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A neural network assisted 171Yb+ quantum magnetometer
Yan Chen 1,2, Yue Ban 3,4,5✉, Ran He 1,2✉, Jin-Ming Cui 1,2,6✉, Yun-Feng Huang 1,2,6✉, Chuan-Feng Li 1,2,6✉,
Guang-Can Guo1,2,6 and Jorge Casanova 3,4,7

A versatile magnetometer must deliver a readable response when exposed to target fields in a wide range of parameters. In this
work, we experimentally demonstrate that the combination of171Yb+ atomic sensors with adequately trained neural networks
enables us to investigate target fields in distinct challenging scenarios. In particular, we characterize radio frequency (RF) fields in
the presence of large shot noise, including the limit case of continuous data acquisition via single-shot measurements. Furthermore,
by incorporating neural networks we significantly extend the working regime of atomic magnetometers into scenarios in which the
RF driving induces responses beyond their standard harmonic behavior. Our results indicate the benefits to integrate neural
networks at the data processing stage of general quantum sensing tasks to decipher the information contained in the sensor
responses.
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INTRODUCTION
Quantum sensing1 and metrology2 are important branches of
modern quantum technologies with applications in different areas
such as imaging3,4 and spectroscopy5–7. In this scenario, atomic-
sized sensors encoded in171Yb+8–12 and 40Ca+13 ions provide
spatial resolution and sensitivity for the detection of external/
target fields. In addition, 171Yb+ ions exhibit negligible emission
rates11 and extended coherence times due to the stabilization
provided by dynamical decoupling (DD) techniques14–16. In
particular, DD methods that exploit the multi-level structure in
the2S1

2
manifold of the 171Yb+ ion have to lead to the detection of

radio frequency (RF) fields with sensitivity close to the standard
quantum limit9, while the resulting dressed state qubit was
proposed as a robust register for quantum information proces-
sing8,10. However, this approach is restricted to a narrow working
regime leading to harmonic sensor responses where RF target
parameters are encoded. A departure from such a range leads to
complex sensor responses where standard inference of the
external fields gets challenging. In another vein, machine learning
(ML) tools are incorporated to address distinct problems in
quantum technologies. In particular, neural networks (NNs) are
valuable in distinct quantum sensing scenarios leading to adaptive
protocols for phase estimation17–19, parameter estimation20–24,
and quantum sensors calibration25–27.
In this article, we experimentally demonstrate the ability of NNs

to decode complex sensor responses, thus significantly extending
the operational regime of quantum detectors. In particular, we
infer RF target parameters from the measured response of an
171Yb+ atomic sensor in distinct challenging scenarios. These
comprise the regime of non-harmonic sensor responses with large
shot noise, and the continous interrogation of the sensor (via
single-shot measurements) under always-on RF fields. With careful
modeling of the sensor-target dynamics, we train NNs to relate
intricate responses of the sensor with RF parameters leading to
estimations of the latter with high accuracy.

RESULTS
The quantum sensor
The sensor consists of four hyperfine levels ( 0j i; �0

�� �
; 1j i, and �1j i)

in the 2S1
2
manifold of the 171Yb+ ion, and in a static magnetic field

Bz. To enhance the coherence of the sensor, we use two
microwave (MW) fields with Rabi frequency Ω leading to the
dressed basis set f uj i; dj i; Dj i; �0

�� �g with uj i ¼ ð Bj i þ 0j iÞ= ffiffiffi
2

p
,

dj i ¼ ð Bj i � 0j iÞ= ffiffiffi
2

p
, Dj i ¼ ð �1j i � 1j iÞ= ffiffiffi

2
p

, and Bj i ¼ ð �1j i þ
1j iÞ= ffiffiffi

2
p

which is insensitive to magnetic field fluctuations8,9, see
Fig. 1a, b.
Once a target field Ωtg cosðωtgt þ ϕtgÞ is applied, one measures

the dark state ( Dj i) survival probability PD(t) considered here as
the sensor response. The standard working regime of the sensor
(leading to harmonic responses) implies Ωtg≪Ω≪ωtg with ωtg

resonant with, e.g., the �0
�� � $ 1j i transition9. This simplifies the

total Hamiltonian (see Supplementary Note 1) into

H ¼ � Ωtg

2
ffiffiffi
2

p ð Dj ih�0j þ j�0i Dh jÞ: (1)

