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A B S T R A C T   

Acoustic emission (AE) was used for in-situ filiform corrosion (FFC) monitoring on coated AA77075-T6. The 
analysis of AE data using DBSCAN as clustering algorithm (validated by Bhattacharyya Coefficientś evaluation) 
has revealed the presence of three clusters (out of four) related to phenomena involved in the FFC mechanism: 
metal-coating interface delamination due to opening (tensile), sliding (shear) and mixed mode enclosing both 
previous ones. The peak frequency was found to be the most relevant descriptor for clustering by using Random 
Forest classifier, and the correlation with the dominant frequencies range was validated obtaining the Power 
Spectrum Density of the AE signals.   

1. Introduction 

Nowadays, aluminium alloys are still having a prominent role as a 
lightweight material for aircraft’s design, although its protection by 
coatings is a must. The maintenance, repairs, and operations (MRO) 
costs turns to be a decisive matter, triggering the development of new 
strategies to reduce their corresponding budget (the corrosion costs of 
United States Department of Defense were $10.18 billion in financial 
year 2018 compared to $8.97 billion in 2017 [1,2]). In this sense, 
structural health monitoring (SHM) systems based on non-destructive 
techniques have proven to enable the in-service detection of damage, 
allowing to rationalize the maintenance efforts, i.e., reducing the level 
and timing of inspection. Acoustic emission technique (AE) is a powerful 
tool for real-time monitoring on full-scale elements (e.g., damage on real 
structures with different materials) [3–7]. Concerning to corrosion 
damage on structures, studies have been mainly focused on reinforced 
concrete [6,8,9], stress corrosion cracking and corrosion fatigue [10, 
11]. 

Coated metals have been scarcely explored, where filiform corrosion 
(FFC) typically occurs undermining the substrate-coating interface 

which could evolve to a more severe corrosion (e.g., nucleation site for 
fatigue corrosion or further flaking of the coating). Usually, in-situ 
scanning Kelvin probe (SKP) experiments are able to develop FFC 
under atmospheric conditions [12,13]. The FFC mechanism was shown 
to depend on the relative susceptibility of alloy phases to undergo anodic 
dissolution [12]. In order to minimise FFC, corrosion inhibitors are 
employed in coatings formulation to minimise corrosion-driven organic 
coating disbondment [13]. This corrosion phenomenon was already 
explored by Ruggeri and Beck using AE [14]. It was observed that FCC 
events were mainly linked to hydrostatic pressure, mechanical prying, 
anodic undermining, or more precisely, as a combination of them. 
Further investigations highlight that the formed corrosion products are 
triggering the failure of coated steel [15] or coated aluminium interfaces 
[16]: e.g., the mechanical lifting (i.e., disbondment or delamination) of 
the coating. Therefore, although AE is a suitable technique to monitor 
FCC, the signature of the AE signals is not defined yet to implement a 
reliable SHM strategy for in-service structures. 

One of the main limitations of the AE data is the classification of the 
AE signal with the aim to find out the AE signature [17]. AE data de-
pends on the properties of the material, the sensor characteristics, the 
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noise and the nucleation/evolution of the damage event (e.g., cracks) 
[18]. Moreover, the acoustic sources are usually affected by one another, 
and thus, distinguishing the different stages of damage using a tradi-
tional AE analysis method is not straightforward. Therefore, the classi-
fication of a collection of recorded AE signals during corrosion must be 
addressed using different approaches. One of the most popular one is 
based on clustering algorithms [19–21]. Cluster analysis includes three 
main steps: i) to extract the AE characteristic parameter, ii) to select the 
clustering algorithm, and iii) the validation of the defined clusters [19, 
20]. 

This methodology has been widely used for the classification of AE 
signals: from supervised classification methodologies [11,22–24] to 
unsupervised ones. Different algorithms such as Artificial Neural 
Network (ANN) [25] and especially K-Means [25–28] have been used to 
identify the different mechanisms of damage such as pitting [22,24,26] 
or stress corrosion cracking [11,23,25,27,28]. In addition to this 
K-means algorithm, lately the DBSCAN algorithm is also being widely 
used in this field [29,30]. K-means is an unsupervised clustering algo-
rithm that groups objects into k groups based on their characteristics. 
Clustering is performed by minimising the sum of distances (usually 
quadratic) between each object and the centroid of its cluster. Although 
the algorithm is suitable for datasets with globular and similar-size 
clusters, good results have been achieved for clustering pitting corro-
sion signals [31], analysing the corrosion on pure magnesium [32], 
classifying acoustic emission signals of stainless steel during stress 
corrosion [27] and characterizing the stress corrosion cracking on 
stainless steel [33]. On the other hand, DBSCAN is a density-based 
clustering method that groups the points which are closer, based on 
the distance (usually Euclidean). Besides, points that are in low density 
regions are identified as outliers. The DBSCAN algorithm is particularly 
effective for datasets of multiple-size clusters or data overlapped by 
noise, providing solid results in relation to concrete structures moni-
toring [7], rail steel health analysis [29] and investigation of defects in 
roll contacts [30]. Therefore, in this paper, given that the data structure 
of AE signals associated to FFC has not been fully explored yet, both 
K-means [34] and DBSCAN [35,36] can be explored. 

In this study, FFC was triggered on coated AA7075-T6 and in-situ 
monitored by AE sensors. Features such as the potential of the metal/ 
coating interface and the topography of the filament were also obtained 
by SKP, together to the morphology of the attack by confocal and optical 
microscopes. Regarding to the AE results, descriptors and signals were 
analysed by clustering algorithms (i.e., K-Means and DBSCAN) and time- 
domain and frequency-domain analysis, respectively. Prior to use the 
algorithms, Principal Component Analysis (PCA) were used to reduce 
the dimensionality of the AE descriptors of interest. 

