
Citation: Zabala, L.; Doncel, J.; Ferro,

A. Optimality of a Network

Monitoring Agent and Validation in a

Real Probe. Mathematics 2023, 11, 610.

https://doi.org/10.3390/math11030610

Academic Editor: Kagan Eugene

Received: 20 December 2022

Revised: 13 January 2023

Accepted: 20 January 2023

Published: 26 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Optimality of a Network Monitoring Agent and Validation in a
Real Probe
Luis Zabala 1 , Josu Doncel 2,* and Armando Ferro 1

1 Department of Communications Engineering, University of the Basque Country, UPV/EHU,
48013 Bilbao, Spain

2 Department of Mathematics, University of the Basque Country, UPV/EHU,
48940 Leioa, Spain

* Correspondence: josu.doncel@ehu.eus

Abstract: The evolution of commodity hardware makes it possible to use this type of equipment
to implement traffic monitoring systems. A preliminary empirical evaluation of a network traffic
probe based on Linux indicates that the system performance has significant losses as the network rate
increases. To assess this issue, we consider a model with two tandem queues and a moving server. In
this system, we formulate a three-dimensional Markov Decision Process in continuous time. The goal
of the proposed model is to determine the position of the server in each time slot so as to optimize
the system performance which is measured in terms of throughput. We first formulate an equivalent
discrete-time Markov Decision Process and we propose a numerical method to characterize the
solution of our problem in a general setting. The solution we obtain in this problem has been tested
for a wide range of scenarios and, in all the instances, we observe that the optimality is close to
a threshold type policy. We also consider a real probe and we validate the good performance of
threshold policies in real applications.

Keywords: network monitoring; performance evaluation; Markov decision process; Linux network
subsystem

MSC: 90B15; 60K30; 93E20

1. Introduction

The complexity of modern communication networks has dramatically increased in
the last years. As a result, traffic monitoring of such complex systems, which is required
by network operators to cope with their users’ needs to guarantee their satisfaction, has
become an extremely challenging task.

Different applications can be related to traffic monitoring systems, ranging from real-
time multimedia traffic monitoring [1] to intrusion detection systems [2] and network
antiviruses [3], to mention a few. Furthermore, nowadays, with the proliferation of cloud
services, traditional network and data center environments must be complemented with
cloud network monitoring tools in order to keep track of performance indicators. This
is accomplished by deploying some lightweight monitoring software agents that collect
statistics on physical or virtual servers and physical or virtual network devices [4]. Then,
each of these agents will send their data to a repository that typically provides big data-
based analytics for alerting, diagnostics and displaying summarized information.

It has been shown that the advances of commodity hardware allow software to attain
good performance while the main advantages of flexibility and modularity still hold,
see [5,6]. This can be achieved, for instance, with an efficient use of the kernel modules.

Within the data monitoring systems based on commodity hardware, Linux-based
network end systems have been widely deployed [7,8]. From a network performance
perspective, Linux represents an opportunity since it is amenable to optimization and

Mathematics 2023, 11, 610. https://doi.org/10.3390/math11030610 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11030610
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5621-5981
https://orcid.org/0000-0002-5552-9134
https://orcid.org/0000-0003-0745-7073
https://doi.org/10.3390/math11030610
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11030610?type=check_update&version=3


Mathematics 2023, 11, 610 2 of 23

tuning network stack, due to its open source support. Whenever we want to know how
our network behaves, it is important to have a packet capturing device able to achieve rates
similar to those on the network, to obtain the most comprehensive view.

We represent in Figure 1 the evolution of packets since entering the Linux end sys-
tem [9] to their delivery to the monitoring application. This is achieved in three different
stages:

• The packet is transferred from Network Interface Card (NIC) to the ring buffer. Since
this is a Direct Memory Access (DMA) transfer, all of the actions related to this packet
movement are completed without consuming any CPU’s resources.

• The packet is transferred from the ring buffer to the analysis buffer, driven by a
software interrupt request (softirq) [10]. This is the capturing stage in Figure 1.

• Finally, the packets are treated by the monitoring application and they are pulled out
from the analysis buffer. This is the analyzing process in Figure 1.

Figure 1. Packet receiving process with Linux networking subsystem.

It is remarkable that, while the DMA transfer does not have any CPU consumption,
both the capturing process and the analyzing process do have it. Additionally, if there is only
one processor, both processes will not be running at the same time. As a consequence, in
order to design traffic monitoring systems optimally, it is interesting to build mathematical
models which allow us to study their performance theoretically. Specifically, there is an
increasing demand for analytical models to aid probe designers in predicting how effective
and efficient is the network probe when subjected to high-speed traffic. In addition,
modeling and analyzing the performance of network probes can be extremely useful in
gaining a deeper understanding of the probe’s behavior and characteristics. Probe designers
and system administrators can identify bottlenecks and key parameters that impact its
performance, and then perform the necessary tuning for optimal performance. Analysis
can provide quick answers to numerous design and operational questions.

Our objective is to develop a mathematical model that describes the behavior of a
network traffic monitoring agent and to gain insights about how to optimize its perfor-
mance. For this purpose, we consider an analytical queuing model developed for the
study and analysis of the performance of a single-processor network traffic probe built on
off-the-shelf hardware. We represent the two main stages (capturing and analysis) of the
traffic monitoring system using a single-server tandem queue. However, as we represent a
single-processor system, the two servers of the tandem queue cannot be active simultane-
ously and, for this reason, we propose a Markov Decision Process (MDP) to choose which
server has to be active at each time and obtain the optimum scheduling policy that allows
us to achieve a better performance in terms of network analysis throughput. The model
proposal is evaluated and, finally, the results obtained from the model are compared to
those that we obtain in a real Linux-based network probe.

The performance of traffic analysis solutions has been studied experimentally under
multi-Gigabit network environments [11–13]. However, few of these solutions have been
modeled and studied analytically in order to assess the performance and behavior of system
performance under heavy network loads. For instance, in [14], the Linux system’s packet
receive process is represented by the token bucket algorithm and queuing processes. The
authors of [15] present a finite queuing system with multiple stages of service to represent
the behavior of a rule-based network firewall. Another approach is the one presented in [16]



Mathematics 2023, 11, 610 3 of 23

which describes an Mx/GB/1/K queue with vacations to formulate high-speed packet I/O
frameworks. In [17,18], the analytical models, based on M/M/1 and M/M/c/K queues,
estimate the computing resources required to satisfy the Quality of Service (QoS) targets of
some cloud monitoring applications.

There are some researches to measure power consumption of packet processing en-
gines [19,20]. Among them, we would like to mention [19]. This work proposes an Mx/D/1
queue with a setup period and it adds the resolution of an optimization problem to study
the trade-off between energy consumption and network performance indexes.

To finish the related work review, we would like to highlight the application of queuing
models in the field of Fifth-Generation (5G) networks. Here, multiple software components,
referred to as Virtual Network Functions (VNF), are connected and they process packets to
provide a service chain. Network monitoring can be one of those service chains. This type
of model represents each VNF with a queue. For instance, in [21], the authors formulate an
open queuing network of G/G/m queues to predict the performance of generic softwarized
network services in terms of response time. Other examples of this research line can be [22],
which addresses a problem of VNF placement by using an open queuing network of
M/M/1 queues, and [23], which explains how to model the building block of a 5G node.

As far as we know, most of the previous studies presented in the literature do not take
account of the relation between the capturing stage and the analysis stage of a network
monitoring system. For this reason, the main contribution of this article is to study the
application of a novel analytical model based on classical concepts of MDPs, considering
processing and buffering limitations of the capture-analysis system and optimizing the
performance in terms of analysis throughput.

The remainder of the paper is organized as follows. The queuing model for the
capturing and analysis system is presented in Section 2. Then, in Section 3, the optimization
problem based on MDP is detailed including its parameters and the solution. The model
validation and the obtained results are discussed in Sections 4 and 5. Finally, we conclude
the paper in Section 6.