From Eq. (1) one finds the harmonic sensor response
PDðtÞ ¼ cos2ðπt=tRÞ, with tR ¼ 2π

ffiffiffi
2

p
=Ωtg establishing a simple

relation between tR and the target field parameter Ωtg. In contrast,
a departure from the standard working regime leads to the loss of
this type of simple dependencies between sensor responses and
target parameters, thus posing serious challenges for reliable field
characterization. We demonstrate that our setup combining a
quantum sensor and NNs can extract RF fields parameters from
complex sensor responses.

Experimental setup
As schematically shown in Fig. 1c, our protocol is executed on a
single 171Yb+ ion confined in a Paul trap which is shielded by
permalloy to reduce the surrounding magnetic noise28,29. A
magnetic field Bz is applied to the ion leading to a Zeeman shift
≈10.0 MHz between �0

�� �
and 1j i. Two ~12.6 GHz MW fields
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Ωj cosðωj t þ ϕjÞðj ¼ 1; 2Þ, respectively resonant with transitions
0j i $ 1j i and 0j i $ �1j i are used for state manipulation. To
generate the dark state Dj i, we design pulses with the amplitudes
Ω1 and Ω2 evolving in the form of a hyperbolic tangent (details
available in Supplementary Note 2). During the sensing window,
the amplitudes of dressing fields are kept constant at
Ω1=Ω2= (2π) × 5.5 kHz. Afterwards the state remaining in Dj i is
transferred to 0j i for detection.
A copper coil placed under the trap generates the target field

once an RF current is sent to the coil. As the original RF signal is
produced by an arbitrary waveform generator (AWG2), the
amplitude, frequency, and the initial phase of the target field
can be set by adjusting the parameters of AWG2. An RF switch is
placed after the AWG2 output in order to remove interaction
between the field and the ion if necessary while keeping the
signal source continuously on. After amplification, the RF target
field generated by the coil has a maximum amplitude of
Ωmax
tg ¼ ð2πÞ ´ 9:0 kHz. A photomultiplier tube (PMT) is used to

detect the state-dependent fluorescence. As schematically shown
in Fig. 1d, the response from PMT, i.e., X, is processed through the
well-trained NN leading to the outputs Y which approach the
targets A. We use data generated from numerical simulations to
create the NN. Then, by inputting experimentally collected
responses into the NN, we estimate the RF parameters.
Now, we demonstrate the good performance of an

171Yb+-magnetometer assisted by a NN in two scenarios in which
input data comprise (i) average values obtained from a reduced
number of measurements, and (ii) binary sequences (including
only 0, or 1) continuously acquired from single-shot measure-
ments. Both cases are demonstrated in regimes where the sensor
delivers complex responses that depart from the standard
harmonic regime. Hence, we prove that NNs significantly extends
the versatility of quantum sensors.

Scenario i: Parameter estimation with a reduced number of
measurements
We aim to estimate the Rabi frequency of a target field. In this
case, the input data string X ¼ fP1; P2; :::; PNpg consist of the
average values Pi (i∈ [1, Np]) collected at Np time instants t= ti
distributed in a time interval [0, tf] for a specific Ωtg. We use the
Hamiltonian in Supplementary Note 1 to numerically compute
PD(ti), as each Pi does not follow the expression PDðtiÞ ¼
cos2ðπti=tRÞ in cases that depart from the standard working
regime. In addition, the binary outcome is drawn from a Bernoulli
distribution zin � Bð1; PDðtiÞÞ 2 f0; 1g such that each simulated
average value is Pi ¼

PNm
n¼1 z

i
n=Nm for a number of shots Nm.

