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Abstract
In clinical medicine, magnetic resonance imaging (MRI) is one of the most important tools for diagnosis, triage, prognosis, 
and treatment planning. However, MRI suffers from an inherent slow data acquisition process because data is collected 
sequentially in k-space. In recent years, most MRI reconstruction methods proposed in the literature focus on holistic image 
reconstruction rather than enhancing the edge information. This work steps aside this general trend by elaborating on the 
enhancement of edge information. Specifically, we introduce a novel parallel imaging coupled dual discriminator generative 
adversarial network (PIDD-GAN) for fast multi-channel MRI reconstruction by incorporating multi-view information. The 
dual discriminator design aims to improve the edge information in MRI reconstruction. One discriminator is used for holistic 
image reconstruction, whereas the other one is responsible for enhancing edge information. An improved U-Net with local 
and global residual learning is proposed for the generator. Frequency channel attention blocks (FCA Blocks) are embedded 
in the generator for incorporating attention mechanisms. Content loss is introduced to train the generator for better recon-
struction quality. We performed comprehensive experiments on Calgary-Campinas public brain MR dataset and compared 
our method with state-of-the-art MRI reconstruction methods. Ablation studies of residual learning were conducted on the 
MICCAI13 dataset to validate the proposed modules. Results show that our PIDD-GAN provides high-quality reconstructed 
MR images, with well-preserved edge information. The time of single-image reconstruction is below 5ms, which meets the 
demand of faster processing.
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1 Introduction

Magnetic resonance imaging (MRI) is one of the most 
important clinical tools for diagnosis, triage, prognosis, 
and treatment planning. MRI produces accurate, poten-
tially high-resolution, and reproducible images with vari-
ous contrast and functional information. Furthermore, it is 
non-invasive and harmless to the human body. However, 
MRI has an inherently slow data acquisition process since 
data is collected sequentially in k-space, where speed is 
limited by physiological and hardware constraints, rather 
than directly in image space [1]. Prolonged acquisition 
time can lead to severe motion artefacts due to patient 
movement and physiological motion. Early approaches to 
accelerate acquisition followed Nyquist-Shannon sampling 
criteria, e.g. implementing multiple radio frequency [2] or 
gradient refocusing [3], with limited speed improvement.

Undersampling in k-space can improve acquisition speed, 
but causes aliasing artefacts and blur. Several studies have 
attempted to reduce aliasing artefacts, such as parallel imag-
ing (PI) and compressed sensing (CS). Parallel imaging was 
first introduced in 1997 as the simultaneous acquisition of 
spatial harmonic (SMASH) [4] to reduce scan time using 
multi-channel k-space data and includes sensitivity encod-
ing (SENSE) [5] and generalized auto-calibrating partially 
parallel acquisition (GRAPPA) [6]. The acceleration fac-
tor and geometry factor influence signal noise ratio for the 
reconstructed image, where geometry factor depends on the 
receiver coil distribution. Parallel imaging requires phased 
array coils where each coil receives data at the same time 
(i.e., parallel). If the local sensitivity for each coil is already 
known, then the field of view can be made arbitrarily small 
in the phase-encoding direction, enabling aliasing to be 
unwrapped using this information.

Compressed sensing [7] reconstructs signals from sig-
nificantly fewer measurements with higher sampling effi-
ciency than traditional Nyquist-Shannon sampling. There 
are three requirements for successful CS [8], which MRI 
naturally meets except for the third one: 

(1) Transform sparsity: MRI is compressible by transform 
coding and has a sparse representation in an appropri-
ate transform domain.

(2) Incoherence: It can be achieved by random undersam-
pling MRI data in k-space.

(3) Nonlinear reconstruction: MRI should be reconstructed 
using a nonlinear method. The main task of CS is to find 
an appropriate nonlinear method to reconstruct MRI.

Several methods applying fixed sparsifying transforms 
for reconstruction have been proposed, e.g., total varia-
tion (TV) [9], curvelets [10], and double-density complex 

wavelet  [11], while adaptive sparse model represented 
by dictionary learning  [12] was also developed as an 
extension. In addition, CS-MRI worked well with paral-
lel imaging data jointly. Aelterman et al. [13] proposed 
a joint algorithm, i.e., COMPASS, of parallel imaging 
and compressed sensing for MRI reconstruction. Trzasko 
et al. [14] designed an offline, sparsity-driven reconstruc-
tion framework for Cartesian sampling time-series acqui-
sitions. However, the iterative computation significantly 
limits the speed of the reconstruction, leading to the fact 
that the traditional CS-MRI is hard to be applied in the 
clinical environment.

Deep learning has been developed enormously recently. 
Convolutional neural networks (CNNs) have made a signifi-
cant impact on many computer vision learning tasks, such as 
classification [15], segmentation [16], object detection [17], 
and image reconstruction [18]. CNNs offer better feature 
extraction performance compared with traditional machine 
learning algorithms due to their deeper structure of hierar-
chically stacked neural layers. Consequently, several CNNs 
have been proposed for medical imaging to solve traditional 
limitations. CNN was first introduced for MRI reconstruc-
tion in [19], where it was used to identify mapping rela-
tionships between MR images obtained from zero-filled and 
fully-sampled k-space data. Yang et al. [20] proposed a deep 
architecture, i.e., ADMM-Net, inspired by the alternating 
direction method of multipliers (ADMM) algorithm to opti-
mizing CS based MRI models. Schlemper et al. [21] devel-
oped a deep cascade CNN to reconstruct dynamic sequences 
for 2D cardiac MR images from undersampled data. Zhu 
et al. [22] proposed a novel framework for MRI reconstruc-
tion, i.e., automated transform by manifold approximation 
(AUTOMAP), allowing a mapping between the sensor and 
the image domain to emerge from an appropriate corpus of 
training data. Transfer learning has been also proposed to 
solve the data scarcity problem when training deep networks 
for accelerated MRI [23].

