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Highlights 35 

● Literature recommendations related to sampling-based estimation are augmented. 36 

● Omissions of land change in maps can introduce large uncertainty in area estimates of 37 

land change. 38 

● If stratifying by map class, omissions of change classes tend to carry large area weight. 39 

● Substrata in forest strata that are unlikely to contain error mitigate effects of omissions. 40 

● Increasing sample size or constructing efficient stratifications mitigate effects of 41 

omissions.  42 

  43 
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Abstract 44 

Information on Earth’s land surface and change over time has never been easier to obtain, but 45 

making informed decisions to manage land well necessitates that this information is accurate and 46 

precise.  In recent years, due largely to the inevitability of classification errors in remote sensing-47 

based maps and the marked effects of these errors on subsequent area estimates, sample-based 48 

area estimates of land cover and land change have increased in importance and use. Area 49 

estimation of land cover and change by sampling is often made more efficient by a priori 50 

knowledge of the study area to be analyzed (e.g., stratification).  Satellite data, obtained free of 51 

cost for virtually all of Earth’s land surface, provide an excellent source for constructing 52 

landscape stratifications in the form of maps. Errors of omission, defined as sample units 53 

observed as land change but mapped as a stable class, may introduce considerable uncertainty in 54 

parameter estimates obtained from the sample data (e.g., area estimates of land change). The 55 

effects of omission errors are exacerbated in situations where the area of intact forest is large 56 

relative to the area of forest change, a common situation in countries that seek results-based 57 

payments for reductions in deforestation and associated carbon emissions. The presence of 58 

omission errors in such situations can preclude the acquisition of statistically valid evidence of a 59 

reduction in deforestation, and thus prevent payments. International donors and countries 60 

concerned with mitigating the effects of climate change are looking for guidance on how to 61 

reduce the effects of omission errors on area estimates of land change.  This article presents the 62 

underlying reasons for the effects of omission errors on area estimates, case studies highlighting 63 

real-world examples of these effects, and proposes potential solutions. Practicable approaches to 64 

efficiently splitting large stable strata are presented that may reduce the effects of omission errors 65 

and immediately improve the quality of estimates. However, more research is needed before 66 



4 

further recommendations can be provided on how to contain, mitigate and potentially eliminate 67 

the effects of omissions errors. 68 

 69 

  70 
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1. Introduction 71 

Remote sensing data suitable for thematic mapping of land surface features – primarily data from 72 

the Landsat and Sentinel-2 satellites – are now routinely available free of cost (Woodcock et al., 73 

2008; Wulder et al., 2019). Greater levels of pre-processing by space agencies in combination 74 

with powerful open source software and computing platforms (Gorelick et al., 2017) have made 75 

it easier than ever to produce maps of land cover and change in land cover and/or use (referred to 76 

as land change throughout the article). Still, translating spaceborne measurements of reflected 77 

sunlight or backscattered longwave radiation into a set of discrete map classes of complex land 78 

surface conditions is inherently complicated and results are bound to be imperfect. Classification 79 

errors are inevitable, and their magnitude and distribution will determine the quality and 80 

interpretation of a remote sensing-based map (McRoberts, 2011). The communication of map 81 

quality within the remote sensing community has traditionally been done by an accuracy 82 

assessment based on a comparison of map labels and independent reference observations 83 

acquired for locations selected by probability sampling (Stehman, 2000). A reference 84 

observation is the most accurate available assessment of the true condition on the land surface. A 85 

probability sample allows for inference for various map accuracy measures for the entire 86 

population which, in the case of remote sensing-based mapping, is the collection of map units 87 

comprising the study area (Stehman, 1997).  88 

         Map accuracy assessments grew in importance during the 1980s with the availability of 89 

digital remotely sensed data, classification algorithms and processing power, while maps 90 

constructed by manual interpretation of remotely sensed imagery – often accepted as correct – 91 

became rarer (Congalton, 1991). Assessments were initially focused primarily on overall map 92 

accuracy (Congalton, 2004), but the literature from the 1980s and early 1990s highlighted the 93 
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need for class-specific accuracies such as user’s and producer’s accuracy (Card, 1982; 94 

Congalton, Oderwald, & Mead, 1983; Foody, 1992). Measures of class-specific accuracy enable 95 

a more comprehensive investigation of the map quality, especially for rarer classes such as of 96 

those of land change. However, often overlooked in the earlier accuracy-themed remote sensing 97 

literature is the notion that an analysis confined to map accuracy – being it overall or class-98 

specific – merely indicates the level of map incorrectness (McRoberts, 2011; Olofsson, Foody, 99 

Stehman, & Woodcock, 2013). Attempts to estimate the area of a specific map class by methods 100 

that sum values for map units assigned to that map class (“pixel-counting”) is a biased procedure 101 

that produces erroneous area estimates because the effects of classification errors are ignored 102 

(GFOI 2016, p. 125). A situation where the effects of errors of omission and commission offset 103 

each other is possible but unlikely and cannot be assumed.  104 

While communicating statistically defensible estimates of areas of land cover and land 105 

change is of interest to the remote sensing community at large, the paradigm of area estimation 106 

has gained additional attention because of the interest in reducing emissions from deforestation 107 

and forest degradation and the role of conservation, sustainable management of forests and 108 

enhancement of forest carbon stocks in developing countries (REDD+) negotiated under the 109 

UNFCCC (United Nations Framework Convention on Climate Change).. Countries can 110 

voluntarily report emissions and removals of carbon dioxide equivalents associated with land use 111 

change to REDD+ result-based finance initiatives such as the Forest Carbon Partnership Facility 112 

Carbon Fund, Amazon Fund, bilateral programs, etc. The objective of these efforts is to 113 

incentivize management of climate change mitigation by providing results based payments to 114 

countries providing evidence of reductions of emissions where “evidence” is in the form of 115 
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inventory estimates using procedures that comply with the good practice guidelines stipulated by 116 

the Intergovernmental Panel on Climate Change (IPCC, 2006).   117 

The IPCC identifies two main approaches to inventories: the stock-change approach and 118 

the gain-loss approach. The former estimates emissions or removals as the difference in national 119 

carbon stocks at two points in time (GFOI, 2016, p. 22). Because the approach is based on 120 

estimates of national carbon stocks, an established national forest inventory or other large-scale 121 

sampling programs is typically required for implementation of the stock-change approach. For 122 

countries without established national forest inventories, which is often the case in tropical 123 

countries, the gain-loss approach may be the only alternative (McRoberts et al., 2018). The gain-124 

loss approach estimates net carbon emissions or removals as the sum of gains and losses in 125 

carbon pools occurring on areas of land subject to REDD+ activities that emit or remove carbon 126 

