioning that, as it can be seen in Eq. (3.53), under the influence of a time-dependent
ultrashort pulse, ∂tH, it is possible to trigger the dynamics of the Néel order pa-
rameter, l, a circumstance which allows exploiting the explicit inertial character of
the aforementioned expression to complete potential switching processes in AFM
[142, 302].

To find the Lagrangian, L, of the system, as it was done in the FM case, embodied
in Eq. (3.21), it is necessary to take into account the quantum-based Berry phase
contribution, which for the case of a single spin or a FM medium is encoded in Eq.
(3.16). On the other hand, the AFM kinetic energy term, Lkin, can be expressed, in
the exchange limit, in this case, through the expression given by

Lkin =
h̄
2

n ·
(
l̇ × l

)
, (3.55)

which depends simultaneously on the total magnetization, n, and Néel order, l, pa-
rameters, which make up a set of orthonormal vectors [144, 192, 239]. Taking advan-
tage of the “slave”-like functional form of the non-staggered vector, n, represented
by Eq. (3.52), it is possible to rewrite the previous equation such that

Lkin =
h̄2

4A

[
l̇2
+ 2γH ·

(
l̇ × l

)]
, (3.56)

where the second term of the right-hand side appears due to the coupling of the
applied magnetic field, H, with the small total magnetization vector, n, of the system
[303, 304]. Similarly, it is possible to rewrite the configurational energy, E, of the
system, given by Eq. (3.48), solely in terms of the AFM staggered vector, l, using Eq.
(3.52), which results in

E =
h̄2

8A
l̇2
+

1
8

a (∂xl)2 + Eani (l) +
γ2h̄2

2A
(l · H)2, (3.57)

where a constant quadratic term in the external stimulus, H, not coupled to the Néel
order parameter, l, has been ignored, which would have no impact on the equations
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of motion [136]. It is worth noting that the quadratic magnetic field-based contri-
bution, given by the last term on the right-hand side of the previous expression, is
weakened by being divided by the strong AFM homogeneous exchange parameter,
A [133]. Interestingly, the magnetic field-governed last term of the right-hand side
of the previous expression acts as a kind of induced uniaxial easy-axis anisotropy, as
it can be seen from its resemblance to a contribution of the type given by Eq. (2.9).

Figure 3.3: (a) Torque-based contributions, τ, dependent on the quadrant of the xy
plane in which the central spin of the FM DW, m, which starts out aligned along the
+y-th semiaxis, resides in the different dynamic stages of the system under the action
of a magnetic field, H, along the z-th spatial direction. The subscripts p and d refer,
respectively, to the precessional and damping components that appear on the right-
hand side of Eq. (2.11), respectively, while the superscripts a and K indicate whether
they are induced by the external stimulus or by the magnetostatic/anisotropy term,
correspondingly. Adapted from [205]. (b) Saturation of the speed, v, of an AFM
magnetic soliton during its quasistatic relativistic dynamic trend to the limiting max-
imum magnon group velocity, vm, of the medium as the externally-applied normal-
ized magnetic field, H/Ha, increases.

3.3.3 Decoupled generalized coordinates-based excitation modes in anti-
ferromagnets

Combining the kinetic, Lkin, and “potential”, E, energy terms, given, respectively, by
Eqs. (3.56) and (3.57), it can be found that the Lagrangian, L, of the system can be
expressed as

L =
a
8

[
1

v2
m

l̇2 − (∂xl)2
]
− Eani (l) +

a
4

h ·
(
l̇ × l

)
− h̄2v4

m
8A

(l · h)2, (3.58)

where it can be seen that the first two contributions of the right-hand side are the
ones that confer the relativistic functional form to the AFM dynamic equation given
by Eq. (3.53) [303]. However, it should be noted that the presence of the fourth mag-
netic field-governed gyroscopic term of the right-hand side of Eq. (3.48) can break
the aforementioned Lorentz-invariant-like symmetry of the system, something that
could also be induced by a DMI [304]. Using the spherical coordinates-based param-
eterization of the order parameter, l, of the system, which is given by Eq. (2.22), it is
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possible to rewrite the AFM Lagrangian, L, such that

L =
a
8

{
1

v2
m

[
θ̇2 + sin2 θ ϕ̇2]− (∂xθ)2

}
+ 2

(
Kz + |Kx| sin2 ϕ

)
sin2 θ+

h
4

(
aϕ̇ +

hh̄2v4
m

2A

)
sin2 θ, (3.59)

where it is possible to appreciate that, compared to Eq. (3.17), in this expression
there is a squared first-order time derivative of the staggered vector, l, which is ab-
sent in its FM counterpart. On the other hand, the dissipation processes inherent
to the magnetic medium, characterized by the Gilbert damping parameter, α, can
be encapsulated through the Rayleigh dissipation function, R, given by Eq. (2.18),
expression which can be extrapolated to the AFM formalism giving rise to

R =
αh̄
4
(
ṁ2

1 + ṁ2
2
)
≃ αh̄

2
l̇2, (3.60)

where the relationship between the AFM vectors, n and l, and the unit atomic mag-
netic moment, m, encapsulated by Eqs. (2.33) and (2.34), has been used. In this case,
potential cross-sublattice terms have not been taken into account and, in addition,
the related derivation has been made in the exchange limit framework, |n|2 ≪ |l|2
[145, 305, 306]. From the parameterization in spherical coordinates of the AFM stag-
gered vector, l, given by Eq. (2.22), it is possible to rewrite the Rayleigh dissipation
function, R, as

R =
αh̄
2
(
θ̇2 + sin2 θ ϕ̇2) . (3.61)

At this point, it is convenient, as it was done in Sec. 3.2, to work on the collective
coordinates framework, for which it is necessary to take into account the Walker-like
DW rigid profile, given by Eq. (2.30), characterized by the polar angle, θ, taking into
consideration the AFM peculiarities exposed in Sec. 2.4.3, to simplify the problem
[91, 137]. As a result, the Lagrangian, L, of the system, represented by Eq. (3.59), and
the Rayleigh dissipation function, R, defined by Eq. (3.61), can be reexpressed as

L =

{
a

8∆2

[
1

v2
m

(
Ẋ2 + ∆2ϕ̇2)− 1

]
+ 2

(
Kz + |Kx| sin2 ϕ

)
+

h
4

(
aϕ̇ +

hh̄2v4
m

2A

)}
sech2 x − X

∆
, (3.62)

R =
αh̄

2∆2

(
Ẋ2 + ∆2ϕ̇2) sech2 x − X

∆
, (3.63)

where it can be observed, in the first of these equations, corresponding to the AFM
Lagrangian, L, of the system, that, in this case, there is no coupling between the gen-
eralized coordinates given by the position, X, of the magnetic soliton and the tilting-
based azimuthal angle, ϕ, contrary to the magnetic field-induced FM scenario, as it
is shown in Eq. (3.21) [304]. In addition, it is important to note that Eqs. (3.19) and
(3.20) have been used for the derivation of the previous expressions, but it has been
assumed that the DW width, ∆, will not be taken as a generalized coordinate in the
dynamic evaluation of the system. This is because its time evolution, for quasistatic
processes, it is governed by the velocity, v, of the magnetic texture through the rela-
tivistic functional form given by ∆ = ∆0 β, where β is the symmetric Lorentz factor,

which can be expressed as β =
√

1 − (v/vm)2 [135, 307]. If the Lagrangian, L, and
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Rayleigh dissipation function, R, contributions, given, respectively, by Eqs. (3.62)
and (3.63), are spatially integrated, the appearance of an overall multiplication of
the aforementioned expressions by a factor proportional to the DW width, ∆, will be
produced, as it can be induced from Eq. (3.23). In this scenario, using the EL formal-
ism in the presence of dissipative mechanisms, expressed by Eq. (3.27), it is possible
to find the equations of motion of the generalized coordinates of the system, given
by the center position, X, of the magnetic texture and the azimuthal angle, ϕ, which
will be characterized by

Ẍ − 4αh̄v2
m

a
Ẋ = 0, (3.64)

ϕ̈ − 4αh̄v2
m

a
ϕ̇ − 8|Kx|v2

m
a

sin 2ϕ = −v2
m (∂th) , (3.65)

where it can be seen that, contrary to what happened in the FM scenario, whose dy-
namic behavior is represented by Eqs. (3.28) and (3.29), the translational and oscil-
latory modes constitute independent degrees of freedom in the AFM case [307–309].
This avoids the appearance of the WB understood as the tilting of the azimuthal an-
gle, ϕ, with respect to the DW plane at rest as the external stimulus approaches a
threshold, from which a stable magnetic texture motion is not possible anymore due
to the intrinsic instabilities that arise in the magnetic soliton [133, 134]. It is impor-
tant to note that, in the exposed AFM framework, the magnetization, m, dynamics
can only be excited through time-dependent external stimuli, H [142, 302].

3.3.4 Uniform field-based torque compensated by the exchange contribu-
tion

To better understand why an applied moderate non-staggered static magnetic field,
H, does not induce dynamics in the case of an AFM spin chain, contrary to its FM
counterpart, which was discussed in Sec 3.2, it is useful to perform a torque-based
analysis of the underlying system. With this goal in mind, two contiguous spins of
the inhomogeneous DW transition, like the one shown at the top of Fig. 2.3 (b), can
be considered, whose associated AFM exchange energy, Eexc, will be characterized
by Eexc = |J | (m1 · m2), according to Eq. (2.7). If the external stimulus is defined
along the z-th axis, such that H = H ẑ, the induced field-like torque, τa

p,mi
, at each

considered spin mi, as it is shown in Fig. 3.4 (b), will be given by τa
p,m1

∝ −γH x̂ and
τa

p,m2
∝ γH x̂, according to the LLG expression given by Eq. (2.11). In a similar fash-

ion, the field-induced damping torque, τa
d,mi

, in each involved magnetization vector
will have a functional form such that τa

d,mi
∝ αγH (−ŷ + ẑ), contributions which

will want to rotate the exchange- and anisotropy-governed angular position in the
yz easy-plane of both spins. On the other hand, due to the AFM exchange interaction
between both atomic magnetic moments, governed by the functional form of the in-
volved exchange energy, Eexc, each spin will sense an exchange-based effective field,
Heff

mi
, according to Eq. (2.12), induced by the presence of its neighbor due to their

non-collinear arrangement. In this line, the AFM exchange-induced field-like torque,
τ

mj
p,mi , experienced by the spin mi due to the presence of the atomic magnetic moment

mj, will be given by τm2
p,m1 ∝ γ|J |/ (µ0µs) x̂ and τm1

p,m2 ∝ −γ|J |/ (µ0µs) x̂, contribu-
tions which, for each considered magnetization vector, oppose the action of the mag-
netic field, H. The same goes for the AFM-based damping torque, τ

mj
d,mi

, which in

each involved magnetic sublattice is described as τ
mj
d,mi

∝ αγ|J |/ (µ0µs) [ŷ − ẑ], as it
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can be seen in Fig. 3.4 (b). Since the order of magnitude of the AFM exchange contri-
bution, |J |, is typically much larger than that associated with the applied magnetic
field, H, the effect of the non-staggered external stimulus will be completely over-
shadowed, prevailing the exchange- and anisotropy-based angular arrangement of
the spins that make up the magnetic soliton in the yz easy-plane.

Figure 3.4: (a) Relativistic behavior of the contracting normalized width, ∆/∆0, and
of the increasing normalized energy, E/E0, where ∆0 and E0 represent their respec-
tive values at rest, of a propagating steady-state AFM DW as its normalized velocity,
v/vm, increases, being vm the maximum magnon group velocity of the medium. (b)
Torque-based contributions, τ, experienced by two contiguous spins belonging to
the inhomogeneous magnetic texture transition of an AFM spin chain in the pres-
ence of a non-staggered static magnetic field, H, defined along the z-th spatial di-
rection, H = H ẑ. The subscripts p and d refer, respectively, to the precessional and
damping components that appear on the right-hand side of Eq. (2.11), respectively,
while the superscript a indicates that it has been induced by the external stimulus,
and the indices m1,2 allude to the exchange interaction between the two considered
atomic magnetic moments that reside in the yz easy-plane of the system.

3.4 Gyrotropic deformation-free propagation description of
non-collinear magnetic textures

Interestingly, it is possible to simplify the dynamic description of non-collinear spin
textures, expressed by the LLG expressions collected in Eqs. (2.11) and (2.13), under
the assumption that the considered magnetic soliton remains rigid during its mo-
tion. This can be characterized through the traveling wave ansatz given by m (r, t) =
m (r − X (t)), where X is a collective coordinate that characterizes the in-plane de-
viations from the initial position of the core of the magnetic texture [266]. Taking
into account that, in this context, the unit atomic magnetic moment, m, depends on
time through the position vector X, it is possible to express the time derivative of the
magnetization vector as

ṁi = −vj
∂mj

∂Xi
, (3.66)

where v is the steady-state velocity of the magnetic pseudoparticle. This will ul-
timately allow characterizing the trajectory of a magnetic soliton without the need
to evaluate the LLG equation at each time step. The assumption of a propagation
without appreciable deformations implies that there is a balance between the exist-
ing forces in the system, as it was shown in the case of FM DW through Eq. (3.37),
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where there is a balance between the external stimulus-based driving mechanism
and the dissipation processes [296]. The force experienced by the rigid magnetic tex-
ture due to the different interactions of the magnetic medium and potential external
stimuli, Feff

i , which is characterized by the effective magnetic field, Heff, embodied
in Eq. (2.12), can be expressed as

Feff
i = −µ0µsHeff

k
∂mk

∂Xi
=

∂E
∂Xi

, (3.67)

expression which makes explicit the conservative nature of the involved force [310].
Taking the cross product of the LLG equation, given by Eq. (2.13), with the magne-
tization vector, m, it is possible to obtain that

Heff
k = − 1

γ

(
vjεklnml

∂mn

∂Xj
+ αvj

∂mk

∂Xj

)
, (3.68)

being possible to rewrite it, in a force-based picture, after multiplying it by (∂mk/∂Xi),
as

Feff
i + Fgyro

i + Fdissip
i = 0, (3.69)

where the gyrotropic, Fgyro
i , and dissipative, Fdissip

i , forces are given by

Fgyro
i =

µ0µs

γ
vjε lknml

∂mk

∂Xi

∂mn

∂Xj
, (3.70)

Fdissip
i = −αµ0µs

γ
vj

∂mk

∂Xi

∂mk

∂Xj
, (3.71)

which receive their name because they come from the precessional and damping
terms of the LLG equation, given by Eq. (2.13), respectively [311].

If the expression given by Eq. (3.69) is spatially integrated, it is possible to obtain
the massless Thiele’s equation for the central position, X, of the considered magnetic
soliton, which will be characterized as

G × v − α
←→
D v = −

∫
∂E
∂X

dr, (3.72)

where G and
←→
D represent, respectively, the gyrovector and dissipative tensor of

second order, which can be expressed as

G =
µ0Ms

γ

∫
m ·
(

∂m
∂Xi

× ∂m
∂Xj

)
dr, (3.73)

←→
D =

µ0Ms

γ

∫ (
∂m
∂Xi

· ∂m
∂Xj

)
dr, (3.74)

being Ms the volumetric saturation magnetizaton, given by Ms = µs/V, where V
is the volume of the considered unit cell [296]. Interestingly, the first term on the
left-hand side of Eq. (3.72) is usually known as Magnus force, which leads to the
existence of a transverse dynamic component, and reflects the relationship between
the topological skyrmion number, given by Eq. (2.41), and the existing non-trivial
dynamics. This is because the gyrovector, G, only has a perpendicular component
proportional to the topological term, N, such that G = −4πNẑ [250, 312]. It should
be noted that this contribution, in the case of a 1D magnetic texture like a DW, is
null, giving rise to the fact that in the steady-state scenario its motion is rectilinear
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and comes from the balance between the driving and the dissipative forces [313].
Additionally, the input on the right-hand side of Eq. (3.72) is a force originating
from the inhomogeneous energy landscape of the system in addition to possible
applied external stimuli, repulsive potential contributions from the sample edges,
or pinning effects from local defects [314]. Interestingly, Thiele’s equation has been
shown to be efficient in predicting and characterizing the gyrotropic dynamics of
magnetic vortices and skyrmions in FM cylindrical dots, as well as showing the Hall
effect-based dynamic deflection of skyrmions in ultrathin films [121, 122, 249, 266],
the latter having been shown in Fig. 3.5 (a). Interestingly, it is important to note that,
in AFM, the skyrmion Hall effect is strongly suppressed due to the strong coupling
of two skyrmion structures which present opposite topological charges and that live
in different magnetic sublattices, which produces the cancellation of the potential
Magnus force predicted by Eq. (3.72) on its FM counterpart [315, 316].

3.5 Discretization schemes-dependent computational spin dy-
namics simulations

Computational spintronics, based on solving the LL equation with dissipative torques,
as the temperature-independent LLG expressions given by Eqs. (2.11) and (2.13),
acts as a bridge between fundamental theories and experiments. In order to emulate
nanoscale magnetic phenomena and real spintronic devices, it is necessary to de-
cide from the beginning which type of external stimulus is applied, what the initial
magnetic state is like, which type of geometry the system presents, and if there are
thermal effects involved. By knowing in advance what the exchange length and the
potential DW width of the medium are, it is possible to decide which type of dis-
cretization scheme can be used in the simulations [221]. Usually, for FM at low tem-
peratures it is convenient to average the atomic magnetic properties over small vol-
umes [317], usually of the order of a few nm3, through the assumption that the mag-
netization direction varies slowly in space and time [214, 318], which it is depicted in
Fig. 3.5 (b). This micromagnetic formalism is plausible when the discretized grid is
small enough compared to the dynamically-governed spatial extent of the inhomo-
geneous transitions between domains of the medium, since otherwise the exchange
interaction between neighboring averaged spins would be greatly overestimated, so
there must be enough cells to validate the continuous approximation. This proce-
dure has been widely used, especially for calculations of hysteresis cycles, reversal
magnetization processes, and dynamics in magnetic nanostructures such as mag-
netic thin films, dots, or stripes [319]. Although using this modeling scheme, large
systems can be implemented with an inherent saving in computational time, this is
not recommended when the magnetization direction changes strongly on the atomic
scale, which happens in AFM, ferrimagnets, and complicated heterostructures as
well as in presence of high temperatures that originate disorder [318, 320]. Due to
the related discretization process of the spin space, a cutting of the high-frequency
modes of the SW spectra is produced, which are necessary to take into account lon-
gitudinal magnetization fluctuations in the system [221]. This has as a consequence
that micromagnetic simulations are not adequate to characterize ps-based switching
events in FM produced by the energy redistribution from laser-excited conduction
electrons to the spin reservoir, producing, in addition, an overestimation of the crit-
ical temperature of the medium in this framework [217, 321, 322]. In this context,
it is necessary to consider an atomistic approach that not only accounts for realis-
tic lattice structures and interactions of the system but also for defects and interfaces
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where the magnetization changes significantly at the atomic level. However, this ap-
proach does not allow simulating large systems, being restricted to approximately
107 spins, which means that samples are limited to volumes of a few tens of nm3 at
the moment due to the large number of differential equations that must be numeri-
cally integrated [323]. In both cases, the most challenging part consists of calculating
the effective magnetic fields associated with the different energy contributions of the
system, among which we can find both local and collective terms involving a certain
number of neighbors or all the spins of the system, such as anisotropy, on the one
hand, and exchange or magnetostic interactions, on the other, respectively, which
have been summarized in Sec. 2.2. Even though there are methods to lighten the
numerical process, it is precisely the calculation of the long-range stray fields that
is more time consuming to characterize, since for each time step it is necessary to
evaluate, for each discretized element, the contribution of the rest of the elements in
the medium [324].

Figure 3.5: (a) Schematic representation of the skyrmion Hall effect in FM, in which
the considered magnetic soliton does not move along the direction dictated by the
applied electron flow but instead shows a transverse dynamic component governed
by the gyrotropic component existing in the massless Thiele expression given by Eq.
(3.72). Extracted from [325]. (b) Illustration of the relationship between the atomistic
model and the micromagnetic approach, the latter being based on averaging the
atomic magnetic properties over small volumes of the order of a few nm3, which
is convenient when the magnetization direction between neighboring spins varies
smoothly. Adapted from [221].

3.6 Experimental antiferromagnetic response characterization

While the advent of high-resolution imaging techniques such as the magneto-optical
Kerr [93], magnetic force [326], scanning electron [327], and x-ray photoemission
electron microscopies [328] has made it possible to systematically characterize the
magnetic domains on the surfaces of FM and ferrimagnets at the nanoscale [329],
its experimental extrapolation to the AFM case is relatively new and is in full swing
[330]. This is because, although there are many types of AFM ordering, most AFM
metals exhibit collinear alignment with an associated lack of net magnetization,
which means that they do not generate stray fringing fields and are robust against
external magnetic fields [331]. However, there are certain classes of AFM that present
a weak magnetization which originates due to the DMI, which allows characterizing
the magnetic state of the system due to the coupling between the parasitic magnetic
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moment and the Néel order parameter [332]. On the other hand, it is also possi-
ble to take advantage of FM/AFM heterostructures, where both magnetic materials
are strongly connected through exchange interaction, to employ the usual FM read-
out techniques to characterize the domain pattern imprinted on it from the AFM
[333, 334].

3.6.1 Real space imaging magnetic morphology reconstruction

The first static domain characterizations in AFM materials were performed through
neutron tomography and optical microscopy techniques on insulating materials as
alternative measures due to the absence of measurable stray fields [335–337]. How-
ever, using photoemission electron microscopy, with contrast enabled by x-ray mag-
netic linear dichroism [338], its visualization could be extended to metals, provid-
ing information on the microscopic magnetic properties of the system with better
resolution than 100 nm [339, 340]. The emitted photons generated through radially-
accelerated electrons in the presence of magnetic fields in synchrotron-based facili-
ties interact with the electronic distribution of the system promoting electrons from
different core levels to the Fermi level depending on the x-ray incident energy [341].
In this coherent absorption process, the decay of the created holes generates sec-
ondary electrons which allow to measure the absorption spectrum at different radi-
ation energies [342, 343], as it is schematized in Fig. 3.6 (a). To obtain complemen-
tary magnetic-based information, it is possible to exploit the asymmetric degree of
absorption depending on the relative orientation of the Néel order parameter and
the linear polarization vector of the incident light, which makes it possible to ob-
tain information about the domain structure after switching processes [344, 345],
where two different resistive states dependent on the relative orientation of the elec-
tric field-based linear polarization of the incident radiation and the Néel order pa-
rameter are shown in Fig. 3.6 (b). If, on the other hand, circularly polarized light
were used to try to characterize the morphology domain in AFM, this would not
be efficient due to the non-existence of an asymmetric density of spin up and down
states at the Fermi level, which does happen in FM due to its measurable net magne-
tization [346]. The convenience of this detection scheme is due to the fact that it is a
linear optical technique, consisting of coherent processes that change the amplitude
or polarization of light in its interaction with a material, leaving the frequency of the
wave undisturbed, based on quadratic magneto-optical effect which are, however,
generally weaker than their linear counterparts [330]. The linear magneto-optical
Kerr effect, which is based on a rotation of the plane of polarization of linearly po-
larized light when it is reflected by a magnetized surface, which it is depicted in
Fig. 3.7 (a), is proportional to the magnetization of the medium, which makes it
difficult to use it in AFM [331]. However, symmetry-based considerations have
revealed that the existence of a finite Berry curvature in momentum space due to
macroscopic time-reversal symmetry breaking can give rise to off-diagonal compo-
nents of the dielectric tensor even in collinear AFM [347]. In a similar fashion, the
second-harmonic generation nonlinear optical technique, based on the simultaneous
absorption of two photons from the incident excitation followed by the emission of a
frequency-doubled light wave, as it is illustrated in Fig. 3.7 (b), depends on the sym-
metry of the material under study rather than on its magnetization [348, 349]. This
process is very unlikely to occur, requiring, in addition, the use of high electromag-
netic field strengths such as those provided by high-power pulsed lasers [331], but
it is especially suitable for the case of AFM materials with broken inversion symme-
try [330, 350, 351]. The problem with these non-destructive sampling techniques is
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that they require large-scale synchrotron-based experimental facilities. As an alter-
native, the high spatial resolution scanning nitrogen-vacancy center magnetometry
can be used to investigate the magnetic stray field emanating from AFM domain
textures, where a diamond probe containing a single center at the apex is scanned
at constant height above the sample surface [352]. At every location the shift in the
nitrogen vacancy center’s spin resonance is mearured using optical readout, which
is directly proportional to the magnetic stray field at that location [353]. Using the
known orientation of the vacancy center, the full magnetic vector field at the apex
position can be reconstructed, allowing to study the domain morphology [354, 355],
as it is schematized in Fig. 3.8 (a).

Figure 3.6: (a) Schematic representation of linear photoemission processes in a solid.
Those electrons with sufficient kinetic energy, Ekin, obtained through the absorption
of photons with energy h̄ω, where ω is their related frequency, are able to leave the
valence bands and core levels of the material, promoting to vacuum if the related
electronic energy is greater than the work function, ϕ, and the associated binding
energy, EB. Extracted from [356]. (b) Through x-ray magnetic linear dichroism spec-
troscopy, it is possible to find well-differentiated domain contrast dependent on the
relative orientation of the electric field-based linear polarization of the incident light
and the directionality of the staggered vector of the AFM system due to the different
degrees of absorption that will suffer the applied radiation. Extracted from [357].

3.6.2 Magnetoresistive-based static domain configuration

AFM materials have a great robustness against external magnetic fields, due to which
it is highly desirable to use electrical read-out methods to characterize the magneti-
zation configuration of the system. In this context, for metals, even though it would
be desirable to use phenomena widely used in FM such as GMR or TMR, which are
shown, respectively, in Figs. 1.1 (b) and 1.2 (a), the scattering processes involved in
SV and the low signal obtained experimentally in MTJ mean that these methods are
not completely suitable at the moment [358, 359]. As an alternative, AMR, which
is based on the relative orientation of an applied charge current and the in-plane
magnetization, which has been introduced for the FM case in Fig. 1.1 (a), has been
shown to be an efficient method in AFM to characterize the evolution of the num-
ber of electrically switched domains along a certain direction [149, 154]. In addition
to being a bulk phenomenon, not requiring complex multilayer structures, its ex-
istence in AFM is due to the fact that it is even in magnetization, being invariant
against reversal magnetization processes [301]. Because the signal associated with
AMR is usually small, it is possible to greatly amplify it through the inclusion of a
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TB, which has been proven at low temperatures [162, 360]. On the other hand, in
metals there is also the DW MR, which takes into account how the electrons that
make up a charge current are scattered by a DW, whose existence and signal vari-
ation can be appreciated through the reconfiguration of domains under magnetic
fields, which can vary in number and width [155, 361], being schematized in Fig. 3.8
(b) for the case of a layered AFM. On the other hand, it is possible to take advantage
of the spin current generated through the SHE in a HM with strong SOC due to the
injection of an electrical current to obtain information on the domain morphology
of an AFM insulator in contact with it [156, 157]. Due to the exchange of angular
spin momentum, it is possible to characterize changes in metal resistivity due to the
relative angle between the polarization of the spin accumulation at the interface and
the magnetization direction in the magnetic material, phenomenon which is known
as SH MR [362], which it is represented in Fig. 3.9 (a). It should be noted, however,
that it has recently been suggested that the electrically-induced AMR/SH MR read-
out signals may actually be thermal or electromigration artifacts caused by the high
current densities needed to switch the magnetic state of the system [363–366].

Figure 3.7: (a) The linear magneto-optical Kerr effect is based on the rotation of
the polarization plane of light after its reflection process induced by its interaction
with the magnetized medium, passing from a linearly polarized state to an elliptical
one. Extracted from [367]. (b) Simplified picture of the second-harmonic generation
nonlinear optical technique, in which two photons of frequency ω excite an electron
of the system, which causes the emission of a quantum of light in the process of
electronic relaxation to the initial ground state with twice the frequency that the one
treasured by the incident waves. Adapted from [368].

3.6.3 Thermoelectric-dependent magnetic soliton dynamics proposals

Additionally, there are two alternatives through thermoelectric-based effects in AFM
metals. In the first one, local heat gradients are generated through scanning far- or
near-field techniques and, subsequently, the laser-induced voltage at the two ends
of the device is tracked, which it is schematized in Fig. 3.9 (b). Interestingly, when
the temperature gradient crosses a domain boundary, a non-zero value is detected,
which is because the reorientation of the Néel order parameter implies a change in
the sign of the involved magneto-Seebeck coefficients [164]. This technique allows
both the detection of the position of a DW and obtaining information on the 180◦

switching of the staggered vector. On the other hand, it is theoretically possible to



3.6. Experimental antiferromagnetic response characterization 55

track the electric current-induced DW dynamics by taking advantage of the accom-
panying electronic-based localized heat wave generated through the spin Peltier ef-
fect (SPE), which it is represented in Fig. 7.3 (a) and will be discussed in detail in Sec.
7.3.2, which could be characterized through scanning thermal microscopy. This situ-
ation is especially advantageous in AFM due to the high speeds that can be achieved
and the special relativity-governed contraction of the width of the texture [165].

Figure 3.8: (a) The scanning nitrogen-vacancy center magnetometry is based on the
shift of the spin resonance of the atom located at the apex of the probe induced
by the stray magnetic field emanating at each spatial location due to the domain
configuration of the system. Extracted from [369]. (b) Scheme of the DW MR for a
layered metallic AFM, where different resistive states can be obtained depending on
the scattering ratios experienced by the electrons that make up a charge current that
crosses the inhomogeneous transition of a magnetic soliton, the measured resistance,
R, being greater the narrower the spatial extent of the considered spin texture.