In 2014, Goodfellow et  al.  [24] designed generative 
adversarial networks (GANs). Then, various improved GAN 
models were presented. Wasserstein GAN (WGAN) [25] 
was proposed for improving the training stability of GAN 
and optimise the learning curves. Radford et al. [26] intro-
duced DCGAN, first applied CNNs to GANs, bridging the 
gap between supervised learning and unsupervised learn-
ing. GAN-based models has been widely used in image-to-
image translation [27–30], super-resolution [31–33], as well 
as MRI reconstruction [34–36].

Several studies have reported that the deep learning 
based GAN models perform well in MRI reconstruction. 
DAGAN [34, 37] applied the modified U-Net [38] architec-
ture as the generator and incorporated additional perceptual 
loss by pre-trained VGG [39] networks. Shaul et al. [35, 37] 
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introduced a dual-generator GAN, i.e., KIGAN, for both 
estimating the missing k-space samples and refinement of 
the image space data. Quan et al. [36, 37] presented Refin-
eGAN, which was a variant of a fully-residual convolu-
tional autoencoder and GAN with cyclic data consistency 
loss. Lv et al. [40], proposed a deep GAN model, i.e., PIC-
GAN, with parallel imaging for accelerated multi-channel 
MRI reconstruction, where data fidelity and regularisation 
terms were integrated into the generator. Nader et al. [41] 
combined the traditional MR reconstruction algorithm 
GRAPPA with a conditional GAN to build the GRAPPA-
GAN, which was developed and tested on the multi-coil 
brain data. Guo et al. [42] proposed DAWAGAN, which 
coupled WGAN with Recurrent Neural Networks to adopt 
the relationship among MRI slices for fast MRI reconstruc-
tion. Hu et al. [43] designed a general texture-based GAN 
for MR image synthesis, where a multi-scale mechanism 
for the texture transfer between source and target domain 
was adopted. Ma et al. [44] introduced a novel GAN-based 
model, i.e., CSI-GAN, for medical image enhancement, 
where illumination regularisation and structure loss were 
used as constraints of training. Zhang et al. [45] combined 
a Retinex model with the reverse edge attention network 
for cerebrovascular segmentation. The utilisation of reverse 
edge attention module significantly improved the perfor-
mance of segmentation. Yuan et al. [46] incorporated the 
self-attention mechanism into the generator for a global 
understanding of images and improved the discriminator for 
the utilisation of prior knowledge. Li et al. [47] proposed 
RSCA-GAN for fast MRI reconstruction, where both spa-
tial and channel-wise attention mechanisms were applied in 
the generator. This team also applied the GAN-based model 
with attention mechanisms in the super-resolution task [48]. 
Chen et al. [49], incorporated wavelet packet decomposi-
tion into the de-aliasing GAN [34] for the texture feature. 
Lv et al. [50] applied transfer learning to a parallel image 
coupled GAN model, improving the generalisability of net-
works based on small samples. Jiang et al. [51] proposed 
FA-GAN for the super-resolution task, where both global 
and local feature fusion were utilised in the generator for 
better performance. Zhou et al. [52] designed a GAN-based 
model, i.e., ESSGAN, with a structurally strengthened gen-
erator, which consisted of the strengthened connection and 
the residual in the residual block. This team also introduced 
a novel spatial orthogonal attention GAN model [53], where 
the computational complexity was significantly decreased.

Most proposed MRI reconstruction approaches focused 
on integral MR image property. The design of GAN-
approaches relied on loss function definitions that do not 
consider structural characteristics of practical value that are 
present in the image such as edge information. However, 
edge information can be crucially conclusive for clinical 
diagnosis. Accordingly, to solve this problem, studies related 

to edge information preservation in MRI reconstruction has 
been reported. Yu et al. [54] proposed Ea-GANs, in which 
the edge information was utilised via the Sobel operator. Ea-
GANs contain a generator-induced gEa-GAN, and a discrim-
inator-induced dEa-GAN, for enriching the reconstruction 
images with more details. Chai et al. [55] designed an edge-
guided GAN (EG-GAN), to restore brain MRI images which 
decoupled reconstruction into edge connection and contrast 
completion. Li et al. [56], proposed a dual-discriminator 
GAN, i.e., EDDGAN, of which one discriminator was used 
for holistic image reconstruction and the other one was for 
edge information preservation.

Recently, a large number of multi-view data based meth-
ods by considering the diversity of various views have been 
proposed [57, 58]. The main task of multi-view learning 
is to find a function to model each view and jointly opti-
mises all the functions to improve the generalisation perfor-
mance [59, 60]. In this work, the idea of multi-view learning 
was adopted. The multi-channel MR data we used in training 
was the multi-view information of the MRI raw data, by 
multi-coil parallel imaging. In addition, information from 
different views including image-space information, k-space 
information and edge details were all included and used as 
constraints on the training process.