(GFOI, 2016, p. 23). The five REDD+ emission reduction activities are (1) deforestation, (2) 127 

forest degradation; (3) conservation, (4) enhancement of forest carbon stocks, and (5) sustainable 128 

management of forests (GFOI, 2016, p. 26). The areal extent of the REDD+ activities are 129 

referred to as activity data. Because activity data are needed for entire countries, and because 130 

deforestation is commonly mapped using satellite data, remote sensing is very likely to provide 131 

the main source of activity data.   132 

Good practice for reporting activity data and emissions inventories is based on two 133 

criteria: (i) “should be accurate in the sense that they are neither over- nor underestimated as 134 

far as can be judged”, and (ii) “and precise in the sense that uncertainties are reduced as far as 135 

practicable”  (IPCC, 2006, Volume 1, Chapter 3). Estimating activity data based on pixel-136 

counting in maps, even if accompanied by an assessment of map class-specific accuracy, fails to 137 

satisfy these criteria.  In particular, pixel-counting is a biased estimator in the sense that on 138 
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average, it does not produce the true value because of map classification errors (GFOI, 2016, p. 139 

125). Instead, what is needed are confidence intervals for the area estimates which enable 140 

quantification of the uncertainty of estimates. REDD+ countries’ first submissions of forest 141 

reference levels were based solely on pixel-counting, but from 2016 and onwards many countries 142 

have chosen to report area estimates and associated uncertainties obtained using methods 143 

developed for monitoring and reporting REDD+ activities that are consistent with IPCC good 144 

practice (Espejo & Jonckheere, 2017).  145 

Applications in the context of REDD+ have gained attention in recent years, but the 146 

importance of statistical properties such as bias and uncertainty are not confined to the REDD+ 147 

context but to all remote sensing-based mapping applications. Still, at least up until 2010, bias 148 

and uncertainty were largely ignored in the remote sensing literature: an assessment of all articles 149 

related to mapping of land change published in Remote Sensing of Environment and 150 

International Journal of Remote Sensing for 2005-2010 showed that all but a few articles failed 151 

to include this information (Olofsson et al., 2013). We are not aware of a formal analysis of 152 

remote sensing articles published after 2010, but we hypothesize that the situation has changed 153 

and that area estimates reported in the literature are more frequently produced from sample data. 154 

Several articles, published in remote sensing journals since 2010, have described the need, use 155 

and guidance of estimation protocols (McRoberts & Walters, 2012; Olofsson et al., 2014; 156 

Stehman, 2013). The evolution of the literature described here is incomplete and omits important 157 

earlier contributions to the topic of accuracy and area estimation: Card (1982), complete with 158 

equations and numerical examples, made use of an unbiased estimator for estimation of area and 159 

map accuracy. Biging, Colby, & Congalton (1998); Macleod & Congalton (1998) discussed 160 

issues related to landscape stratifications in sampling-based estimation of accuracy of mapped 161 
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land change – much of which is related to the topic of this paper.  Gallego (2004) provided an 162 

excellent review of approaches to area estimation, including a critique of pixel-counting 163 

approaches. Additional important contributions that deserve recognition are Congalton & Green 164 

(2009); Foody (2002); Stehman & Foody (2008) among many others.  165 

While the remote sensing fire community has primarily focused on validating and 166 

comparing burned area products by means of estimated map accuracy, issues similar to those 167 

discussed in this paper are discussed in the burned area literature.  Topics of discussion include 168 

approaches to optimizing stratifications and sample allocations for accommodating omission 169 

errors and increasing precision of estimated accuracy (Boschetti et al., 2006; Boschetti, Stehman, 170 

& Roy, 2016; Padilla, Olofsson, Stehman, & Tansey, 2017), and proper identification of errors 171 

by addressing issues of geolocation and the use of high temporal and spatial resolution reference 172 

data (Csiszar, Morisette, & Giglio, 2006).   173 

A contribution that is frequently cited in the remote sensing literature and used 174 

extensively within REDD+ is Olofsson et al. (2014), which presents  methods for estimating 175 

areas of land change and associated confidence intervals, and recommends the use of a map of 176 

land cover and land change to define strata for use with a stratified random sampling approach. 177 

Activity data are often required at annual or bi-annual intervals (GFOI, 2016); intervals at which 178 

the extent of land change tend to be very small relative to stable land cover classes, even in 179 

tropical countries that experience relatively large rates of land change. In such cases, applying 180 

the stratified random sampling recommended in Olofsson et al. (2014) is likely to create a 181 

situation with one or a few very small strata (e.g., deforestation and/or forest regrowth) and one 182 

or two very large strata (e.g., intact forest). While defining strata based on map change classes is 183 

recommended because it facilitates targeted sampling to ensure sufficient statistical 184 
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representation of land change (e.g., deforestation and reforestation), small strata that represent 185 

areas of interest in combination with a very large stratum of much lower interest, is potentially 186 

problematic. The problem arises when change is observed in the reference data at sample 187 

locations in the much larger stable (non-change) land cover stratum. Such omissions of land 188 

change in the map used to stratify the study area – characterized as omission errors – tend to 189 

carry large area weights and may result in area estimates with large uncertainty that are very 190 

different from mapped areas. The result is an adverse effect on the overall acceptance of the 191 

analysis and the ability to detect, in a statistically significant way, variations in the rates of land 192 

change over time.  193 

The objectives of this article are to document and explain situations in which omission 194 

errors carry large area weights and to propose approaches to mitigate their effects. We also 195 

review case studies from various REDD+ countries.  196 

2. Problem statement 197 

2.1 The effects of omission errors on area estimates 198 

Large omission errors are the result of an inefficient stratification which, in turn, often result in 199 

large margins of error (i.e., large uncertainties), large differences between the mapped and 200 

estimated areas, and wide confidence intervals. Of importance, however, is the recognition that 201 

large differences between mapped and estimated areas do not mean that the estimation process is 202 

erroneous or should be avoided in preference to pixel-counting, but simply mean that the map 203 

used to stratify the study area contains classification errors and that the stratification is 204 

inefficient.  205 
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Consider the error matrices in Table 1. In this hypothetical example, a change map has 206 

been constructed showing that stable forest occupies 80% of the study area, deforestation 207 

accounts for 0.5% of the mapped area, and non-forest accounts for the remaining 19.5%. A 208 

sample of 500 map units has been selected by stratified random sampling using the map classes 209 

as strata, and reference conditions have been observed at each sample unit. The sample units 210 

were allocated following the recommendations in Olofsson et al. (2014) for area estimation such 211 

that 50 were selected in the deforestation stratum and the rest allocated to the other two strata in 212 

proportion to their sizes. Seven sample units with forest or non-forest observations were present 213 

in the deforestation stratum (i.e., deforestation commission errors in the map; cells shaded blue), 214 

and two units observed as deforestation were found in the forest stratum (i.e. deforestation 215 

omission errors in the map; cells shaded red).  If the sample count for error matrix cell i,j is 216 

denoted nij, the total number of sample units in stratum i is ni+ (the plus sign that replaces j 217 

indicates a sum across the columns in the matrix) and Wi is the weight of stratum i defined as the 218 

area proportion of the stratum relative the total study area, the estimated area proportion for cell 219 

i,j is  220 

 221 

𝑝̂𝑖𝑗  = 𝑊𝑖 × 𝑛𝑖𝑗 ÷ 𝑛𝑖+            (1) 222 

 223 

Table 1. Error matrix expressed as sample counts (upper) and estimated area proportions (lower). Map 224 

labels at sample locations are represented by rows and reference observations by columns.  225 