We choose Np= 151, Nm= 100 and tf= 2.828 ms (note that this
value of tf corresponds to one period of the sensor response for
Ωtg= (2π) × 0.5 kHz, i.e., in the harmonic case). The examples (i.e.,
the data strings X, Y, and A) are computed by selecting 96 values
for Ωtg/(2π) in the range [0.5–10] kHz. In addition, as each Pi
fluctuates owing to the reduced number of measurements, we
perform 100 repetitions for each simulated experimental acquisi-
tion (i.e., for each Ωtg). Therefore, our dataset contains 96 × 100
examples of which 70%/15%/15% lead to the training/validation/
test datasets. After training the NN (details are available in
Methods and Supplementary Note 3) we can estimate the Rabi
frequency Ωtg of experimentally collected responses by inputting
them into the NN.
In particular, we harvest sensor responses for N= 15 values of

Ωtg (while we select other RF parameters as ϕtg= 0 and
ωtg= (2π) × 10.56 MHz) which do not belong to the training/
validation/test datasets, and for a number of shots Nm= 100, and
Nm= 30. In Table 1, we list the estimations y1 from the NN for each
target a1≡Ωtg. Each output y1 is obtained after feeding the NN

Fig. 1 Schematic levels of the 171Yb+ atomic sensor and the experimental setup. a Relevant levels of the 171Yb+ atomic sensor. Two
resonant MW fields drive the sensor with a Rabi frequency Ω leading to the configuration in (b) which is defined in the dressed state basis
f uj i; dj i; �0

�� �
; Dj ig9. c Schematic configuration of the experimental setup. The ion is trapped in a needle trap which consists of a pair of RF

electrodes and four DC electrodes. The MW fields for state manipulation are generated by mixing a 12.4428 GHz signal with the signal from an
arbitrary waveform generator (AWG1). The 12.6 GHz signal after a high pass filter (HPF) is amplified by an amplifier (Amp1) and sent to the ion
using a MW horn outside the vacuum chamber. The target field around 10 MHz is generated by another arbitrary waveform generator (AWG2)
controlled by the computer and broadcast to the ion through a coil after amplification. We place an extra RF switch after AWG2, which can be
used to remove the target field from the trap while keeping the signal from AWG2 continuous. A photomultiplier tube (PMT) is used to detect
the state-dependent fluorescence. d Scheme of the NN. The response from PMT, i.e., X, is processed by a number of hidden layers (HL1... HLk)
leading to the outputs Y.

Table 1. Outputs y1 obtained from the NN in Scenario i.

a1(×2π kHz) y1 (×2π kHz) with Nm= 100 y1 (×2π kHz) with Nm= 30

1.1487 1.1827 1.1731

1.7229 1.7473 1.8060

2.2566 2.3109 2.3207

2.8760 2.8616 2.8527

3.4429 3.4961 3.4947

4.0098 4.0391 4.0502

4.5778 4.6283 4.6386

5.1834 5.1856 5.2208

5.7140 5.7448 5.7297

6.2797 6.1482 6.2134

6.8397 6.8358 6.6896

7.3927 7.3086 7.3471

7.9319 8.0864 8.1129

8.4527 8.3775 8.3870

8.9493 8.8414 8.7825

The input data of the NNs are the experimental responses corresponding
to the targets a1=Ωtg. These comprise the average values collected for
Np= 151 time instants in the interval t ∈ [0, tf] with a finite number of shots
Nm= 100 and Nm= 30.
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with the experimentally acquired response consisting of average
values measured during t ∈ [0, tf] with Np= 151. We show the
results for a number of shots Nm= 100 and Nm= 30. The
regressions of the NN outputs with respect to Ωtg are shown in
Fig. 2a, b.
The average accuracy in the estimation of the different Ωtg is

defined as F ¼ 1
N

PN
j¼1 Fj , with Fj ¼ 1� jyj1 � aj1j=aj1, and a1=Ωtg.