The methods mentioned above focused on the preserva-
tion of edge information from various aspects. However, all 
were based on single-channel MR data. In fact, complemen-
tary multi-view information can be provided by multi-chan-
nel MR data. This work takes advantage of parallel imaging 
technology by using multi-channel data rather than single-
channel data. In particular, we propose a novel parallel imag-
ing coupled dual discriminator generative adversarial network 
(PIDD-GAN) for fast multi-channel MRI reconstruction. The 
main contributions can be summarised as follows.

• We introduce a dual discriminator GAN architecture, 
where two discriminators are used for holistic image 
reconstruction and edge information enhancement 
respectively.

• The GAN generator is an improved U-Net with local and 
global residual learning that stabilises and accelerates 
the training process. Frequency channel attention blocks 
(FCA Blocks) are embedded in the improved U-Net to 
incorporate attention mechanisms.

• Although the proposed network is designed for multi-
channel MR image reconstruction, single-channel image 
reconstruction can also be accomplished.

• Comprehensive experiments on the Calgary-Campinas 
public brain MR dataset1 (359 subjects) compared the 
proposed method with current state-of-the-art MR recon-

1 https:// sites. google. com/ view/ calga ry- campi nas- datas et/
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struction methods. Ablation studies for residual learning 
were conducted on the MICCAI13 dataset2 to validate 
the proposed modules. Experimental results confirm that 
the proposed PIDD-GAN achieves high reconstruction 
quality with faster processing time.

2  Method

2.1  Traditional MRI

The problem of traditional CS-MRI is to recover a vector 
x ∈ ℂ

N in image space from an undersampled vector y ∈ ℂ
M 

(M ≪ N) in k-space, which can be expressed as follows

where M denotes the undersampling trajectory, F  denotes 
the Fourier transform, and n denotes noise.

For parallel imaging, coil sensitivity encoding is incor-
porated in the reconstruction, i.e.,

where C is the coil sensitivity.
Let E be an operator including undersampling trajectory 

M , Fourier transform F  and coil sensitivity C , the recon-
struction problem can now be expressed as follows

where R(x) denotes regularisation terms on x, and � is a 
regularisation coefficient, controlling the degree of regulari-
sation. ∣∣ ⋅ ∣∣2 denotes the l2 norm.

2.2  Deep learning‑based fast MRI

2.2.1  CNN‑based fast MRI

A deep network can be incorporated into fast MRI recon-
struction to generate image fCNN(xu ∣ �) from the zero-filled 
image xu , where � are the optimised parameters of the deep 
network. The problem can be expressed as follows

where � and � are coefficients that balance each term.

2.2.2  GAN‑based fast MRI

In general, a GAN model consists of two parts: a generator 
and a discriminator. The generator aims to produce fake data 

(1)y = MFx + n,

(2)y = MFCx + n,

(3)min
x

1

2
∣∣ y − Ex ∣∣2

2
+�R(x),

(4)min
x

1

2
∣∣ y − Ex ∣∣2

2
+�R(x) + � ∣∣ x − fCNN(xu ∣ �) ∣∣

2
2
,

G�G
(z) that is as real as possible by modelling and sampling 

the distribution of the ground truth x , so that samples drawn 
from the modelled distribution succeed at deceiving the dis-
criminator. The goal of the discriminator is to distinguish the 
fake data generated by the generator from the ground truth.

Ideally, the best discriminator can be represented as

In this way, the generator and the discriminator form a min-
max game. The training process of GAN can be described 
as follows

where pdata(x) is the distribution of real data, and p
z
(z) is 

the latent variables distribution. During the training process, 
both sides constantly optimise themselves until the balance 
is reached — neither side can get better, that is, the fake sam-
ples are completely indistinguishable from the true samples.

However, the discriminator may be very confident and 
almost always output 0 initially. To circumvent this problem 
practically, the loss function is replaced by:

When the GAN model is used for the reconstruction task, 
the generator is trained to generate reconstructed MR images 
G�G

(xu) from zero-filled undersampled MR images xu . The dis-
criminator is trained to distinguish G�G

(xu) from the ground 
truth MR image xt by maximizing the log-likelihood for esti-
mating the conditional probability, which can be represented as

The adversarial loss Ladv that drives the training process can 
be parameterised by �G and �D as follows

2.3  Proposed dual discriminator GAN for fast MRI 
reconstruction

2.3.1  Formulation

In this work, a first discriminator D1 is used to distinguish the 
reconstructed MR images x̂u from the ground truth MR images 
xt , whereas an additional discriminator D2 is designed to assist 
the reconstruction of the edge information. Edge information 
is usually extracted by means of a Sobel operator S(⋅) . The 
edge information of the reconstructed MR image S(x̂u) and the 
edge information of the MR ground truth S(xt) are fed to D2 , 
so that the result is counted into the adversarial loss Ladv . The 
new adversarial loss Ladv can be defined as follows

(5)D�D
(x) = 1, D�D

(G�G
(z)) = 0.

(6)
min
�G

max
�D

L(�G, �D) = �
x∼pdata(x)

[logD�D
(x)] + �

z∼p
z
(z)[log(1 − D�D

(G�G
(z)))],

(7)min
�G

max
�D

L(�G, �D) = �
x∼pdata(x)

[logD�D
(x)] − �

z∼p
z
(z)[log(D�D

(G�G
(z)))].

(8)D�D
(xt) = 1, D�D

(G�G
(xu)) = 0.

(9)
min
�G

max
�D

Ladv(�G, �D) = �xt∼ptrain(xt )
[logD�D

(xt)] − �xu∼pG(xu)
[log(D�D

(G�G
(xu))].