 

 Reference  

 Stratum Defore- Non- Forest Total Str. area [ha] Str. weight, Wi  
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station forest 

M

a 

p 

Deforestation 43 2 5 50 5,000 0.005 

Non-forest 0 81 9 90 195,000 0.195 

Forest 2 10 348 360 800,000 0.800 

 Total 45 93 362 500 1,000,000 1 

        

M

a 

p 

Deforestation 0.0043 0.0002 0.0005 0.005 5,000 0.005 

Non-forest 0 0.176 0.020 0.195 195,000 0.195 

Forest 0.0044 0.022 0.773 0.800 800,000 0.800 

 Total 0.0087 0.198 0.793 1 1,000,000 1 

 226 

The lower error matrix in Table 1 contains the estimated area proportions. The area of 227 

deforestation estimated to be mapped correctly is 0.43% of the study area (shaded green; 𝑝̂11 =228 

𝑊1 × 𝑛11 ÷ 𝑛1+ = 0.005 × 43 ÷ 50 = 0.0043) while the two omissions of deforestation 229 

represent an area of 0.44%. Consequently, the omission error of deforestation in the map is larger 230 

than the area correctly mapped as deforestation. Note that the area of the commission error is 231 

very small. From Eq. 1, it is obvious that the strata weights (Wi) have a large effect on the area 232 

represented by the errors. The commission error is small (0.07%) because it occurs in the small 233 

deforestation stratum (W1 = 0.005); even a doubling of the number of commission errors would 234 

still only represent 0.14% of the study area. Likewise, the area of the omission errors (0.44%) is 235 

large because the errors occur in a large stratum (W3 = 0.8).  236 
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To estimate the area of deforestation, we can apply either a model-assisted regression 237 

estimator (McRoberts & Walters, 2012; Särndal, Svensson, & Wretman, 1992) or a stratified 238 

estimator (Cochran, 1977; Olofsson et al., 2013). When the sample and map data have been 239 

tabulated as in Table 2, the former becomes a bias-adjusted estimator, which subtracts the 240 

commission error and adds omission error from the mapped area of deforestation (Eq. 2), and the 241 

latter a direct estimator that sums the area of deforestation estimated from the reference 242 

observations (Eq. 3) (Stehman, 2013). When applied to the sample data expressed as estimated 243 

area proportions (𝑝̂𝑖𝑗) in Table 1, both the direct estimator and the bias-adjusted approaches yield 244 

the same area estimate (Stehman, 2013): 245 

 246 

𝑝̂𝑗=1  = 𝑝̂1+ − (𝑝̂12 + 𝑝̂13) + (𝑝̂21 + 𝑝̂31) = 0.0087,     (2) 247 

 248 

𝑝̂𝑗=1  = 𝑝̂11 + 𝑝̂21 + 𝑝̂31 = 0.0087.        (3) 249 

 250 

Multiplied by the total study area, the estimated area of deforestation is 8,744 ha, which is 251 

considerably larger than the mapped area of 5,000 ha, even though only two omission errors 252 

were observed. This is a common situation as shown in Section 2.2. Again, of importance, if 253 

sample data have been collected following good practices, the estimated area is not wrong even 254 

if very different from the mapped area. Keep in mind that all maps have errors and that the use of 255 

an unbiased estimator accommodates the effects of map classification errors. However, the 256 

presence of errors will affect the width of confidence intervals for the estimates – the larger the 257 

errors, the greater the uncertainty. A confidence interval at the 95% confidence level for the 258 
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deforestation estimate in our hypothetical example is calculated as (Olofsson et al., 2014, Eq. 10; 259 

modified from Cochran, 1977, Eq. 5.56): 260 

 261 

𝑝̂𝑗=1 ±  𝑧(0.975) SE(𝑝̂𝑗=1)  =  𝑝̂𝑗=1 ± 1.96 [∑ 𝑊𝑖 
3
𝑖=1

𝑝𝑖1−𝑝̂𝑖1
2

𝑛𝑖+−1
]

1/2

=  0.0087 ± 0.0063. (4) 262 

 263 

Multiplying by the total map area gives an area estimate of deforestation with a 95% confidence 264 

interval of 8,744 ± 6,289 ha (i.e., a margin of error of 6,289 ÷ 8,744 = 72%).  The numerator 265 

expression of Eq. 4, 𝑊𝑖(𝑝̂𝑖1 − 𝑝̂𝑖1
2 ) for i = 1, 2, 3 does not directly include information about 266 

commission errors for deforestation as opposed to the omission. Also, the multiplication by Wi 267 

suggests that a large stratum weight further exacerbates the effects of the omission on the 268 

confidence interval. Hence, a large omission for deforestation will result in a wide confidence 269 

interval around the area estimate. In addition to omissions and strata weights, the sample size has 270 

a direct effect on the width of the confidence interval. Because the denominator includes the 271 

within-strata sample sizes, a larger sample size in the forest stratum would have reduced the 272 

uncertainty in the deforestation area estimate.  Accordingly, it is possible to counteract a less 273 

efficient stratification by increasing the sample size. But the collection of sample data can be a 274 

costly and time-consuming process as opposed to constructing a more efficient stratification 275 

(Section 3).  276 

2.2 Examples from countries 277 

Central to REDD+ are forest reference levels (FRLs). Countries that participate in REDD+ 278 

result-based finance initiatives need to submit a reference level expressed in tons of emitted 279 

carbon dioxide equivalents over a historical reference period to which future estimates of 280 
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emissions are compared for assessing a country’s performance in implementing REDD+ 281 

activities (GFOI, 2016). Approximately 70% of countries that submitted a FRL to the UNFCCC 282 

in 2018 and 90% of the countries that have submitted their FRLs to the Forest Carbon 283 

Partnership Facility of the World Bank provided estimates of activity data with uncertainty 284 

quantified using confidence intervals (Espejo & Jonckheere, 2017) following the 285 

recommendations in GFOI (2016) and Olofsson et al. (2014). This represents an important 286 

milestone for increased transparency in the UNFCCC reporting framework.  Uncertainties 287 

reported by many of these countries have been affected by omission errors that carry large 288 

weight. Figure 1 shows the margin of error for deforestation area estimates for the ten countries 289 

in Table 1. These countries are working with the Forest Carbon Partnership Facility (FCPF) to 290 

implement Emission Reduction Programs (ER Programs) as a first step in their national 291 

implementation of REDD+. The ER program stipulates the requirement to estimate uncertainty 292 

related the the activity data (and emission factors and subsequent total FRL and ex-ante 293 

emission/removal estiamtes). . From Figure 1, it is obvious that greater uncertainties are 294 

associated with small deforestation proportions. While less obvious, larger forest strata tend to 295 

result in larger errors. As illustrated below, if the stratum corresponding to a mapped activity 296 