Figure 3.9: (a) The SH MR in AFM insulators is based on the different resistive, R,
states obtainable depending on the relative polarization orientation, σ, of the SHE-
induced spin accumulation at the interface between the HM and the magnetized
medium and the directionality of the magnetic order parameter, l. Adapted from
[156]. (b) The magneto-Seebeck effect allows to detect the position of DW in AFM
through the sign change of the involved thermoelectric-based coefficients of the sys-
tem when a local heat gradient generated through scanning field techniques crosses
a domain boundary. Extracted from [164].
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Chapter 4

Relativistic-like domain wall
dynamics in biaxial ferromagnets

4.1 Walker breakdown delay through antiferromagnetic-like
traces

As it was introduced in Sec. 3.2, the stable FM DW dynamics under the action of
an external stimulus is limited by a phenomenon known as WB, in which a sharp
decrease in speed occurs at the same time that it enters in a regime in which its
internal structure changes periodically [91–93]. This fact is unfortunate from an
application point of view, since many spintronics devices are typically based on a
switching process mediated by the displacement and nucleation of an inhomoge-
neous magnetization reversal mode, being desirable that this process is as ultrafast
and deterministic as possible. In this sense, it is possible to delay or even eradicate
the appearance of intrinsic instabilities in the propagating magnetic texture, such as
through the DMI, either in curved nanowires or in ultrathin magnetic fields, which
energetically favors one of the possible chiralities of the magnetic soliton and, there-
fore, the system becomes more stable [102, 108]. Under these conditions, the new
dynamic threshold will be set by the minimum phase velocity of the lowest energy
excitations of the spin space, producing, if this limit is exceeded, the appearance of
the spin Cherenkov effect, in which the DW begins to emit SW [109, 370]. However,
this methodology to transfer stiffness to the magnetic soliton represents a challenge
in terms of its experimental implementation, so it is reasonable to look for alterna-
tives that intrinsically present the desired aforementioned features. AFM materials
have some advantages over their FM counterparts, such as a THz-based SW res-
onance frequency [131, 132], a weak motion-induced deformation tendency [371],
magnetic texture velocities up to tens of km/s [133, 134], being only limited by the
maximum magnon group velocity unless its spatial extent approaches the atomic
spacing, giving rise to superluminal processes [138, 139], and absence of the WB
mediated by the magnetization tilting from the DW plane at rest [308, 309]. More-
over, due to the different unit cells necessary to describe FM and AFM that share the
same crystallographic structure, which gives rise to different definitions of the order
parameter [372], even when the AFM and FM DW dynamics are qualitatively equiv-
alent for weak fields, for AFM it is described in the nonlinear σ-model framework,
due to which it will obey the special relativity precepts, while in the case of FM it is
governed by the conventional Galilean dynamics, as it was shown in Secs. 3.2 and
3.3, respectively [239, 273]. Due to the fact that, at the moment, it is not possible to
experimentally track the AFM DW motion, it would be desirable to transfer some
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of the benefits of these type of materials to the case of FM through the reduction of
the dynamic magnetic texture description to a Lorentz-invariant SG-like equation,
being possible to take advantage of their well-established detection techniques.

4.2 General dynamic framework in biaxial ferromagnets

When mapping the LL equation, which was introduced in Sec. 2.3, to a SG-like
expression for the case of a FM, there is both the possibility of considering a system
with a hard-axis anisotropy whose induced symmetry is broken by the application of
an in-plane magnetic field, giving rise to a kink solution not compatible with a DW,
or through a system with biaxial anisotropy. In the latter case, it is considered that
there are uniaxial second-order hard-axis and easy-axis anisotropies, which define
the plane at rest of the magnetic soliton and its topological nature. In this context, we
will consider a bulk FM containing a 180◦ Bloch-type DW that lives, in the absence
of external disturbances, on the yz plane, defining its easy-axis along the z-th axis, as
depicted in Fig. 4.1 (a), moving along the x-th spatial direction, as exposed in Fig. 4.1
(b). The total magnetic energy per unit area, E [m], is given by E [m] =

∫
dx e (m),

where e represents the energy density which, in continuum approximation, can be
written as e (m) = A (∂xm)2 + ea (m)+ em (m), where A represents the FM exchange
stiffness constant, while ea and em denote the anisotropy and magnetostatic energy
densities, respectively. As stated above, we will consider a quadratic functional form
of the anisotropy such that it is given by ea (m) = |Kx|m2

x − Kzm2
z , whose spatial

distribution, for the case in which the anisotropy energy is defined in units of 2Kz
and the parameter λ = |Kx|/Kz is introduced, for the particular case of λ = 10,
in Fig. 4.2 (a). On the other hand, the magnetostatic energy density for the case
of a bulk FM in which the magnetization varies along the x-th axis, gives rise to a
contribution of the form em (m) = 2πM2

s m2
x, being Ms the micromagnetic saturation

magnetization, which gives result in the renormalization of the anisotropy constant
Kx.

Figure 4.1: (a) Definition of the magnetization vector, M, in terms of the polar, θ,
and azimuthal, ϕ, angles relative to the Cartesian coordinate system. The angle ε =
π/2 − ϕ accounts for magnetization deviations from the static yz DW plane. (b)
Sketch of the magnetic soliton magnetization configuration along the x-th direction
of motion.

Taking advantage of the fact that the unit magnetization vector can be expressed
in terms of the spherical coordinates, such that m = m (θ, ϕ), where the aforemen-
tioned angles are function of space, x, and of time, t, being expressed as θ (x, t) and
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ϕ (x, t), the total energy density can be restated accordingly. By redefining the en-
ergy density in units of 2Kz and the lengths in units of the static DW width, given by
∆0 =

√
A/Kz, the energy can be rewritten as

e (θ, ϕ) =
1
2

[
(∂xθ)2 +

(
1 + λ cos2 ϕ + (∂xϕ)2

)
sin2 θ

]
, (4.1)

expression which only depends on the anisotropy-based dimensionless parameter
λ. Accordingly, the corresponding Lagrangian density will be defined as L (θ, ϕ) =
cos θ ϕ̇ + e (θ, ϕ) [274, 286], as it is stated in Eq. (3.16), being the time expressed
in units of the parameter t0 = 1/ (γHa), where the anisotropy field is given by
Ha = 2Kz/Ms. Taking into account the functional form in spherical coordinates of
the LL equation

sin θ θ̇ = − δe
δϕ

, sin θ ϕ̇ =
δe
δθ

, (4.2)

it is possible to find, from the energy density expression given by Eq. (4.1), which are
the dynamic equations of the system in the absence of dissipation, which are given
by

sin θ θ̇ =
[
λ cos ϕ sin ϕ +

(
∂2

xϕ
)]

sin2 θ + sin 2θ (∂xθ) (∂xϕ) , (4.3)

sin θ ϕ̇ =
[
1 + λ cos2 ϕ + (∂xϕ)2

]
cos θ sin θ −

(
∂2

xθ
)

. (4.4)

The previous system of equations has been intensively explored in conjunction
with its integrals of motion, which, in the context of characterizing the DW motion,
are usually characterized in the steady-state Walker-like framework where (∂xϕ) = 0
[91], as it was exposed in Sec. 3.2. In our case, we will focus on general solutions
ascribed to what is known as traveling wave ansatz, a premise under which the solu-
tions of Eqs. (4.3) and (4.4) can be modeled as θ = θ (ξ) and ϕ = ω̃t + ϕ0 (ξ), where
ξ = x − vt, being v the magnetic soliton speed and ω̃ the precession frequency in
the DW moving frame [241]. In this context, where it is possible to interpret the
moving magnetic texture as a bounded state of SW, the parameter v represents the
group velocity, vg, of the wave packet, that is, v = vg. On the other hand, the fre-
quencies in the laboratory frame, ω, and the moving frame, ω̃, can be related via
ω̃ = ω − k · vg, where vg = ∂ω/∂k denotes the group velocity of the linear SW of
the medium, while k = k x̂ represents the related 1D wavevector and k refers to the
associated wavenumber [241].

4.3 Small amplitude excitations-based magnetization texture
characterization

4.3.1 Linear spin wave spectra description far from the magnetic soliton

Due to the anisotropy distribution of the medium, outside of the inhomogeneous
transition that defines the magnetic soliton, the spin direction that minimizes the as-
sociated energy is defined along the z-th axis. In these uniform regions on both sides
of the DW, which can be denoted as its tails, it is possible to assume the potential
existence of small amplitude magnetic moment fluctuations. In this context, it is ap-
propriate to rewrite the magnetization as a linear combination of a static, m0, and a
dynamic, δm, part, being possible to assume that the latter has all the space and time
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dependency of the aforementioned vector, so that

m (x, t) = m0 + δm (x, t) , (4.5)

where m0 = ẑ and δm (x, t) = mx (x, t) x̂ + my (x, t) ŷ. In a similar way, the effective
field can be decomposed as

Heff (x, t) = H0
eff + heff (x, t) , (4.6)

where H0
eff encapsulates those terms that depend on the static part of the magnetiza-

tion, denoted by m0, while heff accounts for its dynamic contribution characterized
by δm. In this context, the LL equation, taking into account Eqs. (4.5) and (4.6), can
be expressed as

δṁ = −
[(

δm × H0
eff
)
+ (m0 × heff)

]
, (4.7)

expression which admits plane wave solutions taking a functional form for the dy-
namic part of the magnetization such that

δmx,y (x, t) = m0
x,y ei(kx−ωt), (4.8)

where m0
x,y represents the amplitude of the space- and time-dependent two magnetic

moment components. Taking into account the energy density of the system, given
by Eq. (4.1), in its vector form, it can be found that

−iω δm =
(
1 + k2)my x̂ −

(
1 + λ + k2)mx ŷ, (4.9)

which, in matrix notation, can be rewritten as(
iω ωk,x

−ωk,y iω

)(
mx
my

)
= 0, (4.10)

where two frequencies have been introduced, being their functional forms given by
ωk,x =

(
1 + k2) and ωk,y =

(
1 + λ + k2) [241]. To find non-trivial solutions to this set

of equations, it is necessary that the involved determinant is zero, a premise under
which it is possible to find that, in this case, the linear SW spectra will be given by

ω2 =
(
1 + k2) (1 + λ + k2) . (4.11)

4.3.2 Critical velocities through complex small amplitude excitations

Interestingly, it is possible to exploit the small amplitude SW dispersion relation in
the saturated FM region far from the DW center, as it is illustrated in Fig. 4.2 (b), to
characterize the magnetic texture as long as its magnetization configuration does not
change, contrary to what happens in the WB. This type of characterization requires
that Eq. (4.11) is considered in the case of complex wavenumber, K, and frequency,
Ω, circumstance under which it is obtained that

Ω2 =
(
1 + K2) (1 + λ + K2) , (4.12)

where Ω = ω + iκv and K = k + iκ, denoting κ the associated scalar imaginary
wavevector [373]. From now on, we will consider the case of stationary magnetic
solitons, premise under which the precessional frequency in the comoving magnetic
texture frame will be ω̃ = 0, leading to a scenario in which the frequency in the
laboratory frame, consistent with Sec. 4.2, can be denoted as ω = kv, which also
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implies that Ω = vK. Calculating the squared complex phase velocity, v2, through
v = Ω/K, it is possible to obtain, through Eq. (4.12), that

v2 =
1 + λ

K2 + 2 + λ + K2, (4.13)

expression which, as shown in Fig. 4.3 (a), denotes the existence of two disconnected
regions from each other in which the phase velocity is real, being given the speed in
units of ∆0/t0 = 2γ

√
AKz /Ms. In the first one, which corresponds to the case of an

imaginary wavenumber, K = iκ, and frequency, Ω = iκv, the speed will be real in
the limited interval − (1 + λ) < K2 < −1, while for the second case, in which both
the wavenumber and the frequency are real, such that K = k and Ω = ω, it will
be constrained in the scalar wavevector-based range 0 < K2 < ∞. Based on these
aforementioned cases, it is possible to find, through Eq. (4.13), the functional form
of the squared complex wavenumber, K2, which is given by

K2 =
1
2
(
v2 − λ

)
− 1 ± 1

2

√(
v2 − v2

−
) (

v2 − v2
+

)
, (4.14)

from which the maximum and minimum squared scalar wavevector values in these
regions can be expressed as K2

± = ±
√

1 + λ, which give rise to two limiting ve-
locities denoted as v± =

√
1 + λ ± 1, which governs the definition domain of the

two intervals in which the phase velocity will be real, given by [0, v−] and [v+, ∞ ),
respectively [373, 374].

Figure 4.2: (a) Spatial distribution of the anisotropy energy density, ea (θ, ϕ), for the
dimensionless anisotropy-based parameter being given by λ = 10. (b) Schematic
of the linear SW of imaginary frequency, κv, and wavenumber, κ, which are given,
respectively, by Eqs. (4.12) and (4.14), located in the DW tails that will allow to
describe its dynamics as long as the magnetization configuration does not change.

4.3.3 Velocity-dependent exact stationary domain wall characterization

Interestingly, the critical velocity v− plays the role of the maximum attainable DW
speed in the case of a steady-state motion regime, and, therefore, it is greater than
the Walker velocity, vW, given by Eq. (3.41), as it is shown in Eq. (3.42), in the
case in which the dynamics have been excited through the application of an external
magnetic field or a spin-polarized current. In our case, in the absence of external
stimuli that could create a potential tilting of the magnetization from the magnetic
texture plane at rest, the azimuthal angle remains constant during the translational
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process, such that ϕ (ξ) = cte, value which varies depending on whether it has been
considered a Bloch (ϕ = ±π/2), a Néel (ϕ = 0, π), or a hybrid DW (other values of
ϕ). Focusing on the case of a Bloch-like magnetic texture, which is the configuration
compatible with the energy functional given by Eq. (4.1), it is possible to extract the
first integral of the system, which can be written as

(∂xθ)2 + sin2 θ (∂xϕ)2 =
(
1 + λ cos2 ϕ

)
sin2 θ, (4.15)

expression which allows calculating the energy of the magnetic soliton as twice the
exchange energy of the system [375]. In the Walker-type of solutions framework,
where ϕ = cte, it is possible to find that the linear DW energy density, EDW, which
is given in units of 2Kz∆0, and the spatial extent of the magnetic texture, ∆, can be
expressed as

EDW (v) = E0 κ (v) , ∆ (v) =
1

κ (v)
, (4.16)

where E0 = 2 corresponds to the static case. Accordingly, it can be noticed that the
magnetic soliton energy increases with the velocity and that, at the same time, the
DW width dynamically contracts up to some limit values given, respectively, by

EDW (v−) = E0 (1 + λ)1/4, ∆ (v−) = (1 + λ)−1/4, (4.17)

which depend entirely on the dimensionless anisotropy-based parameter λ. Addi-
tionally, if the azimuthal angle is allowed to vary during the dynamic process, it
is possible to verify that the DW plane orientation angle, ϕ, increases from π/2 to
ϕ (v−) = arccos

√
v−/λ as the magnetic soliton velocity increases over the range of

values allowed by the [0, v−] interval.

Figure 4.3: (a) Squared complex frequency, Ω2, and velocity, v2, in terms of the
squared complex wavenumber, K2, whose expressions are given, respectively, by
Eqs. (4.12) and (4.13), for the case in which the dimensionless anisotropy-based
parameter is given by λ = 1. Two regions disconnected from each other can be
differentiated in which the speed is real. (b) Representation of the evolution of the
normalized DW energy, E±

DW/E0, in the velocity-based interval [0, v−], for λ = 10,
according to Eq. (4.16), for the two sign-dependent branches of the squared imagi-
nary wavenumber, κ, according to Eq. (4.14), up to the limiting speed v−.

Interestingly, from Eq. (4.14), for v < v−, the positive sign on the right-hand
side corresponds to the case of a stable solution of the system, given in this case by a
Bloch DW, while the negative sign case results in an unstable Néel-like DW situation
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[376]. This is because when the sign of the right-hand side of the previously men-
tioned expression is positive, the energy, E+

DW/E0, of the magnetic texture increases
as its speed, v, increases, as it can be seen in Fig. 4.3 (b), at the same time as its spatial
extension, ∆+/∆0, contracts, which is represented in Fig. 4.4 (a), which is physically
expected, obtaining an opposite situation when the sign is negative, which is encap-
sulated in the parameters E−

DW/E0 and ∆−/∆0. Additionally, for the first of these
cases, it is possible to perform a decomposition of the magnetic soliton energy, EDW,
in series of small velocities (v ≪ v−), which gives rise to

EDW = E0 κ+ =
E0√

2

√
(λ − v2) + 2 −

√(
v2 − v2

−
) (

v2 − v2
+

)
≃ E0 +

E0v2

λ
, (4.18)

from where it is possible to obtain that the DW Döring mass, mDW, in absolute units,
will be given by mDW = 1/

(
2πγ2∆0

)
[80, 286]. Because of this, Eqs. (4.12) and

(4.14), based on the interpretation that the magnetic soliton can be characterized by
linear SW, with complex wavenumber and frequency, living in its tails, far from its
center, give the correct result for relatively low velocities of the low-energy excita-
tions of the medium for the interval given by [0, v−]. On the other hand, it has been
reported in literature that the unstable solution, encapsulated in Eq. (4.14), gives
rise to a negative Döring mass, in which case instabilities emerge with respect to
the inhomogeneous perturbation localized at the DW plane, which is known as the
corrugation mode [376, 377].

4.3.4 Qualitative velocity-restricted magnetic configurations description

According to what is reported in the literature [241], the critical velocities v± sep-
arate regions that host different types of moving magnetic textures. Using a gen-
eralization of Eq. (4.14), which was based, as explained in Sec. 4.3.2, on a linear
SW-based approximation, we will investigate if it is possible, at least, to account for
some of the qualitative characteristics of the different magnetic configurations that
reside in each dynamic regime, which has been shown in Fig. 4.4 (b). In the case of
the [0, v−] sector, which corresponds to the case in which the wavenumber and the
frequency are purely imaginary, that is, K = iκ and Ω = iκv, respectively, the spatial
location of the magnetization waves gives rise to the presence of DW. As it has been
exposed in Sec. 4.3.3, in this case the magnetic soliton remains unchanged during
its motion as its spatial extent contracts, conserving its topological charge (due to its
time-independent boundary conditions given by θ (±∞) = 0, π), at least until the
speed limit v− is reached. On the other hand, in the interval (v−, v+), since both K
and Ω are complex, there is coexistence of the imaginary and real components of the
wavenumber, giving as a result that the former one decreases as the system speed
approaches v+, while the real component increases. In principle, in this case what
exists is a non-topological soliton (which has boundary conditions that dictate that
θ (±∞) = 0), which has a localized envelope governed by a confinement propor-
tional to 1/κ at the same time that there are periodic pattern wavelength modulation
of approximately 1/k on its envelope in the form of SW oscillations. The fact that
this type of magnetic texture is not topologically protected can be ascribed, in con-
trast to the case of the DW in the interval [0, v−], to the appearance of a non-zero real
component of the scalar wavevector. Finally, in the last section, given by [v+, ∞),
only the presence of nonlinear SW is expected, which is outside of our main approx-
imation, but yielding the logical analog nonetheless in our case reflected in Fig. 4.4
(b).
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Figure 4.4: (a) Representation of the evolution of the normalized DW width, ∆±/∆0,
in the velocity-based interval [0, v−], for λ = 10, according to Eq. (4.16), for the
two sign-dependent branches of the squared imaginary wavenumber, κ, according
to Eq. (4.14), up to the limiting speed v−. (b) Real, k, and imaginary, κ, wavenumber
components obtained through the generalization of the linear SW dispersion as a
function of the magnetic soliton velocity, v, according to Eq. (4.14), for λ = 10.

4.4 Mapping to a sine-Gordon equation in ferromagnets

4.4.1 Anisotropy parameter-independent general approach

Taking into account the parameterization of the space and time coordinates made in
Sec. 4.2 in the context of the traveling wave ansatz, where ξ = x − vt, it is possible
to rewrite Eqs. (4.3) and (4.4) through the reparametrization of the azimuthal angle
variable, θ, through tan θ/2 = exp (−η) [241], in such a way that it can be obtained
that

v
(
∂ξη
)
= λ cos ϕ sin ϕ +

(
∂2

ξϕ
)
− 2

(
∂ξϕ
) (

∂ξη
)

tanh η, (4.19)

−v
(
∂ξϕ
)
=
(

∂2
ξη
)
+
[
1 + λ cos2 ϕ +

(
∂ξϕ
)2 −

(
∂ξη
)2
]

tanh η, (4.20)

where it has been considered that it is possible to restate the time derivatives in
such a way that ∂t = −v∂ξ . In the steady-state Walker-type of solutions framework,
where

(
∂ξϕ
)
= 0, being the azimuthal angle constant, such that ϕ (ξ) = ϕ0 [91], it is

possible to reduce the above system of equations to

v
(
∂ξη
)
= λ cos ϕ0 sin ϕ0, 1 + λ cos2 ϕ0 =

(
∂ξη
)2, (4.21)

case for which there is a stable solution of the form η (ξ) = ξ/∆ (v) as long as the
DW velocity does not exceed the critical speed v−. This functional form of η (ξ)
allows us to obtain an expression of the form(

∂2
ξθ
)
=

1
2∆2 sin 2θ, (4.22)

which is analogous to the static case, except for the velocity-dependence of the DW
width, ∆ = 1/κ (v). Interestingly, it is possible to rewrite the dynamical expression
for the polar angle, θ, into a SG-like equation in the context of Walker-like solutions,
not needing to make any assumptions about the dimensionless anisotropy-based
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parameter λ, which results in

(
∂2

xθ
)
− 1

v2
−

θ̈ =
1

2∆2
e

sin 2θ, (4.23)

where the DW width ∆e = ∆/
√

1 − (v/v−)
2 can be expressed in a relativistic form,

playing, in this case, v− the role of the maximum attainable DW velocity. However,
even though the solution obtained in the Walker-based framework is stable, it is not
possible to obtain this expression through an effective relativistic Lagrangian, be-
cause the kinetic part of the Lagrangian density in FM, which has a functional form
Lkin = cos θ ϕ̇, or, equivalently, Lkin = −ϕ sin θ θ̇, does not provide the required
terms in the dynamic equations. For this reason, this approach to find relativistic
signatures in FM systems is not rigorous.

4.4.2 Negligible out-of-easy-plane angle-based variational approach

4.4.2.1 Anisotropy-based strong magnetization constriction in the domain wall
plane at rest

It is possible to take advantage of the presence in the functional form of the config-
urational energy density, exposed in Eq. (4.1), of the anisotropy-based parameter
λ to try to emulate the real scenario that occurs in AFM [272]. In this type of sys-
tem, due to the order of magnitude of the exchange interaction, the magnetization
is strongly constrained in the DW plane at rest, which prevents the appearance of
appreciable tiltings from it, as a result of what it is stated in Sec. 3.3, which would
lead to the potential appearance of WB. In this case, in the limit λ ≫ 1, which can
occur in soft magnetic materials like permalloy with an induced-uniaxial magnetic
anisotropy Kz, where λ = 2πM2

s /Kz ≫ 1, with Kx = 0, having reported ratios of
up to λ = 21 [91], the closer it will be to replicating the aforementioned behavior.
In our case, we will work taking into account that the x-th magnetization compo-
nent, mx, perpendicular to the easy-plane, has to be small, that is is, mx ≪ 1, in the
aforementioned anisotropy-based limiting case, which will allow performing per-
turbation theory with respect to it. To do this, it is possible to rewrite the remaining
components of the magnetic moment as a function of a new scalar field, ψ (x, t), in
such a way that

my =
√

1 − m2
x sin ψ, mz =

√
1 − m2

x cos ψ, (4.24)

definitions which are consistent with the requirement that the magnetization vector,
m, has to be unitary. Additionally, within the different possibilities to parameterize
mx, it has been chosen that it will be given by mx = ε sin ψ, where ε represents
the angular variable that accounts for the potential deviations from the DW plane
at rest, such that ε = π/2 − ϕ, as stated in Fig. 4.1 (a), where it will be assumed
that, for λ ≫ 1, ε (λ) → 0. Taking into account the initial spherical coordinate
parameterizations (θ, ϕ) through the components of the magnetization vector m, it
is possible to find how they relate to the new set of parameters (ψ, ε), which will be
given by

cos θ =
√

1 − ε2 sin2 ψ cos ψ, cos ϕ =
ε√

1 + ε2 cos2 ψ
. (4.25)
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Interestingly, it is possible to find, through the second equation encapsulated in
Eq. (4.25), in the limit ε → 0, that it can be obtained that cos ϕ = ε + O

(
ε3) and

sin ϕ = 1 +O
(
ε2). Substituting these Taylor series expansions into the trigonomet-

ric functions containing the azimuthal angle, ϕ, into the dynamic expressions given
in Eq. (4.21), which assume that ε (ξ) = cte, it is possible to find that

v
(
∂ξη
)
= λε,

(
∂2

ξη
)
= 0, 1 + λε2 =

(
λε

v

)2

, (4.26)

where the last of these equations has a solution given by ε (λ, v) = v/
(

λ
√

1 − v2/λ
)

.

Accordingly, a new critical velocity, c =
√

λ, can be introduced, which verifies that,
for λ ≫ 1, c = v−. In the same line, the originally introduced angular variable
θ (x, t) will match the new variable ψ (x, t) for very low values of the parameter ε,
since

cos θ =
√

1 − ε2 sin2 ψ cos ψ ≃
(

1 − ε2 sin2 ψ

2

)
cos ψ ≃ cos ψ, (4.27)

if the terms of order O
(
ε2) are neglected. In this context, taking advantage of the

previously discussed approximate solution for Eq. (4.26), given by

η (ξ) =
ξ

∆′ (v)
=

ξ√
1 − (v/c)2

, (4.28)

a SG-like expression for the DW profile angle, θ (x, t) = 2 arctan exp [−η (ξ)], can be
deduced, such that (

∂2
xθ
)
− 1

c2 θ̈ =
1
2

sin 2θ, (4.29)

which constitutes a particular case of Eq. (4.23) in which ∆ = ∆′ and v− = c. This last
equation is valid not only for the case of the Bloch-type DW allowed in our system
in accordance with Eq. (4.1), which propagates in the direction perpendicular to the
easy-plane, but also, for example, for the case of a Néel DW that moves parallel to
the direction that defines the potential easy-axis symmetry-breaking anisotropy in
the medium [378].

In agreement with Eq. (4.29), in the limit λ ≫ 1, its Lorentz-invariant form can
be exploited to write the DW energy, E′

DW, and width, ∆′, as

E′
DW (v) =

E0√
1 − (v/c)2

, ∆′ (v) =
√

1 − (v/c)2, (4.30)

expressions which show a quantitative behavior far from that expected from a sys-
tem that legitimately shows relativistic-signatures for finite values of the dimension-
less parameter λ, as it can be seen in Fig. 4.5, matching when this constant is in-
finitely large. As it was done for the energy of the exact DW solution in Eq. (4.18), it
is possible to decompose, for low speeds (v2/c2 ≪ 1), the energy given by Eq. (4.30),
situation in which it is obtained that

E′
DW ≃ E0 +

E0v2

2c2 , (4.31)

whose associated Döring mass, mDW = E0/c2, matches the one obtained in Sec.
4.3.3. However, in the limit v → c, according to Eq. (4.29), the energy is singular,
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E′
DW (v) → ∞, and the spatial extent of the magnetic soliton matches the extreme

case of a relativistic theory, ∆′ (v) → 0, results which are non-physical since, at the
same time, the parameter ε (λ, v) = v/

(
λ
√

1 − v2/λ
)

, diverges, and cannot be con-
sidered small anymore. To match the case of the exact solution to the system given
by Eqs. (4.3) and (4.4), the returned result should have a finite energy and DW
width in the limiting case v → v−, as the one exposed in Eq. (4.17). Therefore, al-
though one can write a SG-like equation like the one exposed in Eq. (4.29) and the
relativistic expressions in Eq. (4.30), these are only valid in the limit of small DW
velocities, v2/c2 ≪ 1, being a great approximation in this case. As a conclusion, the
approximate solutions, coded through Eq. (4.30), are asymptotically exact for λ ≫ 1,
provided that v2/c2 ≪ 1, a situation in which they are far from the singularities they
treasure, being virtually indistinguishable from the exact solutions for a biaxial FM
obtained through Eq. (4.14).

Figure 4.5: (a) Comparison between the normalized energy of a moving DW,
EDW/E0, given by Eq. (4.16), for λ = 10, and the one obtainable through a rela-
tivistic Lorentz-like expression, E′

DW/E0, like the one exposed in Eq. (4.30), where
the limiting speed is given by the maximum SW phase velocity v−. (b) Comparison
between the normalized DW width, ∆/∆0, given by Eq. (4.16), for λ = 10, and the
one obtainable through a relativistic Lorentz-like expression, ∆′/∆0, like the one ex-
posed in Eq. (4.30), where the limiting speed is given by the maximum SW phase
velocity v−.

4.4.2.2 Solutions under conditions incompatible with real domain wall

Along the same lines as in the previous section, in the context of steady-state Walker-
like solutions, in the limit λ ≫ 1, there is another approximate solution proposed
in the literature [379]. In this case, the x-th magnetization component, mx, takes
on another functional form, given by mx (ξ ′) = εs sin Ψ (ξ ′), where εs = V/ (R∆s),
Ψ (ξ ′) = 2 arctan exp ξ ′/∆s, and ξ ′ = x −Vt, where it is necessary to introduce some

parameters given by V =
√

R v, V0 =
√

R, ∆s =
√

R/γ′
√

1 − (V/V0)
2, and V0 =√

R, framework in which the aforementioned limit takes the form R2/γ′ = λ → ∞.
The newly introduced function, Ψ (ξ ′), also satisfies a SG-like expression of the form

(
∂2

xΨ
)
− 1

V2
0

Ψ̈ =
γ′

2R
sin 2Ψ, (4.32)
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equation which constitutes a particular case of Eq. (4.23) for ∆e =
√

R/γ′. In this
context, the previously defined DW width ∆s, in the limit λ → ∞, tends to infinity
for any finite velocity, V, as long as it is verified that V < V0, which results in the
vanishing of the right-hand side of Eq. (4.32). Particularly, in the aforementioned
expression, the maximum speed, V0, given by V0 = (γ′λ)1/4, differs from the one
introduced in Sec. 4.4.2.1, and it must be equal to v− =

√
λ. In the case in which the

parameter γ′ is redefined, such that γ′ = 1 [380], it is possible to recover the same
form of the SG-like expression exposed in Eq. (4.23). Concerning the small param-
eter εs, basis of the perturbation theory approximation, whose functional form re-
sembles the one introduced in the previous section, given by ε = v/

(
λ
√

1 − v2/λ
)

,

it is also singular as the velocity V approaches the critical speed V0 = λ1/4 due to
the definition of the DW width ∆s. This shared feature constitutes a signature of
all those solutions to Eq. (4.23) in the steady-state Walker-type of solutions frame-
work where ϕ (ξ) = cte. However, the solution, parameterized through the param-
eter Ψ, to Eq. (4.32) presents additional problems due to the assumptions about the
anisotropy constants of the system, since it is theorized that Kx is proportional to R
and that Kz is proportional to 1/R, which means that, in the limit λ ≫ 1, the easy-
axis anisotropy verifies that Kz → 0, which would imply the disappearance of the
DW.