2. Model Description

In this section, we represent the packet receiving process of a traffic monitoring system
(see Figure 1) using an open queuing network, as drawn in Figure 2. The system described
in Section 1 is modeled by a tandem queue, and computer consumptions are related to
service capacities of the queuing network.

Figure 2. Queuing system representation for the case of one single processor.

As can be seen in Figure 2, packets arrive at the first queue of the model. This packet
arrival corresponds to the DMA transfer from the NIC to the ring buffer without any CPU
consumption. Thus, the first queue represents the ring buffer of the capturing stage where
the packets are stored before being processed by the softirq. The model assumes that the
first queue, the capturing queue henceforth, has got a bounded capacity of M packets. If a
packet arrives when the capturing queue is full, then the packet is dropped out of the system
without being processed. Next, the first server treats the packets of the capturing queue.
This represents the softirq processing. For this reason, the service time of the first server is
related to the processing time required by the CPU for the softirq.



Mathematics 2023, 11, 610 4 of 23

Once a packet is served by the first server, i.e., the softirq processing of the packet is
completed, it moves to the second stage of the queuing network. This is related to the
analysis stage where packets are waiting in the analysis buffer until they are processed by
the monitoring application of the network traffic monitoring system (see Figure 1). In the
model, the second waiting queue and the second server represent the analysis buffer and
the analysis processing, respectively. Just as the capturing queue, the second queue, referred
to as the analysis queue henceforth, is also considered a finite queue. It has got a capacity of
N packets and, when it is full, the arriving packets cannot enter it. Finally, as soon as the
second server completes the analysis processing of a packet, this packet leaves the network,
meaning that the monitoring application has completed the task related to this packet.

In order that the analytical solution does not become unmanageable, we assume that
packets arrive at the capturing queue following a Poisson process with parameter λ̃. We also
suppose that both the time needed by the processor to complete the capturing process of
each packet and the analysis time of each packet in the second stage follow an exponential
random variable with parameters µ̃1 and µ̃2, respectively. It is proven that packet arrivals
do not follow a Poisson process for some types of traffic such as Ethernet network and that
they are rather bursty [24], but the case we are dealing with is slightly different. In our case,
the packet arrival is not directly the traffic of the Ethernet network, but it is the incoming
packets from the network card’s buffer to the kernel memory area via DMA. Regarding
service rate modeling, although the program’s code has a quite deterministic behavior,
some randomness is introduced by Poisson incoming traffic, variable length of packets and
kernel scheduler uncertainty. Despite of these limitations, we will keep working with these
assumptions for simplicity of the analysis and, as will be demonstrated later, the results
obtained from our model were closely matched to results obtained from real experimental
measurements.

The queuing network consists of two servers, however, as we are going to consider
the case of a single-processor system, this single CPU has to divide its efforts among the
two tasks (capturing and analysis). For this reason, in the model, the two servers of the
queuing network (both of them named as #CPU1 in Figure 2) cannot be active at the same
time. Therefore, the system consists of a two-stage tandem queue attended by a moving
server. According to the preferences of the system scheduler, labeled as the decision maker
henceforth, the processor is allocated to the capturing queue or the analysis queue.

The way the decision maker chooses the right action for the dynamic processor at any
time has a big impact in the performance of the network, measured in terms of analysis
throughput. Allocating it too much time to the analysis queue may lead to packet loss in the
capturing queue, whereas allocating it too much to the capturing queue may decrease the total
capacity for packet analysis. In this paper, we aim to provide insights into how the decision
maker should proceed with the goal of optimizing the performance of the system. Our
analysis is based on a three-dimensional MDP. This allows us to obtain a dynamic policy
that tells the decision maker where to allocate the processor at any time. This decision will
depend on the number of packets waiting in each queue and the position of the processor
when the decision is made.

An Equivalent Discrete Time Model

Next, we build a discrete time model, which describes the dynamics of the continuous
time model introduced above. This is done via uniformization techniques. The discrete
time model allows us to test its accuracy when explaining the performance of the traffic
monitoring system. On the other hand, it provides an easier optimization framework,
which helps to find the protocol that optimizes the analysis throughput.

Using uniformization arguments, we define the following quantities:

λ =
λ̃

λ̃ + µ̃1 + µ̃2
. (1)



Mathematics 2023, 11, 610 5 of 23

µ1 =
µ̃1

λ̃ + µ̃1 + µ̃2
. (2)

µ2 =
µ̃2

λ̃ + µ̃1 + µ̃2
. (3)

Thus, we move from a continuous to a discrete system where:

• At any time slot, and given that the capturing queue is not full (with M packets in its
buffer), a new packet arrives to the network with probability λ;

• If the processor is working in the capturing queue, and the queue is not empty, the
processor captures a packet within one time slot with probability µ1;

• If the processor is working in the analysis queue, and this queue is not empty, the pro-
cessor finishes the analysis stage of a packet within one time slot with probability µ2.

The probabilities given in Equations (1)–(3) are independent from one time slot to
another. The length of each time slot, in units of time, is given by

ts =
1

λ̃ + µ̃1 + µ̃2
. (4)

3. MDP Formulation

In this section, we present an optimization problem which leads to the maximization of
the analysis throughput in our discrete time model described in Section 2. This optimization
problem falls in the framework of the MDPs. An MDP consists of a state space, an action
space, and a reward structure. Whenever the decision maker chooses among the available
actions, it earns a reward which depends on the current state of the system, and after
receiving it, the system evolves its state to a new one. The goal of the decision maker is to
find the right sequence of actions, maximizing the expected total reward earned from the
system.

It is easy to see that the model can be seen as a a three-dimensional discrete time MDP.
We consider a time-slotted system t ∈ T := {0, 1, 2, . . . }, at which the system can make
decisions. The time epoch t corresponds to the beginning of the time period t. At any t,
the decision maker has to choose among two actions: either allocate the processor to the
capturing queue or the analysis queue. The state of the system is represented by the number
of packets waiting in both queues and the position of the processor before the decision is
made.

We provide below the elements that describe the evolution of the system:

• A := {C, A} is the action set of the system. At any time, selecting action C represents
allocating the processor to the first queue for packet capturing, whereas action A
represents allocating the processor to the second queue for packet analysis;

• S := M×N ×A is the state space of the system. If the state of the system is s =
(m, n, a), with m ∈ M := {0, 1, . . . , M}, n ∈ N := {0, 1, . . . , N} and p ∈ A, this means
that there are m packets queuing in the capturing queue, n packets queuing in the analysis
queue, and that the previous action taken by the system has been p, representing the
current position of the processor;

• Ra
s is the one-period expected reward earned by the system if action a ∈ A is chosen when

the system is in state s ∈ S ;
• Pa :=

(
pa

s,s′

)
is the state-transition matrix if action a ∈ A is decided at the beginning

of a period. If s = (m, n, p) and s′ = (m′, n′, p′), then the transition probability of
moving from state s to state s′ is pa

s,s′ .