(deforestation in this case) carries a very small weight while the forest stratum is large, activity 297 

omissions will prevent precise estimation of its area. For the FCPF to make decisions on REDD+ 298 

results-based payments to countries, it is essential that estimates of emissions from REDD+ 299 

activities are significantly less than both the reference level and previous estimates, but large 300 

uncertainties in consecutive estimates make such decision-making difficult, if not impossible   301 
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 302 

Figure 1. Relative margin of error at 95% confidence level for deforestation estimates per weight of 303 

stable stratum and proportion of deforestation in this stratum 304 

 305 

 306 

Table 2. Difference between mapped areas and area estimates of deforestation and relation to 307 

relative margin of errors. 308 

Case Mapped [ha] Estimated [ha] 

Relative 

difference 

MoE at 95% 

confidence 

Chile, CF ER program (1997-2008) 21,933 16,512 33% 62% 

Chile, CF ER program (2008-2014) 3,644 5,091 -28% 95% 

Congo, CF ER program (2003-2012) 157,212 86,590 82% 64% 

Congo, CF ER program (2013-2016) 70,930 57,781 23% 67% 

Congo, National FREL (2000-2012) 127,000 145,000 -12% 72% 

Costa Rica, CF ER program (2001-2011) 222,417 280,602 -21% 26% 

Cote D'Ivoire, CF ER Program (2000-2015) 499,655 469,329 6% 7% 
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Ethiopia, ISFL ER program (2000-2013) 130,296 477,743 -73% 43% 

Ghana, CF ER program (2000-2010) 579,990 356,077 63% 18% 

Ghana, CF ER program (2012-2015) 790,090 653,428 21% 10% 

Madagascar, CF ER program (2005-2015) 575,035 425,154 35% 19% 

Madagascar, Easter Humid Ecoregion (2005-2013) 1,930,936 2,119,993 -9% 35% 

Mexico, Yucatan CF ER program (2007-2011) 148,089 85,690 73% 67% 

Suriname, National FREL (2000-2009) 24,784 35,816 -31% 17% 

Suriname, National FREL (2009-2015) 60,362 65,419 -8% 13% 

Vietnam, CF ER Program (2000-2005) 177,802 153,705 16% 20% 

Vietnam, CF ER program (2005-2010) 124,147 127,618 -3% 22% 

 309 

The complete list of the area estimates for deforestation that were used to construct Figure 1 is 310 

presented in Table 1. Area estimates, mapped (pixel-counted) areas, the difference between 311 

mapped and estimated areas, and the margins of error are presented. For example, the Carbon 312 

Fund Early Reduction program in Chile reported a dramatic reduction in deforestation from 313 

16,512 ha in 1997-2008 to 5,091 ha in 2008-2014, but with margins of error of 62% and 95% 314 

respectively, it is not obvious that the estimates are significantly different as illustrated in Figure 315 

2. Additional analysis is required in this case to determine if the two estimates are significantly 316 

different (using, for example, a two sample t-test (Rice, 1995, p. 387)). FRL developed by 317 

countries are typically estimated over an historical time period of around 10 years borcken into 318 

two change periods or around 5 – 7 years. Reporting of results (i.e. comparison of actual 319 

reductions achieved when compaed to the FRL baseline) is required at annual or bi-annual 320 

intervals (GFOI, 2016). Reporting at such high temporal frequencies has proven difficult because 321 
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the areas of deforestation and other relevant REDD+ activities tend to be very small at annual 322 

intervals (Arevalo, Woodcock, & Olofsson, 2019a). Hence, decreasing the reporting intervals to 323 

obtain a larger number of consecutive area estimates would increase the uncertainty of the 324 

estimates and further exacerbate the problem of determining if a reduction of deforestation has 325 

occurred.  326 

 327 

 328 

Figure 2. The estimated area of deforestation with 95% confidence intervals in the Carbon Fund 329 

Early Reduction Program in Chile between 1997-2008 and 2008-2014. 330 

 331 

To further illustrate the issue of omission errors, a more detailed example from the FRL 332 

submitted to the UNFCCC by Republic of Congo in 2016 is shown below. The FRL targets the 333 

REDD+ activity “reducing emissions from deforestation”. The activity data used for constructing 334 

the FRL were estimated from sample data collected using stratified random sampling with the 335 
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stratification constructed from a classification of Landsat data, SPOT 5 data and very fine 336 

resolution imagery available in Google Earth. The stratification includes stable forest, stable non-337 

forest and forest cover loss. The error matrices are presented in Table 3 – the strata weights for 338 

forest cover loss and stable forest of 0.4% and 71% of the study area indicate that sample units 339 

observed as forest cover loss in the stable forest stratum will have a marked effect on area 340 

estimates and confidence intervals.  341 

 342 

Table 5. Error matrices expressed as sample counts (upper) and estimated area proportions (lower) 343 

submitted by Republic of Congo to UNFCCC for estimation of a FREL 2000-2012. Map labels at sample 344 

locations are represented by rows and reference observations by columns. 345 

 

 
 

Reference  

 Stratum 

Forest 

c. loss 

Non- 

forest Forest Total Str. area [ha] 

Str. 

weight, Wi  

M

a 

p 

Forest c. loss 145 7 47 199 127,000 0.0037 

Non-forest 0 182 29 211 9,673,000 0.2835 

Forest 1 40 419 460 24,326,000 0.7128 

 Total 146 229 495 870 34,126,000 1.000 

        

M

a 

Forest c. loss 0.0027 0.0001 0.0009 0.0037 127,000 0.0037 

Non-forest 0 0.2445 0.0390 0.2835 9,673,000 0.2835 
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p Forest 0.0015 0.0620 0.6492 0.7128 24,326,000 0.7128 

 Total 0.004 0.307 0.689 1.000 34,126,000 1.000 

 346 

A total of 870 sample units were selected with about half allocated to the stable forest stratum 347 

and the rest split between the forest loss and stable non-forest strata. Only a single omission error 348 

was observed, but it represents an area according to Eq. 1 of p̂31  = W3
n31

 n3+ 
= 0.72 

1

460
 =349 

0.15% of the study area, which is almost half of the area of the forest cover loss stratum. In 350 

comparison, the 47 + 7 commission errors in the forest loss stratum represent an area of only 351 

p̂12 + p̂13 = W1
n12+n13

 n1+ 
= 0.0037 

7+47

199
= 0.10%. In this case, the very large number of 352 

commission errors “offset” about two thirds of the area of forest loss that was omitted in the 353 

map, which results in area estimate (0.43%) that is relatively close to the mapped area (0.37%) of 354 

forest loss.  The large errors results in an uncertain estimate: expressed in hectares, applying a 355 

stratified estimator to the sample data yields an area estimate for forest loss of 145,420 ha and a 356 

