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Efficient Broadband Frequency Conversion via Shortcuts to
Adiabaticity

Koushik Paul, Qian Kong, and Xi Chen*

The method of adiabatic frequency conversion, in analogy with a two-level
atomic system, has been put forward recently and verified experimentally to
achieve robust frequency mixing processes such as sum and difference
frequency generation. Here a comparative study of efficient frequency mixing
using various techniques of shortcuts to adiabaticity such as counter-diabatic
driving and invariant-based inverse engineering is presented. It is shown here
that it is possible to perform sum frequency generation by properly designing
the poling structure of a periodically poled crystal and the coupling between
the input lights and the crystal. The required crystal length for frequency
conversion significantly decreases beyond the adiabatic limit. This approach
significantly improves the robustness of the process against the variation in
temperature as well as the signal frequency. By introducing a single parameter
control technique with constant coupling and combining with the inverse
engineering, perturbation theory, and optimal control, it is shown that the
phase mismatch can be further optimized with respect to the fluctuations of
input wavelength and crystal temperature that results into a novel
experimentally realizable mixing scheme.

1. Introduction

In the field of nonlinear optics, the nonlinear frequency conver-
sion via three wavemixing process is a fundamental concept,[1] in
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which light of two colors is mixed in a
nonlinear crystal, resulting in sum fre-
quency or difference frequency generation
(SFG or DFG) with a third color. However,
the conversion efficiency of standard fre-
quency conversion, based on quasi-phase
matching (QPM) technique, is not perfect
especially for broad optical signal, since the
three-wave mixing processes is sensitive to
the input wavelength, crystal temperature,
interaction length, and incidence angle.
Remarkably, the analogy of different
quantum-optical phenomena, including
rapid adiabatic passage (RAP) and even
stimulated Raman adiabatic passage (STI-
RAP) in two- or three-level atomic systems,
opens new exciting possibility to control
dynamics in nonlinear optical media, see
recent review.[2] In a specific simplifica-
tion, the coupled wave equations of SFG
and DFG processes in the undepleted
pump approximation is analogous to time-
dependent Schrödinger equation of the
interaction of light with two-level atom.

Therefore, RAP with Landau–Zener scheme in frequency con-
version has been suggested and also realized experimentally in
aperiodically poled potassium titanyl phosphate (APPKTP) de-
vice, with high efficiency over a wide bandwidth.[3–7] In addition,
the extension of STIRAP to two-process frequency conversion
has been discussed in the depleted pump regime.[8] Apart from
adiabatic process, composite pulses are proposed to achieve effi-
cient and broadband sum frequency.[9] However, both processes
require long interaction length, which shows the downside.
In the past decade, shortcuts to adiabaticity (STA)[10,11]

have been developed to speed up the adiabatic processes in
various quantum systems.[12] Among them, counter-diabatic
(CD) driving[13,14] (or equivalently quantum transitionless
driving[15]) and Lewis–Riesenfeld (LR) invariant based inverse
engineering[16,17] provides efficient ways to design the inter-
actions that drives the system along a desired instantaneous
eigenstate of the reference Hamiltonian. This approach has been
extensively studied and implemented in different contemporary
fields, including atomic physics,[18,19] spintronics,[20,21] quantum
computation,[22] and many-body state dynamics[23,24]). Based on
the analogy between the Schrödinger equation and the coupled
wave equation,[25] the STA techniques has been also exploited
in optical waveguide devices, including mode conversion, di-
rectional coupler, and beam splitting.[26,27] Furthermore, the
optimization of STA[28] can be further applied for designing high
coupling efficiency, robust, and short-length coupled-waveguide
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Figure 1. Schematic of controlled aperiodic structure of a poled crystal
with designed continuous variation of phasemismatchΔK(z) along the di-
rection of propagation for realizing shortcuts to adiabatic sum frequency
conversion, where 𝜔1, 𝜔2 are the signal and pump frequencies, respec-
tively, whereas 𝜔1 + 𝜔2 = 𝜔3 represents the idler frequency.

devices.[29] Regarding the frequency process, the conventional
CD field, one of the STA techniques, has been also first envisaged
to improve the SFG process.[30]