2 https:// mrbra ins13. isi. uu. nl/
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where � and � denote the weights of the discriminator for 
the holistic image and the edge information correspondingly, 
and x̂u = G𝜃G

(xu) + xu as it will be later discussed.

2.4  Network architecture

The overall architecture of the proposed PIDD-GAN for 
MR image reconstruction is shown in Fig. 1. Sensitiv-
ity-weighted ground truth xt is derived from the multi-
channel ground truth xqt  , corresponding sensitivity map 
C
q (q denotes the coil number) and sensitivity-weighted 

zero-filled image xu by undersampling xt . The generator 
produces the reconstructed MR image x̂u from xu . Two 

(10)

min
𝜃G

max
𝜃D1

max
𝜃D2

Ladv(𝜃G, 𝜃D1
, 𝜃D2

)

= 𝜇{�xt∼ptrain(xt)
[logD𝜃D1

(xt)] − �xu∼pG(xu)
[logD𝜃D1

(x̂u)]}

+ 𝜈{�xt∼ptrain(xt)
[logD𝜃D2

(S(xt))] − �xu∼pG(xu)
[logD𝜃D2

(S(x̂u))]},

discriminators are used for the holistic image and the edge 
information, respectively.

Ronneberger et al.  [38] proposed U-Net for semantic 
segmentation of medical images. This deep architecture 
comprises an encoder path to capture context and a sym-
metric decoder path that enables precise localisation, i.e., 
a U-shaped model. Skip connections are applied between 
corresponding layers in encoder and decoder paths, passing 
features directly from undersampling path to upsampling 
path. U-Net can be trained in an end-to-end manner and 
performs well in medical image segmentation [34, 36, 56].

An improved U-Net is proposed as the generator in our 
proposed PIDD-GAN for higher reconstruction perfor-
mance, where the generator input is sensitivity-weighted 
zero-filled image xu . As shown in Fig. 2, in our improved 
U-Net, cascaded downsampling blocks are placed in the 
encoder path (left), and corresponding cascaded upsampling 
blocks are placed in the decoder path (right). Skip connec-
tion and concatenation are applied between the downsam-
pling blocks and the symmetrical upsampling blocks with 
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Fig. 1  The architecture of our PIDD-GAN. The generator produces 
generated MR images from sensitivity-weighted zero-filled MR 
images. Sensitivity maps and multi-channel ground truth images are 
used to produce sensitivity-weighted ground truth images. Two dis-
criminators are used for the reconstruction of holistic images and 
edge information respectively. A pre-trained Inception V3 model 
is applied for the perceptual loss. Dark blue and sky blue lines are 

both used to represent the data flow for easier identification. Green 
dash lines are used to represent the data preparation steps before the 
training. (MASK: undersampling trajectory mask, 1-MASK: inverse 
undersampling trajectory mask, InceptionV3: a pre-trained Incep-
tionV3 model, MSE: mean squared error, Sobel: Sobel operator, Dis-
criminator 1: the discriminator for holistic images, Discriminator 2: 
the discriminator for edge information)
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the same scale to preserve the feature from different levels 
and, ultimately, yield better reconstruction details.

Figure 2 shows the ith downsampling block structure. 
First, a 3 × 3 convolution layer with stride = 2 is applied 
to downsample the (i − 1)th output. Then, a residual 
block extracts further features and avoids gradient 
vanishing and exploding problems [61]. There are two 
3 × 3 convolution layers in the backbone and a 1 × 1 
convolution layer adjusting the channel and fusing feature 
maps at different scales. Leaky ReLU layers and Batch 
normalisation (BN) are applied after each convolution 
layer except the final one. Finally, a FCA Block  [62] 
learns the different channel weights with attention. 
The structure of upsampling blocks and downsampling 
blocks are similar. A deconvolution layer with stride = 2 
is applied to upsample the (i − 1)th output. The shortcut 
is removed to reduce computation cost but maintain high 
reconstruction quality here.

Traditional CNNs treat all channels in a feature map with 
the same importance, ignoring the importance differences. 
Therefore, the attention mechanism is adopted to make use 
of importance difference information by learning the dif-
ferent channel weights, i.e., effective channels have high 
weights and ineffective channels have small weights, which 
helps to train the model and enhance the results.

FCA Block [62] is a novel attention mechanism based on 
the squeeze and excitation block (SE Block) [63], as shown 
in Fig. 3. First, an H ×W × C feature map is squeezed into 
a 1 × C vector. Then channel weights are extracted by two 
fully-connected layers, and channel weights multiply the 
original feature maps. A two-dimensional discrete cosine 
transform (DCT) is applied in FCA Blocks to squeeze the 
feature map, rather than global average pooling employed 
in SE Blocks, since this latter operation is equivalent to 
the lowest DCT frequency. Hence using only GAP leads to 
loss of other frequency components in the feature channel 

Fig. 2  The structure of the 
generator in PIDD-GAN. Four 
cascaded downsampling blocks 
and four cascaded upsampling 
blocks are placed in encoder 
and decoder paths respectively. 
Skip connection and concatena-
tion are used between layers 
with the same scales. A shortcut 
connection is applied between 
the input and output of the 
generator for further refined 
learning. (Conv2D: 2D convo-
lutional layer, DeConv2D: 2D 
deconvolution layer, BN: batch 
normalisation, LeakyRelu: 
Leaky ReLU layer

C C C CC

0DCT 1DCT 1DCTn...