2. Material and methods 

Experiments were carried out by using plates of AA7075-T6 
aluminium alloys (their chemical composition is depicted Table 1). 
Specimens were subjected to alkaline degreasing using Bonderite® C-AK 
18 for 3 min, followed by acid pickling by immersion in nitric acid (30% 
v/v) for 2 min before painting. MAPAERO P60 was used as a primer and 
MAPAERO F70 as a topcoat. Both are epoxy-based coatings, with the 
primer layer containing strontium chromate as a pigment acting as 
corrosion inhibitor. The final layer of primer and topcoat coatings have 
reached 20 µm and 25 µm thickness, respectively. 

2.1. Experimental details 

Two coated plates of 100 × 75 mm2 and 1 mm thick were used as 
specimens to promote FFC. An artificial defect (cross scratch of 35 mm 
length) was created manually by using a scalpel blade (Fig. 1(a)) [37]. 
The corrosion process was activated in the bare aluminium after expo-
sure to vapour of HCl (2% v/v) for 1 h (2% v/v), followed by 24 h of 
exposure to a Copper-Accelerated Acetic Acid-Salty Spray (CASS) 
chamber [38]. Finally, the samples were located into the Scanning 
Kelvin Probe (SKP) chamber during 850 h and 670 h, for S1 and S2 
specimens, respectively. 

2.1.1. Scanning Kelvin Probe 
Once the specimen was activated (pre-corroded) to trigger FFC, the 

AE sensor was coupled to it before placing into the SKP. The SKP, sup-
plied by Wicinski-Wicinski GbR, was used to measure the Volta potential 
of the coating-metal interface and the topography at the surface. The 
relative humidity in the chamber was kept at high humidity (85%) and a 
constant temperature of 23 ºC. Prior each experiment, the SKP needle 
(Ni-Cr one) was calibrated with a saturated Cu/CuSO4 (320 mV Vs. 
Standard Hydrogen Electrode (SHE)). Besides, the SKP was equipped 
with a long working distance camera Dino-Lite (Digital Microscope) to 
optically monitor the filaments. 

Line-scan measurements (from 22 to 30 mm length) were performed 
in such a way that FFC’s filaments were crossed by the needle of the SKP. 
The measurement was set at 100 points/mm (step size of 10 µm) and the 
distance needle-surface was kept constant during the experiment. 
Several filaments were chosen to perform the line-scans at different 
distance with time, starting from distance called 0 (i.e. D0–0, at which 
the filament was already formed and evolving) to distance n (e.g. D0–6) 
as it is shown in Fig. 1(b). Fig. 1(c) shows the whole set-up, consisting of 
a specimen placed on the plate inside the environmental chamber of the 
SKP probe: the needle and the acoustic sensor are monitoring the po-
tential/topography and the acoustic emission signals, respectively. 

2.1.2. Acoustic emission (AE) 
The acoustic emission (AE) is a non-destructive technique for ma-

terial diagnosis based on the capture of the elastic waves that come from 
an acoustic source when a physical change occurs in the field of the 
deformations (e.g. delamination). The accumulated energy due to such 
deformation is released, partially, in the form of elastic energy [39], 
which spreads in all directions as a volume wave (P and S modes). The 
acoustic wave, when reaching the surface (interface), becomes a surface 
wave (Rayleigh) that, in turn, is converted into an AE signal by the 
piezoelectric sensor. 

In this case, the AE generated during the progress of FFC filaments 
was captured by a wide-band piezoelectric sensor, a PKBBI model, which 
integrates a preamplifier of 26 dBAE, and whose acoustic response 
(sensitivity) is ranged between 20 and 600 kHz (Fig. 2), thus covering 
the domain of the corrosion phenomena, or to be more precise, the 
corrosion-related mechanisms as: mechanical delamination (e.g., FFC), 
crack initiation and growth (e.g., stress corrosion cracking, SCC), 
Hydrogen/Oxygen evolution as bubbles (e.g., pitting), etc. The sensor 
was clamped (tightening pressure < 4 Pa) and coupled to the specimen’s 
surface with silicone grease. Prior each test, the coupling of the AE 
sensor was verified by means a Hsu-Nielsen test, according to common 
AE standards. 

The AE signals were processed in real time with an acquisition sys-
tem, Micro-SHM, and the data was visualized with the software AEWin. 
Both, sensor and acquisition system, are from the brand Physical 

Table 1 
Chemical composition of 7075 aluminium alloy.   

Si [%] Fe [%] Cu [%] Mn [%] Mg [%] Cr [%] Zn [%] Ti [%] Others [%] Al 

Al7075 0.069 ± 0.005 0.10 ± 0.02 1.33 ± 0.04 0.032 ± 0.002 2.52 ± 0.07 0.18 ± 0.02 5.77 ± 0.13 0.026 ± 0.003 < 0.15 Balance  
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Acoustic Corporation (PAC) provided by Mistras. The data acquisition 
system was set with a threshold of 25 dBAE based on background noise 
measurements, while the sample rate was established at 2 MHz, and the 
waveforms were recorded with 4k of length. Regarding the AE timing 
parameters, the values were set as PDT = 700 µm, HDT = 1500 µm, HLT 
= 1500 µm and Max. Duration = 100 ms, following standard acquisition 

criteria for metallic material. 

3. Calculation 

Clustering techniques have been used to analyse the AE results. 
Taking into account that AE data is not labelled, and no defined 
dependant variable is considered, unsupervised classification methods 
are suitable to be chosen as clustering technique. 

3.1. Preliminary analysis of the AE descriptors 

AE analysis is conventionally focused on the descriptors of the AE 
signal, traditionally called AE parameters, which are extracted from the 
waveform of the signal (temporal domain) as well as from the frequency 
spectrum (frequency domain). AEwin software has provided up to 20 
descriptors but some of them were deemed negligible for the analysis (e. 
g. Channel or Parametric inputs (not used)). Moreover, the dendrogram 
of correlation has shown that Signal Strength parameter was redundant, 
giving the same information as the Energy (correlation > 0.99), so it was 
discarded. Thus, a sorted list of the 16 relevant descriptors have been 
included in Table 2. 

Fig. 1. : (a) Specimen S2 after exposure to the SKP, having a cross scratch as an artificial defect, (b) scheme of the scanning lines at the surface of the specimen (S1) 
following the progress of the filament with time by SKP, and (c) experimental set-up during environmental exposure inside the Scanning Kelvin Probe and 
AE monitoring. 