In this paper, we study extensively the shortcuts to adiabatic
frequency conversion in a nonlinear aperiodically poled crystal
structure by focusing on ingredients of robustness and optimal-
ity. In order to compare, we design the couplings and the phase
mismatch inside the crystal using both, the CD driving and the
LR invariant method to reduce the crystal length specifically for
standard SFG andDFGprocesses and achieve efficient frequency
conversion. To make physical implementation feasible, we ap-
ply the unitary transformation to find alternative coupled-mode
equations that mimics the dynamics in the interaction picture.
Moreover, the phase mismatch and coupling coefficients are ob-
tained and optimized to speed up the adiabatic SFGwith Landau–
Zener (LZ) scheme in shorter crystal length. In order to obtain
better experimental feasibility, we develop the optimization of LZ
scheme in order to facilitate the frequency mixing process to be
controlled by a single parameter.We show that application of STA
enhances the robustness of the mixing process against the fluc-
tuations of temperature and the input wavelength. Finally, our
results are compared with the conventional frequency conver-
sion proposed by QPM technique to demonstrate the robustness
against different crystal length and pump intensities.
The paper is organized as follows. In Section 2 we review the

adiabatic SFG method followed by developing CD driving for
SFG in Section 3. Section 4 provides the LR invariant-based en-
gineering for SFG where, using a perturbative approach, we de-
velop the LZ optimization based on a single control parameter.
In Section 5, we study the mixing efficiency with respect to the
variation in the temperature and the signal frequency for differ-
ent pump intensities and crystal length and finally we conclude
in Section 6.

2. Adiabatic Sum Frequency Generation

The nonlinear frequencymixing process for generating sum (dif-
ference) frequency corresponds to the production of an idler fre-
quency when a QPM nonlinear crystal is subjected to a strong
pump field and a relatively weak signal field, see Figure 1. This
process can be described by the coupled mode theory,

dÃ1

dz
= −iqÃ3e

−iΔkz,
dÃ3

dz
= −iq∗Ã1e

iΔkz (1)

where Ã1 and Ã3 are the normalized signal and idler amplitudes
respectively, given by

Ã1 =
c

4𝜔1

√
k1

𝜋𝜒 (2)A∗
2

A1, Ã3 =
c

4𝜔3

√
k3

𝜋𝜒 (2)A2
A3 (2)

The coupling coefficient, q is z-dependent with z being the prop-
agation distance, being represented as

q(z) =
4𝜋𝜔1𝜔3√
k1k3c2

𝜒 (2)A2 (3)

where A2 is the pump amplitude which is strong compared to
signal and the idler so that the undepleted pump approximation
can be assumed, 𝜔1, 𝜔2 are the signal and pump frequencies re-
spectively whereas 𝜔1 + 𝜔2 = 𝜔3 represents the idler frequency,
corresponding wave numbers characterizes the phase mismatch
Δk = k1 + k2 − k3 and 𝜒

(2) represents the nonlinear susceptibility
of the medium.
Note that Equation (1) is analogous to a resonant two-level

quantum system coupled by complex field q(z) = Q(z)ei𝜙(z),
where Q(z) = |q(z)| mimics the Rabi frequency and 𝜙(z) being
the chirping parameter.[31,32] To study the adiabatic evolution of
such a system, we introduce a unitary transformation as follows,

Ã1 = a1e
−i[Δk−𝜙(z)]∕2, Ã3 = a3e

i[Δk−𝜙(z)]∕2 (4)

which turns into a rotating wave approximated Schrödinger like
equation,

i d
dz

(
a1
a3

)
= 1
2

(
Δk − 𝜙̇(z) 2Q

2Q Δk − 𝜙̇(z)

)(
a1
a3

)
(5)

with the Hamiltonian of the system being

H(z) =
ΔK(z)
2

𝜎z +Q(z)𝜎x (6)

where, 𝜎x,y,z represents the well-known Pauli matrices. To achieve
the adiabatic SFG, the most important parameter is ΔK(z). The
sweeping process of QPM requires designing the crystal with ap-
propriately structured poling period such that the sweeping oc-
curs from −Δ0 to Δ0. Here we follow the traditional LZ model to
choose the phase mismatch with constant coupling Q = Q0 and
ΔK(z) = Δ0 − 𝛼z. The spatial evolution of such a system is gov-
erned by the so called adiabatic condition which can be calculated
by using the dressed state picture.