With the values in Table 1 we find the results F ¼ 98:76% for
Nm= 100 with a standard deviation (SD) of the Fj set SD=
0.7762%. In the case of Nm= 30, we find F ¼ 98:31% with
SD= 1.1483%. We remark that these highly accurate estimations
were obtained with examples that comprise values of Ωtg leading
to sensor responses that depart from the harmonic case. In
particular, in Fig. 2 (c,d,e) we show the cases for Ωtg= (2π) 1.1487
1.1487 kHz (c) and Ωtg= (2π) × 8.9493 kHz (d, e), leading to
harmonic and non-harmonic responses respectively (both cases
comprise Nm= 30). On the one hand, in Fig. 2c, we show that the
sensor response (diamonds) follows the harmonic function
PDðtÞ ¼ cos2ðπt=tRÞ (blue-solid line). On the other hand, in Fig.
2d, one can observe that the response (diamonds) deviates from
the harmonic case, while Fig. 2e shows that the same response fits
to a non-harmonic function (red-solid curve) obtained via
numerical simulations of the Hamiltonian (see Supplementary

Note 1). By introducing these two responses into our NN, we get
the outputs y1= (2π) × 1.1731 kHz and y1= (2π) × 8.7825 kHz
which result in large accuracies F= ∣y1− a1∣/
a1= 97.84%, 98.14%, respectively. In Supplementary Note 4, we
show further examples including both Rabi frequency Ωtg and
potential detunings ξ between the target frequency and the
sensor hyperfine transition.

Scenario ii: Continuous data acquisition
Now, we consider a scenario that comprises single-shot measure-
ments on the ion (i.e., Nm= 1). This scheme is relevant in situations
where no reinitialization of the RF field is possible. We
demonstrate that the estimation of RF parameters is still feasible
in these conditions.
We get one binary value from the atomic sensor (0 or 1) after

completing the three experimental stages illustrated in Fig. 3a.
More specifically, at stage 1 we cool the ion and prepare the Dj i
state in a time t1= 6.097ms. At stage 2 the ion is allowed to
interact with the target field for a time t2∈ [0, 6] ms. At stage 3, we
readout the ion in a time t3= 2.447 ms. We repeat these three
stages 251 times (leading to a binary string comprising 251
numbers) where t2 varies in the interval [0, 6] ms with a step 0.024
ms. Note that during the three stages the RF source is always on,

Fig. 2 Estimation results from Scenario i, a reduced number of measurements. a, b Regression of the NN outputs (y1) with respect to the
targets a1≡Ωtg for a number of shots Nm= 100 (a) and Nm= 30 (b). The fit (solid-blue) overlaps with the line y1= a1, while R is the correlation
coefficient30 of y1 and a1. This is R= 0.9996 (a), and 0.9994 (b). c–e Sensor response (diamonds) for the targets Ωtg= (2π) × 1.1487 kHz (c) and
Ωtg= (2π) × 8.9493 kHz (d, e) experimentally obtained for Nm= 30 shots. For comparison, in (c, d) the harmonic response PDðtÞ ¼ cos2ðπt=tRÞ
(solid-blue) is included. The plot in c shows the case with Ωtg= (2π) × 1.1487 kHz lying in the harmonic regime, while in (d) the response for
Ωtg= (2π) × 8.9493 kHz significantly deviates from the harmonic behavior. In e, we observe that the curve obtained from numerical
simulations (solid-red) fits experimental data for Ωtg= (2π) × 8.9493 kHz. Error bars in c–e represent the standard error of the mean.

Fig. 3 Estimation results from Scenario ii, continuous data acquisition. a Schematic configuration of the continuous data acquisition
scheme. Each binary value is obtained after completing the preparation, interaction, and measurement stages. b–d Regression of the rescaled
outputs yr1 from the NN with respect to the targets ar1 ¼ Ωr

tg. The regression lines yr1 ¼ αar1 þ β comprise b α= 0.9946, β= 0.0032, c α= 0.9932,
β= 0.0040, d α= 0.9925, β= 0.0041, while the correlation coefficients R between the outputs and the targets are all larger than 0.999. All
inputs Xr, outputs Yr ¼ fyr1g, and targets Ar ¼ far1g are rescaled into the range [0, 1].
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thus to avoid potential damage on initialization and readout we
switch the RF signal to a dummy load at stages 1 and 3.
Via numerical simulations, we train a NN in accordance with