4.4.3 Singularity avoidance going beyond Walker-type of solutions

Based on what has been discussed so far in the context of the Walker-type of solu-
tions, where it is assumed that ε (ξ) = cte, it is possible to infer that, to properly
evaluate the limit λ ≫ 1, mx ≪ 1, and to obtain a reasonable SG-like expression for
finite velocities, v < v−, it is necessary to assume that the azimuthal angle, ε (ξ) ≪ 1,
is a function not only of time, but also of space, to solve Eqs. (4.19) and (4.20). In this
line, the solutions obtained previously could be refined, avoiding the appearance of
the singularity at high speeds at v → c, context in which, if the energy is lower than
in the steady-state case where ε ̸= ε (x), would lead to a stable solution, which could
confirm that it is possible to rigorously reduce the DW dynamics in biaxial FM, at
least for low velocities, to a SG-like expression. At the moment, although it has been
shown heuristically that it is possible to map the LL equation to this kind of form
by going beyond the Walker approximation in the perturbation theory framework
[381], this attempt is not completely satisfactory since it assumes that the spatial and
time derivatives of magnetization are independent [382, 383]. Due to this, this at-
tempt contradicts the parameterization of the steady-state DW motion through the
traveling wave ansatz, since it is assumed that the spatial derivative of the angular
variable is zero, while the temporal one is finite. The most consistent handling of
this type of situation is beyond the current theory of 1D magnetic solitons.

4.4.4 Antiferromagnetic-like kinetic term scenario

In our quest to find a SG-like dynamical equation for FM, we have to address what
functional form the kinetic term, Lkin, has to have in order to obtain a consistent
theory. The goal should be to get the same as in AFM in the nonlinear σ-model
framework, where Lkin ∝ θ̇2, as it was shown in Eq. (3.59) [384]. Interestingly, for
FM, it is possible that the term of the LL equation that accounts for the time evolution
can be written, indistinctly, through two options, given by

Lkin = − cos θ ϕ̇, Lkin = −ϕ sin θ θ̇, (4.33)
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which, after applying the EL equation, give rise to

∂Lkin

∂θ
− ∂t

(
∂Lkin

∂θ̇

)
= 0 → sin θ ϕ̇ = 0, (4.34)

∂Lkin

∂ϕ
− ∂t

(
∂Lkin

∂ϕ̇

)
= 0 → sin θ θ̇ = 0, (4.35)

for both parameterizations of the geometric term. Evaluating Eq. (4.3) for the az-
imuthal angle parameterization introduced in Sec. 4.4.2.1, such that ϕ (ξ) = π/2 −
ε (ξ), for the Walker-type of solutions, in the limit ε ≪ 1, it can be found that

sin θ θ̇ = λ sin2 θ cos ϕ sin ϕ ≃ λε sin2 θ, (4.36)

from where it can be deduced that sin θ = θ̇/ (ελ), which results in that the sec-
ond expression in Eq. (4.33) can be rewritten as Lkin = θ̇2/λ. Accordingly, the La-
grangian density, given in this case by L = e (θ, ϕ)− θ̇2/λ, where the energy density
e (θ, ϕ) is depicted in Eq. (4.1), can be expressed, within the limit mx ≪ 1, as

L =
(
∂2

xθ
)
− 1

c2 θ̈ + sin2 θ, (4.37)

expression which is compatible with a SG equation, where it has been taken into
account that c =

√
λ, in accordance with what is stated in Sec. 4.4.2.1.

On the other hand, for the uniaxial AFM case, the SW dispersion relation is given,
as opposed to the biaxial FM case exposed through Eq. (4.11), by

ω2 = ω2
0 + c2k2, (4.38)

where ω0 represents the anisotropy-based zero-momentum resonance frequency [385].
Using the same approach as that used in Sec. 4.3.2, where a generalization to com-
plex wavenumbers was used, it is possible to find that the limiting velocities ob-
tained in FM, in this case, are equivalent, v± = c, as well as that, in the context of a
purely imaginary scalar wavector, κ, the dependency κ (v), in units of κ0 = ω0/c , is
given by the Lorentz factor-based functional form

κ (v) =
1√

1 −
( v

c

)2
, (4.39)

being given the equivalent expression in the case for FM by Eq. (4.14). Through this,
it is possible to immediately write a relativistic form for the non-normalized energy,
EDW (v), and DW width, ∆ (v), as it was done in Sec. 4.3.3, in such a way that

EDW (v) =
E0√

1 −
( v

c

)2
, ∆ (v) = ∆0

√
1 −

(v
c

)2
, (4.40)

expressions which are exact in contrast to those obtained for the case of biaxial FM
[239].

4.5 Field-induced relativistic-like signatures in ferromagnets

As we have discussed in Sec. 4.4, specifically in those cases based on the variational
principle, which were exposed in Sec. 4.4.2, the DW contracts during the dynamic
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process, getting closer to the Lorentz factor-mediated trend as the dimensionless
anisotropy-based parameter λ increases. In real systems, in the presence of dissi-
pative effects governed by the Gilbert damping parameter, α, the movement of the
magnetic texture can be induced through a magnetic field or an electric current. As
discussed earlier in Sec. 3.2, in the case of FM there is a limit to the stable dynamics
of magnetic solitons, known as WB, whose appearance seems to be possible to delay
as λ increases. With this in mind, the configurational energy density, given by Eq.
(4.1), can be modified to include a magnetic field applied along the positive z-th axis,
being given by H = H ẑ, such that

e (θ, ϕ) =
1
2

[
(∂xθ)2 +

(
1 + λ cos2 ϕ + (∂xϕ)2

)
sin2 θ

]
− h cos θ, (4.41)

where h = H/Ha represents the reduced magnetic field. Accordingly, the dynamic
description given by Eqs. (4.3) and (4.4) can be rewritten, taking into account the
LLG equations in spherical coordinates

sin θ θ̇ = − δe
δϕ

− α sin2 θ ϕ̇, sin θ ϕ̇ =
δe
δθ

+ αθ̇, (4.42)

for the Walker-type of solutions, (∂xϕ) = 0, such as

θ̇ = λ cos ϕ sin ϕ sin θ, (4.43)

αθ̇ − h sin θ =
(
1 + λ cos2 ϕ

)
cos θ sin θ −

(
∂2

xθ
)

, (4.44)

where it can be seen through the left-hand side of Eq. (4.44) that for the system to ac-
commodate the same kind of soliton-like solutions as those for Eqs. (4.3), (4.4), (4.19),
and (4.20), it is necessary that the dissipative and the Zeeman terms compensate each
other, such that αθ̇ = h sin θ, which implies that the DW experiences a steady-state
motion. Taking into account that, for a constant azimuthal angle, ϕ = ϕ0, the solu-
tions to the system given by Eqs. (4.19) and (4.20) were given by η (ξ) = ξ/∆ (v), it
is possible to combine Eq. (4.19) and (4.43) to get

θ̇

sin θ
= λ cos ϕ0 sin ϕ0 =

v
∆ (v)

=
h
α

, (4.45)

where the velocity-dependent DW width, ∆ (v) = 1/κ (v), will be dictated by Eq.
(4.14). Finally, the previous expression can be restructured in such a way that it is
found, for a steady-state process, how the magnetic soliton velocity, v, evolves as a
function of the magnetic field, h, such that

v (h) =
h

α

√
1 +

(
h
αc

)2
. (4.46)

To test how well reality fits the exposed theory, we perform ASDS, in which the
LLG equation is solved numerically, site by site, through a fifth-order Runge-Kutta
method, since it is foreseeable that the DW shrinks, for high velocities, to widths of
the order of 1 nm, failing the continuum approximation. The simulated system con-
sists of a 1D FM chain composed of 60000 atomic sites, in which the layered AFM
Mn2Au is taken as a reference, being the AFM exchange bonds nullified, being char-
acterized by an exchange integral I = 1.588 · 10−21 J, an atomic magnetic moment
µs = 4µs, and a lattice constant a0 = 3.328 Å [386, 387]. Additionally, atomistically, it
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has been taken into account that the hard-axis anisotropy is given by |Kx|a3
0 = I, that

the easy-axis anisotropy constant has a value given by Kza3
0 = 1.302 · 10−24 J, and that

the Gilbert damping parameter is expressed by α = 0.001. It should be noted that
these values have been adopted to ensure the validity of the limit mx ≪ 1, λ ≫ 1,
verifying that the dimensionless parameter λ is given by λ = 1221. Rewriting the
atomistic parameters as micromagnetic ones, it is possible to find that Ms = 1006
kA/m, A = 4.77 pJ/m, |Kx| = 43.08 MJ/m3, and Kz = 0.0353 MJ/m3, from which
it can be deduced that the critical velocity limiting the stable DW motion takes the
value v− = 4.869 km/s, the latter one being in very good agreement with the sim-
ulated maximum magnon group velocity, c = 4.981 km/s. Taking into account that
the velocity-dependent magnetic soliton spatial extension, ∆, can be denoted, in the
limit λ ≫ 1, as in the case exposed in Eq. (4.30), with the simulated DW width at
rest given by ∆0 = 11.62 nm, it is possible to see how well these expressions fit the
simulations, which is shown in Fig. 4.6. As it can be seen, the agreement is very
good, verifying the saturation of the speed of the magnetization texture as the value
of the magnetic field increases, which is exposed in Fig. 4.6 (a), at the same time that
a relativistic-like contraction of the spatial extension is observed in Fig. 4.6 (b). The
velocity, v (h), as depicted in Eq. (4.46), is no longer an arbitrary parameter, contrary
to what was seen in previous sections, being qualitatively equivalent, for low fields,
to what is expected for small ratios λ. Additionally, it shows the same type of behav-
ior, at high values of the external stimulus, than in the case of weak FM-like YFeO3,
where the mobility, v/H, is different, since it is governed by the exchange and the
DMI [388]. The fact that there is a good correspondence between the analytical ex-
pressions and the simulated results for the studied case indicates that the effect of
the out-of-easy-plane variable, ε, is negligible, so that the Walker-type of solutions
framework is a good approximation up to, at least, v− as long as λ ≫ 1.

Figure 4.6: Comparison with ASDS for a FM layer with λ = 1221 of the relativistic-
like signatures for steady-state DW dynamics theoretically obtained through (a) its
speed, v, saturation as the applied magnetic field, H, increases, accordingly to Eq.
(4.46), and (b) the contraction of its spatial extent, ∆, as the speed of the magnetic
soliton increases, obtained from Eq. (4.30).

4.6 Conclusions

In this chapter, we have addressed the reduction of the dynamic LL equation to a
relativistic SG-like expression for the case of a biaxial FM in search of mimicking the
absence of the WB in AFM through the avoidance of the magnetization tilting from
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the DW plane at rest. For this, we have used the possibility of accurately characteriz-
ing the energy and spatial extension of the magnetic soliton through the dispersion
relation of the linear SW with imaginary wavenumber and frequency that live in its
tails, its speed being limited by the maximum phase velocity of these low-energy
excitations of the magnetic medium. In the Walker-type of solutions framework,
it is possible to find that the reduction of the system equation to a SG-like expres-
sion is formally possible, whether or not an assumption is made about the value
of the dimensionless hard-axis to easy-axis anisotropy ratio. However, only in the
case in which this anisotropy-based parameter is very large is it possible to find
a physically consistent result, where the assumption of negligible cantings of the
out-of-easy-plane angle is essential to obtain an appropiate functional form of the
kinetic Lagrangian term. Nevertheless, this description of the steady-state DW mo-
tion is only valid for the case in which its speed is small enough compared to the
critical velocity of the system, asymptotically tending its energy and width to the
exact expressions. To avoid the hypothetical small canting angle divergence, it is
necessary, a priori, to work outside the Walker-type of solutions framework, which
is beyond the current 1D theory of magnetic solitons, where the spatial and tempo-
ral derivatives of the magnetization cannot be considered as independent to verify
the traveling wave ansatz. Through ASDS, the relativistic-like signatures of the DW
dynamics in biaxial FM have been verified for high values of the hard-axis to easy-
axis anisotropy ratio, such as the velocity saturation as the applied external stimulus
increases and its consequent contraction following a Lorentz-based trend. The fact
that the use of micromagnetic simulations is avoided is due to the predicted shrink-
age of the spatial extension of the magnetic soliton to values where the continuum
approximation fails, which highlights that this type of process must be taken into ac-
count when choosing the computational discretization method of the system, even
in the case of FM in the absence of temperature. These remarkable results open the
door to implementing real biaxial FM-based experiments with high values of hard-
axis to easy-axis anisotropy ratios to delay the extinction of the stable steady-state
DW motion without using complicated geometries.
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Chapter 5

Inertial domain wall
characterization in layered
multisublattice antiferromagnets

5.1 Massive magnetic soliton dynamics in antiferromagnets

In those spintronics devices that use DW as information carriers, it is desired to have
ultrafast magnetization dynamics with the shortest possible response time for a rea-
sonable magnitude of the external stimulus to optimize its operability. This being the
case, the use of AFM textures is advantageous due to the high velocities achievable
in the special relativity framework [133, 134], being, however, not only important
how fast they can move, but also how long it takes them to move stably at a certain
speed. In this context, interestingly, AFM show a low exchange-mediated static DW
mass and a weak motion-based deformation tendency [306, 371], and it is usually
possible to describe their dynamics through a Newton-like second-order differen-
tial equation of motion [307, 389], as it can be seen in Eq. (3.64). Because of this, in
the presence of dissipation and external forces, the accurate characterization of the
magnetic soliton position is limited by the inherent inertial effects. Accordingly, it
is essential to characterize in detail how a DW evolves in the acceleration and de-
celeration processes under the action of different time-dependent stimuli. However,
in the literature there is a clear absence of analysis about the dynamic inertial sig-
natures of a magnetic texture in real AFM materials with an invariant spin space,
without time-dependent anisotropy energy gradients in the sample [390], where the
complete set of exchange interactions are taken into account, and there are also cer-
tain claims about a hypothetical universal AFM DW massless-like behavior [391].
Additionally, the main problem in taking advantage of this type of system lies in
its low magnetic susceptibility, which makes it extremely difficult to stimulate them
through static magnetic fields [140, 141], as it can be deduced from what it is exposed
in Sec. 3.3. To directly excite an AFM it is necessary to generate an effective magnetic
field that is staggered, that is, that its relative direction in each magnetic sublattice
is antiparallel with respect to each other. Interestingly, this occurs naturally in the
case of Mn2Au and CuMnAs, a pair of complex layered metallic AFM that can be
excited efficiently through current-induced SO fields [148, 149], and whose magnetic
state can be characterized by combining conventional MR effects with image char-
acterization in real space [153, 340, 392, 393], as it is discussed in Sec. 3.6. The fact
that it has been possible to experimentally visualize DW in these type of materials
[170, 394, 395], as well as that there are proposals based on thermoelectric effects to
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track their positioning [164, 165], which it is proposed in Sec. 3.6.3, motivates their
theoretical dynamic exploration keeping in mind their potential for AFM DW-based
racetrack memories, all-spintronics architectures, or memristive-like neuromorphic
computing approaches [114, 116, 166].

5.2 Magnetic and crystallographic description of the layered
antiferromagnet Mn2Au

To carry out our study, we will take into consideration the layered collinear AFM
Mn2Au, which stands out for being a good conductor, having a strong magnetocrys-
talline anisotropy [161, 387, 396], and a Néel temperature well above the room tem-
perature [386]. To characterize this system, which is shown in Fig. 5.1 (a) [397], it is
possible to write the interactions that make up its configurational energy, E, for its
conventional tetragonal unit cell [139, 150], which will be given by

E = − ∑
⟨i,j⟩

Jij mi · mj − K2⊥ ∑
i
(mi · ẑ)2 − K2∥ ∑

i
(mi · ŷ)2 − K4⊥

2 ∑
i
(mi · ẑ)4

−
K4∥
2 ∑

i

[
(mi · û1)

4 + (mi · û2)
4
]
− µ0µs ∑

i
mi · HSO

i , (5.1)

where the unit vectors û1,2 represent the in-plane xy-based directions u1 = [110]
and u2 = [11̄0]. As it can be seen in Fig. 5.1 (a), the lattice constant along the x-
and y-th spatial directions in the basal planes is given by a0 = 3.328 Å, while the
height of the unit cell along the z-th axis is characterized by c = 8.539 Å [386].
Considering the conventional unit cell, it is possible to appreciate that there are two
Mn atoms per each type of sublattice, denoted as A and B, which gives rise to a
total of four magnetic atoms. In fact, the magnetic moment associated with each
of these Mn atoms, which coincides with the contribution per FM layer in the unit
cell, would be given by µs = 4µB [387]. Additionally, as it is represented in Fig.
5.1 (a), there are three different types of exchange contributions between the mag-
netic moments mi and mj in the unit cell, which are represented by the exchange
integrals Jij. This set is composed of two AFM interactions, which are given by
J1 = − (396 K) kB and J2 = − (532 K) kB, and a third one of FM origin, being rep-
resented by J3 = (115 K) kB [386, 387, 396]. On the other hand, it is possible to
appreciate the existence of two types of tetragonal anisotropies in the system, given
by K4∥ = 1.8548 × 10−25 J and K4⊥ = 2K4∥, and two others of a uniaxial nature, de-
noted by K2⊥ = −1.303 × 10−22 J and K2∥ = 7K4∥ [139, 161, 165]. The last term in Eq.
(5.1) accounts for the Zeeman-like contribution, where HSO

i is the staggered SO field
on each i-th lattice site, which, due to locally broken inversion symmetry along the
z-th spatial direction, results in HSO

A,B = ±HSO
y ŷ when the electric current density, j,

is injected along j ∥ x̂, and HSO
A,B = ∓HSO

x x̂ when j ∥ ŷ [148].

5.3 Analytically-based magnetic texture dynamics in complex
antiferromagnets

5.3.1 Reduction to a two sublattices-based order parameter description

Due to the existence of the different magnetic interactions collected in Eq. (5.1),
the magnetization is constrained in the xy plane for each Mn-based FM layer in the
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form of stable 1D 180◦ Néel-like DW, as it is exposed in Fig. 5.1 (b). When it is
addressed how the magnetic soliton dynamics can be characterized analytically in
Mn2Au, it is worth noting that the conventional unit cell consists of four staggered
magnetized layers along the z-th spatial direction, which are connected through two
types of AFM exchange contributions, given by J1 and J2, which makes it difficult
to define a unique Néel order parameter in the system, contrary to what it is stated
in Sec. 2.4.3 for the case of an AFM spin chain. However, due to the symmetric
inequivalence of the magnetic and crystallographic unit cells, it is feasible to reduce
their characterization to a two sublattices single staggered vector-based description.
To proceed with this discussion, let us take into account the numbering of the Mn
planes exposed in Fig. 5.1 (b). At this point, it is necessary to differentiate between
two crystallographically identical Mn-based groups: one consisting of planes 1 and
4, and the other by sheets 2 and 3. Interestingly, if a spatial inversion transformation
is performed with respect to the unit cell center position, an operation which will be
characterized by the position vectors, ri, of each magnetic layer, it will be possible to
appreciate that, crystallographically, the Mn atoms of plane 1 become those of layer
4, and vice versa (this is, r1,4 → r4,1). Accordingly, this can be extrapolated to the
case of Mn atoms residing in sheets 2 and 3 (which will be expressed as r2,3 → r3,2).
However, if the orientation of the magnetic moments in each Mn site is taken into
account, the crystallographic symmetry is not preserved, since the AFM ordering
forces the magnetization in the 1-4 and 2-3 planes to be antiparallel with respect to
each other within the exchange approximation. It is precisely this broken inversion
symmetry which gives rise to the existence of the staggered SO field, HSO

i , in each
magnetic sublattice, which was included in Eq. (5.1), which allows to induce the
AFM dynamics.

}

}
}

Figure 5.1: (a) Crystal and spin structure of the Mn2Au tetragonal unit cell along
with the different types of atoms and sublattices in the system, where the magnetic
Mn-based layers are numbered and displayed along with their corresponding unit
magnetization, mi, and position vectors, ri. Distribution of the different exchange
bonds of AFM origin, J1 and J2, connecting different sublattices, and the one of FM
nature, J3, as well as the in-plane xy basal lattice period, a0, and the out-of-plane
height, c, parameters. (b) Distribution of the Néel-like DW magnetization, mi, and
the SO field, HSO

i , in each of the magnetic sublattices, denoted by A and B, along
with the definition of the two types of Néel order parameters involving different
layers, lα = (m3 − m2) /2 and lβ = (m1,3 − m2,4) /2.

Taking into account that Mn2Au is a magnetically-based centroasymmetric AFM,
it is possible to define four vectors to describe the system, one FM, na, and three
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AFM, li, result of linear combinations of the four sublattices magnetization vec-
tors, mi, such that they will be given by: na = (m1 + m2 + m3 + m4) /4, la =
(m1− m2 − m3 + m4) /4, lb = (m1 − m2 + m3 − m4) /4, and lc = (m1 + m2 − m3−
m4) /4 [242]. In fact, one of the AFM vectors, namely lb, can be used as the main one
to define the system due to the specific magnetic symmetry of the Mn2Au unit cell.
Since the 1-3 and 2-4 planes are magnetically equivalent, it is possible to introduce a
two sublattices model consisting of Mn-based layers 2 and 3 (or type B and A accord-
ing to Fig. 5.1 (b), respectively) taking into account that m1 = m3 and m2 = m4. This
results in the AFM vectors now being given by la,c = 0 and lb = (m3 − m2) /2, while
the FM one will be represented by na = (m3 + m2) /2. In this way, it is possible to
describe the DW dynamics in the layered AFM Mn2Au through a two sublattices
formalism taking into account only the two FM embedded layers 2 and 3, exclud-
ing for this purpose sheets 1 and 4, in such a way that it is possible to define the
main AFM vector as lα = lb = (m3 − m2) /2 and the total magnetization vector as
nα = na = (m3 + m2) /2. Additionally, it is possible to introduce a more general
definition of the aforementioned variables in terms of the two types of magnetic lay-
ers of the system, A and B, in accordance with what is exposed in Fig. 5.1 (b), in
such a way that we obtain that l = (mA − mB) /2 and n = (mA + mB) /2, which is
consistent with the lα and mα characterization, respectively.

5.3.2 First nearest neighbors-governed exchange energy construction

To address the analytical description of the system, it is necessary to evaluate how
the different nearest neighbors exchange-based bonds impact the inhomogeneous
DW transition. To do this, taking as a reference Fig. 5.2 (a), which shows a top
view of the conventional unit cell, we will focus on the number of relevant first
nearest neighbors for a Mn atom of the embedded layer 2, which enclose all the
possible exchange-based interactions, in an arbitrary position xi, being its magneti-
zation vector characterized by m2 (xi). This being the case, it is possible to see that
this reference atom has four intersublattice first neighbors on sheet 1, at a distance
a0/2 along the x-th axis, which are depicted as m1 (xi±1/2), being mediated by the
AFM exchange interaction given by J1. Additionally, the aforementioned atomic
position has two intrasublattice first neighbors along the x-th transition direction,
at a distance a0, which are characterized through m2 (xi±1), interacting through the
FM exchange J3 contribution. In this sense, it should be noted that both, the first
neighbors in layer 2 along the y-th axis, characterized by the FM J3 parameter, and
the only intersublattice first neighbor in sheet 3, whose contribution is given by the
AFM exchange J2 constant, are not taken into account because they do not impose
any type of exchange penalty when determining the static and dynamic DW config-
uration in each magnetic sublattice of the system.

This being the case, we can first characterize the J1-mediated contribution to
the exchange energy of the system, Eexc, through the introduction of the interaction
between the unit magnetization vectors m1 (xi±1/2) and the reference unit magneti-
zation vector m2 (xi), giving rise to

Eexc (J1) = −2J1 m2 (xi) · [m1 (xi−1/2) + m1 (xi+1/2)] , (5.2)

where it is important to note that the factor 2 that appears on the right-hand side is
due to the existence of two first neighbors on each side of the reference Mn-based
atom located at xi at a distance a0/2. Performing a 1D Taylor series decomposition
up to second order for the atoms belonging to layer 1 with respect to the position xi
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of the reference atom, we obtain that

Eexc (J1) = 4|J1|m2 (xi) ·
[

m1 (xi) +
1
2

( a0

2

)2 (
∂2

xm1 (xi)
)]

, (5.3)

expression which can be rewritten in terms of the total magnetization vector, n =
(mA+ mB) /2, and the Néel order parameter, l = (mA − mB) /2, taking into ac-
count, as expressed in Sec. 5.3.1, the existing equivalence between the magnetic
sublattices 1-3, which we can refer to generically as type A, according to Fig. 5.1 (b),
and sheets 2-4, which can be classified in the category called B, in such a way that
the orthogonal set of unit vectors n and l will be defined as n = (m1 + m2) /2 and
l = (m1 − m2) /2. Considering that n2 + l2 = 1 and that we are working on the
exchange limit regarding the exchange parameter J1 (n2 ≪ l2) [144, 241], it is possi-
ble to obtain, after neglecting the spatial indices, that the aforementioned exchange
interaction can be reduced to

Eexc (J1) = 8|J1|
[

n2 − 1
4

( a0

2

)2
l ·
(
∂2

xl
)]

, (5.4)

which can be rewritten taking into account that, since both n and l are two fixed
length vectors, it is possible to show that l ·

(
∂2

xl
)
= −(∂xl)2, such that

Eexc (J1) = 8|J1|
[

n2 +
a2

0
16

(∂xl)2
]

. (5.5)

Similarly, the functional form of the intrasublattice FM exchange J3 contribution
to the system can be analyzed analogously to the case in which the first neighbors
of layer 1 were taken into account. In this case, the interaction between atoms of the
same sheet located at a distance a0 on both sides of the reference atom located at xi
can be modeled as

Eexc (J3) = −J3 m2 (xi) · [m2 (xi−1) + m2 (xi+1)] , (5.6)

where it can be seen that, unlike the case presented in Eq. (5.2), there is no factor 2
on its right-hand side since there is only one neighbor on each side of the reference
atom. Performing a Taylor series expansion up to second order along the x-th spatial
direction for the intrasublattice first nearest neighbors of layer 2 located at a distance
a0 from the reference atom, it is possible to obtain that

Eexc (J3) = −2J3 m2 (xi) ·
[

m2 (xi) +
a2

0
2
(
∂2

xm2 (xi)
)]

, (5.7)

expression which can be rewritten in terms of the AFM vectors n and l taking into
account that all the considered atoms belong to the same magnetically-based cat-
egory denoted by type B. Taking into account, again, that we are working on the
exchange limit, that the n and l variables form an orthogonal unit set (n · l = 0), and
that both are two fixed length vectors, we obtain that

Eexc (J3) = J3a2
0 (∂xl)2. (5.8)

Finally, it is possible to group both exchange-based contributions, given by Eqs.
(5.5) and (5.8), which will govern the static and dynamic DW configuration in each
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of the FM layers of the conventional unit cell, giving rise to

Eexc =
1
2

A n2 +
1
8

a (∂xl)2, (5.9)

where we have introduced the homogeneous AFM exchange parameter, A = 16|J1|,
and the inhomogeneous FM-like exchange constant, given by a = 8a2

0 (J3 + |J1|/2).

5.3.3 Effective version of the nonlinear σ-model in the rigid profile ap-
proximation

In addition to the plethora of different exchange interactions connecting the differ-
ent magnetic sublattices of the system, there are also various anisotropy-based con-
tributions with different directionality. Due to the relative order of magnitude of
the uniaxial anisotropy constants compared to the tetragonal ones, being given by
K2⊥/K4⊥ = 351 and K2∥/K4∥ = 7, the fourth-order anisotropies will be neglected in
the main approximation from now on. In order to readjust the configurational en-
ergy given by Eq. (5.1) for the case of a two sublattices-based description in terms of
the set of the orthogonal unit vectors defined by n and l, it is necessary to take into
account that these variables are constructed in terms of the two embedded FM layers
2 and 3 of the unit cell, being denoted as nα and lα. However, it is important to keep
in mind that, in our case, in Mn2Au, the description of the DW dynamics must reflect
that it occurs entirely in a single FM layer of the system, while the definition of the
vectors n and l implicitly assume that this occurs across both sublattices, as in the
case of the AFM spin chain presented in Secs. 2.4.3 and 3.3. To adapt this to our par-
ticular problem, we must halve the resulting magnetic anisotropy and Zeeman-like
energies after adding the contributions of the two individual embedded sublattices.
This, in conjunction with the exchange energy part exposed in Eq. (5.9), within an
effective version of the nonlinear σ-model [135, 136, 398], due to the non-inclusion of
the AFM exchange interaction encoded by the J2 parameter, which is defined along
the c-axis of the system, in the exchange limit [144, 243], gives rise to

E =
1
2

A n2 +
1
8

a (∂xl)2 + wani (l)− 2γh̄ l · HSO, (5.10)

where the term Eani (l) encapsulates the uniaxial anisotropy contributions of the sys-
tem, Eani (l) = |K2⊥| (l · ẑ)2 − K2∥ (l · ŷ)2, where the electric current has been chosen
to be injected along j ∥ x̂, so HSO = HSO

y ŷ, inducing the DW motion along the x-
th spatial direction, and where it has been taken into account, when rewriting the
Zeeman-like term of Eq. (5.1), that, for the specific case of Mn2Au, µ0µs = 2γh̄.