Fig. 2. : Sensitivity curve of wide-band sensor PKBBI.  
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During the next step, Principal Component Analysis (PCA) has been 
used as pre-processing procedure before clustering. PCA was performed 
on AE descriptors (Table 2) in order to define/extract the uncorrelated 
features [40]. PCA constructs a set of uncorrelated directions that are 
ordered by their variance and is based on the following basic assump-
tion: directions of large variance are the result of structure in those di-
rections [41]. 

Prior to apply PCA, the value of each descriptor was normalized to N 
(0,1). The selected principal components where the j most representa-
tive eigenvectors. In this work, j was defined as the minimum number of 
eigenvalues that corresponded together to more than 95% of the stan-
dard deviation of the data set, j = 6. Table 3 shows the features that 
have been selected to apply the clustering method. The remaining 
principal components could be neglected. Finally, the data was 
expressed in the j-principal components base. 

Once the relevant features were selected, the two clustering methods 
were evaluated: the K-Means and the DBSCAN algorithms. 

3.2. Clustering methods 

Despite clustering is considered one of the most important methods 
for unsupervised learning, an agreement has not been reached yet to 
define it [42]. A classic definition enclose the following points [43]:  

1. Instances, in the same cluster, must be similar as much as possible.  
2. Instances, in the different clusters, must be different as much as 

possible.  
3. Measurement for similarity and dissimilarity must be clear and have 

practical meaning. 

A variety of clustering algorithms can be separated based on the 
criteria used to create the groups [42], where the most common are the 
partition-based clustering, the distribution-based clustering, the 
density-based clustering and the centroid-based clustering. In this work, 
the analysis is focused over the partition and density-based clustering, 
the K-Means and the DBSCAN algorithms, respectively. The former one 
is based on the centre of data points as the centre of the corresponding 
cluster, whereas the latter one is based on considering regions with high 
density of the data space to belong to the same cluster. 

3.2.1. K-means algorithm 
One of the most popular and user-friendly unsupervised machine 

learning algorithms is K-Means clustering [44]. A target number k is 
defined, which refers to the number of centroids that are in the dataset, 
being a centroid, the imaginary or real location representing the centre 
of a cluster. Every data point is allocated to each of the clusters through 

reducing the in-cluster sum of squares. 
The approach k-Means follows is to solve the problem called Expec-

tation-Maximization. The E-step is assigning the data points to the closest 
cluster. The M-step is computing the centroid of each cluster. The 
objective function is: 

J(x) =
∑K

k=1

∑n

i=1
wik

⃦
⃦
⃦x(k)i − μk

⃦
⃦
⃦

2
(1)  

Where wik = 1 for data point xi if it belongs to cluster k; otherwise, wik =

0. Also, μk is the centroid of x(k)
i cluster. 

It is a minimization problem of two parts. The E-step consists of 
assigning the data point xi to the closest cluster judged by its sum of 
squared distance from cluster’s centroid: 

∂J
∂wik

=
∑K

k=1
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i=1

⃦
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2
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⎩
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⃦x(k)i − μk

⃦
⃦
⃦

2

0otherwise.

⎫
⎬

⎭

(2) 

The M-step is recomputing the centroid to each cluster to reflect the 
new assignment: 

∂J
∂μik

= 2
∑n

i=1
wik

(
x(k)i − μk

)
= 0⇒μk =

∑m
i=1wikx(k)i∑m

i=1wik
(3) 

K-Means algorithm is good in capturing structure of the data if 
clusters have a spherical-like shape. However, it does not provide opti-
mum results when clusters have a complicated geometric shape. 

3.2.2. Density-based spatial clustering of applications with noise 
(DBSCAN) 

As it was mentioned above, one limitation of clustering algorithms 
based on spherical-shaped clusters is the presence of noise and outliers. 
The DBSCAN, a density-based clustering algorithm, was the first one 
used to address this drawback. It was designed to cluster data of arbi-
trary shapes in the presence of noise in special and non-spatial high 
dimensional databases [35]. According to DBSCAN, the neighbourhood 
of a given radius (ε), for each object into a cluster must contain at least a 
minimum number of objects (MinPts), which means that the cardinality 
of the neighbourhood has to exceed certain threshold.  

▪ ε defines the size and borders of each neighbourhood. ε(0) is a 
radius, if ε is too small, then large part of the data will be 
considered as outliers; whereas if it is too large, the clusters will 
merge, and the majority of the data points will be in the same 
clusters. The ε-neighbourhood of x is given by [47]: 

Nε(x) = Bd(x, ε) = {y ∨ δ(x, y) ≤ ε} (4)  

where δ(x,y) is the distance between two points x, and y, the 
ε-neighbourhood of x, N_ε (x).  

▪ MinPts: the density threshold. A point will be considered dense 
if there are at least the value of MinPts points in its ε-neigh-
bourhood: these are the core points. A border point has ε-neigh-
bourhood that contains < MinPts points, but it belongs to the 
ε-neighbourhood of another core point. If a point is not a core 
point or a border one, it is a noise point, or an outlier. A heuristic 
way to choose MinPts value: 

MinPts =
1
n
∑n

i=1
Pi (5)  

where Pi is the number of points in the ε-neighbourhood of point i, and n 
is the number of points in the dataset [45]. 

3.2.3. Evaluation methods 
In contrast to supervised learning, where there is some ground truth 

available to evaluate the model’s performance, clustering analysis does 

Table 2 
AE descriptors recorded during the experiments.  

# Descriptor name # Descriptor name 

1 Risetime [µs]  9 Initiation Frequency [kHz] 
2 Counts-to-Peak  10 Absolute Energy [aJ] 
3 Counts  11 Partial Power 1 [%] 
4 Energy [J]  12 Partial Power 2 [%] 
5 Duration [µs]  13 Partial Power 3 [%] 
6 Amplitude [dB]  14 Partial Power 4 [%] 
7 Average Frequency [kHz]  15 Frequency Centroid [kHz] 
8 Reverberation Frequency [kHz]  16 Peak Frequency [kHz]  

Table 3 
Descriptors associated to the first 6 PCs.  

