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floating offshore wind turbines 
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columns
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Offshore wind energy is getting increasing attention as a clean alternative to the currently scarce fossil 
fuels mainly used in Europe’s electricity supply. The further development and implementation of this 
kind of technology will help fighting global warming, allowing a more sustainable and decarbonized 
power generation. In this sense, the integration of Floating Offshore Wind Turbines (FOWTs) with 
Oscillating Water Columns (OWCs) devices arise as a promising solution for hybrid renewable energy 
production. In these systems, OWC modules are employed not only for wave energy generation but 
also for FOWTs stabilization and cost‑efficiency. Nevertheless, analyzing and understanding the aero‑
hydro‑servo‑elastic floating structure control performance composes an intricate and challenging 
task. Even more, given the dynamical complexity increase that involves the incorporation of OWCs 
within the FOWT platform. In this regard, although some time and frequency domain models have 
been developed, they are complex, computationally inefficient and not suitable for neither real‑
time nor feedback control. In this context, this work presents a novel control‑oriented regressive 
model for hybrid FOWT‑OWCs platforms. The main objective is to take advantage of the predictive 
and forecasting capabilities of the deep‑layered artificial neural networks (ANNs), jointly with their 
computational simplicity, to develop a feasible control‑oriented and lightweight model compared to 
the aforementioned complex dynamical models. In order to achieve this objective, a deep‑layered 
ANN model has been designed and trained to match the hybrid platform’s structural performance. 
Then, the obtained scheme has been benchmarked against standard Multisurf‑Wamit‑FAST 5MW 
FOWT output data for different challenging scenarios in order to validate the model. The results 
demonstrate the adequate performance and accuracy of the proposed ANN control‑oriented model, 
providing a great alternative for complex non‑linear models traditionally used and allowing the 
implementation of advanced control schemes in a computationally convenient, straightforward, and 
easy way.

As a result of climate change, emerging markets and developing economies’ energy consumption increased by 
4.6% in 2021, according to the Global Energy  Research1. Therefore, the world is rushing toward clean energy 
resources to cope with energy demands, as illustrated in Fig. 1. Wind and wave power are two of the most 
important renewable energy sources for the power industry. According to the European Marine System strategic 
road-map, the ocean energy infrastructure for Europe will meet almost 10% of Europe’s power consumption from 
wind, wave and tidal energy by  20502. Therefore, several countries, including the United Kingdom and Spain, 
have been involved in various projects based on the development of wind  energy3 and Wave Energy Converters 
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(WECs)4. Offshore wind turbines provide the best alternative, with an edge of higher wind quality than onshore. 
As a result, offshore electricity production has remarkably  increased5,6.

FOWTs work on the principle of the law of conservation of energy by converting mechanical energy into 
electrical energy that is then used to spin electrical generators to produce electrical power. Offshore wind speeds 
are often higher, and even a slight rate increase can result in significant growth in energy  generation7. Besides, 
a specific type of WEC called an OWC can be integrated into the FOWT structure. The operating principle 
of the OWC consists of an enclosed chamber with an opening beneath, which allows water to flow upwards 
and downwards, according to the incoming waves. In this way, the air inside the chamber is compressed and 
decompressed, propelling self-rectifying air turbines located in the upper part of the chambers. This same 
technology is currently being used in Mutriku’s MOWC wave power  plant8,9. Therefore, FOWTs and OWCs 
compose some of the most promising technologies for harnessing clean energy and could be combined in a 
hybrid platform, as shown in Fig. 2.

Nevertheless, the stresses and fatigue induced by winds and waves have a negative impact on the lifespan of 
structures of floating  platforms10. These undesired vibrations cause efficiency reduction, structural imbalance, 
high maintenance costs, and, eventually, lead to equipment  failures11. Numerous researchers are working on this 
potential area to mitigate the aforementioned undesired  motions12,13. Several researchers from various domains 
are working to enhance the overall performance of floating structures. Examples include forecasting/prediction 
of model states, design optimization, fault diagnostics, and developing optimal control of wind turbines. Hybrid 
platform stabilization is a challenging task and a variety of approaches are employed to mitigate the undesired 
vibrations of platforms. Passive or active structural control is considered the most convenient way to reduce the 
load on floating wind turbines. The recently published articles present techniques for wind turbine stabilization 
using closed-loop control on the hybrid  platform12,14. Some methods for barge platform stabilization are Tuned 
Mass Dampers (TMD)15,  inerters16, Liquid Mass Dampers (LMD)17 and through mooring  lines18. For example, 
Jonkman et al.19,20 used a gain-scheduled proportional-integral technique in the development of FAST (Fatigue, 
Aerodynamics, Structures, and Turbulence) simulator and designed a baseline collective blade pitch controller for 

Figure 1.  Renewable electricity generation growth by technology net scenario, 2010–2030.