3.1. Reward Structure

Since the goal of the decision maker is to maximize the analysis throughput, we establish
that it earns 1 unit of reward whenever a packet leaves the analysis queue due to its comple-



Mathematics 2023, 11, 610 6 of 23

tion. Moreover, we also consider that the decision maker incurs a cost whenever it decides to
change the position of the processor. This cost represents the time that the processor spends
changing its position, effectively affecting the performance of the system. We denote this
switching cost by SC. The one-period expected rewards Ra

s , depending on the current state
s = (m, n, p) and the action a chosen by the decision maker, can be expressed as follows:

Ra
s=(m,n,p) =



0, p = C, a = C, 0 ≤ n ≤ N,
−SC, p = C, a = A, n = 0,

µ2 − SC, p = C, a = A, 1 ≤ n ≤ N,
−SC, p = A, a = C, 0 ≤ n ≤ N,

0, p = A, a = A, n = 0,
µ2, p = A, a = A, 1 ≤ n ≤ N,

0 ≤ m ≤ M (5)

The reward is zero when (i) the processor stays in the capturing queue or (ii) the
processor stays in analysis queue and the analysis queue is empty. The reward is minus
the switching cost when (i) the processor moves from the capturing queue to the analysis
queue and the analysis queue is empty or (ii) the processor moves from the analysis queue
to the capturing queue. The reward is equal to µ2 when the processor stays at the analysis
queue and this queue is not empty. Finally, the reward is µ2 minus the switching cost when
the processor moves from the capturing queue to the analysis queue and the analysis queue
is not empty.

Observe that this problem of minimizing costs is not equivalent to maximizing the
throughput, but, as we will see later, the obtained results fulfill the goal of this work.

3.2. Transition Probabilities

As mentioned before, pa
s,s′ is the probability of moving from the state s = (m, n, p) to

the state s′ = (m′, n′, p′) when action a is taken at the beginning of the transition period.
Thus, the value of p, the position of the processor at the state s = (m, n, p), coincides with
the action a, i.e., p = a at the state s. On the other hand, the position p′ of the state s′ will
be the value of the action decided at the beginning of the next transition period. The value
of p′ does not affect the transition probability.

The transition probabilities pa
s,s′ can be separately obtained by using the two cases of a.

Firstly, for action a = C, state s = (m, n, p) with p = a = C, and state s′ = (m′, n′, p′),

pa=C
s,s′ =



1− λ m = 0, 0 ≤ n ≤ N, m′ = 0, n′ = n
λ 0 ≤ m ≤ M− 1, 0 ≤ n ≤ N, m′ = m + 1, n′ = n

1− λ− µ1 1 ≤ m ≤ M− 1, 0 ≤ n ≤ N, m′ = m, n′ = n
µ1 1 ≤ m ≤ M, 0 ≤ n ≤ N − 1, m′ = m− 1, n′ = n + 1
µ1 1 ≤ m ≤ M, n = N, m′ = m− 1, n′ = N

1− µ1 m = M, n = 0, m′ = M, n′ = 0
1− λ− µ1 m = M, 1 ≤ n ≤ N, m′ = M, n′ = n

λ m = M, 1 ≤ n ≤ N, m′ = M, n′ = n

(6)

In Equation (6), the probabilities assume that

λ(1− µ1) ≈ λ (7)

(1− λ)µ1 ≈ µ1 (8)

(1− λ)(1− µ1) ≈ 1− λ− µ1 (9)

The above expressions represent the transition probabilities when the processor is in
the capture node. We describe a few of them here. When the capture queue is not full, it
receives a new packet with probability λ. When this queue is empty, the probability that the
state is not modified is 1− λ, whereas when it is not empty, this probability is 1− λ− µ1.
When the capturing queue is full, the probability that the state does not change is λ.



Mathematics 2023, 11, 610 7 of 23

Secondly, for action a = A, state s = (m, n, p) with p = a = A, and state s′ =
(m′, n′, p′),

pa=A
s,s′ =



1− λ 0 ≤ m ≤ M− 1, n = 0, m′ = m, n′ = 0
λ 0 ≤ m ≤ M− 1, 0 ≤ n ≤ N, m′ = m + 1, n′ = n

1− λ− µ2 0 ≤ m ≤ M, 1 ≤ n ≤ N, m′ = m, n′ = n
µ2 0 ≤ m ≤ M, 1 ≤ n ≤ N, m′ = m, n′ = n− 1
1 m = M, n = 0, m′ = M, n′ = 0
λ m = M, 1 ≤ n ≤ N, m′ = M, n′ = n

(10)

Just as the case of action a = C, in Equation (10), the probabilities assume that

λ(1− µ2) ≈ λ (11)

(1− λ)µ2 ≈ µ2 (12)

(1− λ)(1− µ2) ≈ 1− λ− µ2 (13)

The above expressions represent the transition probabilities when the processor is in
the analysis node. As it can be seen, the transition probabilities are analogous to those of
the case where the processor is in the capturing node.

Thus, the dynamics of the system is captured by the state process s()̇ and the action
process a()̇, which correspond to state s(t) ∈ S and action a(t) ∈ A at all time epoch t ∈ T .
As a result of choosing action a(t) at the beginning of time slot t ∈ T while the system is in
state s(t), the decision maker earns a reward, and the system evolves its state for the next
time slot, t + 1.

3.3. Optimization Problem

Now, we describe, in more detail, the problem we consider in this paper, and we
give its mathematical formulation. We denote by Πs,a the set of randomized and non-
anticipating policies, available for the decision maker. These policies assume that, at time
t ∈ T , the decision maker has exact information about the state process until t, i.e., it knows
s(0), s(1), . . . , s(t), and it also knows all the decisions that have been made before, i.e,
a(0), a(1), . . . , a(t− 1).

The problem is to find a policy π ∈ Πs,a that maximizes the expected total future
rewards considering an infinite time horizon, i.e.,

max
π∈Πs,a

Eπ
0

(
∞

∑
t=0

Ra(t)
s(t)

)
, (14)

where E0 denotes the expectation over the evolution of the system, conditioned to the
information available at t = 0.

3.4. Numerical Solution

Problem (14) is a standard MDP, for which it is well known that there exists an optimal
policy which is deterministic (non-randomized), stationary (Markovian) and independent
of the initial state. In particular, this implies the existence of an optimal policy which, at
any time t, only depends on the state of the system s(t). An optimal Markovian solution
of the MDP can be obtained by solving the Bellman equation (see [25,26]). However, the
fact that our MDP lies on a three-dimensional state space, together with the existence of
switching costs, makes the Bellman equation intractable from an analytic point of view, and
thus, we are forced to solve the MDP using numerical methods. In particular, our solutions
are obtained following the value iteration algorithm, which we briefly describe below:



Mathematics 2023, 11, 610 8 of 23

Let us denote by Vπ
s the value function of the MDP starting from state s ∈ S at time

t = 0 and following policy π ∈ Πs,a, i.e.,

Vπ
s = Eπ

(
∞

∑
t=0

Ra(t)
s(t) |s(0) = s

)
. (15)

The value iteration algorithm proceeds as follows:

• Fix an arbitrary initial value V0
s for all s ∈ S .

• For i = 1, 2, . . . , n, calculate recursively:

– Vi
s = max

a∈A
{Ra

s + ∑
s′∈S

pa
s,s′V

i−1
s′ }

– ai
s = arg max

a∈A
{Ra

s + ∑
s′∈S

pa
s,s′V

i−1
s′ }

• Let n grow

This iterative algorithm converges to the optimal solution of the MDP, providing in
the limit two important values:

• lim
i→∞

Vi
s = Vπ∗

s , and

• lim
i→∞

ai
s = aπ∗

s ,

where Vπ∗
s is the value function following an optimal policy and starting from state s, and

aπ∗
s represents the action chosen by the optimal policy whenever the system is in state s.

The goal is, therefore, to obtain numerically the optimal policy of the three-dimensional
state space MDP, by using a set of parameters which reflect the experiments carried out in
a real traffic monitoring system. Once we obtain this policy, we will be able to compare
the performance of the real system and the one obtained by the Markovian model which
follows the optimal policy. This improvement might be seen as the potential improvement
of the performance in the traffic monitoring system when using a dynamic allocation policy
which depends on the amount of packets in capturing and analysis buffers.

4. Performance Evaluation of the Model

In this section, we solve the optimization problem described above for a given set of
parameters. To do so, first of all, we explain how to obtain those input parameters. Next,
we describe the evaluation of the MDP model. To conclude the section, we present the
results of the simulation that follows the optimal policy obtained from the MDP model.