95% confidence interval of 104,092 ha, i.e. a margin of error of 72%.  Because the estimate is a 357 

reference level to which future area estimates of forest loss will be compared, a wide confidence 358 

interval will make it difficult to determine if reductions of forest loss occur in the future.   359 

The Republic of Congo example highlights the importance of sample data that represent 360 

the best possible assessment of the land surface conditions. The omission of forest loss in Table 361 

3 was observed at a sample location in an area of terra firme and wetland forests with no signs of 362 

human intervention (Figure 3). While a loss of forest cover was observed in the reference data 363 

(Landsat and Sentinel-2), it is unclear if the loss event was the result of anthropogenic 364 

deforestation. It is essential to determine if sample data are collected to estimate deforestation, 365 
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which entails a change in land-use, or simply forest cover loss, which includes, in addition to 366 

deforestation events, a temporary loss of forest cover. An area estimate for deforestation based 367 

on the sample data in Table 3 is 92,538 ± 7,877 ha (i.e., 8.5% margin of error) if assuming that 368 

the sample unit in question is stable forest, and that all other observations of forest cover loss are 369 

deforestation. Such a big difference in area and precision between deforestation and forest cover 370 

loss when the only difference in the sample data is the reference label of a single sample unit is 371 

not satisfactory. In situations as illustrated in this example, approaches are needed that mitigate 372 

the effects of errors. Such approaches are discussed in the next section. 373 

  374 

Figure 3. Sampling unit labelled as deforestation in the forest stratum. Left, overlaid over the 375 

forest cover change map (dark green is forest and light green wetland forest). Right, overlaid 376 

over December 2015 Sentinel 2 image in false color (4,6,11). 377 

 378 

Furthermore, the example emphasizes the importance of providing correct reference 379 

labels. A single incorrect label may introduce considerable uncertainty as illustrated in this 380 

example. Olofsson et al. (2014) recommends three independent reviewers to break ties and an 381 

indication of the level of confidence in provided labels – here, we augment Olofsson et al. (2014) 382 

by a recommendation to perform a “post-interpretation” to review each of the labels of the 383 

sample units in a team effort to identify and correct 1) clerical errors, 2) misinterpretations of 384 
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reference conditions and 3) errors due to positional accuracy (i.e. a mismatch between map and 385 

reference units). The team should consist of at least the sample interpreters and a senior land 386 

cover expert. If a very large sample has been collected and a post-interpretation review is not 387 

possible, we recommend an approach based on hybrid-inference to incorporate the effects of 388 

interpreter errors into the analysis as illustrated in McRoberts et al. (2018). 389 

3. Methods 390 

3.1 Approaches to mitigate the effects of omission errors 391 

From Eq. 1, we can conclude that the magnitude of the omission error depends on the weight and 392 

sample size of the stratum in which in the error occurred (the forest stratum in Table 2). If a more 393 

efficient stratification could be constructed such that the forest stratum weight could be reduced, 394 

the effects of the omission would be reduced. An arbitrary split of the forest stratum would 395 

achieve a reduction of the stratum weight but the expected number of omission errors would be 396 

proportional to the reduction of the stratum. Such an approach would not reduce the weight of 397 

the total omission error. Instead, what is needed is a disproportionate split of the forest stratum 398 

into a small substratum that ideally contains all the omission errors and a larger substratum that 399 

is free of omission errors. However, obtaining spatial information to achieve such a split is not 400 

straightforward. First, we need to distinguish between pre- and post-stratification approaches.  401 

Pre-stratification, or just stratification, is a division of the study region into subregions 402 

serving as strata that are non-overlapping, and together comprise the whole region; stratified 403 

random sampling consists of simple random sampling within each stratum (Cochran, 1977, p. 404 

89). Because land change tends to comprise small proportions of the landscape, stratified random 405 

sampling has the advantage of facilitating sufficient statistical representation of activities of 406 
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interest, even if rare (Olofsson et al., 2014). Another benefit of stratified sampling is that any 407 

desired strata can be constructed provided they are exhaustive and non-overlapping. Therefore, 408 

any available information on the likely location of omission errors can and should be used to 409 

define strata. An attractive solution, exemplified in the remote sensing literature, is the use of 410 

buffer strata to mitigate the effects of omission errors (Arevalo et al., 2019a; Bullock, Olofsson, 411 

& Woodcock, 2018; Potapov et al., 2017; Tyukavina et al., 2013). A spatial buffer in this context 412 

is an area mapped as forest around pixels mapped as land change (forest loss in Figure 4). An 413 

example from a study area in Madre De Dios, Peru, is shown in Figure 4. The map data were 414 

extracted from a global map of forest cover change (Hansen et al., 2013), and a buffer (black) of 415 

three pixels of forest (green) around all pixels of forest loss (red) was constructed.  416 

 417 

 418 

Figure 4. A buffer stratum created from strata corresponding to the classes of a global change 419 

map. 420 

 421 
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The hypothesis behind incorporating a spatial buffer into the stratification is that omissions of 422 

change typically occur in close proximity to areas of mapped change, while areas mapped as 423 

stable forest at larger distances from mapped change are unlikely to contain omissions. Because 424 

the buffer stratum in most situations will be much smaller in size than the forest stratum, Eq. 1 425 

indicates that omission errors in a buffer stratum will carry considerably less area weight. Note 426 

that the effectiveness of a buffer stratum will decrease with decreasing weight of the forest 427 

stratum. Similarly, the effectiveness will decrease with increasing weight of the change strata 428 

because this will result in a larger buffer stratum.  429 

 The power of using buffer strata to reduce the weight of omission errors was illustrated in 430 

Arevalo et al. (2019a) who aimed at estimating the area of conversion between IPCC land 431 

categories across the Colombian Amazon at biennial intervals 2000-2016. Independent samples 432 

were collected for each biennial interval by stratified random sampling. For each of the biennial 433 

stratifications, the forest stratum had a weight of about 0.88 while the forest-to-pasture-434 

conversion stratum (the main carbon-emitting activity) had a weight of only 0.001 on average. 435 

Because of the very large difference in strata weights, omissions of forest-to-pasture-conversion 436 

in the forest stratum carried a very large area weight. Each sample contained 1,050 units, of 437 

which 50 were selected from the forest-to-pasture-conversion stratum and 400 from the forest 438 

stratum. In one of the seven samples, a single error of omission was observed but it represented 439 

an area proportion of 0.88 × (1 ÷ 400)  =  0.0022 or 114 Mha. In comparison, the area 440 

estimated as correctly classified as forest-to-pasture-conversion was 40 Mha. In other words, the 441 

area of omitted deforestation was three times larger than the area of correctly mapped 442 

deforestation! In one bi-annual interval, a single omission error resulted in a confidence interval 443 

for the area estimate of forest-to-pasture-conversion that included zero. A lower confidence 444 
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interval bound less than zero indicates that the deforestation estimate for that was not 445 

significantly different from zero preventing further analysis of carbon emissions. However, 446 

because the authors could foresee the issue of the omission errors after the maps had been 447 

constructed, a buffer stratum of three pixels around each forest-to-pasture-conversion pixel in the 448 

forest stratum was constructed for each of the stratifications. The use of buffer strata is, as 449 

illustrated above, potentially effective in applications that involve area estimation of rare 450 

phenomena. Creating buffers is easy and independent of the approach used to create the initial 451 

stratification. In Arevalo et al. (2019), the use of buffer strata resulted in a decrease of the half 452 

width of the confidence interval of the area estimates of deforestation by 53 to 98%. 453 