Figure 2.  Barge-based floating offshore wind turbine with four OWCs.
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three primary floating wind turbines. The detailed characteristics of the floating offshore wind turbine considered 
in this manuscript, are presented in Table 1.

Hybrid systems are equipped with a range of tools to measure vibration, temperature, humidity, and other 
variables. These data collection systems measure every parameter to assess the state of the system. Then robust 
algorithms extract as much information as possible from the available data. A significant amount of data may 
be processed by machine learning algorithms, with ANNs being one of the most popular techniques modelings 
of such nonlinear  systems21. There have been several regression-oriented approaches with various training 
functions  used22,23. The Levenberg-Marquardt  backpropagation24 and Bayesian regularization  backpropagation25 
algorithms are regarded as the best options for such nonlinear dynamics due to their fast computation because 
fast backpropagation algorithms are highly recommended as first-choice supervised algorithms. It has been 
shown that ANNs are effective when physical processes are obscure or  complicated26. As a result, several 
researchers used ANN-oriented algorithms to improve the overall performance of floating structures. Adaptive 
learning, self-organization, fault tolerance, online operation, and ease of system integration are a few benefits 
of adopting ANNs. For example, Multilayer Perceptron (MLP)-based technique for forecasting wind speed 
at various locations inside a wind farm was developed by Salcedo-Sanz et al.27. They demonstrated that this 
approach yields minimal mean absolute error values in a real wind farm. Several studies on short-term wind 
speed forecasting use various models, such as two-layers  ANN28,  IRBFNN29,  RBFNN30, non-linear adaptive 
 model31, an ensemble of mixture density ANN  networks32, deep  ANN33, adaptive boosting (adaboosting)  ANN11, 
etc. These studies show that most ANN-based models are more accurate than methods that do not use artificial 
intelligence. The best model for each case is determined by the type of data and the estimation criteria. There 
are numerous forecasting studies for wind power in the short, medium, and long term in the literature. Ma et al. 
proposed a hybrid method involving a generalized dynamic fuzzy neural  network34.

Dong et al.35 suggested a hybrid model combining an integrated processing strategy and a linear neuro-fuzzy 
function to forecast wind power. The accuracy of the method presents results that are 5.33% more accurate than 
results obtained with ANN. Other hybrid models are based on neuro-fuzzy36, GA-BP  NN37, wavelet  ANN38 and 
Adaptive Wavelet  ANN39. Short-term wind power prediction methods are based on  BPNN40, convolutional and 
recurrent  ANNs41, Elman  ANN42, Boltzmann  machine43 and artificial bee colony  ANN44. However, no model has 
so far been developed for FOWT coupled to OWCs that are suitable for closed-loop control. Recently, M’zoughi 
et al.45 demonstrated the feasibility of integrating two OWCs and Aboutalebi et al.46 the feasibility of four OWCs 
in barge platforms. Integrating four OWCs into a platform arises as a promising solution as an active structure 
control (Fig. 2)46. The size and geometry of the barge platform make it more favorable to create space for wave 
energy converter integration compared to spar and tension leg platforms.

The main significant novelty in this work relies on the use of a control-oriented artificial neural networks 
model for the hybrid wave and wind barge platform. To do so, an efficient, intelligent machine learning modelling 
is required so as to assess the effectiveness of novel platform designs and replicate the complex hybrid dynamics of 
FOWT-OWCs, which will allow the use of advanced feedback controllers. Hence, an intelligent control-oriented 
model has been developed for the hybrid platform that was also developed from scratch since, in contrast with 
simple FOWT systems, there were not dynamical models within FAST for this kind of systems. Even, when some 
efforts have been deployed into hybrid platforms for energy generation related to semi-submersible platforms 
in the time or frequency  domain47–49, there is no research in control of hybrid FOWT-OWCs for platform 
stabilization. Therefore, the main novelty of the work relays in the development of an intelligent control-oriented 
model for a new hybrid system, suitable to mitigate undesired vibrations from the platform by means of closed-
loop control schemes. That is, using the oscillating water columns to implement platform stabilization with 
active structural controllers.

The rest of the manuscript has been organized as follows: The theoretical and mathematical concepts have 
been summarized in section “Theoretical background”. Section “Methods” explains the process of four OWCs 
geometry designs and advanced computations with WAMIT and FAST software. In section “ANN-based FOWT 
model”, the ANN-based FOWT model have been developed. Section “Computations and results” presents the 
simulations and results, including the corresponding validation. Finally, the last section presents the conclusions.

Table 1.  5-MW FOWT features.