4.1. Estimation of Parameters

In order to set the model’s input parameters (λ̃, µ̃1, µ̃2, M and N), we perform some
tests on a Linux-based network probe, which is a prototype called Ksensor [27]. This real
probe is installed inside a testbed platform [28], as can be seen in Figure 3.

Inside the testing platform, the traffic generator is in charge of sending data packets
to the network (or to a potential receiver). The probe has to capture and process as many
network packets as possible. The test manager, with the help of software agents installed
in the generator and probe, measures the metrics of interest. Therefore, the test manager
provides us with some statistical results of the experimental tests from which we can
estimate values for the input parameters of the mathematical model. Such experimental
results are, for example, the number of captured packets, CPU consumption in capturing
and analysis tasks, the test’s duration, etc.



Mathematics 2023, 11, 610 9 of 23

Figure 3. Testbed platform for experimental measurements.

Regarding the hardware and software details of the experimental setup, on the one
hand, the traffic generator, the test manager and the receiver are installed on the same
kind of physical machine: a computer with two Intel Xeon 5110 CPUs at 1.66 GHz, 2 GB
of RAM and running Debian 7 GNU/Linux. In order to inject synthetic network traffic,
the traffic generator has an Endace DAG 4.3GE card installed [29]. The packets generated
are minimum sized IP packets (40 bytes) for 1 Gbps Ethernet network. This means that
the probe will receive the maximum number of packets possible. On the other hand, the
probe is installed on a machine with two Intel Quad Xeon 5420 CPUs at 2.5 GHz, with
4 cores each, 4 GB of RAM and running a modification of the kernel Linux 2.6.23 with a
module that implements the analysis task. In our MDP model-oriented experiments, the
probe is configured to use a single CPU core. Lastly, as Figure 3 shows, all the machines are
connected to the same 1 Gbps Ethernet switch.

Some experimental results allow us to set the values of the input parameters of the
model as follows:

• λ̃ is related to the network packet rate. In the testing scenario, the traffic generator
allows us to set the packet injection rate into the network and we choose 21 rates
varying from 50,000 to 1,500,000 pps. In addition, the test manager gathers the packet
rate from the network switch to which the probe is connected. These values of network
traffic rate are directly used as the input parameter λ̃ of the model. As we keep the
same values of the experimental tests, it will be possible to compare the theoretical
results of the numerical evaluation of the model with the experimental ones. Due to
the fact that the tests are performed for each one of the rates produced by the traffic
generator, there are experimental results for each one of those network traffic rates;

• µ̃1 is the packet capturing rate. We estimate it by considering the total amount of
packets captured by the softirq processing during the test (which we denote as ncap)
and the time spent by the CPU in the softirq (denoted as Tcap). Both ncap and Tcap are
provided by the test manager since, during the test, the number of packets captured
by the polling process of the softirq and the number of cycles consumed by the CPU
in the capturing stage are counted. A simple conversion from CPU cycles to seconds
allows us to obtain Tcap. Thus, µ̃1 is estimated as follows:

µ̃1 =
ncap

Tcap
. (16)



Mathematics 2023, 11, 610 10 of 23

• µ̃2 is the packet analysis rate and, if nan and Tan denote the total amount of packets
processed by the analysis stage during the test and the total time devoted by the CPU
to analysis purposes, respectively, we obtain the following estimation for µ̃2:

µ̃2 =
nan

Tan
. (17)

Similarly to Tcap, the term Tan is derived from the number of cycles consumed by
the CPU in the analysis stage during the test. It is also worth mentioning that the
probe’s performance is measured under different analysis loads. Three scenarios are
implemented to simulate a low analysis load, a medium analysis load and a high
analysis load. For this reason, there are different values assigned for the parameter
µ̃2, one for each analysis load. As each analysis load is implemented with a loop that
takes a different number of cycles in each case (in particular, 0, 300 and 1000 cycles for
low, medium and high loads, respectively), from now on, we will assign null to the
low load scenario, 0.3 k to the medium load scenario and 1 k to the high load scenario;

• M is the capacity of the capturing buffer. In the case of the probe used in the testbed,
its typical value is 200. For this reason, M = 200 for the numerical evaluation;

• N is the capacity of the analysis buffer. The typical value is 4096 in the probe of the
test. Therefore, N = 4096.

Once we have estimated values for λ̃, µ̃1, µ̃2, M and N, we obtain λ, µ1 and µ2
following Equation (1)–(3), respectively. We also calculate the length of each time slot of
the simulated discrete time model, ts, invoking (4).

Another key aspect of the model is that the traffic monitoring system wastes time
whenever the processor changes its task. The processor needs a non negligible amount of
time to switch from the packet capturing task to the packet analysis task, and the same thing
happens when it moves from the analysis to the capturing. Let us denote this switching
time by tsw. Our estimation of tsw is also derived from a testing scenario, in particular, from
one with high packet traffic rate. Under this condition, we assume that there are no time
intervals in which the processor is idle.

First, we calculate the time spent by the system switching the position of the processor
(Tsw). If the test’s duration is Ttot (value registered by the test manager), we have that

Tsw = Ttot − Tcap − Tan, (18)

Dividing Tsw by the number of switches, nsw, we obtain the time that the processor
needs to make each switch:

tsw =
Tsw

nsw
. (19)

The number of switches is derived from the number of softirqs counted during the
test. The number of softirqs is also registered by the test manager. If there are no idle
periods under high network packet rate, we assume that every softirq process is followed
by an analysis process and vice versa. The CPU is in use almost all the time for those
two processes, except for switching context. Therefore, we can consider that there are two
context switches per each softirq, one at the transition softirq-analysis and the other at the
transition analysis-softirq. In this way, we set the value of nsw.

Last, we calculate the value of the switching cost, which allows us to define a meaning-
ful reward structure for our optimization problem. Since we fix 1 unit of reward whenever
the analysis of a packet is completed, it is reasonable to establish the switching cost as
the proportion of time lost during the switch compared to the total time that is needed to
process a packet since it arrives at the system until it leaves when the analysis is completed.
Thus, we calculate the switching cost as follows:



Mathematics 2023, 11, 610 11 of 23

SC =
tsw

1
µ̃1

+ 1
µ̃2

. (20)

From the scenario with the highest network traffic rate, we estimate the switching time
and the switching costs. The switching time is fixed as tsw = 850 ns for all the scenarios,
whilst the switching cost depends on the value of µ̃1 and µ̃2 according to Equation (20).

Table 1 shows the values of the input parameters which are estimated from the testing
scenario. In order not to make too big the size of the table, the 21 values assigned to λ̃ are
not written, but the smallest and the biggest ones are. The table also displays the average of
µ̃1 and three average values of µ̃2, one for every analysis load (null, 0.3 k and 1 k). Both the
values of λ̃ and those of µ̃1 and µ̃2 are in packets per second (pps). Similarly, the particular
values used for M, N and SC appear in the table. As a result of the combination of all the
possible values taken for λ̃, µ̃1, µ̃2, M, N and SC, we can state that we will evaluate the
model for 63 different scenarios.

Table 1. Set of values for the input parameters of the numerical evaluation.