...

( )H W( )H W ( )H W

Split

Scale

C

Fc+Fc
...0Freq 1Freq 1Freqn

1Imagn1Imag0Imag

Fig. 3  The structure of the FCA Block. An H ×W × C feature map is 
divided into n H ×W × C� parts, i.e., Imagi (i = 0, 1...n − 1) . The ith 
frequency component Freqi is obtained by corresponding Imagi using 

DCTi . The weight of channels can be counted by all the frequency 
components using two full connection layers (FC in the Fig)
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containing useful information. In the squeezing step, the 
H ×W × C feature map is divided evenly into n parts (each 
size is H ×W × C� ). The squeezing step can be represented as

where DCTi denotes the ith preset DCT template and Freqi 
denotes the corresponding frequency component. In this 
work, FCA Blocks are utilised after every residual blocks 
in the generator.

As the network architecture goes deeper, more granular 
information can be extracted, but leading to gradient vanish-
ing and exploding problems, making the network converge 
slowly. The introduction of residual learning [61] solves 
this problem effectively. The main idea of residual learn-
ing is the utilisation of shortcut connections between the 
convolution layer. It makes the deep network easier to be 
trained and converge faster. Global residual learning (GR) 
is applied in our improved U-Net. The output of the genera-
tor adopts x̂u = G𝜃G

(xu) + xu instead of x̂u = G𝜃G
(xu) in the 

original U-Net. This change transfers the generator from a 
conditional generative function to a refinement function. 
This work also applies local residual learning (LR) by the 
shortcut connection in each residual block in the downsam-
pling path. The utilisation of LR aimed to stabilise the train-
ing and accelerate the model convergence.

Traditional GAN trains a single discriminator to compete 
against the generator. Although it improves reconstruction 

(11)Freqi = DCTi(Imagi), (i = 0, 1...n − 1),

quality compared with other methods, only integral MR 
image properties are considered, without enhancing edge 
details. The current study proposes a dual discriminator 
GAN for edge information enhancement. The generated MR 
image x̂u and sensitivity-weighted MR ground truth xt are 
fed into discriminator D1 for holistic image reconstruction. 
We use the Sobel operator S(⋅) to extract the edge informa-
tion from MR images, and input edge information for the 
reconstructed image S(x̂u) and ground truth S(xt) into D2 . 
Thus, both holistic image information and edge details can 
be simultaneously reconstructed.

Figure 4 shows the common network structure used for 
both discriminators. First, a cascade of 3 × 3 convolution 
layers with stride = 2 downsamples and extracts MR image 
features. Two 1 × 1 convolution layers and a residual block 
follow the final 3 × 3 convolution layer. The residual block 
consists of three 1 × 1 convolution layers, and input and out-
put are connected by a shortcut. All convolution layers above 
are followed by a BN layer and Leaky ReLU layer. Finally a 
full connection layer and a Sigmoid layer output the predic-
tion results. Results of both discriminators are incorporated 
into the adversarial loss Ladv.

2.5  Loss function

This study introduces content loss to train the generator 
for better reconstruction quality. Content loss comprises 

Fig. 4  The structure of the 
discriminator in PIDD-GAN. A 
standard 11-layer CNN is used 
as the discriminator, where each 
convolutional layer is followed 
by a BN layer and a Leaky 
ReLU layer. A full connection 
layer and a Sigmoid layer are 
cascaded at the end of discrimi-
nators to output the result of 
classification. The upper dis-
criminator is the discriminator 
for holistic image and the lower 
one is for edge information
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pixel-wise mean square error (MSE) loss LiMSE ; the fre-
quency MSE loss LfMSE,mask and LfMSE,1−mask ; and the per-
ceptual InceptionV3 loss LInc . Pixel-wise MSE loss can be 
defined as

where Cq is the sensitivity map of the qth coil. LiMSE is 
used to reduce the artefact between the generated image 
and the ground truth. However, optimisation with only 
LiMSE would make the reconstructed image lack coherent 
image details. Therefore, frequency MSE loss is applied 
to train the generator in k-space.

The frequency MSE loss can be defined as

where LfMSE,mask eliminates differences between undersam-
pled generated images MFC

qx̂u and undersampled k-space 
measurements yq

M
 . LfMSE,1−mask is used to minimise the dif-

ferences between the interpolated data based on the gener-
ated image (1 −M)FCqx̂u and the unacquired k-space data 
y
q

1−M
.

In addition, the perceptual Inception V3 loss can be 
defined as

where fInc(⋅) denotes the Inception V3 network [15]. LInc 
is used to optimise the perceptual quality of reconstructed 
results.

The adversarial loss is defined as

Hence, the total loss can be described as

where � , � and � are coefficients balancing each term in the 
loss function.