# Descriptor name # Descriptor name 

1 Risetime [µs]  4 Absolute Energy [aJ] 
2 Duration [µs]  5 Frequency Centroid [kHz] 
3 Amplitude [dB]  6 Peak Frequency [kHz]  

C. Abarkane et al.                                                                                                                                                                                                                              



Corrosion Science 214 (2023) 110964

5

not have a solid evaluation metric. Moreover, since k-Means requires k 
as an input and does not learn it from data, the number of clusters is 
undefined for a specific problem. However, there are some metrics that 
may give some insights [46] such as the Elbow method, the Silhouette 
analysis and the Bhattacharyya Coefficient. 

3.2.3.1. Elbow method. The Elbow method is able to distinguish the 
hypothetical number of clusters for a certain dataset. Initially, k = 2 is 
specified as the optimal cluster number k, and then it keeps increasing k 
in order to distinguish the potential optimal cluster (number k corre-
sponding to the plateau) [47]. The goodness of the k number is based on 
the sum of squared distance (SSE) between data points and their 
assigned clusters’ centroids. The optimal k corresponds to the point 
where SSE starts to flatten out and forming an elbow. 

3.2.3.2. Silhouette analysis. There are several methods to evaluate 
clustering results, such as the Rand index [48], adjusted Rand Index 
[49], the distortion score [50] and the Silhouette index. However, the 
most appropriated method for clustering among them is the Silhouette 
index because it does not need a training set to evaluate the clustering 
results [51]. Thus, it can be used to determine the degree of separation 
between clusters. For each sample:  

▪ Compute the average distance from all data points in the same 
cluster (ai).  

▪ Compute the average distance from all data points in the closest 
cluster (bi). 

s =
bi − ai

max(ai, bi)

∈ [ − 1, 1]⟹

⎧
⎨

⎩

0 : sample very close to neighboring clusters
1 : sample far from the neighboring clusters
− 1 : sample is assigned to the wrong cluster

⎫
⎬

⎭
(6) 

Therefore, an optimal clustering can be obtained for large Silhouette 
score, s values, ideally close to 1. 

3.2.3.3. Bhattacharyya coefficient. A different approach to study the 
clustering results is to determine the degree of dissimilarity between 
their distributions, where several indices have been suggested in liter-
ature [52–56]. Despite being introduced for different purpose, in gen-
eral, such indices are increasing when the two distributions involved 
move apart. Therefore, an index with this property is measuring diver-
gence of one distribution from another. A general method based on that 
feature (i.e., generating measures of divergence) has been already dis-
cussed in literature [57]. 

That is the case of the Bhattacharyya Distance which can be used for 
p-variate normal populations (i.e., case under study in this paper). If the 
variance-covariance matrices Σ0 = Σi = Σ are not equal (having also 
different means μ0 and μ1), the Bhattacharyya Distance between two 
probability density functions for multi-normal variables can be 
expressed as: 

di =
1
2

ln
|Vi|
̅̅̅̅̅̅̅̅̅̅̅̅
|Σ0Σi|

√ +
1
8
(μ0 − μi)

T V − 1
i (μ0 − μi) (7)  

Where Vi = (Σ0 +Σi)/2 [58]. 
The Bhattacharyya Coefficient can determine the overlapping be-

tween two statistical samples (an approximate measurement). Such 
coefficient can determine the relative closeness of two samples of in-
terest, and it is closely related to the Bhattacharyya Distance, Eq. (8): 

BC = e− di (8) 

The Bhattacharyya coefficient becomes 0 without overlapping whilst 
higher values are expected with the overlap of the two sample’s mem-
bers within it. It is considered that two distributions are significantly 

equal if BC ≥ 0.95, and significantly different if BC ≤ 0.05. 

4. Results and discussion 

4.1. FFC progress 

Two types of filaments were monitored in detail using the SKP, one 
far from the artificial defect (i.e., scratch) of the specimen S1 (Fig. 3(a)) 
and the other close to the scratch in specimen S2 (Fig. 3(b)). Fig. 4 is 
showing the evolution of the filament for 3 days, where it can be seen the 
different distance to the scratch. The filament from specimen S1 is 
already more than 90 mm far from the scratch whilst the filament from 
specimen S2 is around 40 mm away. 

In order to obtain complementary information to the optical one, the 
potential and the topography of the coatings were measured by SKP.  
Fig. 5 is showing the value of both in an already formed filament (line 
D0) which can be easily detected by a change in the topography centred 
at 2150 µm (around 30 µm height). In contrast, the potential difference 
within the filament (− 0.66 VSHE) is quite similar to the one of the sur-
rounding intact coatings (from − 0.64 to − 0.66 VSHE). It seems that such 
potential values are common in other intact areas of the coating (i.e., 
absence of filaments) measured at different distances from the initial 
filament (from 600 µm up to 2400 µm). It can be explained due to 
chromate-bearing pigments does not provide any depression of the po-
tential on the intact coated aluminium alloys [59,60]. Indeed, the po-
tential of the unexposed coating (prior to CASS chamber) is already 
showing a potential value around − 0.75/− 0.8 VSHE. Therefore, 
although the depression of the potential is commonly used to follow the 
progress of the anodic head throughout the intact coating [61], the 
topography has been used here instead. 

Fig. 6 is showing the evolution of the potential and height for both 
filaments of interest (Fig. 4). Independently of the filament, the potential 
is showing a value below − 0.60 V in all cases. The line scan for S1 
(Fig. 6(a)) at 0 h, prior to an occurrence of the head, is showing a con-
stant potential of − 0.64 V and a flat topography of the surface. Once the 
exposure time is increased to 14 h, the head has already occurred, 
having a height around 8 µm. If the time of exposure is increased (up to 
70 h), the height of the filament keeps increasing. However, the po-
tential does not show any significant change and a similar profiles with 
time can be observed. 