λ̃ (pps) µ̃1 (pps) µ̃2 (pps) M N SC

50,000
1,188,786

902,798 (null)
289,119 (0.3 k)
116,755 (1 k)

200 4096
0.4 (null)
0.2 (0.3 k)
0.1 (1 k)

· · ·
1,500,000

4.2. Structure of the Optimal Policy

Having estimated the values of the input parameters, in this section, we evaluate
numerically the MDP model and we analyze the structure of the optimal policy, ob-
tained by following the value iteration algorithm for each scenario proposed in Table 1.
For a given scenario, the optimal policy consists of two matrices. The first matrix, C =
(ci,j)i=1,...,M,j=1,...,N , describes the action followed by the optimal policy when the processor
is allocated to the capturing queue, and there are i and j packets queued in the capturing
and the analysis queues, respectively. The second one, A = (ai,j)i=1,...,M,j=1,...,N , represents
the optimal choice when the processor is allocated to the analysis queue. As will be shown
later, matrices C and A will be represented in two-dimensional diagrams by using the blue
color to indicate the set of states where the optimal policy is to allocate the processor to
the capturing queue, whereas the white area will indicate that, in these states, it is optimal
to dedicate the processor to analysis purposes. Based on our simulations, we see that the
shape of the optimal policy depends on the set of parameters of each scenario, and conclude
that the optimal policy is always given in terms of a switching curve. However, we see
that the shape of this switching curve follows an specific pattern which depends on the
saturation of the system. Let us see it by considering some examples that distinguish three
ranges of network traffic rates.

Firstly, Figure 4 shows the shape of the optimal policy when the network traffic rate
is low, 100,000 pps, the analysis load is null, M = 200 and N = 4096. According to the
optimal policy, if the processor is allocated to the capturing queue, there is no incentive to
move it to the analysis stage unless the analysis buffer is full (n = 4096). On the other hand,
if the processor is already positioned in the analysis queue, whether to keep it or to switch it
to the capturing queue depends on the values of m and n, i.e., the number of packets that are
waiting in the buffers, as shown in Figure 4b. In particular for this case, the optimal policy
tells us that, while the analysis buffer is not empty, there is not any switch from analysis to
capture until the capturing buffer is almost full and the number of packets in the analysis
buffer is less than a given value. For the set of parameters of Figure 4, it is optimal to keep
the processor in the analysis queue if there are less than 198 packets in the capturing queue
(m < 198) and the analysis queue is not empty (n 6= 0). If m < 198 and the analysis buffer is
totally emptied (n = 0), then the processor switches to the capturing stage. However, when
there are more than 197 packets in the capturing stage (m ≥ 198), the optimal policy also
depends on how many packets are in the analysis buffer, i.e., the processor switches from



Mathematics 2023, 11, 610 12 of 23

analysis to capture when the pair (m, n) reaches a given value. In this way, the switch is
done if n reaches 4092 packets and m is equal to 200 (full capture buffer) or if n is decreased
to 4065 packets and m is equal to 199 (almost full capture buffer) or if n reaches 3875 and
m is equal to 198 (almost full capture buffer too). In this first example, due to the low
traffic rate, there is no risk of dropping packets from the capturing queue if the processor is
allocated to analysis purposes with less than 198 packets in the capturing queue. Thus, the
optimal policy is capable of analyzing the 100% of the packets that arrive to the system,
minimizing, at the same time, the total number of switches.

It is easy to interpret why the optimal policy behaves in this way. Maximizing analysis
throughput is equivalent to minimizing the total packet loss. Thus, whenever the analysis
queue is not full, it is good to switch the processor to packet capturing if there is a big risk
of dropping packets due to the lack of buffer in the capturing queue. On the other hand, if
the number of packets in the capturing queue is not large enough, then there is no reason to
switch processor’s position, and it can be kept working in the analysis queue, minimizing
the time lost in switches. Nevertheless, as this case corresponds with a low traffic rate, the
system has got enough resources to carry all the incoming traffic and, although the policy
is not obviously detrimental, it does not have a real positive effect.

(a) Matrix C (b) Matrix A

Figure 4. Optimal policy with network traffic rate of 100,000 pps and null analysis load.

Secondly, Figure 5 shows the structure of the optimal policy when the data traffic rate
is intermediate. In particular, it is the case of a network traffic rate of 620,000 pps, null
analysis load, M = 200 and N = 4096. When the processor is allocated to the capturing
queue, as can be see in matrix C of Figure 5a, it is optimal, again, to keep it in that position
until the analysis queue is full. On the other hand, if the processor’s position is the analysis
queue, it is always optimal to keep it analyzing packets unless the capturing queue is full
(n = 4096). If this is the case, the optimal policy is characterized by a threshold value, which
tells to the decision maker whether the optimal action is to switch the processor’s position
or not. Although Figure 5 shows the particular case of 620,000 pps, similar structures are
obtained with other intermediate traffic rates (between 600,000 and 1,000,000 pps).

As traffic rate increases, the policy defined by matrix C remains and, also, the threshold
policy that characterizes the optimal policy defined by matrix A for intermediate traffic
rates, but the value of the threshold goes to 0 packets. Figure 6 exhibits this fact for the
particular scenario with a traffic rate of 1,100,000 pps, null analysis load, M = 200 and
N = 4096. Again, according to matrix C (see Figure 6a), the processor does not switch
from capture to analysis until the analysis buffer is full (n = 4096). Additionally, matrix A
of Figure 6b indicates that it is optimal to keep the processor analyzing packets until the
analysis buffer is completely emptied (n = 0). The reason is the following: the traffic rate is
so high that it is impossible to empty the two buffers at the same time. Thus, the optimal
policy is a non-idling policy that minimizes the number of switches because this maximizes
the total time that the processor spends either capturing or analyzing packets.



Mathematics 2023, 11, 610 13 of 23

(a) Matrix C (b) Matrix A

Figure 5. Optimal policy with network traffic rate of 620,000 pps and null analysis load.

(a) Matrix C (b) Matrix A

Figure 6. Optimal policy with network traffic rate of 1,100,000 pps and null analysis load.

4.3. Performance of the Optimal Policy

Once we obtain the optimal policy for each scenario, we simulate the dynamics of the
queuing network in order to see the analysis throughput obtained following the optimal
policy. Results are shown in Figures 7 and 8. On the one hand, Figure 7 shows the analysis
throughput obtained from a real network probe based on Linux, if the capturing and the
analysis stages are executed according to the standard scheduler of the system. On the
other hand, Figure 8 indicates that the performance of the traffic monitoring system can
be significantly improved if the decision maker allocates the processor according to the
optimal policy that we obtain when solving the MDP derived from our tandem queue
model. It is observed that the decrease in throughput starting about 500,000 pps with null
analysis load, 200,000 pps with 0.3 k and 100,000 pps with null, disappears. We even see
that the throughput achieves higher values with low and medium traffic rates. Moreover,
the analysis throughput remains steady for high values of traffic rate, as opposed to the
original traffic monitoring system.

The results presented in Figure 8 are acquired from a discrete event simulation pro-
gram. Trajectories of packet arrivals, capture, analysis and queuing processes are simulated
by the program which receives the following input parameters: the input data rate (λ̃),
the packet processing rate in the capturing stage (µ̃1), the packet processing rate in the
capturing stage (µ̃2), the size of the capturing buffer (M) and the analysis buffer (N), the
switching time (tsw) and the content of the matrices C and A that, according to the optimal
policy, point out the action that should be taken in every moment of decision.



Mathematics 2023, 11, 610 14 of 23

Figure 7. Performance achieved in the real traffic monitoring system.

Figure 8. Simulated performance of the optimal policy.

According to the equivalent discrete time model presented in Section 2, the simulation
program assumes time slots of length ts (defined in Equation (4)). The program assumes
that the current state s = (m, n, p) is known and, later, in a time slot of ts, the system goes
to the state s′ = (m′, n′, p′) according to the transition probabilities of Equations (6)–(10).
The program generates events which happen according to the transition probabilities of
the model. When the system goes to a state s′ = (m′, n′, p′), m′ and n′ depend on the
event generated by the simulator and p′ will take the value of the action determined by the
optimal policy. If p = C, the value of the action will be taken from matrix C and if p = A,
the value of the action will be taken from matrix A.