Along the same line, due to the transition to a two sublattices-based description
of the system, it is necessary to work within the framework governed by the AFM
LLG equations, which describe the dynamic behavior of the staggered, l, and total
magnetization, n, vectors, which, in the exchange limit [144, 241], are given, respec-
tively, by Eqs. (3.49) and (3.50). It should be noted that, in this case, the effective
magnetic fields associated to the variables n and l, which are represented by Heff

n,l ,
will be expressed as Heff

n,l = − 1
2γh̄

δE
δ(n,l) . Through Eq. (3.49), it is possible to find that

n =
2h̄
A
(
l̇ × l

)
, (5.11)
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expression which can be substituted into Eq. (3.50) to obtain a second-order differen-
tial equation entirely in terms of the Néel order parameter, l, which can be denoted
as

l ×
[(

∂2
x l
)
− 1

v2
m

l̈ + h − 4
a

∂Eani (l)
∂l

− η l̇
]
= 0, (5.12)

where vm represents the maximum magnon group velocity of the medium, which in
this case is given by

vm =

√
aA

4h̄
=

2a0

h̄

√
2|J1|

(
J3 +

|J1|
2

)
, (5.13)

whose value in the case of Mn2Au, in view of what is stated in Sec. 5.2, is 43.39
km/s, while h encodes the reduced SO field as h = 8γh̄HSO/a, and η denotes the
dissipative parameter expressed as η = 8αh̄/a. Interestingly, it should be noted that
there are studies predicting that an intersublattice AFM exchange interaction such as
the one encoded by J2, perpendicular to the inhomogeneous DW transition, should
govern the value of vm, both within and outside of the standard nonlinear σ-model
[389, 399, 400], as opposed to what it is exposed in Sec. 5.3.2 in the construction of
the exchange-based energy of the system.

Consistent with what it is shown in Fig. 5.2 (b), it is possible to parameterize
the Néel order parameter in spherical coordinates taking into account the in-plane
easy-axis direction dictated by K2∥, giving rise to

l = (sin φ cos ε, cos φ cos ε,− sin ε) , (5.14)

where φ represents the azimuthal angle, which accounts for the rotation of the mag-
netization in the xy plane being measured from the y-th axis, while ε expresses
the polar angle, which describes the out-of-plane canting characterized from the xy
plane. Since we are working on the exchange limit, it is possible to predict that the
tilting from the easy-plane is negligible, such that it can be assumed that ε ≃ 0, so
the reduced AFM vector can be expressed as l ≃ (sin φ, cos φ, 0). This being the sce-
nario, it is possible to reduce Eq. (5.12) to a SG wave-like equation [303, 401], which
has the following functional form

1
v2

m
φ̈ −

(
∂2

x φ
)
+

1
2∆2

0
sin 2φ + h sin φ = −η φ̇, (5.15)

where ∆0 stands for the DW width at rest, which is given in this case by

∆0 =

√
a

8K2∥
= a0

√
(J3 + |J1|/2)

K2∥
, (5.16)

which, for the particular case of Mn2Au, taking into account the parameters exposed
in Sec. 5.2, yields a value of 19.17 nm, and where h = 8γh̄ HSO

y / a denotes the re-
duced scalar SO field.

At this point, it is convenient to consider the magnetic texture dynamics in the
framework of the well-known collective coordinates approach [230]. For this, it is
usual to introduce what is known as Walker-like rigid profile through the angular
variable that defines the spatio-temporal evolution of the magnetization, which will
be given, in accordance with what is stated in Eq. (2.30), by φ (x, t) = 2 arctan exp
[(x − X (t)) /∆ (t)]. Due to the Lorentz invariance shown by Eqs. (5.12) and (5.15),
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the magnetic soliton dynamics in AFM present emergent special relativity signa-
tures, so it will be verified that, as the velocity of the magnetic texture, Ẋ, increases,
the DW width, ∆, will decrease, which will be governed by ∆ (t) = ∆0 β (t), where

β (t) =
√

1 −
(
Ẋ (t) /vm

)2 represents the symmetric Lorentz factor. In order to
avoid the excitation of internal modes of the magnetic texture, we will focus on qua-
sistatic processes, so that potential asymmetries do not appear in its envelope, so we
can neglect the time derivatives of its spatial extent, ∆. In this way, we obtain that

1
∆ v2

m
Ẍ +

η

∆
Ẋ − h = 0, (5.17)

expression which is a Newton-like second-order differential equation for the time
evolution of the DW center position, X, which reveals the inertial nature of the mag-
netic texture [307, 389]. In the particular case in which a constant SO field is applied,
it is possible to access a steady-state-like regime after the accommodation of the mag-
netic soliton to its new dynamic regime. In this sense, we can reduce the previous
equation to a compact expression that describes the steady-state DW velocity, which
we will denote from now on as Ẋ = v, which will be given by

v =
vm√

1 + (vm/v0)
2

, (5.18)

where v0 = h∆0/η.

Figure 5.2: (a) View from the top of the unit cell along the z-th spatial direction
of the distribution of the first nearest neighbors of the Mn atom of layer 2 located
at the position xi along the x-th axis, characterized by m2(xi). Those neighbours
of its same sublattice, at a distance a0, are denoted by m2(xi±1), being mediated
by the FM exchange interaction J3, and those from layer 1, located at an in-plane
spacing a0/2, are represented by m1(xi±1/2), and are connected through the AFM
exchange contribution encoded by J1. (b) Description of the unit AFM vector, l =
(mA − mB) /2, in terms of the polar out-of-plane ε and in-plane azimuthal φ angles
relative to the Cartesian coordinate system.

5.3.4 Simulated exchange-dependent static and dynamic domain wall prop-
erties

To try to validate the qualitative argument made in Sec. 5.3.2 about the non-impact
of the intersublattice AFM exchange interaction dictated by the J2 constant in the
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temperature-independent DW properties, we will use ASDS. To do this, the LLG
equation of motion, given by Eq. (2.14), will be solved numerically, site by site,
through a fifth-order Runge-Kutta method, assuming that the damping parameter
is α = 0.001 [139, 165, 402]. In this case, the computational domain is composed of
60000 cells along the x-th propagation direction, one cell width with periodic bound-
ary conditions along the y-th direction, and one cell thick along the z-th axis. At this
point, it should be noted that the absence of periodicity along the z-th spatial direc-
tion in the simulated ultrathin film does not guarantee the condition m1,2 = m3,4
used in Sec. 5.3.1, which allowed us to reduce the system description to a two
sublattices-based nonlinear σ-model. Through the variation, mediated by a numer-
ical scaling factor given by κ, of the different exchange parameters of the system,
where in each case only one of these is modified at each time, it is possible to com-
pare the analytical expressions obtained in Sec. 5.3.3 with the results obtainable
through the simulations. In this line, and it as can be seen in Fig. 5.3 (a), the simu-
lated DW width at rest, ∆0, does not depend on the considered scaling magnitude
applied to the AFM J2 constant, since this interaction only guarantees that contigu-
ous sublattices are perfectly antiparallel, while J1 and J3 characterize the relative
angle between in-plane spins and hence the spatial soliton extent [395]. This is con-
sistent with what it is stated in Eq. (5.16), according to which the DW width at rest
does not depend on the contribution governed by J2, whose trend clearly coincides
with the one shown by the simulations. It is worth noting that the small discrepancy
between them may be due to the non-inclusion in the analytical model, for simplic-
ity, of the in-plane tetragonal anisotropy contribution encoded by K4∥. On the other
hand, we can explore the SW dispersion relation of the system by varying only the
J2 parameter, so that we can see how this affects the functional form of the low-
frequency acoustic branch from which it can be extracted the maximum magnon
group velocity, vm, of the medium, which is characterized as vm = (d f / dk)max,
where f expresses the SW frequency and k represents the associated wavenumber
along the propagation direction. As it can be seen in Fig. 5.3 (b), the acoustic branch
is independent of the associated magnitude of the exchange interaction governed
by J2, while the high-frequency optical branch maintains its functional form for
κJ2 ̸= 0, shifting to higher frequencies as the aforementioned combined variable
increases. When κ = 0, the optic branch disappears, so it strongly depends on the
presence of J2. However, the maximum slope of the differentiated SW dispersion
relation is always founded on the J2-independent acoustic branch, so the maximum
magnon group velocity, vm, does not depend on this interaction.

Regarding the dynamic behavior of the magnetic texture under the action of a
constant current-induced SO field, as explained in Sec. 5.3.3, its steady-state veloc-
ity, v, given by Eq. (5.18), has a functional form such that v = v (∆0, vm), so no
dependency on J2 is expected. Accordingly, for a SO field of magnitude HSO

y = 60
mT, it is possible to see, as it is shown in Fig 5.4 (a), that there is a good correspon-
dence between the simulated and the analytically-predicted values for the steady-
state velocity v for different numerical scalings in the exchange parameters J1 , J2,
and J3. While it does not depend on the AFM intersublattice exchange contribu-
tion J2, it is strongly dependent on the magnitude of the AFM interlayer interaction
J1, which is consistent with the analytical form exposed in Eq. (5.18), and it is af-
fected by changes in the value of the intrasublattice FM exchange term encoded by
J3. On the other hand, since the theoretically-predicted steady-state DW width, ∆,
is entirely conditioned by its rest state value, ∆0, the corresponding speed v to the
applied SO field HSO

y , and the maximum magnon group velocity of the medium, vm,
since ∆ = ∆0 β, again the encoded AFM exchange interaction via the J2 parameter
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should not play any role in its determination. Consequently, and as it can be seen in
Fig. 5.4 (b), the simulated steady-state DW width follows the theoretically-predicted
trend, only existing, as in the case of the DW width at rest ∆0 shown in Fig. 5.3 (a), a
small constant shifting between the simulated and analytical values. Thus, the role
of J2 consists of acting as a hard-axis anisotropy, strongly constraining the magne-
tization in the Mn-based planes of the conventional unit cell, since this interaction
is the dominant one in magnitude of the system, but does not intervene in the static
and dynamic DW configurational properties.

Figure 5.3: (a) Comparison between the simulated and the theoretically-predicted
DW width at rest, ∆0, for different numerical scalings, κ, of, at each time, one of the
exchange parameters of the system, J1, J2, and J3. (b) Simulated SW dispersion re-
lations, including the high-frequency optical and low-frequency acoustic branches,
characterized through the associated SW frequency f and wavenumber k, for dif-
ferent numerical scalings through the κ parameter of the AFM exchange interaction
governed by J2.

Figure 5.4: Comparison between the simulated and the analytically-calculated (a)
steady-state velocity v and (b) DW width ∆, for the case of a SO field of HSO

y = 60 mT,
for different numerical scalings controlled by the κ parameter, affecting, individually
in each case, one of the exchange interactions of the system, characterized by J1, J2,
and J3.
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5.4 Relativistic pseudoparticle behavior of antiferromagnetic
magnetic textures

5.4.1 Emergent special relativity-like signatures

In line with what it is shown in Figs. 5.4 (a) and (b), where the effective version of
the nonlinear σ-model introduced in Sec. 5.3.3 was compared with ASDS, where it
is verified the great correspondence of the steady-state DW velocity, v, and width, ∆,
predictions, respectively, it is possible to certify that, as inferred from Eqs. (5.12) and
(5.15), the system shows special relativity signatures. Taking into account that our
analytical formalism is based on the simple functional forms in terms of the intrinsic
parameters of the material of the maximum magnon group velocity of the medium,
vm, and the DW width at rest, ∆0, given by Eqs. (5.13) and (5.16), respectively, these
expressions can be compared directly with the values obtained through simulations.
In accordance with what it is shown in Fig. 5.3 (a) for the case in which the magni-
tude of the AFM exchange parameter J2 was varied through the numerical scaling
factor κ, it can be found that ∆0 = 19.78 nm, while through the slope of the low-
frequency acoustic branch of the differentiated SW dispersion relation of Fig. 5.3
(b) it can be obtained that vm = 43.3 km/s. In this way, the simulated DW width
at rest, ∆0, shows a good correspondence with the theoretically-predicted value ob-
tained through Eq. (5.16), differing only by a 3.1%, while, on the other hand, the
maximum magnon group velocity, vm, obtained analytically, according to Eq. (5.13),
and by simulations coincide in a 99.93%, which supports the non-inclusion in our
formalism of the AFM exchange interaction along the c-axis of the unit cell given
by J2. Taking into account the functional form of the dynamic spatial extent of the
magnetic soliton, ∆, governed by the symmetric Lorentz factor such that ∆ = ∆0 β,
it is possible to verify that the system really shows relativistic traces, as expected
from what it was shown analytically. As it can be seen in Fig. 5.5, the saturation
of the magnetic texture velocity, v, as it is predicted by Eq. (5.18), and the contrac-
tion of the DW width, ∆, as the SO field, HSO

y , increases are verified, showing the
theoretically-predicted trend.

Figure 5.5: Comparison of the relativistic signatures for steady-state processes in
Mn2Au obtained through ASDS and theory. (a) Saturation of the velocity, v, of the
magnetic texture as the SO field, HSO

y , increases, being based the analytical formal-
ism in Eq. (5.18). (b) DW width, ∆, contraction as the speed v of the magnetic soliton
increases, the theoretical prediction coming from the combination of the relativistic
expression ∆ = ∆0 β and Eq. (5.18).
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5.4.2 Quasistatic inertial stable magnetic soliton dynamics

To explore the inertial signatures in the system, we have used time-dependent SO
field-based excitation regimes, which are represented in Fig. 5.6 (a). As it can be
seen, there are three well-differentiated regions. In the first one, which covers the
interval t ∈ [0, tr ), being tr the time taken to reach a constant value of the field of
HSO

y = 60 mT, which we will denote as ramping time, the rest state of the mag-
netic texture is perturbed by a SO field that increases linearly with time. We will
denote this regime as region I, and each colored dashed line in Figs. 5.5 and 5.6, and
in Fig. 5.7 (a), correspond to a certain tr that defines the aforementioned domain.
Consistent with Eq. (5.17), which implicitly shows the existence of a non-zero DW
mass, the initial response of the magnetic texture to the external stimulus is fast, but
not instantaneous, as it can be seen in Figs. 5.6 (b) and 5.7 (a). At the time when a
constant field value of 60 mT is reached, that is, at t = tr, the magnetic soliton will
tend to a steady-state regime (region II), which covers the interval t ∈ [tr, 100 ps ).
This upper limit is denoted by a black dashed line where appropriate in Figs. 5.6
and 5.7 (a). In this case, it is possible to observe in Figs. 5.6 (b) and 5.7 (a) that, in
the region II, after a brief adaptation period to the new dynamic regime, which is
a sample of the inertial nature of the process, the magnetic texture moves steadily
at a speed of v = 42.56 km/s. This is very close to the maximum magnon group
velocity of the medium, corresponding to a 98% of it, while it shrinks to a spatial
extension of ∆ = 4.08 nm, which represents a shrinkage of 80% with respect to the
simulated DW width at rest. Finally, at t = 100 ps, the SO field is abruptly switched
off, which allows us to observe that the magnetic texture is able to initiate an after-
pulse displacement in the absence of an external stimulus at the same time that its
width expands until it stops completely, as it can be seen in Figs. 5.6 (b) and 5.7 (a).
We denote this regime as region III, which covers the interval t ∈ [100, 140] ps.

Figure 5.6: (a) Time-dependent staggered SO field-based excitation protocol,
HSO

y (t), applied in each Mn-based FM layer of Mn2Au for different ramping times,
tr. (b) Dynamic time evolution of the DW velocity v obtained through ASDS for
different ramping times tr.

The range of values considered for the ramping time tr has been chosen to avoid
the excitation of internal DW modes during the acceleration process, in such a way
that the simulations were comparable with the quasistatic scenario exposed in Sec.
5.3.3 through Eq. (5.18). As it can be seen in Figs. 5.7 (b) and 5.8 (a), in these cir-
cumstances there is a close correspondence between the simulated and theoretically-
predicted velocity of the magnetic texture, v, and its extent , ∆, in regions I and II.
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Figure 5.7: (a) Dynamic time evolution of the DW width ∆ obtained through ASDS
for different ramping times tr. (b) Comparison of the dynamic time evolution of
the DW velocity v for ASDS and the analytical expressions given by Eq. (5.17) and
∆ = ∆0 β for two ramping times, tr = 30 and 60 ps. Each vertical colored dashed line
represents the end of the ramped process for the different ramping times tr, while
the dashed black line denotes the instant t = 100 ps at which the driving SO field
HSO

y is abruptly turned off.

5.4.3 After-pulse complex translational displacement

If attention is paid to Figs. 5.6 (b) and 5.7 (a) in region III, it is possible to appreciate
the presence of ripples once the SO field HSO

y is turned off. These ripples observed
in the simulated DW velocity and width in region III cause longer decay times than
those predicted through a Newton-like pseudoparticle behavior. Because of this, we
avoid the analytical evaluation of this region through Eq. (5.17) because the mag-
netic soliton is not fulfilling the imposed rigid profile constraint anymore. How-
ever, the after-pulse displacement that the magnetic texture experiences in region III
is related to the SO field-mediated increase in the exchange-based relativistic DW
mass obtained during the acceleration process in region I while its width shrank.
This is a purely inertial phenomenon, which is consistent with the massive pseu-
doparticle behavior captured by Eq. (5.17), according to which the greater the dy-
namic DW mass after turning off the external stimulus, the greater is the braking
distance traveled by it. Interestingly, it is the fact that the magnetic soliton moves
along a particular direction which sets how this stored relativistic exchange energy
is transformed into a translational displacement, manifesting its massive particle-
like behavior rather than being dissipated into a breather-like fashion or through
the emission of SW without prolonging its mobility. For different values of the SO
field during region II, we have found through simulations that there is a quasilin-
ear relationship between the after-pulse distance traveled by the magnetic texture,
x, normalized to its steady-state DW width, ∆, and its steady-state DW mass, mDW,
normalized to its rest state value, m0

DW, this is, mDW/m0
DW = 1/β according to Eq.

(5.17), which can be seen in Fig. 5.8 (b) and can be expressed as

x
∆

= b
mDW

m0
DW

+ d, (5.19)

where b and d are two fitting-dependent parameters, which are given, accompa-
nied by their associated uncertainties, by b = 13.81(27) and d = −13.92(89). It is
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remarkable that the DW is capable of undertaking exchange-based after-pulse dis-
placements of the order of 4 to 11 times greater than the DW width at rest, ∆0, for
SO fields between 10 − 60 mT.

Figure 5.8: (a) Comparison of the dynamic time evolution of the DW width ∆ for
ASDS and the analytical expressions given by Eq. (5.17) and ∆ = ∆0 β for two ramp-
ing times, tr = 30 and 60 ps. Each vertical colored dashed line represents the end of
the ramped process for the different ramping times tr, while the dashed black line
denotes the instant t = 100 ps at which the driving SO field HSO

y is abruptly turned
off. (b) Quasilinear correspondence between the normalized relativistic DW mass,
mDW/m0

DW, where mDW and m0
DW represent the aforementioned mass in steady-

state and at rest, respectively, and the normalized braking distance, x, traveled by
the magnetic texture once the SO field is turned off abruptly, x/∆, in terms of the
steady-state DW width, ∆, characterized by a linear fitting where b and d represent
the adjustment parameters, together with their corresponding uncertainties.

5.5 Conclusions

We have addressed the theoretical characterization of the dynamic evolution of a 1D
Néel-like DW in one of the FM sheets of the layered collinear multisublattice AFM
Mn2Au driven by current-induced SO fields. Despite the complexity of the sys-
tem, we have exploited the symmetric inequivalence between the crystallographic
and magnetic unit cells to reduce its description to a two sublattices-based problem.
Since the AFM exchange interaction directed along the c-axis of the system, which
is encoded via J2, has a null projection along the 1D inhomogeneous magnetic tex-
ture transition, it will have no impact on the temperature-independent nonlinear
σ-model. Because the standard procedure would predict the opposite, we have
worked within an effective theory framework avoiding its inclusion, a methodology
which can be extrapolated to layered multisublattice AFM with different exchange-
oriented contributions. In the rigid profile approximation, we have shown that it
is possible to reduce the dynamic magnetic soliton description to a Newton-like
second-order differential equation of motion. By comparing our formalism with
ASDS, we have been able to replicate with a high degree of accuracy the relativistic
and inertial signatures of the magnetic texture motion during quasistatic dynamic
processes within the framework of our effective model. After the abrupt shutdown
of the SO field in simulations, the rigid DW profile approach is no longer sup-
ported and our analytical formalism fails to describe the after-pulse inertial dynamic
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regime. Interestingly, during the deceleration process, the relativistic exchange en-
ergy accumulated during the previous dynamic evolution of the magnetic texture
is converted into translational mobility, rather than being released in a breather-like
fashion or through the emission of SW with non-associated displacement. We have
found a quasilinear relationship that allows us to predict, for the range of simulated
SO fields, the value of the braking distance traveled by the DW through the knowl-
edge of its relativistic mass before turning off the external stimulus. This detailed
dynamic characterization of the 1D magnetic texture in the complex multisublat-
tice AFM Mn2Au is of potential interest for AFM DW-based technological applica-
tions, where the accurate control over the positioning of the magnetic soliton is of
paramount interest.
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Chapter 6

Walker-like domain wall
breakdown in layered
antiferromagnets

6.1 Beating the magnonic barrier through topologically-pre-
served processes

Within a general physical context, topological solitons are entities that interpolate be-
tween two degenerate minima, their core region being characterized by a spatially-
inhomogeneous field configuration while in their outer domains the order parame-
ter varies smoothly [230, 403], as it was exposed in Sec. 2.4.2.2. Beyond those mag-
netic textures that live in spin space, they also exist, for example, in the form of
vortices in superfluid helium or as dislocations in periodic crystal structures [404–
407]. In the field of irregularities in solid arrangements, the property that outlines
the resistance of the defect to be eradicated in infinitely extended media is known
as the Burgers vector, which is quantified in multiples of the atomic spacing of the
system [408], whose role is analogous to that of winding number in magnetically-
based scenarios [81], which was introduced in Sec. 2.5. As it happens in long-range
FM ordered media, the topological-like protection of the solitary waves in real fi-
nite systems is not at odds with the appearance of instabilities, which is manifested
through the existence of the WB at relatively low speeds, which limits the stable
DW motion under a certain external stimulus-based threshold [91–93], as it was dis-
cussed in Sec. 3.2. In a similar fashion, in the case of dislocations in non-magnetic
periodic structures, while for small stresses the crystal defect presents a quasilinear
relationship between its velocity and the external stimulus [409], for high strains
the phonon-based sonic barrier of the medium can be exceeded by means of the
nucleation of mother-daughter secondary kinks with opposite Burgers vectors, pre-
serving the overall topology of the system [410–413]. Even though it is possible
to provide the FM DW with a DMI-induced stability, which delays the appearance
of the WB, being its dynamics limited by the minimum SW phase velocity of the
medium [102, 108], AFM materials present this characteristic intrinsically without
the need for complicated structures, since the magnetization is strongly constrained
in the DW plane at rest due to the existing exchange interaction [308, 309, 371]. In
this case, the dynamic behavior of AFM textures is naturally described through the
nonlinear σ-model, which is why they experience special relativity signatures, being
their speeds theoretically limited by the maximum magnon group velocity of the
medium [135, 136], as it can be induced from the relativistic-like dynamic framework
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found in Sec. 3.3. However, it would be very appealing to investigate the behavior of
AFM solitons under high amplitude excitations to try to replicate what has already
been exposed in dislocation theory, leading to the appearance of a superluminal-like
regime where the stable DW motion is interrupted due to the nucleation of at least
two magnetic textures of opposite chirality.

6.2 Domain wall pair generation through moderate stresses

6.2.1 Magnetic soliton mother-daughter processes in antiferromagnets

To carry out our investigations, we will take as reference the layered AFM Mn2Au,
which was previously introduced in Sec. 5.2, in which it is possible to induce the
Néel-like 180◦ DW dynamics through the action of current-induced staggered SO
fields in each FM sublattice of the system [148, 165, 414]. Just as it was done in Sec.
5.3.4, we will use for this purpose ASDS, for which we will solve, site by site, the
LLG equation, given by Eq. (2.14), taking into account the functional form of the
atomistic energy exposed in Eq. (5.1), via a fifth-order Runge-Kutta method, with
the damping parameter given by α = 0.001 [139, 165, 402]. In the same line, again,
the computational domain will be made up of 60000 lattice sites along the x-th prop-
agation direction, one unit cell width with periodic boundary conditions along the
y-th axis, and one unit cell height along the z-th spatial direction. To break the rest
state of the magnetic texture we will use in this case an excitation protocol in which
we will ramp the applied SO field for 10 ps to a maximum value of HSO

y = 65 mT,
which we will maintain until the end of the simulations, as it is depicted in Fig. 6.1
(a). Contrarily, in Sec. 5.4.2, because we were interested in analyzing the inertial
signatures of the DW motion, we abruptly shutdown the external stimulus after the
steady-state regime to assess the after-pulse magnetic soliton dynamics. As it can be
seen in Fig. 6.1 (b), where the space-time winding number density, w, evolution is
evaluated, the steady-state regime reached after the ramping process it is eventually
interrupted due to the appearance of a different dynamic regime where the nucle-
ation of a DW pair with trivial winding number density occurs, which preserves
the initial overall topological charge of the system, according to what is shown in
Fig. 6.1 (a). This strongly nonlinear phenomenon involving the spontaneous ap-
pearance of additional particles has been reported under different conditions in FM
media, either through the DW WB mediated by a vortex-antivortex generation or
through the vortex core reversal in spin-torque oscillators in nanodots and nanocon-
tacts [109, 415, 416]. However, its occurrence in AFM has never been reported or
proposed.

6.2.2 Dynamically-induced kinetic field-based torque on magnetization

In the specific case of the vortex core reversal in submicron-sized FM dots, which is
mediated by a vortex-antivortex creation and subsequent annihilation, its physical
origin has been associated with the emergence of an effective gyrotropic magnetic
field of a purely dynamic nature which can be characterized through the kinetic
part of the Lagrangian [415]. In our case, we can try to argue that the nucleation
of the DW pair is related to the torque exerted in the spin space by the effective
magnetic field resulting from the, in this case, translational motion of the original
magnetic soliton along one of the FM basal planes of the layered AFM Mn2Au. To
formalize this problem, it is possible to write the kinetic part of the Lagrangian,
Lkin, in a magnetization-invariant form parameterization similar to how it is done in
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evaluating spin coherent states [417, 418], form which will be given by

Lkin =
µ0µs

γ

n̂ · (m × ṁ)

1 + m · n̂
, (6.1)

where n̂ is a unit vector defined along an arbitrary direction, which in the particular
case of the Néel-like DW dynamics seems to be definable along the z-th axis, such
that n̂ = ẑ, giving rise to a singularity known as a Dirac string, which is related to
the Berry phase of the system. In this context, it is possible to rewrite the previous
expression in a Zeeman-like energy term fashion, such that Lkin = µ0µs m · hkin,
whereby the effective kinetic magnetic field, hkin, can be displayed as

hkin =
1

µ0µs

δLkin

δm
=

1

γ(1 + û · m)2 [−m × ṁ + (ṁ × û) (1 + û · m)] , (6.2)

where the first term of the right-hand side of the previous equation represents the
longitudinal component of the field with respect to the arbitrary direction n̂ while
the second part encapsulates its transversal contribution, both being directly pro-
portional to the time variation of the magnetization vector, ṁ, or in other words, to
the translational speed of the magnetic texture, v.

-4

-2

0

2

4

Figure 6.1: (a) Time-dependent SO field-based excitation protocol, HSO
y , applied in

each Mn-based FM sheet of the layered AFM Mn2Au, for the case in which the ex-
ternal stimulus ramps for 10 ps up to a maximum value of HSO

y = 65 mT, which
remains constant from then on, together with the time evolution of the winding
number density, w, of the system. (b) Simulated space-time evolution of the wind-
ing number density, w, for the case in which there was, initially, a single DW in the
system which was subjected to a ramping of the SO field for 10 ps up to a maximum
value of the SO field of HSO

y = 65 mT, which remains constant thereafter.

Interestingly, the spatial extent and specific form of the kinetic field profile de-
pends on the instantaneous dynamical configuration that the magnetic texture is in
throughout the SO field-based ramped process. As it can be seen in Fig. 6.2 (a), in the
first 10 ps of the ultrafast acceleration, the z-th kinetic field component, hkin

z , is be-
hind the magnetic soliton, moving smoothly from the back to the center when it is in
the steady-state regime at constant velocity as for t = 90 ps, as it is shown in Fig. 6.3
(a), mimicking the DW profile. Shortly after crossing the 100 ps barrier, it is possible
to see that, coinciding with the nucleation of the DW pair, process which involves a
time scale of the order of 1 ps, the z-th kinetic field component is placed at the fore-
front of the magnetic texture, as it can be seen for t = 110 ps in Fig. 6.4 (a). During
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the magnetic soliton motion prior to the appearance of additional magnetic textures,
it can be seen that while the x- and y-th kinetic components, hkin

x and hkin
y , reach a

maximum absolute value of approximately 6 and 3.5 mT, respectively, as it can be
noted in their spatial distributions for different instants of time in Figs. 6.6 and 6.7,
its projection along the z-th spatial direction, hkin

z , reaches an approximate value of
up to 35 T in absolute value prior to the nucleation phenomenon, as it is depicted in
Fig. 6.3 (a). This is consistent with the magnetization distribution of the Néel-like
DW that live in the xy FM basal planes of the conventional unit cell, which is why
it can be considered that the z-th magnetization component is negligible during the
original isolated magnetic soliton motion, mz ≃ 0, which constitutes the same type
of approach that the one made in Sec. 5.3.3 when the dynamic behavior of the 1D
magnetic texture was evaluated for quasistatic processes.