Cad =
|||||

Q0𝜕zΔK
(Q2

0 + ΔK2)3∕2

||||| ≪ 1 (7)

Clearly, the adiabaticity of the evolution is dictated by the choice
of the phase mismatch ΔK(z), which can be taken as[32]

ΔK(z) = ΔK0 + 𝛿K + 𝛿KΛ(z) (8)

ΔK0 = k1 + k2 − k3 is the primary phasemismatch, 𝛿K is the con-
tribution due to group velocity mismatch. The last term char-
acterizes QPM which can be expressed as 2𝜋∕Λ(z). Here Λ(z)
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Figure 2. Conversion of modes along the direction of propagation of the
crystal, where a) incomplete conversion with adiabatic condition is vio-
lated with IP = 60 MW cm−2 and b) conversion is complete as the adia-
batic condition is satisfied with IP = 360 MW cm−2, c,d) respective Bloch
vector trajectories.

represents the poling period of the crystal. Also the wave vector
ki = 2𝜋ni∕𝜆i where, n1, n2, and n3 are the refractive indices corre-
sponding to the respective frequencies. Note that, all the refrac-
tive indices are taken along the extraordinary axis of the polariza-
tion and these are sensitive the temperature variations which can
be quantified in terms of the Sellmeier equation.[33]

The LZ slope 𝜕zΔK = −𝛼 also depends on the choice of the
crystal length and the range of the poling period in Equation (8).
As the spatial evolution occurs in a crystal of a constant length,
so one can design only a fixed 𝛼 for a particular sample. In fact,
during the SFG, the adiabaticity maintains using the variation of
poling period along the crystal length. For instance, if the initial
poling period isΛi andΛf be the final with L being the total length
of the crystal, then 𝛼 = (ΔKi − ΔKf )∕L where ΔKi,f = 2𝜋∕Λi,f . To
study such a system, we consider APPKTP with periodicity Λi
varies from 16.2 to 14.6 μm along the direction of propagation.
Also, the offsetΔ0 is determined from the first two terms of Equa-
tion (8) and can be adjusted accordingly to drive the ΔK(z) from
−Δ0 to Δ0. Therefore, the adiabaticity can only be controlled ex-
ternally by the choice of theQ0 which explicitly depends upon the
pump intensity, IP = c𝜖0A

2
2∕2.

Figure 2 depicts the transfer of power from 𝜔1 mode to 𝜔3. We
choose our crystal size to be 20 mm for the adiabatic SFG with
𝜒 (2) = 32 pm V−1. The signal, pump, and idler wavelengths are
chosen as 𝜆1 = 1535 nm, 𝜆2 = 1064 nm, and 𝜆3 = 643 nm.[3,5] For
pump intensity IP = 60 MW cm−2, the adiabatic condition fails,
see Equation (7), withCad > 1 and completemode conversion can
not be achieved as shown in Figure 2a as well as in the Bloch
vector trajectory in Figure 2b. Whereas for IP = 360 MW cm−2,
Cad < 1, satisfies Equation (7) successfully which results into per-
fectmode transfer, demonstrated in Figure 2c,d. It is evident that,

like all adiabatic processes, the adiabatic SFG is also slow as it
requires relatively large crystal length as well as large pump in-
tensity > 360 MW cm−2 to achieve greater efficiency.

3. Counter-Diabatic Sum Frequency Generation

In this section, we focus on the CD driving for SFG, which
has been developed in ref. [30]. The instantaneous eigenmodes
of H(z) in Equation (6) can be written as (|n+(z)⟩ , |n−(z)⟩)T =
U(𝜗(z))†(|0⟩ , |1⟩)T, where U(𝜗(z)) represents a unitary rota-
tion with the mixing angle being 𝜗(z) = 2 tan−1(2Q0∕ΔK).
And (|0⟩ , |1⟩)T represents the basis modes characterizing a1
and a3, respectively and the interaction Hamiltonian can be
expressed in terms of |n±(z)⟩ basis by using the unitary
transformation,

Ha(z) = U†(𝜗(z))H (z)U(𝜗(z)) − iU†(𝜗(z))U̇(𝜗(z)) (9)

According to the CD driving[13,14] (or the transitionless quantum
driving[15]) it is always possible to construct a driving Hamilto-
nian, which cancels out the non-adiabatic part iU†(𝜗(z))U̇(𝜗(z)).
Addition of a driving term in Ha(z) drives the system exactly
along the adiabatic path even beyond the adiabatic in Equa-
tion (7). The driving Hamiltonian,H1(z) is constructed from the
instantaneous eigenstates which is Hermitian and purely off-
diagonal in nature, can be written in adiabatic basis as,[15]