3.2 Simulation of optimal buffer size 454 

An arbitrary buffer size of three pixels around areas of mapped deforestation in the forest stratum 455 

was used by Arevalo et al. (2019a), a two pixel buffer was used by Bullock et al. (2018), and a 456 

one pixel buffer was used by Potapov et al. (2017) and Tyukavina et al. (2013). It is not 457 

straightforward to recommend how to define a buffer stratum to contain omission errors as a 458 

buffer’s effeciancy depends on the balance between its weight and the number of errors captured. 459 

A larger buffer will capture more omission errors thus redcuing the probability of errors 460 

occurring in forest stratum but a larger stratum carries a larger weight which increases the impact 461 

of the errors on the variance.  In an attempt to investigate the impact of size, an omission error 462 

probability was calculated for each pixel in a study of the deforestation dynamics of the 463 

Colombian Amazon (Arevalo et al., 2019a). The omission probability is based on the cumulative 464 

sum of Ordinary Least Square residuals fit over Landsat surface reflectance time series (Arevalo, 465 

Woodcock, & Olofsson, 2019b). Each omission probability above 95% was assumed to be an 466 

omission error, and thirty buffer strata were created by increments of one pixel. While the 467 
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number of omission errors captured by the buffer increased with its size, it was found that the 468 

number of omission errors in the buffer relative all omission errors in the study area decreased 469 

with increasing buffer size. To simulate the impact of varying buffer sizes on the standard error 470 

of the deforestation area estimate, the number of omission errors in the forest stratum in the 471 

sample data (𝑛𝐹,𝑜) for different sample sizes was assumed to be 𝑛𝐹,𝑜 = 𝑛𝐹  
𝑁𝑜−𝑁𝐵

𝑁
, where 𝑛𝐹 is 472 

the sample size in the forest stratum, 𝑁 the total number of pixels of the study area (520,239,684 473 

pixels), 𝑁𝑜 the total number of omission errors in the study area (184,050 pixels; we assume that 474 

all omission errors were contained by the 30 m buffer), and 𝑁𝐵 the total number of omission 475 

errors in the buffer stratum (𝑁𝐵=1 = 14,763 and  𝑁𝐵=30 = 184,050). The estimated area of the 476 

deforestation omitted was assumed to be 𝜌̂𝐹,𝑜 = 𝑊𝐹  
𝑛𝐹,𝑜

𝑛𝐹
 where 𝑊𝐹 is the weight of the forest 477 

stratum. The estimated area of the omission error in the buffer stratum 𝜌̂𝐵,𝑜 was assumed to be 478 

difference between 𝜌̂𝐹,𝑜 for different buffer sizes and 𝜌̂𝐹,𝑜 without any buffer. A standard error 479 

(Olofsson et al., 2014, Eq. 10) of the deforestation area estimate was calcualted as 480 

SE(𝜇̂𝐷) = (𝑊ℎ𝑝̂ℎ − 𝑝̂ℎ
2) ÷ (𝑛ℎ − 1) for buffer sizes of 1 to 30 pixels, and for a 𝑛𝐹 of 500 to 481 

2,000 in increments of 250. The strata in addition to Forest and Buffer were Non-forest and 482 

Deforestion, neither of which contained any omissions of deforestation. The result is shown in 483 

Figure 5, with the buffer size yielding the smallest standard error represented by a diamond.   484 

 485 
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 486 

Figure 5. The standard error of the deforestation area estimate for different sizes of the buffer 487 

stratum and for different sample sizes in the forest stratum; diamonds represent the buffer size 488 

that gives the smallest standard error. 489 

 490 

Post-stratification refers to a stratification of the study area that is independent of the selection of 491 

the sample and applied subsequent to the collection of sample data (Cochran, 1977, p. 134). A 492 

common and effective application of post-stratification is the use of a forest/non-forest map in 493 

combination with a forest inventory for estimation of forest area (McRoberts, Wendt, Nelson, & 494 

Hansen, 2002). Forest inventories are often based on ground plots selected by systematic 495 

sampling; stratifying the inventoried area into forest and non-forest will most likely increase 496 

precision for estimates of forest area without increasing the sample size. For situations and 497 
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estimation objectives more relevant to this paper, we typically do not have sample data selected 498 

by simple systematic or random sampling but by stratified random sampling, and the feature to 499 

be estimated is often a rare phenomenon such as deforestation rather than the area of forestland. 500 

In this context, post-stratification is expected to be less relevant. But, post-stratifying the study 501 

area will never erode the precision of estimates but will at worst not add anything to the analysis. 502 

4. Results and Discussion 503 

Figure 5 shows that the buffer sizes used in the published literature of one, two or three pixels 504 

are likely smaller than the optimal size, which in this study was found to be seven pixels for a 505 

sample size of 2,000 sample units and twelve pixels for 1,000 units allocated to the forest 506 

stratum. Note that the simulation results reflect the circumstances in Arevalo et al. (2019a), with 507 

weights of the forest and buffer strata ranging from 0.885 and 0 without buffer, to 0.833 and 508 

0.052 for a 30-m buffer, respectively. In situations with more prevalent deforestation and/or less 509 

forest area, the optimal buffer size will be different. If the land category to be estimated is larger 510 

assuming the number and distribution of omission errors remain the same as in this simulation, a 511 

smaller buffer stratum will be optimal. If increasing the size of the deforestation in the simulation 512 

such that the deforestation buffer doubles in size compared to the simulation in Figure 5 while 513 

reducing the weight of the forest stratum to 0.6, the optimal buffer size is six pixels for a sample 514 

size in the forest stratum of 1,000 units (for 2,000 units the optimal buffer is four pixels). A 515 

further increase of the deforestation stratum such that buffer is quadrupled shifts the optimal 516 

buffer size to three pixels, while a six-fold increase in the deforestation buffer shifts the optimal 517 

size to two pixels. Accordingly, the optimal buffer size will depend on the size of forest and 518 

deforestation strata, and the sample size in the two strata. A situation such as that of Arevalo et 519 
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al. (2019a) with a large forest stratum (0.9 weight) and a very small deforestation stratum (0.001 520 

weight), a large buffer of at least ten pixels is recommended while smaller buffer strata are 521 

recommended if larger deforestation strata are used. 522 

Buffer strata are not he only means to contain omission errors. We hypothesize that 523 

further methods to reduce the effects of omission errors (or errors in general) will be based on 524 

the output of the algorithms used to construct the stratification. Providing general guidelines is 525 

therefore more complicated, but it is likely that metrics can be extracted that indicate the lack of 526 

fit between model and observations for most automated mapping approaches. The larger the 527 

residuals, the greater the likelihood of errors. For monitoring algorithms based on comparing 528 

predictions to time series of Earth observations (e.g. Verbesselt, Hyndman, Newnham, & 529 