(12)min
𝜃G

LiMSE(𝜃G) =
∑

q

1

2
∣∣ x

q

t − C
qx̂u ∣∣

2
2
,

(13)min
𝜃G

LfMSE,mask(𝜃G) =
∑

q

1

2
∣∣ y

q

M
−MFC

qx̂u ∣∣
2
2
,

(14)

min
𝜃G

LfMSE,1−mask(𝜃G) =
∑

q

1

2
∣∣ y

q

1−M
− (1 −M)FCqx̂u ∣∣

2
2
,

(15)min
𝜃G

LInc(𝜃G) =
1

2
∣∣ fInc(xt) − fInc(x̂u) ∣∣

2
2
,

(16)

min
𝜃G

max
𝜃D1

max
𝜃D2

Ladv(𝜃G, 𝜃D1
, 𝜃D2

)

= 𝜇{�xt∼ptrain(xt)
[logD𝜃D1

(xt)] − �xu∼pG(xu)
[logD𝜃D1

(x̂u)]}

+ 𝜈{�xt∼ptrain(xt)
[logD𝜃D2

(S(xt))] − �xu∼pG(xu)
[logD𝜃D2

(S(x̂u))]},

(17)
LTOTAL = �LiMSE + �(LfMSE,mask + LfMSE,1−mask) + �LInc + Ladv,

3  Experiments and results

3.1  Datasets

This work used the Calgary Campinas multi-channel data-
set [64] and the MICCAI 2013 grand challenge single-chan-
nel dataset [65], which are both publicly available for the 
experiment section.

The Calgary Campinas dataset was used to train and vali-
date our proposed method and compare with other methods. 
The MR images were acquired with a 12-channel coil. We 
randomly chose 15360 12-channel T1-weighted brain MR 
images. The dataset was divided into training, validation, 
and testing sets (7680, 3072, and 4608 slices respectively), 
according to the ratio of 5:2:3.

The MICCAI 2013 grand challenge dataset was used for 
ablation studies. We randomly chose 18850 single-channel 
T1-weighted brain MRI images, and divided these into train-
ing, validation, and testing sets (9935, 3974, and 5961 slices, 
i.e., ratio of 5:2:3, respectively).

3.2  Implementation detail

The proposed PIDD-GAN was implemented using PyTorch, 
and trained and tested on an NVIDIA TITAN RTX GPU 
with 24GB GPU memory. We set the same hyperparameters 
for all experiments. Adam optimiser with a momentum of 
0.5 was adopted during training. Empirically, we set � = 15 , 
� = 0.1 , � = 10 (for Inception V3) or 0.0025 (for VGG) in 
the total loss function, and � = 0.6 , � = 0.4 for discriminator 
weights. Initial and minimal learning rates were 0.001 and 
0.00001, decayed by 50% every 5 epochs. The batch size was 
set to 12. An early stopping mechanism was adopted to halt 
training and prevent overfitting: training was stopped if there 
were no normalised mean square error (NMSE) reduction 
on the validation set for 8 epochs.

To evaluate the proposed method, we compared the fol-
lowing variations: (1) PIDD: dual discriminator GAN model 
trained with parallel imaging dataset; (2) PISD: single dis-
criminator GAN trained with parallel imaging dataset; (3) 
nPIDD: dual discriminator GAN model trained with single-
channel imaging dataset. Thus, the role for each component 
in the proposed method can be compared more fairly and 
clearly.

3.3  Evaluation methods

Various assessment methods were applied to evaluate recon-
struction quality. Normalised mean square error measures 
average squared difference between generated images and 
ground truth. Structural similarity (SSIM) was used to 
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measure similarity between two images and hence predict 
perceived quality. Peak signal-to-noise ratio (PSNR) is the 
ratio between maximum signal power and corrupting noise 
power, which quantifies the representations fidelity.

However, PSNR and SSIM do not necessarily corre-
spond with visual quality for human observers. Therefore, 
we adopted two different metrics to evaluate reconstruction 
quality. Frchet inception distance (FID) [66] measures simi-
larity between two sets of images, calculated by computing 
the Frchet distance between two Gaussian fitted feature rep-
resentations for the inception network. FID correlates well 
with human derived visual quality and it is widely used to 
evaluate GAN sample quality.

Meanwhile, the judgement of domain experts is consid-
ered. Mean opinion score (MOS) from expert observers was 
used to evaluate the holistic image and edge information for 
the reconstructed images. Likert scales [67] from 1 (poor), 
2 (fair), 3 (good) to 4 (very good) were used that were 
based on the holistic image quality and edge information 

Table 1  Testing results of different method. Results are obtained by Gaussian 2D masks with 30%. (Bold values indicate the best performed 
method)

Bold values indicate the best performed method

Gaussian 30% MOS Time

Method NMSE PSNR SSIM FID Holistic Edge GPU Time (ms) CPU Time (s)

GT 3.83±0.52 3.70±0.46
ZF 0.0247±0.0013 28.4701±0.3806 0.8756±0.0060 103.33 1.03±0.18 1.03±0.18
TV 0.0254±0.0023 28.5259±0.6997 0.8840±0.0117 106.04 0.64±0.02
L1-ESPIRiT 0.0071±0.0008 32.4709±0.8978 0.9056±0.0122 21.21 53.24±0.82
ADMM-Net 0.0129±0.0022 31.5171±0.9744 0.9368±0.0115 67.97 1.10±0.30 1.13±0.34 1.19±0.12
DAGAN 0.0169±0.0011 30.1123±0.3710 0.9072±0.0053 53.67 2.60±0.66 2.43±0.56 2.99±0.01 0.21±0.01
nPIDD 0.0099±0.0009 32.4809±0.4680 0.9438±0.0044 29.42 4.95±0.01 0.47±0.00
PISD 0.0103±0.0009 32.2685±0.4808 0.9398±0.0050 24.12 3.70±0.59 3.26±0.51 4.95±0.01 0.47±0.00
PIDD 0.0101±0.0009 32.3694±0.4443 0.9425±0.0046 15.38 3.80±0.54 3.40±0.66 4.95±0.01 0.47±0.00