H1 = i
∑
±

|𝜕zn±⟩⟨n±| (10)

from which for our system, the HamiltonianH1 finally takes the
following form

H1 =
1
2

(
0 i𝜗̇

−i𝜗̇ 0

)
(11)

In principle, the total HamiltonianHeff = H(z) +H1 can transfer
a1 to a3 in a fast adiabatic-like way, which means the state evolves
from a1 to a3 along the instantaneous eigenstate of Hamiltonian
H0 within short propagating distance, not satisfying the adia-
batic condition in Equation (7). Taking into account the physi-
cal implementation, we further simplify the total Hamiltonian
Heff = H(z) +H1 by using the concept of multiple Schrödinger
picture,[29] and finally obtain

Heff =

(ΔK(z)−𝜑̇
2

Qeff

Qeff −ΔK(z)−𝜑̇
2

)
(12)

where 𝜑(z) = tan−1(𝜗̇∕Q0) and Qeff = (𝜗̇2∕4 +Q2
0 )

1∕2. This
method promises that there is a possibility for achieving fre-
quency conversion in very small crystal length. However that
requires modification in both the phase mismatch and the
coupling. This is evident from Figure 3a,b, which shows the
required modification of ΔK(z) andQ0. It shows that the smaller
the crystal size, the more drastic the modification is required
to achieve complete mode transfer. But if the modifications are
achieved, complete mode transfer is guaranteed in infinites-
imally small crystal length. As show in Figure 3c, the mode
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Figure 3. a) Profile of required ΔKeff for the application of CD driving
for different crystal lengths, that is, L = 20 mm (dotted red), L = 2 mm
(dashed blue), L = 0.2 mm (dot-dashed magenta), and adiabatic one
L = 200 mm (solid black). b) Nature of additional coupling required for
completemode transfer in different lengths. c) Conversion ofmodes along
the direction of propagation of the crystal using the CD driving for crys-
tal length 2 mm with IP = 60 MW cm−2, and d) respective Bloch vector
trajectory.

transfer is complete even for L = 2 mm and the Bloch vector
in Figure 3d shows the required path is smaller compared to
the adiabatic one which refers to the smaller crystal length.
The results convincingly show that the CD approach for SFG
is much superior when in terms of the crystal size and the
coupling strength. However, the more we decrease the crystal
length, the changes in the effective phase mismatch are more
rapid. As the system consists of only a single APPKTP crystal,
it could be challenging to design inside a very small crystal
length with existing poling methods. Moreover, the amplitude
of the effective coupling increases rapidly with the decreasing
crystal length. This can be achieved using an applied external
field along the energy transfer region of the crystal.[30] Perhaps
an alternative method would be to focus the pump to the center
of the crystal, by designing or further optimizing the focused
pump beam characteristics.[34]

4. Optimal Sum Frequency Generation

In this section, we will opt for the LR invariant-based engineering
for STA[16,17] in SFG. Although the CD approach shows robust
and fast SFG, from the implementation viewpoint it poses signif-
icant difficulties in practical implementation. In general, inverse
engineering method is based on designing the coupling and
the phase mismatch simultaneously from the imposed bound-
ary conditions for dynamical modes of LR invariant. However,
we aim to concentrate on an optimization of the phase mismatch
with respect to a constant coupling, making it easier implemen-
tation by removing the requirement of additional coupling. To
this end, one needs first to construct the LR invariant, which is

generally chosen in a parameterized form, yielding[28,35]

I(z) =
I0
2
(sin 𝜁 (z) cos 𝛽(z)𝜎x − sin 𝜁 (z) sin 𝛽(z)𝜎y + cos 𝜁 (z)𝜎z)

(13)

where I0 is an arbitrary parameter and has the dimension of cou-
pling coefficient. The invariant equation which is to be satisfied
is given by:

dI(z)
dz

= i
𝜕I(z)
𝜕z

− [H(z), I(z)] (14)

HereH(z) is the original Hamiltonian. From above equations we
obtain the following conditions for invariance

𝜁̇ (z) = 2Q(z) sin 𝛽(z) (15a)

𝛽̇(z) = −ΔK(z) + 2Q(z) cot 𝜁 (z) cos 𝛽(z) (15b)

The LR invariant posses a different set of eigenmodes compared
to the Hamiltonian which do not coincide in general. These
eigenmodes can be written in parametric form as

|Φ+⟩ = (
cos( 𝜃(z)

2
)e−i𝛽

sin( 𝜃(z)
2
)