Culvenor, 2010; Zhu, Woodcock, & Olofsson, 2012), such metrics are readily available. For 530 

example, consider the situation in Figure 6, which shows a deciduous forest pixel in the state of 531 

Massachusetts in the USA. A deforestation event as a result of urbanization occurred in the pixel 532 

as evidenced by the increase in short wave reflectance in 1991 (Figure 6A and B).  Figure 6A 533 

shows a time series of Landsat observations of shortwave infrared surface reflectance; a 534 

prediction model (red irregular line) is fit by the YATSM algorithm (Holden, 2015) to the initial 535 

observations in the time series and updated and compared to subsequent observations (black 536 

dots) to detect change on the land surface. If a change is detected, the prediction breaks and a 537 

new prediction is initiated when sufficient observations are available after the change event. The 538 

result is one or more time series segments at each pixel. The segments are classified together 539 

with training data to characterize the timing and the to/from land covers. An omission error 540 

occurs in the pixel in question because the prediction model in Figure 6A fails detect the 541 

deforestation event in 1991, resulting in a single segment that is incorrectly classified as forest. 542 



30 

Correct monitoring of the land surface should have resulted in Figure 6B with the red segment 543 

classified as forest and blue as forest-to-urban.  By analyzing the residuals of the observations 544 

and predictions, information about the likelihood of omission errors can be obtained. An 545 

interesting issue that needs discussing is when to use the type of information generated by 546 

analyzing residuals in a time series-based approach to change monitoring. Instead of using the 547 

information to stratify the study area, a map maker could re-process the pixels identified as likely 548 

omission errors to improve the quality of the map. Using the information at different stages in 549 

the workflow will be or more less efficient and result in more or less precise estimates – more 550 

research is needed to provide guidance for such decisions.  551 

Finally, in addition to the approaches illustrated in this section we want to reemphasize 552 

the importance of a post-interpretation review of the sample data to eliminate clerical errors and 553 

misinterpretations.  Creating stratifications that are more efficient and performing residual 554 

analyses might all be in vain if the sample data are erroneous.   555 

 556 

 557 
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 558 

Figure 6. A deforestation event mapped by the YATSM algorithm. Figure 5A shows a time series 559 

of Landsat observations of shortwave infrared surface reflectance (black dots) and the YATSM 560 

prediction model (red squiggly line) failing to detect the event, as opposed to the model in Figure 561 

5C. 562 

 563 
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5. Conclusions 564 

Omission errors – especially sample units observed as land change that occur in larger strata 565 

corresponding to stable land cover classes – have been shown to have a profound adverse effect 566 

on area estimates. In the REDD+ context, the effect has been found to be especially problematic 567 

because the areas of REDD+ activities linked to results-based payments, typically deforestation, 568 

tend to be very small relative to the large forest stratum, and discerning a reduction in 569 

deforestation by comparing area estimates over time is difficult. The issue of omission errors is 570 

not confined to REDD+ but applies to any remote sensing-based mapping application that aims 571 

at estimating rare phenomena on the land surface. In this article, we augmented the 572 

recommendation in Olofsson et al. (2014) of constructing strata that correspond directly to map 573 

classes by recommending a split of larger strata (typically the forest stratum) into a smaller 574 

substratum that is likely to contain the omissions of the activities of interest and a larger 575 

substratum that is unlikely to contain omission errors. While not always sufficient to resolve the 576 

issue, constructing a stratum corresponding to a buffer around activities prior to sampling is a 577 

simple but potentially effective way to contain omission errors. The optimal size of the buffer 578 

will vary with the weights of the activty data and forest strata and sample size but a buffer of at 579 

least three pixels is likley to be optimal. Post-stratification in this context is likely to be less 580 

efficient but it will not result in a decrease of the precision of estimates. Further approaches that 581 

need more exploration are based on the analysis of residuals of models and observations, which 582 

are likely to contain valuable information about the likelihood of omitted activities. We call upon 583 

the research community to employ, explore and document these and other approaches to create 584 

more efficient stratifications in sample-based estimation of land surface activities such as 585 

deforestation, forest degradation, and forest expansion. 586 



33 

Acknowledgements 587 

This research was funded by support from the NASA Carbon Monitoring System and 588 

USGS/SilvaCarbon to Boston University (PI Pontus Olofsson). M.J. Sanz was supported by the 589 

Spanish Government through María de Maeztu excellence accreditation MDM-2017-0714. Carly 590 

Green was supported by the Australian Government as part of its contribution to the Global 591 

Forest Observations Initiative. 592 

References 593 

Arevalo, P., Woodcock, C. E., & Olofsson, P. (2019a). Continuous monitoring of land change 594 

activities and post-disturbance dynamics from Landsat time series: a test methodology for 595 

REDD+ reporting. Remote Sensing of Environment, In press. 596 

https://doi.org/10.1016/j.rse.2019.01.013 597 

Arevalo, P., Woodcock, C. E., & Olofsson, P. (2019b). Spatial representation of the likelihood of 598 

errors in maps of land change. Remote Sensing of Environment, in review. 599 

Biging, G., Colby, D., & Congalton, R. (1998). Sampling Systems for Change Detection 600 

Accuracy Assessment. In R. Lunetta & C. Elvidge (Eds.), Remote Sensing Change 601 

Detection Environmental Monitoring Methods and Applications (pp. 281–308). Chelsea, 602 

MI: Ann Arbor Press. 603 

Boschetti, L., Brivio, P. A., Eva, H. D., Gallego, J., Baraldi, A., & Gregoire, J.-M. (2006). A 604 

sampling method for the retrospective validation of global burned area products. IEEE 605 

Transactions on Geoscience and Remote Sensing, 44(7), 1765–1773. 606 

Boschetti, L., Stehman, S. V., & Roy, D. P. (2016). A stratified random sampling design in space 607 

and time for regional to global scale burned area product validation. Remote Sensing of 608 



34 

Environment, 186, 465–478. 609 

Bullock, E. L., Olofsson, P., & Woodcock, C. E. (2018). Monitoring Tropical Forest Degradation 610 

using Spectral Unmixing and Landsat Time Series Analysis. Remote Sensing of 611 

Environment, In press. https://doi.org/10.1016/j.rse.2018.11.011 612 

Card, D. H. (1982). Using map category marginal frequencies to improve estimates of thematic 613 

map accuracy. Photogrammetric Engineering and Remote Sensing, 49(12)(3), 431–439. 614 