Parameter Value

Hub height 90 m

Center of mass location 38.23 m

Rotor diameter 126 m

Number of blades 3

Initial rotational speed 12.1 rpm

Blades mass 53.22 kg

Nacelle mass 240,000 kg

Hub mass 56,780 kg

Tower mass 347,460 kg

Power output 5 MW

Cut-in, Rated, Cut-out wind speed 3 m/s, 11.4 m/s, 25 m/s
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Theoretical background
The input to the FOWT model is considered as unidirectional regular waves and can be represented  as50 (1):

where the propagation speed is c = �f  . � is the wavelength, which is the distance between successive crests, and 
A is the wave amplitude from Still Water Level (SWL) to the wave crest. To improve the accuracy of the coupled 
simulation by including a nonlinear irregular wave model that is more appropriate for shallow water depths, 
where most offshore wind turbines are sited. Therefore, the nonlinear irregular wave model is incorporated in the 
coupled aero-servo-hydro-elastic simulation of a hybrid FOWT-OWCs system. The two most widely recognized 
theoretical wave spectra are the Bretschneider spectrum for fully developed waves and the JONSWAP spectrum 
for partially developed waves. The generalized representation of the spectrum can be expressed  as51.

where β is exp(− (ω−ωp)
2

2ω2
Pα

2 ) , α is 
{

0.07, if ω ≤ ωp

0.09, if ω ≤ ωp

}

 , Ks is the wave height, and ωp is the peak angular frequency. 

Depending on the wave condition, a value between 1 and 5 is chosen for the heat ratio parameter. The value of 
the standard JONSWAP spectrum γ is 3.352.

The nonlinear dynamics of a 5-MW FOWT integrated with four OWCs to barge a platform in the time-
domain can be described as (3):

where Mij , is the mass inertia, t is the time, u is the control inputs, and ẍ is the second time derivative of the jth 
Degree of Freedom (DOF).

The generalized outside force acting on the system is represented by the term on the right-hand side of Eq. 
(3), which includes the aerodynamic load on the blades and nacelle, hydrodynamic forces on the platform, 
elastic and servo forces. In the frequency domain, the generalized system for the linear equations of motion can 
be expressed as:

where IFOWT , DFOWT , and SFOWT may be represented as inertia, damping, and stiffness matrices, respectively. 
�fPTO(ω) and �fFOWT (ω) represented as the drag of waves and hydrodynamic forces imposed by Power-take-off 
(PTO). A column vector of nonlinear state-space can be deduced from Eq. (4) may be represented as:

The inertia, damping and stiffness matrices of the FOWT can be best expressed in the following Eqs. (6–8).

The coefficient of inertia, IFOWT (ω) for FOWT, AHydro(ω) represents the platform’s added mass, MPlatform and 
MTower are the platform and tower mass matrices, respectively. In the damping matrix DFOWT (ω) for FOWT, 
DHydro(ω) , DTower , and Dviscous denote the floating platform damping, flexible tower matrix, and viscous drag, 
respectively. Dchamber indicates the external damping caused by PTO’s effect on overall dynamics. The stiffness 
matrices SFOWT , SHydro , SMooring and STower are defined as, the platform’s hydrostatic restoring matrix, mooring 
lines, spring stiffness and the tower stiffness coefficients matrix, respectively.

For the four integrated OWCs, the pressure inside the chamber is uniform when assuming that the internal 
free surface behaves like a piston. As a result, the external force is defined as follows:

where ν is the pressure drop across the turbine and S is the internal free surface area. The relationship between 
air density and pressure is an isentropic transformation.

(1)g(t) = Asin(ωt) = A sin(2π ft) = A sin

(

2π

�
ct

)

(2)Si(ωi) = (1− 0.287 ln(γ ))
5ω4

p

16ω5
K2
s γ

βe
5ω4p

16ω5

(3)Mij(x, u, t)ẍj = fi(x, ẋ, u, t)

(4)IFOWT (ω)ẍ + DFOWT (ω)ẋ + SFOWTx = �fFOWT (ω)+ �fPTO(ω)

(5)x =
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(6)IFOWT (ω) = AHydro(ω)+MPlatform +MTower

(7)DFOWT (ω) = DHydro(ω)+ DTower + Dviscous + Dchamber

(8)SFOWT = SHydro + SMooring + STower

(9)fPTO(ω) = −ν(ω)S
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where ρa and νa are the density and pressure of the chamber in its resting condition, and γ is the heat capacity 
ratio of air. The following equation is obtained from the derivative of the linearized form of Eq. (10):

The linearized mass flow inside the turbine can be calculated as:

where Va is the air volume in the chamber in an undisturbed state and V is the air volume variation in the 
chamber. A Wells turbine with a diameter of D and a rotational velocity of N is described by a linear relationship 
between the pressure and flow coefficients.

where the pressure and flow coefficients are given as:

The flow rate determines the pressure drop. As a result of the non-dimensionalization, the linear relationship 
is defined as follows:

where the pressure and flow coefficients can be expressed as:

and g represents the gravitational acceleration value. As a result of incorporating Eqs. (13–15) into Eq. (12), the 
mass flow inside the turbine is described as follows:

The pressure complex amplitude can be expressed by combining Eqs. (12) and (19).

where V̂  is the complex amplitude of the air volume oscillation and the constants ϒ and ε are given by:

 According to Eqs. (12) and (19), the PTO force is described as:

where x̂r is the complex amplitude of the relative displacement. According to the aforementioned Eq. (23), the 
PTO damping and stiffness coefficients are as  follows53:

and

(10)ρ = ρa

(

ν

νa

)
1
γ

(11)ρ̇ =
ρa

γ νa
ν̇

(12)ṁ =
d(ρV)

dt
=

ρa

γ pa
ṗVa + ρaV̇

(13)ψ = Kζ

(14)ψ =
ν

ρaN2D2

(15)ζ =
ṁ

ρaND3

(16)ψc = Kcζc

(17)ψc =
ν

ρagH

(18)ζc =
2πṁ

ρaωSH

(19)ṁ(ω) =
Sω

2πgKc

(20)ν̂(ω) = iω
ϒ

Sω
[

1+ (εϒ)2
] V̂ − ω2 εϒ2

Sω
[

1+ (εϒ)2
] V̂

(21)ϒ =2πρagKc

(22)ε =
Va

ϒνaS

(23)f̂PTO(ω) = −iωBPTOx̂r + ω2KPTOx̂r

(24)BPTO(ω) =
ϒS

ω
[

1+ (εϒ)2
]
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Eventually, in the frequency domain, the system of motion equations for the FOWT, provided by Eq. (4), may 
be represented as:

Equation (26) has a term on the right-hand side that is defined as:

where the viscous force is �fviscous , while the hydrodynamic force of the waves on the platform is �fHydro.
According to a theoretical study, an OWC device’s maximum primary conversion efficiency can reach 

70% under ideal damping conditions (Evans and  Porter54]). However, in practice, the wave energy conversion 
efficiency of an actual wave energy converter is typically lower (or substantially lower). Relevant wave energy 
conversion efficiencies for a number of OWC devices evaluated in wave tanks/flumes have been included in 
Table 2, showing significant variations from one another. In this regard,55 claims that a generic OWC has a 
relatively poor wave energy conversion efficiency of 7.5%, while in  studies56 the efficiency was found to be 
35%. Wells turbine is limited to avoid stalling behaviour. In these  study14,57, researchers introduced stalling-free 
techniques of power extraction applied to the case of the Nereida project plant, located on the Basque coast of 
Mutriku.

The hydrodynamic performance of the OWC device is evaluated by analyzing the hydrodynamic efficiency. 
The power available at the turbine inlet during the period of a wave cycle is provided by

where vi(t) and Pc are the instantaneous velocity and instantaneous value of chamber pressure, respectively. The 
power of the incident wave is defined  as60:

 here PD is the dynamic pressure, h is the water depth below the SWL and q is the free surface elevation. By 
averaging over a wave period, average energy flux PE can be calculated as, which is represented by 

 where g is the gravitational acceleration. The hydrodynamic efficiency of the OWC device is given by

Methods
The barge platform developed by Jonkman et al.19 is a standard 40 m × 40 m × 10 m with a closed moonpool at 
the center. Therefore, it is necessary to integrate the four moonpools of OWCs for platform stabilization using 
computational numerical tools i.e. MultiSurf and WAMIT, in order to couple the resulting surface to FAST.

Geometry design. The geometry of the proposed platform is designed using MultiSurf. Two different 
platforms with distinct features have been evaluated. The first platform, as depicted in Fig.  3a, is a regular 
barge platform, whereas the second platform, as shown in Fig. 3b, is a barge platform with four OWCs in the 

(25)KPTO(ω) =
εϒ2S

ω2
[

1+ (εϒ)2
]

(26)IFOWT (ω)
··

x̂+(DFOWT (ω)+ BPTO(ω))
·

x̂+(SFOWT + KPTO(ω))x̂ = �fFOWT (ω)

(27)�fFOWT (ω) = �fHydro(ω)+ �fviscous(ω)

(28)Pt =
1

T

t+T
∫

t

∫

s

Pc(t)vi(t)dsdt

(29)E =

q
∫

−h

PD · udy

(30)PE =
1

t+T
∫

t

q
∫

−h

PD .udydt =
1

T

t+T
∫

t

q
∫

−h

(P + ρgy)udydt

(31)ηowc =
Pt

PE

Table 2.  Primary conversion efficiency for different OWCs. a  Backward Bent Duct Buoy b Sectional area of the 
air chamber

OWC type AC  areab  (m2) ηmax (%) Period T(s) References

1 Floating 0.166 35 1.67 56

2 BBDBa 0.156 65 1.48 58

3 Fixed 0.96 70 1.69 59

4 Cylinder 0.0085 7.5 1.25 55
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corners. The standard platform is constructed with 2240 rectangular panels within a quarter of the body. On the 
other hand, four moonpools have been incorporated and the platform modeled with 2240 rectangular panels 
according to their coordinates. Each OWC is installed at a distance of 1 m from the sides with the dimensions 5 
m × 5 m × 10 m as illustrated in Fig. 3. Table 3 provides the structural characteristics of the barge platform and 
the four identical OWCs.