This behaviour can also be found in Fig. 6(b) for specimen S2. In this 
case, the line scan at 0 h is already showing the presence of the head 
centred at 1050 µm. Regarding to the potential, there is a plateau around 
− 0.64 VSHE within filament (950–1150 µm) which remains from 1150 
to 1950 µm. On the other hand, slightly higher potential values (− 0.60/ 
− 0.63 VSHE) are obtained from 0 to 700 µm. The most important feature 
seems to be the potential depression (around 25 mV) that occurs in the 
boundary filament/intact coating (centred at 750 µm). Indeed, if the 
time of exposure is increased (from 14 up to 70 h), such potential 
depression (20/25 mV range) seems to happen at both boundaries fila-
ment/intact coating. It could be explained by the presence of local an-
odes at the edge, where fresh surface can be attacked when the filament 
is growing laterally due to delamination (i.e. larger width). Further 
research is still needed to provide a conclusive statement about this. 

At the end of the exposure to the SKP chamber, confocal images were 
taken to observe the overall corrosion underwent by the coating. The 
FFC filaments were mainly developed to on the rolling direction of the 
aluminium alloy (i.e. vertical position of the images). Apparently, not 
only filaments are observed but also different damage as blisters (Fig. 3). 
Therefore, such phenomena together FFC have to be considered during 
the discussion of the AE results as potential sources of acoustic signals. 

As a summary, although large potential differences were not 
observed during FFC between zone such as the head/tail/intact coating 
for this metal/coating configuration, the topography measurements by 
SKP were used to follow the evolution of the filaments with time. 
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4.2. AE data analysis 

Different clustering algorithms were used and compared during the 
analysis of the AE data. The aim was to assign the different clusters to the 
proper physicochemical event which is taking place during the filiform 
corrosion test. 

4.2.1. Clustering approach 
In order to obtain the optimum k value (to be used for the K-Means 

algorithm in each experiment), the Elbow method was used (Fig. 7(a)), 
and the Silhouette Score was calculated (Fig. 7(b)). As it can be observed 
in Fig. 7(a), the sum of squared distance (SSE) between data points and 
their assigned clusters’ centroids does not provide enough information 
to apply the Elbow method (there is not a clear elbow bend, specially 

referring to S1), although it does provide some hints that the optimum K 
would be around K= 4–6. However, combined with the Silhouette score, 
it can be stated that the best option for both S1 and S2 is K= 5, where the 
Silhouette score has a local maximum, in Fig. 7(b). 

Regarding to the DBSCAN algorithm, there are two parameters to be 
determined: ε and the MinPts. A sweep of both parameters is made to see 
which combination obtains the highest Silhouette Score values: ε =

[0.001 − 0.2], and minPts = [50 − 250]. Table 4 is showing the results, 
where the number of clusters obtained, K, is the same as those defined 
for the K-Means algorithm. 

The results of S1 and S2 using both algorithms, K-Means and 
DBSCAN, are shown in Fig. 8 and Fig. 9, where the clusters are drawn on 
the Principal Components (PC0 and PC1). Although groups can clearly 
be distinguished in both cases, the division obtained with DBSCAN 

Fig. 3. : Photograph and confocal image (zoom of the delimited area) at the end of the SKP test of (a) specimen 1, S1, and (b) specimen 2, S2, for AA7075 with 
P60 + F70 coating system. 

Fig. 4. : Movement of two different FFC filament from specimen S1 ((a), (b) and (c)) and specimen S2 ((d), (e) and (f)) at different time of monitoring by SKP: (a) & 
(d) beginning of the measurement, (b) & (e) 1 day, (c) & (f) 3 days. 
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coincides with this group distinction, whilst a more arbitrary division 
was obtained with K-Means. 

In order to confirm the findings using DBSCAN algorithm, the 
Bhattacharyya Coefficients (BC) were calculated for both algorithms 
(Table 5 and Table 6). It can be observed that the distributions of the 
clusters obtained from the DBSCAN algorithms are more separated that 
the clusters obtained from the K-Means algorithm (i.e., lower BCs are 
generally obtained using the former algorithm). 

From these results, it can be stated that the DBSCAN algorithm ob-
tains a better separation among the clusters for both experiments. This is 

due to the fact that the underlying assumptions on the shape of the 
clusters (e.g., clusters are spherical, equally sized, equally dense and not 
contaminated by noise) are not met for the K-Means algorithm. 

4.2.2. Clusters analysis 

4.2.2.1. Robustness of the clustering. Clustering results obtained by 
DBSCAN have been listed in Table 7 as a range of the AE descriptors 
values within a specific cluster. The intervals were set by including 
significant data (i.e., considering only values between the percentiles 10 
and 90 in order to exclude marginal data), avoiding large intervals and 
simplifying the data complexity for analysis. In order to explore the 
robustness of the clustering method, the results form S1 and S2 have 
been compared. It can be observed that the CL1 of S1 and the CL1 of S2 
have similarities in their frequency bands, especially in their frequency 
centroid and their peak frequency. This similarity also occurs between 
clusters CL2 of S1 and S2, clusters CL3, as well as clusters CL4. The 
cluster CL0, conversely, was characterized by wide range of values for 
all AE descriptors (see Table 7). The high dispersion of the values sug-
gests that cluster CL0 gathers outliers coming from the rest of clusters, so 
it was excluded from the subsequent analysis to not distort the results. 

To verify such similarities, the Bhattacharyya Coefficients (BC) were 

Fig. 5. Potential and height vs. the position as a function of different distances 
(from 600 µm up to 2400 µm). from an existing filament (line D0). 

Fig. 6. : Potential and height vs. the position varying the time of exposure: (a) filament far from the artificial defect, (b) filament close to the artificial defect.  

Fig. 7. : (a) Distance between clusters, and (b) Silhouette score for different K for S1 and S2.  

Table 4 
Parameters used for DBSCAN algorithm.  

Specimen ε minPts Silhouette Score K 

S1  0.06  28  0.595  5 
S2  0.06  130  0.605  5  
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calculated between clusters of different experiments (Table 8). BC values 
(from 0.87 to 0.97) reveal that clusters along the two experiments are 
significantly equal, especially for the ones close to 0.95 or above. 