Another aspect which is taken into account by the simulator is the time spent in context
switches. When the processor is switching from the capture to the analysis or vice versa,
i.e., a context switch is taking place, the processor is not in any of the two stages. Therefore,



Mathematics 2023, 11, 610 15 of 23

packets are not captured, nor are they analyzed during that time. However, it is possible
that new packets arrive at the system. Those packets enter the capture buffer or, in the
worst case, if the buffer is full, those packets are dropped and the system throughput is
penalized. As mentioned before, the simulation program has got the switching time, tsw,
that comes from an experimental measurement. If the switching time is greater than the slot
time, tsw > ts the program divides the switching time into slots of duration ts and, as before,
it studies what happens between the start and the end of the slot, taking into account that
the only possible event is the arrival of packets in that slot with probability λ. If tsw > ts,
the probability of a new arrival during the switching time is estimated with λswitch = λ · tsw

ts
.

If tsw > ts and tsw is not a multiple of ts, the remaining time trem = tsw − kts is defined,
being k a positive integer, the probability of a new arrival during that remaining time is
λrem = λ · trem

ts
.

The simulation program controls every variable of the system: m, n, p, M, N. In
addition, several counters manage the number of packets analyzed, the number of packet
arrivals, the number of time slots and the number of context switches. After simulating
what happens in a sufficiently large number of slots, the analysis throughput is computed
by dividing the number of the analyzed packets by the simulation’s total time. The
simulation’s total time is the sum of the time of all the slots and the time of all the switches,
i.e., ttotal = Number_o f _slots · ts + Number_o f _switches · tsw.

5. Implementation and Validation in a Network Probe

In the previous section, the results of the simulation showed that the policy obtained
from the MDP model brings along with it an improvement in terms of analysis throughput.
Now, the next step is to implement that optimal policy in a real probe. To this end, we
select the same probe which was used in the experimental study (see Figure 3).

5.1. Policy Based on a Threshold Value

As explained in Section 3, the optimal policy depends on the number of packets in the
capture stage (m), the number of packets in the analysis queue (n) and the current position of
the processor (i.e., if the processor is running the capture stage or the analysis one at that
time). Keeping track of all these variables is not easy in a real Linux-based probe. While
the number of packets in the analysis queue can be controlled in a simple way, on the other
hand, it is not the same in the case of the control of the number of packets in the capture
queue.

If we take a look at the architecture of the Linux networking subsystem [9,30], parame-
ter m measures the number of packets in the capturing queue. The packet capturing process
in Linux starts when the first packet arrives to the NIC. In this moment, the NIC fires a
hardware interrupt request (hardirq). The hardirq’s Interrupt Service Routine (ISR) disables
the hardirqs and schedules a softirq. Meanwhile, the first packet and those that are arriving
are being copied to the capturing queue by the DMA without any processor consumption.
The softirq’s ISR takes the packets from the DMA queue to the capturing queue of the probe.

In accordance with the explanation given in the previous paragraph, the number of
packets that are in the DMA, measured by parameter m, is continuously changing. On the
one hand, the softirq takes packets from this queue. This action can be controlled easily
because it is performed by a software executed by the processor. On the other hand, the
DMA copies the packets that arrive to the NIC to the DMA queue without any processor
intervention. This action cannot be controlled because it is performed by a hardware
resource that works independently from the processor. The state of the queue is known but
the measure is not precise because when this value is read, the state of the queue can be
different.

Due to the difficulties that appear when monitoring parameter m in the real system,
it is interesting to consider the analysis of the structure of the optimal policy in order
to propose an affordable implementation which is the most consistent possible with the



Mathematics 2023, 11, 610 16 of 23

optimal policy. The conclusion extracted from that study (see Section 4.2) is that the more
the network data rate increases, the more the optimal policy approaches a threshold value.

At this point, we can define several threshold based policies for the case when the
processor is in the analysis stage, such as:

• Policy based on a threshold Tm which depends on m. It works as follows:
if m ≥ Tm then

action← CAPTURE
else

action← ANALYSIS
end if

• Policy based on a threshold Tn which depends on n. It works as follows:
if n ≤ Tn then

action← CAPTURE
else

action← ANALYSIS
end if

• Step-wise policy which depends on m and n. It works as follows:
if (n = 0) or (m ≥ Tm and n ≤ Tn) then

action← CAPTURE
else

action← ANALYSIS
end if

The simulation program used to evaluate the performance of the optimal policy can
also foresee the results of the threshold based policies. For example, Figure 9 shows the
analysis throughput obtained when an m-based threshold policy with value Tm = 196 is
used. It is visible in the graph that the policy with Tm is not beneficial, on the contrary, it is
detrimental, since, from a network rate of around 500,000 pps, the throughput is very low.

Figure 10 shows an example of an n-based threshold policy with Tn = 3000. In contrast
with the m-based threshold policy, this policy achieves a considerable throughput improve-
ment whose form is similar to the optimal policy’s one, i.e., it prevents the throughput
decrease in the range of intermediate rates, and it manages to increase the throughput at
the highest rates.

It is also possible to simulate the behavior of a step-wise policy. Figure 11 presents an
example of this type of policy with Tm = 198 and Tn = 2048. The results are positive too,
but its implementation will be more difficult compared to the n-based policy.

From the point of view of the implementation, the policies based on a threshold value
are feasible, in particular, those ones whose threshold value depends on the parameter n. If
the processor is allocated to the capturing task, there is no switch until the analysis queue is
full or the capturing queue is empty. This happens for all the values of network data rate,
thus, here, we identify a threshold policy for the values n = N and m = 0. However, if
the processor is allocated to the analysis process, the moment when the processor switches
to the capturing task is different depending on the network data rate and the number of
packet in both buffers (m and n). Let us see it in the context of three ranges of network
traffic rate.



Mathematics 2023, 11, 610 17 of 23

Figure 9. Performance simulation for m-based threshold policy.

Figure 10. Performance simulation for n-based threshold policy.



Mathematics 2023, 11, 610 18 of 23

Figure 11. Performance simulation for step-wise policy.

First, with low traffic rates, the optimal policy tells us that while the analysis buffer is
not empty, there is no switch from analysis to capture until the capturing buffer is almost
full and the number of packets in the analysis buffer is less than a given value. As seen in
Figure 4, for the network data rate of 100,000 pps and null analysis load, the probability
of m > 197 is very low and, as a result, it is possible to set the threshold value of n = 0
which is the common value proposed by the optimal policy for every m < 197. However,
as data network rate increases, the probability of having full or almost full capture buffer
also grows. In these cases, the previous threshold value of n = 0 could not be appropriate
because it would not avoid the risk of dropping packets at the entrance of the capture buffer.

Thus, secondly, with intermediate traffic rates, it is necessary to consider the case
when the processor is analyzing packets, the capture buffer is almost full and the processor
must change from analysis to capture in order to analyze the 100% of the incoming traffic
without dropping any packet at the capturing entrance. For example, for the network
data rate of 525,000 pps and null analysis load, the obtained policy indicates that the
processor has to change from analysis to capture when m is greater than or equal to 194;
otherwise, the analysis task does not finish until the analysis buffer is empty. If m ≥ 194,
the n-value of the switching point (m, n) differs from one case to another. Specifically, we
have the following pairs: (m = 194, n = 3609), (m = 195, n = 3840), (m = 196, n = 3910),
(m = 197, n = 3951), (m = 198, n = 3978), (m = 199, n = 3996), (m = 200, n = 4010).
As seems logical, the greater the occupation of the capture buffer, the sooner the switch
should take place (that is, with a greater value of n). However, as mentioned previously,
the implementation of a policy based on both parameters, m and n, is difficult. For this
reason, we opt for fixing a policy based on a threshold whose value depends only on n.

Then, with higher intermediate traffic rates, for example, 620,000 pps, as can be seen
in Figure 5, the optimal policy is characterized by a threshold value because the processor
only switches from the analysis to the capture when the capture buffer is full. Thus, the
threshold value is m = M, but, as before, given the difficulties to have monitored the
occupation of the capture buffer, it can be translated to an n-based threshold value.