Figure 6.2: Spatial distribution of, on the one hand, (a) the z-th kinetic field, hkin
z , and

x-th magnetization, mx, components and, on the other hand, of (b) the y-th magne-
tization, my, and x-th torque, Tx, components, respectively, for an instant of time of
t = 10 ps, which were obtained by combining simulations together with Eq. (6.2),
for the case in which the motion of a single DW was excited through a SO field which
was ramped during 10 ps up to a maximum value of HSO

y = 65 mT, which remains
constant from then on.

Contrary to what happens in FM where the magnetic soliton absorbs the Zeeman-
like energy from the kinetic field, we propose that the nucleation of the DW pair is
due to the torque exerted by the dynamic-based field onto the local magnetization, a
process which is governed by its z-th component due to its order of magnitude. Be-
cause the magnetization in front of the primal magnetic soliton prior to the fragmen-
tation process is completely polarized along the −y-th axis, such that m ≃ −my ŷ,
the kinetic field, which can be expressed as hkin ≃ −

∣∣hkin
z
∣∣ ẑ, locally exerts a torque

along the x-th spatial direction, Tx, given by Tx = −γ
(

m × hkin
)

≃ −γmy
∣∣hkin

z
∣∣,

whose spatial distribution can be seen, for different instants of time, in Figs. 6.2, 6.3,
6.4, and 6.5 (b). This gives rise to a reversed domain in front of the DW along the −x-
th axis, which has a spatial extension prior to the process of generating additional
magnetic textures, in the moving frame, comparable to the exchange length, lexc, of

the system. This spatial scale can be defined as lexc =
√

a/
(
8K2∥

)
, where the inho-

mogeneous FM-like exchange constant, a, and the uniaxial second-order anisotropy,
K2∥, were introduced in Secs. 5.3.2 and 5.2, giving as a result that lexc = 19.78 nm.
Coincidentally, this length extent, which, in the rest frame, corresponds to more than
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twice lexc, is sufficient to support the existence of a DW pair whose widths at the mo-
ment of the nucleation process are around 11 nm, according to what it is exposed in
Fig. 6.8. Thus, it would not only be crucial for the original magnetic texture to reach
a certain speed for a certain SO-based external stimulus to generate a sizable kinetic
field magnitude, but also for the dynamic-based field to extend spatially enough to
accommodate the DW pair.

Figure 6.3: Spatial distribution of, on the one hand, (a) the z-th kinetic field, hkin
z , and

x-th magnetization, mx, components and, on the other hand, of (b) the y-th magne-
tization, my, and x-th torque, Tx, components, respectively, for an instant of time of
t = 90 ps, which were obtained by combining simulations together with Eq. (6.2),
for the case in which the motion of a single DW was excited through a SO field which
was ramped during 10 ps up to a maximum value of HSO

y = 65 mT, which remains
constant from then on.

Figure 6.4: Spatial distribution of, on the one hand, (a) the z-th kinetic field, hkin
z , and

x-th magnetization, mx, components and, on the other hand, of (b) the y-th magne-
tization, my, and x-th torque, Tx, components, respectively, for an instant of time of
t = 110 ps, which were obtained by combining simulations together with Eq. (6.2),
for the case in which the motion of a single DW was excited through a SO field which
was ramped during 10 ps up to a maximum value of HSO

y = 65 mT, which remains
constant from then on.
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Figure 6.5: Spatial distribution of, on the one hand, (a) the z-th kinetic field, hkin
z , and

x-th magnetization, mx, components and, on the other hand, of (b) the y-th magne-
tization, my, and x-th torque, Tx, components, respectively, for an instant of time of
t = 145 ps, which were obtained by combining simulations together with Eq. (6.2),
for the case in which the motion of a single DW was excited through a SO field which
was ramped during 10 ps up to a maximum value of HSO

y = 65 mT, which remains
constant from then on.

Figure 6.6: Spatial distribution of the x- and y-th kinetic field, hkin
x and hkin

y , com-
ponents, correspondingly, for two different instants of time, (a) t = 10 ps and (b)
t = 90 ps, respectively, obtained for the case in which there was initially a single
DW, which was subjected to ramping of the SO-based external stimulus for 10 ps up
to a maximum value of HSO

y = 65 mT, which remains constant thereafter, obtained
through the simulated magnetization components in conjunction with Eq. (6.2).

6.2.3 Energetically-favored nucleated magnetization configuration

Regarding the breaking of the reversed magnetic domain into a DW pair that pre-
serves the overall winding number density of the system, giving rise to both having
opposite chiralities, there are, in principle, different types of magnetic configura-
tions that can fit according to the boundary conditions of the region where they
nucleate. At the forefront of the seed-like magnetic soliton just before the generation
of the new magnetic textures, the in-plane magnetization is entirely polarized along
the −y-th axis, which is preserved after the fragmentation process, since the result-
ing configuration must start and end with the magnetic moment pointing along the
aforementioned direction. Through the simulations, it can be seen that the nucleated
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DW that is located just in front of the primal magnetic soliton shares its same topo-
logical charge, which is, in fact, what could be expected if one attends to the mini-
mization of the different energy contributions of the system, formed by the FM-like
exchange interaction and the Zeeman-like term formed by the SO and the kinetic
fields. While the FM-like exchange contribution dictates that the central spins of
both magnetic textures must be parallel to each other, the SO field dictates that the
homogeneous magnetic region between them must be directed along the positive
y-th axis, matching its current-induced application direction. On the other hand,
as we discussed in Sec. 6.2.2, due to the magnitude of the z-th component of the
dynamically-generated kinetic field, it exerts a torque that forces the magnetization
to go along the −x-th axis during its in-plane rotation between its definition domains
directed along the y-th spatial direction to minimize the related energy. The balance
resulting from all these terms is completely coincident with the distribution of the
generated DW with different chirality in front of the primal magnetic texture, which
it is shown in Fig. 6.9 (a).

Figure 6.7: Spatial distribution of the x- and y-th kinetic field, hkin
x and hkin

y , com-
ponents, correspondingly, for two different instants of time, (a) t = 110 ps and (b)
t = 145 ps, respectively, obtained for the case in which there was initially a single
DW, which was subjected to ramping of the SO-based external stimulus for 10 ps up
to a maximum value of HSO

y = 65 mT, which remains constant thereafter, obtained
through the simulated magnetization components in conjunction with Eq. (6.2).

6.3 Non-relativistic radiant magnetic soliton boosting

6.3.1 Spatially stuck magnetic textures with the same chirality

The temporal evolution of the system is dramatically affected due to the appearance
of the dynamically-generated DW pair compared to how the primal magnetic soliton
evolved in a steady-state trend prior to this phenomenon. Due to the energetically-
favored arrangement of the magnetic textures, spatially close to the original DW,
which we will denote from now on as DW1, will be the nucleated magnetic soliton
with the same chirality as the seed-like one, being characterized as DW2. Immedi-
ately after the fragmentation process, DW1 and DW2 perform a few oscillations and
then get stuck, evolving in time but not in space as long as the SO field remains ac-
tive, as it is depicted in Fig. 6.9 (b). This is due to the energy competition between
the repulsive FM-like exchange interaction between both magnetic textures, since
both reside in one of the basal planes of the layered AFM, their central spins being
antiparallel arranged due to having the same topological charge, and the attractive



96 Chapter 6. Walker-like domain wall breakdown in layered antiferromagnets

SO-based external stimulus, which will try to minimize the antiparallel-oriented ho-
mogeneously magnetized domain between both magnetic solitons, being important
to note that the kinetic field contribution is zero because both DW are static. In this
sense, it is possible to see that if the SO field is turned off after the nucleation process
of the pair of magnetic textures has occurred, being already the DW1 and DW2 spa-
tially localized, the repulsive exchange interaction will separate them, as it is shown
in Fig. 6.10 (a). In order to elucidate which is the global minimum resulting from
these competing forces, which will characterize, for a certain SO field, the equilib-
rium distance between the spatially-localized magnetic solitons, it is necessary to
analyze the exchange interaction between both based on their mutual separation.
For two magnetic solitons far enough apart that their envelopes do not overlap, it is
possible to characterize their spatial distributions through the linear superposition
of their dynamic individual profiles, φi (x, t), like the one shown in Eq. (2.30), which
is given by

∑
i

φi = 2 arctan exp
[

Q1 (x − X1 (t))
∆1 (t)

]
+ 2 arctan exp

[
Q2 (x − X2 (t))

∆2 (t)

]
, (6.3)

where Q1,2, X1,2, and ∆1,2 denote the topological charges, center positions, and spa-
tial extensions of the DW1 and DW2, respectively. Accordingly, the overall FM-like
exchange energy, Eexc, concerning both magnetic textures can be characterized as

Eexc =
a

8a0

∫ +∞

−∞

(
∑

i
∂x φi

)2

dx =
a

8a0∆2 (t)

∫ +∞

−∞

[
sech2 x − X1 (t)

∆ (t)
+

sech2 x − X2 (t)
∆ (t)

+ 2Q1Q2 sech
x − X1 (t)

∆ (t)
sech

x − X2 (t)
∆ (t)

]
dx, (6.4)

where it has been assumed, for simplicity, that after the nucleation process both DW
have the same width, ∆, and that these will evolve over time analogously. Interest-
ingly, the first two terms on the right-hand side of the previous expression denote
the self exchange energy of the individual magnetic textures, while the last contri-
bution represents the interaction energy between both magnetic solitons, which we
will denote as E12

exc.
To deal with the product of hyperbolic functions involved in the definition of the

exchange-mediated DW interaction, it is possible to take advantage of the relation

cosh ξ1 cosh ξ2 = b + b cosh 2ξ1 + d sinh 2ξ1, (6.5)

where the involved parameters b and d can be expressed as

b =
1
2

cosh
X1 (t)− X2 (t)

∆ (t)
, d =

1
2

sinh
X1 (t)− X2 (t)

∆ (t)
, (6.6)

while it has been defined that ξi (x, t) = (x − Xi (t)) /∆ (t). In line with the preced-
ing notation, it is possible to rewrite the interaction term, E12

exc, made explicit in Eq.
(6.4), such that

E12
exc =

Q1Q2a
4a0∆2

∫ +∞

−∞

dx
b + b cosh 2ξ1 + d sinh 2ξ1

=
Q1Q2a
4a0∆2 I, (6.7)



6.3. Non-relativistic radiant magnetic soliton boosting 97

where I represents, after the change of variable y = 2ξ1, the sum of the two integrals

I =
∆
2

[∫ +∞

0

dy
b + b cosh y + d sinh y

+
∫ +∞

0

dy
b + b cosh y − d sinh y

]
=

∆
2
[I (b, b, d) + I (b, b,−d)] , (6.8)

which, as tabulated [419], have a solution given by

I (b, b,±d) = ±1
d

ln
b ± d

b
, (6.9)

which allows us to reexpress Eq. (6.7) as

E12
exc =

Q1Q2a (X1 (t)− X2 (t))
2a0∆2 (t)

csch
X1 (t)− X2 (t)

∆ (t)
, (6.10)

where, depending on the resulting sign of the product of the individual topological
charges, the contribution will be repulsive, if Q1Q2 = +1, or attractive, if Q1Q2 =
−1.

Figure 6.8: (a) Simulated spatial distribution of the x-th magnetization component,
mx, to which the analytical DW profiles, as the one given by Eq. (2.30), of the primal
magnetic soliton, DW1, and the pair of nucleated magnetic textures, DW2 and DW3,
have been superimposed before the fragmentation process. (b) Simulated spatial
distribution of the x-th magnetization component, mx, for the instant in which a
small bulge is observed for the first time, which suggests the potential generation of
the DW pair formed by DW2 and DW3 on which has been superimposed an analytic
linear combination of their individual profiles like the one given by Eq. (2.30). In
both cases there was a single magnetic soliton at the beginning whose dynamics
were triggered by ramping the SO field for 10 ps up to a maximum value of HSO

y = 65
mT.
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Figure 6.9: (a) Spatial distribution of the original magnetic texture, DW1, together
with the pair of nucleated magnetic solitons, DW2 and DW3, which is consistent with
the energy minimization principle taking into account account the overall topolog-
ical charge conservation of the system, the Zeeman-like kinetic and SO field contri-
butions, EZee, and the FM-like exchange interaction, Eexc. (b) Simulated space-time
distribution of the x-th magnetization component, mx, in the region where the DW
pair with the same chirality, DW1 and DW2, remain spatially stuck together with
the oscillations they make around their final equilibrium positions dictated by the
competition between the SO field, which has a magnitude of HSO

y = 65 mT, and the
FM-like exchange interaction.

To the FM-like exchange interaction between both magnetic solitons, given by
Eq. (6.10) for the repulsive scenario, Q1Q2 = +1, it is necessary to add the SO
field-based Zeeman energy term, EZee, which will try to attract them through the
in-between domain shrink, as a function of the distance between both DW, encoded
through X1 − X2. In this way, the involved energy balance, ∆E, will be given by

∆E =
2γh̄HSO

y

a0
(X1 − X2) +

a (X1 (t)− X2 (t))
2a0∆2 (t)

csch
X1 (t)− X2 (t)

∆ (t)
, (6.11)

from which it is possible to extract the existence of a global minimum that character-
izes the stable configuration distance between both magnetic textures. Accordingly,
Fig. 6.10 (b) shows how the distance between the centers of mass of both DW de-
pends as a function of the SO-based external stimulus, and it can be seen that, as its
magnitude increases, the separation between both entities decreases because the re-
lated Zeeman energy requires a smaller extension of the homogeneously magnetized
domain between both magnetic solitons to compensate for the repulsive FM-like ex-
change interaction between them. For the specific case in which the appearance of
the nucleation process was observed for HSO

y = 65 mT, it is possible to extract from
simulations that the DW are at a stable distance of 32 nm as long as the SO field re-
mains present, while the separation obtained analytically through Eq. (6.11), using
their simulated spatial extension values of, approximately, ∆ = 11 nm, is 38.4 nm,
which is a good estimate of the underlying mechanisms.
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Figure 6.10: (a) Simulated space-time distribution of the x-th magnetization compo-
nent, mx, in the region where the DW pair with the same chirality, DW1 and DW2,
are located, where it can be seen that, when the constant SO-based external stimulus
of HSO

y = 65 mT is turned off, the distance between them increases due to the domi-
nance of the repulsive FM-like exchange interaction. (b) Spatial energy distribution,
∆E, composed of the balance between the attractive SO field and the repulsive FM-
like exchange contributions in terms of the distance between the center of mass of
the pair of magnetic textures with the same topological charge, DW1 and DW2, given
by X1 − X2, obtained analytically through Eq. (6.11) for different magnitudes of the
external stimulus, HSO

y . Each colored solid circle corresponds to the global energy-
based minimum that marks the equilibrium distance between both magnetic solitons
for different SO fields.

6.3.2 Broken Lorentz invariance-based superluminal propulsion

Concerning the magnetic texture with opposite chirality with respect to the one car-
ried by the seed-like original magnetic soliton, which we will denote as DW3 from
now on, after its generation it propagates forward experiencing a velocity boost that
causes it to move faster than the maximum magnon group velocity of the medium,
as it is shown in Fig. 6.11 (a). As it can be seen in Fig. 6.1 (b), this process is tran-
sient, lasting several tens of ps, which is enough for this magnetic texture to cover
a distance of, approximately, 3 µm. As it was previously explained in Sec. 6.3.1
and shown in Fig. 6.9 (a), the spatially stuck pair of magnetic textures formed by
DW1 and DW2 is subject a to mutual repulsion due to the FM-like exchange inter-
action between them due to their coexistence in one of the basal planes of Mn2Au,
which would promote a potential motion of both magnetic solitons in opposite di-
rections, moving away from each other. Despite this fact, they barely move due to
the attractive effect of the current-induced SO field, which would result in all this
stored exchange-based energy that is not transformed into a translational displace-
ment of the localized DW pair being transferred from DW2 to DW3, similar to how
SW can transmit linear momentum to a given magnetic texture [420]. Under this per-
spective, the mobility of DW3 at the moment of the nucleation would consist of the
speed provided by the primal magnetic texture in its steady-state motion just before
the generation process of additional pseudoparticles together with a boost from the
momentum transfer resulting from the repulsion between the spatially stuck mag-
netic soliton pair.

To characterize this phenomenon, it is possible to generalize what it is stated in
Eq. (6.11), which is ascribed to the case of exchange-mediated repulsion between
two magnetic textures with the same chirality, to an attractive situation in which
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DW2 and DW3 have opposite topological charges, case reflected in Eq. (6.10). In this
context, in the presence of the SO field-based contribution, which will want them
as far away as possible, it would be necessary to characterize, through the collec-
tive coordinates approach in combination with the EL formalism in the presence of
dissipation processes encapsulated by the Rayleigh dissipation function, R, which
is the impact of the repulsive exchange interaction between the spatially localized
magnetic textures, characterized by Eq. (6.10), in the dynamics of the DW3. For this,
however, it must be taken into account that to the Zeeman-like contribution of the
right-hand side of Eq. (6.11) it has to be added a factor 2, since in this case it refers to
the case of a single magnetic soliton, situation for which the configurational energy
given by Eq. (5.10) must be spatially integrated taking into account, for this, which
is stated in Eqs. (3.19) and (3.23). In this line it is possible to obtain that the speed of
the boosted magnetic soliton, vDW3 , will be given by

vDW3 =
γHSO

y ∆DW1

α
+

a
8αh̄∆2

DW3

[
x (t) cotanh

x (t)
∆DW3

− ∆DW3

]
csch

x (t)
∆DW3

, (6.12)

where ∆DW1 represents the simulated dynamically-based spatial extent of the DW1
during its steady-state trend, while ∆DW3 denotes the width of the boosted mag-
netic texture at the time of nucleation extracted through simulations, and x (t) corre-
sponds to the distance between the centers of mass of the aforementioned magnetic
solitons, x (t) = X1 (t)− X3 (t). The first term of the right-hand side of the previous
expression is consistent with the assumption that, in the simulations, the magnetiza-
tion dip that will eventually fragment to produce the DW2 and DW3 pair moves at
the same velocity as the seed-like magnetic soliton, vDW1 . The global velocity profile,
represented in Fig. 6.11 (b), shows that, in fact, the maximum attainable speed due
to the transfer of linear momentum between the DW1-DW2 pair and DW3 does not
occur when they coincide in space, which can be linked to the fact that the magnetic
textures have a finite width.

Through the simulations, it is possible to appreciate that the distance between
the DW1 and DW3, at the moment of nucleation, is 17 nm, while the numerically-
extracted speed of the magnetic texture in the supermagnonic regime is approxi-
mately 177 km/s, that is, four times higher than the maximum magnon group veloc-
ity, vm, of the medium in Mn2Au, which is given by vm = 43.3 km/s. The maximum
analytically achievable speed, vDW3 , according to Eq. (6.12), that DW3 can reach
as a function of the distance between the considered DW pair is about 133 km/s
when its separation with respect to the primal magnetic texture is 16.1 nm, which
shows that this interpretation is efficient when elucidating the balance of forces that
act on the boosted magnetic soliton in its breaking process of the magnonic barrier.
At this point, it is appealing to think that the special relativity theory is being vi-
olated since no magnetic soliton is, in principle, allowed to propagate faster than
the light-like velocity of the magnons in spin space. However, as soon as the pair
of magnetic textures, represented by DW2 and DW3, is nucleated, additional inter-
actions appear in the system, as it can be seen in Eq. (6.10), which mean that the
Lagrangian is no longer Lorentz invariant, which has as a consequence that the con-
striction imposed by the maximum magnon group velocity of the medium must be
lifted up. As the boosted magnetic texture moves away from the spatially stuck DW
pair, the exchange-based linear momentum transfer will be weaker due to its short-
range character. In this way, as it moves away, the Lorentz invariance is gradually
recovered due to the energy dissipation that it experiences through the SW emission,
and it becomes possible to define, again, the limit ascribed to the maximum magnon
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group velocity of the medium.

Figure 6.11: (a) Time evolution of the velocity of DW1, DW2, and DW3, represented,
respectively, by vDW1 , vDW2 , and vDW3 , extracted through the simulations together
with the relativistic limit imposed by the maximum magnon group velocity of the
medium, vm. (b) Dependence of the speed of the DW3, vDW3 , as a function of the
distance between this magnetic texture and DW1, given by X1 − X3, obtained ana-
lytically through Eq. (6.12), compared to the maximum magnon group velocity of
the medium, vm.

6.3.3 Cherenkov and Bremsstrahlung spin wave mixed radiation

Accompanying the DW3 in its supermagnonic regime of motion, we can observe the
existence of a sudden emission of SW that spreads along with the aforementioned
magnetic soliton, but never exceeds it, as it can be seen in Fig. 6.5 for t = 145 ps.
Interestingly, this phenomenon has also been reported in the case of mechanical sys-
tems where dynamic edge dislocations under shear stress may be accompanied by
spontaneous emission of radiation [421, 422]. In our case, we attribute the origin of
the emitted SW to a mixture of the so-called Bremsstrahlung effect [423], which is
also known as braking radiation, and the spin Cherenkov effect [424]. On the one
hand, the Bremsstrahlung effect is due to the acceleration/deceleration of a charged
particle, which is why it could be hypothesized that, in spin space, a deceleration
could lead to an excitation of the medium. On the other hand, through the sim-
ulations it is possible to appreciate that the boosted DW3 not only overcomes the
magnonic barrier during its propagation, but it also gets to move faster than the
phase velocity of the magnons in the medium, as it is shown in Fig. 6.12 (a), which
is the necessary condition for the existence of the spin Cherenkov effect. As a con-
sequence, in our case it is difficult to clearly separate the individual existence of
the spin Cherenkov and braking radiations due to their hypothetical mixture. We
also note that the number of oscillations that the DW1 and DW2 pair perform with
respect to their equilibrium distance coincides with the number of SW ripples trav-
eling together with the DW3 and, additionally, that the decay of these ripples seem
to stretch over a rather long time. Therefore, one possibility for the coexistence of
both types of radiation would be that the spin Cherenkov-based SW act in an anti-
damping fashion in the Bremsstrahlung radiation, since in the case in which there
is only acceleration/deceleration radiation it decays faster than what it is observed
in this case, which would be combined with the fact that the radiated ripples do not
propagate in the opposite direction to the DW3.
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6.4 Domain wall lattice generation and decompression

6.4.1 Supermagnonic soliton-triggered nucleations cascade

So far, we have evaluated the case in which a primal DW seed, under the action of
a ramping process of 10 ps after which the SO field is kept constant at a value of
HSO

y = 65 mT until the end of the simulation, see its steady-state regime of motion
interrupted by the nucleation of a magnetic soliton pair preserving the overall topo-
logical charge, as it was explained in Sec. 6.2. However, it is pertinent to assess how
the system behaves when it has at its disposal additional current-induced pumped
energy. Under this pretext, we will employ an excitation protocol with a rising time
of 5 ps until reaching a SO field-based maximum value of HSO

y = 100 mT, which is
held constant by the next 50 ps after which it is reduced to zero with a falling time
of 5 ps. After this, the external stimulus will remain off for 50 ps before starting
this pattern again three times in a row, as it is shown in Fig. 6.12 (b). Interestingly,
once the first generation process of a single DW pair occurs, the magnetic texture
that propagates at supermagnonic velocities from the fragmentation point becomes
a new breeder and gives rise to a new couple of magnetic textures, which gives rise
to an avalanche of nucleation phenomena preserving the original winding number
density, which it is depicted in Fig. 6.13 (a). This situation is repeated 13 times
throughout the simulation, which results in the appearance of 26 additional mag-
netic solitons. It is worth noting that the magnetic textures, once nucleated, do not
rearrange into a more stable configuration as long as the SO field is maximum, giv-
ing rise to a DW lattice-like structure in which the distance between spatially stuck
magnetic soliton pairs depends on the external stimulus-based pulse pattern. In this
line, the average magnetic texture number density per pulse is 0.013 DW/nm, tak-
ing approximately 20 ps to generate the complete magnetic soliton-based network,
which it is shown in Fig. 6.12 (b) through closed blue circles.

As it can be noted in Fig. 6.13 (b), when in each cycle the SO field begins to
decrease, the lattice suffers a decompression due to the mitigation of this attrac-
tive mechanism between DW with identical topological charge, which coexists with
the FM-like exchange interaction which favors the annihilation of magnetic textures
with opposite chirality, since their central spins are parallel. Every time the external
stimulus starts to decrease progressively from the constant value regime, it is possi-
ble to see that approximately the same number of DW are recombined in each cycle,
as it can be seen through the solid orange circles in Fig. 6.12 (b). In the same way, it
is possible to appreciate that the number of magnetic solitons between pulses, while
the SO field is zero, just before reinjecting the electric current, increases after each cy-
cle, which it is represented by solid green circles in Fig. 6.12 (b), which denotes that
only those magnetic textures with opposite topological charge that are located spa-
tially close will annihilate, being separated again when the external stimulus reap-
pears, which implies that not all the generated DW are recombined. After finishing
the fourth pulse, it is possible to obtain that the number of magnetic solitons in the
system is 8, ranging the spacing between the magnetic textures from hundreds of
nm to few µm. More complex DW lattices can be generated through the variation
of the pulse duration and the sign of the SO field, showing the rich magnetization
dynamics in these type of systems. However, it is important to note that there does
not seem to be a clear correlation between the strength of the external stimulus, HSO

y ,
and the number of magnetic solitons generated, nor for the instant of time and the
point of the space where the fragmentation process takes place. This opens the pos-
sibility that, under certain circumstances, a potential chaotic behavior in the system
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can be appreciated.

Figure 6.12: (a) Phase, vph, and group, vg, velocities of the magnons of the medium
as a function of the wavenumber, k, extracted through simulations under a SO field
of HSO

y = 100 mT. (b) Time-dependent staggered SO field-based excitation protocol,
HSO

y , applied in each Mn-based FM sheet of the layered AFM Mn2Au, for the case
in which the external stimulus ramps for 5 ps up to a maximum value of HSO

y = 100
mT, which is maintained for 50 ps, after which it decreases to zero with a falling
time of 5 ps, state in which it remains for another 50 ps. This process is repeated
three times in a row. Additionally, the closed blue circles represent the number of
magnetic solitons in each pulse, while the orange and green ones denote the number
of magnetic textures when the SO field begins to decrease and when it is about to
increase again from a zero value, respectively.

6.4.2 Experimental fragmentation-induced resistance variations

A recent experimental work has reported current-induced resistance changes in the
layered AFM CuMnAs, which shares with Mn2Au the possibility of being excited
through SO fields due to the symmetric inequivalence between its crystallographic
and magnetic unit cells, which are attributed to the fragmentation and recovery of
the domain structure [170, 353]. In particular, what was observed was a gradual in-
crease in the resistance in response to repeated pulsing and a slow relaxation of it
towards lower values when the excitation is completely turned off. Provided that
finite size effects can be excluded and that the topological charge is globally con-
served, it should be possible to return to the original state through the application
of a reversed field with a magnitude below which the AFM DW WB takes place,
which would allow to completely recover the initial value of the resistance, that is, to
achieve a complete reset of the system. However, what is observed experimentally is
that the relaxed resistance after a long waiting time was higher than the original one,
which could imply that there are residual DW in the medium, as in our case, which
is represented by solid green circles in Fig. 6.12 (b) and in Fig. 6.13 (b). If the in-
terpretation that the observed resistance changes are due to domain fragmentation
and recovery/recombination up to the initial state, we cannot help but to specu-
late on the possibility of experimentally characterizing the phenomenology contem-
plated in this chapter. Moreover, if this was confirmed, it could also be shown that
the reported resistance changes can be explained entirely through magnetic effects,
which is under discussion due to alternative explanations based on current-induced
heat effects [363], electromigration [425], and rapid quenching-induced structural
and magnetic modifications [170, 426]. Although in our case the phenomenon of
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magnetic texture nucleation occurs in a perfect crystal in the absence of temperature
and without taking into account the current-induced Joule heating, if the pinning
and heating effects inherent to a real system could be isolated experimentally, these
changes in the detected resistance could constitute an indirect detection method of
the AFM DW WB as well as the associated generation of supermagnonic solitons,
since the SO field contribution appears to be the leading one in the switching mech-
anism [427].
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Figure 6.13: (a) Simulated space-time evolution of the winding number density, w,
for the case in which there was, initially, a single DW in the system which was sub-
jected to a ramping of the SO field for 5 ps up to a maximum value of the SO field
of HSO

y = 100 mT, which remains constant for 50 ps, and then gradually decreases
to zero for 5 ps, remaining in this state for another 50 ps. This excitation process
is repeated three times in a row. (b) Simulated space-time distribution of the x-th
magnetization component, mx, in a region full of DW pairs with opposite chirality
whose constituents, after the gradual decrease and eventual shutdown of external
stimulus, annihilate each other.

6.4.3 Exchange-mediated pairwise gas approximation

It should be noted that, for a ramping time of 10 ps, there are no signatures of nucle-
ation of pairs of magnetic textures below a SO-based external stimulus of HSO

y = 65
mT, which indicates that the critical field depends on the raising time rather than
the absolute value of the energy pumped in the system. As it is shown in Fig. 6.13
(b), once the DW lattice has formed and the SO field is turned off, a process of mul-
tiple annihilations takes place, leading to the reduction of the existing 13 pairs of
magnetic solitons to just one of them. Due to the existence of a distribution of sep-
arations between the closest magnetic textures with opposite topological charges, it
is possible to observe that there will be a manifold of recombination times in the
after-pulse exchange-mediated process, as it is depicted in Fig. 6.14 (a). Analytically,
it is possible to obtain the annihilation time, tr, as a function of the distance between
magnetic solitons assuming that the decompression phenomenon in the absence of
SO field results in a phase transition from a DW lattice to a gas-like system for a
transient time. In this line, the recombination time will depend only on the intrinsic
parameters of the medium, such as the FM-like exchange interaction, the damping,
and the distance to the closest magnetic textures with opposite chirality, ruling out
the effect of the rest of the DW pairs in the system.