Advanced hydrostatic and hydrodynamic computations. After designing the geometry of the 
newly proposed four OWCs-based barge platform, it is necessary to obtain the hydrodynamic and hydrostatic 
parameters. Therefore, the WAMIT numerical tool has been used to perform the advanced computations of these 
features. WAMIT is a diffraction panel program developed for the linear analysis of the interaction of surface 
waves with various types of floating and submerged structures. Hydrostatic and hydrodynamic coefficients have 
been obtained using the MultiSurf file directly into WAMIT to get the matrices AHydro(ω) , BHydro(ω) , SHydro and 
fHydro(ω) as described in section “Theoretical background”. WAMIT calculates the hydrodynamic loads due to 
the water pressure on the wetted surfaces and can be linked to MultiSurf to use the geometry of the four OWCs-
based barge model. Based on Gauss’ divergence theorem all hydrostatic data may be represented as surface 
integrals over the mean wetted body surface Sb . The following equation can describe the relationship between 
added mass and damping  coefficients61:

The normalized added mass and damping coefficients can be calculated as:

(32)Aij −
i

ω
Bij = ρ

∫∫

Sb

niϕjdS

Figure 3.  Platforms geometry design.

Table 3.  Standard barge and the four OWCs-based barge platforms’ features.

Parameter Value

Platforms’ size (W L H) 40 m 40 m 10 m

Each OWC’s size (W L H) 5 m 5 m 10 m

Draft, Free board for both platforms 4 m, 6 m

Water displacement for the simple barge 6400 m 3

Water displacement for the barge with OWCs 6000 m 3

Mass, Including Ballast 5,452,000 kg

CM Location below SWL 0.281768 m

Roll Inertia about CM 726,900,000 kg·m2

Pitch Inertia about CM 726,900,000 kg·m2

Yaw Inertia about CM 1,453,900,000 kg·m2

Anchor (Water) Depth 150 m

Separation between Opposing Anchors 773.8 m

Unstretched Line Length 473.3 m

Neutral Line Length Resting on Seabed 250 m

Line Diameter 0.0809 m

Line Mass Density 130.4 kg/m

Line Extensional Stiffness 589,000,000 N
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where L is the length scale and

The volume is defined as:

The following are the coordinates of the center of buoyancy:

The matrix of hydrostatic and gravitational restoring coefficients defined as:

where xg , yg , zg are the coordinates of the center of gravity and x1 to x8 are:
x1 = ρg

∫∫

Sb
,

x2 = ρg
∫∫

Sb
yn3 dS,

x3 = ρg
∫∫

Sb
y2n3 dS + ρg∀zb −mgzg,

x4 = −ρg
∫∫

Sb
xyn3 dS,

x5 = ρg∀xb +mgxg
x6=ρg∀xb +mgxg
x7 = ρg

∫∫

Sb
x2n3 dS and

x8 = −ρg∀yb +mgyg.
Two different barge platforms have been designed, one of them with open OWC and the other with closed 

OWC. Then, hydrodynamics (HydroDyn) and damping coefficients have been obtained for each platform using 
WAMIT, so that the resulting systems may be modelled within FAST. However, regarding WAMIT multiple 
bodies (NBodyMod = 2 or 3) calculations, WAMIT includes the capability to analyze multiple bodies that interact 
hydrodynamically and mechanically, which allows the use of separate WAMIT solutions for each body. Each of 
the separate bodies may oscillate independently with up to six degrees of freedom. The multiple WAMIT bodies 
can represent HydroDyn or the substructure flexibly using SubDyn. These bodies maybe coupled to FAST using 
SubDyn, a potential-flow solution, or HydroDyn, a finite-element beam model. In particular, for the purpose of 
this study case, two separate Geometric Data Files (GDFs) are  needed62.

The hydrodynamic data and added mass are obtained from WAMIT to be integrated into FAST. The procedure 
of interfacing modules to achieve aero-hydro-servo-elastic simulation has been described above in Fig. 4. The 
mooring lines’ tension depends on the buoyancy of the platform at hand, the cable weight, its elasticity, viscous-
separation effects and the geometrical layout of the mooring system. In this sense, the aforementioned FAST 
software configures the catenary mooring lines system based on a quasi-static model, so that a time-domain 
model is used to compute the mooring tensions for a barge platform.

Figure 5, which shows how oscillations are damped by deploying 4 OWCs in the barge platform. Therefore, 
the use of oscillating water columns as an active structural controller for the floating platform stabilization.

ANN‑based FOWT model
ANN is used to learn from data in order to make future predictions and is capable of recognizing patterns and 
making judgments based on previously stored  information63,64. In this case, the row vectors of the inputs and 
weights are, x= [x1, x2, . . . , xn] and w=[w1,w2, . . . ,wn] respectively. The bias bj , which is a parameter in the 
ANN used to regulate the output, represents the deviations with respect to the mean value. The data has been 
transferred from the input layer to the output layer by the feed-forward network.