Finally, with the highest data network rates, the optimal policy is a non-idling policy
that can be totally expressed in terms of n-based threshold values. For example, as can be
seen in Figure 6 for the network data rate of 1,100,000 pps, the processor switches from



Mathematics 2023, 11, 610 19 of 23

analysis to capture when the analysis buffer is emptied. Thus, in this case, the threshold
value is Tn = 0 for all the values of m which are in the range 0 ≤ m ≤ M.

5.2. Comparing Optimal and Real Analysis Throughputs

Given what we have just seen, a control mechanism is introduced into the real probe.
It works as follows: every time a new packet is introduced into the analysis queue (the buffer
of the monitoring application), the system checks the number of packets in this queue and it
does not switch to analyze packets as long as the analysis queue is not full and the capturing
buffer is not empty. This follows exactly the result of the optimal policy contained in the
matrix C. When the analysis queue is full, this means that the capture threshold is reached
and the system disables the packet capturing. To do that, hardirqs and NIC polling are
disabled. Hence, in that moment, the analyzing instance will process the packets in the
queue. This will happen until the packet amount reaches the analysis threshold that has
been previously estimated as Tn. In that moment, the packet capture task is enabled again
so that it can start again.

When implementing this control mechanism, we can state that two thresholds have to
be set: the maximum threshold, Tmax, as the maximum size of the analysis queue (Tmax = N)
and the minimum threshold as Tmin = Tn.

Our test setup (see Figure 3) allows us to implement the threshold policy based on
Tmax = N and Tmin = Tn due to the fact that we can control the network data rate managing
properly the traffic generator. Figure 12 presents the analysis throughput of the real probe
with the implemented control mechanism for different network data rates and analysis
loads. We can see that the obtained result is very close to the simulated performance of the
optimal policy (Figure 8).

In Figure 13, we show the difference between the optimal policy and the implemented
one in terms of throughput efficiency, assuming that the optimal policy achieves 1.0 (100%).
The result tells us that even if the implemented policy does not follow the optimal one so
closely, the difference between both of them is not bigger than 2% in all of the range of
network data rates. Figure 13 also shows results of step-wise, Tn- and Tm-based policies
assessed by the simulation tool. In the case of Tn-based policy, it is also very close to the
real probe’s one. Thus, we can conclude that the real implementation is acceptable, as well
as that the simulation tool reproduces the behavior of the real system.

Another aspect considered for the implementation in the real probe is the variability
of the proposed threshold, Tn, with the network data rate. As mentioned previously, in
our experimental scenario with a source of synthetic traffic, it is feasible to conduct tests
varying the parameter Tn according to a controlled network data rate. However, in a real
environment, it can be complex to control the data flow speed and adapt the n-threshold
policy simultaneously. For that reason, we implement a threshold policy with the same
value of Tn for all the network data rates and analysis loads. In this way, we test different
values of Tn such as 512, 1024, 2048 and 3000. Figure 14 presents a comparison in terms
of throughput efficiency with respect to the optimal policy for those settings. The most
significant result is the performance improvement achieved when introducing the control
mechanism over network data rates that overload the system. Obviously, the optimal
policy is the best and, although the implemented policy in the real system does not reach it,
the obtained result is very acceptable. The performance is improved until 80% for some
network data rates. In addition, the reliability of the developed simulation tool for the cases
which have been able to achieve a real implementation is remarkable.



Mathematics 2023, 11, 610 20 of 23

Figure 12. Performance of the real probe with the control mechanism.

Figure 13. Comparison in terms of throughput efficiency with respect to the optimal policy.



Mathematics 2023, 11, 610 21 of 23

Figure 14. Performance comparison between implemented scenarios on the real probe with n-based
threshold policies.

6. Conclusions

This paper presents an MDP model for a network traffic monitoring system based on
commodity hardware in order to improve the performance in terms of analysis throughput.
First, we identified the performance problem observed in a real network traffic probe when
the network data rate increases. It happened for the different analysis loads that the probe
supports in the preliminary empirical performance evaluation (see Figure 7).

Then, we propose a model that consists of a two-stage tandem queue attended by
a moving server. In this framework, a three-dimensional MDP is formulated in which
the objective is to determine the position of the server in each time slot to improve the
throughput of the queuing system. We have analyzed the structure of the optimal policy
for a wide range of scenarios where we show that it has a threshold-type behavior.

We have also considered a real probe so as to validate our theoretical findings. First,
we analyzed several threshold type policies and we also simulated the optimal policy using
parameters from the real probe system. These experiments show the improvement of the
optimal policy in terms of throughput. Furthermore, we considered the real system in which
we investigate the performance of the threshold-based policy, which is close to the optimal
one, and allows to demonstrate the improvement derived from our mathematical model.

As future work, we aim to adapt some of the fundamentals applied in the modeling
of this work to 5G network environments. We believe that it is appropriate to represent
with queuing models the computational consumption of the different processing-stages or
VNFs. In addition, it is common to approach limited-resource applications in real infor-
mation systems on current 5G mobile networks. For instance, more and more multimedia
applications require intensive edge computing in network nodes where there are limited
resources. The proposal presented in this work identifies which strategy could be optimal
to adapt the available resources to the state of the traffic capture task and the analysis needs.
Additionally, there is a current trend towards distributed computing resources that is
applied to network monitoring systems, the infrastructure of networks themselves and new
virtualized services. Therefore, within these contexts, there are proposals that determine
how to conduct resource placement in a dynamic and efficient way (see, for instance, [22]).
In this sense, we would like to extend this work based on an MDP model in that research



Mathematics 2023, 11, 610 22 of 23

line, by considering ubiquity issues on distributed computing systems, virtualized network
services and edge computing on current telecommunication infrastructure.

Author Contributions: Conceptualization, L.Z., J.D. and A.F.; methodology, L.Z., J.D. and A.F.;
software, L.Z. and A.F.; validation, L.Z. and A.F.; formal analysis, L.Z., J.D. and A.F.; investigation,
L.Z., J.D. and A.F.; resources, L.Z., J.D. and A.F.; data curation, L.Z., J.D. and A.F.; writing—original
draft preparation, L.Z., J.D. and A.F.; writing—review and editing, L.Z., J.D. and A.F.; visualization,
L.Z., J.D. and A.F.; supervision, L.Z., J.D. and A.F.; project administration, A.F.; funding acquisition,
A.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the Department of Education of the Basque
Government, Spain through the Consolidated Research Groups NQaS (IT1635-22) and MATHMODE
(IT1456-22), by the Marie Sklodowska-Curie, Spain grant agreement No 777778, by the Spanish
Ministry of Science and Innovation, Spain with reference PID2019-108111RB-I00 (FEDER/AEI), by
grant PID2020-117876RB-I00 funded by MCIN/AEI (10.13039/501100011033) and by Grant KK-
2021/00026 funded by the Basque Government.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pramanik, A.; Sarkar, S.; Maiti, J. A real-time video surveillance system for traffic pre-events detection. Accid. Anal. Prev. 2021,

154, 106019. [CrossRef] [PubMed]
2. Liao, H.J.; Lin, C.H.R.; Lin, Y.C.; Tung, K.Y. Intrusion detection system: A comprehensive review. J. Netw. Comput. Appl. 2013,

36, 16–24. [CrossRef]
3. Abdel-Gawad, H.I.; Baleanu, D.; Abdel-Gawad, A.H. Unification of the different fractional time derivatives: An application to

the epidemic-antivirus dynamical system in computer networks. Chaos Solitons Fractals 2021, 142, 110416. [CrossRef]
4. Aktas, M.S. Hybrid cloud computing monitoring software architecture. Concurr. Comput. Pract. Exp. 2018, 30, e4694. [CrossRef]
5. Schneider, F.; Wallerich, J.; Feldman, A. Packet Capture in 10-Gigabit Ethernet Environments Using Contemporary Commodity

Hardware. In Proceedings of the 8th International Passive and Active Measurement Conference, PAM 2007, Louvain-la-neuve,
Belgium, 5–6 April 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 207–217.