)
, |Φ−⟩ = (

sin( 𝜃(z)
2
)

− cos( 𝜃(z)
2
)ei𝛽

)
(16)

In principle, the solution of model Equation (5), resembling
Schödinger equation, can be written as the superposition of
eigenmodes of dynamical invariant, see below. And the instan-
taneous eigenmodes |Ψ±(z)⟩ are related to |Φ±(z)⟩ by LR phase,
given by |Ψ±⟩ = |Φ±⟩ ei𝛾±(z), with the LR phase being deduced as

𝛾̇± = ±
(
𝛽̇ + 𝜃̇ cot 𝛽

sin 𝜃

)
(17)

4.1. Landau-Zener Optimization

To optimize the invariant-based shortcut according to the LZ
scheme, we find an optimized profile for ΔKopt for a constant
Q(z) in order to make it more feasible for practical situations.
Considering Q(z) = Q0, and from Equations (15 a) and (15 b) we
get[36]

ΔKopt = −
𝜁 (z)

2Q0

(
1 − 𝜁̇ (z)2

4Q2
0

)2 + 2Q0 cot 𝜁 (z)

(
1 −

𝜁̇ (z)2

4Q2
0

)2

(18)

One should note that, from the above equation, with this choice
an additional constraint comes to the system, thus it is obvious
that ΔKopt only depends on 𝜁 . For the optimization, we follow
the perturbative approach for the systematic error.[28,35] The error
with respect to the signal wavelength 𝜆1 in the phase mismatch
term from Equation (8) is [37]

𝛿𝜆1 ≈ −
2𝜋n1𝛿𝜆1

𝜆21

(19)
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which presents the perturbative error, described byH′ = 𝛿𝜆1𝜎z∕2.
The probability for the system to be found in a particular mode|Φ+⟩ can be written as[28]
P+(z) = 1 −

(
𝛿𝜆1

2

)2||||∫
L

0
⟨Φ−| 𝜎z |Φ+⟩ dz||||

2

(20)

from which can define the error sensitivity as follows[35]

qΔ = −1
2

|||||
𝜕2P+

𝜕𝛿2
𝜆1

|||||
2

(21)

Now P+ has to be unity in order to maintain the system in |Φ+⟩,
which follows that

∫
L

0
dz sin 𝜁 (z) exp(im(z)) → 0 (22)

where m(z) = 2𝛾+ − 𝛽. To make the above integral we expand
m(z) ≈ m(𝜁 ) in terms of Fourier series,[28]

m(𝜁 ) = 2𝜁 + c1 sin 2𝜁 +⋯ + cn sin 2n𝜁 +⋯ (23)

It is straightforward to calculate that

𝛽 = cot−1
(

1
2M sin 𝜁

)
(24)

with M = 1
2
dm
d𝜁
. Combining all Equations (15) and (24), we can

obtain

Q0L = ∫
𝜋

0

√
1 + 4M2 sin2 𝜁d𝜁 ≥ 𝜋 (25)

which sets the bound for crystal length with the maximum value
ofQ0 allowed. It should be noted that with this optimization, un-
like conventional invariant-based approach, we loose the freedom
to design the parameters 𝜁 and 𝛽 which characterizes the invari-
ant itself. One can find 𝜁 by solving Equation (15) using Equa-
tion (24) and design an optimal ΔKopt from Equation (18). The
only parameter one can chose are the Fourier coefficients in or-
der to nullify the integral Equation (22). Accordingly we can also
obtain the intensity of the pump field in order to maintain a con-
stant Q0, as follows

I2(𝜆1) =

(
Q2
0 c𝜖0

32𝜒 (2)

)
𝜆1𝜆3n1n3 (26)

Similar optimization can be made with respect to the other pa-
rameters as well. For instance, the temperature dependence of
the wavelength can be studied by the optimization with respect
to the refractive index along the extraordinary axis. In Figure 4a,
we have plotted 𝛽 and 𝜁 which are obtained by solving the Equa-
tions (15a) and (24). Like the conventional LR invariant method,
where one has the freedom to design the coupling and the phase
mismatch using the boundary conditions, the 𝜁 shows similar
behavior (varies from 0 to 𝜋), but 𝛽 changes drastically in order
to maintain the constant coupling. Here we have used only one
Fourier coefficient in Equation (23), that is, c1 in order to find