Fig. 5  Testing examples of 
different methods. Results 
are obtained by Gaussian 2D 
masks with 30%. Line1: MR 
images; Line2: Differences of 
MR images ( ×15 ); Line3: Edge 
Information of MR images; 
Line4: Differences of Edge 
Information ( ×15)

GT ZF ADMM-Net DAGAN PIDDPISD

GT Edge ZF Edge ADMM Edge DAGAN Edge PIDD EdgePISD Edge

Mask

TV

TV Edge

L1-ESPIRiT

L1-ESPIRiT Edge nPIDD Edge

nPIDD

0

15

5

10

Fig. 6  Horizontal line profiles of different methods. Results are 
obtained by Gaussian 2D masks with 30%
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quality, the visibility of the atrial scar and occurrence of the 
artefacts. All compared reconstruction results of different 
methods were randomly shuffled and blinded for the expert 
observers scrutinisation.

3.4  Comparisons with other methods

To better evaluate the reconstruction performance of 
the PIDD-GAN, we compare it with other traditional 
and MR reconstruction algorithms, including TV  [9], 
L1-EPSRiT [68], ADMM-Net [20], DAGAN [34], as well as 
PISD and nPIDD. Among them, TV, ADMM-Net, DAGAN, 
nPIDD were implemented based on the single-channel MRI 
data, whereas L1-EPSRiT, PIDD, PISD were implemented 
based on the multi-channel MRI data. The Calgary Campi-
nas multi-channel MRI data was used in this experiment.

The testing results are shown in Table 1. Zero-filled 
image (ZF) is undersampled by a Gaussian 30% downsam-
pling trajectory. According to the comparison study results, 
the proposed method shows significant improvement for all 
test indicators compared with other methods. The FID of 
PIDD is significantly lower compared to PISD and nPIDD.

Reconstruction samples of six methods, including PIDD, 
PISD, DAGAN, ADMM-Net, together with GT and ZF, 
were chosen for unbiased rating by domain experts. PIDD 
achieved the highest MOS (except GT) both in holistic 
image and edge information reconstruction.

Testing examples of different methods are shown in Fig. 5. 
Our method is superior to other methods in terms of over-
all reconstruction quality and edge information reconstruc-
tion. We can see that ZF is quite blurred, mixed with many 
artefacts. Compared with traditional TV and L1-ESPIRiT 

Fig. 7  Testing results of the 
experiment on masks using dif-
ferent Gaussian 2D downsam-
pling percentage
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methods, the noise reduction of ADMM and DAGAN are 
greatly improved, but the detailed information is still lost sig-
nificantly. The reconstruction result of L1-ESPIRiT shows 
rich details, but it is poor in de-noising and time-consuming. 
Compared with PIDD and PISD, nPIDD lacks multi-channel 
information. Although the basic structure can be completely 
restored, and most noise is reduced, the excessive smoothing 
phenomenon is severe compared to PIDD and PISD. From the 
zoom-in area, it can be seen that PIDD clearly reconstructs 
the edge information of the brain, but this structure is very 
shallow in the results of PISD.

Horizontal line profiles of the samples in Fig. 5 are shown 
in Fig. 6. ZF and DAGAN still contain lots of noise, while 
our proposed methods preserve more detail information. 
Zoom-in areas clearly show that the line profile of PIDD-
GAN achieve more accurate than other methods.

3.5  Experiments on mask

In this experiment, different downsampling trajectories 
were adopted to evaluate the robustness of the proposed 

method. G2D10%, G2D20%, G2D30%, G2D40%, G2D50%, 
G1D30% and P2D30% indicate Gaussian 2D 10%, Gaussian 
2D 20%, Gaussian 2D 30%, Gaussian 2D 40%, Gaussian 2D 
50%, Gaussian 1D 30% and Poisson 2D 30% downsampling 
trajectories, respectively. This experiment was tested on the 
Calgary Campinas multi-channel MRI dataset.

The testing result are shown in Figs. 7 and 8. Experi-
mental results exhibit the same trend under all the different 
downsampling trajectories. The proposed method provides 
significant advantages for low downsampling percentage 
(high acceleration factor), with correspondingly significantly 
improved reconstruction quality.

The testing examples of the reconstruction are 
shown in Fig.   9.  I t  can be seen from the results 
that PIDD has a significant recovery effect on edge 
information in the case of a low downsampling per-
centage (10–30%). The edge information of PIDD, 
particularly in sulci and cerebellum areas, is greatly 
preserved, compared to PISD. The texture details 
of PIDD are also r icher than nPIDD. In the case 
of a high downsampling percentage (40–50%), the 

Fig. 8  Testing results of the 
experiment on masks using 
different downsampling trajec-
tories
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reconstruction problem becomes simpler, and the 
advantages of PIDD with enhanced reconstruction 
of edge information and the advantages of multi-
channel data are less obvious. In the exper iment 
of Gaussian 2D 50% undersampling, PIDD, PISD 
and nPIDD basically have the same quality of the 
reconstruction.

3.6  Experiments on noise

In this experiment, the same downsampling trajectory and 
different noise levels were used to test the reconstruction 
performance of the model under the influence of noise. 
This experiment was tested on the Calgary Campinas 
multi-channel MRI dataset. Here the noise level ( NL ) is 
defined as follows

where S and N denotes the power of signal and noise 
respectively.

The testing results are shown in Fig. 10, and testing 
samples are shown in the Fig. 11.