A general expression for the annihilation time can be derived through the gen-
eral functional form for the exchange-based velocity boost between two magnetic
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solitons with opposite topological charge, that is, for the case in which the exchange-
based part in Eq. (6.12) is attractive without taking into account the SO field-based
steady-state contribution, such as

tr (l) =
∫ tr

t0

dt = −8αh̄∆2

a

∫ l0

l

dx(
∆ − x cotanh x

∆

)
csch x

∆
, (6.13)

where ∆ and l are the spatial extent of both magnetic solitons and the distance be-
tween them just before turning off the SO field, respectively, which occurs at t0,
which can be set to t0 = 0 as a reference. On the other hand, tr represents the re-
combination time, which will be assumed to occur when the centers of mass of both
magnetic textures are at a cut-off distance of l0 = 1 nm, having chosen this length
scale as a compromise between the fully contracted DW width in the steady-state
trend and the minimum interatomic distance given by a0 due to their non-point na-
ture. We note that, as it is shown in Fig. 6.14 (a), the theoretically-predicted recom-
bination time quantitatively reproduces the values extracted from the ASDS, which
validates the hypothesis of a 1D DW pairwise gas approximation. For distances in
the range of a few hundred nm, the annihilation time is of the order of a few ps, since
the exchange interaction is a short-range contribution. However, it is possible to ap-
preciate in Fig. 6.13 (b) that, after all the simulated decompression process, there are
still magnetic solitons in the system that are separated by a few of µm. For a dis-
tance of 1.8 µm, the expected recombination time lies in the range of, approximately,
6 days, which suggests that, in the ideal scenario in which pinning and thermal ef-
fects are not present, the stability of such configuration is guaranteed thanks to the
absence of long-range interactions.

6.4.4 Recombination-induced breather-like excitation

From Fig. 6.13 (b), it is possible to appreciate that, when the SO field is set to zero,
the recombination process of each DW pair led to an excitation in the continuum
spectrum that oscillates over time with a very precise frequency. The emergence of
this breather-like state is due to the kinetic energy carried by each magnetic texture
involved in the collision, which is insufficient to escape the attractive potential pro-
vided by its antiparticle. By mapping this bounded excitation into a single damped
harmonic oscillator, which would be given by

mx = B cos ( f t − ϕ) e−t/td , (6.14)

we obtain a good quantitative agreement over its lifetime, as it is shown in Fig. 6.14
(b). The breather decay occurs in td = 20-30 ps and is governed by the Gilbert
damping. Moreover, the characteristic frequency of this state is f = 544 GHz, which
lies within the linewidth of the simulated SW band gap for HSO

y = 100 mT, that is,
the frequency at zero wavenumber, k = 0. Therefore, we are compelled to assign the
breather frequency to the band gap.
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Figure 6.14: (a) Comparison of the recombination time, tr, extracted through sim-
ulations and the one estimated analytically through Eq. (6.13) as a function of the
distance traveled by each DW with opposite chirality before culminating in the anni-
hilation process. (b) Comparison of the simulated time evolution of the x-th magne-
tization component, mx, at the annihilation point of a pair of magnetic textures with
opposite topological charge with an analytically-based damped harmonic oscillator
expression given by Eq. (6.14).

6.5 Conclusions

We have sought to mimic in spin space the entry of dislocations in non-magnetic
periodic structures under the action of high strains into a highly nonlinear regime
of motion, case in which the steady-state dynamic trend is extinguished through the
beating of the phonon-based sonic barrier by means of the nucleation of mother-
daughter secondary kinks with opposite Burgers vectors. In this sense, through
ASDS, it has been found that, despite the energy-based topological protection of
the Néel-like DW residing in the FM sheets of the layered AFM Mn2Au, for a cer-
tain combination of the SO field magnitude and the raising time, a phenomenon
analogous to the WB in FM occurs, interrupting the stable magnetic texture dynam-
ics. This results in the generation of an additional DW pair preserving the overall
topological charge of the system, a process which can be related to the torque ex-
erted by the dynamically-based kinetic field generated by the primal magnetic soli-
ton during its translational propagation. That nucleated magnetic texture that has
the same chirality as the seed one will stay spatially stuck next to the original one
due to the energy balance between the repulsive FM-like exchange interaction and
the attractive SO field, while the other generated DW moves away from the break-
down point at speeds that far exceed the maximum magnon group velocity of the
medium. This supermagnonic boost is due to the fact that, in addition to the speed
at which the primal magnetic soliton was moving just before the fragmentation pro-
cess, the stored exchange-based energy that is not transformed into translational
displacement by the localized DW pair is transferred to the free magnetic texture.
At such high speeds it is possible to appreciate the existence of a radiative tail trav-
eling together with the boosted magnetic soliton, which seems to be due to the spin
Cherenkov, because the DW eventually exceeds the SW phase velocity of the system,
and the Bremsstrahlung, due to the rapid deceleration of the primal magnetic tex-
ture at the nucleation instant, effects. We observe the existence of oscillations in the
positions of the spatially stuck DW pair whose number coincides with the radiative
ripples traveling with the boosted magnetic soliton, which opens the possibility that
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the spin Cherenkov radiation acts in an antidamping fashion in the braking-based
SW emission, explaining the rather slow decay of the undulations. If the magnitude
of the SO field is increased using the same ramping time, it is possible to appreciate
the creation of a DW lattice due to the appearance of a cascade of nucleations where
each supermagnonic magnetic texture acts as a new seed, proceeding to decompress
when the external stimulus is progressively decreased due to the annihilation of
pairs of magnetic solitons with opposite chirality. This type of scenario points to a
potential application in the field of information processing, which could be codified
through the creation of different patterns. Provided that the separation between nu-
cleated magnetic textures with the same topological charge is large enough, residual
magnetic solitons may remain in the system when the SO field is completely turned
off, leading to recombination times well beyond of those possibly simulated because
the exchange-based attractive mechanism is a short-range one. This type of observa-
tion is in line with the experimentally reported resistance variations in these types
of materials under the action of pulsed excitations as well as a remnant signal when
the external stimulus has been extinguished, which is attributed to a fragmentation
of the spin space, phenomenon which would not require the action of Joule heating
or temperature to explain it according to our results.
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Chapter 7

Topologically-mediated energy
release by relativistic
antiferromagnetic solitons

7.1 Energy tuning and release by domain walls in spin space

Solutions for an efficient energy control are based on identifying the related prevail-
ing carriers, transfer mechanisms, and release pathways on the relevant time and
space scales. In the field of nanoelectronics, which is based on exploiting the electric
charge of the electron, many concepts have been proposed to achieve this end [428],
but the use of its quantum-based spin in this sense has not been so widely discussed.
Based on the same topological-like protection functionality for which localized spin
structures have been envisioned as information vectors [82, 429], there are some pro-
posals in which they are also proposed as stationary energy storing units [430–432].
However, the use of them as dynamic carriers as well as possible ways to release
the accumulated energy at will have not been addressed. Beyond the potential sta-
bility of magnetic solitons like DW, it is also possible to highlight the plethora of
well-characterized methods through which it is possible to excite their translational
motion as well as the fact that their self energies can be tuned through the control
of their width [96, 175, 207, 433, 434]. This last statement is due to the fact that, as
the angle between neighboring spins increases, which implies that the spatial exten-
sion of the considered magnetic texture is reduced, the exchange-based energy is en-
hanced. Unlike in the case of FM, where no sizable DW width contractions down to
almost the atomic scale have been reported even for relatively high velocities [435],
AFM do present it intrinsically without complicated engineered geometries [436].
This is because, in AFM, it is possible to reach speeds very close to the limiting
maximum magnon group velocity of medium dictated by the special relativity prin-
ciples, which leads to very narrow DW widths and, therefore, high exchange-based
self energies [134, 414]. Due to the inherent topological selection rules in spin space,
it is expected that, as in the case of FM, if two 1D magnetic textures with the same
relative topological charges collide they will not be able to annihilate each other, but
for the case in which the DW pair have opposite chiralities, as long as their kinetic
energies are not enough to escape the attractive potential created by their counter-
part, they will recombine [86, 437, 438]. In this way, it is possible to merge the rel-
ativistic Lorentz factor-governed width tuning together with the energy release in
nanometric localized spots on the ps time scale through inelastic DW collisions in
AFM.
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7.2 Topological selection rules for antiferromagnetic solitons

7.2.1 Simulated chirality-dependent magnetic textures collision

Just as it was done previously in, namely, Chaps. 5 and 6, we will take as the study
system the layered AFM Mn2Au, in which 180◦ DW can be stabilized in each FM
sheet of the unit cell, as it was schematized in Fig. 5.1 (b), the dynamics of which
can be excited through a current-induced SO field [139, 148]. To, firstly, certify that
the topological selection rules, as expected, are also verified in AFM, we perform
ASDS, taking into account the functional form of the atomistic energy given by Eq.
(5.1), being defined the associated parameters in Sec. 5.2, in which the LLG equation
given by Eq. (2.14) is solved numerically, site by site, through a fifth-order Runge-
Kutta method, assuming that the damping parameter is α = 0.001 [165, 402]. The
simulated magnetic domain will consist of 60000 unit cells along the x-th movement
direction, one cell width with periodic boundary conditions along the y-th direction,
and one cell thick along the z-th axis. Initially, two DW are stabilized at an approxi-
mate distance of 1.5 µm, with the same or the opposite relative topological charges,
and through a SO-based external stimulus protocol, applied along the y-th spatial
direction, based on ramping the field for 10 fs up to a maximum value, HSO

y , which
will hold until the end of the simulation, they are made to collide at the midpoint of
the track. As it can be seen in Fig. 7.1, both magnetic solitons undergo a strong initial
acceleration process which is accompanied by the emission of SW, contrary to what
happened in Sec. 5.4.2, where this scenario was avoided by employing a sufficiently
long raising time to ensure that the magnetic texture evolved in a quasistatic trend,
as it can be seen in Figs. 5.6 and 5.7 (a). After a brief period of acclimation after
which both DW move at a constant speed, reaching values very close to the maxi-
mum magnon group velocity of the medium from SO field amplitudes of HSO

y = 20
mT, which it can be seen in Fig. 5.5 (a), they reach the impact spot after a few tens
of ps. Depending on the relative topological charges, Qi, between both magnetic
solitons, they will suffer an elastic collision if they have the same winding numbers,
that is, Q1Q2 = +1, both remaining in the system after it, while if their chiralities are
the opposite, that is, Q1Q2 = −1, both of them will suffer an inelastic impact that
results in their deletion, giving rise to a breather-like excitation, as it is shown, for a
maximum SO field of HSO

y = 60 mT, in Figs. 7.1 (a) and (b), respectively.

7.2.2 Energy-based perspective on the pseudoparticles impact outcome

The notion of topological protection and, therefore, the assignment of a certain topo-
logical charge to a magnetic soliton, responds to its behavior in the presence of an
external field, since, for a moderate external stimulus that is collinear to the domains
between which this is defined, the torque outside the inhomogeneous DW transition
will be zero, which allows it to prevail in the system, as it is shown in Fig. 2.5 (b).
Furthermore, regardless of the relative winding numbers between the two consid-
ered magnetic textures, the domain between them is antiparallel to the applied SO
field, as it is depicted in Fig. 7.2 (a), so, to minimize the associated Zeeman energy,
this region between them should be as short as possible, leading to the collision of
both magnetic solitons. However, this is not the only energy contribution to take
into account to envision how will be the impact of two DW as the in-between do-
main shrinks, being also dictated by the FM-like exchange interaction. Since both
magnetic textures, irrespective of their relative chiralities, live in a FM sheet, if their
central spins are parallel, the exchange contribution will cause them to attract each
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other (as in the case in which Q1Q2 = −1), while if they are arranged antiparallel
to each other they will tend to repel each other (scenario corresponding to case in
which Q1Q2 = +1), as it is shown in Fig. 7.2 (a). It is, therefore, the simultaneous
action of these two energy contributions which dictates which will be the outcome
of the collision of two DW depending on what their relative topological charges are,
approaching each other due to the action of the SO field and being able to recom-
bine or not depending on the relative orientation of their central spins through the
FM-like exchange interaction, as it is shown by the simulations in Fig. 7.1. This type
of reasoning was also implicit in the discussions of the creation and decompression
of the DW lattice in Chap. 6, both in the case of stuck pairs of magnetic textures
with the same topological charge, as discussed in Sec. 6.3.1, and in the case in which
magnetic solitons with opposite topological charges begin to recombine when the
SO field is turned off, as it is shown in Sec. 6.4.1. In this line, the balance between
both energy contributions has been collected by Eqs. (6.10) and (6.11). Due to the
attractive or repulsive nature of the FM-like exchange interaction between two DW
depending on their relative chiralities, it could be hypothesized if this short-range
contribution has an impact on the velocity of the magnetic solitons when they are
close enough to each other. However, if this it is evaluated through the simulations,
for different maximum values of the external stimulus, HSO

y , it is possible to see that,
regardless of whether the impact is elastic or inelastic, the collision time, tc, given
that the initial distance between the two DW is always the same, depends entirely
on the SO field magnitude, and it does not appear that the exchange interaction
causes an appreciable boost or delay in the process, as it can be seen in Fig. 7.2 (b).
This is because the exchange interaction is a short-range one, so the magnetic soli-
tons might not have enough time to get an exchange-based variation in their speeds
due to the continuous presence of the SO field, which makes them to move at speeds
of the order of tens of km/s.

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

Figure 7.1: Simulated space-time evolution of the x-th magnetization component,
mx, for the case in which the two initially stabilized DW in the system have (a) the
same or (b) the opposite topological charges, Q1Q2 = +1 or Q1Q2 = −1, respec-
tively. In both cases, the SO field ramps for 10 fs up to a maximum value of HSO

y = 60
mT, which remains active until the end of the simulations.
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Figure 7.2: (a) Balance of the SO field, HSO
y , and FM-like exchange energy contribu-

tions depending on the relative topological charges, Qi, of both DW, which dictates
whether the pair of magnetic textures will recombine or not in each situation. In
this case, the colored rectangular regions indicate the main area of influence of each
term, while the associated colored arrows represent in which direction each energy
contribution prompts them to move. (b) Simulated evolution of the collision time,
tc, for different maximum SO fields, HSO

y , both for the case of an elastic (Q1Q2 = +1)
and an inelastic (Q1Q2 = −1) collision between both magnetic solitons.

7.3 Magnetic textures as local heating probes in metals

7.3.1 Electronic- and phononic-governed kinetic two temperature model

Heat production at the nanoscale has been shown to be crucial for the existence of
several emerging non-disruptive technologies, ranging from cancer treatments to in-
formation storage through heat-assisted magnetic recording schemes [439, 440]. In
this sense, it is still a challenge to find not only ways to control the level of heating,
but also to do it in a fast, energy-efficient manner at ever decreasing length scales.
Interestingly, the electrically-driven DW motion through a viscous-like medium is
inherently subject to an energy redistribution process to its surroundings in a simi-
lar way as in the case of the Joule heating generated by applying an electric current to
a resistive material. If the considered material is metallic, due to the low associable
electronic specific heat and the efficient coupling of the spin and electronic degrees
of freedom [441, 442], the electron subsystem can be heated, due to the energy dissi-
pated during the magnetization dynamics, in the subpicosecond time scale, as it has
been reported for the case of the layered AFM Mn2Au [165]. In this sense, it is im-
portant to point out that, if an AFM insulator were considered, the magnetic energy
would be absorbed by the magnon bath, whose relaxation is slow, being compara-
ble to the thermal diffusion, instead of being transferred to the electronic degree of
freedom [443]. In metals, due to the excess of energy of the heated electrons adjacent
to the spatial region located around the magnetic soliton, not only the thermaliza-
tion of the electronic subsystem occurs through inelastic scattering events [444], but
also an energy transfer between them and the colder lattice takes place through the
electron-phonon coupling [445, 446], a process which can take several ps [165]. It is
important to note that the heating of the phononic reservoir occurs indirectly, since
the source of energy in the physical system, embodied by the magnetic texture, lives
in spin space, which is weakly coupled to the lattice, the latter being however in
relevant connection with the electronic bath. All this succession of events have been
outlined in Fig. 7.3 (a). If the external stimulus that incites the movement of the
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magnetic texture, which acts as a local heating probe, ceases its activity, it will stop
pumping energy to the electronic reservoir and, therefore, the electron temperature
will decrease until it equals the one of the phononic subsystem, being the time scale
of the process governed by the strength of the coupling between both degrees of free-
dom. All the phenomenology exposed so far can be described within the so-called
two temperature model, which deals with the electronic and phononic systems as
coupled heat baths [447]. In this context, the time evolution of the temperature of
the electronic and phononic reservoirs can be described through two coupled heat
equations, such that

Cel
dTel

dt
= −Gel−ph

(
Tel − Tph

)
+ κ

∂2Tel

∂x2 + q̇, (7.1)

Cph
dTph

dt
= Gel−ph

(
Tel − Tph

)
, (7.2)

where Cel and Tel represent, respectively, the electron specific heat and temperature,
while Cph and Tph exercise the same roles but referred to the phonon reservoir. On
the other hand, Gel−ph denotes the coupling constant between the electronic and
phononic systems, q̇ quantifies the heat dissipation rate per spin, and κ, the elec-
tronic thermal conductivity, refers to the diffusion of the excess of energy from the
hot electrons to the colder ones. It should be noted that this last mechanism, in
the case in which the pumping of energy to the system stops, which would lead to
an eventual cessation of the dynamics of any spin texture in the magnetic medium,
would allow the heat to be spatially delocalized on the time scale of hundreds of ps.
Regarding its phononic analogue, its absence in the preceding expressions is due to
the fact that it is significantly slower than the one involving the electron subsystem
[216].

7.3.2 Dynamically-induced dissipation through the spin Peltier effect

The theoretically-calculated energy dissipation by the SO field-induced dynamics of
a single DW in one of the FM layers of the metallic AFM Mn2Au has been previ-
ously reported through the combination of ASDS, based on the numerical resolu-
tion of the LLG equation, given by Eq. (2.14), and the kinetic model encoded by
Eqs. (7.1) and (7.2), being the relaxation rate proportional to the so-called Gilbert
damping parameter, α [165]. In this case, it was observed that, through the SPE, the
creation of a localized electronic-based heat wave takes place, which accompanies
the fast moving magnetic texture, slightly lagging the DW center position. At the
same time, the phononic temperature shows a much smoother profile owing to the
indirect coupling to the heat source, represented by the moving magnetic texture,
through the electron-phonon channel. Interestingly, it is possible to estimate the time
scale associated with the temporal delay between the electronic and phononic tem-
perature profiles through the electron-phonon relaxation time, τel−ph ≃ Gel−ph/Cel,
which, for the parameters considered in the aforementioned work, will be given
by τel−ph = 1.2 ps [165]. Along the same lines, the characteristic length scale for
which both thermal profiles are different, lel−ph, can be calculated considering that
the DW moves close to the maximum attainable speed in the medium, which is
around v = 40 km/s, being, in this case, given by lel−ph ≃ τel−ph v = 48 nm. Leav-
ing aside the advantages associated with using a metal and focusing on why to use
AFM materials, it is possible to characterize, through the Rayleigh dissipation func-
tion, which we will denote in the rest of the chapter as q̇, given by Eq. (2.18), which
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will be the spatio-temporal electronic, Tel, and phononic, Tph, temperature distri-
butions. To analytically quantify the dynamically-based heat dissipated per atomic
spin, q̇dyn, it is possible to combine the parameterization in spherical coordinates of
the Néel order parameter, given by Eq. (5.14), taking into account its negligible as-
sociated out-of-plane component, with the stationary symmetric Walker-like profile
of a magnetic soliton, which is characterized by Eq. (2.30). In this line, its spatially
localized dynamic profile, q̇dyn, for steady-state processes can be found to be given
by

q̇dyn = 2αh̄
( v

∆

)2
sech2 x − X

∆
, (7.3)

expression through which, after integration over time, it is possible to extract the as-
sociated electronic and phononic temperatures, Tel,ph, that will accompany the mag-
netic texture, such that ∣∣Tel,ph

∣∣ = 4αh̄v
Cel,ph ∆

tanh
x − X

∆
, (7.4)

where it should be noted that the factor 2 in the numerator has been artificially added
to encompass a greater number of spins of the inhomogeneous transition that defines

the magnetic soliton, since the Bloch definition of the DW width, ∆0 =
√

a/
(
8K2∥

)
,

does not give a good account of the whole dissipative region [165].
Because in Eq. (7.4) the temperature scales with the ratio v/∆, it can be appre-

ciated that the DW dynamics in AFM is advantageous in terms of heating level,
since in this type of materials it is possible to reach ultrafast magnonic velocities
and Lorentz-governed width contractions down to the atomic scale [134, 414]. In
fact, it has been reported that, through an excitation protocol that induces the back
and forth motion of a magnetic soliton in one of the FM sheets of the layered AFM
Mn2Au, a maximum electronic temperature peak of Tel = 1.2 K can be reached for
HSO

y = 60 mT, as well as electronic and phononic temperatures, after the thermal-
ization process when the dynamics in the spin space are extinguished, of the order
of Tel,ph = 0.8 K in the center of the track for a mean velocity and width of, respec-
tively, ⟨v⟩ = 33.15 km/s and ⟨∆⟩ = 12.72 nm [165]. It should be noted that, for FM,
the heating induced by a moving magnetic soliton will not be as efficient as in AFM
materials. For the standard case of permalloy, for example, it can be estimated that
the maximum temperature that the electrons can carry due to the dissipation gener-
ated by the movement of the magnetic soliton will be of the order of 1 mK, which
is due to the lower order of magnitude of the ratio v/∆ in Eq. (7.4) compared to
the one expected in AFM due to the speeds and widths achievable in each scenario.
Moreover, in FM, the thermal diffusion will play an important role when it comes
to delocalizing the generated heat wave. The heat diffusion rate can be defined as
η = Del/ (v∆), where Del = κ/Cel represents the electron thermal conductivity, and
it expresses that, the larger this parameter is, the more efficiently the thermal diffu-
sion takes the temperature away from the generation region. Considering a typical
value of the electron thermal conductivity for a metal, that is, Del = 10−4 m2/s, the
aformentioned parameter will be η ≫ 1 for permalloy and η < 1 for Mn2Au [165].
This has as a consequence that the negligible heat wave accompanying the magnetic
texture during its dynamics in permalloy will be completely delocalized, contrary to
the case of Mn2Au.

In our case, it is possible to calculate the dissipation rate per spin, q̇, through Eq.
(2.18), from the ASDS explained in Sec. 7.2.1 and displayed in Fig. 7.1, both for the
situation in which both DW have the same relative topological charges, Q1Q2 = +1,
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as it is shown in Figs. 7.3 (b) and 7.4 (a), as well as for the situation in which they
have opposite winding numbers, Q1Q2 = −1, which is depicted in Figs. 7.4 (b) and
7.5 (a). In view of Fig. 7.1, it is possible to see that, in both cases, there is a SW emis-
sion during the acceleration process of both magnetic textures due to the application
of a short ramping time of 10 fs, which gives rise to the creation of an additional
dissipation channel in the system, transporting energy away from the heat source,
although its effect is practically negligible, as it can be seen in Figs. 7.3 (b) and 7.4
(b). Given this scenario, in order to characterize the temperature of the electronic
and phononic baths through Eqs. (7.1) and (7.2), it will be adopted in the follow-
ing that the parameters involved in the aforementioned expressions will be given by
Cel = 103 J/

(
K · m3), Cph = 1.5 × 106 J/

(
K · m3), Gel−ph = 2.5 × 1017 W/

(
K · m3),

and κ = 200 W/ (m · K) [165, 448]. Regardless of the relative chiralities between the
two magnetic solitons, before the collision both cases are completely coincident, as
it can be seen from the fact that, for t = 14 ps, even though the spatial distributions
of the x-th magnetization component are different in each case, as it can be appreci-
ated in Figs. 7.5 (b) and 7.6 (b), the electronic, Tel, and phononic, Tph, temperature
profiles are the same, as it is depicted in Figs. 7.6 (a) and 7.7 (a), which is because
both at this point only show a dynamic contribution. These exposed thermophysical
processes may allow the traceability of the magnetic texture dynamics in AFM due
to the accompanying nanoscale confined heat wave through, for example, scanning
thermal microscopy, as it has been proposed with the case of the SPE [449, 450]. This
is in line with the recently reported thermal detection, through the anomalous Nerst
effect, of the FM DW motion, albeit on much larger time scales than those governing
the Mn2Au case [451]. In addition, the localized phonon temperature profile will
be associated with the creation of phononic waves, which could be measured in a
similar way as in the reported ultrafast Einstein-de Haas effect [452].

7.3.3 Topologically-induced exchange domain wall energy release

As it can be seen in Figs. 7.3 (b) and 7.4 (b), regardless of the relative chiralities of
the DW in the system and the outcome of the eventual collision process, it is possi-
ble to transport in an efficient and ultrafast manner the exchange-based self energy
carried by each magnetic soliton. This is because, in AFM, the magnetic textures
show special relativity signatures, which results in their widths and free energies
strongly depending on the speeds at which they are moving through the medium.
In particular, the dynamically-dependent DW energy can be obtained through the
spatial integration of either one of the first two terms of the right-hand side of Eq.
(6.4), which do not depend on the involved topological charges due to the fact that
the present hyperbolic function is even. Thus, the exchange-based self energy of an
i-th magnetic soliton, Ei

exc, will be given by

Ei
exc =

a
8a0∆2

∫ +∞

−∞
sech2 x − Xi

∆
dx =

a
4a0∆

, (7.5)

whose functional behavior, for quasistatic processes, can be found in Fig. 3.4 (a). The
dynamic DW width is governed by a symmetric Lorentz-like functional form such

as ∆ = ∆0 β = ∆0

√
1 − (v/vm)2, being given, at the same time, the velocity, v, of the

magnetic texture in quasistatic processes through Eq. (5.17) or, in the case where the
DW moves in a steady-state trend, through Eq. (5.18). Due to the small DW mass in
the layered AFM Mn2Au, which is implicit in the functional form of the Newton-like
second-order differential equation given by Eq. (5.17), being inversely proportional
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to the inhomogeneous FM-like exchange constant, a, a magnetic texture in one of the
basal planes of the unit cell will present small inertial in its adaptation to a new dy-
namic regime in the presence of a time-dependent external stimulus, as it can be seen
in Figs. 5.6 (b) and 5.7 (a). This is also true for the case we are currently studying,
given by the simulations explained in Sec. 7.2.1 and shown in Fig. 7.1, where the SO
field is ramped for 10 fs up to a maximum value of HSO

y = 60 mT, taking only a few
ps to acclimatize to the imposed stationary regime, in which case no significant SW
emission is observed after the acceleration process. In this line, in the steady-state
regime prior to the collision process of both magnetic solitons, they reach speeds
given by v = 42.56 km/s, which constitutes a 98% of the maximum magnon group
velocity of the medium, vm, while its spatial extents shrink to a value of ∆ = 4.08
nm, which represents 80% of the DW width at rest, ∆0, as it was previously dis-
cussed in Sec. 5.4.2. This has as a result that, at this dynamic stage, both magnetic
textures increase their exchange-based self energies, Ei

exc, up to a 485% compared
to their resting values, which shows that it is possible, in fact, not only to displace
their free energies through the track, but also to charge them through an externally
applied electric current.
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Figure 7.3: (a) The current-induced dynamics of each DW through one of the FM
sheets of the layered AFM Mn2Au, being the magnetic Mn atoms whose local spins
are connected through the coupling constant Gs−s represented by solid blue circles,
causes, due to dissipation processes, an energy redistribution from the magnetic
reservoir to the electron (solid yellow circles) and phonon (solid red circles) sub-
systems. Due to the efficient spin-electron coupling, represented by Gs−el, the cre-
ation, on the subpicosecond time scale, of a localized heat wave of hot electrons
that accompany each moving magnetic soliton takes place. In the following ps, the
imbalance between the electron degree of freedom and the colder lattice, which in-
teract through the parameter Gel−ph, gives rise to a thermalization process up to an
equilibrium temperature. Extracted from [165]. (b) Dynamically-generated simu-
lated space-time evolution of the heat dissipation rate per spin, q̇dyn, for the case in
which the two initially stabilized DW in the system have the same relative topolog-
ical charges, Q1Q2 = +1. The SO field ramps for 10 fs up to a maximum value of
HSO

y = 60 mT, which remains active until the end of the simulations.

As it was shown in Fig. 7.1, the outcome of a collision process between two DW
is strongly dependent on their relative topological charges, Qi. This phenomenon,
governed by the topological selection rules, establishes that if both magnetic solitons
have the same chirality they will not annihilate when colliding elastically, while if
their winding numbers are the opposite, belonging to the same topological class that
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the homogeneous state, both will suffer upon impact an inelastic event in which they
will eradicate each other, as it was introduced in Sec. 2.5. In the case compiled in Fig.
7.1 (a), where both DW persist in the system after the collision, which occurs approx-
imately at t = 15.85 ps, their magnetization profiles are affected when they are close
enough, as it can be seen in Fig. 7.5 (b) for the time frame t = 16 ps, at the same time
that their temperature profiles are combined in the impact point, as it is depicted in
Fig. 7.6 (a). This happens in this region despite the fact that both magnetic textures
do not merge spatially due to their exchange-based mutual repulsion, as it is shown
in Fig. 7.4 (a), where there is no dissipation in this point. After their collision, as
it can be seen in Fig. 7.5 (b) for t = 18 ps, they are separated up to an equilibrium
distance, in line with what is stated in Secs. 6.3.1 and 7.2.2, which leads to an abrupt
decrease in their velocities with respect to their values in the stationary trend, which
causes the expansion of their widths and, therefore, a significant loss of part of their
stored self energies. In this situation, the energy transfer to the system is only par-
tial due to the prevalence of both magnetic textures, as it is depicted in Fig. 7.5 (b),
being the dissipation to the medium purely dynamic, q̇dyn, as in the SPE of a single
magnetic soliton [165]. This causes that the energy excess that both stored before
their impact is redistributed between different subsystems through SW emission,
electron-phonon coupling, and lateral thermal conduction, leading to a decrease in
the electronic temperature, Tel, in the center of the track in its thermalization process,
as it shown in Fig. 7.6 (a) for t = 18 ps.
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Figure 7.4: (a) Dynamically-generated simulated space-time evolution of the heat
dissipation rate per spin, q̇dyn, for the case in which the two initially stabilized DW
in the system have the same relative topological charges, Q1Q2 = +1, in the region
where the elastic collision takes place. (b) Dynamically- and topologically-generated
simulated space-time evolution of the heat dissipation rate per spin, q̇dyn + q̇topo, for
the case in which the two initially stabilized DW in the system have the opposite
relative topological charges, Q1Q2 = −1. In both cases, the SO field ramps for 10 fs
up to a maximum value of HSO

y = 60 mT, which remains active until the end of the
simulations.