the scheme in Fig. 3a. In particular, we use 96 values for Ωtg in
the range (2π) × [0.5, 10] kHz (with a step of (2π) × 0.1 kHz) and
repeat the data acquisition process 1800 times for each Ωtg.
Thus we generate 96 × 1800= 172,800 examples, of which 70%/
15%/15% are used to build the training/validation/test datasets.
After training the NN, we find the regression accuracy of the
training/validation/test datasets shown in Fig. 3b–d. Note that
data in Fig. 3b–d is rescaled into [0, 1] as this is a standardized
procedure in NNs.
Now, we experimentally obtain the sensor responses for 8

randomly chosen values of Ωtg in the range (2π) × [0.5, 10] kHz,
which do not belong to the training/validation/test datasets
(in addition, we select other RF parameters as ϕtg= 0 and
ωtg= (2π) × 10.03 MHz). We remark that the obtained responses
range from the harmonic shape to those deviating from it. After
251 measurements for each Ωtg, we get binary strings including
251 numbers (0 or 1), where each number is obtained according
to the scheme in Fig. 3a. When inputting each string into the
trained NN, we get one output y1 from the NN. In order to study
the stability of the NN prediction, we have repeated 20 times the
data acquisition for each Ωtg. In Table 2, we show the average
value y1 of the results from the NN and the SD based on 20
experimentally obtained strings.
In addition, the regression of the outputs y1 with respect to the

targets is in Fig. 4a. Finally, in Fig. 4b, we illustrate for
a1= (2π) × 2.1572 kHz the histogram of the NN outputs y1
obtained after feeding the NN with 20 strings of experimental
data. The above analysis illustrates the ability of NNs to achieve
accurate estimations in scenarios involving single-shot measure-
ments (thus, when the RF field is not controllable), leading to
highly versatile quantum sensors.

DISCUSSION
One can resort to other estimators for predicting parameters, e.g.,
using Bayesian inference. Following the well-known Bayes theo-
rem, one may compute the posterior distribution p(Θ∣X)∝ p(X∣Θ)
p(Θ) where p(Θ), p(X∣Θ) denote the prior and likelihood,
respectively, while X refers to the data obtained by interrogating
the quantum sensor at different time instances, and Θ= {θ1, . . . , θk}
denotes k unknown parameters which we aim to estimate by our
quantum sensor. For a Bayesian estimator, an accurate microscopic
model is needed in order to calculate the likelihood p(X∣Θ).

More specifically, this is

pðXjΘÞ ¼ Π
Np

i¼1f ðXi ;Nm; ~Piðti ;ΘÞÞ
with f ðx; n; pÞ ¼ n!

x!ðn�xÞ!pxð1�pÞðn�xÞ ;
(2)

where the function f(x, n, p) refers to the probability of observing x
success outcomes through n trials from the Binomial distribution
with success probability p. ~Piðti ;ΘÞ is the survival probability PD
computed using the total Hamiltonian H (see Supplementary Note
1: Eq. (3)) at time ti whose obtention requires to load a string of
values for the Θ parameters in the microscopic model and then
compute its dynamical evolution. Note this is a procedure that has
to be repeated for each value of the Θ parameters. Finally, via the
marginal distribution p(θj∣X)= ∫Πi≠jdθip(Θ∣X), one could derive the
average value and SD as

θestj ¼ R
dθjθjpðθj jXÞ;

ðδθestj Þ2 ¼ R
dθjðθj � θestj Þ2pðθjjXÞ:

(3)

In contrast, less prior knowledge of the microscopic model is
needed when using NNs. This owes to NNs learning the input–output
relation from the training/validation/test datasets that can be
obtained from numerical simulations, or directly from experiments.
The latter is especially useful when numerical simulation of the
system dynamics becomes challenging (for instance, in a sensor that
consists of several entangled ions).
In this manner, our work demonstrates the good performance

in parameter estimation that results from an appropriate
hybridization of ML tools with quantum sensing techniques. This
is a strategy that can be easily extended to other quantum
platforms, such as, e.g., nitrogen-vacancy (NV) centers in diamond,
to decipher complex NV responses emerging from dense nuclear
samples comprising nuclear spins which are strongly coupled to
the sensor and/or among them.