Interestingly, this finding is not only observed for the AE descriptors 
previously identified by PCA but also in the waveform of the AE signals.  
Fig. 10 shows the waveforms in the frequency domain, where similar 
frequency spectrums of the clusters are found. It can be observed that 
signals from similar clusters on specimens S1 and S2, e.g. clusters CL1 
(Fig. 10(a) and Fig. 10(b)), show dominant frequencies at the same 
range, i.e. 10–30 kHz. Moreover, not only similar dominant frequencies 

bands were obtained but also secondary frequency bands also match for 
each couple of clusters (CL1(S1) vs. CL1(S2), etc.). 

4.2.2.2. Relevance of the AE descriptors. In order to explore which AE 
descriptor (here called variable) was more relevant for clustering, results 
from Fig. 10 and Table 7 have been compared. Although the frequency 
seems to be one of the most relevant variables to distinguish between 
clusters, a depth analysis is required. Taking into account that, for the 
clustering process (i.e., identifying the location of the object in the right 
cluster), high similarity between a centroid and its objects is likely more 

Fig. 8. : S1. Clusters obtained using the (a) K-Means algorithm, and (b) DBSCAN algorithm, represented the first principal components.  

Fig. 9. : S2. Clusters obtained using the (a) K-Means algorithm, and (b) DBSCAN algorithm, represented the first principal components.  

Table 5 
Bhattacharyya Coefficients between clusters of S1, for (a) K-Means and (b) DBSCAN algorithms.  

(a) (b) 

CL0 1     CL0 1     
CL1 0.29 1    CL1 0.1 1    
CL2 0.31 0.18 1   CL2 0.001 0.09 1   
CL3 0.46 0.22 0.78 1  CL3 0.39 0.51 0.04 1  
CL4 0.42 0.18 0.37 0.65 1 CL4 0.51 0.4 0.04 0.74 1  

CL0 CL1 CL2 CL3 CL4  CL0 CL1 CL2 CL3 CL4  

Table 6 
Bhattacharyya Coefficients between clusters of S2, for (a) K-Means and (b) DBSCAN algorithms.  

(a) (b) 

CL0 1     CL0 1     
CL1 0.66 1    CL1 0.21 1    
CL2 0.72 0.77 1   CL2 0.29 0.12 1   
CL3 0.68 0.85 0.84 1  CL3 0.38 0.15 0.68 1  
CL4 0.55 0.6 0.66 0.72 1 CL4 0.35 0.14 0.7 0.8 1  

CL0 CL1 CL2 CL3 CL4  CL0 CL1 CL2 CL3 CL4  
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important than a variable that has low similarity, such variables can be 
ranked. In this sense, the DBSCAN algorithm is not able to provide a 
raking about which variable is more relevant for each cluster, and 
therefore, Random Forest classifier was used to overcome this issue. 
Random Forest is an ensemble classifier, consisting of multiple decision 
trees and trained using randomly selected feature subspaces [62]. This 
method builds multiple decision trees at training phase. Often, a pruning 
process is applied to reduce both, tree complexity and training data 
overfitting. In order to predict the class of a new instance, this instance is 
put down to each of these trees; each tree gives a prediction (votes) and 
the class having most votes over all the trees of the forest will be selected 
(majority voting). The algorithm uses the bagging method [63], where 
each tree is trained using a random subset (with replacement) of the 
original dataset. In addition, each split uses a random subset of features. 

Once the events are labelled through clustering, the algorithm pro-
ceeds to train the classifier, which, in return, will rank the importance of 
the variables when constructing the classifier as it is shown in Table 9. 
The importance ranking of the variables, computed by the classification 
algorithm, is then compared with the most important features for the 
clustering algorithm. Independently of the specimen, the importance of 
the variable coincides in both cases, noting also that the peak frequency 
(PF) is more important (i.e., twice) than the next variable (i.e., Ampli-
tude) in both experiments (Table 9, columns S1 (a) and S2 (a)). 

In order to find out the relevance of each AE descriptor in the FFC 
process, random forest classifier has been used again once CL0 and CL1, 
the two clusters related to outliers and noise (discussed below: Section 
4.2.3), respectively, have been removed. Results from the histogram 
have been depicted in Table 9 (columns S1 (b) and S2 (b)) which reveals 
that the Peak Frequency remains as the most important parameter to 
distinguish the clusters. In contrast to this finding, the peak frequency 
was not a relevant AE descriptor (the last one out of 7) in the case of 
stress corrosion cracking (SCC) using also a wideband sensor [23]. 
Moreover, random forest (which properly predicted 80 out of 82 AE 
signals) was showing that the rise time was playing the most significant 
role for SCC, followed by duration, average frequency and absolute 
energy. The two first descriptors were found to be the best to distinguish 
between the dislocations and crack signals [23]. However, rise time does 
not play a crucial role as discriminatory descriptor for FCC (either 
considering four clusters or only three (from CL2 to CL4)). Therefore, it 
seems that SCC and FFC could be easily distinguished if both corrosion 
forms are monitored by AE, where their key descriptors are not 

necessary the same. 
If the importance of the remaining descriptors is compared consid-

ering either four clusters (columns S1 (a) and S2 (a)) or three (columns 
S1 (b) and S2 (b)), the following differences are observed: (i) the 
importance of the amplitude is hindered in both tests (especially in S1) 
which could indicate that such descriptor is mainly linked to the noise/ 
outliers clusters rather than to the FCC ones, (ii) the duration becomes to 
be a key parameter only for S1, and (iii) the absolute energy seems to 
have a large influence in both tests, but especially in S2. Then, the peak 
frequency + absolute energy + duration are having the largest contri-
bution (above 80%) to classify the waveform for both tests (Table 9). It 
was found that absolute energy and duration could be used to identify 
pitting corrosion (covered morphology) on stainless steel. Wu et al. 
found that the absolute energy was a key AE descriptor to explore pitting 
corrosion on AISI 304, where two type of clusters were identified: the 
low-energy cluster (having mainly continuous signals and related to the 
hydrogen-bubble evolution inside the pits) and the high-energy one 
(having mainly burst signals attributed to the rupturing of the pit covers 
during the pit growth) [22]. On the other hand, they also stablished a 
morphological descriptor for pitting corrosion derived from the AE 
duration-amplitude plots: long-duration AE signals were obtained when 
occluded pits (generated under low-concentration NaCl solutions) 
whilst short-duration burst signals were obtained when open pits with 
ruptured covers occurred (under high-concentration NaCl) [64]. 
Although further research has to be done to understand the differences 
between S1 and S2 tests (e.g., using other AE features, such as wavelet 
parameters), the findings in literature about pitting corrosion seems to 
be aligned with the weight of the absolute energy and the duration in the 
clustering”. 