Figure 4. a) z dependence of 𝜁 (solid red) and 𝛽 (dashed blue), obtained
from Equations (15a) and (24), with the boundary conditions as satisfied
by the eigenstates of LR invariant that is, 𝜁(0) = 0 and 𝜁(L) = 𝜋. b) The
coupling constant Q0 (solid red) and optimal ΔKopt (dashed blue) de-
signed from Equation (18) by using the LZ optimization of the LR invariant
engineering. c) The corresponding conversion of modes along the direc-
tion of propagation of the crystal and d) respective Bloch vector trajectory.
Parameters: c1 = −1.47 for crystal length 2 mm with IP = 360 MW cm−2.

optimal ΔKopt as shown in Figure 4b. Moreover, as it turns out,
the optimal length depends on the two parameters only which
are basically c1 and Q0. Since in the LZ optimization, Q0 is a
constant with I2 = 360 MW cm−1, for a fixed crystal length of
2 mm the only degrees of freedom we have is the choice of c1.
In Figure 4c, we choose c1 = −1.47 which results in a complete
mode conversion along a fixed path, shown in the correspond-
ing Bloch vector trajectory in Figure 4d. The product Q0L is al-
ways constant, see Equation (25), for a particular value of c1 and
it approaches to 𝜋 when the higher order terms in Equation (23)
are considered.

5. Efficiency

The robustness of the aforementioned STA inspired SFG meth-
ods can be demonstrated by studying the conversion efficiency
against the variation of externally controllable parameters, where
the efficiency is defined as |a3(L)|2∕|a1(0)|2. In Figures 5 and
6 , we present a comparative study of the conversion effi-
ciency with respect to the input signal wavelength and the crys-
tal temperature for different peak pump amplitude and crystal
length.

5.1. Dependence on the Wavelength

Figure 5 shows the efficiency of the SFGwith respect to the varia-
tion of signal wavelength. For adiabatic case, it shows broadband
nature and thereby robust against the wavelength variation. In
Figure 5a variation of efficiency for different pump intensity
for the adiabatic case is clarified. An efficiency value close to
unity can be achieved when the pump intensity is more than

Adv. Quantum Technol. 2022, 5, 2200076 2200076 (5 of 9) © 2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 5. Conversion efficiency of modes with respect to the variation of signal wavelength for different pump intensities with IP = 10 MW cm−2 (blue
dashed), IP = 60 MW cm−2 (solid red), and IP = 360 MW cm−2 (black dashed-dotted) in (a–c); and for different crystal length with pump intensity
IP = 360 MW cm−2, L = 2 mm (blue dashed), L = 10 mm (solid red), L = 20 mm (black dashed-dotted) in (d–f), respectively. Here for comparison,
(a,d) present adiabatic SFG, (b,e) presents CD driving, and (c,f) presents the optimal SFG designed by inverse engineering.

360 MW cm−2. It is also critically dependent on the crystal length
for the same poling period variation. As shown in Figure 5d,
the efficiency decreases with the decreasing crystal length with
almost zero for L = 2 mm even when pump intensity is around
360 MW cm−2.
In Figure 5b,e, we examine the efficiency when the SFG is as-

sisted by the CD driving which also expectedly exhibit the broad-
band and even smoother efficiency curve. Unlike the adiabatic
case, the efficiency profile is insensitive to the variation of the
pump amplitude. This ismainly due to the fact that the additional
coupling compensates for the requirement of the extra coupling
strength formode conversion.Moreover, the required strength of
the additional coupling is higher for smaller crystal length which
makes, as Figure 5e shown, the efficiency profile is constant with
respect to different crystal length as well.
However in case of the LZ optimal SFG, one can not compare

the variation against the variation of signal wavelength and crys-

tal length separately as Q0L constitutes a constant quantity. Fig-
ure 5c depicts variation for different pump intensities where the
profile is broader as the pump intensity becomes stronger and
crystal length (solid black) becomes smaller. Also in Figure 5f,
efficiency is shown for two different c1 values. For c1 = −1.47,
where we see the efficiency profile is broader compared to c1 =
−0.2 for IP = 360 MW cm−2.