On the other hand, in the case where both DW have opposite relative topological
charges, both magnetization profiles merge at the impact point, as it is shown in Fig.
7.6 (b) for t = 16 ps, which means that the temperature profiles overlap at the center
of the track, as it is depicted in Fig. 7.7 (a). This results in a total release of the energy
carried by both magnetic textures in their previous dynamic history in the impact
spot, as it can be seen in Figs. 7.4 (b) and 7.5 (a), which is allowed in this case by the
topological selection rules, contrary to what happens in the elastic case. As a result of
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the mutual annihilation of both magnetic solitons, a strong dissipation in the form of
a magnon emission occurs through the creation of a breather-like excitation [230], as
it is depicted in Fig. 7.6 (b) for t = 18 ps, which evolves in time, but not in space, the
magnon cone being constrained by the trajectory of both magnetic textures before
colliding, which is clearly seen in Fig. 7.1 (b), which means that no spin perturba-
tions can exist outside this region [371]. The attenuation of this bounded state, for
a SO field of HSO

y = 60 mT, occurs on, approximately, the exchange relaxation time
scale, which can be estimated through Eq. (5.17), such as a/

(
8αh̄v2

m
)
≃ 2.41 ps,

which is in line with the one observed through simulations in Fig. 7.1 (b), which is
around 3 − 4 ps. Since the stored exchange energies by both DW during their mo-
tions are completely released to the medium as these two magnetic textures cease to
exist in the spin space, as it can be seen in Figs. 7.1 (b) and 7.6 (b), the dissipation
to the medium will not only have a dynamic contribution, q̇dyn, as in the case with
an elastic impact shown in Fig. 7.1 (a), but also a topological one, q̇topo. As in the
case in which there were two magnetic solitons with the same relative chiralities,
the energy excess is redistributed between the different dissipation channels, giving
rise to a gradual reduction process of the electronic temperature, Tel, in its thermal-
ization as the breather dims, as it is shown in Fig. 7.7 (a) for t = 18 ps. In this
sense, the topologically-dependent events dependent on the relative DW topologi-
cal charges are reminiscent of the case of an electric capacitor, in that it is possible to
charge them, in this case, of exchange-based energy through their current-induced
dynamics, and also to discharge them, either partially or totally depending on the
outcome of the collision between them, as it is schematized in Fig. 7.7 (b). The foot-
print of both scenarios governed by the topological selection rules can potentially
be discerned experimentally, since there are appreciable differences in the temper-
ature of the electronic, Tel, and phononic, Tph, baths, being possible to achieve an
maximum increase of a 51% of Tel and of a 30% of Tph if there is a total discharge of
energy to the medium compared to the case in which both remain in the system as
well-differentiated entities, which it is shown, respectively, in Figs. 7.8 (a) and (b).
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Figure 7.5: (a) Dynamically- and topologically-generated simulated space-time evo-
lution of the heat dissipation rate per spin, q̇dyn + q̇topo, for the case in which the
two initially stabilized DW in the system have opposite relative topological charges,
Q1Q2 = −1, in the region where the inelastic collision takes place. (b) Simulated
spatial distribution for different time frames of the x-th magnetization component,
mx, for the case of two DW with the same relative winding numbers, Q1Q2 = +1,
during their dynamic evolutions until they collide elastically, event that occurs at
approximately t = 15.85 ps. The SO field ramps for 10 fs up to a maximum value of
HSO

y = 60 mT, which remains active until the end of the simulations.
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Figure 7.6: (a) Simulated spatial distribution for different time frames of the elec-
tronic, Tel, and phononic, Tph, temperatures for the case of two DW with the same
relative topological charges, that is, Q1Q2 = +1, during their dynamic evolutions
until they collide elastically, event that occurs at approximately t = 15.85 ps. (b)
Simulated spatial distribution for different time frames of the x-th magnetization
component, mx, for the case of two DW with opposite relative topological charges,
that is, Q1Q2 = −1, during their dynamic evolutions until they collide inelastically.
In both cases, the SO field ramps for 10 fs up to a maximum value of HSO

y = 60
mT, which remains active until the end of the simulations, process during which the
impact between both magnetic solitons takes place at approximately t = 15.85 ps.

Figure 7.7: (a) Simulated spatial distribution for different time frames of the elec-
tronic, Tel, and phononic, Tph, temperatures for the case of two DW with opposite
relative topological charges, that is, Q1Q2 = −1, during their dynamic evolutions
until they collide inelastically. (b) Simulated comparison of the time evolution of
the stored exchange-based energy by both magnetic textures, 2Ei

exc, for the cases in
which they have the same relative topological charges, that is, Q1Q2 = +1, under-
going an elastic collision, or the opposite relative winding numbers, Q1Q2 = −1,
giving rise to an inelastic event. The in-between blue region corresponds to the net
topological contribution resulting from the total release of the self energy of both
DW due to their mutual annihilation, while the solid green circle represents the col-
lision point. In both cases, the SO field ramps for 10 fs up to a maximum value of
HSO

y = 60 mT, which remains active until the end of the simulations, process dur-
ing which the impact between both magnetic solitons takes place at approximately
t = 15.85 ps.
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Figure 7.8: Comparison of the simulated maximum (a) electronic, Tel, and (b)
phononic, Tph, temperatures in terms of the normalized DW widths, ∆/∆0, being
∆ and ∆0 their values at steady-state and at rest, respectively, obtained for the cases
in which the magnetic textures collide elastically, that is, Q1Q2 = +1, or inelastically,
Q1Q2 = −1, for different constant SO fields, HSO

y , after the ramping process. The in-
between blue region corresponds to the net topological contribution resulting from
the total release of the self energy of both DW due to their mutual annihilation.

7.4 Post-collision domain wall bounded state features

Regarding the different scenarios emerging from the collision of two magnetic tex-
tures depending on their relative topological charges, part of this analysis was car-
ried out when the Walker-like breakdown in the AFM Mn2Au was evaluated in
Chap. 6. This phenomenon consisted in the fact that, initially existing a single DW
in the system, this could give rise, in its dynamic process under a certain magni-
tude of the SO field, to an avalanche of nucleation of magnetic solitons preserving
the overall winding number [139]. However, this process and, therefore, what was
previously analyzed in this regard, was subject to a certain combination of inputs
through the selected time-dependent excitation protocol, both in terms of the used
ramping time and the maximum value of the external stimulus reached during the
simulations. In the current case that concerns us, where from the beginning we have
two DW in each FM sheet of the layered AFM Mn2Au, we are not constrained in this
sense, which makes it possible to carry out a less restricted analysis that is related
to the one previously done. As it was qualitatively introduced in Sec. 7.2.2, when
both magnetic textures have the same relative topological charges, Q1Q2 = +1, the
SO field-based Zeeman energy will shrink the in-between domain between them,
while the FM-like exchange interaction, due to their central spins being antiparallel,
will cause them to repel when they are close to each other due to their short-range
nature. The equilibrium distance, X1 − X2, between both magnetic solitons after the
collision process can be found through the balance between both energetic contri-
butions, as it was discussed in Sec. 6.3.1 and encapsulated in Eq. (6.11), which is
shown in Fig. 7.9 (a) for different maximum magnitudes of the SO field, HSO

y , after
the ramping process. The comparison between the outcome obtained through ASDS
and the numerical analysis of Eq. (6.11) show an appreciable coincidence, as well as
that, as the value of the external stimulus decreases, its separation increases, which
implies that the Zeeman-based force needs a greater extension of the magnetic do-
main to compensate for the exchange repulsion between both magnetic textures. On
the other hand, when the two existing DW in the system have the opposite relative
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winding numbers, Q1Q2 = −1, they collide inelastically because not only the SO
field will contribute to favoring the annihilation of both magnetic solitons, but also,
in this case, it will also be supported by the FM-like exchange interaction due to
their mutually parallel central spins, as it was introduced in Sec. 7.2.2. Under these
circumstances, after their eradication, a breather-like excitation is formed, as it can
be seen in Fig. 7.1 (b), which, as it was explained in Sec. 6.4.4, can be fitted to a
simple damped harmonic oscillator as the one described by Eq. (6.14). As it can be
induced from Fig. 7.9 (b), the decay time, td, of the bounded state after its creation
does not show a clear correspondence with the externally applied external stimulus,
HSO

y , and, in the same line, with the velocity at which the magnetic textures move
just before the collision, thus depending solely on the intrinsic parameters of the
system such as the damping parameter, α, the homogeneous AFM, A, and the inho-
mogeneous FM-like, a, exchange constants. Interestingly, through the estimation of
the relaxation time related to the breather excitation, which we can consider to be
around 3 − 4 ps according to Fig. 7.9 (b), it is possible to calculate the size of the en-
ergy release spot. For example, for the case in which HSO

y = 60 mT, being the related
DW velocity given by, approximately, v = 42.4 km/s, the impact-based discharge
area will be around 120 − 160 nm, as it can be seen in Figs. 7.4 (b) and 7.5 (a). In the
case in which the speed of the magnetic solitons at the moment of the collision was
lower, the spot size would decrease, but in turn the released energy would be lower
due to the reduction in the dissipation contribution, given by q̇dyn according to Eq.
(7.3).

Figure 7.9: (a) Comparison between the equilibrium distances, X1 − X2, of both
DW after their mutual elastic collision in the case in which their relative topolog-
ical charges are the same, Q1Q2 = +1, extracted through the simulations and from
Eq. (6.11) as a function of the applied SO field, HSO

y . (b) Decay times, td, for different
SO fields, HSO

y , of the breather mode for the case in which two magnetic solitons
with opposite relative winding numbers, Q1Q2 = −1, impact inelastically, obtained
by fitting the damped harmonic oscillator expression given by Eq. (6.14) to the sim-
ulated data.

7.5 Dissipation-induced magneto Seebeck recoil effect

Prior to the collision between both magnetic textures, regardless of their relative
topological charges, both pseudoparticles generate a spin Peltier-based electronic
thermal gradient during their ultrafast SO field-induced dynamic motion that is
slightly behind the DW center position, Xi, of each soliton [165]. Therefore, there
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is a potential feedback response due to the spin Seebeck effect that each magnetic
texture would experience, since, to minimize the energy of the system, they would
tend to move to the hottest regions of the sample [453, 454]. In our case, these sectors
are shifted backwards with respect to the DW centers of mass. To quantify this, one
can take advantage of the fact that the thermodynamic properties of FM and AFM
are similar because both models only differ in a change of sign of the exchange in-
tegral in the Hamiltonian [391, 455]. As in the case of FM, it is possible to estimate
the velocity associated with a thermal gradient-induced magnetic soliton dynam-
ics based on the tilting of the magnetization with respect to its plane at rest. In this
sense, we will assume that it is possible to linearize the dependence on the electronic
temperature, Tel, of the exchange stiffness, ρ, as dρ (Tel) / dTel ≃ ρ (0) /TN, where
ρ (0) represents the exchange stiffness at T = 0 K and TN expresses the Néel tem-
perature of Mn2Au. Considering that we are working on the low damping limit,
that is, α2 ≪ 1, and that we can simplify our problem to the case of a simple cu-
bic lattice of spatial period a0, parameter which we consider to be the same as in
the case of Mn2Au, which was presented in Sec. 5.2, it is possible to find that the
thermally-activated velocity, vth, of a magnetic texture can be expressed as

vth =
a3

0 ρ (0)
αh̄TN

∂Tel

∂x
= − kBa2

0
2αh̄

∂Tel

∂x
, (7.6)

where it has been assumed that the exchange stiffness at T = 0 K, ρ (0), of a sim-
ple cubic lattice can be represented, in the mean field approximation, as ρ (0) =
−kBTN/ (2a0) [391, 455].

As it was introduced in Sec. 7.3.2, since the study system is a metal, it is possible
to assume that the dynamically-based energy dissipated by both DW to the system is
directed primarily to the electron bath due to the order of magnitude of the electron
heat capacity, Cel, a process which occurs in the subpicosecond time scale. This con-
tribution due to the motion of the magnetic solitons through a FM sheet of Mn2Au
prior to their impact can be characterized analytically through Eq. (7.4), which has
an associated gradient given by

∂Tel

∂x
= − 4αh̄v

Cel∆2 sech2 x − X
∆

, (7.7)

where v is the SO field-based steady-state speed of each magnetic texture according
to Eq. (5.18). This expression allows to obtain, from Eq. (7.6), assuming that the
heat release is maximum and that, therefore, the temperature gradient is the largest
possible one, that the spin Seebeck-induced retardation velocity, vth, can be written
as

vth =
2kBa2

0v
Cel∆2 , (7.8)

which, as it was the case with the temperature profile exposed by Eq. (7.4), it is
potentially greater than in the case of FM because it is proportional to v/∆2, being
possible to reach speeds of tens of km/s and widths close to atomic spacing in AFM
[134, 414]. This last expression can be further simplified by assuming that the de-
pendence between the electron heat capacity, Cel, and the Boltzmann constant, kB, is
given by the Dulong-Petit law [441], Cel = 3kB, condition under which it is obtained
that

vth

v
=

2
3

( a0

∆

)2
, (7.9)
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ratio which allows us to quantify which is the relative effect on the absolute SO field-
induced DW velocity, v, of the thermally-activated one, vth, which it is shown in Fig.
7.10 (a). Because the retardation velocity, vth, due to the spin Seebeck effect reaches
values of the order of a few hundred m/s for SO fields between 40 − 60 mT, range
of the external stimulus for which the magnetic soliton speed is approximately 40
km/s, it is possible to assert that its impact is negligible on the magnetic texture
motion, representing, at most, 1/100 of its current displacement velocity [165].

7.6 Current-induced Joule heating thermal background

Since the excitation method to induce the DW dynamics in the metallic AFM Mn2Au
is carried out through a current-induced SO field, it is unavoidable to consider what
the energy losses associated with the Joule heating will be. This is due to the energy
transferred by the charge carriers to the atoms of the conducting medium through
their collision, which results in the increase of the temperature, which has an impact
on the magnetic properties of the system [456, 457]. Assuming that the current-
induced power profile would be Gaussian, it is possible to introduce an expression
to estimate the increase of the Joule heating-induced temperature, ∆T, in terms of
the injected current density amplitude, j, the geometry of the sample, and the ther-
mal properties of the considered substrate [458, 459]. Thus, the associated time-
dependent background temperature, ∆T, in a Mn2Au layer grown on a given surface
would be given by

∆T =
whj2

πκsσ
asinh

2
αGw

√
κst
ρscs

, (7.10)

where, on the one hand, one can find the parameters related to the Mn2Au sample,
that is, the film thickness represented by h, the current linewidth expressed by w,
and the electrical conductivity denoted by σ. On the other hand, it is also possible to
notice the existence of substrate-dependent constants, among which one can appre-
ciate the presence of the mass density represented by ρs, the specific heat capacity
expressed as cs, and the heat conductivity denoted by κs. Finally, it should be noted
that αG encodes the width of the Gaussian power profile and it must be taken into
account that, to obtain a SO field of HSO

y = 2 mT in Mn2Au, it is necessary to inject
a current density of the order of j ≃ 107 A/cm2 [149]. In this line, we will assume
that the Mn2Au-based parameters will be given by h = 10 nm, w = 4

√
2 µm, and

1/σ = 73 µΩ · cm [459], while the width of the Gaussian power profile has been cho-
sen to be αG = 0.5. On the other hand, in Table 7.1 the values of the mass density, ρs,
the specific heat capacity, cs, and the heat conductivity, κs, found in the literature for
some commonly used substrates have been compiled. To explore this scenario, we
will consider for simplicity the case in which the electric current is active only un-
til the instant at which the collision between the magnetic textures occurs, in order
to exemplify the case of the lowest possible energy expenditure, still fulfilling the
objective of the work. Consequently, Fig. 7.10 (b) shows the different Joule heating-
based thermal backgrounds, ∆T, for different Mn2Au growth surfaces according to
Eq. (7.10), depending on the current-induced SO field, HSO

y , where it must be taken
into account that, as it was shown in Fig. 7.2 (b), the impact moment of the two mag-
netic solitons occurs at approximately the same instant of time regardless of which
their relative topological charges are. In this line, it could be appreciated that for the
case in which an inelastic DW collision occurs for a SO field of HSO

y = 5 mT, taking
into account the MgO as the employed substrate because it is the one with the lowest
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associated Joule heating-based temperature, the maximum electronic temperature,
Tel, as it is shown in Fig. 7.8 (a), will be about one third of ∆T, which could give a
recognizable signal on the homogeneous background to be measured by scanning
thermal microscopy. In any case, it must be taken into account that the Néel temper-
ature in the case of Mn2Au is of the order of TN ≃ 1575 K [386], so we would be far
from this limiting scenario.

Figure 7.10: (a) Comparison between the analytically-obtained thermally-activated
spin Seebeck-based, vth, and SO field-induced steady-state, v, DW velocities accord-
ing to Eq. (7.9) for different magnitudes of the external stimulus, HSO

y , being given
the relationship between the field and the prevailing translational speed by Eq.
(5.18). (b) Analytically-calculated Joule heating-based temperature, ∆T, obtained
through Eq. (7.10), for the case in which the electric current, j, remains active until
the moment of the collision between both magnetic textures for different SO fields,
HSO

y , and substrates, of which their associated parameters are shown in Table 7.1.

Substrates
SiO2 [458] MgO [459] Al2O3 [460]

Mass density, ρs
(
kg/m3) 2200 3580 2950

Specific heat capacity, cs (J/ (kg · K)) 730 930 755
Heat conductivity, κs (W/ (K · m)) 1.4 40 2.55

Table 7.1: Compilation of the mass density, ρs, specific heat capacity, cs, and heat
conductivity, κs, parameters associated with some possible substrates on which a
Mn2Au layer could be grown.

7.7 Conclusions

We have addressed the theoretical study of two initially well-separated DW in one
of the FM sheets of the layered AFM Mn2Au under the action of current-induced SO
fields, which ranges from their dynamic evolutions far from the region of mutual
interaction up to their collision. Analyzing the impact outcome of magnetic textures
with different relative topological charges, we have been able to certify that, as ex-
pected, the topological selection rules are verified in AFM, which are rooted in the
energy balance between the Zeeman contribution and the FM-like exchange inter-
action between them. In this sense, an elastic collision occurs if they have the same
chiralities, remaining in the system after the collision, while when their winding



7.7. Conclusions 125

numbers are the opposite, they annihilate each other, which results in a spatially-
localized breather-like excitation when they do not have enough kinetic energy to
escape the attractive potential created by the other magnetic soliton. Due to the fact
that, in AFM, the DW can be contracted, during their Lorentz-governed dynamic
regimes, down to the atomic scale, it is possible to reach increases of up to 485% of
their stored exchange-based self energies with respect to their values at rest in the
range of considered external stimuli. This, together with the fact that, in this type of
long-range magnetically-ordered media, the magnetic textures are not prone to de-
formations during their motions and that they can reach speeds of up to a few tens
of km/s, allows envisioning the magnetic solitons in AFM as potential energy carri-
ers which can be charged and displaced through the application of electrical current
pulses. Taking into account that the dynamically-accumulated DW energies can be
released through topologically-mediated collision processes, it is possible to use the
kinetic two temperature model to obtain a thermal footprint of the heat dissipated
by both magnetic textures in their time-dependent evolutions to the electron and
phonon baths. Due to the metallic character of Mn2Au, the energy is redistributed
from the spin space to the electronic reservoir on the subpicosecond time scale, giv-
ing rise to electron-based temperature peaks lagging slightly behind the ultrafast
magnetic solitons, being produced, in turn, the transfer from this subsystem to the
phononic one in a few picoseconds. In the case in which the DW collide elastically
because they have the same relative topological charges, only a partial release of the
energy stored by both magnetic textures occurs because they remain in the system
after the impact, while when their relative chiralities are the opposite, there is an
additional topologically-based dissipation contribution because both magnetic soli-
tons cease to exist in spin space due to their mutual annihilation, which resembles a
hypothetical spin-based version of an electric capacitor. This has as a result that, for
the range of considered SO fields, it is possible to find an increase of up to a 51% in
the maximum electronic and of up to a 30% in the maximum phononic temperatures
when the impact between the DW is inelastic, giving rise to the possibility of exper-
imentally distinguishing both processes through their thermal footprints through
techniques such as scanning thermal microscopy. Our proposal opens the door to
ultrafast energy management at the nanoscale for future alternative spin-based na-
noelectronics as well as the possibility of using magnetic textures as non-disruptive
local heating probes, an approach which, unlike in the case of other defects, avoids
the inconvenience of overcoming any energy barrier for the particle-antiparticle re-
combination process, which is ensured in magnetically-based media due to topolog-
ical and energetical arguments.
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Summary and outlook

Concluding remarks

The recently discovered possibility of efficiently manipulating the order parameter
of a certain family of AFM metals through current-induced SO fields, whose mag-
netic morphology is characterizable through conventional MR effects, has fueled the
interest in these long-range magnetically-ordered materials with null net magneti-
zation. This is due to the advantages they present compared to their FM counter-
parts, such as the non-generation of stray fringing fields, inherent frequencies in the
elusive THz band, absence of WB due to the tilting of the magnetization with re-
spect to the DW plane at rest, and high critical Néel temperatures. Moreover, AFM
have attracted the attention of the scientific community due to their memristive-
like multilevel switching behavior and ultrafast topological magnetic solitons not
prone to dynamic deformations, which allows envisioning the design of full-AFM
all-spintronics devices that beat the current von Neumann architectures in terms of
operating speed, energy efficiency, and miniaturization. Of special technological and
fundamental interest is the case of magnetic textures propagating in AFM in the spe-
cial relativity framework, which allows reaching, in stable dynamic regimes, speeds
of tens of km/s. Although there are currently no experimental methods that allow
to track the movement of magnetic solitons in these types of systems, it is possible to
explore their dynamic behavior theoretically for real AFM materials in order to un-
ravel features that may be useful in the near future in hypothetical AFM-based tech-
nological implementations. However, the vast majority of works in this sense have
been focused on the analytical exploration of 1D spin chains complemented with
different discretization-based computational schemes, which cannot always give a
good account of the relativistic signatures inherent to complex AFM materials. In
this context, it has been exposed, in Chap. 1, a brief summary, from our point of
view, of the current state of research in the field of spintronics, with special em-
phasis on the potential advantages of excitation methodologies based on spin-orbit
fields, topologically-protected magnetic textures, and AFM materials. In Chap. 2 it
has been introduced how to characterize the dissipative dynamic processes in spin
space based on the different magnetic contributions of the system, as well as the
conditions under which solitonic solutions exist in long-range magnetically-ordered
media whose energetically-induced stabilities can be characterized through topo-
logical notions. On the other hand, in Chap. 3 the crucial features that dictate
the stability of dynamic DW in both FM and AFM have been discussed, as well
as the impact of topology on the propagation of magnetic textures and what kind of
computational and experimental approaches exist to characterize these soliton so-
lutions. Finally, our works exposed in this thesis, which are discussed in Chaps. 4,
5, 6, and 7 present insights into fundamental questions such as: (i) the transition
from Galilean-governed dynamics in FM to relativistic ones as in the case of AFM,
(ii) the accurate theoretical characterization of the motion of magnetic textures in
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real layered multisublattice AFM, (iii) the beating of the magnonic barrier in AFM
through non-relativistic DW propagation regimes, and (iv) the exploration of ther-
mal gradients-based detection schemes to discern the displacement and presence of
magnetic solitons in AFM.

In Chap. 4 we have explored the possibility to emulate analytically some in-
herent AFM properties in the case of a biaxial FM composed of both easy-axis and
hard-axis anisotropy contributions. Among the AFM signatures of interest are their
dynamic relativistic traces and the absence of the WB produced by the tilting of the
magnetization with respect to the DW plane at rest in its propagation process. In
this context, we have been able to find that:

• it is possible to characterize the functional form of the energy and spatial ex-
tension of the magnetic soliton through the dispersion relation of the linear SW
with imaginary wavenumber and frequency that live in their tails.

• the reduction of the dynamic LL equation to a relativistic SG-like expression
is formally obtainable in the Walker-type of solutions framework without the
need to make any assumptions about the value of the dimensionless hard-axis
to easy-axis anisotropy ratio.

• a physically consistent SG equation is only achieved in the case in which an
appropriate functional form of the kinetic Lagrangian term can be obtained,
which only happens when the hard-axis anisotropy is large enough, leading to
negligible out-of-easy-plane angular deviations.

• the steady-state motion description is only valid for propagation velocities
small enough compared to the critical speed of the system given by the max-
imum phase velocity of SW with imaginary wavevector and imaginary fre-
quency.

• a solution to avoid the small canting angle divergence would be to work out-
side the Walker-type of solutions framework where the spatial and time deriva-
tives of the magnetization are not independent, verifying the requirements of
the traveling wave ansatz.

• relativistic traces such as the saturation of the velocity as the magnetic field in-
creases, together with the consequent contraction of the width of the magnetic
texture, have been verified through ASDS for high values of the hard-axis to
easy-axis anisotropy ratio.

In this way, for sufficiently large hard-axis to easy-axis anisotropy ratios, it is
plausible to delay the appearance of the WB due to the dynamic deviations of the
magnetization with respect to the DW plane at rest as well as to appreciate relativis-
tic signatures in the dynamics of magnetic solitons. There should be signatures of
this even in real soft FM materials with an induced uniaxial anisotropy like permal-
loy or YIG without the need for complicated geometries. Moreover, one has to be
cautious when choosing the computational discretization method of the spin space
in the presence of a strong hard-axis anisotropy, even in FM in the absence of temper-
ature, due to the predicted contraction of the magnetic texture to values that cause
the failure of the continuum approximation.

In Chaps. 5 and 6 we have analyzed the behavior of a topologically-protected
DW in the layered AFM Mn2Au, whose dynamics has been excited through SO
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fields. This has been motivated by the possibility of using this type of magnetic tex-
tures in AFM both to store and process information in all-spintronics architectures,
for which it is necessary to have a good understanding of what to expect from the
propagation of a magnetic soliton in a real medium. Due to the fact that currently
most of the analyses in this regard have been carried out for 1D spin chains, we have
used ASDS and analytical tools based on symmetry considerations and on the col-
lective coordinates approach to elucidate its behavior. This being the situation, our
investigations have allowed us to find that:

• it is possible to exploit the symmetric inequivalence between the crystallo-
graphic and magnetic unit cells to reduce the description of the complex sys-
tem to a two-sublattices-based problem.

• due to the null-impact of the AFM exchange interaction directed along the
c-axis of the system on the temperature-independent static and dynamic prop-
erties of the DW, it is necessary to transition to an effective version of the non-
linear σ-model.

• for SO field-excitation protocols that guarantee the transition of the magnetic
texture between quasistatic regimes, it is possible to replicate the simulated rel-
ativistic and inertial dynamic signatures through a Newton-like second-order
differential equation of motion.

• after ceasing the action of the external stimulus, the magnetic soliton under-
takes a complex translational regime, being possible to replicate the related
after-pulse displacement through the knowledge of its steady-state relativistic
mass.

• under a certain combination of the magnitude of the SO field and the ramp-
ing time, the existence of a process similar to the WB in FM has been found,
where the steady-state motion of the DW is interrupted by a highly nonlin-
ear dynamic regime mediated by the nucleation of pairs of magnetic textures
respecting the initial overall topological charge of the system.

• the appearance of additional pairs of magnetic solitons can be related to the
torque exerted by the dynamically-based kinetic field generated by the primal
DW during its translational propagation.

• the generated magnetic texture with a topological charge opposite to that shown
by the primal DW is capable of moving away from the nucleation region at
supermagnonic speeds in a non-relativistic dynamic regime, which would be
related to a momentum transfer of the exchange-based energy of the two re-
maining magnetic solitons that are spatially stuck.

• there is a radiative tail traveling together with the boosted magnetic texture,
whose origin seems to be due to the spin Cherenkov, because the DW tran-
siently exceeds the SW phase velocity of the system, and to the Bremsstrahlung,
due to the sudden deceleration of the original magnetic soliton at the nucle-
ation instant, effects.