In order to confirm one of the main findings of this work, i.e., the 
peak frequency as the most discriminant descriptor, the peak frequency 
vs. time was plotted for both experiments. It can be clearly observed the 
similarities between the clusters of S1 (Fig. 11(a)) and S2 (Fig. 11(b)), 
where clusters have been arranged according to the DBSCAN range 
values (see Table 7) and the frequency spectrum (Fig. 10). 

As result, it can be argued that the peak frequency of the AE signals 
seems to be a key feature to characterize and to distinguish the different 
mechanisms taking place during FFC. At this point, if the peak frequency 
(PF) is considered the most relevant descriptor for clustering (random 
forest analysis, [62]), the following questions can arise concerning the 
correlation between the dominant frequencies of the AE signals and the 
PF: Does the PF match the range of the dominant frequencies? How can 
be assured that the dominant frequencies of a signal from cluster CL2 
(from 74 to 113 kHz in Table 7) is truly ranged between 60 and 
120 kHz? 

In order to answer these questions, the Power Spectrum Density 
(PSD) of the AE signals was calculated and evaluated. The PSD describes 
how the power of a signal or time series is distributed over frequency, 
and is defined as follows: 

Table 7 
AE descriptors values resulting from the DBSCAN clustering.   

Rt. [µs] F.C. [kHz] Dur. [µs] Amp. [dB] A.E. [aJ] P.F. [kHz] 

S1 
CL0 19.3–2082 186–277 215 – 6581 26–44 1.8 – 127.0 15–300 
CL1 19 – 731 219–256 60 – 3867 25–29 0.45–23.46 13–15 
CL2 5 – 88 236–268 32 – 296 25–33 0.27–4.58 74–105 
CL3 8 – 124 245–274 53 – 607 26–36 0.5–9.5 167–190 
CL4 3.3 – 127 269–286 46 – 425 26–33 0.5–4.1 294–302 
S2 
CL0 15–9453 100–268 365–19112 33–58 5–20293 13–291 
CL1 31–2928 100–251 98 – 5598 25–32 0.66–68.98 13–15 
CL2 10 – 248 218–265 48 – 946 25–33 0.33–10.77 74–113 
CL3 8 – 290 238–272 67 – 1206 26–35 0.46–12.40 167–203 
CL4 9 – 258 256–283 77 – 1473 26–35 0.54 – 11.80 289–296  

Table 8 
Bhattacharyya Coefficients between clusters of the experiments S1 and S2.  

CL1 0.87 0.39 0.44 0.34 

CL2 0.67 0.94 0.73 0.65 
CL3 0.63 0.71 0.94 0.7 
CL4 0.57 0.63 0.66 0.97 

S2 
S1 

CL1 CL2 CL3 CL4  
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Fig. 10. : Comparison of the FFTs of the waveforms belonging to the CL1s (a) of S1 and (b) of S2, the CL2s (c) of S1 and (d) of S2, the CL3s (e) of S1 and (f) of S2, the 
CL4s (g) of S1 and (h) of S2. 
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Sxx(f ) = lim
T→∞

1
T
|x̂T(f ) |2 (9)  

Where the period T is centred about some arbitrary time t = t0. On the 
other hand, ̂xT(f) is the ordinary Fourier Transform of xT(t) = x(t)⋅ωT(t), 
and ωT(t) is unity within the arbitrary period and zero elsewhere. 

In this case, the PSD was calculated for the AE signals coming from 
cluster CL2, associated to the opening interface delamination. In 
particular, the weight of PSD at different ranges of 60 kHz R1, R2, …, R7 
(see Fig. 12), called Spectral Energy (SE), was evaluated. In this way, if 
the Spectral Energy (SE) of R2 (60–120 kHz) is 20% higher than the SE 
of the rest of ranges (Eq. (10)), then the dominant frequencies are 
considered located in range 2, i.e. between [60 − 120] kHz. 

SE2

SE1
>

1.2 ∧ SE2

SE3
>

1.2 ∧ SE2

SE4
>

1.2 ∧ SE2

SE5
>

1.2 ∧ SE2

SE6
>

1.2 ∧ SE2

SE7
> 1.2

(10) 

The results have shown that the 97.09% of the AE signals from S1 
and the 95.03% from S2 have the dominant frequencies of CL2 in the 60 
– 120 kHz range. Therefore, the PF parameter was consistent with the 
dominant frequencies of the AE signals. 

4.2.3. Clusters assignation 
According to the confocal images and pictures (Fig. 3), both speci-

mens underwent different visual damage in the metal/coating interface. 
However, not only the same number of clusters were obtained but also 
they were significantly equal (Fig. 11) for both specimens. Therefore, 
once clustering has been successfully implemented, the different clusters 

Table 9 
Importance of the experiments according to the Random Forest algorithm, used with labels created by DBSCAN clusterization for S1 and S2 tests: (a) considering all 
clusters (from CL0 to CL4), (b) taking into account only clusters related to FFC (CL2 to CL4).  