(33)Āij =Aij/ρL
k

(34)B̄ij =Bij/ρL
kω

(35)

{

k = 3 for (i, j = 1, 2, 3)
k = 4 for (i = 1, 2, 3, j = 4, 5, 6) or (i = 4, 5, 6, j = 1, 2, 3)
k = 5 for (i, j = 4, 5, 6)

(36)∀ = −

∫∫

Sb

n1x dS = −

∫∫

Sb

n2y dS = −

∫∫

Sb

n3z dS

(37)xb =
−1

2∀

∫∫

Sb

n1x
2 dS

(38)yb =
−1

2∀

∫∫

Sb

n2y
2 dS

(39)zb =
−1

2∀

∫∫

Sb

n3z
2 dS

(40)SHydro =















0 0 0 0 0 0
0 0 0 0 0 0
0 0 x1 x2 x3 0
0 0 0 x4 x5 x6
0 0 0 0 x7 x8
0 0 0 0 0 0

















9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1499  | https://doi.org/10.1038/s41598-023-28703-z

www.nature.com/scientificreports/

This transformation from the input to the output is defined with the activation function σj as:

where sj is a weighted sum of the inputs, establishing the connection between the jth neuron in a given layer, and 
the kth neurons in the previous layer, bj is the bias, and N is the total number of neurons.

Several activation functions have been tested to train these networks according to the dynamics of the data. 
Finally, the ReLU activation function, which is defined as max(0, sj) has been used in the input layer, and for the 
hidden layers, the hyperbolic tangent activation function has been used, which is defined by (esj -e-sj )/(esj + e-sj ). 
It is well established that single hidden layer networks, known as Vanilla Neural  Networks65, perform poorly 
with highly non-linear and complex problems. On the other hand, network structures with more than one 
hidden layer, known as deep neural networks, offer better  performance66. Therefore, due to the complexity of 
the proposed four OWCs-based barge FOWT system Multi-Layer Perceptron (MLP) has been employed as 
shown in Fig. 6.

Mean Squared Error (MSE) has been calculated to choose the best for our proposed FOWT model.

where n is the total number of observations, vk is target output, and v′k the estimated output by ANN.
For best results, the Levenberg-Marquardt algorithm (LMA)24 is used.

(41)vj = σj(sj) = σj
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Figure 4.  Interfacing modules to achieve aero-hydro-servo-elastic simulations.

Figure 5.  Standard based Barge Platform and 4-OWCs-based Barge Platform simulations.
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where the Jacobian matrix defined in Eq. (43) contains the first derivatives of the network errors with respect 
to weights and biases.

where e is the network errors and W is the weights vector.
The gradient of performance in our case may be defined as:

The LMA is used here to take into account both curvature and slope for faster convergence. Thus, it performs 
the modified gradient descent :

where µ is the learning rate and I is the identity matrix.
There are four operating regions for wind turbine  operation67, (see Fig. 7). In Region 2, corresponding usually 

to MPPT mode, the generator and rotor speeds increase with wind speed to maintain a constant tip-speed ratio 
and optimal wind-power conversion efficiency, while in Region 3 the wind turbine operates at rated power due 

(43)J(W) =
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Figure 6.  Proposed MLP network for the four OWCs-based barge FOWT system.

Figure 7.  Operating regions in wind turbines.
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to a strong power limitation pitch control action. On the other hand, there is no power generation in regions 1 
and 4 as may be observed in see Fig. 7. In this context, please note that the aim of the proposed ANN scheme is 
to capture and match the dynamical behavior of the structure. In this sense, since the control strategies will limit 
the power to 5MW, there was no particular interest in including simulations in the full operating region (3-25m/s) 
as shown in Fig. 8. Therefore, the data sets employed are those of the regions presenting the richest dynamical 
diversity. That is, comprising 8-15m/s wind speed representative ranges within those regions. Meanwhile, the 
control of the pitch angle has been removed to model the real behavior of the system in the absence of a controller.

Furthermore, as indicated previously, the main objective of the work is to use ML algorithms to replicate 
the complex hybrid dynamics of the FOWT-OWCs combined structure, allowing the use of feedback controls. 
However, it would be an excellent idea in the future to extend the use of ML approaches to study other aspects 
such as such as damping from the oscillating water columns.

Computations and results
The structure for collecting, simulating and developing the network has been described in the diagram of Fig. 9. 
MultiSurf is used to define the platform’s structural geometry. Then, the hydrodynamic forces, added mass, 
damping coefficient, and hydrostatic matrices are then calculated using WAMIT. These matrices are introduced 
to FAST to compute the aerodynamic characteristics and behaviour of the 5MW floating offshore wind turbine. 
In particular, simulations for wind speeds from 8 to 15 m/s provide different dynamic responses of the FOWT 
structure.
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Figure 8.  Full operating range response test for the uncontrolled model.