In this way, an accurate prediction of the position of the magnetic texture on
a real AFM material can be obtained through a single analytical expression without
the need to rely on dynamic simulations provided that, in the presence of an external
stimulus, the DW transits through quasistatic scenarios. Moreover, the fact that it is
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also plausible to predict the after-pulse displacement of the magnetic soliton opens
the possibility of using the intrinsic inertial effects of the system to be able to con-
duct the DW to a specific area of the medium with a lower application time of the SO
field than the one that would be needed to produce this event in a steady-state fash-
ion. This is of great importance in the realm of full-AFM racetrack memory schemes,
where the magnetic textures themselves encode valuable information in the system,
so that, by obtaining an estimate of their propagation, their presence can be traced
experimentally over a specific spatial range, with the consequent potential energy
saving. On the other hand, by modifying the magnitude of the SO field and the ap-
plied ramping time, it is possible to create a DW lattice due to the nucleation of mul-
tiple pairs of magnetic solitons where each supermagnonic magnetic texture acts as a
new seed. When the external stimulus is progressively decreased, a decompression
of the generated network occurs due to the annihilation of nearby DW with opposite
topological charges mediated by the attractive short-range exchange interaction be-
tween them, process in which residual magnetic solitons may remain in the system
for pairs sufficiently far apart from each other. These types of observations are in
line with the experimentally-reported resistance changes in these kind of materials
under the action of pulsed excitations as well as with the presence of remnant signals
after turning off the current-induced SO field, which indicates that this phenomenon
could be purely of magnetic origin, not requiring the action of Joule heating, electro-
migration, or quenching-induced effects to explain it. Moreover, since the number
of nucleated magnetic textures depends on the excitation protocol, being the intra-
pair DW distance non-uniform throughout the sample, it would be possible to en-
code information in the possible configurable patterns. Likewise, due to the inherent
nonlinearities mediated by the exchange interaction between the magnetic textures
that make up the created networks, in conjunction with high amplitude excitations,
this system could serve as a testbed for the creation of chaotic patterns. In this sce-
nario, the use of magnetic texture-based lattices as computational reservoirs could
be envisioned, where the topologically-protected DW would act as virtual neurons,
since this type of scheme finds its optimal performance near the phase transition be-
tween order and chaos. In this way, self-organized AFM DW-based neural schemes
could be configured for purposes such as signal discrimination, temporal classifica-
tion, and pattern recognition, beating the current von Neumann schemes in terms of
power consumption, compactification, and operation time.

In Chap. 7 we have investigated the outcome of the collision of two DW with
different relative topological charges in the layered AFM Mn2Au whose impact is
induced by the application of current-induced SO fields. This has been motivated by
the possibility of obtaining larger thermal footprints of the electronic and phononic
reservoirs than those achieved through the SPE by a single magnetic soliton. To this
end, we have used ASDS in combination with the kinetic two temperature model,
also employing analytical tools based on the collective coordinates approach. This
being the case, we have been able to deduce that:

• the topological selection rules are verified in AFM, which are rooted in the
energy balance between the Zeeman contribution and the FM-like exchange
interaction between them.

• due to the inherent Lorentz-governed dynamics, increases of up to 485% of the
stored exchange-based DW self energies can be achieved with respect to their
values at rest for the range of considered external stimuli.
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• in addition to the inherent energy redistribution to the electron and phonon
reservoirs of the system due to the friction-governed SPE calculated through
the two temperature model, there is also a contribution coming from the the
impact of the magnetic textures.

• depending on the relative topological charges of both magnetic solitons, there
will be a topologically-mediated energy release due to their collision, being
partial if it is elastic, due to their sudden deceleration, or total if it is inelastic.

• for the range of considered SO fields, it is possible to reach increases of up to a
51% in the maximum electronic and of up to a 30% in the maximum phononic
temperatures when the DW annihilate each other.

As it has been exposed, it is possible to tune the exchange-based self energies
of AFM magnetic textures through their relativistic motions, where velocities of the
order of several tens of km/s can be reached, while showing great stability dur-
ing their propagation due to their topological protections. This allows to envision
them as dynamic energy carriers whose stored energies can be partially or totally
released through topologically-mediated collisions, which resembles a hypothetical
spin-based version of an electric capacitor. In the same line, it would also be possible
to use magnetic solitons as non-disruptive local heating probes, taking advantage of
the fact that, unlike in the case of other defects, the inconvenience of overcoming
any energy barrier for the particle-antiparticle recombination is avoided, which it is
ensured in magnetically-based media due to topological and energetic arguments.
From an experimental point of view, it would be plausible to use, on the one hand,
the dynamic spin Peltier-based energy dissipation of a single DW to track its position
and, on the other hand, the differentiable thermal footprint produced by the colli-
sion of pairs of magnetic textures to distinguish which are their relative topological
charges through scanning thermal microscopy techniques. Finally, the impact pro-
cesses of magnetic solitons, and their possible outcomes, can be used to perform
logical operations through the annihilation or prevalence of the DW.

Future prospects

Within the research context exposed in this thesis, beyond some complementary
works that would form a kind of logical follow-ups, we have also considered evalu-
ating the dynamic behavior and stability of non-topologically-protected 90◦ DW in
an AFM, being able to take for it the case of Mn2Au. In this line, it is interesting, in
the first place, to find under which application direction and magnitude of the SO
field-based excitation the magnetic texture could survive, since in this case it is not
possible to apply an external stimulus that exerts a null torque at both ends of the
magnetic soliton. It must be taken into account, however, that in this case, if an elec-
tric current line is applied across the width of the sample, which is normally around
a few tens of nm, the current density necessary to obtain SO-based external stimuli
of the order of a few tens of mT would be potentially damaging to the integrity of
the system. Because in AFM the dynamics are inherently relativistic, it is interesting
to see if it is possible to drive these non-topological DW at speeds for which it is pos-
sible to appreciate signatures such as the velocity saturation as the SO field increases
and the consequent contraction of its spatial extent. If that it is the case, it will be
necessary to check if the considered magnetic texture is capable of surviving in the
magnetic medium for SO-based external stimuli greater than the tetragonal in-plane
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anisotropy energy landscape, since if this were to happen it could be hypothesized
that the relativistic framework provides an additional stability to the magnetic soli-
ton. Finally, it would be interesting to explore which would be the outcome of the
collision of a pair of DW with different relative chiralities, being of special interest to
verify if it is possible to artificially induce an effective topological 180◦ magnetic tex-
ture if they both have the same “topological” charge. Investigating this scenario is
relevant because, currently, multidomain configurations separated by 90◦ magnetic
textures have already been visualized in layered AFM excitable through SO fields
such as CuMnAs and Mn2Au for the case of bulk samples. In this sense, it should be
taken into account that, in our case, in order to stabilize the topologically-protected
180◦ magnetic solitons, we have considered the case of thin films, which are more
difficult to engineer, that have an additional strain-induced uniaxial anisotropy.
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Resumen

La recientemente descubierta posibilidad de manipular de forma eficiente el pará-
metro de orden de una cierta familia de materiales antiferromagnéticos metálicos
a través de campos de tipo espín-órbita inducidos por corrientes eléctricas, cuyas
morfologías magnéticas pueden caracterizarse a través de efectos magnetoresistivos
convencionales, ha avivado el interés en este tipo de materiales con ordenamiento
magnético de largo alcance con una nula magnetización global. Esto se debe a las
ventajas que presentan este tipo de sistemas en comparación con sus contrapartes
ferromagnéticas, entre las que se encuentran la inexistencia de campos demagneti-
zantes significativos, frecuencias inherentes en la banda elusiva del THz, ausencia
de la ruptura tipo Walker debido a potenciales desviaciones de la magnetización
con respecto al plano en reposo de la pared de dominio y altas temperaturas críti-
cas tipo Néel. Además, los materiales antiferromagnéticos han atraído la atención
de la comunidad científica tanto por su comportamiento multinivel tipo memristivo
como por la posibilidad de albergar solitones magnéticos ultrarrápidos topológi-
camente protegidos que no tienden a deformarse durante el proceso dinámico, lo
cual permitiría hipotetizar acerca del diseño de aparatos puramente espintrónicos
conformados íntegramente por materiales antiferromagnéticos, los cuales podrían
superar el rendimiento actual de las arquitecturas de tipo von Neumann en térmi-
nos de velocidad de operación, eficiencia energética y miniaturización. De especial
interés tecnológico y fundamental es el caso de texturas magnéticas propagándose
a través de materiales antiferromagnéticos en el marco de la relatividad especial,
lo cual permite alcanzar, en regímenes dinámicos estables, velocidades de decenas
de km/s. A pesar de que no existen, actualmente, métodos experimentales que per-
mitan caracterizar el movimiento de solitones magnéticos en este tipo de sistemas,
es posible explorar su comportamiento dinámico teóricamente en materiales anti-
ferromagnéticos reales con el objetivo de dilucidar propiedades que puedan ser de
utilidad en un futuro próximo en la hipotética implementación de tecnologías basa-
das en estos compuestos. Sin embargo, la mayor parte de los trabajos publicados en
este ámbito se centran en la exploración analítica de cadenas unidimensionales de
espín, en combinación con diferentes esquemas computacionales con diferentes mé-
todos de discretización del espacio de espín, lo cual no siempre permite evaluar de
forma eficiente las trazas relativistas inherentes a los materiales antiferromagnéticos
reales más complejos. En este contexto, hemos introducido, en el Capítulo 1, un pe-
queño resumen, desde nuestro punto de vista, del actual estado de la investigación
en el campo de la espintrónica, con especial énfasis en las potenciales ventajas de las
metodologías de excitación basadas en campos de tipo espín-órbita, de las texturas
magnéticas topológicamente protegidas y de los materiales antiferromagnéticos. En
el Capítulo 2, se ha introducido cómo caracterizar los procesos dinámicos disipati-
vos en el espacio de espín tomando en cuenta las diferentes contribuciones magné-
ticas del sistema, así como las condiciones bajo las cuales pueden existir soluciones
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solitónicas en medios magnéticos ordenados de largo alcance cuya estabilidad pue-
de ser descrita a través de nociones topológicas. Por otro lado, en el Capítulo 3, se
han discutido las propiedades cruciales que dictan la estabilidad de las paredes de
dominio dinámicas, tanto en materiales ferromagnéticos como antiferromagnéticos,
así como cuál es el impacto de la topología en la propagación de las texturas mag-
néticas y qué tipos de aproximaciones computacionales y experimentales se pueden
emplear para caracterizar estas soluciones solitónicas. Por último, nuestros trabajos
publicados se han discutido en los Capítulos 4, 5, 6 y 7, en los cuales se profundi-
za sobre cuestiones fundamentales tales como: (i) la transición de una dinámica de
tipo galileana en materiales ferromagnéticos a una relativista, como ocurre en los
sistemas antiferromagnéticos, (ii) la caracterización teórica precisa del movimiento
de texturas magnéticas en materiales antiferromagnéticos laminados reales multi-
red, (iii) la existencia de procesos que permitan sobrepasar la barrera magnónica en
materiales antiferromagnéticos a través de regímenes de propagación no relativistas
de las paredes de dominio y (iv) la exploración de esquemas de detección basados
en gradientes térmicos para discernir el desplazamiento y presencia de solitones an-
tiferromagnéticos.

En el Capítulo 4, hemos explorado la posibilidad de emular, analíticamente, al-
gunas de las propiedades inherentes a los materiales antiferromagnéticos en el caso
de un material ferromagnético biaxial, compuesto por contribuciones anisotrópicas
tanto de tipo eje fácil como difícil. Entre las características de interés de los materia-
les antiferromagnéticos se encuentran sus trazas dinámicas relativistas y la ausencia
de la ruptura tipo Walker producida por la desviación de la magnetización con res-
pecto al plano en reposo de la pared de dominio durante el proceso de propagación.
En este contexto, hemos sido capaces de hallar que:

• es posible caracterizar la forma funcional de la energía y la extensión espacial
del solitón magnético a través de la relación de dispersión de las ondas de
espín lineales, con número de onda y frecuencia imaginarias, que residen en
las regiones homogéneamente magnetizadas sitas en sus extremos.

• es formalmente posible reducir la ecuación dinámica de Landau-Lifshitz a una
expresión sine-Gordon relativista en el ámbito de las soluciones tipo Walker
sin tener que realizar asunciones acerca del valor del parámetro adimensional
conformado por el cociente de la contribución anisotrópica de tipo eje difícil
entre la de naturaleza fácil.

• solo es posible obtener una ecuación tipo sine-Gordon que sea físicamente con-
sistente en el caso en el cual se pueda proponer una forma funcional apropiada
del término cinético del Lagrangiano, lo cual solo sucede cuando la anisotropía
de tipo eje difícil es lo suficientemente grande, dando lugar a la existencia de
desviaciones angulares despreciables con respecto al plano fácil del sistema.

• la tendencia de movimiento estacionario es solo plausible cuando la velocidad
de propagación sea lo suficientemente pequeña en comparación a la velocidad
crítica del sistema, la cual viene dada por la máxima velocidad de fase de las
ondas de espín con vector de onda y frecuencia imaginarios.

• la solución para evitar la divergencia del ángulo asociado a las pequeñas des-
viaciones con respecto al plano fácil del sistema sería trabajar fuera del ámbito
de las soluciones de tipo Walker, lo cual conllevaría que las derivadas espa-
ciales y temporales de la magnetización no sean independientes, verificándose
los requerimientos asociables a una onda viajera.
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• las trazas relativistas tales como la saturación de la velocidad a medida que
el campo magnético se incrementa, así como la consiguiente contracción de
la anchura espacial de la textura magnética, han sido verificadas a través de
simulaciones dinámicas de espines atómicos para grandes valores del cociente
de la contribución anisotrópica de tipo eje difícil con respecto a la de naturaleza
fácil.

De este modo, para cocientes de la contribución anisotrópica de tipo eje difícil en-
tre la de naturaleza fácil que sean lo suficientemente grandes, será plausible retrasar
la aparición de la ruptura de tipo Walker debida a las desviaciones dinámicas de la
magnetización con respecto al plano en reposo de la pared de dominio y, además, se
podrán apreciar trazas relativistas durante la dinámica de los solitones magnéticos.
Esto se debería de poder verificar incluso para el caso de materiales ferromagnéticos
blandos reales con una anisotropía uniaxial inducida, lo cual sucede en aleaciones
de hierro y níquel o en granates de hierro e itrio, sin la necesidad de complicadas
geometrías. Asimismo, se ha de ser prudente a la hora de escoger el método de dis-
cretización computacional del espacio de espín en presencia de una fuerte anisotro-
pía de tipo eje difícil, incluso en materiales ferromagnéticos en ausencia de efectos
térmicos, debido a la predicha contracción espacial de la textura magnética hasta
valores que puedan provocar el fallo de la aproximación al continuo.

En los Capítulos 5 y 6, hemos analizado el comportamiento de una pared de do-
minio topológicamente protegida en un material antiferromagnético laminado co-
nocido como Mn2Au, cuya dinámica ha sido excitada a través de campos de tipo
espín-órbita. La motivación de este estudio recae en la posibilidad de emplear este
tipo de texturas magnéticas en materiales antiferromagnéticos tanto para almacenar
como para procesar información en arquitecturas completamente basadas en fenó-
menos de origen espintrónico, para lo cual es necesario comprender qué es lo que se
puede esperar de la propagación de un solitón magnético en un sistema real. Debido
a que, actualmente, la mayor parte de los análisis que se han llevado a cabo en este
sentido han considerado el caso de cadenas de espín unidimensionales, hemos em-
pleado simulaciones dinámicas de espines atómicos y métodos analíticos basados
en consideraciones sobre simetría y la aproximación de las coordenadas colectivas
para dilucidar su comportamiento. En este contexto, nuestra investigación nos ha
permitido descubrir que:

• es posible explotar la inequivalencia existente entre las simetrías de las cel-
das unidad cristalográfica y magnética para reducir la descripción del sistema
complejo a un problema basado en dos redes.

• debido al nulo impacto de la interacción de canje antiferromagnética, dirigida
a lo largo del eje c del sistema, en las propiedades estáticas y dinámicas de la
pared de dominio en ausencia de efectos térmicos, es necesario transicionar a
una versión efectiva del modelo no lineal tipo σ.

• para protocolos de excitación basados en campos de tipo espín-órbita que ga-
ranticen la transición de la textura magnética entre regímenes dinámicos de
forma cuasiestacionaria, es posible replicar las trazas relativistas e inerciales a
través de una ecuación diferencial newtoniana de segundo orden.

• tras extinguirse la acción del estímulo externo, el solitón magnético accede a
un régimen traslacional complejo, siendo posible replicar el desplazamiento
que esta experimenta tras apagarse el pulso magnético de tipo espín-órbita a
través de su masa relativista en estado estacionario.
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• bajo cierta combinación de la magnitud y el tiempo de aplicación del campo de
tipo espín-órbita hasta alcanzar su máximo valor en el protocolo de excitación
escogido, tiene lugar la aparición de un proceso similar a la ruptura tipo Wal-
ker típica de materiales ferromagnéticos, lo cual implica que el movimiento
estacionario de la pared de dominio sea interrumpido, dando paso a un ré-
gimen dinámico altamente no lineal mediado por la nucleación de un par de
texturas magnéticas respetando la carga topológica global inicial del sistema.

• la aparición de un par adicional de solitones magnéticos en el sistema puede
estar relacionada con el torque ejercido por el campo cinético inducido por la
dinámica de la pared de dominio inicial durante su propagación traslacional.

• la textura magnética generada que atesora una carga topológica opuesta a la
albergada por la pared de dominio inicial es capaz de alejarse de la región de
nucleación a velocidades supermagnónicas en un régimen dinámico no relati-
vista, lo cual estaría relacionado con la transferencia de momento de la energía
de tipo canje asociada a los dos solitones magnéticos restantes, los cuales se
hallan espacialmente constreñidos.

• existe una estela viajando junto con la textura magnética impulsada, cuyo ori-
gen parece ser debido a la radiación de tipo espín Cherenkov, en consonancia
con que la pared de dominio excede temporalmente la velocidad de fase de
las ondas de espín del sistema, y de frenado, producida por la deceleración
abrupta del solitón magnético inicial en el instante en el cual se produce la
nucleación.

De este modo, es posible obtener una predicción precisa de la posición de una
textura magnética en un material antiferromagnético real a través de una única ex-
presión analítica sin la necesidad de depender de simulaciones dinámicas siempre
que, en presencia de un estímulo externo, la pared de dominio transite a través de
regímenes cuasiestacionarios. Asimismo, debido a que es plausible predecir el des-
plazamiento experimentado por el solitón magnético tras la extinción abrupta del
campo de tipo espín-órbita, sería posible aprovechar los efectos inerciales intrínse-
cos del sistema para trasladar la pared de dominio a una región específica del medio
a través de un menor tiempo de aplicación del estímulo externo que el que sería
necesario si este fenómeno se llevase a cabo a través de procesos estacionarios. Esto
es de gran importancia en el ámbito de memorias tipo pista completamente basa-
das en materiales antiferromagnéticos, donde las texturas magnéticas en sí mismas
codifican información relevante del sistema, por lo que, a través de la estimación
de la distancia que estas se han propagado, sería posible rastrear experimentalmen-
te su presencia en regiones específicas, con el consecuente ahorro de energía. Por
otro lado, si se modifica la magnitud del campo de tipo espín-órbita y el tiempo
empleado en aumentarlo hasta su valor máximo, es posible crear una red de pare-
des de dominio debido a los múltiples procesos de nucleación de pares de solitones
magnéticos, en los cuales cada textura magnética supermagnónica actúa como una
nueva semilla. Cuando se aumenta progresivamente el estímulo externo, se produce
la descompresión de la red generada debido a la aniquilación de paredes de dominio
contiguas con cargas topológicas opuestas, proceso el cual está mediado por la inter-
acción atractiva de canje de corto alcance, tras lo cual pueden permanecer algunos
pares de solitones magnéticos residuales en el sistema siempre que sus constituyen-
tes se encuentren lo suficientemente lejos entre sí. Este tipo de observaciones están
en línea con los cambios de resistencia hallados experimentalmente en este tipo de
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materiales tras la acción de una excitación transitoria, así como con la presencia de
una señal remanente tras apagar el campo de tipo espín-órbita generado por la apli-
cación de una corriente eléctrica, lo cual indica que este fenómeno podría tener un
origen puramente magnético, no siendo necesaria la acción del calentamiento de
tipo Joule o de procesos de electromigración o de enfriamiento repentino para expli-
carlo. Además, debido a que el número de texturas magnéticas nucleadas depende
del protocolo de excitación, no siendo uniforme la distancia entre los constituyen-
tes que conforman un par de paredes de dominio a lo largo de la muestra, sería
posible codificar información en los posibles patrones reconfigurables. Asimismo,
debido a las inherentes no linealidades del sistema mediadas por la interacción de
canje entre las texturas magnéticas que conforman la red generada, en conjunción
con las excitaciones de gran amplitud aplicadas, este sistema podría albergar po-
tenciales patrones caóticos. En este escenario, se podría hipotetizar que las redes
generadas, conformadas por texturas magnéticas, podrían emplearse como reservo-
rios computacionales, donde las paredes de dominio topológicamente protegidas
actuarían como neuronas virtuales, debido a que este tipo de arquitecturas alcanzan
su rendimiento óptimo cerca de la transición de fase entre un sistema ordenado y
uno caótico. De este modo, estos esquemas neuronales reconfigurables basados en
paredes de dominio antiferromagnéticas podrían ser empleados para la discrimina-
ción de señales, clasificación temporal y reconocimiento de patrones, superando las
arquitecturas actuales de tipo von Neumann en términos de consumo energético,
compactificación y tiempo de operación.

En el Capítulo 7, hemos investigado el resultado de la colisión de dos paredes de
dominio con diferentes cargas topológicas relativas en el material antiferromagnéti-
co laminado Mn2Au, donde el impacto es inducido por la aplicación de un campo
de tipo espín-órbita generado por una corriente eléctrica. La motivación principal de
este estudio se basa en la búsqueda de la producción de mayores huellas térmicas
en los reservorios de electrones y fonones que los que se han obtenido a través del
efecto de espín de tipo Peltier inducido por un único solitón magnético. Con esto
en mente, hemos empleado simulaciones dinámicas de espines atómicos en com-
binación con el modelo cinético de dos temperaturas junto con métodos analíticos
basados en la aproximación de coordenadas colectivas. Siendo este el caso, hemos
sido capaces de deducir que:

• las reglas de selección topológicas se verifican en materiales antiferromagnéti-
cos, las cuales están basadas en el balance de energía entre la contribución de
tipo Zeeman generada por el campo de tipo espín-órbita y la interacción de
canje de tipo ferromagnético entre las texturas magnéticas consideradas.

• debido a la dinámica inherentemente lorentziana, es posible obtener incremen-
tos de hasta un 485 % de la autoenergía de canje de las paredes de dominio con
respecto a su valor en reposo para el rango de estímulos externos considerado.

• además de la redistribución de energía a los reservorios de electrones y fono-
nes del sistema como resultado de los procesos disipativos gobernados por el
efecto de espín de tipo Peltier calculados a través del modelo de dos tempera-
turas, existe también una contribución originada por el impacto de las texturas
magnéticas.

• dependiendo de las quiralidades relativas de ambos solitones magnéticos, exis-
tirá una liberación de energía mediada por topología a través del fenómeno de
colisión, el cual será parcial si el proceso es elástico, debido a que ocurre una
deceleración abrupta, o total si es inelástico.
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• para el rango de campos de tipo espín-orbita considerado, es posible alcanzar
incrementos de hasta un 51 % y de hasta un 30 % de las máximas temperaturas
electrónicas y fonónicas, respectivamente, cuando las paredes de dominio se
aniquilan mutuamente.

Tal y como ha sido expuesto, es posible modificar la autoenergía de canje de las
texturas antiferromagnéticas a través de procesos relativistas, pudiéndose alcanzar
velocidades del orden de varias decenas de km/s en regímenes dinámicos altamen-
te estables inducidos por sus protecciones topológicas. Esto permite considerarlas
como cargas dinámicas cuyas autoenergías pueden ser parcial o totalmente libera-
das al medio a través de su colisión mediada por topología, lo cual se asemeja a una
versión hipotética de tipo espintrónico de un condensador eléctrico. En la misma
línea, sería también posible emplear los solitones magnéticos como sondas calefac-
toras locales no disruptivas tomando ventaja del hecho de que, al contrario de lo que
sucede con otros defectos, no existe el inconveniente de tener que superar una ba-
rrera de energía para llevar a cabo la recombinación de la partícula considerada y de
su antipartícula, lo cual está garantizado en los medios magnéticos debido a argu-
mentos de tipo topológico y energético. Desde un punto de vista experimental, sería
plausible emplear, por un lado, la disipación dinámica de energía a través del efecto
de espín de tipo Peltier de una sola pared de dominio para caracterizar su posición
en el sistema y, por otro lado, las huellas térmicas diferenciables producidas por la
colisión de pares de texturas magnéticas para distinguir cuáles son sus cargas topo-
lógicas relativas usando, para ello, microscopía térmica de escaneo. Adicionalmente,
el impacto de los solitones magnéticos, y los posibles resultados del proceso, pueden
usarse para realizar operaciones lógicas a través de la aniquilación o prevalencia de
las paredes de dominio en el sistema.

Los resultados expuestos en esta tesis se pueden hallar en las siguientes publica-
ciones en revistas internacionales de revisión por pares:

[1] R. Rama-Eiroa, R. M. Otxoa, P. E. Roy, and K. Guslienko
Steady one-dimensional domain wall motion in biaxial ferromagnets: mapping of the
Landau-Lifshitz equation to the sine-Gordon equation
Phys. Rev. B 101, 094416 (2020) arXiv:1910.13266 (2019)

[2] R. M. Otxoa, P. E. Roy, R. Rama-Eiroa, J. Godinho, K. Y. Guslienko, and J.
Wunderlich
Walker-like domain wall breakdown in layered antiferromagnets driven by staggered
spin–orbit fields
Commun. Phys. 3, 190 (2020) arXiv:2002.03332 (2020)

[3] R. M. Otxoa, R. Rama-Eiroa, P. E. Roy, G. Tatara, O. Chubykalo-Fesenko, and
U. Atxitia
Topologically-mediated energy release by relativistic antiferromagnetic solitons
Phys. Rev. Res. 3, 043069 (2021) arXiv:2106.05804 (2021)

[4] R. Rama-Eiroa, P. E. Roy, J. González, K. Y. Guslienko, J. Wunderlich, and R.
M. Otxoa
Inertial domain wall characterization in layered multisublattice antiferromagnets
J. Magn. Magn. Mater. 560, 169566 (2022) arXiv:2109.09003 (2021)

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.101.094416
https://arxiv.org/abs/1910.13266
https://www.nature.com/articles/s42005-020-00456-5
https://arxiv.org/abs/2002.03332
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[56] D. Marković, A. Mizrahi, D. Querlioz, and J. Grollier, Nat. Rev. Phys. 2, 499
(2020).

[57] J. D. Costa, S. Serrano-Guisan, J. Borme, F. L. Deepak, M. Tarequzzaman,
E. Paz, J. Ventura, R. Ferreira, and P. P. Freitas, IEEE Trans. Magn. 51, 1 (2015).

[58] S. Yuasa and D. D. Djayaprawira, J. Phys. D Appl. Phys. 40, R337 (2007).

[59] M. B. Jungfleisch, W. Zhang, R. Winkler, and A. Hoffmann, Spin-Orbit Torques
and Spin Dynamics in Spin Physics in Semiconductors (Springer, 2017).

[60] P. Gambardella and I. M. Miron, Philos. Trans. A Math. Phys. Eng. Sci. 369,
3175 (2011).

[61] M. I. D’yakonov and V. I. Perel, JETP Lett. 13, 467 (1971).

[62] J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).

[63] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science 306,
1910 (2004).

[64] J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys. Rev. Lett. 94,
047204 (2005).

[65] E. L. Ivchenko and G. E. Pikus, ZhETF Pisma Redaktsiiu 27, 640 (1978).

[66] L. E. Vorob’ev, E. L. Ivchenko, G. E. Pikus, I. I. Farbshteı̌n, V. A. Shalygin, and
A. V. Shturbin, JETP Lett. 29, 441 (1979).

[67] V. M. Edelstein, Solid State Commun. 73, 233 (1990).

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.80.4281
https://science.sciencemag.org/content/285/5429/867.abstract
https://science.sciencemag.org/content/285/5429/867.abstract
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.84.3149
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.84.3149
https://aip.scitation.org/doi/abs/10.1063/1.1330562
https://aip.scitation.org/doi/abs/10.1063/1.1330562
https://www.sciencedirect.com/science/article/pii/S0304885307010189?casa_token=rCB25-b79GsAAAAA:oeCH0J9zX14QBPXaMGjxWWNhJNbywsYSE44RlvgcdK7hK61VeZm6h5cVuRAi1J5X13gQEgik
https://www.nature.com/articles/srep05486
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.68.024404
https://www.nature.com/articles/nature01967
https://www.nature.com/articles/nature23011
https://www.nature.com/articles/s41586-018-0632-y
https://www.nature.com/articles/s42254-020-0208-2
https://www.nature.com/articles/s42254-020-0208-2
https://ieeexplore.ieee.org/abstract/document/7117429?casa_token=rlGCeb1MyRcAAAAA:2csVXp1L5_wqjYk2i2MD1mBNuyOaMakp0YpWla0o57QYxHsk3tgeaL77P_a1Mlq3jjYluBPB
https://iopscience.iop.org/article/10.1088/0022-3727/40/21/R01/meta?casa_token=aZEt5eIpHNcAAAAA:cMRO-fALDkFv4j_HCwZRgE-dskjkRR8hxUTG0ZSm7mmR8Q_P0ER3X4FHxgNbEgWD6NQ7RdQ0
https://link.springer.com/chapter/10.1007/978-3-319-65436-2_11
https://link.springer.com/chapter/10.1007/978-3-319-65436-2_11
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2010.0336
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2010.0336
https://ui.adsabs.harvard.edu/abs/1971JETPL..13..467D/abstract
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.83.1834
https://science.sciencemag.org/content/306/5703/1910.abstract
https://science.sciencemag.org/content/306/5703/1910.abstract
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.94.047204
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.94.047204
https://ui.adsabs.harvard.edu/abs/1978ZhPmR..27..640I/abstract
https://ui.adsabs.harvard.edu/abs/1979JETPL..29..441V/abstract
https://www.sciencedirect.com/science/article/abs/pii/003810989090963C


142 Bibliography

[68] A. G. Aronov and Y. B. Lyanda-Geller, JETP Lett. 50, 431 (1989).
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[148] J. Železnỳ, H. Gao, K. Vỳbornỳ, J. Zemen, J. Mašek, A. Manchon, J. Wunder-
lich, J. Sinova, and T. Jungwirth, Phys. Rev. Lett. 113, 157201 (2014).

[149] P. Wadley, B. Howells, J. Železnỳ, C. Andrews, V. Hills, R. P. Campion,
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[170] Z. Kašpar, M. Surỳnek, J. Zubáč, F. Krizek, V. Novák, R. P. Campion, M. S.
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