METHODS
NN-based magnetometer
A NN enables to find the relation between Np measured data
X ¼ fx1; x2; :::; xNpg, and n output data Y= {y1, y2, . . . yn} that
approach the targets A= {a1, a2, . . . , an}. During the training stage
of the NN, the following cost function

C ¼ 1
nN

XN

j¼1

Xn

i¼1

ðyji � ajiÞ
2

(4)

is minimized for a training set that comprises N examples. This is done
by using gradient descent methods such that the NN parameters (i.e.,
weights and biases) are adjusted to satisfy F(X)= Y≈A.
In our case, we deal with an 171Yb+-magnetometer where we

aim to estimate RF parameters from experimentally collected
responses by inputting them into the NN. The input data contains,
in Scenario i, average values obtained from a reduced number of
measurements and, in Scenario ii, a sequence containing
binary values continuously acquired from single-shot measure-
ments. For the first case, the input data string X ¼ fP1; P2; :::; PNpg
consist on the average values Pi (i∈ [1, Np]) collected in a time
interval [0, tf] for a specific set of targets A. The simulated
average value is Pi ¼

PNm
n¼1 z

i
n=Nm for a number of shots Nm,

where the binary outcome is drawn from a Bernoulli distribution
zin � Bð1; PDðtiÞÞ 2 f0; 1g. In the second scenario that comprises
continuous data acquisition, the input data string X is made of
binary numbers, 0 and 1, which are obtained according to the
scheme in Fig. 3a. Repeating this procedure N times, we achieve
the whole dataset that comprises N examples. In both cases,
the examples with the data strings X, Y, and A are computed by
selecting a number of values of the targets in, and beyond, the
regime leading to harmonic sensor responses. Among all the

Table 2. Estimation results from the NN in Scenario ii.

Targets a1(×2π kHz) Average values y1
(×2π kHz)

Standard deviation SD
(×2π kHz)

0.7542 0.8417 0.0690

1.1840 1.2759 0.0833

1.4044 1.4384 0.0222

1.6206 1.6542 0.0660

2.1572 2.1720 0.0543

4.2265 4.2761 0.0594

6.3960 6.2988 0.0776

8.3689 8.2255 0.1531

Average value of the estimation y1 provided by the NN and its
corresponding standard deviation based on 20 experimental acquisitions.
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examples of the total datasets, 70%/15%/15% lead to the training/
validation/test sets. A number of repetitions for each data
acquisition are repeated such that the NN learns the statistical
fluctuations resulting from a reduced number of measurements.

Experimental timing sequence
As shown in Fig. 5, in each cycle (each period to obtain one value
Pi (i ∈ [1, NP]) of a response / input data string), the ion is cooled
down approximately in the Doppler limit by a red-detuning
369.5 nm laser starting from stage 1. After that, the state of the
ion is initialized to 0j i by an optical pumping process. After a
0.5 μs ‘MW trigger’ signal, a MW π-pulse resonant with 0j i $ 1j i
transfers the state from 0j i to 1j i. Subsequently, the STIRAP
pulses drive the system from the state 1j i to the dark state Dj i. At
stage 2, the amplitudes of MW fields are held at a constant Ω

within the fixed time interval [0, tD]. Simultaneously, the target RF
field is applied for the time interval [0, t2], where t2 ≤ tD. For the
scheme of a finite number of measurements (Scenario i), after
the time instant t2, the RF field is removed by turning off the
AWG2 output. The RF target field is restarted at the next
cycle such that the repetition of measurement can be done. For
the scheme of single-shot measurement, Scenario ii, the RF
signal is switched to a dummy load after the time instant t2 while
the origin RF source is always on. At stage 3, the STIRAP pulses
transfer the rest of population of Dj i back to 1j i. Another π-pulse
transfers the population of state 1j i to 0j i. Thus, we can get
the response of Dj i by measuring the probability of 0j i, and a
state dependent fluorescence detection could be used to
determine it. Before and after the cycle, there are extra ‘idle’
steps (1 μs) needed to end this cycle and start the next cycle. In
our experiments, the timings are all controlled by a TTL pulse
generator (Spincore PB24-100-4k-PCIe) see Table 3 for the
specific values of the time intervals invested in each process.
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