Figure 9.  Modeling procedure of the hybrid system.
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The data set of two inputs, wind speed and wave elevation has been considered to train the ANN. These 
models replicate the structural behavior of a FOWT and its power dynamics with an output vector defined as:

The 6 DOF dynamics: translational modes are; tower fore-aft and side-to-side displacements, rotational mode; 
platform roll and platform pitch angles, generated power and generator rotational speed are considered by 
enabling the aero-hydrodo-servo-dynamics. The demanding tasks of dynamical matching have been performed 
by training the ANN model. The network comprises two inputs and six outputs (2 × 6), whereas the wave 
elevations and wind speeds are inputs to the network as shown in Fig. 13a and b. The estimated outputs are 
platform pitch, platform roll, side-to-side and fore-aft displacements, generator rotational speed, and the 
generated power. The prediction of heave motion using the proposed ANN model has not been addressed. 
Although heave motion is quite relevant in stand-alone off-shore OWC-based PTOs where a resonant condition 
is even desired for MPPT maximum power production, the objective of this work does not relay in such a strong 
way in this aspect, so that its particular  study68 has not been stressed.

Training results. In order to achieve the best performance, simulations were carried out to find the best 
fit with the help of a multi-layered perceptron. The data have been divided into three parts: 70% of all data for 
training, 15% for validation, and 15% for testing. Muti-layered networks are capable of performing just about 
any linear and nonlinear computations and can approximate any reasonable functions arbitrarily well. Such 
networks overcome the problems associated with perceptions and linear networks.

Several training functions are examined to train the network, for example, trainlm, is frequently the 
fastest backpropagation method and is strongly recommended as a first-choice supervised technique, despite 
requiring more memory than other algorithms. A trainrp is a network training function that uses the robust 
backpropagation (Rprop) algorithm to update weight and bias variables. The resilient backpropagation training 
technique tries to eliminate the negative impacts of partial derivative magnitudes. All conjugate gradient 
algorithms attempt the steepest descent direction on the first iteration (negative of the gradient). A traincgb is a 
network training function that uses conjugate gradient backpropagation with Powell-Beale  restarts69 to update 
weight and bias values. The search direction is regularly reset to the gradient’s negative in all conjugate gradient 
algorithms. trainbr is a network training function that uses Levenberg-Marquardt optimization to update the 
weight and bias  variables70. It minimizes a combination of squared errors and consequences before determining 
the best combination to create a generalizable network. The procedure is known as Bayesian regularization. The 
best results are found activating Levenberg-Marquardt24 optimization techniques as shown in Fig. 10. The ANN 
models have 5 hidden layers in which the neurons in the hidden layers use sigmoid as the activation function 
and this network uses linear activation function (ReLU) in the output layer. In order to get satisfactory results, 
the lowest MSE has been targeted.

The results obtained after using various training functions are summarized in Table 4. The first column 
contains the network training function, the second column is for performance, followed by MSE values, and the 
number of epochs. The plot of the trained feed-forward network error values histogram is shown in Fig. 11. It 
illustrates the distribution of the degree of errors. Most of the errors are closest to zero, with very few deviations 
from that. The graphs for training, testing, and validation for ANN are shown in Fig. 12a. It can be seen that the 
best validation performance has been found for MSE is equal to 316 at 305 epochs employing the LMA training 
function. The regression curves are also close to one, which implies that the estimated ANN data mimic perfectly 
the target data as illustrated in Fig. 12b. The black lines for training, green curves for validation, and red curves 
for testing have been labeled in these figures.

Validation results. Once the ANN models have been developed and trained, they need to be adequately 
validated. Results, shown in Figs. 14, 15 and 16, demonstrate the effectiveness of the designed ANN models. 

(46)v′ Tk =
[

Pitch Fore-aft Roll Side-to-Side Rotational − speed Power
]

Figure 10.  Errors graphs for validation.
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Figure 11.  Errors histogram for validation with LMA training function.

Figure 12.  ANN inputs.

Table 4.  History of training performance employing varied training functions.

Training function Performance MSE R Epochs Training function Performance MSE R Epochs

trainrp

Validation

542

0.9994

479 trainscg

Validation

341

0.9998

914Training 0.9994 Training 0.9999

Test 0.9995 Test 0.9998

traincgb

Training

428

0.9995

675 trainbr

Training

319

0.9997

942Validation 0.9996 Validation 0.9998

Test 0.9996 Test 0.9998

traincgf

Training

351

0.9998

343 trainblm

Training

316

0.9999

953Validation 0.9996 Validation 0.9999

Test 0.9998 Test 0.9999

traincgp

Training

344

0.9996

513Validation 0.9997

Test 0.9996
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The red curve (solid) corresponds to the ANN-based model and the black curve (dashed) represents the FAST 
model. For this type of system, a periodic steady-state condition was found by simulating the nonlinear model 
long enough to dampen out the transient state. Therefore the first 500s of simulations have been omitted to avoid 
transients.