6. Ntop Project. Available online: http://www.ntop.org (accessed on 19 December 2022).
7. Pereira, R.I.; Dupont, I.M.; Carvalho, P.C.; Jucá, S.C. IoT embedded linux system based on Raspberry Pi applied to real-time

cloud monitoring of a decentralized photovoltaic plant. Measurement 2018, 114, 286–297. [CrossRef]
8. Jo, E.; Yoo, H. Implementation of cloud monitoring system based on open source monitoring solution. In Software Engineering in

IoT, Big Data, Cloud and Mobile Computing; Springer: Berlin/Heidelberg, Germany, 2021; pp. 181–190.
9. Freitas, E.; de Oliveira Filho, A.T.; do Carmo, P.R.; Sadok, D.; Kelner, J. A survey on accelerating technologies for fast network

packet processing in Linux environments. Comput. Commun. 2022, 196, 148–166. [CrossRef]
10. Bovet, D.; Cesati, M. Understanding the Linux Kernel, Third Edition; O’Reilly Media: Sebastopol, CA, USA, 2005.
11. Fusco, F.; Deri, L. High Speed Network Traffic Analysis with Commodity Multi-core Systems. In Proceedings of the 10th ACM

SIGCOMM Conference on Internet Measurement, IMC’10, Melbourne, Australia, 1–3 November 2010; ACM: New York, NY,
USA, 2010; pp. 218–224. [CrossRef]

12. Moreno, V.; Del Rio, P.M.S.; Ramos, J.; Garcia-Dorado, J.L.; Gonzalez, I.; Arribas, F.J.G.; Aracil, J. Packet storage at multi-
gigabit rates using off-the-shelf systems. In Proceedings of the 2014 IEEE Intl Conf on High Performance Computing and
Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software
and Syst (HPCC, CSS, ICESS), Paris, France, 20–22 August 2014; IEEE: Piscataway Township, NJ, USA, 2014; pp. 486–489.

13. Trevisan, M.; Finamore, A.; Mellia, M.; Munafo, M.; Rossi, D. Traffic Analysis with Off-the-Shelf Hardware: Challenges and
Lessons Learned. IEEE Commun. Mag. 2017, 55, 163–169. [CrossRef]

14. Wu, W.; Crawford, M.; Bowden, M. The performance analysis of Linux networking – packet receiving. Comput. Commun. 2007,
30, 1044–1057. [CrossRef]

15. Salah, K.; Elbadawi, K.; Boutaba, R. Performance modeling and analysis of network firewalls. IEEE Trans. Netw. Serv. Manag.
2012, 9, 12–21. [CrossRef]

16. Li, X.; Ren, F.; Yang, B. Modeling and analyzing the performance of high-speed packet I/O. Tsinghua Sci. Technol. 2021, 26, 426–439.
[CrossRef]

17. El Kafhali, S.; Salah, K. Performance analysis of multi-core VMs hosting cloud SaaS applications. Comput. Stand. Interfaces 2018,
55, 126–135. [CrossRef]

http://doi.org/10.1016/j.aap.2021.106019
http://www.ncbi.nlm.nih.gov/pubmed/33798983
http://dx.doi.org/10.1016/j.jnca.2012.09.004
http://dx.doi.org/10.1016/j.chaos.2020.110416
http://dx.doi.org/10.1002/cpe.4694
http://www.ntop.org
http://dx.doi.org/10.1016/j.measurement.2017.09.033
http://dx.doi.org/10.1016/j.comcom.2022.10.003
http://dx.doi.org/10.1145/1879141.1879169
http://dx.doi.org/10.1109/MCOM.2017.1600756CM
http://dx.doi.org/10.1016/j.comcom.2006.11.001
http://dx.doi.org/10.1109/TNSM.2011.122011.110151
http://dx.doi.org/10.26599/TST.2019.9010080
http://dx.doi.org/10.1016/j.csi.2017.07.001


Mathematics 2023, 11, 610 23 of 23

18. El Kafhali, S.; Salah, K. Performance modelling and analysis of Internet of Things enabled healthcare monitoring systems. IET
Netw. 2019, 8, 48–58. [CrossRef]

19. Bolla, R.; Bruschi, R.; Carrega, A.; Davoli, F. Green networking with packet processing engines: Modeling and optimization.
IEEE/ACM Trans. Netw. 2014, 22, 110–123. [CrossRef]

20. Ibrahim, A.G.M.; Khedr, M.E.; Shaheen, M. Power Consumption of Packet Processing Engines and Interfaces of Edge Router:
Measurements and Modeling. In Proceedings of the ICNS 2016: The Twelfth International Conference on Networking and
Services, Lisbon, Portugal, 26–30 June 2016.

21. Prados-Garzon, J.; Ameigeiras, P.; Ramos-Munoz, J.J.; Navarro-Ortiz, J.; Andres-Maldonado, P.; Lopez-Soler, J.M. Performance
modeling of softwarized network services based on queuing theory with experimental validation. IEEE Trans. Mob. Comput.
2019, 20, 1558–1573. [CrossRef]

22. Agarwal, S.; Malandrino, F.; Chiasserini, C.F.; De, S. VNF placement and resource allocation for the support of vertical services in
5G networks. IEEE/ACM Trans. Netw. 2019, 27, 433–446. [CrossRef]

23. Faraci, G.; Lombardo, A.; Schembra, G. A building block to model an SDN/NFV network. In Proceedings of the 2017 IEEE
International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–7.

24. Leland, W.; Taqqu, M.; Willinger, W.; Wilson, D. On the self-similar nature of Ethernet traffic. IEEE/ACM Trans. Netw. 1994,
2, 1–15. [CrossRef]

25. Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming; John Wiley & Sons: Hoboken, NJ, USA, 2014.
26. Bertsekas, D. Dynamic Programming and Optimal Control: Volume I; Athena Scientific: Nashua, NH, USA, 2012; Volume 1.
27. Munoz, A.; Ferro, A.; Liberal, F.; Lopez, J. A Kernel-Level Monitor over Multiprocessor Architectures for High-Performance

Network Analysis with Commodity Hardware. In Proceedings of the 2007 International Conference on Sensor Technologies and
Applications (SENSORCOMM 2007), Valencia, Spain, 14–20 October 2007; pp. 457–462.

28. Pineda, A.; Zabala, L.; Ferro, A. Network architecture to automatically test traffic monitoring systems. In Proceedings of the
Mosharaka International Conference on Communications and Signal Processing (MIC-CSP2012), Barcelona, Spain, 6–8 April 2012.

29. Endace Ltd. Available online: https://www.endace.com (accessed on 11 January 2023).
30. Benvenuti, C. Understanding Linux Network Internals; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2006.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1049/iet-net.2018.5067
http://dx.doi.org/10.1109/TNET.2013.2242485
http://dx.doi.org/10.1109/TMC.2019.2962488
http://dx.doi.org/10.1109/TNET.2018.2890631
http://dx.doi.org/10.1109/90.282603
https://www.endace.com

	Introduction
	Model Description
	MDP Formulation
	Reward Structure
	Transition Probabilities
	Optimization Problem
	Numerical Solution

	Performance Evaluation of the Model
	Estimation of Parameters
	Structure of the Optimal Policy
	Performance of the Optimal Policy

	Implementation and Validation in a Network Probe
	Policy Based on a Threshold Value 
	Comparing Optimal and Real Analysis Throughputs

	Conclusions
	References