(18)NL =
N

N + S
,

All considered methods can restore image structure and 
edge information for low and medium noise levels (20–50%), 
with PIDD having strong advantages over PISD and nPIDD. 
This advantage weakens as noise level increases, and PISD, 
which focuses on overall information recovery, performance 
slightly surpasses PIDD, which focuses more on edge infor-
mation preservation, for high noise (70–80%).

3.7  Ablation experiments on residual learning

In this experiment, the effect of residual learning in the network 
was discussed. Our proposed model was tested on MICCAI 2013 
grand challenge dataset, using Gaussian 1D 30% downsampling.

The experiment was divided into four groups: (1) GRLR 
(model with GR and LR), (2) GRnLR (model with GR 
without LR), (3) nGRLR (model with LR without GR), 
(4) nGRnLR (model without LR and GR). Early stopping 
strategy was turned off in this experiment to prolong the 
training process for a better and more distinguishable com-
parison for the training step.

Figure 12 shows NMSE, SSIM, PSNR and genera-
tor loss (G Loss) of the four groups changing with the 
training process, and Fig. 13 shows testing examples 
with respect to different epoch weights.

Fig. 9  Testing examples of the 
experiment on masks using dif-
ferent downsampling trajecto-
ries and percentage

G2D10% G2D20% G2D30% G2D40% G2D50% G1D30% P2D30%

Z
F

G
T

D
A
G
A
N

n
P
ID

D
P
IS
D

P
ID

D

25.99/0.785 31.89/0.91730.41/0.89228.97/0.86423.16/0.512 30.41/0.851 30.99/0.902

PSNR/SSIM PSNR/SSIMPSNR/SSIMPSNR/SSIMPSNR/SSIM PSNR/SSIM PSNR/SSIM

26.67/0.759 33.45/0.93331.91/0.90930.49/0.88328.36/0.822 30.56/0.882 32.11/0.916

30.16/0.881 35.52/0.95534.28/0.94032.91/0.92831.68/0.908 32.88/0.905 34.09/0.942

29.83/0.873 35.28/0.95333.93/0.94032.62/0.92531.06/0.897 33.12/0.915 34.52/0.947

30.02/0.875 35.18/0.95234.10/0.94232.84/0.92731.34/0.901 32.83/0.906 33.89/0.939
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Models with GR (GRLR, GRnLR) have faster conver-
gence and better final results compared with those without 
GR (nGRLR, nGRnLR). If the model applies GR, then 
using LR has little further impact effect on the results. For 
non-GR models, nGRLR converges significantly slower 
than nGRnLR but final results are superior. Therefore, we 
chose GRLR as the generator for subsequent study.

4  Discussion

In this work, we introduce the PIDD-GAN for multi-
channel MRI reconstruction using multi-view parallel 
imaging information, focusing on the enhancement of 

edge information and the utilisation of the multi-chan-
nel MR data.

Experimental results verified that the proposed dual 
discriminator design does greatly improve reconstruction 
quality of edge information, particularly for sulci and cer-
ebellum areas with rich edge information. The utilisation 
of multi-channel data also reduces the excessive smooth-
ing phenomenon to a certain extent, and the texture of the 
tissue can be also better preserved.

During experiments, we found that SSIM and PSNR 
do not reflect the reconstruction quality very well, since 
these two indicators have better tolerance for over-smooth-
ing and are relatively insensitive to the edge information 
details. Therefore, we adopted FID using a deep network 

Fig. 10  Testing results of the 
experiment on noise using dif-
ferent noise level
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and MOS based on subjective scoring by experts to assess 
our results more comprehensively.

Meanwhile, we did a series of experiments to test the 
role of the attention mechanism (FCA Block and SE 
Block) in the entire model. In most cases, the utilisation 
of attention mechanisms slightly improved the conver-
gence speed and final results of the model. However, 
incorporating the attention mechanism degraded the final 
result for a few cases. The specific mechanism requires 
further study.

The proposed model still has some remaining limita-
tions. Dual discriminator structure superiority reduces for 
high downsampling percentage, and single discriminator 
structure, focusing on overall recovery, may offer better 
performance. Noise can affect edge information extrac-
tion, particularly for higher noise levels. This effect is very 
marked when using the Sobel operator, and hence may 

jeopardise D2 performance, reducing image reconstruc-
tion quality.

Further studies will continue to focus using multi-chan-
nel information to help edge information reconstruction 
and restoration. We will also consider how to reduce net-
work calculations and improve network efficiency.

5  Conclusion

This work proposed a parallel imaging based dual discrimi-
nator generative adversarial network for multi-channel MRI 
reconstruction, enhancing edge information and multi-
channel MR data utilisation using multi-view information. 
Experiment results verified that the proposed method offers 
significantly better performance preserving edge information 
for MRI reconstruction.

Fig. 11  Testing examples of 
the experiment on noise using 
different noise level

NL20% NL30% NL50% NL70% NL80%

Z
F

G
T

D
A
G
A
N

n
P
ID

D
P
IS
D

P
ID

D

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

28.69/0.826 27.91/0.792 26.10/0.704 23.44/0.561 21.52/0.458

30.56/0.872 30.28/0.860 29.84/0.846 28.34/0.791 28.39/0.802

33.32/0.925 32.87/0.917 32.17/0.908 31.59/0.897 30.84/0.882

32.91/0.916 32.57/0.913 31.82/0.900 31.23/0.889 30.52/0.873

32.77/0.917 32.65/0.914 31.97/0.900 31.22/0.889 30.64/0.875
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