5.2. Dependence on the Temperature

The efficiency of the SFG also depends on the crystal tempera-
ture as the refractive index of birefringent crystals are highly de-
pendent on temperature. Since the phase mismatch, see Equa-
tion (8), is a function of refractive index as well, the entire
frequency conversion process becomes temperature dependent.
Generally the refractive indices for a particular wavelength in the

Adv. Quantum Technol. 2022, 5, 2200076 2200076 (6 of 9) © 2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 6. Conversion efficiency of modes with respect to the variation of temperature for different pump intensities with IP = 10 MW cm−2 (blue
dashed), IP = 60 MW cm−2 (solid red), and IP = 360 MW cm−2 (black dashed-dotted) in (a–c); and for different crystal length with pump intensity
IP = 360 MW cm−2, L = 2 mm (blue dashed), L = 10 mm (solid red), L = 20 mm (black dashed-dotted) in (d–f), respectively. Here for comparison,
(a,d) present adiabatic SFG, (b,e) presents CD driving, and (c,f) presents the optimal SFG designed by inverse engineering.

APPKTP crystal is determined by the Sellmeier equation, given
by [33]

n2 = A + B
1 − C𝜆2

− D𝜆2 (27)

Constants A, B, C, and D are taken from ref. [33]. The tem-
perature dependence is obtained conventionally as (for KTP
crystal)[38]

Δn(𝜆, T) = n1(𝜆)(T − 25 oC) + n2(𝜆)(T − 25 oC)2 (28)

with

n1,2(𝜆) =
3∑

m=0
a1,2m ∕𝜆m (29)

Here a1m and a2m are constants (see ref. [38]). The temperature
dependence of the efficiency in Figure 6 also shows broadband
feature, depending on the pump intensity and the crystal length.

For L = 20 mm efficiency is higher for the higher pump inten-
sity, see also Figure 6, but decreases when the crystal length as
well as the pump intensity is decreased. For CD driving, however,
these variations are eliminated and a smoother profile regardless
of the crystal length and the pump intensity. Also for the LZ op-
timization, the variation in efficiency improved for higher pump
amplitude and when c1 = −1.47.

6. Conclusion

In conclusion, we have studied the SFG process in an APPKTP
crystal using the STA methods. We have reviewed the adiabatic
SFG schemewhich is extremely robust with respect to the param-
eter variations. However it requires large crystal length and rela-
tively strong pump pulse to achieve complete mode conversion.
On the contrary, the STA based approaches such as the CD driv-
ing and LR invariant approach can obtain robust SFG in much
shorter crystal dimensions. Application of CD driving requires
modifications in the poling structure of the crystal which can be
easily obtained using modern fabrication techniques for chirped

Adv. Quantum Technol. 2022, 5, 2200076 2200076 (7 of 9) © 2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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quasi phase matched crystals.[2,39–41] In principle using CD driv-
ing one can achieve SFG in crystals with infinitesimally small
length. Although in reality this may be limited due to the re-
quirement of extremely large additional coupling. For instance, to
achieve the mode conversion in 0.2 mm, the additional coupling
strength is around 140 mm−1, for which the required intensity
would be very high compared to APPKTP crystals damage thresh-
old of 500 MW cm−2. However, this could be remedied by using
external field along the energy conversion region of the crystal.[30]

Although robust, the CD driving may pose significant difficulties
regarding the implementation as it requires spatial modification
of both the coupling and the phase mismatch simultaneously.
As a potential solution, we further propose LZ optimization, by
combining LR invariant and perturbation theory, for designing
the sample crystal. Following the perturbative approach, an opti-
mal phasemismatch can be obtained by choosing the coupling as
constant. This can significantly reduce the required crystal length
as well as can eliminate the requirement of the additional cou-
pling. However, it is evident that LZ optimization is not as robust
compared to the adiabatic and CD approach. This ismostly due to
the introduction of additional constraint. With a constant value of
coupling, we have a precise value of a crystal length which guar-
antees mode conversion in a relatively narrow range of variation
in signal wavelength and temperature. Further studies and ex-
perimentation in this direction may provide more insights to the
SFG process and improve understanding of the nonlinear fre-
quency mixing process. For instance, the variation in tempera-
ture changes the refractive index of the crystal according to the
Sellmeier equation which in turn changes the phase mismatch
condition itself. Therefore, it is also possible to achieve control
over the phase mismatch for the STA based frequency mixing
using a suitable temperature profile.[42] Moreover, one can com-
bine the optimally robust STA in nonlinear quantum systems to
the case beyond depleted pump regime.[2,7] Regarding the phys-
ical implementation, one can optimize the focused pump beam
with respect to beam characteristics, that is, focusing parameter
and spatial pattern, which is also worthwhile to pursue in the fu-
ture work.
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