Descriptor S1 Descriptor S2 

(a) Importance all clusters 
(CL0 to CL4) 

(b) Importance on clusters related 
to FFC (CL2 to CL4) 

(a) Importance all clusters 
(CL0 to CL4) 

(b) Importance on clusters related 
to FFC (CL2 to CL4) 

Peak Freq. [kHz]  0.39  0.31 Peak Freq. 
[kHz]  

0.51  0.49 

Amplitude [dB]  0.21  0.05 Amplitude [dB]  0.23  0.11 
Duration [µs]  0.17  0.29 Duration [µs]  0.10  0.01 
Risetime [µs]  0.14  0.09 Risetime [µs]  0.10  0.01 
Freq. Centroid 

[kHz]  
0.05  0.05 Freq. Centroid 

[kHz]  
0.04  0.07 

Absolute Energy 
[aJ]  

0.04  0.21 Absolute Energy 
[aJ]  

0.02  0.31  

Fig. 11. : Clusters obtained by the DBSCAN algorithm represented in the Peak Frequency in time, (a) S1 and (b) S2.  

Fig. 12. : (a) FFT of a waveform and (b) its equivalent PSD belonging to CL2, with a Peak Frequency of 59 kHz.  
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are going to be identified. 
The cluster CL1 is characterized by low and specific values of peak 

frequency in the audible range (13–15 kHz, see Table 7) and its signals 
reached very high durations (S1: 3866.8 µs, S2: 5597.5 µs) and energy 
values (23.46 aJ, 68.98 aJ) comparing with the rest of clusters (CL2–4). 
Moreover, this cluster is gathering more than 80% of data (Fig. 13) while 
FFC phenomena is expected to release low rate of AE activity. All these 
features suggest that cluster CL1 includes AE signals of the ambient noise 
in the laboratory (probably coming from electromagnetic noise of SKP or 
other laboratory equipment). It should be noted that this cluster appears 
for a limited period of time during the experiment S1, in contrast with S2 
where this cluster took place the whole experiment (Fig. 13). This erratic 
nature of cluster CL1 agrees with the assignation to noise sources. 

Clusters CL2–4 show similar values between them in terms of dura-
tion, rise time and amplitude; they are of transient type as they exhibit 
low duration/rise time but a relatively higher amplitude. Nevertheless, 
if comparing those clusters between experiments S1 and S2, in the latter 
one some signals reached higher durations and rise time, but keep 
exactly the same frequency content (peak frequency and frequency 
centroid) when evaluating cluster by cluster. In this sense, it is known 
that every mechanism release AE signals of a characteristic frequency 
content, which is substantially affected by propagation only in disper-
sive medium [65] (not the case of metallic substrates). Therefore, it 
could be concluded that clusters CL2–4, even though they show slight 
differences in the time domain, they still being of transient type and 
come from the same mechanisms for both tests. 

Regarding the time domain, transient AE signals were observed in 
previous works, as for example the mechanical disbonding at the 
interface mild steel/lacquer reported by Callow and Scantlebury [66]. In 
fact, based on the mechanical component of the disbondment, early 
works in this domain suggested that the delamination substrate/paint is 
a possible AE source [67] coming, in some extent, from the pressure on 
the substrate/coating during FFC tests [68,69] or mechanical tests [15]. 
Tsuru et al. [70] validated this hypothesis and concluded that some AE 
signals were coming from the metal/resin bonds after failure (i.e., dis-
bondment) due to the tensile stress. The latter is released there, partially, 

as a vibration energy and spreads through metal substrate. 
Considering the clusters CL2–4 in the frequency domain, the values 

displayed by signals of cluster CL2 (PF: 74–113 kHz) are in agreement 
with the finding from Yao et al. [71], where the dominant frequencies of 
the opening interface cracks during delamination (tensile mode) on 
thermal barrier coatings (TBC) was found in the range of 80–100 kHz. 
Further works on TBC [72] have evidenced that sliding interface cracks 
(shear mode) occurring during the delamination process are character-
ized by AE signals of frequencies ranged in 270–300 kHz, which co-
incides with the signals of cluster CL4 (PF: 289–302 kHz). 

Finally, the cluster CL3, corresponding to AE signals of peak fre-
quency in the range 167–203 kHz, could be associated with a mixed 
mode of tensile (opening) and shear (sliding) modes. At this point, it 
should be noted that the delamination mode on coating systems, unless 
they are tested under specific standards to evaluate pure tensile or shear 
modes, they are rather of mixed mode on real processes. The lift angle at 
the tip/edges of the FFC filament, which depends on factors as the 
quality of adhesion [16] or the height of the filament, implies that the 
stresses transferred by the lift force to the interface metal-coating are 

Fig. 13. : Relative activity of the CL1 of (a) S1 and (b) S2, and relative activity of the CL2, CL3 and CL4 of (c) S1 and (d) S2.  

Fig. 14. : Theoretical decomposition of the lift force on tensile and shear 
components at the edge of the filament during the FFC progress. 
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decomposed in tensile and shear components (Fig. 14). 
As a summary, it has been shown here that a proper AE data analysis 

is needed to show/reveal the sensitivity of AE signal to identify different 
delamination modes in the metal/coating interface, and therefore, to 
provide new insights in the FFC mechanism. Nevertheless, further 
research should be done to validate the assignation of clusters CL2, CL3 
and CL4 to the different modes of (mechanical) delamination in the 
interface. 

5. Conclusions 

FFC has been successfully monitored on coated AA77075-T6 by AE 
sensors into the SKP chamber. After an initial screening of the AE data 
(up to six AE descriptors by PCA), DBSCAN algorithm was able to pro-
vide four well-differentiated clusters (CL1-CL4) despite having a 
multivariate complex data set which contains: i) noise, ii) clusters with 
signals of extreme features, iii) set of clusters with uneven sizes. The 
goodness of DBSCAN algorithm has been confirmed using metrics such 
as the Bhattacharyya Coefficient for the clusters related to the FFC (from 
CL2 to CL4): interface delamination either by opening (CL2) or sliding 
(CL4), and the mixed mode (CL3) have been successfully identified to be 
part of the FFC mechanism. Even though the assignation of the clusters 
to each physical event shall be validated in further research, the peak 
frequency has been identified as the most relevant classifier in the 
clustering process, for this research, by Random Forest. This fact was 
also verified by detecting the range of dominant frequencies, either by 
observing the frequency domain of the AE signals or by calculating its 
Power Spectral Density value. Hence, the peak frequency has demon-
strated to be the key descriptor to cluster reliably the AE signals of 
different mechanisms during FFC experiments. 
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