Figure 14a and b correspond to the platform pitch angle and fore-aft displacement. As it may be observed, they 
reveal that the model has been adequately trained and that there is a high agreement between the values obtained 
from FAST and the proposed ANN model, with slight differences for non-representative low wind speeds.

Figure 13.  ANN inputs.

Figure 14.  Platform‘ Pitch angle and top-tower displacement.

Figure 15.  Platform‘ Roll angle and side-to-side displacement.

Figure 16.  Generator rotational speed and power.
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In turn, Fig. 15a and b display the platform roll and side-to-side displacement. It may be observed also how 
the ANN model outputs, successfully match the behavior of the FAST model but, with slight differences for 
some wind speeds in the platform roll and side-to-side displacement. Nevertheless, it should be noted that this 
composes a minor error due to the reduced movement range since the system inputs have a negligible effect on 
platform roll and fore-aft displacement.

In Fig. 16a and b, the results show that as the wind speed increases, the generated rotational speed increases 
and the power exceeds its nominal value, which is 5MW. It can also be observed that, at the wind speed of 15m/s, 
the power increases to around 8MW due to the absence of pitch angle control, or torque control.

Irregular wave scenario. In this subsection, a nonlinear irregular wave model appropriate for shallow 
water depths, where some offshore wind turbines are sited, has been developed in order to improve the accuracy 
of the coupled system simulations. To do so, the nonlinear irregular wave model is incorporated into the coupled 
aero-servo-hydro-elastic simulation of a hybrid FOWT-OWCs system. The FAST numerical tool is re-simulated 
under irregular wave conditions for wind speeds of 8–15 m/s to study the dynamic behavior of the structure. The 
ANN1 model is then developed and trained for these irregular wave conditions.

The network consists of two inputs and six outputs. The network’s inputs are shown in Fig. 17, and its 
estimated outputs are shown in Figs. 19, 20 and 21. ANN1 model comprises 5 hidden layers in which there are 
neurons hidden layers that use sigmoid as an activation function and this network uses linear activation function 
(ReLU) in the output layer. For good results, the lowest MSE has been targeted. In Fig. 18a, it can be seen that 
the best validation performance has been found for MSE equal to 2.241× 10−2 at 350 epochs employing the 
LMA training function. The regression curves obtained R = 1, which demonstrates that the network has been 
trained adequately.

Figure 17.  ANN input.

Figure 18.  Tanning performance and regressions curves.



16

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1499  | https://doi.org/10.1038/s41598-023-28703-z

www.nature.com/scientificreports/

As it can be observed from Figs. 19, 20 and 21, the model has been properly trained and validated, showing 
a strong correlation between the results from FAST and the suggested ANN1 model under irregular wave 
conditions. In particular, side-to-side displacement and platform roll angle are shown in Fig. 20a and b, 
respectively, with minor variations for low-high wind speeds.

In all of these figures, it is clearly demonstrated that the proposed ANN model presents an excellent agreement 
with the gold standard software FAST for various conditions and functions flawlessly in tough conditions. 
Therefore, as it has been proven, the hybrid platform ANN composes a reliable model that enables closed-loop 
control implementation and, in particular, for platform stabilization feedback control.

Conclusion
This work presents the design and validation of an artificial neural network-based model of a hybrid floating 
offshore wind turbine with integrated oscillating water columns. The data has been obtained by incorporating 
FAST hydrodynamics, aerodynamics, and servo-dynamics properties for the whole hybrid system. The aim of the 
proposed ANN model is to match the behavior and structural performance of the hybrid FOWT-OWCs system. 
To achieve this objective, the model has been trained with adequate parameters taking into account the lowest 
MSE so as to enable closed-loop control of the hybrid FOWT system. The model has been then benchmarked 
for diverse wind speed and wave scenarios in order to demonstrate its computational efficiency, validity, and 
accuracy, comparing the obtained ANN-based FOWT model’s outputs to those of the complete non-linear 
complex FAST model.

Figure 19.  Top tower fore-aft displacement and platform pitch in irregular wave conditions.

Figure 20.  Side-to-side displacement and platform roll in irregular wave condition.

Figure 21.  Generator rotational speed and power in irregular wave conditions.
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The results show that the proposed control-oriented ANN model is highly accurate at predicting the power, 
tower displacements and its translational and rotational modes. In this way, the forecasting and predictive 
capabilities of the ANN model compose an efficient and promising alternative to model complex systems, as is 
the case of FOWT-OWCs hybrid systems, facilitating future investigations for the implementation of platform 
stabilization closed-loop control. The proposed methodology can be useful, as a supportive tool, in the studies 
of offshore wind farm designers.

This work will be extended in the future to incorporate advanced machine learning control algorithms with 
a feedback loop to reduce unwanted platform motions. In addition, this work will be expanded to include 
uncertainties and irregular waves for robust control designs of undesired platform vibration modes control of 
hybrid systems.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.
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