Cochran, W. G. (1977). Sampling Techniques. New York, NY: Wiley. 615 

Congalton, R. G. (1991). A Review of Assessing the Accuracy of Classifications of Remotely 616 

Sensed Data. Remote Sensing of Environment, 37, 35–46. 617 

Congalton, R. G. (2004). Putting the Map Back in Map Accuracy Assessment. In R. S. Lunetta 618 

& J. G. Lyon (Eds.), Remote Sensing and GIS Accuracy Assessment (pp. 1–12). Boca 619 

Raton: CRC Press. 620 

Congalton, R. G., & Green, K. (2009). Assessing the Accuracy of Remotely Sensed Data: 621 

Principles and Practices. Trends in Ecology and Evolution. Boca Raton, FL: Lewis 622 

Publications. 623 

Congalton, R. G., Oderwald, R. G., & Mead, R. A. (1983). Assessing Landsat classification 624 

accuracy using discrete multivariate statistical techniques. Photogrammetric Engineering 625 

and Remote Sensing, 49(12), 1671–1678. 626 

Csiszar, I. A., Morisette, J. T., & Giglio, L. (2006). Validation of active fire detection from 627 

moderate-resolution satellite sensors: the MODIS example in northern eurasia. IEEE 628 

Transactions on Geoscience and Remote Sensing, 44(7), 1757–1764. 629 

Espejo, A., & Jonckheere, I. (Eds.). (2017). Proceedings: Technical Workshop on Lessons 630 

learned from Accuracy Assessments in the context of REDD+. Rome: FAO HQ. 631 



35 

Foody, G. M. (1992). On the compensation for chance agreement in image classification 632 

accuracy assessment. Photogrammetric Engineering and Remote Sensing, 58(10), 1459–633 

1460. 634 

Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of 635 

Environment, 80, 185–201. 636 

Gallego, F. J. (2004). Remote sensing and land cover area estimation. International Journal of 637 

Remote Sensing, 25(15), 3019–3047. 638 

GFOI. (2016). Integration of remote-sensing and ground-based observations for estimation of 639 

emissions and removals of greenhouse gases in forests: Methods and Guidance from the 640 

Global Forest Observations Initiative (2nd ed.). Rome: Food and Agriculture Organization. 641 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google 642 

Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of 643 

Environment, 202, 18–27. 644 

Hansen, M. C., Potapov, P. V, Moore, R., Hancher, M., Turubanova, S. a, Tyukavina, A., … 645 

Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover 646 

change. Science, 342(6160), 850–3. 647 

Holden, C. E. (2015). Yet Another Time Series Model (YATSM). Zenodo. 648 

10.5281/zenodo.17129. Retrieved from https://github.com/ceholden/yatsm 649 

IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. (H. S. 650 

Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe, Eds.). IGES, Japan. 651 

Macleod, R. D., & Congalton, R. G. (1998). Quantitative comparison of change-detection 652 

algorithms for monitoring eelgrass from remotely sensed data - ScienceBase-Catalog. 653 

Photogrammetric Engineering and Remote Sensing, 207–216. 654 



36 

McRoberts, R. E. (2011). Satellite image-based maps: Scientific inference or pretty pictures? 655 

Remote Sensing of Environment, 115(2), 715–724. 656 

McRoberts, R. E., Stehman, S. V., Liknes, G. C., Næsset, E., Sannier, C., & Walters, B. F. 657 

(2018). The effects of imperfect reference data on remote sensing-assisted estimators of 658 

land cover class proportions. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 659 

292–300. 660 

McRoberts, R. E., & Walters, B. F. (2012). Statistical inference for remote sensing-based 661 

estimates of net deforestation. Remote Sensing of Environment, 124, 394–401. 662 

McRoberts, R. E., Wendt, D. G., Nelson, M. D., & Hansen, M. H. (2002). Using a land cover 663 

classification based on satellite imagery to improve the precision of forest inventory area 664 

estimates. Remote Sensing of Environment, 81(1), 36–44. 665 

Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V, Woodcock, C. E., & Wulder, M. A. 666 

(2014). Good practices for estimating area and assessing accuracy of land change. Remote 667 

Sensing of Environment, 148, 42–57. 668 

Olofsson, P., Foody, G. M., Stehman, S. V, & Woodcock, C. E. (2013). Making better use of 669 

accuracy data in land change studies: Estimating accuracy and area and quantifying 670 

uncertainty using stratified estimation. Remote Sensing of Environment, 129, 122–131. 671 

Padilla, M., Olofsson, P., Stehman, S. V., & Tansey, K. (2017). Stratification and sample 672 

allocation for reference burned area data. Remote Sensing of Environment, 203, 240–255. 673 

Potapov, P. V, Siddiqui, B. N., Iqbal, Z., Aziz, M. T., Zzaman, B., Islam, A., … Hansen, M. C. 674 

(2017). Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 675 

2000-2014. Environmental Research Letters. 676 

Rice, J. A. (1995). Mathematical statistics and data analysis (2nd ed.). Belmont, CA: Duxbury 677 



37 

Press. 678 

Särndal, C. E., Svensson, B. H., & Wretman, J. H. (1992). Model assisted survey sampling. 679 

Springer. 680 

Stehman, S. V. (1997). Selecting and interpreting measures of thematic classification accuracy. 681 

Remote Sensing of Environment, 62, 77–89. 682 

Stehman, S. V. (2000). Practical Implications of Design-Based Sampling Inference for Thematic 683 

Map Accuracy Assessment. Remote Sensing of Environment, 72(1), 35–45. 684 

Stehman, S. V. (2013). Estimating area from an accuracy assessment error matrix. Remote 685 

Sensing of Environment, 132, 202–211. 686 

Stehman, S. V, & Foody, G. M. (2008). Accuracy Assessment, 297–310. 687 

Tyukavina, A., Stehman, S. V, Potapov, P. V, Turubanova, S. A., Baccini, A., Goetz, S. J., … 688 

Hansen, M. C. (2013). National-scale estimation of gross forest aboveground carbon loss: a 689 

case study of the Democratic Republic of the Congo. Environmental Research Letters, 8(4), 690 

044039. 691 

Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. (2010). Detecting trend and seasonal 692 

changes in satellite image time series. Remote Sensing of Environment, 114(1), 106–115. 693 

Woodcock, C. E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., & Cohen, W. B. 694 

(2008). Free Access to Landsat Imagery. Science, 320(May), 1011–1012. 695 

Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., … 696 

Zhu, Z. (2019). Current status of Landsat program, science, and applications. Remote 697 

Sensing of Environment, 225, 127–147. 698 

Zhu, Z., Woodcock, C. E., & Olofsson, P. (2012). Continuous monitoring of forest disturbance 699 

using all available Landsat imagery. Remote Sensing of Environment, 122, 75–91. 700 



38 

 701 


